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Abstract

Time delays are often encountered in many practical systems, especially in

the networked control systems and many industrial processes which also includes

computation delay. The presence of input delays causes system instability and

degrades system performance. For a nominal system with input delay, one may

transform the system using a reduction method to a non-delay form and then can

design a controller using techniques that are available for systems without time-

delays. However, for uncertain systems, this reduction method does not transform

the system into a non-time-delayed one. Due to this reason, one need to analyze

such uncertain systems using analysis that are available for time-delay systems and

one attempts to exploit the benefit of using the reduction method. It is studied in

this work that using simple state feedback controller over the transformed model

does not yield much benefit for uncertain systems. Various choices of Lyapunov-

Krasovskii functional has been made to verify stability of the transformed system

and establishing the above fact. At the end, it is observed that not using the

transformation method but by using a PI-type state feedback controller for the

non-transformed system does yield more benefit in controller design in the sense

that the guaranteed robustness margin is improved considerably.
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Chapter 1

Introduction

Time delay systems are those for which the future evolution of the state vari-

ables not only depends on their current state value, but also on their past values.

Time delays are often encountered in practical systems, especially in the networked

control systems [1]. Input delays are occurred in feedback control systems because

of the transmission of the measured information in process plants which also in-

cludes computation delay. The presence of these delays will degrade the system

performance and also causes system instability. The stability analysis of such kind

of systems is one of the emerging areas of research. So one of the challenging issue

is stability analysis and control design for time delay systems. The robust stability

criteria for such kind of systems can be analyzed based on Lyapunov-Krasovskii

theorem.

This chapter presents the introduction to functional differential equations and

a brief description of time delay systems.

1.1 Time Delay Systems

Dynamic systems are represented with ordinary dierential equations in the form

of

ẋ(t) = f(t, x(t)) (1.1)

where x(t) ∈ Rn are the state variables and the differential equations charac-
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1.2 Systems with input delay

terize the state variable evolution with respect to time. Once the initial condition

is known, by using the current state variable, any future state of the system

t0 ≤ t <∞ for any t0 can be determined completely.

But many dynamical systems in practice can not be exactly modeled by an

ordinary differential equation. For many systems the future evolution of state

variable x(t) depends both on the current value x(t0) and also on their past values

x(φ), t0− τ ≤ φ ≤ t0 , such systems are called as time delay systems. Considering

the transfer delays of sensor-to-controller τ1 and controller-to-actuator τ2, a system

can be described as

ẋ(t) = Âx(t) + B̂u(t− τ) (1.2)

where Â and B̂ are constant matrices, τ = τ1 + τ2. If we take the parameter

uncertainties into account, a more general form of (2) is given by

ẋ(t) = (Â+ ∆Â(t))x(t) + (B̂ + ∆B̂(t))u(t− τ) (1.3)

where ∆Â(t) and ∆B̂(t) denote parameter uncertainties, such as additive unknown

internal or external noise, non linarities and poor plant knowledge, etc.

1.2 Systems with input delay

Input delays which are occurred because of transmission of measured informa-

tion in process plants in feedback control systems encountered in many practical

applications [11], [3]. If the presence of input delays are not considered in the

controller design, it leads to instability of the system and also deterioration in

system performance. The stability analysis becomes even complicated because of

parametric uncertainities of the system and the infinite dimensional nature of the

system due to delay. However the complexity becomes more severe when the delay

is time time-varying [12], [14]. So the controller has to be designed for the robust

stabilization of uncertain time delay systems with time varying input delay. Due

to the infinite dimensional nature of the problem, controller design for the time

delay system has become a challenging task.

3



1.3 Review on controller design for input delay systems

1.3 Review on controller design for input delay

systems

For uncertain systems with control input delay, in the past several decades mem-

ory less controllers or memory controllers have been designed using Razumikhin

method [17], [8], [4], [18], [5] an integral quadratic constraint (IQC) method [16]

or a reduction method. The problem of stabilizing uncertain dynamical systems

with multiple input delays is considered by introducing a new stabilizing controller

which employs the predictor with in the min-max frame work in [4]. It was re-

ported in [4] that this combination extends the system to which min-max control

can be applied to uncertain systems with no current control and multiple input

delays and the analysis discussed in [4] is based on Razumkhin theorem which was

applied for uncertain systems containing both state delay and input delay and also

time varying uncertain systems with state delays.

A stabilization for a type of linear uncertain systems with time latency is con-

sidered and the control is proposed based on the optimal control for its delay

free systems with quadratic performance index, a delay dependent stability crite-

rion based on Lyapunov functional is discussed for the asymptotic stabilization of

time-latency system in [8]. Feedback control based on receding horizon method

was proposed in [18] for linear systems with control input delay. An open-loop

optimal control strategy is derived and is then transformed to closed loop control

through receding horizon concept and control laws of [18] are perhaps some of the

easiest ways of stabilizing a linear system with control input delay.

A robust stabilization approach is propose in [5] by applying the reduction

method to multiple input-delayed systems with parametric uncertainties by de-

signing a robust stabilizing controller baseb on Lyapunov approach of stability

and by solving the convex problems in terms of linear matrix inequalities. Based

on the Riccati-equation approach, observer-based feedback control laws for linear

dynamic systems with state delay are proposed in [10]. Two alternative methods
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1.3 Review on controller design for input delay systems

for designing observer-based H∞ control laws whose gain matrices are obtained in

terms of solutions of a pair of Riccatic-like equations are proposed in [10].

A simple delay-dependent stability criteria for linear systems with time-varying

delay with polytopic-type uncertainties are presented in [7] where the analysis was

done in such a way that to construct a parameter-dependent Lyapunov functional

for the system, a new method of dealing the system without uncertainties is derived

first in which the derivative terms of the state in the derivative of Lyapunov

functional are retained and some free weighting matrices are used to express the

relationships among the system variables which results in the absence of Lyapunov

matrices in any product terms of the system matrices in the derivative of the

Lyapunov functional.

For the memory less controller design, based on a first-order transformation

Razumikhin method can handle a system with a fast time-varying delay while the

IQC method is only applicable for a system with a constant delay [10]. Employing

the reduction method, a delayed feedback control design method was proposed

in [1]. The advantage of this method is that the controller design problem of the

original system can be reduced to that of a non-delayed system. The robustness

analysis of this kind of delayed feedback controller was investigated for uncertain

systems with input delay based on a Lyapunov-Krasovskii approach and a linear

matrix inequality technique.

However, the drawback of controller design method based on the reduction

method is that the exact value of the time delay must be known in advance,

which therefore limits the application to many real engineering systems. The

frequency domain analysis like frequency sweeping and matrix pencil methods

are giving sufficient conditions for the systems with commensurate delays [13].

But the time domain approaches have advantages like handling of time varying

uncertainities and non linearities compared to frequency domain analysys [19], [20].

The controller proposed in [1] is based on LMI approach could able to stabilize the
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1.4 Some mathematical tools

system over some delay period and uncertain range but the Lyapunov-krasvoskii

functional considered for stabilization is very complex. Various controller design

methods have been proposed for the robust stabilization of uncertain systems with

time varying input delay which could able to stabilize the system over some delay

period and with some robustness. And the research on the controller design for

the robust stabilization of time delay systems has drawn more attention in the

recent years.

1.4 Some mathematical tools

Lemma 1.4.1 (Matrix lemma [11]):
If X, Y ∈ Rn×n and for a positive definite matrix P

2XTY ≤ XTP−1X + Y TPY (1.4)

Lemma 1.4.2 (Schur-complement):
If Q < 0 and Q+RS−1RT < 0 then[

Q R
RT −S

]
< 0 (1.5)

Lemma 1.4.3 (Jensen’s inequlality [15]):
For 0 < R,RT = R, 0 ≤ α < β, 0 < γ = β − α the following bounding holds:

−
t−α∫
t−β

ẋT (θ)Rẋ(θ)dθ ≤ γ−1

[
x(t− α)
x(t− β)

]T [−R R
∗ −R

] [
x(t− α)
x(t− β)

]
(1.6)

An equivalent representation of this [15] using free variable matrices as

−
t−α∫
t−β

ẋT (θ)Rẋ(θ)dθ ≤
[
x(t− α)
x(t− β)

]T {[
M +MT −M +NT

∗ −N −NT

]

+γ

[
M
N

]
R−1

[
M
N

]T}[
x(t− α)
x(t− β)

]
(1.7)

Where M,N are free weighting matrices such that M = MT = −N =
−NT = −γ−1R.

−
t∫

t−τ̄

ẋT (θ)R1ẋ(θ)dθ = −
t∫

t−τ(t)

ẋT (θ)R1ẋ(θ)dθ −
t−τ(t)∫
t−τ̄

ẋT (θ)R1ẋ(θ)dθ (1.8)
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1.6 Thesis Structure

−τ̄−1

t∫
t−τ(t)

ẋT (θ)R1ẋ(θ)dθ ≤
[

x(t)
x(t− τ(t))

]T {
τ̄−1

[
M1 +M1

T −M1 +N1
T

∗ −N1 −N1
T

]

+σ

[
M1

N1

]
R1
−1

[
M1

N1

]T}[
x(t)

x(t− τ(t))

]
(1.9)

and

−τ̄−1

t−τ(t)∫
t−τ̄

ẋT (θ)R1ẋ(θ)dθ ≤
[
x(t− τ(t))
x(t− τ̄)

]T {
τ̄−1

[
M2 +M2

T −M2 +N2
T

∗ −N2 −N2
T

]

+(1− σ)

[
M2

N2

]
R1
−1

[
M2

N2

]T}[
x(t− τ(t))
x(t− τ̄)

]
(1.10)

where

σ =
τ(t)

τ̄
, 0 ≤ σ ≤ 1. (1.11)

1.5 Objectives

For the Robust stabilization of time delay systems, state feed back control de-

sign method is proposed based on reduction method and the stability criteria is

derived in terms of Linear Matrix Inequality (LMI) approach by choosing differ-

ent Lyapunov-Krasovskii functional than the existing ones in literature and tuning

parameters. A PI-type state feedback controller design method for the robust sta-

bilization of systems with input delay is also proposed which leads to cosiderable

amount of robustness of the system with input delay. The derived criterions with

the proposed controllers leads to improvement of the robustness than the available

ones in the literature.

