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INTRODUCTION

Symmetry has played an important role in various branches of physics,

chemistry, Biology and other importants engineering application such as

Robotics, computer vision etc. From outside symmetry of an underlying

physical system may look fascinating. But in real worlds and many scientific

applications symmetry breaking is also equally important. For example it

is only when we discuss the symmetry breaking of some physical phenom-

ena(details avioded) then only we can predict the exitance of Higgs boson,

the physical discovery of which shook the scientific community recently. Sim-

ilarly from the symmetry breaking of Lie group Sp(6), now it is well under-

stood why in nature we find only 21 amino acids responsible for explaining

structure of DNA code. Similarly underlying symmetry of a given physical

system also explains many physical structure phenomena observed in nature.

For instance long before, mathematically it is proved that the zoo of particles

observed inside the nucleus(universal) obeys some type of symmetry which

is exactly same as that of symmetry of Special unitary group/algebra SU(3).

So in our work we have discussed this aspect in great detail explaining the

representation of Lie group/Lie algebra SU(3) and have shown how the sym-

metry of root of particles found in universe exactly fits in to this.

It has been observed that all type symmetries are closed related with

some type of group structure either discrete group or continuous group. The

continuous group which is also called Lie group and its algebra called Lie

algebra is our subject of investigation. In this short project we have given

introduction to Lie group Lie algebra more particularly the complex Lie

algebra sl(3,C) and real form SU(3). We have studied in detail the rep-

resentation of this lie algebra and we have shown how this is related with

the symmetry of particles(particles observed inside the nucleus of an atom).

This is not a calculation but a simple review to show one of the interesting

application of Lie groups and Lie algebras in the realms of particle physics.
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CHAPTER 1

Lie groups and Lie algebra

1.1 Lie algebra and Lie group

Definition 1.1.1. A Lie algebra L is a vector space with a binary operation

(x, y) ∈ L × L 7→ [x, y] ∈ L is called Lie bracket or commutator, which

satisfies

• [x, y] = −[y, x] ∀ x, y ∈ L (antisymmetry).

• The binary operation is linear in each of this entries [αx + βy, z] =

α[x, z]+β[y, z] and [x, αy+βz] = α[x, y]+β[x, z] (bilinearity) ∀ x, y ∈ L

and α, β ∈ F .

• ∀ x, y, z ∈ L one has [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi

identity)

A Lie algebra is called real or complex when the vector space is respec-

tively real (F = R) or complex (F = C).

Definition 1.1.2. Let L and M be Lie algebras and ϕ : L −→ M a bijection

such that ∀ α, β ∈ F

ϕ(αx + βy) = αϕ(x) + βϕ(y) and ϕ([x, y]) = [ϕ(x), ϕ(y)] then ϕ is called an

isomorphism and the Lie algebra L and M are called isomorphic.

Definition 1.1.3. A Lie algebra L is called abelian if [x, y] = 0 ∀ x, y ∈ L.

A subset K of a Lie algebra L is called a subalgebra of L if ∀ x, y ∈ K and

all α, β ∈ F ,

• αx+ βy ∈ K

• [x, y] ∈ K
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Definition 1.1.4. Commutator of Lie algebra: Let M and N be subsets of

L which are not necessarily subspaces. Then the commutator [M,N ] of M

and N is defined to be the linear span of the set of elements of the form [x, y]

with x ∈ M and y ∈ N that is

[M,N ] = {z ∈ L | z =
∑
i,j

αij[xi, yj]; xi, yj ∈ L, αij ∈ F}

Definition 1.1.5. An ideal I of a Lie algebra L is a subalgebra of L with

the property [I, L] ⊂ I i.e for all x ∈ I and all y ∈ I, [x, y] ∈ I .

Every Lie algebra has at least two ideals, namely the Lie algebra L itself

and the sub algebra 0 consisting of the zero element only 0 ≡ {0} both these

ideals are called trivial. All non-trivial ideal are called proper.

Definition 1.1.6. Lie Group: A Lie group is a group G, equipped with

a manifold structure such that the group operations MULT: G × G →
G, (g1, g2) 7→ g1g2, Inv : G → G, g 7→ g−1 are smooth. A morphism

of Lie groups G,G′ is a morphism of groups ϕ : G → g′ that is smooth.

Example 1.1.7.

The example of a Lie group is the general linear group. GL(n,R) = {A ∈
M(n,R) | det(A) ̸= 0} of invertible n× n matrices.

