
SELF-BALANCING BOT USING CONCEPT

OF INVERTED PENDULUM

Pratyusa kumar Tripathy (109EC0427)

Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela- 769008,India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SELF-BALANCING BOT USING

CONCEPT OF INVERTED PENDULUM

A project submitted in partial fulfilment of the requirements for the degree of

Bachelor of Technology

in

Electronics and Communication Engineering

by

Pratyusa kumar Tripathy

(Roll 109EC0427)

 under the supervision of

Prof. S. K. Das

Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela -769008, India

Electronics and Communication Engineering

National Institute of Technology Rourkela
Rourkela-769008, India.www.nitrkl.ac.in

Prof S. K. Das May 13th, 2013

Certificate

This is to certify that the work in the Project entitled self-balancing robot using

concept of inverted pendulum by Pratyusa kumar Triparthy, is a record of

an original research work carried out by him under my supervision and guidance

in partial fulfilment of the requirements for the award of the degree of Bachelor

of Technology in Electronics and Communication Engineering. Neither this thesis

nor any part of it has been submitted for any degree or academic award elsewhere.

Prof S. K. Das

Acknowledgment

I would like to express my sincere gratitude and thanks to my supervisor Prof. S. K. Das for

his constant guidance, encouragement and extreme support throughout the course of this

project. I am thankful to Electronics and Communication Engineering Department to provide us

with the unparalleled facilities throughout the project. I am thankful to Ph.D Scholars for their

help and guidance in completion of the project. I am thankful to our batch mates and friends

specifically Debabrata Mahapatra and my super senior Subhranshu Mishra for their support and

being such a good company. I extend my gratitude to researchers and scholars whose papers

and thesis have been utilized in our project. Finally, I dedicate my thesis to our parents for their

love, support and encouragement without which this would not have been possible.

Pratyusa Kumar Tripathy

Abstract

 Self-balancing robot is based on the principle of Inverted pendulum, which is a

two wheel vehicle balances itself up in the vertical position with reference to the ground. It

consist both hardware and software implementation. Mechanical model based on the state

space design of the cart, pendulum system. To find its stable inverted position, I used a generic

feedback controller (i.e. PID controller). According to the situation we have to control both

angel of pendulum and position of cart. Mechanical design consist of two dc gear motor with

encoder, one arduino microcontroller, IMU (inertial mass unit) sensor and motor driver as a

basic need. IMU sensor which consists of accelerometer and gyroscope gives the reference

acceleration and angle with respect to ground (vertical), When encoder which is attached with

the motor gives the speed of the motor. These parameters are taken as the system parameter

and determine the external force needed to balance the robot up.

It will be prevented from falling by giving acceleration to the wheels according to its

inclination from the vertical. If the bot gets tilts by an angle, than in the frame of the wheels;

the centre of mass of the bot will experience a pseudo force which will apply a torque opposite

to the direction of tilt.

CONTENT

Certificate i

Acknowledgement ii

Abstract iii

List of figures vi

List of table vii

Chapter 1 1

Introduction 2

Chapter 2 4

ANALYSIS OF SYSTEM DYNAMICS AND DESIGN OF AN APPROXIMATE MODEL 5

Chapter 3 15

PID controller and optimisation 16

Chapter 4 21

Simulation 22

Chapter 5 27

kalman filter(the estimator and predictor) 28

Chapter 6 34

Hardware implementation 35

Chapter 7 46

Real time implementation 47

Chapter 8 50

Result and graph 51

Chapter 9 60

Conclusion 61

Bibliography 62

List of figures

FIG 2.1 A model of an cart-pendulum system

Fig 2.2 force analysis of the system

Fig 3.1 PID control parameters

Fig 3.2 system with PID controller

Fig 3.3 the cart pendulum system

Fig 4.1 simulation of open loop

Fig 4.2simulation of closed loop transfer function

Fig 5.1 EKF ALL STEP AS A GRAPH

Fig 6.1 PIN diagram of arduino mega 2560

Fig 6.2 IMU sensor angle

Fig 6.3: Euler angle transformtation.

Fig 6.4 High torque motor

Fig 8.1 open loop impulse response and open loop step response

Fig 8.2 pole location and root locus

Fig 8.3 Control using LQR model

Fig 8.4 Control using LQR model with tuning parameters

Fig 8.5 control in addition of pre-compensation

Fig 8.6 cart pendulum system in unstable condition

Fig 8.7 self-balanced Pendulum cart system

Fig 8.8 output of IMU sensor

Fig 8.9 output of shaft encoder

List of Tables

Table 2.1 cart pendulum system parameters

Table 3.1 PID parameter effect comparison

Table 6.1 Arduino mega 2560 configuration

Table 6.2 motor specification

Table 6.3 interfacing of motor

National Institute of Technology, Rourkela Page 1

Chapter 1

Introduction

National Institute of Technology, Rourkela Page 2

Chapter 1

Introduction

To make a self-balancing robot, it is essential to solve the inverted pendulum problem or

an inverted pendulum on cart. While the calculation and expressions are very complex, the goal

is quite simple: the goal of the project is to adjust the wheels’ position so that the inclination

angle remains stable within a pre-determined value (e.g. the angle when the robot is not outside

the premeasured angel boundary). When the robot starts to fall in one direction, the wheels

should move in the inclined direction with a speed proportional to angle and acceleration of

falling to correct the inclination angle. So I get an idea that when the deviation from equilibrium

is small, we should move “gently” and when the deviation is large we should move more

quickly.

