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Abstract

This thesis estimates the performance of software system using Stochastic Petri

Nets (SPN) and Fault Tree Analysis (FTA).This paper explains how a working

Petri net model and fault tree model is developed for a soft real time system. Eval-

uating reliability of software at the early stage of the development is become key

concern for most of the organization. Assessing the reliability at early stage helps

in removing many bugs and hence improving the efficiency of the architecture.

Reliability is computed based on failure rates of systems by using a modified ar-

chitecture based approach for reliability modelling.Fault Tree Analysis is a method

for identifying and documenting the combinations of lower-level software events

that allow a top-level event (or root node) to occur. But fault trees are event ori-

ented. The dependency between the components can not be easily incorporated

in the model. Similarly redundancies,time delay conditions and other dynamic

behaviour can not be easily modelled using fault trees, since they are static in na-

ture. SPN model is used to counter the problems of Fault Trees. A ATM system

is taken as an example to model the system in both fault tree and stochastic petri

net.

Keywords: Failure Rate; Fault Tree Analysis; GSPN; Reliability; Stochastic

Petri Nets; SRNs;
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Chapter 1

Introduction

1.1 Introduction

Software system now a days being used in all spheres. Most of these developed in

a heterogeneous manner rather than homogeneous. The applications are designed

on the basis of components [1], this makes it difficult to define the performance

characteristics of the system from input and output. With increasing trend of

COTS(component off the shelf) and reuse, the system features can be accurately

determined only if each of the component and the interaction between them is

consider. Previous approaches of reliability estimation were mostly based on hard-

ware reliability models. They estimated reliability from failure rates obtained from

testing phase. These approaches are suitable for software developed as monolithic

entity. However they cannot estimated reliability of component based system [2].

As in such system the reliability of each individual component affects the overall

system reliability. Architecture base approaches are more suitable in such appli-

cations. They consider the system to be made of independent entities of modules

representing system architecture. The architecture of software is combined with

failure behaviour to estimate system reliability.

The system failure are mostly due to software failure rather than hardware failure,

which could be due to design anomalies, improper usage by users or deployment in

changing environments. Such faults could be corrected either by debugging them

when they occur or through preventive measure. The former involves transient

fault recovery which is corrective in nature but it results in incurring huge cost as
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1.2 Reliability

the recovery starts only when fault occurs. It brings much overhead on time, cost

and efforts, so it needs to be reduced. So assessing reliability of software system

at the early stage is becomes essential. In this thesis work a ATM system is taken

as an example and reliability is predicted using stochastic petri net and fault tree

analysis models.

1.2 Reliability

Software Reliability is the probability of failure-free software operations for a spec-

ified period of time in a specified environment.

• It gives an overview of the general level and pattern of risk faced by the

project.

• It helps in management to focus on the high-risk component in software.

• Requirements of safety-critical systems to operate without a system failure

for a given period of time.

• Reliability of a system at time t is defined as,

R(t) = 1 - P {Probability of failure state}

• For component software reliability of each component is defined as,

Ri = e
−λi

∑k
j=1 πj

t
cj
Ii,j

(1.1)

where, λi is failure rate of component i,

πj is steady state probability of state j,

t is average execution time in state j,

cj is number of active component,

Ii,j = 1.0, 1 ≤ i ≤ n, 1 ≤ j ≤ k, if component j is active in state i and 0

otherwise.

• For Series components reliability of system is given by,

Rs =
n∏
i=1

Ri (t) (1.2)
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1.4 Motivation

• For Parallel components reliability of system is given by,

Rs = 1−
n∏
i=1

(1−Ri (t)) (1.3)

1.3 Petri Nets

A Petri Nets is mathematical model used to describe any system. It is a directed

bipartite graph defined as a 6 tuple, (P,T,A,I(.),O(.),m0), where,

• P is a set of places.

• T is a set of transitions.

• A is a set of arcs.

• I(.), the input functions, maps transitions to places.

• O(.), the output function, that maps places to transitions.

• m0 is the initial marking of the net, where marking is the number of tokens

in each places.