1.1.1 Relation between Lie groups and Lie algebra

Linear Lie groups the element of which are linear operators on some

vector space. Our discussion is based on the complex general Lie group

GL(V ), the group is bijective linear operators on a complex n-dimensional

vector space V . Denoting the group element by capitals A and B,etc. We

define the matrix representation of these operators by taking the basis in the

vector space V and by considering the action of operators on the basis vectors.

Let {e1, e2, · · · , en} be basis in a V . Then matrix (aij) representation the

operator A is defined by Aei =
∑n

j=1 ejαji, i = 1, 2, · · · , n. In this way we

obtain the isomorphism A ∈ GL(V ) 7→ (aij) ∈ GL(n,C) where GL(n,C) is
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the group of all invertible complex n× n matrices. Our next aim is to show,

GL(V ) and GL(n,C) are n2 dimensional complex Lie groups. Let M(n,C)
be the set of all complex n × n matrices then the map k : aij ∈ M(n,C) 7→
(a11, a12, · · · , ann) ∈ Cn2

is a bijection. From the fact the map det : (aij) 7→
det(aij) ∈ C is a continuous function of the matrix element it follows that

GL(n,C) = {A ∈ M(N,C) | detA ̸= 0} is an open set in Cn2
. This implies

that the restriction k|GL(n,C) maps the open set GL(n,C) bijectively onto

the open set Cn2\K where K = {(a11, a12, · · · , ann) ∈ Cn2 | det(aij) =

0}. In the general theory of Lie group of it is shown that the vector space

structure of the Lie algebra of a Lie group is isomorphic with the tangent

space at the unit element of the group manifold.For a linear lie group the

tangent space is obtained. consider in GL(n,C) a subset of operators A(t)

depending smoothly on a real parameter t and such that A(0) = 1, where

1 is the identity operator on V . Such a subset is called a curve through

the unit element. The tangent vector at t = 0 is obtained by making the

Taylor expansion of A(t) up to the first order term A(t) = A(o)+Mt+ o(t2)

with M the derivative of A(t) at t = 0 : M = Ȧ(0). The linear operators

M obtained in this way are element of the Lie algebra of GL(n,C). The

basis {e1, e2, · · · , en} the operators M are represented by complex n × n

matrices (mij). Considering all possible smooth curves through unit element

of the group one obtains for the vector space structure of the Lie algebra the

n2 dimensional space of complex n × n matrices. This is the vector space

M(n,C). Now to obtain the Lie bracket of elements M,N ∈ M(n,C). Let

consider the group commutator C(t) = A(t)B(t)A−1(t)B−1(t) of two smooth

curves A(t) and B(t). If Ȧ(0) = M and Ḃ(0) = N then the Lie bracket of M

and N is defined as the tangent vector at t = 0 of C(t). Then Ċ = MN−NM

that is the Lie bracket is the commutator [M,N ] = MN−NM of the matrices

M and N . The general linear Lie algebra gl(n,C) is the Lie algebra of the

group GL(n,C).

Definition 1.1.8. Lie Group and Lie Algebra with Exponential map: Let

M ∈ gl(n,C), then A(t) = expMt (t ∈ R) is a non singular linear operator
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that is expMt is a matrix in GL(n,C). Clearly Ȧ(0) = M that is M is the

tangent vector to the path A(t). The map is exp : M ∈ gl(n,C) 7→ expM ∈
GL(n,C) is called the exponential map.

1.2 Types of Lie Algebra:

1.2.1 Nilpotent Lie algebra

Definition 1.2.1. We consider again the central descending series of ideals

in L ≡ L0. L0 ⊃ L1 ⊃ · · · ⊃ Ln ⊃ · · · with Ln = [L,Ln−1] (n = 1, 2, · · · )
such that L ̸= o is nilpotent means that Lr = 0 for some r while Lr−1 ̸= o

[L,Lr−1] = Lr = 0. This means that Lr−1 is a non trivial abelian ideal. The

nilpotent Lie algebra is not Semisimple.

1.2.2 Solvable Lie algebra:

Definition 1.2.2. Let L be a Lie algebra. The sequence L0, L1, L2, · · · , Ln, · · ·
defined by L0 = L, L1 = [L0, L0], · · · , Ln = [Ln−1, Ln−1], · · · is called the

derived sequence. A Lie algebra L is called Solvable if Ln = 0 for some n ∈ N.

1.2.3 Simple and Semisimple Lie algebra

Definition 1.2.3. A Lie algebra L is called simple if L is non-abelian and

has no proper ideals. A Lie algebra L is called semisimple if L ̸= 0 and L

has no abelian ideals ̸= 0.

