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ABSTRACT 
 

           In case of an interconnected power system, any small sudden load 

change in any of the areas causes the fluctuation of the frequencies of each and 

every area and also there is fluctuation of power in tie line. The main goals of 

Load Frequency control (LFC) are, to maintain the real frequency and the 

desired power output (megawatt) in the interconnected power system and to 

control the change in tie line power between control areas. So, a LFC scheme 

basically incorporates a appropriate control system for an interconnected power 

system, which is heaving the capability to bring the frequencies of each area and 

the tie line powers back to original set point values or very nearer to set point 

values effectively after the load change. This is achieved by the use of 

conventional controllers. But the conventional controllers are heaving some 

demerits like; they are very slow in operation, they do not care about the 

inherent nonlinearities of different power system component, it is very hard to 

decide the gain of the integrator setting according to changes in the operating 

point. Advance control system has a lot of advantage over conventional integral 

controller. They are much faster than integral controllers and also they give 

better stability response than integral controllers. In this proposed research work 

advanced control technique (optimal controller, optimal compensator) and IMC-

PID control technique has been applied for LFC of two area power systems. The 

optimal controllers and compensators are capable of working without full state 

feedback and at the presence of process and measurement noise. The IMC-PID 

controller is capable of giving better response and is applicable under different 

nonlinearities.      
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CHAPTER-1 

INTRODUCTION 

 

1.1 Load Frequency Control Problem 

            The power systems means, it is the interconnection of more than one control areas 

through tie lines. The generators in a control area always vary their speed together (speed up 

or slow down) for maintenance of frequency and the relative power angles to the predefined 

values in both static and dynamic conditions.  If there is any sudden load change occurs in a 

control area of an interconnected power system then there will be frequency deviation as well 

as tie line power deviation. 

            The two main objective of Load Frequency Control (LFC) are 

1. To maintain the real frequency and the desired power output (megawatt) in the 

interconnected power system. 

2. To control the change in tie line power between control areas. 

            If there is a small change in load power in a single area power system operating at set 

value of frequency then it creates mismatch in power both for generation and demand. This 

mismatch problem is initially solved by kinetic energy extraction from the system, as a result 

declining of system frequency occurs. As the frequency gradually decreases, power 

consumed by the old load also decreases. In case of large power systems the equilibrium can 

be obtained by them at a single point when the newly added load is distracted by reducing the 

power consumed by the old load and power related to kinetic energy removed from the 

system. Definitely at a cost of frequency reduction we are getting this equilibrium .The 

system creates some control action to maintain this equilibrium and no governor action is 

required for this. The reduction in frequency under such condition is very large.  

           However, governor is introduced into action and generator output is increased for 

larger mismatch. Now here the equilibrium point is obtained when the newly added load is 

distracted by reducing the power consumed by the old load and the increased generation by 

the governor action. Thus, there is a reduction in amount of kinetic energy which is extracted 

from the system to a large extent, but not totally. So the frequency decline still exists for this 

category of equilibrium. Whereas for this case it is much smaller than the previous one 
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mentioned above. This type of equilibrium is generally obtained within 10 to 12 seconds just 

after the load addition. And this governor action is called primary control. 

           Science after the introduction of governors action the system frequency is still 

different its predefined value, by another different control strategies it is needed the 

frequency to bring back to its predefined value. Conventionally Integral Controllers are used 

for this purpose. This control is called a secondary control (which is operating after the 

primary control operation) which brings the system frequency to its predefined value or close 

to it. Whereas, integral controllers are generally slow in operation. 

                 In a two area interconnected power system, where the two areas are connected 

through tie lines, the control area are supplied by each area and the power flow is allowed by 

the tie lines among the areas. Whereas, the output frequencies of all the areas are affected due 

to a small change in load in any of the areas so as the tie line power flow are affected. So the 

transient situation information’s of all other areas are needed by the control system of each 

area to restore the pre defined values of tie line powers and area frequency. Each output 

frequency finds the information about its own area and the tie line power deviation finds the 

information about the other areas. For example in a two area power system, the information 

can be written as BiΔfi+ΔPtie. B = frequency bias, f = predefined frequency And Ptie is the 

power in tie line. This is the Area Control Error (ACE) which is the input to the controller. 

