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Abstract 

 
 Self-balancing robot is based on the principle of Inverted pendulum, which is a 

two wheel vehicle balances itself up in the vertical position with reference to the ground. It 

consist both hardware and software implementation. Mechanical model based on the state 

space design of the cart, pendulum system. To find its stable inverted position, I used a generic 

feedback controller (i.e. PID controller). According to the situation we have to control both 

angel of pendulum and position of cart. Mechanical design consist of two dc gear motor with 

encoder, one arduino microcontroller, IMU (inertial mass unit) sensor and motor driver as a 

basic need. IMU sensor which consists of accelerometer and gyroscope gives the reference 

acceleration and angle with respect to ground (vertical), When encoder which is attached with 

the motor gives the speed of the motor. These parameters are taken as the system parameter 

and determine the external force needed to balance the robot up. 

It will be prevented from falling by giving acceleration to the wheels according to its 

inclination from the vertical. If the bot gets tilts by an angle, than in the frame of the wheels; 

the centre of mass of the bot will experience a pseudo force which will apply a torque opposite 

to the direction of tilt. 
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Chapter 1 

Introduction 
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Chapter 1 

Introduction 

To make a self-balancing robot, it is essential to solve the inverted pendulum problem or 

an inverted pendulum on cart. While the calculation and expressions are very complex, the goal 

is quite simple: the goal of the project is to adjust the wheels’ position so that the inclination 

angle remains stable within a pre-determined value (e.g. the angle when the robot is not outside 

the premeasured angel boundary). When the robot starts to fall in one direction, the wheels 

should move in the inclined direction with a speed proportional to angle and acceleration of 

falling to correct the inclination angle. So I get an idea that when the deviation from equilibrium 

is small, we should move “gently” and when the deviation is large we should move more 

quickly.  

To simplify things a little bit, I take a simple assumption; the robot’s movement should 

be confined on one axis (e.g. only move forward and backward) and thus both wheels will move 

at the same speed in the same direction. Under this assumption the mathematics become much 

simpler as we only need to worry about sensor readings on a single plane. If we want to allow the 

robot to move sidewise, then you will have to control each wheel independently. The general 

idea remains the same with a less complexity since the falling direction of the robot is still 

restricted to a single axis.  
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Basic Aim: 

 

 To demonstrate the methods and techniques involved in balancing an unstable robotic 

platform on two wheels.  

 To design a complete digital control system with the state space model that will provide 

the needed.  

 To complete the basic signal processing which will be required in making a unicycle.  

 

A concept to start with: 

  Ultimate aim to start this project is the unicycle. The basics of the project basically lie on 

the inclination angle. Also at the very first I thought of making a self-balancing platform, which 

used data from accelerometer and gyroscope. A self-balancing bot is an advanced version of 

this platform. Self-balancing bot includes the basic signal processing part (which uses kalman 

filter and compensatory filter) of the unicycle. 

Objective: 

 ANALYSIS OF SYSTEM DYNAMICS AND DESIGN OF AN APPROXIMATE MODEL 

 System synthesis 

 Simulation  

 Optimization 

 Hardware implementation 
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Chapter 2 
 

ANALYSIS OF SYSTEM DYNAMICS AND 

DESIGN OF AN APPROXIMATE MODEL 
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Chapter 2 
 
 

2.1 Requirement Analysis 

The system in my project consists of an inverted pendulum mounted to a cart which is 

stable by its own wheel. The inverted pendulum system is already an exclusive example that u 

can commonly find it in control system reference and research literature. Its idea concludes in 

part from the fact that it is not controllable for all values of system parameter, that is, the 

pendulum will simply can’t control itself on upright position. Its dynamics of the system 

equation are nonlinear. The main fundamentals of the control system are to balance the 

inverted pendulum by applying a force to the hinge point. A real-world example that relates 

directly to this inverted pendulum system is the Segway vehicle. 

In this case we will consider a two-dimensional problem where the pendulum is 

constrained to move in the vertical plane shown in the figure 2.1. For this system, the control 

input was the force  that moves the cart horizontally and the outputs are the angular position 

of the pendulum   and the it at a distance x from the origin.. 

By taking this example we have to take a system that contains all the experimentals 

components with all there charcterstics. After analysing the system we will get the eqautions 

which helps to derive the state space model. 
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FIG 2.1 A model of an cart-pendulum system 

 
Component Abbreviation Value 

mass of cart                          M 1 K.G. 