1.6 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2: This chapter presents different types of functions for stability

analysis, some theorems for stability and different approaches of stability

analysis of Time-delay systems.
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1.6 Thesis Structure

• Chapter 3: This chapter presents static state feedback controller design

methods for the Robust stabilization of Time-delay systems using various-

Lyapunov polynomials, approximations and tuning parameters and their

respective conservativeness with a numerical example is also discussed and

compared.

• Chapter 4: This chapter presents the robust stabilization of time-delay sys-

tems using PI-type state feedback controller design and also it’s simulation

results.

• Chapter 5: This chapter presents the discussion and conclusion with the

proposed controller design approaches.

8
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Chapter 2

Stability of Time-delay Systems

Delays are known to have the effects on stability and system performance. This

chapter presents different approaches available for stability analysis, existing the-

orems of Time-delay systems.

2.1 Lyapunov Approaches

For the systems without delays, Lyapunov method is the effective method for

analyzing and determining the stability of the time delay system. For a delay

free system, x(t) needs to specify the future evolution of the system beyond t,

Lyapunov method needs to construct a Lyapunov function V (t, x(t)), which is a

potential measure quantifying the state x(t) deviation from trivial solution.

2.1.1 Lyapunov-Krasovskii Theorem

Lyapunov-Krasovskii Theorem: the system F (xt, t) is said to be asymptoti-

cally stable if there exist a continuous functional V (t, ϕ);R × ` → R+ , which is

positive-definite, decreasing, admitting an infinitesimal upper limit and its deriva-

tive V̇ (t, xt) along the motions is negative definite over a neighborhood of ori-

gin [13].

For a time-delay system the state required for the future evolution of the states

is x(t) in the interval [t − τ, t], i.e. xt. The corresponding Lyapunov function

for the time-delay systems is a functional V (t, xt) depending on xt which should

10



2.2 Delay-independent Stability Analysis

measure the deviation of xt from the trivial solution. This kind of functional is

called as Lyapunov-Krasovskii functional.

This functional requires the state variable x(t) in the delay period [t−τ, t] which

necessitates the modification of functionals and it makes this theorem rather diffi-

cult. This difficulty may be some times solved by Razumikhin theorem which in-

volves only functions rather than functionals. But with this Razumikhin therorem,

the robust stability criteria can be derived only for systems with fast time-varying

delays but not for commensurate delays. As the Lyapunov-Krasovskii functional

approach considers additional information on the delay [16], [20], the results ob-

tained with Lyapunov-Krasovskii functional approach are less conservatine com-

pared to Razumikhin approach.

2.2 Delay-independent Stability Analysis

2.2.1 Lyapunov-Razumikhin Approach

This section presents the delay dependent stability criteria with Lyapunov-

Razumikhin approach.

Consider the system

ẋ(t) = Ax(t) +Bx(t− τ) (2.1)

Where A and B are matrices of appropriate dimensions.

Stability independent of delay may be obtained by means of Lyapunov- Razu-

mikhin approach using the Lyapunov function

V (x) = xT (t)Px(t) (2.2)

Where P is a real symmetric matrix.

According to the Razmikhin theorem, a time-delay system with maximum time-

delay τ is asymptotically stable if there exist a bounded quadratic Lyapunov

11



2.2 Delay-independent Stability Analysis

function V such that for some ε > 0 , it should satisfy

V (x) ≥ ε ‖ x‖2 (2.3)

And the derivative along the system trajectory has to satisfy

V̇ (x(t)) ≤ −ε ‖ x‖2 (2.4)

when

V (x(t+ ξ)) ≤ pV (x(t)),−τ ≤ ξ ≤ 0 (2.5)

for any constant p > 1 .

The derivative of the Lyapunov function can be obtained as

V̇ (x(t)) ≤ 2xT (t)P [Ax(t) +Bx(t− τ)] (2.6)

For any p > 1 , we can conclude that for any m > 0

V̇ (x(t)) ≤ 2xT (t)P [Ax(t)+Bx(t−τ)]+m[pxT (t)Px(t)−xT (t−τ)Px(t−τ)] (2.7)

V̇ (x(t)) =

 x(t)

x(t− τ)

T PA+ ATP +mpP PB

BTP −mP

 x(t)

x(t− τ)

 (2.8)

Which implies the necessary condition for stability for m > 0 with this approach

is PA+ ATP +mpP PB

BTP −mP

 < 0 (2.9)

2.2.2 Lyapunov-Krasovskii Approach

This section presents the delay dependent stability criteria with Lyapunov-Krasovskii

approach [13].

Consider the system (2.1)

ẋ(t) = Ax(t) +Bx(t− τ)

12



2.3 Delay-dependent Stability Analysis

Where A and B are matrices of appropriate dimensions .

Stability independent of delay may be obtained by means of Lyapunov-Krasovskii

approach using the Lyapunov function

V (xt) = xT (t)Qx(t) +

t∫
t−τ

xT (φ)Rx(φ)dφ (2.10)

The derivative of V (xt) can be obtained as

V̇ (xt) =

 x(t)

x(t− τ)

T QA+ ATQ+R QB

BTQ −R

 x(t)

x(t− τ)

 (2.11)

For the system to be asymptotically stable, according to Lyapunov-Krasovskii

approach V̇ (xt) should be negative definite. Which implies system (2.1) is asymp-

totically stable if there exist real, symmetric matrices Q > 0 , R > 0 such thatQA+ ATQ+R QB

BTQ −R

 < 0 (2.12)

2.3 Delay-dependent Stability Analysis

This section presents the model transformation technique and also the condi-

tions for stability by using both Lyapunov- Razumikhin approach and Lyapunov-

Krasovskii approach.

Consider the system with delay (2.1)

ẋ(t) = Ax(t) +Bx(t− τ)

Where A and B are matrices of appropriate dimensions.

13



2.3 Delay-dependent Stability Analysis

The system (2.1) can also be represented as

ẋ(t) = (A+B)x(t) +B(x(t− τ)− x(t)) (2.13)

The second term of Equ (2.13) is the disturbance of the nominal system given by

ẋ(t) = (A+B)x(t) (2.14)

As the delay τ increases, the system becomes unstable and its performance de-

grades and we can show it by means of Model transformation [13].

2.3.1 Model Transformation

Consider System (2.1) with the initial condition [13]

x0 = Ψ,Ψ ∈ C([−τ, 0],Rn (2.15)

Its well known from the Leibniz rule that

x(t)− x(t− τ) =

0∫
−τ

ẋ(t+ θ)dθ (2.16)

x(t− τ) = x(t)−
0∫

−τ

[Ax(t+ θ) +Bx(t− τ + θ)]dθ (2.17)

By using (2.17), equ (2.13) can be re-written as

ẋ(t) = [A+B]x(t) +B

0∫
−τ

[−Ax(t+ θ)−Bx(t− τ + θ)]dθ (2.18)

With the initial condition

x(θ) = ϕ(θ),−τ ≤ θ ≤ τ. (2.19)

It is observed that by using Model Transformation [13], the system described by

(2.1) with its initial condition is incorporated into the system described by (2.18)

followed by its intial condition (2.19) and also the stability of the system (2.18)

& (2.19) guarantees the stability of the system (2.1) & (2.15).

14



2.4 Reduction method for Nominal systems

2.3.2 Condition for stability using Razumikhin Theorem

With the delay-dependent stability criteria with explicit model transformation,

the system specified by (2.1) is asymptotically stable if there exist scalars m0 >

0,m1 > 0 and real symmetric matrices Q > 0, S0, S1 such that [13]

Q(A+B) + (A+B)TQ+ τ(S0 + S1) < 0, (2.20)m0Q−R0 −QBA

−ATBT −m0Q

 < 0 (2.21)

and m1Q− S1 −QB2

−(B2)
T
Q −m1Q

 < 0. (2.22)

2.3.3 Condition for stability using Lyapunov-Krasovskii
Theorem

With the delay-dependent stability criteria with explicit model transformation, the

system specified by (2.1) is asymptotically stable if there exist symmetric matrices

Q, M0,M1, N0 and N1 such that [13]

Q > 0 (2.23)
Z −QBA −QB2

−ATBTQ −N0 0

−(B2)
T
Q 0 −N1

 < 0 (2.24)

where

Z = τ−1[Q(A+B) + (A+B)TQ] +N0 +N1. (2.25)

2.4 Reduction method for Nominal systems

This section gives the links between the stability analysis of time-delay systems

and the way of transformation of the state-space representation
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2.5 Discussion

Consider the system with input delay [3]

ẋ(t) = Âx(t) + B̂u(t− τ), x(t) ∈ Rn (2.26)

New variable is introduced with the following transformation

z (t) = x (t) +

t∫
t−τ

eA(t−s−τ)B1u (s) ds (2.27)

Which will reduce the system (2.26) to a system free of delay as

ż(t) = Az(t) + e−AτBu(t), z(t) ∈ Rn (2.28)

And for this kind of delay free system desigining a classical feedback controller is

straight forward provided that the pair (A, e−AτB) is stabilizable.

2.5 Discussion

Razumikhin approach and Lyapunov-Krasovskii approach of stability are two dif-

ferent time domain approaches of stability which have the advantages of easy han-

dling of non linearities, time-vbarying uncertainties over frequency domain analy-

sis [13]. Robust stability criteria for systems with fast time-varying delay, not for

commensurate delay using Razumikhin approach. But as the Lyapunov-Krasovskii

functional approach considers additional information on the delay [16], [20], the re-

sults obtained with Lyapunov-Krasovskii functional approach are less conservatine

compared to Razumikhin approach.
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Chapter 3

Static State feedback stabilization
of Systems with input-delay

This chapter presents static state feedback controller design methods for the

Robust stabilization of Time-delay systems using various Lyapunov functionals,

approximations involved demonstrating the intrieacies in the design methods. For

clear understanding of the proposed controller design, delayed feed back control

design propsed in [1] is discussed in section 3.1 of this chapter. Then several

other choices of L-K functionals have been studied exploiting the transformation

approach discussed in section 2.4.

3.1 Controller design for the stabilization of time-

delay systems

This section presents the brief study of the controller design approach proposed

in [1].