1.2.4 structure constants

Definition 1.2.4. One extremely important theorem about the structure of

Lie groups is that the commutator of any two elements of Lie algebra can be

written as a linear combination of the basis of the Lie algebra. Let g be a

finite-dimensional real or complex Lie algebra, and X1, · · · , Xn be a basis for

g (as a vector space). Then for each i and j, [Xi, XJ ] can be written uniquely
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in the form

[Xi, Xj] =
n∑

k=1

ckijXk. (1.1)

where the constants ckij are called the structure constants of g. Clearly the

structure constants determine the bracket operation on g. The structure

constants satisfy the following two conditions:

• ckij + ckji = 0,

•
∑

m(c
m
ij c

′

mk + cmjkc
′
mi + cmkic

′
mj) = 0, (which can be visualise as follow

[[Xi, Xj], Xk] + [[Xj, Xk], Xi] + [[Xk, Xi], Xj] = 0

The first of these conditions comes from the skew symmetry of the bracket,

and the seconds comes from the jacobi identity.

1.3 Classical Lie algebra

The classical Lie groups are the special linear group SL(n,C), the or-

thogonal group O(n,C) and sympletic group Sp(n,C). General linear Lie

groups have corresponding general linear lie algebra. We will define these

groups and Lie algebras.

1.3.1 The special linear group SL(n,C) and its Liealgebra

The subset of linear operator A ∈ GL(n,C) with detA = 1 constitutes

by definition the special linear group SL(n,C). The condition on group

element leads to a condition on the tangent vectors. Let A(t) = expMt be

a smooth path in GL(n,C). Imposing condition detA(t) = det(expMt) =

exp(TrMt) this give the restriction

TrM = 0 on the Lie algebra elements. Since the trace of a commutator is

identically zero

Tr[M,N ] = 0. The Lie algebra sl(n,C) of the Lie group SL(n,C) is given

by the sub algebra of traceless matrices in gl(n,C) :
sl(n,C) = {M ∈ gl(n,C) | TrM = 0}.
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1.3.2 The orthogonal group O(n,C)

The complex orthogonal group O(n,C). With this group we consider

the matrix representation with respect to the basis {e1, e2 · · · en} which is

according to orthonormal with respect to the invariant form (., .). The con-

dition of invariance of the bilinear form under the transformations of O(n,C)
leads for the matrices to the condition ATA = 1. Matrices having this prop-

erty are called orthogonal matrices.

From follows 1 = detAT detA = detA2 . Hence the determinant of orthogo-

nal matrices equal ±1. The subset of matrices in O(n,C) having determinant

equal to one is easily seen to be a sub group of O(n,C). This subgroup is

called the special orthogonal group SO(n,C). The lie algebra of the matrix

representation of SO(n,C). We consider again smooth curves through the

unit element of the group. The tangent vectors M are restricted by the con-

dition

MT +M = 0,MT = −M . Hence the tangent vectors are the orthogonal basis

represented by antisymmetric matrices. Since the commuter of two antisym-

metric matrices is again and an antisymmetric matrices we have a character-

isation of lie algebra SO(n,C) we have SO(n,C) = {M ∈ gl(n,C) | MT =

−M}.
dim(SO(n,C)) = n(n−1)

2
.

• The Lie algebra so(2k,C) : Here we obtain another orthogonal algebra.

The construction is identical to that for Bl, except that dimV = 2l is

even and s has the simpler form

(
0 lt

lt 0

)
. To construct a basis and to

verify that dim SO(2l, F ) = 2l2 − l. Let t(n, F ) be the set of upper

triangular matrices (aij, aij) = 0 if i > j. Let η(n, F ) be the strictly

upper triangular matrices aij = 0 if i ≥ j. Finally, let δ(n, F ) be the

set of all diagonal matrices. Also that t(n, F ) = δ(n, F ) + η(n, F ) with

[δ(n, F ), η(n, F )] = η(n, F ), hence[t(n, F ), t(n, F )] = η(n, F ), denotes

the subspace of L spanned by commutators [x, y], x ∈ H, y ∈ K.

• The Lie algebra so(2k + 1,C) :
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Let dimV = 2l+1 be odd, and take f to be nondegenerate symmetric

bilinear form on V whose matrix is s =

1 0 0

0 0 Il

0 Il 0

 . The orthogonal

algebra so(2l + 1, F ), consists of all endomorphisms of V satisfying

f(x(v), w) = −f(v, x(w)).