To simplify things a little bit, I take a simple assumption; the robot’s movement should

be confined on one axis (e.g. only move forward and backward) and thus both wheels will move

at the same speed in the same direction. Under this assumption the mathematics become much

simpler as we only need to worry about sensor readings on a single plane. If we want to allow the

robot to move sidewise, then you will have to control each wheel independently. The general

idea remains the same with a less complexity since the falling direction of the robot is still

restricted to a single axis.

National Institute of Technology, Rourkela Page 3

Basic Aim:

 To demonstrate the methods and techniques involved in balancing an unstable robotic

platform on two wheels.

 To design a complete digital control system with the state space model that will provide

the needed.

 To complete the basic signal processing which will be required in making a unicycle.

A concept to start with:

 Ultimate aim to start this project is the unicycle. The basics of the project basically lie on

the inclination angle. Also at the very first I thought of making a self-balancing platform, which

used data from accelerometer and gyroscope. A self-balancing bot is an advanced version of

this platform. Self-balancing bot includes the basic signal processing part (which uses kalman

filter and compensatory filter) of the unicycle.

Objective:

 ANALYSIS OF SYSTEM DYNAMICS AND DESIGN OF AN APPROXIMATE MODEL

 System synthesis

 Simulation

 Optimization

 Hardware implementation

National Institute of Technology, Rourkela Page 4

Chapter 2

ANALYSIS OF SYSTEM DYNAMICS AND

DESIGN OF AN APPROXIMATE MODEL

National Institute of Technology, Rourkela Page 5

Chapter 2

2.1 Requirement Analysis

The system in my project consists of an inverted pendulum mounted to a cart which is

stable by its own wheel. The inverted pendulum system is already an exclusive example that u

can commonly find it in control system reference and research literature. Its idea concludes in

part from the fact that it is not controllable for all values of system parameter, that is, the

pendulum will simply can’t control itself on upright position. Its dynamics of the system

equation are nonlinear. The main fundamentals of the control system are to balance the

inverted pendulum by applying a force to the hinge point. A real-world example that relates

directly to this inverted pendulum system is the Segway vehicle.

In this case we will consider a two-dimensional problem where the pendulum is

constrained to move in the vertical plane shown in the figure 2.1. For this system, the control

input was the force that moves the cart horizontally and the outputs are the angular position

of the pendulum and the it at a distance x from the origin..

By taking this example we have to take a system that contains all the experimentals

components with all there charcterstics. After analysing the system we will get the eqautions

which helps to derive the state space model.

National Institute of Technology, Rourkela Page 6

FIG 2.1 A model of an cart-pendulum system

Component Abbreviation Value

mass of cart M 1 K.G.

Mass of pendulum m 1 K.G.

coefficient of friction on

wheel
b 0.1 N/M/sec

length to pendulum from the

hinge point
l 0.3 M

pendulum angle from

vertical (down)
Φ To be calculated

moment of inertia of the

pendulum
I 0.025 K.G.*m^2

force applied to the cart F Will be given

Table 2.1: cart pendulum system parameters

National Institute of Technology, Rourkela Page 7

 For the PID, frequency response and root locus sections of this problem, we are

interested in the control of the pendulum angel from vertical and pendulum’s position. Using

transfer function which is best-suited for single-input, single-output (SISO) systems you can’t

control both the system output. Therefore, the design criteria deal with the cart's position and

pendulum angle simultaneously. We can, however, assume the controller's effect on the cart's

position after the controller has been designed by hit and trial method. In the next sections, we

will design a controller to keep the pendulum to a vertically upward position when it will

undergo a sudden force. Specifically, the design criteria are that the pendulum restores its upright

position within 2 seconds and that the pendulum never inclined more than 0.08 radians away

from vertical(that is controllable) after being disturbed by a force of magnitude 2 Nsec. The

pendulum will initially begin from any controllable position

But employing state-space design techniques, we are more confined and eager to choose

a multi-output system. In our case, the inverted_ pendulum system on a cart is single-input (only

external), multi-output (SIMO). Therefore, for the state-space model of the Inverted Pendulum

on a cart, we will control both the cart's position and pendulum's angle. To make the design more

accurate and well defined in this section, we will check the parameters a 0.2-meter step in the

cart's desired position. Under these conditions, it is expected that the cart achieve its stable

position within 5 seconds and have a rise time under 0.2 seconds. It is also desired that the

pendulum archive to its vertical position in under 2 seconds, and further, that the pendulum angle

not travel more than 30 degrees (0.35 radians) way from the vertically upward.