System description:

Consider a system with uncertainity and time-varying input delay

ẋ (t) = (A+ ∆A (t))x (t) + (B0 + ∆B0 (t))u (t) + (B1 + ∆B1 (t))u(t− τ(t)), t ≥ 0

(3.1)

x(0) = x0, u(t) = Φ(t), tε[−τ, 0] (3.2)

18



3.1 Controller design for the stabilization of time-delay systems

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control respectively and

∆A(t),∆B0(t),∆B1(t) are time-varying uncertain matrices satisfying[
∆A(t) ∆B0(t) ∆B1(t)

]
= DF (t)

[
Ea E0 E1

]
(3.3)

whereD,Ea, E0, E1 are real constant matrices and F (t) is a unknown time-varying

matrix such hat F T (t)F (t) ≤ I and 0 ≤ τ(t) ≤ τ̄ is the time delay and τ(t)

is a continuous function satisfying τ(t) ∈ [τ0 − δ, τ0 + δ], where τ0, δ are known

constants and τ0 ≥ δ and µ is the rate of change of delay which is also represented

as dτ .

When τ(t) is time-invariant and it′s exact value is known,the robust stabilization

control problem can be solved by using reduction method.

Assumption 1. The pair (A, B) is stabilizable, where B = B0 + e−Aτ0B1

Assumption 2. The full state variable x(t) is available for measurement.

By using the transformation (2.27) employed in reduction method which is dis-

cussed in section 2.4 and also with the following Leibniz′s rule

z(t− τ(t))− z(t− τ0) =

t−τ(t)∫
t−τ0

ż(s)ds (3.4)

The system (3.1) is transformed as

ż(t) = (A+ ∆A(t))z(t) + (B + ∆B0(t))u(t) + (B1 + ∆B1(t))u(t− τ(t))

−B1u(t− τ0)−∆A

t∫
t−τ0

eA(t−s−τ0)B1u(s)ds, t ≥ 0 (3.5)

The nominal system of (3.5) is

ż(t) = Az(t) +Bu(t) (3.6)

and the other parts can be considered as a perturbation of the nominal system.

Then, if (A,B) is stabilizable, system (3.5) can also be stabilized when the effect

of the perturbation on the system is limited.
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3.1 Controller design for the stabilization of time-delay systems

The objective is to design a linear control law as

u(t) = Kz(t) (3.7)

where K is a state feedback gain matrix.

Applying the control law to the system (3.5), we can write

ż(t) = (A+BK + ∆A(t) + ∆B0(t)K)z(t) + (B1 + ∆B1(t))Kz(t− τ(t))

−B1Kz(t− τ0)−∆A(t)

t∫
t−τ0

eA(t−s−τ0)B1Kz(s)ds, t ≥ 0

ż(t) = Ā (t) z (t) + B̄1(t) Kz(t− τ(t))−B1 Kz(t− τ0)

−∆A (t)

t∫
t−τ0

eA(t−s−τ0)B1Kz (s) ds, t ≥ 0 (3.8)

Where

Ā (t) = A+BK + ∆A (t) + ∆B0(t)K and B̄1 (t) = B1 + ∆B1 (t)

3.1.1 Stability Analysis of the System

Lemma 3.1.1 ( [1]): Consider the closed loop system (3.1)-(3.2). For given
scalars τ0, δ and feedback gain matrix K the system is asymptotically stable if there
exist matrices Pk (k = 1, 2, 3) ,Ni and Mi (i = 1, 2, 3, 4) ,T > 0, R > 0 and S >
0 and scalars εj > 0(j = 1, 2, 3) such that

S =



Ω11 Ω12 Ω13 Ω14 τ0P
T
3 δN1 [Ea + E0K]T 0

∗ Ω22 Ω23 Ω24 0 δN2 0 [E1K]T

∗ ∗ Ω33 Ω34 −τ0P
T
3 δN3 0 0

∗ ∗ ∗ Γ44 + 2δR −τ0P
T
3 δN4 0 0

∗ ∗ ∗ ∗ −τ0S 0 0 0
∗ ∗ ∗ ∗ ∗ −δR 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3I


< 0 (3.9)

and

P =

P11 P12

P T
12 P22

 > 0 (3.10)

Proof. According to Lyapunov stability criteria the system (3.1) is asymptotically

stable if there exist a continuous positive valued functional V and its derivative is
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3.1 Controller design for the stabilization of time-delay systems

negative definite, i.e. V̇ < 0. For the purpose, a Lyapunov-Krasovskii functional

is constructed as

V(t, zt) = V1(t, zt) + V2(t, zt) (3.11)

where

V1(t, zt) = zT (t)P1z(t) + 2zT (t)P2

t∫
t−τ0

z(s)ds+

t∫
t−τ0

zT (s)dsP3

t∫
t−τ0

z(s)ds (3.12)

and

V2(t, zt) =

t∫
t−τ0

zT (s)Tz(s)ds+

t∫
t−τ0

t∫
s

zT (v)sz(v)dvds+

t−τ0∫
t−τ0−δ

t−τ0∫
s

żT (v)sż(v)dvds+

δ

t∫
t−τ0

żT (s)Rż(s)ds+

t−τ0+δ∫
t−τ0

t−τ0+δ∫
s

żT (v)Rż(v)dvds+ δ

t∫
t−τ0+δ

żT (s)Rż(s)ds+

t∫
t−τ0

t∫
s

zT (v)τ0ε
−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(v)dvds

(3.13)

It is well known from (3.4) that z(t−τ(t))−z(t−τ0) =
t−τ(t)∫
t−τ0

ż(s)ds , by combining

this with the system dynamics (3.8) we can obtain

zT (t)N1 + zT (t− τ(t))N2 + zT (t− τ0)N3 + żT (t)N4

{z(t− τ(t))− z(t− τ0)−
t−τ(t)∫
t−τ0

ż(s)ds} = 0 (3.14)

and the following is also true.

[zT (t)M1 + zT (t− τ(t))M2 + zT (t− τ0)M3 + żT (t)M4]

{−Ā(t)z(t)− B̄1(t)Kz(t− τ(t)) +B1Kz(t− τ0) +

∆A(t)

t∫
t−τ0

eA(t−s−τ0)B1Kz(s)ds+ ż(t)} = 0 (3.15)

Using the Lemma 1.4.1 the following inequalities are derived for uncertain terms
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3.1 Controller design for the stabilization of time-delay systems

in (3.15):

2eT (t)MDF (t)Ea

t∫
t−τ0

eA(t−s−τ0)B1Kz(s)ds ≤ eT (t)ε1MDDTMT e(t)+

t∫
t−τ0

zT (v)τ0ε
−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(s)ds

(3.16)

2eT (t)MDF (t)[Ea + E0K]z(t) ≤ eT (t)ε2MDDTMT e(t)

+zT (t)ε−1
2 [Ea + E0K]T [Ea + E0K]z(t) (3.17)

2eT (t)MDF (t)E1Kz(t− τ(t)) ≤ eT (t)ε3MDDTMT e(t)

+zT (t− τ(t))ε−1
3 KTE1

TE1Kz(t− τ(t)) (3.18)

and

2[zT (t)N1 + zT (t− τ(t))N2 + zT (t− τ0)N3 + żT (t)N4]

t−τ(t)∫
t−τ0

ż(s)ds

≤ δeT (t)NR−1NT e(t) +

t−τ(t)∫
t−τ0

żT (s)Rż(s)ds (3.19)

where

eT (t) =
[
zT (t) zT (t− τ(t)) zT (t− τ0) żT (t)

]
,

MT =
[
M1

T M2
T M3

T M4
T
]
,

NT =
[
N1

T N2
T N3

T N4
T
]

(3.20)

using (3.16) to (3.19) in (3.15), one can write:

V̇ (t, zt) ≤
[
eT (t)

t∫
t−τ0

zT (s)ds

]
Ω̄

[
eT (t)

t∫
t−τ0

zT (s)ds

]T
(3.21)
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3.1 Controller design for the stabilization of time-delay systems

where

Ω̄ =


Ω11 Ω12 Ω13 Ω14 P T3
∗ Ω22 Ω23 Ω24 0
∗ ∗ Ω33 Ω34 −P T3
∗ ∗ ∗ Ω44 + 2δR P2

∗ ∗ ∗ ∗ −s
τ0



+


ε−1

2 [Ea + E0K]T [Ea + E0K] 0 0 0 0

∗ ε−1
3 KTET1 E1K 0 0 0

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


+δ
[
N 0

]
R−1

[
NT 0

]
(3.22)

Applying the schur compliment (1.5) using Lemma 1.4.2 to (3.22) it can be shown
that (3.9) implies Ω̄ < 0 which implies

Ω11 Ω12 Ω13 Ω14 τ0P
T
3 δN1 [Ea + E0K]T 0

∗ Ω22 Ω23 Ω24 0 δN2 0 [E1K]T

∗ ∗ Ω33 Ω34 −τ0P
T
3 δN3 0 0

∗ ∗ ∗ Ω44 + 2δR τ0P2 δN4 0 0
τ0P3 0 −τ0P3 τ0P

T
2 −τ0s 0 0 0

δN1
T δN2

T δN3
T δN4

T 0 −δR 0 0
[Ea + E0K] 0 0 0 0 0 −ε2I 0

0 E1K 0 0 0 0 0 −ε3I


< 0

(3.23)

where,

Ω11 = P2 + P2
T −M1 (A + BK)− (A + BK)T M1

T + T+ τ 0S

+ τ0ε
−1
1 KTBT

1

t∫
−τ0

eA
T sET

a Eae
Asds+ (ε1+ε2+ε3) M1DDT M1

T

Ω12 = N1 −M1B1K − (A+BK)TM2
T + (ε1 + ε2 + ε3)M1DD

TM2
T

Ω13 = −P2 −N1 +M1B1K − (A+BK)TM3
T + (ε1 + ε2 + ε3)M1DD

TM3
T

Ω14 = P1 +M1 + (ε1 + ε2 + ε3)M1DD
TM4

T

Ω22 = N2 +N2
T −M2B1K − (M2B1K)T + (ε1 + ε2 + ε3)M2DD

TM2
T

Ω23 = −N2 +N3
T +M2B1K − (M3B1K)T + (ε1 + ε2 + ε3)M2DD

TM3
T

Ω24 = M2 +N4
T − (M4B1K)T + (ε1 + ε2 + ε3)M2DD

TM4
T

Ω33 = −T −N3 − N3
T +M3B1K + (M3B1K)T + (ε1 + ε2 + ε3)M3DD

T M3
T

Ω34 = M3 − N4
T − (M4B1K)T + (ε1 + ε2 + ε3)M3DD

T M4
T

Ω44 = M4 + M4
T + (ε1 + ε2 + ε3)M4DD

T M4
T

where * represents symmetric component •
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3.1 Controller design for the stabilization of time-delay systems