Mass of pendulum m 1 K.G. 

coefficient of friction on 

wheel 
b 0.1 N/M/sec 

length to pendulum from the 

hinge point 
l 0.3 M 

pendulum angle from 

vertical (down) 
Φ To be calculated 

moment of inertia of the 

pendulum    
I 0.025 K.G.*m^2 

force applied to the cart F Will be given 

Table 2.1: cart pendulum system parameters 
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 For the PID, frequency response and root locus sections of this problem, we are 

interested in the control of the pendulum angel from vertical and pendulum’s position. Using 

transfer function which is best-suited for single-input, single-output (SISO) systems you can’t 

control both the system output. Therefore, the design criteria deal with the cart's position and 

pendulum angle simultaneously. We can, however, assume the controller's effect on the cart's 

position after the controller has been designed by hit and trial method. In the next sections, we 

will design a controller to keep the pendulum to a vertically upward position when it will 

undergo a sudden force. Specifically, the design criteria are that the pendulum restores its upright 

position within 2 seconds and that the pendulum never inclined more than 0.08 radians away 

from vertical(that is controllable) after being disturbed by a force of magnitude 2 Nsec. The 

pendulum will initially begin from any controllable position 

But employing state-space design techniques, we are more confined and eager to choose 

a multi-output system. In our case, the inverted_ pendulum system on a cart is single-input (only 

external), multi-output (SIMO). Therefore, for the state-space model of the Inverted Pendulum 

on a cart, we will control both the cart's position and pendulum's angle. To make the design more 

accurate and well defined in this section, we will check the parameters a 0.2-meter step in the 

cart's desired position. Under these conditions, it is expected that the cart achieve its stable 

position within 5 seconds and have a rise time under 0.2 seconds. It is also desired that the 

pendulum archive to its vertical position in under 2 seconds, and further, that the pendulum angle 

not travel more than 30 degrees (0.35 radians) way from the vertically upward.  

In summary, the design requirements for the inverted pendulum state-space example are: 

 Rise time for of less than 0.5 seconds  
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 Settling time for and  of system equation less than 2 seconds  

 Steady-state error of less than 2% for and  

 Pendulum angle never more than 20 degrees (0.35 radians) from the vertical  

2.2 Force Analysis and Equation 

 

Figure 2.2:force analysis 

By taking the total force along the horizontal axis of the cart, we got the equation: 

 F =  H +b   + M                                                                                                 2.1 
Equation of Motion: 

                                                                                           2.2 

            Angular acceleration:  

                                                                                                                                                                                    2.3 

2
2 2

2
sin cos( )sin

d
ml mgl mg A t

dt
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             Total angular force must be ‘0’: 

                                                                                                                                                                                 2.4 

 

 

 

 

 

 

 

 

 

Note: summing the forces in the vertical direction for the cart, but we can’t get any useful 

information. 

By taking the Sum of the forces in the free-body diagram of the pendulum cart problem in the 

horizontal direction, we got the following expression for the reaction force .  

                                                                                                           2.5 

By substituting equation 2.5 in the equation 2.1, we will get one of the two governing equations 

of motion for the system. 

                                                                                      2.6 

2 2

2
cos( ) sin 0

d g A
t

dt l l
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0

0
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To find the second equation of motion for this system, we have to take take the sum of the 

forces perpendicular to the pendulum original position. By solving the equation along 

pendulum axis greatly simplifies the mathematics. Then the equation is:  

                                                           2.7 

To solve for the  and  terms in the equation2.5 and 2.6, sum the angular moments about the 

centroid of the pendulum. The equation is found out as:  

                                                                                        2.8 

Combining equation 2.7 and 2.8, we get the second governing equation. 

                                            2.9 

The analysis and control design techniques only can be applied in the above problem statement 

apply only to linear systems. So to solve these equations this set of equations needs to be 

linearized. Simply, we will assume that the system stays within a small neighborhood of this 

equilibrium; therefore, we will linearize the equations about the vertically upward equilibrium 

position,  = . This assumption is one type of reasonably valid since under control we have to 

monitor that the pendulum should not deviate more than 20 degrees from the vertically upward 

position (uncontrollable). Let  defined as the deviation of the pendulum from vertically upward 

position, that is, =  + . Again assuming a small deviation ( ) from vertical equilibrium, we can 

use the following small angle approximations of the nonlinear functions in our system equations:  

                                                                               2.10 
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                                      2.11 

                                                    2.12 

By applying the above equation 2.11 and 2.12  into  nonlinear equations 2.6 and 2.9, we come 

to the end  with two linearized equations of motion. Note has been substituted for the input

.  