Petri nets generally represented graphically. Places are represents as circle, tran-

sitions are represented as bars and arcs are represented as arrow. Tokens are rep-

resented as dots inside a place. Which describes the number of resources acquired

at a particular state. The transitions are said to be enabled when the input places

are having tokens. Firing of transition is the process of transfer tokens from input

places to output places. Petri Nets are used to capture the behaviour of many real

world situations. Sequencing, synchronization, concurrency and conflict behaviour

are easily modelled by Petri Nets. The main feature of Petri Nets model is the

representation of concurrent execution of activities.

1.4 Motivation

Reliability has always been the key performance measure in all software sys-

tems. Reliability modelling dates back to seventies but still the reliability esti-

mation is in its growing states. With newer systems with more functionality and
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1.5 Organisation of thesis

complexities the model need to be modified accordingly for accurate reliability

estimation. Most of the models based on hardware reliability but as software reli-

ability varies newer approaches have to be considered. With the use of component

based software increasing the estimation methodologies have to be made more

sensitive to the effect of there software interaction on the software. As reliability

is a stochastic measure this thesis estimates reliability of a modified architecture

based approach and models it using fault tree analysis and stochastic petri nets.

Software systems are having wide application in critical domains where safety

is more important than any other performance measure. However a software aging

could be a thread to safety to minimize these preventive measures has to be taken

rather than corrective.

1.5 Organisation of thesis

The thesis is organized as follows: Chapter 2 describes the literature review done

for this thesis. Chapter 3 discusses the Fault tree analysis model and how the

methods is applied to find the reliability of any system. This method is imple-

mented on ATM example In Chapter 4 the stochastic petri nets model is discussed

and implemented on the same ATM example to find the reliability. Finally chapter

5 concludes with the summary of work done.
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Chapter 2

Literature Review

Reliability have been classified in the following three ways depending on the man-

ner in which reliability is estimated.

• Black box based reliability analysis : Reliability is estimated from failure

during testing or operation. In this the internal details of the software are

not considerd.

• Software metric based reliability analysis : Reliability is estimated from

software analysis i.e. lines of codes, number of statements and complexity

or its developement process and conditions.

• Architecture based reliability analysis : Reliability is estimated from the

reliability of software components when combined with system architecture.

IN [2] software reliability prediction at the early stage of the software devel-

opment life cycle using petri net has been proposed. The work is, prediction of

reliability of software at architecture level. It describes how the reliability can

be assess during testing phase using the number of defects found and time for

detection of defects are used to derive the failure rate of each module. Also the

time of removing the errors are used as repair rate of each module. This failure

rate and repair rate together used to develop petri net model. Swapna S. Gokhale

and Rehab El Kharboutly [3] proposed a methodology based on the stochastic

reward nets(SRN) modeling paradigm for architecture based reliability analysis of

concurrent software applications. Concurrency is very common in now a days in
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modern software application that are developed using object oriented approach.

Thus reliability analysis at the arcitecture level that takes into account the con-

currency is important. AS the size of the application continuously grows, which

results in state space explosion problem, this problem also address in this paper.

Zing et al [4] presents reliability modelling issues at the early stage of software

development for fault tolerant software management system. An effective model

of hierarchical view for fault tolerant system based on stochastic reward nets has

been given. A quantitative approach for software reliability analysis is given.

In [5] a methodology to construct dependability models using generalized

stochastic petri nets(GSPN) and stochastic reward nets(SRN) is described. Algo-

rithm for converting fault tree to generalized stochastic petri nets and stochastic

reward nets is provided.

In [6] a method based on stochastic petri nets(SPN) that evaluates component

software reliability at the early stage of software development is proposed. The

major problem of stochastic petri nets is the state space explosion problem with

the increasing size of software. In this the problem is resolved by the decomposition

of software architecture and a kind decomposition technique 6 is used.

In [7] reliability prediction based on stochastic reward nets has been proposed.

The work extends the power of SPN by augmenting SPN with stochatic reward

nets. The output is measured as reward based functions,for the evaluation of

reliability for complex system. The solution of SRNs involves generation and

analysis of the corresponding markov reward model.