3.1.2 Controller design

Theorem 3.1.2 ( [1]): For the given scalars ρl > 0 (l = 2, 3, 4) , τ0 and δ if there

exist matrices P̃k (k = 1, 2, 3) , Ñk (k = 1, 2, 3, 4) , T̃ > 0, R̃ > 0, S̃ > 0, Y and a
non singular matrix X and scalars εj > 0(j = 1, 2, 3) such that

η =

[
η11 η12

ηT12 η22

]
< 0 (3.24)

where

η11 =


Γ11 Γ12 Γ13 Γ14

∗ Γ22 Γ23 Γ24

∗ ∗ Γ33 Γ34

∗ ∗ ∗ Γ44 + 2δR

 (3.25)

η12 =


τ0P̃

T
3 δÑ1 XET

a + Y TET
0 0 Y TBT

1

0 δÑ2 0 Y TET
1 0

−τ0P̃
T
3 δÑ3 0 0 0

τ0P̃2 δÑ4 0 0 0

 (3.26)

η22 =


−τ0S̃ 0 0 0 0

∗ −δR̃ 0 0 0
∗ ∗ −ε2I 0 0
∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ −τ−1

0 ε1W

 (3.27)

Proof. The analysis was done based on the control law u(t) = Y X−T [x(t) +
t∫

t−τ0
eA(t−s−τ0)B1u (s) ds] and by defining X=M1

−1 ,then Pre, post-multiplying both

sides of (3.9) diag
{
X X X X X X I I

}
and it′s transpose and by defin-

ing P̃k = XPkXT (k=1,2,3), Ñi = XNiX
T(i = 1, 2, 3, 4), T̃ = XTXT, R̃ = XRXT,

S̃ = XSXT, & K = YX−T then the condition for the control u(t) = Kz(t) to
guarantee the asymptotic stability of the closed loop system is obtained as

Γ11 Γ12 Γ13 Γ14 τ0P̃
T
3 δÑ1 XETa + Y TET0 0 Y TBT

1

∗ Γ22 Γ23 Γ24 0 δÑ2 0 Y TET1 0

∗ ∗ Γ33 Γ34 −τ0P̃
T
3 δÑ3 0 0 0

∗ ∗ ∗ Γ44 + 2δR τ0P̃2 δÑ4 0 0 0

∗ ∗ ∗ ∗ −τ0S̃ 0 0 0 0

∗ ∗ ∗ ∗ ∗ −δR̃ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ−1
0 ε1W


< 0

(3.28)

where,

Γ11 = P̃2 + P̃ T
2 − A XT − BY− XAT − YT BT + + τ0 + (ε1 + ε2 + ε3) DDT
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3.2 Alternate approach (Transformation using τ̄)

Γ12 = Ñ1 − B1Y− ρ2XAT − ρ2YT BT + (ε1 + ε2 + ε3)ρ2 DD
T

Γ13 = P̃2 − Ñ1 + B1Y− ρ3XAT − ρ3YT BT + (ε1 + ε2 + ε3)ρ3 DD
T

Γ14 = P̃1 + XT − ρ4XAT − ρ4YT BT + (ε1 + ε2 + ε3)ρ4 DD
T

Γ22 = Ñ2 + Ñ2
T − ρ2B1Y− ρ2YT B1

T + (ε1 + ε2 + ε3) ρ2
2DDT

Γ23 = −Ñ2 + ÑT
3 − ρ2B1Y− ρ3YT B1

T + (ε1 + ε2 + ε3)ρ2ρ3 DD
T

Γ24 = ÑT
4 + ρ2 XT − ρ4YT B1

T + (ε1 + ε2 + ε3)ρ2ρ4 DD
T

Γ33 = T̃ − Ñ3 − ÑT
3 + ρ3B1Y + ρ3YT B1

T + (ε1 + ε2 + ε3) ρ3
2DDT

Γ34 = − ÑT
4 + ρ3 XT + ρ4YT B1

T + (ε1 + ε2 + ε3)ρ3ρ4 DD
T

Γ44 = ρ4X + ρ4 XT + (ε1 + ε2 + ε3) ρ4
2DDT

W−1 ≥
0∫
−τ0

eATsEa
TEaeAsds •

The LMI’s obtained which discribes the stability conditions of the system are

solved using Robust control tool box in MATLAB to obtain the robustness of this

method.

3.2 Alternate approach (Transformation using τ̄)

In the previous section, it was observed that the Lyapunov-krasovskii functional

considered for the stability analysis is lengthy and complex. In this section the

transformation used in the process of reducing the system to system to a system

free of delays is modified in such a way that the lower bound of the integral limit

in the transformation is changed to t− τ̄ with an idea that the total delay range

can be included as τ̄ is the maximum value of the delay. Then with the knowledge

of the previous section, in this section static state feedback stabilization controller

design is proposed with a different Lyapunov-Krasovskii functional with an idea

that each term will handle the respective uncertainities in the system.

System description: Consider the system (3.1)-(3.2)

The robust stabilization control problem can be solved by reduction method using

the following transformation

z (t) = x (t) +

t∫
t−τ̄

eA(t−s−τ̄)B1u (s) ds (3.29)
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3.2 Alternate approach (Transformation using τ̄)

where τ̄ is the maximum value of the delay. By applying the the transformation

(3.29), and the control law (3.7), the system can be written as

ż(t) = (A+BK + ∆A(t) + ∆B0(t)K)z(t) + (B1 + ∆B1(t))Kz(t− τ(t))

−B1Kz(t− τ̄)−∆A(t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds, t ≥ 0 (3.30)

ż(t) = Ā (t) z (t) + B̄1 (t) Kz(t− τ(t))−B1 Kz(t− τ̄)

−∆A (t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz (s) ds, t ≥ 0 (3.31)

where Ā (t) = A+BK + ∆A (t) + ∆B0 (t)K and B̄1 (t) = B1 + ∆B1 (t).

3.2.1 Stability Analysis

Lemma 3.2.1 Consider the closed loop system (3.1)-(3.2). For given scalars τ0, δ
and feedback gain matrix K th system is asymptotically stable if there exist matrices
P,Qk (k = 1, 2) ,Ni, Mi ,Ri (i = 1, 2) > 0 and scalars εj > 0(j = 1, 2, 3) such that

b11 + ε−1
2 [Ea + E0K]T [Ea + E0K] b12 b13 b14 M1

∗ b22 + ε−1
3 [E1K]T [E1K] b23 b24 N1

∗ ∗ b33 b34 0
∗ ∗ ∗ b44 0
∗ ∗ ∗ ∗ −R1

 < 0

(3.32)
and

b11 + ε−1
2 [Ea + E0K]T [Ea + E0K] b12 b13 b14 0

∗ b22 + ε−1
3 [E1K]T [E1K] b23 b24 M2

∗ ∗ b33 b34 N2

∗ ∗ ∗ b44 0
∗ ∗ ∗ ∗ −R1

 < 0

(3.33)
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3.2 Alternate approach (Transformation using τ̄)

Proof. Now, Lyapunov-Krasovskii functional is choosen as:

V (t, zt) = zT (t)Pz(t) +

t∫
t−τ̄

zT (θ)Q1z(θ)dθ +

t∫
t−τ(t)

zT (θ)Q2z(θ)dθ

+τ̄−1

t∫
t−τ̄

t∫
θ

żT (φ)R1ż(φ)dφdθ+τ̄−1

t∫
t−τ̄

t∫
θ

żT (φ)R2ż(φ)dφdθ

+

t∫
t−τ̄

t∫
s

zT (v)τ̄ ε−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(v)dvds

(3.34)

The first term in (3.34) is to handle the first term associated with the uncertain

terms in (3.31). The second term and third terms in (3.34) provides a measure

of the signal energy during the delay period while the fourth and fifth terms in

(3.31) provide the measure of the energy corresponding to the difference between

the instantaneous feedback signal and the delayed one. The sixth term is to handle

the respective terms associated with uncertainty of the system.

The derivative of V (t, zt) is obtained as

V̇ (t, zt) = 2zT (t)P ż(t) + zT (t)[Q1 +Q1]z(t)− zT (t− τ̄)Q1z(t− τ̄)

−(1− µ)zT (t− τ(t))Q2z(t− τ(t)) + żT (t)[R1 +R2]ż(t)

−τ̄−1


t∫

t−τ̄

żT (θ)R1ż(θ)dθ

− τ̄−1


t∫

t−τ̄

żT (θ)R2ż(θ)dθ

+

zT (t)τ̄ ε−1
1 KTBT

1

t∫
t−τ̄

eA
T (s−t)ET

a Eae
A(s−t)dsB1Kz(t)

−
t∫

t−τ̄

zT (s)τ̄ ε−1
1 KTBT

1 e
AT (t−s−τ̄)ET

a Eae
A(t−s−τ̄)B1Kz(s)ds

(3.35)

Using Lemma 1.4.3 (1.6) to (1.11) to re write the terms assosciated with R1 and

R2 in (3.35) using (1.8) and (1.6) respectively and then add the following equality
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3.2 Alternate approach (Transformation using τ̄)

(3.36) to (3.35).

2[zT (t)C1 + zT (t− τ(t))C2 + zT (t− τ̄)C3 + żT (t)C4]

{−Ā(t)z(t)− B̄1(t)Kz(t− τ(t)) +B1Kz(t− τ̄)

+∆A(t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds+ ż(t)} = 0 (3.36)

Then by using Lemma 1.4.1 the following inequalities are derived.