          Thus the  load frequency control of a multi area power system generally incorporates 

proper control system, by which the area frequencies could brought back to its predefined 

value or very nearer to its predefined value  so as the tie line power, when the is sudden 

change in load occurs.        

1.2 Interconnected Power Systems: 

          According to practical point of view, the load frequency control problem of 

interconnected power system is much more important than the isolated (single area) power 

systems. Whereas the theory and knowledge of a isolated power system is equally important 

for understanding the overall view of interconnected power system. 

          Generally now days all power systems are tied with their neighbouring areas and the 

Load Frequency Control Problem become a joint undertaking. Some basic operating principle 

of an interconnected power system is written below: 
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1. The loads should strive to be carried by their own control areas under normal 

operating conditions, except the scheduled portion of the loads of other members, as 

mutually agreed upon. 

2. Each area must have to agree upon adopting, regulating, control strategies and 

equipment which are beneficial for both normal and abnormal conditions. 

1.2.1 Advantages of Interconnection: 

1. Effect of size:  This one is one of the most important advantages for the whole 

interconnected power system. When a load block is added, at the initial time, the required 

energy is temporarily borrowed from the system kinetic energy. Generally the availability of 

energy is more for larger systems. So there is comparatively less static frequency drop. 

Whereas,  for a single area power system the frequency drop may be a bit higher for same 

amount in load change. 

2. Need of reduced reserve capacity: As the peak demands do not have any certain 

time, they may occur at any random time of the day in many areas, for a large power system 

the ratio between load peak and load average is smaller as compared to smaller systems. 

Therefore it is obvious that all interconnected power system areas may benefit from a 

decreased need of capacity reserved by the scheduled arrangement of interchanging energy.  

1.3 Two Area Power System 

          If there is interconnection exists between two control areas through tie line than that is 

called a two area interconnected power system. Fig. 1.1 shows a two area power system 

where each area supplies to its own area and the power flow between the areas are allowed by 

the tie line. 

 

Fig. 1.1: Two area interconnected power system 



INTRODUCTION 
 

  Page 4  
  

          In this case of two area power system an assumption is taken that the individual areas 

are strong and the tie line which connects the two area is weak. Here a single frequency is 

characterized throughout a single area; means the network area is ‘strong’ or ‘rigid’. There 

may be any numbers of control areas in an interconnected power system. 

1.4 Major Drawbacks of Conventional Integral Controller: 

The drawbacks can be summarised as  

1. They are very slow in operation. 

2. There is some inherent nonlinearity of different power system components, which the 

integral controller does not care. Governor dead band effects, generation rate 

constraints (GRCs) and the use of reheat type turbines in thermal systems are some of 

the examples of inherent nonlinearities. 

3. While there is continuously load changes occur during daily cycle, this changes the 

operating point accordingly. It is generally known as the inherent characteristic of 

power system. For good results the gain of the integrator should has to be changed 

repeatedly according to the change in operating point. Again it should also be ensure 

that,  the value of the gain compromises the best between fast transient recovery and 

low overshoot in case of dynamic response. Practically to achieve this is very 

difficult. So basically an integral controller is known as a fixed type of controller. It is 

optimal in one condition but at another operating point it is unsuitable. 

            Therefore, the control rule applied should be suitable with the dynamics of power 

system. So an advance controller would be suitable for controlling the system. 

1.5 Need of Advance Control Technique: 

            Implementation of advanced control technique provides great help in LFC of power 

systems. Now days there are more complex power systems and required operation in less 

structured and uncertain environment. Similarly innovative and improved control is required 

for economic, secure and stable operation. Advance control techniques are having the ability 

to provide high adaption for changing conditions. They are having the ability for making 

quick decisions. Optimal control pole placement, Linear Quadratic Regulator, Linear 

Quadratic Gaussian), Robust Control, sliding mode control, Internal Model Control are some 
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examples of advanced control techniques. LQR, LQG, IMC has been used here for LFC of 

power system. 

1.6 Objectives: 

            The two main objective of Load Frequency Control (LFC) are 

1. To maintain the real frequency and the desired power output (megawatt) in the 

interconnected power system. 