In summary, the design requirements for the inverted pendulum state-space example are:

 Rise time for of less than 0.5 seconds

National Institute of Technology, Rourkela Page 8

 Settling time for and of system equation less than 2 seconds

 Steady-state error of less than 2% for and

 Pendulum angle never more than 20 degrees (0.35 radians) from the vertical

2.2 Force Analysis and Equation

Figure 2.2:force analysis

By taking the total force along the horizontal axis of the cart, we got the equation:

 F = H +b + M 2.1
Equation of Motion:

 2.2

 Angular acceleration:

 2.3

2
2 2

2
sin cos()sin

d
ml mgl mg A t

dt

National Institute of Technology, Rourkela Page 9

 Total angular force must be ‘0’:

 2.4

Note: summing the forces in the vertical direction for the cart, but we can’t get any useful

information.

By taking the Sum of the forces in the free-body diagram of the pendulum cart problem in the

horizontal direction, we got the following expression for the reaction force .

 2.5

By substituting equation 2.5 in the equation 2.1, we will get one of the two governing equations

of motion for the system.

 2.6

2 2

2
cos() sin 0

d g A
t

dt l l

2

2

0

0

() sin

d g

dt l

t t

Pivot

term
2

0

g

l

2

2

0

0

() exp()

d g

dt l

t t

29.81m.s

19cm

g

l

1

0 7.19 rad.s

National Institute of Technology, Rourkela Page 10

To find the second equation of motion for this system, we have to take take the sum of the

forces perpendicular to the pendulum original position. By solving the equation along

pendulum axis greatly simplifies the mathematics. Then the equation is:

 2.7

To solve for the and terms in the equation2.5 and 2.6, sum the angular moments about the

centroid of the pendulum. The equation is found out as:

 2.8

Combining equation 2.7 and 2.8, we get the second governing equation.

 2.9

The analysis and control design techniques only can be applied in the above problem statement

apply only to linear systems. So to solve these equations this set of equations needs to be

linearized. Simply, we will assume that the system stays within a small neighborhood of this

equilibrium; therefore, we will linearize the equations about the vertically upward equilibrium

position, = . This assumption is one type of reasonably valid since under control we have to

monitor that the pendulum should not deviate more than 20 degrees from the vertically upward

position (uncontrollable). Let defined as the deviation of the pendulum from vertically upward

position, that is, = + . Again assuming a small deviation () from vertical equilibrium, we can

use the following small angle approximations of the nonlinear functions in our system equations:

 2.10

National Institute of Technology, Rourkela Page 11

 2.11

 2.12

By applying the above equation 2.11 and 2.12 into nonlinear equations 2.6 and 2.9, we come

to the end with two linearized equations of motion. Note has been substituted for the input

.

 2.13

 2.14

Final equation of motion and torque

• F = H +b + M
• V = mg + ml cos + mlsin .

• H = m + mlsin mlcos .

• I. = mglcos

2.3 Transfer function

To find the transfer functions of the system equations, we have to first take the Laplace

transform of the system equations assuming zero initial conditions. The Laplace’s equations used

are,

The Laplace transform is defined by

National Institute of Technology, Rourkela Page 12

Then the equation becomes,

 2.15

 2.16

That a transfer function of a system represents the relationship between a single input and a

single output for every equation. To find the first transfer function for the pendulum angel and

an input of U(s) we have to eliminate X(s) from the equations 2.15 and 2.16.Solving the

equation for X(s).

 2.17

Then substitute the equation 2.17 into the second equation.

 2.18

Manipulating, the transfer function is then the following

 2.19

Where,

 2.20

National Institute of Technology, Rourkela Page 13

From the transfer function shown in the equation 2.18 and 2.19 it can be seen that there is both a

pole and a zero at the origin. These can be canceled and the transfer function becomes the

following.

 2.21

Second, the transfer function with the cart’s position will be derived in a same way to reach at

the following.

 2.22

2.4 State-space model

The transfer function represented as equations of motion derivation of commanding equations

can also be represented in state-space form if they can arranged into a series of first order and

second order differential equations. They can then be put into the standard matrix, because the

equations are linear.

National Institute of Technology, Rourkela Page 14

The control matrix has 2 columns because both the pendulum's position and the cart's position

are part of the system output. Basically, the cart's position is the first necessary of the output

and the pendulum's angle from vertically upward position is the second element of Y.

National Institute of Technology, Rourkela Page 15

Chapter 3

 PID CONTROLLER AND OPTIMISATION

National Institute of Technology, Rourkela Page 16

Chapter 3

3.1 PID controller Overview

A proportional-integral-derivative controller is a generic feedback controller. PID controller processes

the "error" as the difference between a measured output and a desired given references and tries to

minimize the error by adjusting the control parameters…

Figure 3.1:PID control parameters

In the time-domain analysis, the output of a PID controller, which is proportional to control

input is given by:

 3.1

Giving look towards how the PID controller works in a closed-loop system using the system

variable. ‘e’ represents the system error due to both system noise and measurement noise, the

difference between the desired output value and the actual output produced. This error signal

is given to the PID controller, and the controller determines both the derivative and the integral

of this error. The input to the plant should be the summation of derivative constant multiplied

National Institute of Technology, Rourkela Page 17

by derivative error, proportional constant times the proportional error and integral times the

integral error.

When control signal () will sent to the plant as the only input, and the output () is obtained

according to the given input.. The new output () is then given back and subtracted to the

desired reference to find error signal () again and the loop continues. The PID takes this error

and calculates its control constants.