                                                              2.13 

                                  2.14 

Final equation of motion and torque 

• F =  H +b   + M                                                                                            
• V = mg + ml cos    + mlsin .   

• H = m   + mlsin      mlcos .   

• I.   = mglcos  

2.3 Transfer function 

To find the transfer functions of the system equations, we have to first take the Laplace 

transform of the system equations assuming zero initial conditions. The Laplace’s equations used 

are, 

The Laplace transform   is defined by  
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Then the equation becomes, 

                                                                                  2.15 

                                                                        2.16 

That a transfer function of a system represents the relationship between a single input and a 

single output for every equation. To find the first transfer function for the pendulum angel and 

an input of U(s) we have to eliminate X(s) from the equations 2.15 and 2.16.Solving the 

equation for X(s). 

                                                                                                      2.17 

Then substitute the equation 2.17 into the second equation. 

                      2.18 

Manipulating, the transfer function is then the following 

                       2.19 

Where, 

                              2.20 
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From the transfer function shown in the equation 2.18 and 2.19 it can be seen that there is both a 

pole and a zero at the origin. These can be canceled and the transfer function becomes the 

following.  

                 2.21 

Second, the transfer function with the cart’s position will be derived in a same way to reach at 

the following.  

                               2.22 

2.4 State-space model 

The transfer function represented as equations of motion derivation of commanding equations 

can also be represented in state-space form if they can arranged into a series of first order and 

second order differential equations. They can then be put into the standard matrix, because the 

equations are linear.   
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The control matrix has 2 columns because both the pendulum's position and the cart's position 

are part of the system output. Basically, the cart's position is the first necessary of the output 

and the pendulum's angle from vertically upward position is the second element of Y.  
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Chapter 3 
 

 PID CONTROLLER AND OPTIMISATION 
 

  



 

National Institute of Technology, Rourkela Page 16 
 

Chapter 3 
 

3.1 PID controller Overview 

A proportional-integral-derivative controller is a generic feedback controller. PID controller processes 

the "error" as the difference between a measured output and a desired given references and tries to 

minimize the error by adjusting the control parameters… 

 

Figure 3.1:PID control parameters 

In the time-domain analysis, the output of a PID controller, which is proportional to control 

input is given by: 

                                     3.1 

Giving look towards how the PID controller works in a closed-loop system using the system 

variable. ‘e’ represents the system error due to both system noise and measurement noise, the 

difference between the desired output value and the actual output produced. This error signal 

is given to the PID controller, and the controller determines both the derivative and the integral 

of this error.  The input to the plant should be the summation of derivative constant multiplied 
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by derivative error, proportional constant times the proportional error and integral times the 

integral error.  

When control signal ( ) will sent to the plant as the only input, and the output ( ) is obtained 

according to the given input.. The new output ( ) is then given back and subtracted to the 

desired reference to find error signal ( ) again and the loop continues. The PID takes this error  

and calculates its control constants.  

The transfer function of a PID controller is found by taking the Laplace transform of Eq.(1). 

                                      3.2 

Where 

 = Proportional gain 

 = Integral gain 

     = Derivative gain  

The structure of a plant: 

 

Fig 3.2: system with PID controller 
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3.2 Effects of control parameters on the close loop system 

Due to proportional controller, we will have reduced the rise time but no effect on 

steady state error. An integral control ( ) reduces the steady-state error for step input, but 

negative effect on rise time. A derivative increases the stability of the system as well as reduces 

the overshoot. 

Closed loop 
responce 

Rise time Over shoot Settling time Steady state 
error 

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase eliminate 

Kd Small Change Decrease Decrease No change 

Table 3.1:PID parameter effect comparision. 

 

3.3 PID controller design with state space 

 The easiest method one should attempt to make the pendulum balanced is to rotate the 

wheels in the inclined direction until the inclination angle approaches to zero where the 

pendulum is in balance. Basically, the rotation speed of the wheel must be proportional to 

the inclination angle (e.g. move faster when the inclination is more and vice versa) so that 

the robot move with a greater settle time. This is called the simplest PID control with 

neglecting both the I and the D terms.  

 Proceeding to the next step in the design process, we have to find state-feedback 

control gains represented in a vector assuming that we are well aware (i.e. can 
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measure) all the state variables (four state variables are there). There is various 

methods to do it. If you know the desired closed-loop pole locations, we can use the 

advanced control theory. We can also use the “lqr” command which returns the optimal 

controller gain by heat and trial method for a linear plant, cost function must be power 

of 2 at most and initial conditions must equal to zero . 