2. To control the change in tie line power between control areas. 

1.7    Literature Review: 

1.7.1  Overview of LFC schemes and Review of Literature: 

          The first attempt in case of LFC has to control the power system frequency by the 

help of the governor. This technique of governor control was not sufficient for the 

stabilization of the system. so, a extra supplementary control technique was introduced to the 

governor By the help of a variable proportional directly to the deviation of frequency plus its 

integral. This scheme contains classical approach of Load Frequency Control (LFC) of power 

system. Cohn has done earlier works in the important area of LFC. Concordia et al [1] and 

Cohn [2] have described the basic importance of frequency and tie line power and tie line 

bias control in case of interconnected power system.  

            The revolutionary concept of optimal control (optimal regulator) for LFC of an 

interconnected power system was first started by Elgerd[3]. There was a recommendation 

from the North American Power Systems Interconnection Committee (NAPSIC) that, each 

and every control area should have to set its frequency bias coefficient is equal to the Area 

Frequency Response Characteristics (AFRC). But Elgerd and Fosha [3-4] argued seriously on 

the basis of frequency bias and by the help of optimal control methods thy presented that for 

lower bias settings, there is wider stability margin and better response. They have also proved 

that a state variable model on the basis of optimal control method can highly improvise the 

stability margins and dynamic response of the load frequency control problem.  

           The standard definitions of the different terms for LFC of power system are heaving 

the approval by the IEEE STANDARDS Committee in 1968 [5]. The dynamic model 

suggestions were described thoroughly by IEEE PES working groups [5-6]. On the basis of 
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experiences with real implementation of LFC schemes, various modifications to the ACE 

definition were suggested time to time to cope with the changing environment of power 

system [7, 8, 9, and 10].  

            R. K. Green [9] discussed a new formulation of LFC principles. He has given a 

Concept of transformed LFC, which is heaving the capability to eliminate the requirement of 

bias setting, by controlling directly the set point frequency of each unit.  

1.7.2  Literature on LFC Related Power System Model: 

          For more than last three decades researches are going on load frequency control of 

power system. Linearized models of multi area (including two areas) power systems are 

considered so far for best performance. 

            K. C. Divya et al [11] has presented the hydro- hydro Power system simulation 

model. They have taken an assumption of same frequencies of all areas, to overcome the 

difficulties of extending the traditional approach. The model was obtained by ignoring the 

difference in frequencies between the control areas. 

            E. C. Tacker et al [12] has discussed the LFC of interconnected power system and 

investigated the formulation of LFC via linear control theory. A comparison between three 

relatives was made to the ability for motivation of the transient response of system variables. 

Later, the effect of Generation Rate Constraint (GRC) was introduced in these studies, 

considering both discrete and continuous power system. 

            B. oni et al [13] described the effect of implementation of non linear tie line bias 

characteristic. Using UMC hybrid simulator this type of study is performed to simulate a 

typical type of power system voltage and frequency sensitivity, governor dead band of loads. 

1.7.3  Literature Review on LFC Related to Control Techniques: 

          The continuing work by numerous numbers of engineers of control engineering has 

generated links between the closed loop transient response (in time domain) and frequency 

response. The research is carried over using different classical control techniques. It is 

revealed that it will result comparatively large transient frequency deviation and overshoots 

[3, 15]. Moreover, generally the settling time of frequency deviation for the system is 

relatively long (10 to 20 seconds) .The LFC optimal regulator design techniques using 
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optimal control theory stimulate the engineers of control engineering to design a control 

system with optimal controller, in reference to given performance criterion. Fosha and Elgerd 

[4] were the two persons who first presented their work on optimal LFC regulator using this 

process. A power system of two identical areas interconnected through tie line heaving non 

reheat turbine is considered for investigation. 

            R. K. Cavin et al [16] has considered the problem of LFC for an interconnected 

system from the theory of optimal stochastic system point of view. A algorithm based on 

control strategy was developed which gives improvised performance of power system for 

both small and large signal modes of operation. The special attractive feature of the control 

scheme proposed here was that it required the recently used variables. That are deviation in 

frequency and scheduled inter change deviations taken as input. 

1.8     Organization of Thesis: 

          The thesis is organized as follows: 

Chapter 1 includes the brief description of Load Frequency Control problem, introduction to 

interconnected power system, demerits of conventional integral controller, need of advance 

control technique, objectives LFC and literature review. 

Chapter 2 deals with the modelling of two area interconnected power system with convention 

integral control, state space modelling of the two area interconnected power system, 

derivation of state equation and state matrices etc. 