In [8] a user oriented reliability model has been developed to measure the

reliability of service of a system that is used by user community. In this paper

a user oriented reliability figure of merit is defined to measure the reliability of

software system with respect to user environment.

In [9] Generalized Stochastic Petri Net is used model lube oil system which

takes into consideration the partial failure of their subsystems and common cause

failures. The reliability of system is then analysed using Monte carlo simulation

approach.
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Fault tree analysis first introduced by the H. A. Watson of Bell Telephone

Laboratories in connection with a US Air Force contract to study the Minuteman

Missile launch control system [10] in 1961. In [11] the common cause analysis for

fault tree analysis is described. A method to achieve failure of top events which

has some common cause of basic failure events.

In [12] COMCAN a computer code is developed for common cause analysis.

It describes the common cause analysis in terms of required inputs and various

output options avaliable to the user.
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Chapter 3

Fault Tree Analysis

3.1 Introducton

Fault tree analysis first imagined by the H. A. Watson of Bell Telephone Labora-

tories in connection with a US Air Force contract to study the Minuteman Missile

launch control system [10] in 1961. At the 1965 Safety Symposium, sponsored

by the University of Washington and the Boeing Company, several papers were

presented that describes the advantages of fault-tree analysis. The presentation of

these papers marked the beginning of a Fault tree construction wide-spread inter-

est in using fault-tree analysis as a system safety and reliability tool for complex

dynamic systems such as nuclear reactors. Since 1960, great efforts have been

made in solving fault trees to obtain reliability information about complex sys-

tems. Now a days fault tree analysis is commonly used to prediction the failure

probability or frequency of failure of a system based on the given failure data and

repair data of system component.

Fault Tree Analysis (FTA) [13] is a top-down approach where an undesirable event

is identified as the ”top event” in the ”tree” and the potential causes that could

lead to the undesirable event are identified as ”branches” below. The fundamental

concept of Fault Tree Analysis is the construction of system in a graphical tree

like structures where some basic failure causes leads to the occurrence of the top

event.

There are four basic steps for fault tree analysis. These are

• System definition

11



3.1 Introducton

• Construction of Fault tree

• Qualitative Evaluation

• Quantitative Evaluation

3.1.1 System Definition

The first step in fault tree analysis is to defining a system.

A system is a deterministic entity comprising an interacting collection of

discrete elements. First what aspect of system performance are of immediate

concerns are identified. Aspects describe what kind of analysis is to be conducted.

It can be Whether we are interested in the success of the system to complete a task

or it can be the evaluation of finding the failure probability of the system.Fault

tree analysis begins with the top event which is the undesired event of the system

for example failure state of the system. Three type of information is required [2]

• The operation and failure modes of each component. A detailed descrip-

tion how the input affects the output of the system and how the internal

operations are carried out.

• A description of how the system components are interacting with each other

a state chart diagram of the components interaction behaviour.

• System boundary conditions, these defines the top event for which the tree

is to be constructed. Decides whether the top event is possible or not.

3.1.2 Fault Tree Construction

Construction of the fault tree starts after the system is defined. The top event

undesired event is identified and then the process proceeds either from top to

bottom or bottom to up. In top to bottom approach first those immediate events

are identified which causes the top event to occur and the process proceeds towards

downwards until the basic events are reach which also called as leaf nodes of the

tree. In bottom to up the basic events which can cause the top events to occur, are

12



3.1 Introducton

identified first and then the process proceeds towards the top wards. Constructions

continued until the top event reached. There are two types of symbols are used

for fault tree construction gates and events [14].

Events

The events are used to describe the basic causes that lead to the undesired events

of top event. There are number of events are used in the fault tree, these are

1. The Basic Events:

Basic events are represented by the circle. These are the basic causes for

which the probabilistic failure data or repair data is available or it has to be

provided to the tree for the quantitative evaluation of the tree.

Figure 3.1: Basic Event.

2. Intermediate events:

An intermediate events are those which occurred due to the occurrence of

the one or more basic events acting through the gates.

3. The Undeveloped Events :

The diamond shaped symbol is used to describe the undeveloped events.

These are those type of specific fault events which is not further developed

and for which the information is unavailable or insufficient information is

available.