 We have to check that the system is controllable before design a controller. By meeting 

all of this property of controllability means that we can set the state of the system 

anywhere in the controllable region (under the physical constraints of the system). The 

system to meet all the conditions to be completely state controllable, the rank of the  

controllability is the number of independent rows (or columns).  

                                                                    3.3 

 The controllability matrix of the system is shown by equation 3.3. The number of power 

indicates to the number of state variables of the system. Addition of terms to the 

controllability matrix with higher powers of the matrix cannot increase the rank of the 

matrix because they are linear combination of each other.  

  Controllability matrix is consisting of four variables; the rank of the matrix should be 4 

to be controllable. By using the command ctrb in MATLAB to generate the controllability 

matrix. Likewise using rank command we can find the rank. So we will test in simulation 

chapter. 
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3.4 Pre-compensation 

The designed controller meets our transient requirements so, but now we should focus 

upon the steady-state error. With respect to the other design methods, where we 

feedback the output and compare it to the reference input to compute an error, with a 

full-state feedback controller we are feeding back all of the states. We need to compute 

what the steady-state value of the states should be, multiply that by the chosen gain, 

and use a new value as our "reference" for computing the input. We can do it by adding 

a constant gain after the reference input. 

 

 

Fig 3.3: the cart pendulum system 
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Chapter 4 
 

 Simulation 
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Chapter 4 
 
4.1: 
Time response 

The time response shows how the state of a dynamic system changes with respect to time when 

a particular input is applied. Our system consists of differential equations, so we must perform 

some integration in order to determine the time response of this dynamic system. For most 

systems, especially nonlinear systems or those subject to different input parameters, we have to 

carry out integrations numerically. But in case of linear systems MATLAB provides many useful 

commands for calculating time responses for many types of inputs.  

The time response of a linear dynamic system consists of the sum of the transient response and 

steady state response. Transient response depends on the initial conditions while the steady-

state response which depends on the system input. So in the differential equation contains two 

terms, one is due to free parameters and other is due to forced parameters. 

Frequency Response 

Linear time invariant systems are most important because its response linear for state variables. 

The property of LTI that the input to the system is sinusoidal, therefore the steady-state output 

will also be sinusoidal at the same frequency. They only differs in phase and magnitude. These 

magnitude and phase differences as a function of frequency and called as the frequency 

response of the system.  
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In various ways we can get the frequency response analysis (varying between zero or "DC" to 

infinity). We will start with computing the value of the plant transfer function at known 

frequencies. If G(s) is the open-loop transfer function of a system and  is the desired frequency, 

we then plot   versus . Then we can use bode plot and Nyquist plot to get rid of complex 

frequency values.  

Stability 

In the pendulum cart system we will use the Bounded Input Bounded Output (BIBO) 

definition of stability which states that a system is stable if the output remains bounded in a 

linear region for all inputs in the controllable region. Means this system will not diverges for any 

input to the systems while working. 

To check the system stability the transfer function representation must needed. If all poles of the 

transfer function (values of s at which the denominator equals zero) lies in the –VE X-axis then 

system is called stable. If any pole has a positive real part, then the system is unstable. If any pair 

of poles is on the imaginary axis, then the system is called marginally stable and the system will 

oscillate infinite time which is not possible for a practical case. The poles of a LTI system model 

can easily be found in MATLAB using the command “POLE”.  
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4.2 Controller design: 

 

 

 

 

 

  

 

Take all system 

parameters 

Choose other 

parameters 

SYSTEM 

ANALYSIS 

Gravity 

 term 

Choose the transfer 

function 

Open loop impulse 

response 
Open loop step 

response 

Use the feed back 

system 

Apply PID 

CONTROL 

Add pre-compensation 
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4.3 Simulator Design: 

 

Figure 4.1: simulation of open loop 

GET THE POLES FOR 

closed LOOP TRANSFER 

FUNCTION 

DO THE LQR ANALYSIS 

SET PENDULUM 

COMPONENT 

PARAMETER 
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Another recursive approach: 

 

 

Figure 4.2: simulation of closed loop transfer function 
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Chapter 5 
 

 KALMAN FILTER 

(THE ESTIMATOR AND PREDICTOR) 
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Chapter 5 
 
4.1 Introduction to kalman filter 

Discrete time linear systems basically represented as 

                                                   5.1 

Where; 

xj, represent the jth state variables, 

 a and b are constants  

uj represents control input in jth state  ; 

  j is the time variable.   