Chapter 3 includes optimal controller technique applied for LFC of power system, Design of 

Linear Quadratic Regulator LQR, state estimation by Kalman filter, design of Linear 

Quadratic Gaussian (LQG) for LFC of two area power system, and the summery etc. 

Chapter 4 consist introduction to tuning of PID controller for LFC of power system via IMC, 

IMC design for an isolated power system, equivalent PID design for LFC of power system, 

extension of this IMC PID design procedure for two area power system etc. 

Chapter 5 contains the result and analysis, results of LQR for a two area power system, the 

estimated states resulted by Kalman filter, results of LQG for a two area power system and 

results of IMC-PID design for a two area power system. 

Chapter 6 is the chapter of conclusion and scope for future work.        
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CHAPTER 2 

MODELLING OF POWER SYSTEM FOR LFC 

 

2.1    Introduction: 

          It is very necessary to obtain the suitable models of the power systems for LFC 

studies. In this research work a two area power system (two area thermal-thermal non reheat) 

model has been taken. 

            The model mentioned here is the integral control scheme of an interconnected power 

system. This chapter dealt with the state space modelling of the mentioned power system 

which is designed for the implementation of optimal controllers and their stability studies. 

            The model mentioned above is subsequently used on chapter-3 for the application of 

optimal controllers for LFC. 

2.2    Model of a Two Area Thermal Non-Reheat Power System: 

          The block diagram model of two area (thermal non reheat) power system with integral 

controller is shown in Fig. 2.1. 

            The state equations of the system are produced with the help of the transfer function 

of the blocks named 1to 7. From the block diagram model it is clearly seen that there are two 

control inputs named u1 and u2.    

            The block diagram below which represents a two area power system model is heaving 

two control areas connected to each other through a line heaving its own dynamics (block 7) 

called tie line. Both the control areas of the power system are taken similar. As both the 

control areas contain thermal non reheat turbine.  

            From the figure it is clearly seen that the control areas are made-up with three block 

each with an integral controller block. The three blocks are namely governor block, turbine 

block, and the power system block which is actually the load block. Therefore total 9 blocks 

are present for the whole system. 
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Fig. 2.1: Two area thermal (non reheat) power system with integral controller 

           Explaining about the block diagram, it is constructed by the combination of two 

control areas through tie line. Both areas consist of four blocks each and another one block 

(block 7) represents the tie line power. So there are total nine blocks present, which says that 

there is nine state equations for a two area power system (thermal non reheat) with integral 

controller. 

          The control input equations can be written as below: 

For area 1 (at block 8) 

1 T 1 T 1 1 7u K (ACE ) K (B x x )


                                                                     (2.1) 

For area 2 (at block 9) 

2 T 2 T 2 4 7u K (ACE ) K (B x x )


                                                                   (2.2) 

Where ACE1 and ACE2 are the Area Control Errors of area-1 and area-2 respectively. KT is 

the integral gain for both the areas. 
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2.3   State Space Representation of Two Area (Thermal Non   

        Reheat) Power System:  
          For a two area (thermal non reheat) power system a state space model has been 

developed with all the states (9 states) being fed back as shown in Fig. 2.2  

 

Fig. 2.2: State space model of two area power system (thermal no reheat) 

 State Variables: 

                                        1 1x f             2 1x Pt            3 1x Pg            4 2x f            5 2x Pt        

                                        6 2x Pg         7 tie(1,2)x P            8 1x AEC dt           9 2x AEC dt   

Control Input Variables: 

                                 u1 and u2 . 

Disturbance Input Variables:  

                                        1 d1d P         and        2 d2d P . 

      1
------------
1 + sTg1

     1
------------
1 + sTt1

   Kp1
------------
1 + sTp1

 1
----
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+

+

+
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State Equation Representation: 

          The state equations are found out from transfer function of the blocks, 1 to 9 (Fig. 

2.2). There exists an equation corresponding to each block. These following are the state 

equations of the power system under study. 