The transfer function of a PID controller is found by taking the Laplace transform of Eq.(1).

 3.2

Where

 = Proportional gain

 = Integral gain

 = Derivative gain

The structure of a plant:

Fig 3.2: system with PID controller

National Institute of Technology, Rourkela Page 18

3.2 Effects of control parameters on the close loop system

Due to proportional controller, we will have reduced the rise time but no effect on

steady state error. An integral control () reduces the steady-state error for step input, but

negative effect on rise time. A derivative increases the stability of the system as well as reduces

the overshoot.

Closed loop
responce

Rise time Over shoot Settling time Steady state
error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase eliminate

Kd Small Change Decrease Decrease No change

Table 3.1:PID parameter effect comparision.

3.3 PID controller design with state space

 The easiest method one should attempt to make the pendulum balanced is to rotate the

wheels in the inclined direction until the inclination angle approaches to zero where the

pendulum is in balance. Basically, the rotation speed of the wheel must be proportional to

the inclination angle (e.g. move faster when the inclination is more and vice versa) so that

the robot move with a greater settle time. This is called the simplest PID control with

neglecting both the I and the D terms.

 Proceeding to the next step in the design process, we have to find state-feedback

control gains represented in a vector assuming that we are well aware (i.e. can

National Institute of Technology, Rourkela Page 19

measure) all the state variables (four state variables are there). There is various

methods to do it. If you know the desired closed-loop pole locations, we can use the

advanced control theory. We can also use the “lqr” command which returns the optimal

controller gain by heat and trial method for a linear plant, cost function must be power

of 2 at most and initial conditions must equal to zero .

 We have to check that the system is controllable before design a controller. By meeting

all of this property of controllability means that we can set the state of the system

anywhere in the controllable region (under the physical constraints of the system). The

system to meet all the conditions to be completely state controllable, the rank of the

controllability is the number of independent rows (or columns).

 3.3

 The controllability matrix of the system is shown by equation 3.3. The number of power

indicates to the number of state variables of the system. Addition of terms to the

controllability matrix with higher powers of the matrix cannot increase the rank of the

matrix because they are linear combination of each other.

 Controllability matrix is consisting of four variables; the rank of the matrix should be 4

to be controllable. By using the command ctrb in MATLAB to generate the controllability

matrix. Likewise using rank command we can find the rank. So we will test in simulation

chapter.

National Institute of Technology, Rourkela Page 20

3.4 Pre-compensation

The designed controller meets our transient requirements so, but now we should focus

upon the steady-state error. With respect to the other design methods, where we

feedback the output and compare it to the reference input to compute an error, with a

full-state feedback controller we are feeding back all of the states. We need to compute

what the steady-state value of the states should be, multiply that by the chosen gain,

and use a new value as our "reference" for computing the input. We can do it by adding

a constant gain after the reference input.

Fig 3.3: the cart pendulum system

National Institute of Technology, Rourkela Page 21

National Institute of Technology, Rourkela Page 22

Chapter 4

 Simulation

National Institute of Technology, Rourkela Page 23

Chapter 4

4.1:
Time response

The time response shows how the state of a dynamic system changes with respect to time when

a particular input is applied. Our system consists of differential equations, so we must perform

some integration in order to determine the time response of this dynamic system. For most

systems, especially nonlinear systems or those subject to different input parameters, we have to

carry out integrations numerically. But in case of linear systems MATLAB provides many useful

commands for calculating time responses for many types of inputs.

The time response of a linear dynamic system consists of the sum of the transient response and

steady state response. Transient response depends on the initial conditions while the steady-

state response which depends on the system input. So in the differential equation contains two

terms, one is due to free parameters and other is due to forced parameters.

Frequency Response

Linear time invariant systems are most important because its response linear for state variables.

The property of LTI that the input to the system is sinusoidal, therefore the steady-state output

will also be sinusoidal at the same frequency. They only differs in phase and magnitude. These

magnitude and phase differences as a function of frequency and called as the frequency

response of the system.

National Institute of Technology, Rourkela Page 24

In various ways we can get the frequency response analysis (varying between zero or "DC" to

infinity). We will start with computing the value of the plant transfer function at known

frequencies. If G(s) is the open-loop transfer function of a system and is the desired frequency,

we then plot versus . Then we can use bode plot and Nyquist plot to get rid of complex

frequency values.

Stability

In the pendulum cart system we will use the Bounded Input Bounded Output (BIBO)

definition of stability which states that a system is stable if the output remains bounded in a

linear region for all inputs in the controllable region. Means this system will not diverges for any

input to the systems while working.

To check the system stability the transfer function representation must needed. If all poles of the

transfer function (values of s at which the denominator equals zero) lies in the –VE X-axis then

system is called stable. If any pole has a positive real part, then the system is unstable. If any pair

of poles is on the imaginary axis, then the system is called marginally stable and the system will

oscillate infinite time which is not possible for a practical case. The poles of a LTI system model

can easily be found in MATLAB using the command “POLE”.