2ξT (t)CDF (t)Ea

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds ≤ ξT (t)ε1CDD
TCT ξ(t)

+

t∫
t−τ̄

zT (v)τ̄ ε−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(s)ds

(3.37)

2ξT (t)CDF (t)[Ea + E0K]z(t) ≤ ξT (t)ε2CDD
TCT ξ(t)

+zT (t)ε−1
2 [Ea + E0K]T [Ea + E0K]z(t) (3.38)

2ξT (t)CDF (t)E1Kz(t− τ(t)) ≤ ξT (t)ε3CDD
TCT ξ(t)

+zT (t− τ(t))ε−1
3 KTE1

TE1Kz(t− τ(t)) (3.39)

where

ξT (t) =
[
zT (t) zT (t− τ(t)) zT (t− τ̄) żT (t)

]
, CT =

[
C1

T C2
T C3

T C4
T
]
.

(3.40)

The derivative of V (t, zt) is obtained as

V̇ (t, zt) ≤ ξT (t)
{

Θ + σφ1R
−1
1 φ1

T + (1− σ)φ2R
−1
1 φ2

T
}
ξ(t) (3.41)

where

φ1 =


M1

N1

0

0

 , φ2 =


0

M2

N2

0

 (3.42)
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3.2 Alternate approach (Transformation using τ̄)

Accordind to the Lyapunov-Krasovskii theorem in section 2.1.1, for asymptotic

stability of the system, one requires

Θ + σφ1R
−1
1 φ1

T + (1− σ)φ2R
−1
1 φ2

T < 0 (3.43)

Adding ±σΘ to the L.H.S, we obtain

σ(Θ + φ1R
−1
1 φ1

T ) + (1− σ)(Θ + φ2R
−1
1 φ2

T ) < 0 (3.44)

Since σ = τ(t)
τ̄
, 0 ≤ σ ≤ 1. the equ (3.44) holds good if

Θ + φlR
−1
1 φl

T < 0, l = 1, 2. (3.45)

Applying schur compliment Lemma 1.4.2, one obtains Θ φ1

φ1
T −R1

 < 0, l = 1, 2 (3.46)

This can be written as:

b11 + ε−1
2 [Ea + E0K]T [Ea + E0K] b12 b13 b14 M1

∗ b22 + ε−1
3 [E1K]T [E1K] b23 b24 N1

∗ ∗ b33 b34 0

∗ ∗ ∗ b44 0

∗ ∗ ∗ ∗ −R1


< 0

(3.47)

and

b11 + ε−1
2 [Ea + E0K]T [Ea + E0K] b12 b13 b14 0

∗ b22 + ε−1
3 [E1K]T [E1K] b23 b24 M2

∗ ∗ b33 b34 N2

∗ ∗ ∗ b44 0

∗ ∗ ∗ ∗ −R1


< 0

(3.48)
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3.2 Alternate approach (Transformation using τ̄)

where,

b11 = Q1 + Q2 + τ̄−1(M1 +M1
T )− τ̄−2R2 − C1 (A + BK)− (A + BK)T C1

T

+ τ̄ ε−1
1 KTBT

1

t∫
−τ̄
eA

T sET
a Eae

Asds+ (ε1+ε2+ε3) C1DDT C1
T

b12 = τ̄−1(−M1 +N1
T )− C1B1K − (A+BK)TC2

T + (ε1 + ε2 + ε3)C1DD
TC2

T

b13 = τ̄−2R2 + C1B1K − (A+BK)TC3
T + (ε1 + ε2 + ε3)C1DD

TC3
T

b14 = P + C1 +M1B1K − (A+BK)TC4
T + (ε1 + ε2 + ε3)C1DD

TC4
T

b22 = τ̄−1(−N1 − N1
T ) + τ̄−1(M2 + M2

T ) − (1 − µ)Q2 − C2B1K − (C2B1K)T +

(ε1 + ε2 + ε3)C2DD
TC2

T

b23 = τ̄−1(−M2 +N2
T ) + C2B1K − (C3B1K)T + (ε1 + ε2 + ε3)C2DD

TC3
T

b24 = C2 − (C4B1K)T + (ε1 + ε2 + ε3)C2DD
TC4

T

b33 = τ̄−1(−N2−N2
T )−τ̄−2R2−Q1+C3B1K+ (C3B1K)T+(ε1+ε2+ε3)C3DD

T C3
T

b34 = C3 + (C4B1K)T + (ε1 + ε2 + ε3)C3DD
T C4

T

b44 = R1 +R2 + C4 + C4
T + (ε1 + ε2 + ε3)C4DD

T C4
T

Where * represents symmetric component•

3.2.2 Controller design

Theorem 3.2.2 for the given scalars ρl (l = 2, 3, 4) , τ0 such that C l = ρlC1, (l =

2, 3, 4) if there exist matrices P̃ , Q̃k (k = 1, 2) , Ñk (k = 1, 2) , M̃k (k = 1, 2) ,

R̃1 > 0, R̃2 > 0, Y and a non singular matrix X and scalars εj > 0(j = 1, 2, 3)
such that

Γ11 Γ12 Γ13 Γ14 XM1X
T XET

a + Y TET
0 0 Y TBT

1

∗ Γ22 Γ23 Γ24 XN1X
T 0 Y TET

1 0
∗ ∗ Γ33 Γ34 0 0 0 0
∗ ∗ ∗ Γ44 0 0 0 0
∗ ∗ ∗ ∗ −XR1X

T 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ̄−1ε1W


< 0

(3.49)
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3.2 Alternate approach (Transformation using τ̄)

and

Γ11 Γ12 Γ13 Γ14 0 XET
a + Y TET

0 0 Y TBT
1

∗ Γ22 Γ23 Γ24 XM2X
T 0 Y TET

1 0
∗ ∗ Γ33 Γ34 XN2X

T 0 0 0
∗ ∗ ∗ Γ44 0 0 0 0
∗ ∗ ∗ ∗ −XR1X

T 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ̄−1ε1W


< 0

(3.50)
where,

Γ11 = Q̃1 + Q̃2 + τ̄−1
(
M̃1 + M̃T

1

)
− τ̄−2R̃2 − A XT − BY− XAT − YT BT

+ (ε1 + ε2 + ε3) DDT

Γ12 = τ̄−1
(
−M̃1 + ÑT

1

)
− B1Y− ρ2XAT − ρ2YT BT + (ε1 + ε2 + ε3)ρ2 DD

T

Γ13 = τ̄−2R̃2 + B1Y− ρ3XAT − ρ3YT BT + (ε1 + ε2 + ε3)ρ3 DD
T

Γ14 = + XT − ρ4XAT − ρ4YT BT + (ε1 + ε2 + ε3)ρ4 DD
T

Γ22 = τ̄−1
(
−Ñ1 − ÑT

1

)
+ τ̄−1

(
M̃1 + M̃T

1

)
− (1− µ)Q̃2 − ρ2B1Y− ρ2YT B1

T

+ (ε1 + ε2 + ε3) ρ2
2DDT

Γ23 = τ̄−1
(
−M̃2 + ÑT

2

)
+ ρ2B1Y− ρ3YT B1

T + (ε1 + ε2 + ε3)ρ2ρ3 DD
T

Γ24 = ρ2 XT − ρ4YT B1
T + (ε1 + ε2 + ε3)ρ2ρ4 DD

T

Γ33 = τ̄−1
(
−Ñ2 − ÑT

2

)
− τ̄−2− Q̃1 +ρ3B1Y +ρ3YT B1

T +(ε1 +ε2 +ε3) ρ3
2DDT

Γ34 = ρ3 XT + ρ4YT B1
T + (ε1 + ε2 + ε3)ρ3ρ4 DD

T

Γ44 = R̃1 + R̃2 + ρ4X + ρ4 XT + (ε1 + ε2 + ε3) ρ4
2DDT

W−1 ≥
0∫
−τ̄

eA
TsEa

TEaeAsds.

Proof.With the stability conditions obtained the controller can be designed with

the analysis was done based on the control law u(t) = Y X−T [x(t)+
t∫

t−τ̄
eA(t−s−τ̄)B1

u (s) ds] by defining X = C1
−1 ,then Pre, post-multiplying each of both sides of

(3.47), (3.48) respectively with diag
{
X X X X I I

}
and it’s transpose and

by defining Q̃k = XQkXT (k = 1, 2), M̃i = XMiX
T, Ñi = XNiX

T, R̃i = XRiX
T(i =

1, 2) and K=YX−T then the conditions for the control to guarantee the asymptotic

stability of the closed loop system are obtained as (3.49) and (3.50)•

3.2.3 Numerical Example

Consider the system (3.1) with uncertainty and time-varying input delay

ẋ (t) = (A+ ∆A (t))x (t) + (B0 + ∆B0 (t))u (t) + (B1 + ∆B1 (t))u(t− τ(t)), t ≥ 0
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3.3 Stabilization of systems with input-delay

x(0) = x0, u(t) = φ(t), t ∈ [−0.2, 0] with

A =

 0 1

−1.25 −3

 ,∆A =

0 0

q 0

 , |q| ≤ γ, B1 =

0

1

 .

For the time delay τ (t) , γmax is defined as the maximum allowable value of γ

0 ≤ τ (t) ≤ 0.2 and τ̇ (t) ≤ dτ < 1. It was reported in [5] that 1.2499 and

0.2499 were thae values of γmax provide by the methods [9], [10] respectively. By

solving the LMIs in Robust control tool box in MATLAB now here in this case

with the controller propose in this section, with ρ2= 0.3, ρ3= 0.3, ρ4= 0.3 and

with the controller gain K = [−12.195 − 3.366] it was found that γmax = 5.0951

which shows the results obtained with this are still less conservative.

3.3 Stabilization of systems with input-delay

In conventional approaches LyapunovKrasovskii functionals are defined to deal

with both time varying delay and fixed delay in (3.30). Here by using the Leibniz

rule (3.4) the system is simplified in such a way that the third term compensate

the effect of second term in (3.30) which is more beneficiary compared to the

conventional approaches. This section presents the stabilization of such system

which is modified by using Leibniz rule with a different Lyapunov-Krasovskii func-

tional and the results obtained with controller proposed in this section are still les

conservative than the one discussed in the previous section which was shown by

means of a numerical exmple.