13



3.1 Introducton

Figure 3.2: Intermediate Event.

Figure 3.3: Undeveloped Event.

4. The External event:

House type symbol is used to represents the external events. These are those

types of events is to describe that the event is likely to occur. These are not

the faults of themselves.

Figure 3.4: External Event.

14



3.1 Introducton

Gates

Gates are used for linking of the events. The events are linked through the gates

to reach the final top event in the tree. Some of the common gates are,

1. The OR Gate

The output of or gates occur only if any one of the input event occur. The

ouput event does not occur only if both the events does not occur. The

following symbol is for or gates, For OR gate if the input to the gate is two

Figure 3.5: OR Gate.

basic events and they are let A and B respectively. Then the probability of

the gate is given by,

P(OR Gate) = P(A or B)

P(OR Gate) = P(A) + P(B) - P(A and B)

P(OR Gate) = P(A) + P(B) - P(A) * P(B)

2. The And Gate

The output event of the AND gates occurs only if both the input event occur.

The Output event fails if any one of the input event to the AND gate does

not occur. The following symbol is for AND Gate,

For AND gate if the input to the gate is two basic events and they are let

A and B respectively. Then the probability of the gate is given by,

P(AND Gate) = P(A and B)

P(AND Gate) = P(A) * P(B)

15



3.1 Introducton

Figure 3.6: AND Gate.

3. NOT Gate

The output event occur if the input event does not occur. The output is the

complement th inputs.

Figure 3.7: NOT Gate.

3.1.3 Qualitative Evaluation

To carry out qualitative analysis we have to determine minimal cut sets [15] and

minimal path sets and common cause analysis [12]. Two approaches are mainly

followed to determine the minimal cut sets, one is Monte Carlo simulation and

another one is deterministic methods.

A cut set is defined as a set of basic events whose occurrence results in an undesired

event. Further more, if a cut set cannot be reduced but ensures the occurrence

of the undesired event, the set is a minimal cut set. Obtaining minimal cut sets

is a tedious process. The Monte Carlo simulation [16] procedures for finding the

16



3.1 Introducton

minimal cut sets first assigns the random time to failure to each components based

on exponential distribution. These time are generated randomly between 0 and 1

at the first time and and then finding the corresponding failure probability. These

failure probability assigned to each component one at a time with the increasing

time until the top event is reached. This way the cut sets are generated. After

that the minimal cut sets are generated from the cut sets.

The main idea behind the deterministic approach is direct expansion of top event

of the fault tree in terms of basic events using Boolean algebra.

Common cause analysis is any occurrence of event that causes multiple component

to fail. Common cause events are those that multiple minimal cut sets are having

common basic events. The minimal cut sets are given as input to the common

cause analysis. Now the process starts by searching those minimal sets that are

having common basic events.

3.1.4 Quantitative Evaluation

For quantitative analysis of the fault tree failure rate os probability of failure of

each component has to be provided. The failure probability of basic events then

assign to each basic events and the probability of the top event is calculated using

the property of logic gates. Lets take an example [17] as shown in below figure,

Figure 3.8: FTA Example.

From the above example two minimal cut sets can be generated as A,B,C and

B,D. If the failure probability basic evets A,B,C,D are given then the probability

of the top event can be computed as,

17



3.2 Implementation and Results

P(TOP)= B.GATE1.GATE2

=B.(A+GATE3).(D+GATE4)

=B.(A.D+A.GATE4+ GATE3.D+GATE3.GATE4)

=B.[A.D+A.A.C+(B+C).D+(B+C).A.C]

=B.[A.D+A.A.C+B.D+C.D+B.A.C+C.A.C]

Where ’.’ represents AND and ’+’ represents OR gate. The equation is simplified

to ,

P(top) = A.B.C + B.D

From above equation the two minimal cut sets are A,B,C and B,D.

3.2 Implementation and Results

As we know in fault tree analysis the undesirable event is identified as top event.

In our ATM example the top event is the failure of the system as shown in below

figure. First the card read is basic event since if the card read is failed then the

system will fail. The next event is transaction, withdrawl and balance inquiry.