Note that many type of kalman filter don't include the input term (zero initial conditions), and k 

is also used to represent time.  I have chosen to use j to represent the time variable because we 

use the variable k for the Kalman filter gain later in the text.  The extension of kalman filter 

represented next. 

Important properties of kalman filter: 

• Data processed through recursive algorithm. 

• For a given the set of measurements, it  generates optimal estimate of desired outputs. 

• Optimal outputs: 

– It is the best filter to get the minimal error according to the previous state. 

– For non-linear system optimality is very possible using unsent kalman filtering. 

• Recursive algorithm: 
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– It does not store any previous data, it recursively calculates all every time. 

 

 

Where, 

 

 

4.2 Discrete Kalman Filter 

By sampling in the time domain the sample at unit time is stored in the state variables and then 

the operations will be performed: 

• Estimation the state variables  nx  which is a linear stochastic difference equation 

                                          11   kkkk wBuAxx                             5.3 

– Process noise w will obtained from N(0,Q), where covariance matrix represented 

as Q. 

• with all measurement parameter which is also real ( mz )  

          kkk vHxz                            5.4 

x k F k x k G k u k v k

y k H k x k w k

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

   

 

1

x k n

u k m

y k p

F k G k H k

v k w k

Q k R k

( )

( )

( )

( ), ( ), ( )

( ), ( )

( ), ( )

 is the - dimensional state vector (unknown)

 is the - dimensional input vector (known)

 is the - dimensional output vector (known,  measured)

 are appropriately dimensioned system matrices (known)

 are zero - mean,  white Gaussian noise with (known) 

                  covariance matrices 
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– Measurement noise v is obtained from N(0,R), where R is the covariance matrix. 

A, Q are n dimension square matrix, B is having n*l configuration and ‘R’ is mxm and ‘H’ is mxn 

Time Update (Predictor step): 

In the predictor step time will be updated with respect to both control variable and state 

variable- 

• Expected Update in the value of x in time domain 

kkk BuxAx  



1
ˆˆ                            5.5 

• Expected update for the covariance matrix:  

QAAPP  

 T

kk 1                           5.6 

• The simplest method to show the equation 5.5 and 5.6 

][)(ˆ)(ˆ 2323 ttutxtx 
                             5.7 

][)()( 23

2

2

2

3

2 tttt 

  

Measurement Update (Corrector step) 

According to the predicted values we have to update the  next time domain quantities 

• Value Updated in corrector step:  

)ˆ(ˆˆ   kkkkk xHzKxx                          5.8 

– The real error update is  kk xHz ˆ  
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• Updated error for the covariance matrix   

 kkk PH)K(IP                                  5.9 

• Compare the equation 5.8 and 5.9                                                              

))(ˆ)(()(ˆ)(ˆ 33333

  txztKtxtx                        5.10 

)())(1()( 3

2

33

2  ttKt   

The Kalman Gain 

• Then Kalman gain Kk for the optimal state: 

1)(   RHHPHPK
T

k

T

kk                         5.12 

        
RHHP

HP








T

k

T

k                                             5.13 

• The equation 5.12 can be comparable with simple kalman filter as 

2

33

2

3

2

3
)(

)(
)(












t

t
tK                           5.14 

The Jacobian Matrix 

To simplify a system equation to use the nonlinear kalman filter we use the Jacobean matrix 

• For implementation of a scalar function y=f(x),  

xxfy  )(                           5.15 

• For implementation of a vector function y=f(x), 
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                   5.16  

EKF Update Equations 

By using the nonlinear kalman filter, the filter operation know as extended kalman filter (EKF) 

whose steps are derived above and only the equation given below: 

• Predictor step: 

),ˆ(ˆ
1 kkk f uxx 

                          5.17 

QAAPP  

 T

kk 1                                      5.18 

• Kalman gain:   

1)(   RHHPHPK
T

k

T

kk                        5.19 

• Corrector step:   

))ˆ((ˆˆ   kkkkk h xzKxx                         5.20 

 kkk PH)K(IP                          5.21 
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4.3 EKF ALL STEP AS A GRAPH: 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

Fig 4.1 Extended kalman filter in graph representation 
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Chapter 6 
 

 HARDWARE IMPLIMENTATION 
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Chapter 6 
6.1 The components used to build a working model 

1.        Arduino mega 2560 

2. Inertial measurement unit 

3. X-bee 

4. Dc motor and shaft encoder. 

5. High current Dc motor 

6. Lcd 

7. Power circuit. 

 