If we partition x in the same form as s, say x =

a b1 b2

c1 m n

c2 p q

, then

the condition sx = −xts translates into the following set of conditions:

a = 0, c1 = −bt2, c2 = −bt1, q = −mt, nt = −n, pt = −p. Add the 2l

matrices involving only row one and column one e1,l+i+1 − ei+1,1 and

e1,i+1 − el+i+1,1 (1 ≤ i ≤ l). Corresponding to n take ei+1,l+j+1 −
el+j+1,l+i+1(1 ≤ i ̸= j ≤ l). For n take ei+1,l+j+1 − ej+1,l+i+1, and for

p, ei+l+1,j+1 − ej+l+1,i+1(1 ≤ j < i ≤ l).The number of basis elements is

2l2 + l.

1.3.3 The Symplectic group Sp(k,C)

Sp(2l,C) the symplectic algebra, which consists of all endomorphisms

x to V satisfying f(x(v), w) = −f(v, x(w)) denoted by Sp(V ), is close under

the bracket operation. In matrix terms, the condition for

(
m n

p q

)
(m,n, p, q) ∈ gl(l, f) to be symplectic is that sx = −xts. Take the diagonal

matrices eii − el+i,l+i (1 ≤ i ≤ l),. Add to these all eij − el+j,l+i(1 ≤ i ̸=
j ≤ l), l2 − l in number. For n we use the matrices ei,l+i(1 ≤ i ≤ l) and

ei,l+j + ej,l+i(1 ≤ i < j ≤ l), a total of l + l(l − 1), and similarly for the

position in p. Adding up, we find dimSp(2l, F ) = 2l2 + l.

1.3.4 Representation of Lie Algebra

For every x ∈ L, let us define a linear operator adx on the vector space

L that is adx : L → L, Such that adx(y) = [x, y] ∀ y ∈ L.

The map (x, y) ∈ L× L 7→ adx(y) ∈ L.
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1. ad[x, y] = [adx, ady]

2. Jacobi identity one obtain ∀ z ∈ L, ad[x, y](z) = [ad(x), ad(y)](z)

Hence ad : x ∈ L 7→ adx ∈ gl(L) is a representation of L with representation

space L. This representation is called the adjoint representation of L.

1.3.5 Finite-dimensional Representations of sl(2,C)

We construct the finite-dimensional representation of sl(2,C) on a com-

plex vector space V . To construct a representation for a basis in Lie algebra.

Basis for sl(2,C)

{e =

(
0 1

0 0

)
, h =

(
1 0

0 −1

)
, f =

(
0 0

1 0

)
}.

Their commutation relation

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let V be a finite-dimensional sl(2,C) module. Denoting the linear operators

representing the action of e, f and h by e·, f · and h·, we have

• [h, e]· = h · e · −e · h· = 2e·

• [h, f ]· = h · f · −f · h· = 2f ·

• [e, f ]· = h · f · −f · e· = h· .
It has to be stressed that e·, f · and h· are linear operators on the vector

space V . Now a linear on a finite-dimensional complex vector space has

at least one eigenvector. Let v ∈ V be an eigenvector of the operator h·
then v ̸= o and h·v = λv (λ ∈ C) we obtain h·(e·v) = e·h·v+2e·v or

equivalently h·(e·v) = (λ+2)e·v Likewise one has h·(f ·v) = f ·h·v−2f ·v
or h · (f · v) = (λ− 2)f · v. When e · v ̸= 0, then it is an eigenvector of

h· and its eigenvalue, compared to the eigenvalue of v, is raised by 2.

Likewise if f · v ̸= 0 then it is an eigenvector of h· and its eigenvalue,

compared to the eigenvalue of v, is lowered by 2. Hence e· acts as a

raising operator and f · as a lowering operator when they act on the
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eigenvectors of h·. Repeating these actions we get a chain of indepen-

dent eigenvectors of h·. The commutation relation between (e·)k, (f ·)k

and h·.

1.4 Root space decomposition:

Definition 1.4.1. L be a finite dimensional complex semisimple Lie alge-

bra. H be the maximal toral subalgebra of a L. The eigenvalues of the linear

operator adh will be denoted by α(h) and define the subspace Lα of L by

Lα = {x ∈ L|∀h ∈ H : adh(x) = α(h)x}.
Then the Lie algebra L is a vector space direct sum of the subspaces

Lα :

L =
⊕
α

Lα. (1.2)

This is called the root space decomposition of L with respect to H.

Definition 1.4.2. Root system

The subset ∆ of H∗ consisting of all roots of L is called the root system of

L.

1.4.1 Root chain

Let α and β ̸= ±α be roots. The linear operator adeα on eβ yields a se-

quence of non-zero vector eβ, eβ+α, · · · , eβ+qα, after deleting the zero vectors.