These events comes under the transaction fail event which is intermediate event

for the top event.Here balance inquiry is basic event for transaction event. The

withdrawl and transfer events are intermediate event because failure of these events

caused by several basic events. The withdrawl function will fail if the balance check

is fail or the network communication fail. The transfer fail event occurs if the two

basic events either network or account check fails. The simulation is done using

GRIF2012 tool.

Experimental Data

The failure probability of each basic event that are taken for simulation is as

follows,

• Card Read = 0.25

• Balance Inquiry = 0.005

• Balance check = .035

18



3.2 Implementation and Results

• Network Error = 0.015

• Account Check = 0.001

Figure 3.9: Fault Tree of ATM System

Table 3.1: Result
SN Time Prob of Failure Reliability

1 10 0.2640 0.7360

2 20 0.4583 0.5417

3 30 0.6013 0.3987

4 40 0.7065 0.2935

5 50 0.7840 0.2160
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Chapter 4

Stochastic Petri Nets

The modelling power of Petri nets [18] increased by associating the firing time

with either the places or transitions. When the waiting is associated with the

places then the tokens arrived at the place has to wait to that time before enabling

the transitions. If the waiting time is associated with the transitions then the

transition becomes enable as soon as token arrives in its input places but fires

only after the waiting time becomes elapsed.

Stochastic Petri Nets (SPN) [19] is helpful for performance modelling of com-

plex software systems. They are a variant of Petri nets. They are represented as

bipartite graphs, but have the time consideration which makes them suitable for

performance and reliability modelling. Like Petri nets they also consist of sets of

places and transitions, but unlike petri nets transitions here could be of two types

immediate or timed. Any transition is enabled when there is at least one token

in each of its input places and no token in any of its inhibitor places. When such

an enable transition fires it deposits one token per place from a random subset of

input places to per subset of its output places. The transition in SPN could be of

three types:

• Immediate with no time delay

• Timed with exponentially distributed firing time.

• Timed with generally distributed firing time.

21



4.1 Generalised Stochastic Petri Nets

SPN models increased modelling power by associating the exponentially dis-

tributed firing time with the transitions. SPN models can have more than one

transitions enabled at time. The firing of transitions is specified by the execution

policy. Two alternatives are race policy and the pre-selection policy. In race policy

the transitions whose firing time elapsed first is consider to be one to fired first.

In pre-selection policy, the next transitions to be fired chosen from the enabled

transition based on the probabilistic distribution function. A SPN model uses the

race policy.

There are two variants of SPN proposed by two authors, these are

• Generalised Stochastic Petri Nets.

• Stochastic Reward Nets.

4.1 Generalised Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPN), proposed by Ajmone Marsan et

al [20] is an extensions of Stochastic petri nets which allows transitions to have

zero firing time or exponentially distributed firing time. When the firing associ-

ated with any transitions is zero then the transition is called immediate transitions

otherwise it is called as timed transitions. When both immediate and timed tran-

sitions enabled at a time then the immediate transitions fires first. The marking of

Generalized Stochastic Petri Nets are classified in to two types. If any immediate

transitions enabled in the marking then the marking is called vanishing and if

only timed transition is enabled or no transitions is enabled then the marking is

called tangible. When two immediate transitions become enabled at a time then

the conflict among the transitions is resolved using the random switch i.e. the

probability mass function has to be specified in order to the selection of the first

transition. The parameters of an exponential or general distribution are said to

be marking dependent if they can be different in each marking.

When the SPN consist of either immediate transition or timed transition with

exponential distributed firing time, it is said to be Markovian in nature where

the future events depend only upon the present state and not on the past state.
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4.1 Generalised Stochastic Petri Nets

It could then be used to generate underlying Markov chain [21] and solve it for

computing various performance measures. However if it consist even one timed

transition with generally distributed firing time, the Markov property does not

hold well. To solve this problem certain instances of time are needed where the

past state may not be considered. These instances are known to be regeneration

point where the future depends only on the present state. Timed transitions are

used to signify events which are time consuming where the enabling of transition

denotes the beginning of the activity while the firing of the transition denotes

its completion. Immediate transitions are used to represent instantaneous events

which occur no delay. Immediate transitions thus have a sort of precedence over

timed transitions. When system is modeled as SPN, its various performance char-

acteristics can be obtained as a time average limit of markings of net. SPN

is suitable for applications which involve randomness and probability as well as

timed consideration. So these are efficient for modeling real time application.