6.2 Arduino mega 2560: 

The Arduino Mega 2560 is a arduino based microcontroller board based on the ATmega 

microcontroller 2560. It contains 16 analog inputs, 4 UARTs (hardware serial ports),  54 digital 

input/output pins (of which 14 can be used as PWM outputs), a 16 MHz crystal oscillator, a 

power jack, an ICSP header, a USB connection, as well as a reset button. It contains all on chip 

peripherals to support the microcontroller. By connecting it simply to a computer with a USB 

cable or with an AC-to-DC adapter or battery (for power purpose), to get started. Most shields 

designed for the Arduino Duemilanove or Diecimila is compatible with arduino mega 2560. 
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The new feature added in Mega2560 is the FTDI USB-to-serial driver chip which differs 

from all preceding boards. At last, it uses the ATmega16U2 (ATmega8U2 is used in revision 

1 and revision 2 boards) programmed as a USB-to-serial converter. 

  The data lines for I2C added SDA and SCL pins that are near to the AREF pin and two other 

new pins AREF and ground placed near to the RESET pin, the IOREF that allow the shields 

to adapt to the voltage provided from the board. In future, shields will be compatible both 

with the board that use the AVR, which operate with 5V and with the Arduino Due that 

operate with 3.3V.  

Speci f ication:  

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

     Input Voltage (limits) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 256 KB (8 KB used by bootloader) 

SRAM 8 KB 



 

National Institute of Technology, Rourkela Page 38 
 

EEPROM 4 KB 

Clock Speed 16 MHz 

 Table 6.1 :arduino mega 2560 specif icat ion  

Memory:  

The ATmega2560 is capable to store code in 256 KB of flash memory (of which 8 KB is used 

for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which is used for store variable at run 

time). 

Input  and Output:  

All the 54 digital pins on arduino Mega can be used as an digital input or output, using some 

functions like  digitalWrite(), pinMode(), and digitalRead() functions. They operate at 

A input voltage of 5 volts. Maximum current flow in these digital pins is of 40 mA and has an 

internal pull-up resistor (disconnected by default) of 20-50 kOhms. Like atmega some pins are 

having one or more specialized functions: 

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 

3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. UART 0 is also 

connected the ATmega16U2 USB-to-TTL Serial chip used to program the board. 

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 

(interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on 

a rising or falling edge on a low value, or a change in value. Attach Interrupt() function 

gives all details about interrupts 

http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt
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 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication using 

the SPI library.  

 LED: 13. A led is connected to digital pin 13. When the pin goes HIGH, the LED is on, when 

the pin goes LOW, it's off. 

 PWM: 2 to 13 and 44 to 46. It uses analogWrite() function to  Provide 8-bit PWM output. 

Pin Diagram: 

 

 

                         Fig 6.1: PIN diagram of arduino mega 2560 

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/AnalogWrite
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Programming 

The Arduino Mega can be programmed with the Arduino software which is a open source 

software. Arduino is so famoused due to its open and long library. The ATmega2560 on the 

Arduino Mega comes pre-burned with a boot loader which helps to upload new code to it 

without the using an external hardware programmer. It communicates using the 

STK500 protocol which is also used by the atmega. 

 

6.3 Inertial measurement Unit 

The IMU is an electronics module consist of more than one module in a single unit, which takes 

angular velocity and linear acceleration data as a input and sent to the main processor. The IMU 

sensor actually contains three separate sensors. The first one is the accelerometer. To describe 

the acceleration about three axes it generates three analog signals and acting on the planes and 

vehicle. Because of the physical limitations  and thruster system, the significant output  sensed 

of these  accelerations is for gravity. The second sensor is the gyroscope. It also gives three 

analog signals. These signals describe the vehicle angular velocities about each of the sensor 

axes. It not necessary to place IMU at the vehicle centre of mass, because the angular rate is 

not affected by linear or angular accelerations. The data from these sensors is collected by the 

microprocessor attached to the IMU sensor through a 12 bit ADC board. The sensor information 

communicates via a RS422 serial communications (UART) interface at a rate of about 10 Hz.  

The accelerometer and gyroscope within the IMU are mounted such that coordinate 

axes of their sensor are not aligned with self-balancing bot. This is the real fact that the two 



 

National Institute of Technology, Rourkela Page 41 
 

sensors in the IMU are mounted in two different orientations according to its orientation of the 

axis needed.. 