Consider the system with time-delay

ż(t) = (A+BK + ∆A(t) + ∆B0(t)K)z(t) + (B1 + ∆B1(t))Kz(t− τ(t))

−B1Kz(t− τ̄)−∆A(t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds, t ≥ 0 (3.51)

By using the following equation

z(t− τ(t))− z(t− τ̄) =

t−τ(t)∫
t−τ̄

ż(s)ds, (3.52)
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3.3 Stabilization of systems with input-delay

the system can be re-written as

ż(t) = (A+BK + ∆A(t) + ∆B0(t)K)z(t) +B1K

t−τ(t)∫
t−τ̄

ż(θ)dθ +

∆B1(t)Kz(t− τ(t))−∆A(t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds, t ≥ 0 (3.53)

3.3.1 Stability Analysis

Lemma 3.3.1 : For the given scalars τ0and matrix K the above system is asymp-
totically stable if ther exist matrices P,Q1, R1 > 0 and scalarsεj > 0(j = 1, 2, 3)
such that a11 a12 a13

∗ a22 a23

∗ ∗ a33

 < 0 (3.54)

Proof. For the Robust stabilization of the (3.51) the Lyapunov-Krasovskii func-

tional can be constructed as

V (t, zt) = zT (t)Pz(t) +

t∫
t−τ(t)

zT (θ)Q1z(θ)dθ +

t∫
t−τ̄

t∫
θ

żT (φ)R1ż(φ)dφdθ+

t∫
t−τ̄

t∫
s

zT (v)τ̄ ε−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(v)dvds

(3.55)

The first term in (3.55) is to handle the first term associated with uncertainity in

(3.53). The second term in (3.55) provides a measure of the signal energy during

the delay period while the third term which provides the measure of the energy

corresponding to the difference between the instantaneous feedback signal and the

delayed one. The fourth term is to handle the respective terms associated with

uncertainty of the system. The derivative of (3.55) can be obtained by using the

following which are derived from Lemma 1.4.1

2eT (t)CDF (t)Ea

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds ≤ ξT (t)ε1CDD
TCT ξ(t)+

t∫
t−τ̄

zT (v)τ̄ ε−1
1 KTBT

1 e
AT (s−v)ET

a Eae
A(s−v)B1Kz(s)ds

(3.56)
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3.3 Stabilization of systems with input-delay

2eT (t)CDF (t)[Ea + E0K]z(t) ≤ eT (t)ε2CDD
TCT e(t)

+zT (t)ε−1
2 [Ea + E0K]T [Ea + E0K]z(t) (3.57)

2eT (t)CDF (t)E1Kz(t− τ(t)) ≤ eT (t)ε3CDD
TCT e(t)

+zT (t− τ(t))ε−1
3 KTE1

TE1Kz(t− τ(t)) (3.58)

where

eT (t) =
[
zT (t) zT (t− τ(t)) żT (t)

]
, CT =

[
C1

T C2
T C3

T
]
. (3.59)

And then adding the following (3.60) to the derivative of (3.55), we obtain

2 [zT (t)C1 + zT (t− τ(t))C2 + żT (t)C3]{−Ā(t)z(t)−B1K

t−τ(t)∫
t−τ̄

ż(θ)dθ

−∆B1(t)Kz(t− τ(t)) + ∆A(t)

t∫
t−τ̄

eA(t−s−τ̄)B1Kz(s)ds+ ż(t)} = 0, (3.60)

V̇ (t, zt) ≤


z(t)

z(t− τ(t))

ż(t)


T 

a11 a12 a13

∗ a22 a23

∗ ∗ a33




z(t)

z(t− τ(t))

ż(t)

 (3.61)

Accordind to the Lyapunov-Krasovskii theorem proposed in section 2.1.1, for the

asymptotic stability of the system
a11 a12 a13

∗ a22 a23

∗ ∗ a33

 < 0 (3.62)

where,

a11 = Q1 − C1 (A + BK)− (A + BK)T C1
T + ε−1

2 [Ea + E0K]T [Ea + E0K]

+ τ̄ ε−1
1 KTBT

1

t∫
−τ̄
eA

T sET
a Eae

Asds+ (ε1+ε2+ε3) C1DDT C1
T

a12 = −(A+BK)TC2
T + (ε1 + ε2 + ε3)C1DD

TC2
T

a13 = P + C1 − (A+BK)TC3
T + (ε1 + ε2 + ε3)C1DD

TC3
T

a22 = −(1− µ)Q1 + ε−1
3 [E1K]T [E1K] + (ε1 + ε2 + ε3)C2DD

TC2
T
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3.3 Stabilization of systems with input-delay

a23 = C2 + (ε1 + ε2 + ε3)C2DD
T C3

T

a33 = τ̄R1 + C3 + C3
T + (ε1 + ε2 + ε3)C3DD

T C3
T

3.3.2 Controller design

Theorem 3.3.2 For given scalars τ0 and feedback gain matrix K the system (3.1)

is asymptotically stable if ther exist matrices P̃ , Q̃1, R̃1 > 0, Y and a non-singular

matrix X and scalars εj > 0(j = 1, 2, 3) such that



Γ11 Γ12 Γ13 XET
a + Y TET

0 0 Y TBT
1

∗ Γ22 Γ23 0 Y TET
1 0

∗ ∗ Γ33 0 0 0

∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ −ε3I 0

∗ ∗ ∗ ∗ ∗ τ̄−1ε1W


< 0 (3.63)

where,

Γ11 = Q̃1 − A XT − BY− XAT − YT BT + (ε1 + ε2 + ε3) DDT

Γ12 = −ρ2XAT − ρ2YT BT + (ε1 + ε2 + ε3)ρ2 DD
T

Γ13 = + XT − ρ3XAT − ρ3YT BT + (ε1 + ε2 + ε3)ρ3 DD
T

Γ22 = −(1− µ)Q̃1 + (ε1 + ε2 + ε3) ρ2
2DDT

Γ23 = ρ2 XT + (ε1 + ε2 + ε3)ρ2ρ3 DD
T

Γ33 = τ̄ R̃1 + ρ3X + ρ3 XT + (ε1 + ε2 + ε3) ρ3
2DDT

W−1 ≥
0∫
−τ̄

eATsEa
TEaeAsds•

Proof. With the stability results obtained, controller can be designed based on

the analysis of the control law u(t) = Y X−T [x(t) +
t∫

t−τ̄
eA(t−s−τ̄)B1u (s) ds], by

defining X=C1
−1,C l = ρlC1, (l = 2, 3),andmatricesQ̃1 = XQ1XT ,R̃1 = XR1XT,

P̃ = XPXT , then Pre, post-multiplying both sides of (3.62) respectively with

diag
{
X X X I I

}
and it’s transpose with a feedback gain K=YX−T then

by proceeding with similar kind of analysis, the condition for the control to guar-

antee the asymptotic stability of the closed loop system is obtained as (3.63) •
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3.4 State feedback Controller design

3.3.3 Numerical Example

Consider the system (3.1) with uncertainty and time-varying input delay

ẋ (t) = (A+ ∆A (t))x (t) + (B0 + ∆B0 (t))u (t) + (B1 + ∆B1 (t))u(t− τ(t)), t ≥ 0

x(0) = x0, u(t) = φ(t), t ∈ [−0.2, 0] with

A =

 0 1

−1.25 −3

 ,∆A =

0 0

q 0

 , |q| ≤ γ, B1 =

0

1

 .

For the time delay τ (t) , γmax is defined as the maximum allowable value of γ

0 ≤ τ (t) ≤ 0.2 and τ̇ (t) ≤ dτ < 1. It was reported in [1] that 9.8615 and

9.8538 were thae values γmax with dτ = 0 and dτ = 0.1 respectively. By

solving the LMIs in Robust control tool box in MATLAB now here in this case

with the controller propose in this section, with ρ2 =0.3341, ρ3=0.0964 and with

the controller gains K = [−216.5779 − 49.7890], with dτ = 0 and dτ = 0.1,

it was found that γmax = 10.0481 , γmax = 9.9691 respectively. which shows the

results obtained with the propsed controller are still less conservative compared

with the controller propose in [1].

3.4 State feedback Controller design

In previous sections controller design methods are proposed based on reduction

method. This section presents the simple state feedback controller design without

any transformation for the same system discribed in the previous sections with a

different Lyapunov-Krasovskii functional and the results obtained with controller

proposed in this section are also still les conservative than the controllers discussed

in the previous sections which was presented at the end of this section by means

of a numerical exmple.

Consider the system with input delay

ẋ (t) = (A+ ∆A (t))x (t) +Bu(t− τ(t)), t ≥ 0 (3.64)

x (0) = x0, u (t) = φ (t) , t ∈ [−τ, 0] (3.65)
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3.4 State feedback Controller design

Under the control law

u(t) = Kx(t), (3.66)

the system can be transformed as

ẋ (t) = (A+ ∆A (t))x (t) +BKx(t− τ(t)), t ≥ 0 (3.67)

3.4.1 Stability Analysis

Lemma 3.4.1 Consider the closed loop system (3.64). For given scalars τ0 and
feedback gain matrix K the system is asymptotically stable if ther exist matrices
P,Q1, Q2, R1 > 0,Ni and Mi (i = 1, 2) > 0 and for scalar ε > 0 such that

d11 d12 d13 d14 M1

∗ d22 d23 d24 N1

∗ ∗ d33 d34 0
∗ ∗ ∗ d44 0
∗ ∗ ∗ ∗ −τ̄−2R1

 < 0 (3.68)

and 
d11 d12 d13 d14 0
∗ d22 d23 d24 0
∗ ∗ d33 d34 M2

∗ ∗ ∗ d44 N2

∗ ∗ ∗ ∗ −τ̄−2R1

 < 0 (3.69)

Proof. For the robust stabilization of the system (3.64)-(3.65) the Lyapunov-

Krasovskii functional is constructed as

V (t, xt) = xT (t)Px(t) +

t∫
t−τ(t)

xT (θ)Q1x(θ)dθ +

t∫
t−τ̄

xT (θ)Q2x(θ)dθ

+τ̄

t∫
t−τ̄

t∫
θ

ẋT (s)R1ẋ(s)dsdθ (3.70)

By using the following in-equality (3.71) which is derived from Lemma 1.4.1

2ξT (t)CDF (t)[Ea + E0K]z(t) ≤ ξT (t)εCDDTCT ξ(t)

+zT (t)ε−1[Ea + E0K]T [Ea + E0K]z(t) (3.71)
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3.4 State feedback Controller design

where

ξT (t) =
[
xT (t) xT (t− τ(t)) xT (t− τ̄) ẋT (t)

]
, CT =

[
C1

T C2
T C3

T
]
.