Likewise repeated application of the linear operator adfα on eβ yields also a

sequence of sequence of non-zero vectors eβ, eβ−2α, · · · , eβ−pα. We obtain the

sequence of roots

β − pα, · · · , β − 2α, β − α, β + α, β + 2α, · · · , β + qα.

1.4.2 Cartan matrix

Definition 1.4.3. Aij for i, j = 1 · · · k of a Semisimple Lie algebra is de-

fined by means of the dual contraction between Π = {α1, α2 · · · , αk} and
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Πv = {αv
1 · · · , αv

k} :

Aij =< αj, α
v
i >=

2(αj|αi)

(αi|αi)
. (1.3)

The matrix element of the cartan matrix are the cartan integers of simple

roots. Relation between the ratio of lengths of simple roots and matrix

elements of the cartan matrix

Aij

Aji

=
∥αj∥2

∥αi∥2
. (1.4)

1.4.3 Dynkin diagrams

Definition 1.4.4. Let A(L) be a k × k cartan matrix of a semisimple Lie

algebra L. The Dynkin diagram D(A) of the Lie algebra L is constructed

following rules:

• Draw k vertices, one for each simple root, vertex i corresponding to the

simple root αi.

• Connect the vertices i and j with nij lines,

where nij = Aij × Aji (i, j = 1, · · · , k).

• If |Aij| > 1 draw an arrow pointing from vertex j to vertex i.

A diagram which is obtained from a cartan matrix A only by means of the

rules is called a Coxeter diagram.This diagram is denoted by C(A).

1.4.4 Root system of sl(3,C) :

The simple root system of sl(3,C) is Π = {α1, α2}.

The Cartan matrix is

(
2 −1

−1 2

)
.

Here length of α1, α2 are 1.

Now consider α2 string through α1:

α1 − 2
(α1, α2)

(α2, α2)
α2 = (α1 + α2)
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(α1 + α2) string through α2:

α1 + α2 − 2
(α1 + α2, α2)

(α2, α2)
α2 = α1 + α2 − [2

(α1, α2)

(α2, α2)
+ 2

(α2, α2)

(α2, α2)
]α2

= (α1 + α2)− (−1 + 2)× α2 = α1

α1 string through α2:

α2 − 2
(α2, α1)

(α1, α1)
α1 = (α1 + α2)

(α2 + α1) string through α1:

α2 + α1 − 2
(α2 + α1), α1

α1, α1

α1 = α2

The length of (α1 + α2) is,

∥α1 + α2∥ =
√
(α1 + α2, α1 + α2) =

√
(α1, α1) + (α2, α2) + (α1, α2) + (α2, α1)

=

√
1 + 1− 1

2
− 1

2
= 1

Now we have to calculate angle between α1 and α2. We have ∥α1∥ = ∥α2∥.

2
(α1, α2)

(α2, α2)
= −1 ⇒ 2

∥α1∥∥α2∥ cos θα1α2

∥α2∥∥α2∥
= −1

⇒ cos θα1α2 = −1

2

⇒ θα1α2 =
2π

3
.

Angle between α1 and (α1 + α2) :

(α1, α1 + α2) = ∥α1∥∥α1 + α2∥ cos θα1,α1+α2

⇒ (α1, α1) + (α1, α2) = 1× 1 cos θα1,α1+α2

⇒ θ =
π

3

13



Figure 1.1: Root diagram of sl(3,C)

1.5 Real form of Lie algebra

Definition 1.5.1. In the special case that k = R and K = C and V is a real

vector space, the complex vector space V C is called the complexification of

V . If W is complex, then WC is W regarded as a real vector space. The

operation (.)C and (.)R are not inverse to each other: (V C)R has twice the

real dimension of V , and (WR)C has twice the complex dimension of W .

(V C)R = V
⊕

iV (1.5)

as real vector spaces, where V means V
⊗

1 in V
⊗

RC and the i refers to

the real linear transformation of multiplication by i.

V C = V
⊗

iV. (1.6)

When a complex vector space W and a real vector space V are related by

WR = V
⊕

iV, (1.7)

we say that V is a real form of the complex vector space W . In the (R)

linear map that is 1 on V and −1 on iV is called the conjugation of the

complex vector space V C with respect to the real form V . Suppose that g0 is

14



a Lie algebra over K vector space g = (g0)
k, we introduce the 4-linear map

g0 × K × K −→ g0
⊗

k K given by, (X, a, Y, b) 7→ [X,Y ]
⊗

ab ∈ g0
⊗

k K.

This 4-linear map extends to a K linear map on g0
⊗

k K
⊗

k g0
⊗

k K

that we can restrict to a k bilinear map (g0
⊗

k K)×(g0
⊗

k K) −→ g0
⊗

k K.