                                      

  Fig 6.2:IMU sensor angle 

The accelerometer is manufactured by using a left handed coordinate system. The 

transformation algorithm first uses fig 6.2 to align the coordinate axes of the two sensors. 

                                            

Notice that the gyroscope are now aligned and right handed according to the IMU axis. 

Once the accelerometer and gyroscope axes are aligned with the axes of the IMU, then it 

should be aligned to vehicle reference frame. Let’s take an example, the unit is mounted on the 

wall of the electronics module, and we have to rotate it 45° with respect to the horizontal. So 

according to the Euler’s axis transformation, the angle it deviates   
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from the vehicle axes. This was calculated by taking the assumption that over the 30 inches 

from the back to the front of the of the IMU sensor the reference move inward 4 inches. 

Using information of angel transformation, along with the orientation with which the IMU is 

mounted on the vehicle of the euler angle transformation allows to form a direction cosine 

matrix that is used to convert the IMU coordinate measurement frame to the vehicle 

coordinate frame. Figure 6.3  illustrates the orientation with which the IMU is mounted with 

the three sensors. 

                                   

  Fig 6.3: Euler angle transformtation. 

Transformed IMU coordinate axes compared to vehicle coordinate axes 

Following is the order of transformations: 

1) Rotating alpha + 90° about the x-axis to align the IMU z-axis with the Vehicle frame(Z-

axis). 
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                                        6.1 

2) Rotate beta + 90° about the z-axis to align IMU and vehicle coordinate frames. 

                                                      6.2 

3) So the complete transformation from IMU to vehicle coordinates is given by 

 

                                                       6.3 

 

4) Inserting numerical values for the angles ([alpha] = 45°, [beta] = 7.5946°), produces: 

                                                 6.4 

 

In order to transform the sensor data from the individual sensor frames into the vehicle 

frame, first use the simple sign/axis transformations shown in (6.1), and then pre-multiply 

the modified sensor data by the transformation matrix given in (6.3). It would also be 

possible to combine the initial transformations from (6.1) into the transformation in (6.3), 

but the initial axes of the two sensors in the IMU are different on their own axes frame, 

there would be a different transformation matrix for each sensor. To simplify the derivation, 

the program first aligns the sensor axes using (6.1), and then uses the second 
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transformation matrix from (2.6) to transform the data of the accelerometer and angular 

rate sensors from IMU to vehicle coordinates.  

6.4 Dc motor and Shaft encoder 

                                          

Figure 6.4 High torque motor 

Here I am using the 85RPM 37DL Gear Motor with shaft Encoder, which is a high performance DC 

gear motor and contains magnetic Hall Effect quadrature shaft encoder. Shaft Encoder gives 90 

pulses per revolution of the output shaft per channel. Motor can run from 4V to 12V supply. For shaft 

encoder signals, Sturdy 2510 relimate connector is used and Shaft encoders are used in applications 

that requires motor’s angle of rotation such as robotics, CNC etc. 

Specifications: 

o Supply: 12V (Motor runs smoothly from 4V to12V) 

o Shaft encoder resolution: 90 quadrature pulses per revolution of the output shaft 
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o RPM: 85RPM @ 12V; 42RPM @6V 

o Stall Current: 1.8A @ 12V; 0.8A @ 6V 

o Stall Torque: 21kg/cm @ 12V; 10kg/cm @ 6V 

o Shaft encoder supply: 3.3V or 5V 

o Shaft encoder current requirement: 5 to 10mA 

o Shaft diameter: 6mm 

o Gear ratio: 1:30 

o Table 6.2:motor specification 

Interfacing 

We are using Sturdy 2510 relimate to give power to motor and take the output signal of shaft 

encoder. Shaft encoder needs a supply voltage of 3.3V or 5V DC. 1K to 2.2K pull-up resistor is 

connected between Vcc and Channel A and Channel B. 
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table 6.3:interfacing of motor 
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Chapter 7 
 

 Real Time implementation 
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Chapter 7 
 

7.1 Algorithm to control SBB vertically upward 

 Take the necessary header files and global variables to support the main 

software. 

 Configure PID angle and speed of the motor as well as PID constants. 

 Take the read values of the IMU sensor and store it in a matrix up to 100 

samples 

 Configure the start button, stop button and device configure button. 

 Configure PID module to update it. 

 Set digital pins, serial pins and PWM pins on the arduino board 

 Set the kalman filter and update its weight matrix and coefficient. 

 Initialize PID speed, PID angle and Time action module. 

 Update the IMU sensor and update the IMU matrix. 