National Institute of Technology, Rourkela Page 25

4.2 Controller design:

Take all system

parameters

Choose other

parameters

SYSTEM

ANALYSIS

Gravity

 term

Choose the transfer

function

Open loop impulse

response
Open loop step

response

Use the feed back

system

Apply PID

CONTROL

Add pre-compensation

National Institute of Technology, Rourkela Page 26

4.3 Simulator Design:

Figure 4.1: simulation of open loop

GET THE POLES FOR

closed LOOP TRANSFER

FUNCTION

DO THE LQR ANALYSIS

SET PENDULUM

COMPONENT

PARAMETER

National Institute of Technology, Rourkela Page 27

Another recursive approach:

Figure 4.2: simulation of closed loop transfer function

National Institute of Technology, Rourkela Page 28

Chapter 5

 KALMAN FILTER

(THE ESTIMATOR AND PREDICTOR)

National Institute of Technology, Rourkela Page 29

Chapter 5

4.1 Introduction to kalman filter

Discrete time linear systems basically represented as

 5.1

Where;

xj, represent the jth state variables,

 a and b are constants

uj represents control input in jth state ;

 j is the time variable.

Note that many type of kalman filter don't include the input term (zero initial conditions), and k

is also used to represent time. I have chosen to use j to represent the time variable because we

use the variable k for the Kalman filter gain later in the text. The extension of kalman filter

represented next.

Important properties of kalman filter:

• Data processed through recursive algorithm.

• For a given the set of measurements, it generates optimal estimate of desired outputs.

• Optimal outputs:

– It is the best filter to get the minimal error according to the previous state.

– For non-linear system optimality is very possible using unsent kalman filtering.

• Recursive algorithm:

National Institute of Technology, Rourkela Page 30

– It does not store any previous data, it recursively calculates all every time.

Where,

4.2 Discrete Kalman Filter

By sampling in the time domain the sample at unit time is stored in the state variables and then

the operations will be performed:

• Estimation the state variables nx which is a linear stochastic difference equation

 11 kkkk wBuAxx 5.3

– Process noise w will obtained from N(0,Q), where covariance matrix represented

as Q.

• with all measurement parameter which is also real (mz)

 kkk vHxz 5.4

x k F k x k G k u k v k

y k H k x k w k

() () () () () ()

() () () ()

1

x k n

u k m

y k p

F k G k H k

v k w k

Q k R k

()

()

()

(), (), ()

(), ()

(), ()

 is the - dimensional state vector (unknown)

 is the - dimensional input vector (known)

 is the - dimensional output vector (known, measured)

 are appropriately dimensioned system matrices (known)

 are zero - mean, white Gaussian noise with (known)

 covariance matrices

National Institute of Technology, Rourkela Page 31

– Measurement noise v is obtained from N(0,R), where R is the covariance matrix.

A, Q are n dimension square matrix, B is having n*l configuration and ‘R’ is mxm and ‘H’ is mxn

Time Update (Predictor step):

In the predictor step time will be updated with respect to both control variable and state

variable-

• Expected Update in the value of x in time domain

kkk BuxAx

1
ˆˆ 5.5

• Expected update for the covariance matrix:

QAAPP

 T

kk 1 5.6

• The simplest method to show the equation 5.5 and 5.6

][)(ˆ)(ˆ 2323 ttutxtx
 5.7

][)()(23

2

2

2

3

2 tttt

Measurement Update (Corrector step)

According to the predicted values we have to update the next time domain quantities

• Value Updated in corrector step:

)ˆ(ˆˆ kkkkk xHzKxx 5.8

– The real error update is kk xHz ˆ

National Institute of Technology, Rourkela Page 32

• Updated error for the covariance matrix

 kkk PH)K(IP 5.9

• Compare the equation 5.8 and 5.9

))(ˆ)(()(ˆ)(ˆ 33333

 txztKtxtx 5.10

)())(1()(3

2

33

2 ttKt

The Kalman Gain

• Then Kalman gain Kk for the optimal state:

1)(RHHPHPK
T

k

T

kk 5.12

RHHP

HP

T

k

T

k 5.13

• The equation 5.12 can be comparable with simple kalman filter as

2

33

2

3

2

3
)(

)(
)(

t

t
tK 5.14

The Jacobian Matrix

To simplify a system equation to use the nonlinear kalman filter we use the Jacobean matrix

• For implementation of a scalar function y=f(x),

xxfy)(5.15

• For implementation of a vector function y=f(x),

National Institute of Technology, Rourkela Page 33

n

n

nn

n

n x

x

x

f

x

f

x

f

x

f

y

y

1

1

1

1

1

1

)()(

)()(

xx

xx

xJy

 5.16

EKF Update Equations

By using the nonlinear kalman filter, the filter operation know as extended kalman filter (EKF)

whose steps are derived above and only the equation given below:

• Predictor step:

),ˆ(ˆ
1 kkk f uxx

 5.17

QAAPP

 T

kk 1 5.18

• Kalman gain:

1)(RHHPHPK
T

k

T

kk 5.19

• Corrector step:

))ˆ((ˆˆ kkkkk h xzKxx 5.20

 kkk PH)K(IP 5.21

National Institute of Technology, Rourkela Page 34

4.3 EKF ALL STEP AS A GRAPH:

Fig 4.1 Extended kalman filter in graph representation

National Institute of Technology, Rourkela Page 35

Chapter 6

 HARDWARE IMPLIMENTATION

National Institute of Technology, Rourkela Page 36

Chapter 6
6.1 The components used to build a working model

1. Arduino mega 2560

2. Inertial measurement unit

3. X-bee

4. Dc motor and shaft encoder.

5. High current Dc motor

6. Lcd

7. Power circuit.

6.2 Arduino mega 2560:

The Arduino Mega 2560 is a arduino based microcontroller board based on the ATmega

microcontroller 2560. It contains 16 analog inputs, 4 UARTs (hardware serial ports), 54 digital

input/output pins (of which 14 can be used as PWM outputs), a 16 MHz crystal oscillator, a

power jack, an ICSP header, a USB connection, as well as a reset button. It contains all on chip

peripherals to support the microcontroller. By connecting it simply to a computer with a USB

cable or with an AC-to-DC adapter or battery (for power purpose), to get started. Most shields

designed for the Arduino Duemilanove or Diecimila is compatible with arduino mega 2560.

National Institute of Technology, Rourkela Page 37

The new feature added in Mega2560 is the FTDI USB-to-serial driver chip which differs

from all preceding boards. At last, it uses the ATmega16U2 (ATmega8U2 is used in revision

1 and revision 2 boards) programmed as a USB-to-serial converter.

 The data lines for I2C added SDA and SCL pins that are near to the AREF pin and two other

new pins AREF and ground placed near to the RESET pin, the IOREF that allow the shields

to adapt to the voltage provided from the board. In future, shields will be compatible both

with the board that use the AVR, which operate with 5V and with the Arduino Due that

operate with 3.3V.

Speci f ication:

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

 Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB (8 KB used by bootloader)

SRAM 8 KB

National Institute of Technology, Rourkela Page 38

EEPROM 4 KB

Clock Speed 16 MHz

 Table 6.1 :arduino mega 2560 specif icat ion

Memory:

The ATmega2560 is capable to store code in 256 KB of flash memory (of which 8 KB is used

for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which is used for store variable at run

time).

Input and Output:

All the 54 digital pins on arduino Mega can be used as an digital input or output, using some

functions like digitalWrite(), pinMode(), and digitalRead() functions. They operate at

A input voltage of 5 volts. Maximum current flow in these digital pins is of 40 mA and has an

internal pull-up resistor (disconnected by default) of 20-50 kOhms. Like atmega some pins are

having one or more specialized functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial

3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. UART 0 is also

connected the ATmega16U2 USB-to-TTL Serial chip used to program the board.

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20

(interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on

a rising or falling edge on a low value, or a change in value. Attach Interrupt() function

gives all details about interrupts

http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt

National Institute of Technology, Rourkela Page 39

 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication using

the SPI library.

 LED: 13. A led is connected to digital pin 13. When the pin goes HIGH, the LED is on, when

the pin goes LOW, it's off.

 PWM: 2 to 13 and 44 to 46. It uses analogWrite() function to Provide 8-bit PWM output.

Pin Diagram:

 Fig 6.1: PIN diagram of arduino mega 2560

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/AnalogWrite

National Institute of Technology, Rourkela Page 40

Programming

The Arduino Mega can be programmed with the Arduino software which is a open source

software. Arduino is so famoused due to its open and long library. The ATmega2560 on the

Arduino Mega comes pre-burned with a boot loader which helps to upload new code to it

without the using an external hardware programmer. It communicates using the

STK500 protocol which is also used by the atmega.

6.3 Inertial measurement Unit

The IMU is an electronics module consist of more than one module in a single unit, which takes

angular velocity and linear acceleration data as a input and sent to the main processor. The IMU

sensor actually contains three separate sensors. The first one is the accelerometer. To describe

the acceleration about three axes it generates three analog signals and acting on the planes and

vehicle. Because of the physical limitations and thruster system, the significant output sensed

of these accelerations is for gravity. The second sensor is the gyroscope. It also gives three

analog signals. These signals describe the vehicle angular velocities about each of the sensor

axes. It not necessary to place IMU at the vehicle centre of mass, because the angular rate is

not affected by linear or angular accelerations. The data from these sensors is collected by the

microprocessor attached to the IMU sensor through a 12 bit ADC board. The sensor information

communicates via a RS422 serial communications (UART) interface at a rate of about 10 Hz.

The accelerometer and gyroscope within the IMU are mounted such that coordinate

axes of their sensor are not aligned with self-balancing bot. This is the real fact that the two

National Institute of Technology, Rourkela Page 41

sensors in the IMU are mounted in two different orientations according to its orientation of the

axis needed..

 Fig 6.2:IMU sensor angle

The accelerometer is manufactured by using a left handed coordinate system. The

transformation algorithm first uses fig 6.2 to align the coordinate axes of the two sensors.

Notice that the gyroscope are now aligned and right handed according to the IMU axis.