The result is the bracket product on g = (g0)k = g0
⊗

k K. K is bilinear

and extend the bracket product in g0. Using bases, it has the property

[X,X] = 0 and satisfy the jacobi identity. Hence g is a Lie algebra over K.

Now consider g0 is a real Lie algebra, the complex Lie algebra (g0)
(C) is called

the complexification of g0. If we have g(R) = g0
⊕

ig0, g0 is a real form of

the complex Lie algebra g.

1.5.1 classification of real Lie algebra

Definition 1.5.2. Split real form of real Lie algebra: A real form of g that

contains h0 for some Cartan subalgebra h is called a split real form of g.

h0 = {H ∈ h | α(H) ∈ R ∀ α ∈ ∆}, (1.8)

g0 = h0 ⊕
⊕
α∈∆

RXα (1.9)

Result: Any complex semisimple Lie algebra contains a split real form.

Definition 1.5.3. Compact real form of real Lie algebra: A real form of the

complex semisimple Lie algebra g that is a compact Lie algebra is called a

compact real form of g.

Result: If g is a complex semisimple Lie algebra, then g has a compact

real form u0.

u0 =
∑
α∈∆

R(iHα) +
∑
α∈∆

R(Xα −X−α) +
∑
α∈∆

R(Xα +X−α) (1.10)

1.5.2 Compact form of A2

The chevelley generators are

e1 =

0 1 0

0 0 0

0 0 0

 , f1 =

0 0 0

1 0 0

0 0 0

 , h1 =

1 0 0

0 −1 0

0 0 0

 , h2 =

0 0 0

0 1 0

0 0 −1

 , e2 =

15



0 0 0

0 0 1

0 0 0

 , f2 =

0 0 0

0 0 0

0 1 0

 .

Compact form is generated by {e1−f1, i(e1+f1), (e2−f2), i(e2+f2), ih1, ih2}
a1 (e1 + f1) + a2 (e2 + f2) + a3 i(e1 − f1) + a4 i(e2 − f2) + a5 (ih1) + a6 (ih2)

= a1

 0 1 0

−1 0 0

0 0 0

 + a2

0 0 0

0 0 1

0 1 0

 + a3

0 i 0

i 0 0

0 0 0

 + a4

0 0 0

0 0 i

0 i 0

 +

a5

i 0 0

0 −i 0

0 0 0

+ a6

0 0 0

0 i 0

0 0 −i

 =

 ia5 a1 + ia3 0

−a1 + ia3 −ia5 + ia6 a2 + ia4

0 −a2 + ia4 −ia6


=

 −ia5 a1 + ia3 0

a1 − ia3 ia5 − ia6 a2 + ia4

0 a2 − ia4 ia6


= A ∈ SU(3) , since A∗ = −A

Definition 1.5.4. SU(n) = {A | A∗ = −A and TrA = 0}

1.6 Symmetry

In this section we are going to discuss about symmetry and will learn

about two major types of symmetry namely Discrete and Continuous symme-

try and we will see, how continuous symmetry and we will see, how continuous

symmetry give rise to the Lie groups.

1.6.1 What is Symmetry ?

• For mathematician, symmetries are special invertible functions. The

concept comes from the idea of symmetry of a geometric object, for

example a polygon made out of paper lying on a flat surface. In the

informal language if we say then symmetry of a polygon is a motion that

corresponds to picking up the paper polygon and replacing it so that

it appear unmoved. Then we say the motion preserves the polygon.

• To be specific, consider symmetries of a square. Imagine a paper square
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placed with its centre at the origin of the the plane R2 and with its

side parallel to the co-ordinate axes.

• If the square is rotated counter clockwise around its origin through an

angle of Π
2
is symmetry of the square. We say this symmetry of a square

because, if we rotate by angle Π
2
, we will see that it is unmoved, that is

no change in the orientation of the square. Similarly there exit other

three distinct rotation symmetry of the square which are the rotation

by angle 0,Π, and 3Π
2
counter clockwise. Other symmetry of the square

is the integral multiple of the Π
2
but they are repetition of the square

about the X-axis we will see that there is no change in the orientation of

the square and we conclude that it is also the symmetry of the square.

But still there exist three more distinct symmetry of the square of the

square by reflection through Y-axis and two of its diagonal. It turns

out that these four reflection together with the four rotation described

earlier constitute of the symmetries of the paper square.
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CHAPTER 2

Application to particle Physics

2.1 Representation of Lie algebras, with application to particle

physics

2.1.1 The symmetry of various intraction

According to modern views, there are four main type of forces in nature

• strong(nuclear)

• electromagnetic

• Weak

• gravitational

Definition 2.1.1. Nuclear forces strongly bind the neutrons and the pro-

tons in atomic nuclei. They are responsible for a wide variety of nuclear

reactions.Those reaction that release energy in the core of a nuclear reactor

at an atomic power station. Hadrons are responsible for strong interactions,

while leptons do not participate in them.