(3.72)

then by adding the following equality (3.73) to the derivative of (3.70)

2[xT (t)C1 + xT (t− τ(t))C2 + ẋT (t)C3] {− (A+ ∆A (t))x (t)

−BKx(t− τ(t)) + ẋ (t)}= 0
(3.73)

The derivative of V (t, xt) is obtained as

V̇ (t, zt) ≤ ξT (t)
{

Θ + σφ1τ̄
2R−1

1 φ1
T + (1− σ)φ2τ̄

2R−1
1 φ2

T
}
ξ(t) (3.74)

where

φ1 =


M1

N1

0

0

 , φ2 =


0

M2

N2

0

 (3.75)

Accordind to the Lyapunov-Krasovskii theorem proposed in section 2.1.1, for the

asymptotic stability of the system

Θ + σφ1τ̄
2R−1

1 φ1
T + (1− σ)φ2τ̄

2R−1
1 φ2

T < 0 (3.76)

Since σ = τ(t)
τ̄
, 0 ≤ σ ≤ 1.

the equ (3.71) holds good if

Θ + φl(τ̄
−2R1)

−1
φl
T < 0, l = 1, 2. (3.77)

Applying schur compliment using Lemma 2 (1.5), the condition for stability is

obtained as  Θ φ1

φ1
T −τ̄−2R1

 < 0, l = 1, 2 (3.78)
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3.4 State feedback Controller design

which implies 

d11 d12 d13 d14 M1

∗ d22 d23 d24 N1

∗ ∗ d33 d34 0

∗ ∗ ∗ d44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (3.79)

and 

d11 d12 d13 d14 0

∗ d22 d23 d24 0

∗ ∗ d33 d34 M2

∗ ∗ ∗ d44 N2

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (3.80)

where,

d11 = Q1 +Q2 + τ̄(M1 +M1
T )− C1A− AT C1

T + ε−1ET
a Ea + ε C1DDT C1

T

d12 = τ̄(−M1 +N1
T )− C1BK − ATC2

T + εC1DD
TC2

T

d13 = 0

d14 = P + C1 − ATC3
T + εC1DD

TC3
T

d22 = τ̄(−N1−N1
T )+ τ̄(M2+M2

T )−(1−µ)Q1−C2BK−(C2BK)T +εC2DD
TC2

T

d23 = τ̄(−M2 +N2
T )

d24 = C2 − (C3BK)T + εC2DD
TC3

T

d33 = τ̄(−N2 −N2
T )−Q2

d34 = 0

d44 = τ̄ 2R1 + C3 + C3
T + εC3DD

T C3
T

3.4.2 Controller Design

Theorem 3.4.2 For the given scalars ρl (l = 2, 3) , τ0 the system (3.64)-(3.65) is

asymptotically stable if there exist matrices P̃ , Q̃k, Ñk, M̃k (k = 1, 2) , R̃1 > 0, R̃2 >
0, Y and a non-singular matrix X and scalar ε > 0 such that
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Γ11 Γ12 Γ13 Γ14 XM1X
T XET

a

∗ Γ22 Γ23 Γ24 XM1X
T 0

∗ ∗ Γ33 Γ34 0 0

∗ ∗ ∗ Γ44 0 0

∗ ∗ ∗ ∗ −τ̄−2R1 0

∗ ∗ ∗ ∗ ∗ −εI


< 0 (3.81)

and 

Γ11 Γ12 Γ13 Γ14 0 XET
a

∗ Γ22 Γ23 Γ24 XM2X
T 0

∗ ∗ Γ33 Γ34 XN2X
T 0

∗ ∗ ∗ Γ44 0 0

∗ ∗ ∗ ∗ −τ̄−2R2 0

∗ ∗ ∗ ∗ ∗ −εI


< 0 (3.82)

where,

Γ11 = Q̃1 + Q̃2 + τ̄
(

M̃1 + M̃
T

1

)
− A XT − XAT + ε DDT

Γ12 = τ̄
(
−M̃1 + Ñ

T

1

)
− BY− ρ2XAT + ερ2 DD

T

Γ13 = 0

Γ14 = P̃ + XT − ρ3XAT + ερ3 DD
T

Γ22 = τ̄
(
−Ñ1 − Ñ

T

1

)
+ τ̄

(
M̃2 + M̃

T

2

)
− (1−µ)Q̃1−ρ2BY−ρ2YT BT +ερ2

2DDT

Γ23 = τ̄
(
−M̃2 + Ñ

T

2

)
Γ24 = ρ2 XT − ρ3YT BT + ερ2ρ3 DD

T

Γ33 = τ̄
(
−Ñ2 − Ñ

T

2

)
Q̃2

Γ34 = 0

Γ44 = τ̄ 2R̃1 + ρ3X + ρ3 XT + ερ3
2DDT

Proof. The state feedback controller can be designed with the analysis done based

on the control law (3.66) and by defining X=C1
−1,C l = ρlC1, (l = 2, 3),then Pre,

post-multiplying both sides of each of (3.79) and (3.80) with

diag
{
X X X X X I

}
and it’s transpose respectively and also by defining

Q̃k = XQkXT(k=1,2),M̃i = XMiX
T, Ñi = XNiX

T, R̃i = XRiX
T(i = 1, 2), P̃ =

XPXT, and with a feedback gain K=YX−T then the conditions for the control to
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guarantee the asymptotic stability of the closed loop system are obtained as (3.81)

and (3.82)•

3.4.3 Numerical Example

Consider the system (3.1) with uncertainty and time-varying input delay

ẋ (t) = (A+ ∆A (t))x (t) + (B0 + ∆B0 (t))u (t) + (B1 + ∆B1 (t))u(t− τ(t)), t ≥ 0

x(0) = x0, u(t) = φ(t), t ∈ [−0.2, 0] with

A =

 0 1

−1.25 −3

 ,∆A =

0 0

q 0

 , |q| ≤ γ, B1 =

0

1

 .

For the time delay τ (t) , γmax is defined as the maximum allowable value of γ

0 ≤ τ (t) ≤ 0.2 and τ̇ (t) ≤ dτ < 1. It was reported in [1] that 9.8615 and

9.8538 were thae values γmax with dτ = 0 and dτ = 0.1 respectively. By solving

the LMIs in Robust control tool box in MATLAB now here in this case with the

controller propose in this section , with ρ2= -0.000188, ρ3= 0.213054 and with the

controller gains K = [−14.0417 − 3.6489],with dτ = 1019 (very large), it was

observed that γmax = 10.07823 which shows the results obtained with the propsed

controller are still less conservative compared to the one proposed in [1] and also

the one proosed in the previous section.

3.5 Discussion

Different Static state feed back controller design methods are proposed in each

section of this chapter for the stabilization of systems with time varying input

delay. With the controller proposed in section 3.2 by modifying the transformation

of the system robustness is improved compared to [9] and [10]. With the controller

proposed in the section 3.3 by transforming the system to another form by using

Leibniz rule leads to much lesser conservative results compared to the one proposed

in section 3.2. with the simple state feed back controller proposed in section 3.4

the results obtained are still lesser conservative than the one proposed in sections

3.2 and 3.3. The comparision of the performances of each controller discussed in
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each section of this chapter is shown in Table 3.1.

Section Control law No. of Tuning Parameters γmax
3.2 u(t) = Kz(t) 3 5.0951
3.3 u(t) = Kz(t) 2 10.0481
3.4 u(t) = Kx(t) 2 10.0782

Table 3.1: Comparision of robustness for dτ = 0
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Chapter 4

PI-type State feedback Controller
for Robust Stabilization of
systems with input delay

This chapter presents the robust stabilization of time-delay systems using PI-type

state feedback controller design.

4.1 PI controller

A proportional-Integral controller (PI-Controller) is one of the used feedback

control loop mechanism used in Industrial-control systems. A PI controller calcu-

lates an error value which is the difference between the value of processed measured

variable and the desired set-point value. The controller is designed such that it

attempts to minimize the error by varying control inputs of the process. The

PI controller design involves two parameters, the proportional and the derivative

which are denoted as P and I respectively and their respective gains are represented

as Kp and Ki. P depends on the present error and I depends on the accumulation

of past errors.The weighted sum of these two are used to adjust the process so as

to achieve the setpoint.

The PI controller output is of the form

u = Kpe(t) +Ki

∫
e(t)dt (4.1)
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where e(t) is the difference between the value of processed measured variable and

the desired set-point value.

4.1.1 Proportional term

The output value of the proportional term is proportional to the current error

value.The response of proportional part can be modifies or adjusted by multiplying

the error by a constant gain Kp which is called as the proportional gain constant.

The output of proportional part is given by:

uP = Kpe(t) (4.2)

If Kp is very high,the system may become unstable but high Kp results in large

change in the output with a given change in error. And small value of Kp leads

to small output response when the input error is large.

4.1.2 Integral term

The integral part in PI controller, eliminates the steady-state error which occurs

with a pure proportional controller. But as the integral term responds to accu-

mulated errors in the past, it causes the present value to overshoot the set point

value.

The output of integral part is given by:

uI = Ki

∫
e(t)dt (4.3)

4.2 PI Controller design for Robust Stabilzation

Now with the knowledge of the PI controller, a PI controller design method is

propsed for the robust stabilization of the system with time-varying input delay.