Following is an example of two component parallel system [5]to describe the

reliability model of a system using generalized stochastic petri net.

Figure 4.1: 2 Component parallel system.

Above system is 2 component parallel systems. The components are labeled

as A and B. A.fail and B.fail transitions represents the failure of component A

and B respectively. AB.fail transition represents the failure of the entire system.

Transitions AB.fail is an immediate transitions which is fire if and only if there is

token in A.down as well as B.down which removes token from place A.down and

B.down and deposited tp C.down which represents the failure of entire system.
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The system unreliable at time t is given by,

Pr { there is a token in place C.down at time t }.

4.2 Stochastic Reward Nets

Ciardo et al [22] [7] introduced structural extensions to GSPN named as Stochas-

tic Reward Nets(SRN). There are various functionality he introduced in SRNs;

• Variable cardinality arc: The cardinality of an arc could be varied so as to

denote the minimum number of tokens to be present in input places for a

transition to be enabled.

• Transition Priorities: The priority of transition could be defined to establish

priority relationship between them the one having higher priority will be

preferred to that with lower priority.

• Guard Function: A transition could have an associated guard function which

is evaluated only if there is possibility of the transition being enabled in that

marking then transition is enabled only if the guard function is evaluated

to be true. It is good for representing constraint which are difficult to be

represented graphically in terms of input, inhibitor and output arcs. The

stochastic process is calculated by a marking process M(t), t > 0 which

is obtained by constructing the reachability graph of the net. First of all

the reachability set has to be determined i.e. the set of possible states in

the system. Then from the initial marking M0, reachability graph can be

constructed by connecting arcs when a transition enabled in one marking

reaches another marking. Even if one immediate transition is enabled the

marking is said to vanishing otherwise tangible.
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4.2 Stochastic Reward Nets

Following is an example of two component parallel system to describe the reliability

model of a system using stochastic reward nets.

Figure 4.2: 2 Component parallel system.

Stochastic Petri Nets(SPN) are well suited to representing concurrency, syn-

chronization, precedence and priority. The new marking probabilities determined

the mechanism by which a transition removes token from a random subset of its

normal input place and deposits token in a random subset of its output places

when it fires. Consideration of a queuing system with batch arrivals shows that

new marking probabilities must be allowed to depend explicitly on the current

marking; that is, the SPN formalism must include marking dependent transition.

Additional constructs are used to selectively disable a transition in a marking

which would otherwise enable it. A priority is associated with each transition.

If S is the set of transitions enabled in a marking and if the transition with the

highest priority among them is k , then any transition in S with priority lower

than that of transition k will be disabled. To avoid theoretical difficulties, time

and immediate transitions cannot have the same priority. Another way to disable

transition is the inhibitor arch. An inhibitor arch from place P to transition t with

multiplicity m will disable t in any marking where p contains at least nm tokens.

If this two constructs are not sufficient to describe a particular mechanism, the

marking dependent enabling function (also called a guard) with each transition

can be used. If this function evaluates to zero in a marking, then a transition is

disabled. If timing is ignored ordinary Petri net is name as a Stochastic Petri net

where all transitions have the same priority, where no inhibitor arcs are present,
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4.3 The Marking Process

and where the enabling functions are identically equal to 1.

A marking which does not enable any transition is absorbing; hence it is tan-

gible by definition. A (maximal) set of vanishing markings that are mutually

reachable by immediate transition firings is called a loop (of vanishing marking).

A loop is said to be absorbing if no marking in it reaches a marking outside the

loop, otherwise the loop is transient. An absorbing loop is considered an error.

The reachability graph contains an arc for each different transition enabled in

each marking. In particular, self-transitions (with equal input bags and output

bags) are allowed by the definition of model, so arcs with coinciding source and

destination may be present in the reachability graph. These arcs are ignored

during the solution steps.