Definition 2.1.2. Electromagnetic interactions, when studying electric and

magnetic phenomena and properties of matter and electromagnetic radiation.

Electromagnetic interaction determine the structure and properties of atoms

and molecules.This interaction contain Coulomb forces, the forces acting on

a current-bearing conductor, the forces of friction of all the elementary parti-

cles, except for both neutrino and antineutrino participate in electromagnetic

interaction.

Definition 2.1.3. Weak interaction are predominant in the realm of sub-

atomic particle. They are responsible for the interactions of particles involv-

ing neutrino and antineutrino.In this process include the decays of kaons and

hyperons.They are involved in neutrinoless decays that are characterized by

a relatively long time of the decaying particles-about 10−10 or more.
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Definition 2.1.4. Gravitational interactions are inherent in all particles,

without exception, but they are of no significance for elementary particles.

These interactions only manifest themselves on a sufficiently large scale when

the masses involved are rather large.

The strong interaction is about 100 times higher than the electromagnetic

one and 1014 higher than the weak one. The stronger the interaction, the

faster it carries out its task. So the particles called resonances, whose decay

occurs through nuclear interactions, have a lifetime of about 10−23s; The neu-

tral pions, which decay through an electromagnetic interaction (Π0 → γ+γ),

have a life time of 10−16s; the decays through a weak interaction have a life-

time of 10−8−10−10s.The strong interaction produces fast processes,the weak

interaction slow processes. The duration of a process is defined as a quantity

that is reciprocal of the probability of the process per unit time.The smaller

the probability, slower the process. The electromagnetic interaction, strong

and weak interactions manifest themselves over extremely short distances,

have a small. The strong interaction between two baryons shows when the

particles approach each other and come within a distance of only 10−15m.

The range of the weak interaction is shorter, it is known to be within 10−19m.

The types of interaction is associated with symmetry. All the interactions of

particles are controlled by the absolute conservation laws. So the laws of con-

servation of spatial and charge parity hold for both the electromagnetic and

strong interaction, but they do not hold for the weak interaction. The rule

is ”The stronger an interaction the more symmetrical it is”. The weaker an

interaction it is controlled by conservayion laws,”weaker interactions turn in

to infringer of the law, and the weaker an interaction the more lawlessness”.

2.1.2 Isotopic invariance of strong interaction(isospin)

Suppose that all the protons in the atomic nucleus are replaced by neu-

trons, and all the neutrons by protons. The resultant nucleus is called the

mirror nucleus of the initial nucleus. The mirror nuclei reflects a measure of

symmetry of nuclear forces. This symmetry is a special case of the so called
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isotopic invariance.The nuclear force are independent of the electric charge

of particles. Associated with the isotopic invariance of the strong interaction

is the concept of isotopic spin. The connection of the proton and the neutron

can be viewed as two charge conditions of one particle-the nucleon. It is said

that the proton and the neutron form an isotopic doublet. Isotopic doublets

are also formed by two xi-hyperons (Ξ−1,Ξ0) and two kaons (K0, K+). It

appeared that pions are better combined into a triplet, by adding to η0, to

each of them an isotopic singlet. Isotopic multiplets of known elementary

particles come in three types-triplets, doublets and singlets. This multiplets

is formed by ∆ particles which belongs to short-lived baryons, called the res-

onances. The magnitude of isospin I of a particle is related to the number of

charge states n in the multiplet by the relationship n = 2× I + 1. The elec-

tron’s spin is s = , its projection in a given direction in conventional space

takes on the values sz = + and sz = −. The isospin of the nucleon I = ,

its projection in some direction in the isospin space assumes the values Iζ =

and Iζ = −. When the dealing with the strong interaction of particles,the

isospin vectors of particles must be combined combined by the same rules as

the spin vectors. The isospin projection of several particles is the algebraic

sum of the isospin projections for individual particles. The isotopic invari-

ance of the strong interaction lies at the foundation of the physics of isospin

formalism. This invariance means that the laws of nature are invariant under

rotations in isospin space.This find its expression in the law of conservation

isospin. The conservation of isospin using two processes: p+p → Π++D and

n+ p → Π0 +D, where D is the deuteron of heavy hydrogen, the deuteron’s

isospin is zero; therefore, the products of reactions in the general case have

the the total isospin that is equal to the isospin of pions, that is unity.