Once the accelerometer and gyroscope axes are aligned with the axes of the IMU, then it

should be aligned to vehicle reference frame. Let’s take an example, the unit is mounted on the

wall of the electronics module, and we have to rotate it 45° with respect to the horizontal. So

according to the Euler’s axis transformation, the angle it deviates

National Institute of Technology, Rourkela Page 42

from the vehicle axes. This was calculated by taking the assumption that over the 30 inches

from the back to the front of the of the IMU sensor the reference move inward 4 inches.

Using information of angel transformation, along with the orientation with which the IMU is

mounted on the vehicle of the euler angle transformation allows to form a direction cosine

matrix that is used to convert the IMU coordinate measurement frame to the vehicle

coordinate frame. Figure 6.3 illustrates the orientation with which the IMU is mounted with

the three sensors.

 Fig 6.3: Euler angle transformtation.

Transformed IMU coordinate axes compared to vehicle coordinate axes

Following is the order of transformations:

1) Rotating alpha + 90° about the x-axis to align the IMU z-axis with the Vehicle frame(Z-

axis).

National Institute of Technology, Rourkela Page 43

 6.1

2) Rotate beta + 90° about the z-axis to align IMU and vehicle coordinate frames.

 6.2

3) So the complete transformation from IMU to vehicle coordinates is given by

 6.3

4) Inserting numerical values for the angles ([alpha] = 45°, [beta] = 7.5946°), produces:

 6.4

In order to transform the sensor data from the individual sensor frames into the vehicle

frame, first use the simple sign/axis transformations shown in (6.1), and then pre-multiply

the modified sensor data by the transformation matrix given in (6.3). It would also be

possible to combine the initial transformations from (6.1) into the transformation in (6.3),

but the initial axes of the two sensors in the IMU are different on their own axes frame,

there would be a different transformation matrix for each sensor. To simplify the derivation,

the program first aligns the sensor axes using (6.1), and then uses the second

National Institute of Technology, Rourkela Page 44

transformation matrix from (2.6) to transform the data of the accelerometer and angular

rate sensors from IMU to vehicle coordinates.

6.4 Dc motor and Shaft encoder

Figure 6.4 High torque motor

Here I am using the 85RPM 37DL Gear Motor with shaft Encoder, which is a high performance DC

gear motor and contains magnetic Hall Effect quadrature shaft encoder. Shaft Encoder gives 90

pulses per revolution of the output shaft per channel. Motor can run from 4V to 12V supply. For shaft

encoder signals, Sturdy 2510 relimate connector is used and Shaft encoders are used in applications

that requires motor’s angle of rotation such as robotics, CNC etc.

Specifications:

o Supply: 12V (Motor runs smoothly from 4V to12V)

o Shaft encoder resolution: 90 quadrature pulses per revolution of the output shaft

National Institute of Technology, Rourkela Page 45

o RPM: 85RPM @ 12V; 42RPM @6V

o Stall Current: 1.8A @ 12V; 0.8A @ 6V

o Stall Torque: 21kg/cm @ 12V; 10kg/cm @ 6V

o Shaft encoder supply: 3.3V or 5V

o Shaft encoder current requirement: 5 to 10mA

o Shaft diameter: 6mm

o Gear ratio: 1:30

o Table 6.2:motor specification

Interfacing

We are using Sturdy 2510 relimate to give power to motor and take the output signal of shaft

encoder. Shaft encoder needs a supply voltage of 3.3V or 5V DC. 1K to 2.2K pull-up resistor is

connected between Vcc and Channel A and Channel B.

National Institute of Technology, Rourkela Page 46

table 6.3:interfacing of motor

National Institute of Technology, Rourkela Page 47

Chapter 7

 Real Time implementation

National Institute of Technology, Rourkela Page 48

Chapter 7

7.1 Algorithm to control SBB vertically upward

 Take the necessary header files and global variables to support the main

software.

 Configure PID angle and speed of the motor as well as PID constants.

 Take the read values of the IMU sensor and store it in a matrix up to 100

samples

 Configure the start button, stop button and device configure button.

 Configure PID module to update it.

 Set digital pins, serial pins and PWM pins on the arduino board

 Set the kalman filter and update its weight matrix and coefficient.

 Initialize PID speed, PID angle and Time action module.

 Update the IMU sensor and update the IMU matrix.

 Then we will face three conditions

1) When debug->

a) calibrate the previous values and update the previous

declared variables.

2) When started->

National Institute of Technology, Rourkela Page 49

A. calculate the PID angle and motor speed.

B. According to the angel check motor speed regularly and

update the IMU sensor.

C. If steering is not applied then set the external offset to

zero

D. Else refer to SBB console program.

3) When stoped-> do the power off. Fall automatically.

7.2 Algorithm to steer the SBB by remote control

 Take the necessary header files and global variables to support the main

software.

 Configure PID angle and speed of the motor as well as PID constants.

 Take the read values of the IMU sensor and store it in a matrix up to 100

samples

 Configure the start button, stop button and device configure button.

 Configure PID module to update it.

 Set digital pins, serial pins and PWM pins on the arduino board

 Set the kalman filter and update its weight matrix and coefficient.

 Set the remote of the buttons as well as the UART 1.

 If any button is pressed make its coefficient to 100.

 Add it to the next time action.

 Make the PID mode aggressive.