4.3 The Marking Process

The marking process of SPN records the marking as it emerges over continuous

time. The formal definition of the marking process is in terms of an underly-

ing general state-space Markov chain that describes the net successive marking

changes. This definition leads to an algorithm for generating sample paths for

the process. Many performance measures such as long run utilization, availability

,reliability, average revenue,and throughput can be specified as time limits of the

marking process or underline chain or as functions of such limits. The lifetime of

marking must be almost surely infinite for time average limits to be well defined.

For some SPN, however, infinitely many marking changes can occur in a finite

time interval, so that the lifetime is finite. Such pathological behaviour occurs if

the process is absorbed into the set as of immediate marking or if the marking

changes occur even more rapidly so that the sequence of occurrence times has an

accumulation point. In the presence of non-exponential clock setting distributions,

this latter type of explosion can occur with probability 1 even when the expected

time between successive marking changes increases linearly. When the marking

process of an SPN is a continuous time markov chain (CTMC), the sequence of

successive time marking forms a discrete time markov chain and, given this se-
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4.4 System modelling for reliability

quence, the successive time between state transitions of the marking process are

independent and exponentially distributed. This special structure makes it possi-

ble, in principle, to compute time average limits either analytically or numerically.

One might expect that the marking process of an SPN is a CTMC if its clock set-

ting is exponential distribution. This result is not quite true: the marking process

can fail to have the markov property when the clock setting distribution function

explicitly depends on current and new marking.

4.4 System modelling for reliability

Architecture based approach for reliability require following steps:

- Module identification: The various modules representing independent func-

tional entities are identified.

- Architecture of software: This determines the mode of interaction between

different modules as to whether they are sequential or concurrent.

- Failure behaviour: The failure behaviour is combined with software archi-

tecture which could be either during execution of any module or the interaction

between module.

- Combining failure behaviour with architecture: The failure behaviour is com-

bined with software architecture across the possible modes of execution by com-

puting it only when the module corresponding to it is visited in the underlying

reachability graph.

The SPNP tool is used to model the software modules. The main functional

entities are represented as places while the interfaces between the modules are

represented as transition. The failure rate of each transition is considered for

reliability computation only if the place enabling it is marked in that marking.

This models varies from the traditional architecture based approach as it con-

siders the failure distribution for sequential and concurrent modules to be differ-

ent. The sequential modules have been represented hypo exponential distribution

while the concurrent modules are represented with hyper exponential distribution.

Also the utilization of each transition is considered. The equivalent reliability is

27



4.4 System modelling for reliability

estimated by multiplying all the component reliability.

Consider a simple multiprocessor of two different processor P0 and P2. The

failure occurrence time is assumed to be random variable with corresponding ex-

ponential distributions of γ1 and γ2. The reliability of the two processor would

then be,

R1(t) = e−γ1t

R2(t) = e−γ2t

We consider the system is functioning as long as one of the two processor is

functioning. If we consider the failure of two processor are to be independent,

then the reliability of this system,

Rsys(t) = 1− (1−R1(t))(1−R2(t))

The following table 4.1 and table 4.6 gives the description of different places

and transitions of the system model given in fig 4.3.

Table 4.1: Description of places
SN Place Description

1 P0 Processor 1 up

2 P1 Processor 1 down

3 P2 Processor 2 up

4 P3 Processor 2 down

Table 4.2: Transition Description
SN Transition Description Firing Rate

1 T0 Processor 1 fail 0.001

2 T1 Processor 2 fail 0.001

3 T2 Common Failure 0.0005

4 T3 Processor 1 Repair 0.25

5 T4 Processor 2 Repair 0.25
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4.4 System modelling for reliability

Figure 4.3: SRN model of multiprocessor system

Figure 4.4: Graph for SRN model reliability

The above graph shows the reliability of the given multiprocessor system’s srn

model.
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4.4 System modelling for reliability

There also be a situation where both the processor fail simultaneously, the

distribution of which is γ3. The following figure is a complex srn model of multi-

processor system with repair mechanism.