2.1.3 Strangeness conservation in strong and Electromagnetic in-

teraction

Particles came in pair-a kaon paired with a hyperon. Π− + p → K0 +

Λ0,Π− + P → K+ + Σ−,Π+ + p → K+ + Σ+. Second the life time of new
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particles produced by without leptons (K+ → Π+ +Π0,Λ0 → p+Π−,Λ0 →
n + Π0,Σ+ → p + Π0,Σ+ → n + Π+,Σ− → n + Π−). The fact that the de-

cay schemes included no leptons suggested that these decays are associated

with the strong interaction in which case the lifetime of the particles must be

about 10−22 − 10−23. The long life time of kaons and hyperons is associated

with the conservation of some hitherto-unknown physical quantity. A new

conservation law was established that is valid for strong and electromagnetic

interactions:the total strangeness of the mesons and the baryons involved

in the process is conserved. The long lifetime of kaons is accounted for by

the fact that the kaon is the lightest particle with nonzero strangeness. It

cannot decay due to the strong interaction, or due to the electromagnetic in-

teraction since there is no particle to which it could transfer its strangeness.

The kaon has one possibility to decay by weak interaction, since in such

interactions strangeness is not conserved. The long lifetime of the lambda

hyperon stems from the fact that this hyperon is the lightest baryon with

nonzero strangeness. The decay of the lambda hyperons into kaons is abso-

lutely prohibited by the law of conservation of baryon number, and the decay

into nucleons is prohibited by strangeness conservation. The charged sigma

hyperons Σ− and Σ+ can only decay through the weak interaction. Since

the mass difference of a sigma and a lambda hyperon is smaller than the

pion mass.In this case of the neutral sigma hyperon, a decay is possible that

conserves strangeness. Σ0 → Λ0+γ. Therefore, the life time of a Σ0-hyperon

is shorter than 10−14s.

2.1.4 Interaction and conservation

The highest symmetry is inherent in processes occurring due to the

strong interaction.For them we have ten conservation laws: energy, momen-

tum, angular momentum electric charge, baryon number, space, charge and

time parity, strangeness, isospin. Turning to electromagnetic interactions,

symmetry becomes lower-isospin conservation is no longer valid. Yet more

marked reduction is observed when we go over the weak interaction.
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2.1.5 A curious Formula

Gell-Mann and Nishijima turned their attention to a rather curious fact.

It turns out that the electric charge Q of a particles , the isospin projection

Iζ , the baryon number B and the strangeness S are related by the following

simple relationship: Q = Iζ +
B+S
2

.

2.1.6 The Unitary symmetry of strong Interaction

Consider a system of coordinates in which the abscissa axis is the pro-

jection of isospin Iζ , and the ordinate system is Y = B + S, a quantity

called hypercharge. On this plane we will position all the baryons with

s = : p, n,Λ0,Σ−,Σ0,Σ+,Ξ−,Ξ0. The eight baryons with spin form a

hexagon in the plane Iζ , Y. At each vertex of the hexagon there lies one

baryon, in the center two baryon. The arrangement of the baryons in the

plane allows the Q axis to be introduced. Where all the eight baryons with

spin appear to be combined within a geometrically symmetric closed figure.

This is an example of some concealed symmetry in nature. If we place other

strong interacting particles on the plane Iζ , Y by combining them into group

with the same spin s. It appears the eight particles with s = 0, which in-

clude all the mesons and antimeasons form exactly the same hexagon as the

eight baryons. Among these particles, which refer to baryons, we know nine

particles with s = 3/2 : ∆−,∆0,∆+,∆++, Y ∗0
1 , Y ∗+

1 ,Ξ∗0,Ξ∗− in the plane Iζ ,

Y they form the rectangle. However one place is vacant-the vertex A. It is

clear that the missing particles must be included in the isotopic singlet and

have negative charge and strangeness S = −3. The missing particle actually

found. So the hyperon Ω− was added to the list of elementary particles.

The eight baryons, the eight mesons, the ten baryons are called supermul-

tiplets. Each supermultiplets have several isotopic multiplets and different

values of strangeness. The symmetry that manifests its self through a union

of mesons and baryons in to several supermultiplets is the so called uni-

tary symmetry. The unitary symmetry lies beyond the internal relationship
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Figure 2.1: The Unitary Symmetry of Strong Interactions

between the particles belonging to various isotopic multiplets and having dif-

ferent strangeness. The set of mesons and baryons can be compressed in to

small number of eight fold and ten-fold supermultiplets suggests that in the

world of strongly interacting particles there exit a general order.
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