National Institute of Technology, Rourkela Page 50

 Display it on the LCD

 Check the control parameter according to the change in PID angle.

7.3 Other files used in the implementation

I. Remote_communication(using serial communication)

II. Eeprom.h (to store the update values)

III. Serial_communication

IV. Motor.h

V. Shaft_encoder.h

National Institute of Technology, Rourkela Page 51

Chapter 8

 Result and Graph

National Institute of Technology, Rourkela Page 52

Chapter 8

8.1 result for controller design

 According to the system model the open loop response of the system is not controllable

and the graph is giving peak means the angle and the amplitude goes on increasing which is not

BIBO stable. Fig 8.1 describes the same.

Fig 8.1 open loop impulse response and open loop step response

National Institute of Technology, Rourkela Page 53

 To find the root locus of the open loop transfer function we used the specific

MATLAB command. The graph shows that the pole are on the +VE half of the X-

axis which leads to system is unstable.

Fig 8.2 pole location and root locus

Design of a closed loop transfer function using the state space model can be done

in two ways. By using LQR algorithm and also by placing the closed loop pole

location on the desired position. The next two figures describe the same. Figure

8.3 describes the LQR model while in figure 8.4 shows LQR model with PID tuning.

National Institute of Technology, Rourkela Page 54

Fig 8.3 Control using LQR model

Fig 8.4 Control using LQR model with tuning parameters

National Institute of Technology, Rourkela Page 55

As we discussed in chapter two though it is a feedback system, two take the error

with respect to same reference we have to add a pre-compensation before the

control input. The effect of pre-compensation is described in the following graph

Fig 8.5 control in addition of pre-compensation

National Institute of Technology, Rourkela Page 56

8.2 simulation results

By doing the simulation using MATLAB we get into the conclusion that the system function and

parameter we derived as a reference for self-balancing bot work well. So in the next step we

can proceed through the design. With open loop transfer function the animated system is

unstable as shown in fig 8.6 whereas for a close loop transfer function the system is stable.

Fig 8.6 cart pendulum system in unstable condition

National Institute of Technology, Rourkela Page 57

Fig 8.7 self-balanced Pendulum cart system

National Institute of Technology, Rourkela Page 58

8.3. Hardware simulation result.

The following figure is taken from XCTU which is an interface to communicate

with computer from the arduino board with the help of serial communication. It

shows the output of the IMU sensor in form of yaw roll and pitch.

Fig 8.8 output of IMU sensor

National Institute of Technology, Rourkela Page 59

Shaft encoder calculates the rotation of the wheel according to the values obtain from channel

and channel b.both of them with a 90 degree phase shift each giving 90 count per 1 revolution

making total of 180 counts

Fig 8.9 output of shaft encoder

National Institute of Technology, Rourkela Page 60

After all the derivations and simulations the final working model is derived which

consist of all the components. fig 8.10 shows the working model on the upward

direction.

Fig 8.10 working model of SBB

National Institute of Technology, Rourkela Page 61

Chapter 9

CONCLUSION

National Institute of Technology, Rourkela Page 62

Chapter 9

Conclusion:
 To build a self-balancing robot we first derived the system equation then check its real

time response (both time and frequency). Then we designed a PID controller to control the

close loop function. We checked the controllability and set the pole location. Then we used

kalman filter as estimator and predictor. Then by choosing the appropriate components we

analyse their simulation sucessfully

The above test steps are successful, then we are near to build a SBB. The easiest way to

tune a PID controller is to tune the P, I and D parameters one at a time. It was done successfully.

The stability of the SBB may be improved if you use a properly designed gearbox that is having

negligible gear backlash.

So by implementation all of these concepts and avoid the errors that we came across the

self-balancing bot is completely build. We can make Segway and ball bot as a application of

self-balancing bot

National Institute of Technology, Rourkela Page 63

Bibliography

[1]http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SimulinkMod

eling

[2]http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SystemModeli

ng

[3] http://playground.arduino.cc/Main/RotaryEncoders

[4] http://blog.wolfram.com/2011/01/19/stabilized-inverted-pendulum/

[5] Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction Problems”,

Transaction of the ASME--Journal of Basic Engineering, pp. 35-45 (March 1960).

[6] Welch, G and Bishop, G. 2001. “An introduction to the Kalman Filter”,

http://www.cs.unc.edu/~welch/kalman/

[7] Maybeck, P. S. 1979. “Stochastic Models, Estimation, and Control, Volume 1”, Academic

Press, Inc.

[8] http://www.kerrywong.com/2012/03/08/a-self-balancing-robot-i

[9] http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A23188

[10] Lei Guo , Hong Wang , “PID controller design for output PDFs of stochastic systems using

linear matrix inequalities”, IEEE Transactions on Systems, Man, and Cybernetics, Part B

01/2005; 35:65-71. pp.65-71.

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=SystemModeling
http://playground.arduino.cc/Main/RotaryEncoders
http://blog.wolfram.com/2011/01/19/stabilized-inverted-pendulum/
http://www.cs.unc.edu/~welch/kalman/
http://www.kerrywong.com/2012/03/08/a-self-balancing-robot-i
http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A23188