Figure 4.5: Complicated SRN model

Figure 4.6: Graph for Complicated SRN model reliability
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4.5 Implementation and Result

4.5 Implementation and Result

In this work, the ATM system [23]is considered for reliability modelling [24]. The

various activity related to ATM functioning are modelled using stochastic petri

net package [22]. The ATM system is well known to everyone since it is widely

used in our day to day life. The places are represents the different states of

the system.Table-4.3 gives the description of each places and Table 2 gives the

description of each transition.

Table 4.3: Description of places
SN Place Description

1 P0 Idle

2 P1 Card read

3 P2 Pin validate

4 P3 Withdrawl

5 P4 Transfer

6 P5 Balance Inquiry

7 P6 Amount Check

8 P7 Amount collection

9 P8 Success

10 P10 Fail

IN figure 1 ATM system is modelled where initialy idle state is active. When-

ever a user insert a card the idle state changes to card insert state. After the card

is inserted the card is checked and state changes to pin validation state. Here

the pin is validated with the central bank system and if the validation fails then

token is transferred to fail state otherwise three states Withdrawl, Transfer and

Balance inquiry simultaneously becomes active . Here there is possibility for each

of this function to become fail. If the failure is occurred then the token is directly

transferred to fail state. If withdrawl is success then the amount collection state

is become active where all the balance limit is checked and after success amount

collection is become active where there again is possibility that either the failure

is occurred or transaction become success. After the successful transaction the

token is transferred to the idle state and system become initialized to its initial

state.
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4.5 Implementation and Result

Figure 4.7: Petri Net model of ATM System

4.5.1 Result

The ATM system model is simulated using SPNP [22] tool. The system is sim-

ulated for 5 times and the corresponding probability of failure and reliability is

represented in the following table. Reliability (R) is the probability that a product

or service will function properly for a specified period of time under design condi-

tions without failure. The reliability of any system is computed as the probability

of failure free operation of that system in the specified period of time. Reliability

is a measure that is directly related to the failure rate. Reliability is time depen-

dent, longer the time lower the reliability, and it is computed as,

R(s) = 1 - Prob. of failure state

Table 4.4: Reliability of ATM system
SN Time Prob. of Failure Reliability

1 10 4.433907124456e-001 0.556609287554

2 20 5.858311821691e-001 0.414168817831

3 30 6.700484529497e-001 0.329951547050

4 40 7.418539594250e-001 0.258146040575

5 50 8.015216261272e-001 0.198478373873
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The following table shows the different firing rates of each transitions. The

firing rates are the assumed data which says how frequently the firing takes place

of the transitions. The transition rates are exponentially distributed with the

following function,

F (x;λ) =

λe−λx, x ≥ 0

0, x < 0
(4.1)

Table 4.5: Transition rates
SN Transition Firing Rate

1 T0 0.025

2 T1 0.025

3 T2 0.025

4 T3 0.005

5 T4 0.015

6 T5 0.025

7 T6 0.025

8 T7 0.035

9 T8 0.0005

10 T9 0.025

11 T10 0.025

12 T11 0.015

• The following table gives the firing rate of each transition after applying

exponential distribution function with random value as 1.

Table 4.6: Transition rates
SN Transition Firing Rate

1 T0 0.02438

2 T1 0.02438

3 T2 0.02438

4 T3 0.00497

5 T4 0.01477

6 T5 0.00497

7 T6 0.04301

8 T7 0.03379

9 T8 0.000499

10 T9 0.2438

11 T10 0.02438

12 T11 0.01477
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4.5 Implementation and Result

Figure 4.8: Reliability Graph for ATM System

The reliability graph above shows how the reliability of the system decreases

with the time. Initially the reliability is 1 but as the simulation runs for the given

time, the reliability decreases over the given period of time.
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Chapter 5

Conclusion

The work has been done using two different methods to model the software system.

Reliability is predicted using fault tree analysis method is described and the prob-

lem associated with the method is also explained. Simultaneously the stochastic

petri net method is elavorated to show how the SPN overcomes the problem of

fault tree. Also it is discussed how the stochastic petri net can be used to model

the dynamic behaviour of the system and reliability is predicted using the fail-

ure rate of different components. The description of how the expressive power of

SRNs could be used to represent constraints on the execution of the application

also presented. Reliability of concurrent software application also addressed.
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