 Then we will face three conditions 

1) When debug-> 

a) calibrate the previous values and update the previous 

declared variables. 

2) When started->  
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A. calculate the PID angle and motor speed. 

B.      According to the angel check motor speed regularly and    

update the IMU sensor. 

C.     If steering is not applied then set the external offset to 

zero 

D.   Else refer to SBB console program. 

3) When stoped-> do the power off. Fall automatically. 

7.2 Algorithm to steer the SBB by remote control 

 Take the necessary header files and global variables to support the main 

software. 

 Configure PID angle and speed of the motor as well as PID constants. 

 Take the read values of the IMU sensor and store it in a matrix up to 100 

samples 

 Configure the start button, stop button and device configure button. 

 Configure PID module to update it. 

 Set digital pins, serial pins and PWM pins on the arduino board 

 Set the kalman filter and update its weight matrix and coefficient. 

 Set the remote of the buttons as well as the UART 1. 

 If any button is pressed make its coefficient to 100. 

 Add it to the next time action. 

 Make the PID mode aggressive. 
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 Display it on the LCD 

 Check the control parameter according to the change in PID angle. 

7.3 Other files used in the implementation 

I. Remote_communication(using serial communication) 

II. Eeprom.h (to store the update values) 

III. Serial_communication 

IV. Motor.h 

V. Shaft_encoder.h 
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Chapter 8 
 

 Result and Graph 
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Chapter 8 
 

8.1 result for controller design 

 According to the system model the open loop response of the system is not controllable 

and the graph is giving peak means the angle and the amplitude goes on increasing which is not 

BIBO stable. Fig 8.1 describes the same. 

 

Fig 8.1 open loop impulse response and open loop step response  
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 To find the root locus of the open loop transfer function we used the specific 

MATLAB command. The graph shows that  the pole are on the +VE half of the X-

axis which leads to system is unstable. 

 

Fig 8.2 pole location and root locus 

Design of a closed loop transfer function using the state space model can be done 

in two ways. By using LQR algorithm and also by placing the closed loop pole 

location on the desired position. The next two figures describe the same. Figure 

8.3 describes the LQR model while in figure 8.4 shows LQR model with PID tuning. 



 

National Institute of Technology, Rourkela Page 54 
 

 

Fig 8.3 Control using LQR model 

 

Fig 8.4 Control using LQR model with tuning parameters 
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As we discussed in chapter two though it is a feedback system, two take the error 

with respect to same reference we have to add a pre-compensation before the 

control input. The effect of pre-compensation is described in the following graph  

 

Fig 8.5 control in addition of pre-compensation 
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8.2 simulation results 

By doing the simulation using MATLAB we get into the conclusion that  the system function and 

parameter we derived as a reference for self-balancing bot work well. So in the next step we 

can proceed through the design. With open loop transfer function the animated system is 

unstable as shown in fig 8.6 whereas for a close loop transfer function the system is stable. 

 

Fig 8.6 cart pendulum system in unstable condition 
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Fig 8.7 self-balanced Pendulum cart system  
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8.3. Hardware simulation result. 

The following figure is taken from XCTU which is an interface to communicate 

with computer from the arduino board with the help of serial communication. It 

shows the output of the IMU sensor in form of yaw roll and pitch. 

 

Fig 8.8 output  of IMU sensor 
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Shaft encoder calculates the rotation of the wheel according to the values obtain from channel 

and  channel b.both of them with a 90 degree phase shift each giving 90 count per 1 revolution 

making total of 180 counts 

 

Fig 8.9 output of shaft encoder 
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After all the derivations and simulations the final working model is derived which 

consist of all the components. fig 8.10 shows the working model on the upward 

direction. 

 

Fig 8.10 working model of SBB 
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Chapter 9 
 

CONCLUSION 
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Chapter 9 
 

Conclusion: 
 To build a self-balancing robot we first derived the system equation then check its real 

time response (both time and frequency). Then we designed a PID controller to control the 

close loop function. We checked the controllability and set the pole location. Then we used 

kalman filter as estimator and predictor. Then by choosing the appropriate components we 

analyse their simulation sucessfully 

  

The above test steps are successful, then we are near to build a SBB. The easiest way to 

tune a PID controller is to tune the P, I and D parameters one at a time. It was done successfully. 

The stability of the SBB may be improved if you use a properly designed gearbox that is having 

negligible gear backlash.  

So by implementation all of these concepts and avoid the errors that we came across the 

self-balancing bot is completely build. We can make Segway and ball bot as a application of 

self-balancing bot 
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