Consider the system

ẋ (t) = (A+ ∆A (t))x (t) +Bu(t− τ(t)), t ≥ 0 (4.4)
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Under the control law

u(t) = Kpx(t) +KI

t∫
0

x(θ)dθ (4.5)

ż(t) = x(t) (4.6)

State space formẋ(t)

ż(t)

 =

A+ ∆A 0

I 0

x(t)

z(t)

+

B
0

u(t− τ(t)) (4.7)

u(t) =
[
KP KI

]x(t)

z(t)

 (4.8)

By using (4.8), (4.7) can be written asẋ(t)

ż(t)

 =

A+ ∆A 0

1 0

x(t)

z(t)

+

B
0

[KP KI

]x(t− τ(t))

z(t− τ(t))

 (4.9)

the system (4.9) can be represented as

˙̄x(t) = Âx̄(t) + B̂Kx̄(t− τ(t)) (4.10)

where ˙̄x(t) =

ẋ(t)

ż(t)

 , Â =

A+ ∆A 0

1 0

 , B̂ =

B
0

 , K =
[
KP KI

]

4.2.1 Stability Analysis

Lemma 4.2.1 Consider the closed-loop system (4.4). For given scalars τ0 and
feedback gain matrix K the system is asymptotically stable if there exist matrices
P,Q1, Q2 > 0 such that

Θ11 Θ12 Θ13 Θ14 M1

∗ Θ22 Θ23 Θ24 N1

∗ ∗ Θ33 Θ34 0

∗ ∗ ∗ Θ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.11)
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and 

Θ11 Θ12 Θ13 Θ14 0

∗ Θ22 Θ23 Θ24 M2

∗ ∗ Θ33 Θ34 N2

∗ ∗ ∗ Θ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.12)

Proof. Now, Lyapunov-Krasovskii functional is choosen as

V (t, xt) = xT (t)Px(t) +

t∫
t−τ(t)

xT (θ)Q1x(θ)dθ +

t∫
t−τ̄

xT (θ)Q2x(θ)dθ

+τ̄

t∫
t−τ̄

t∫
θ

ẋT (s)R1ẋ(s)dsdθ (4.13)

The first term in (4.13) is to handle the first term associated with uncertainity

in (4.4), second term and third terms in (4.13) provides a measure of the signal

energy during the delay period while the fourth term provides the measure of the

energy corresponding to the difference between the signal sought for feedback, and

the one available for feedback. The derivative of (4.13) is obtained as

v̇(t, xt) = 2xT (t)Pẋ(t) + xT (t)[Q1 +Q2]x(t)− (1− µ)xT (t− τ(t))Q1x(t− τ(t))

−xT (t− τ̄)Q2x(t− τ̄) + τ̄ ẋT (t)R1ẋ(t)−


t∫

t−τ̄

ẋT (θ)R1ẋ(θ)dθ

 (4.14)

Using Lemma 1.4.3 and also by adding the following equality (4.15) to the deriva-

tive of (4.13)

[xT (t)C1 +xT (t− τ(t))C2 + ẋT (t)C3]{−Âx̄(t)− B̂Kx̄(t− τ(t))+ ˙̄x(t)} = 0 (4.15)

we obtain

V̇ (t, zt) ≤ ξT (t)
{

Θ + σφ1τ̄
2R−1

1 φ1
T + (1− σ)φ2τ̄

2R−1
1 φ2

T
}
ξ(t) (4.16)
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where

ξT (t) =
[
x̄T (t) x̄T (t− τ(t)) x̄T (t− τ̄) ˙̄x

T
(t)
]
, CT =

[
C1

T C2
T C3

T
]
,

Θ =


Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 Θ34

∗ ∗ ∗ Θ44

 (4.17)

and

φ1 =


M1

N1

0

0

 , φ2 =


0

M2

N2

0

 (4.18)

According to the Lyapunov-Krasovskii theorem proposed in section 2.1.1, for the

asymptotic stability of the system

Θ + σφ1τ̄
2R−1

1 φ1
T + (1− σ)φ2τ̄

2R−1
1 φ2

T < 0 (4.19)

Since σ = τ(t)
τ̄
, 0 ≤ σ ≤ 1, the equ (4.19) holds good only if

Θ + φl(τ̄
−2R1)

−1
φl
T < 0, l = 1, 2 (4.20)

which implies 

Θ11 Θ12 Θ13 Θ14 M1

∗ Θ22 Θ23 Θ24 N1

∗ ∗ Θ33 Θ34 0

∗ ∗ ∗ Θ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.21)

and 

Θ11 Θ12 Θ13 Θ14 0

∗ Θ22 Θ23 Θ24 M2

∗ ∗ Θ33 Θ34 N2

∗ ∗ ∗ Θ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.22)
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where,

Θ11 = Q1 +Q2 + (M1 +M1
T )− C1Â− ÂT C1

T

Θ12 = (−M1 +N1
T )− C1B̂K − ÂTC2

T

Θ13 = 0

Θ14 = P + C1 − ÂTC3
T

Θ22 = (−N1 −N1
T ) + (M2 +M2

T )− (1− µ)Q1 − C2B̂K − (C2B̂K)
T

Θ23 = (−M2 +N2
T )

Θ24 = C2 − (C3B̂K)
T

Θ33 = (−N2 −N2
T )−Q2

Θ34 = 0

Θ44 = τ̄R1 + C3 + C3
T

4.2.2 Controller design

Theorem 4.2.2 For the given scalars ρl (l = 2, 3) , τ0 and a feedback gain matrix

K, the system (4.4) is asymptotically stable if there exist matrices P̃ , Q̃k (k = 1, 2) ,

Ñk (k = 1, 2) , M̃k (k = 1, 2) , R̃1 > 0, Y and a non-singular matrix X such that

Γ11 Γ12 Γ13 Γ14 XM1X
T

∗ Γ22 Γ23 Γ24 XN1X
T

∗ ∗ Γ33 Γ34 0

∗ ∗ ∗ Γ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.23)

and 

Γ11 Γ12 Γ13 Γ14 0

∗ Γ22 Γ23 Γ24 XM2X
T

∗ ∗ Γ33 Γ34 XN2X
T0

∗ ∗ ∗ Γ44 0

∗ ∗ ∗ ∗ −τ̄−2R1


< 0 (4.24)

where,

Γ11 = Q̃1 + Q̃2 +
(

M̃1 + M̃
T

1

)
− ÂXT −XÂT

Γ12 =
(
−M̃1 + Ñ

T

1

)
− B̂Y − ρ2XÂ

T

Γ13 = 0
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Γ14 = P̃ + XT − ρ3XÂ
T

Γ22 =
(
−Ñ1 − Ñ

T

1

)
+
(

M̃2 + M̃
T

2

)
− (1− µ)Q̃1 − ρ2B̂Y − ρ2YTB̂T

Γ23 =
(
−M̃2 + Ñ

T

2

)
Γ24 = ρ2 XT − ρ3YTB̂T

Γ33 =
(
−Ñ2 − Ñ

T

2

)
− Q̃2

Γ34 = 0

Γ44 = τ̄ R̃1 + ρ3X + ρ3 XT

Proof.The analysis was done based on the control law (4.8) by defining X=C1
−1,C l =

ρlC1, (l = 2, 3) ,then Pre, post-multiplying both sides of each of (4.9) and (4.10)

with diag
{
X X X X X

}
and its transpose and by defining Q̃k = XQkXT(k=1,2),

M̃i = XMiX
T, Ñi = XNiX

T(i = 1, 2), R̃1 = XR1XT, P̃ = XPXT, and with a

feedback gain K then the conditions for the control to guarantee the asymptotic

stability of the closed loop system are obtained as (4.21) and (4.22)

4.2.3 Numerical Example

Consider the system (3.1) with uncertainty and time-varying input delay

ẋ (t) = (A+ ∆A (t))x (t) + (B0 + ∆B0 (t))u (t) + (B1 + ∆B1 (t))u(t− τ(t)), t ≥ 0

x(0) = x0, u(t) = φ(t), t ∈ [−0.2, 0] with

A =

 0 1

−1.25 −3

 ,∆A =

0 0

q 0

 , |q| ≤ γ, B1 =

0

1

 .

For the time delay τ (t) , γmax is defined as the maximum allowable value of γ

0 ≤ τ (t) ≤ 0.2 and τ̇ (t) ≤ dτ < 1. It was reported in [1] that 9.8615 and

9.8538 were thae values γmax with dτ = 0 and dτ = 0.1 respectively. By

solving the LMIs in Robust control tool box in MATLAB now here in this case

with the controller propose in this section, with ρ2 =-0.00018, ρ3= 0.5499, and

with the controller gains Kp = [−33.8957 − 4.7821] and KI = −0.0304, with

dτ = 1019 (very large), γmax = 28.6025, which shows that the results obtained

with the propsed PI type state feedback controller improves the robustness to a

larger extent than the static state feedback controller proposed in previous chapter.
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4.2.4 Simulation and Results

The Simulink model of PI controller for the system (4.7) is shown in Figure 4.1

and it’s simulation results are shown in Figure 4.2.

Figure 4.1: Simulink model of PI Controller

Figure 4.2: State varibles reaching steady state with the progress of time

From Figure 4.2 it is clear that the state are reaching to steady state values

after some transient period. So with the proposed PI-type state feedback controller

design, it is observed that with Kp = [−33.8957 − 4.7821] and KI = −0.0304 ,

the system is stable over a large value of γmax = 28.6025. Which shows that the

propsed PI controller design method leads to much less conservative results than

the one proposed in [1] and also the controller design methods presented in the

previous chapters.
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Chapter 5

Conclusions

The propsed approaches which are developed for the robust stabilzation of sys-

tems with time-varying input delay improves the robustness using simple static

state feedback controller, PI-type state feedback controller. From the results, it

can be found that the proposed controllers lead to much less conservative com-

parative to the other. Various Lyapunov-Krasovskii functional are constructed to

study the stability analysis for the systems with time-varying input delay. As the

design of the controller only needs the information on the variation range of the

time delay, make us deal with the unknown and time-varying input delay case.

The linearization methods which are used in the proposed approaches to obtain

the LMI′s which discribes the stability conditions are simple and easy. Hence

static state feedback controller design methods based on reduction method are

proposed for systems with input delay. And a PI-type state feedback controller

design method is proposed for uncertain linear systems with time-varying input

delay which improves the robustness of the system to a large extent.

This method can be extended by choosing appropriate Lyapunov polynomials

and tuning parameters to obtain much lesser conservative results. The stabi-

lization criteria can also be simplified by using necessary available mathematical

tools to reduce the complexity. The proposed controller design methods can also

be checked for the systems with multiple input delays and state delays.
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