Block 1 

                                        1 p1 1 p1 2 7 1x T x K (x x d )


                                                                            (2.3) 

                             i.e.  p1 p1 p1
1 1 2 7 1

p1 p1 p1 p1

K K K1x x x x d
T T T T



    
                                            

 (2.4) 

Block 2 

                                        22 1 3x Tt x x


                                                                                                     (2.5) 

                             i.e.  2 2 3
1 1

1 1x x x
Tt Tt



  
                                                                             

(2.6) 

Block 3 

                                        
33 1 1 1

1

1x Tg x x u
R



   
                                                                                 

(2.7) 

                             i.e.  3 1 3 1
1 1 1 1

1 1 1x x x u
R Tg Tg Tg



   
                                                      

(2.8) 

Block 4 

                                        44 p2 p 2 5 7 2x T x K (x x d )


                                                                         (2.9) 

                             i.e.  p2 p2 p2
4 4 5 7 2

p1 p2 p2 p2

K K K1x x x x d
T T T T



    
                                     

(2.10) 

Block 5 

                                        55 2 6x Tt x x


                                                                                                 (2.11) 

                             i.e. 5 5 6
2 2

1 1x x x
Tt Tt



  
                                                                          

(2.12) 
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Block 6 

                                        
66 2 2 2

2

1x Tg x x u
R



   
                                                                            

(2.13) 

                             i.e. 6 4 6 2
2 2 2 2

1 1 1x x x u
R Tg Tg Tg



   
                                                  

(2.14) 

Block 7 

                                        
0 0

7 1 4x 2 T x 2 T x


                                                                                       (2.15) 

Block 8 

                                        8 1 1 7x B x x


                                                                                                      (2.16) 

Block 9 

                                        9 2 4 7x B x x


                                                                                                    (2.17) 

 

          The vector matrix representation of the above state equations can be written as a single 

‘state equation’. 

                                        x Ax Bu d


                                                                                               (2.18) 

Where, A is a square matrix of dimension 9×9 called State Matrix, B and   are the 

rectangular matrixes of order 9×2 called Control matrix and Disturbance matrix respectively. 

‘x’ is the  9×1 State Vector, ‘u’ is the 2×1 Control Vector and ‘d’ is the 2×1 Disturbance 

Vector. 

The vectors ‘x’, ’u’, ‘d’ can be written as  

  T
1 2 3 4 5 6 7 8 9x x x x x x x x x x               1

2

u
u

u
 

  
 

                1

2

d
d

d
 

  
   

Where x1 , ..., x9  represents all the nine states. Each state represents a block from the block 

diagram. 
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The matrices A (9×9), B (9×2) and  (9×2) are: 

p1 p1

p1 p1 p1

1 1

1 1 1

p2 p2

p2 p2 p2

2 2

2 2 2
0 0

1

2

K K1 0 0 0 0 0 0
T T T

1 10 0 0 0 0 0 0
Tt Tt

1 10 0 0 0 0 0 0
R Tg Tg

K K10 0 0 0 0 0
A T T T

1 10 0 0 0 0 0 0
Tt Tt

1 10 0 0 0 0 0 0
R Tg Tg

2 T 0 0 2 T 0 0 0 0 0
B 0 0 0 0 0 1 0 0
0 0 0 B 0 0 1 0 0

 
 
 
 
 
 
  
 
 
  

  
 

 
 
 

  
 
 

  



 




  

1

2

0 0
0 0
1 0

Tg
0 0

B 0 0
10

Tg
0 0
0 0
0 0

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

                                                                     

p1

p1

p2

p2

K
0

T
0 0
0 0

K
0

T
0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
  

   
 
 
 
 
 
 
 
  

 

2.4    Four-Area Power System: 

         As like two area power system, four area power systems are also having control areas 

connected with each other through tie line. Four area power systems can have maximum 6 

numbers of tie lines through which power flows from one area to other area. In case of a four 

area power system it is not necessarily always all the areas are connected to each area. 

Means, there may b 6 tie lines or less than six tie lines in case of a four area power system. 
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           In this proposed work a four area interconnected power system is taken with every 

area is connected to each area through tie line. So the four area power system is complete 

interconnected power system with four individual areas and six inter connections.  

 

Fig. 2.3: Over view of a Four-Area Interconnected Power System 

           Fig. 2.3, shown here describes a four area power system which contains four control 

areas (shown by rectangular blocks) and six interconnections called tie line. So from this 

figure it is clear that each area contributes some of its power to every other area. The four 

areas taken here are considered as identical and all consists of thermal non reheat turbines. 

The deviation in frequency in all areas severely putting effect on the quality and production 

of frequency sensitive industries such as petro chemical industries, weaving industry, pulp 

and paper industry etc.  So the life time of machine apparatus are reduced on the load side.  

            The frequency and the tie-line power flow of each area are affected by the changes in 

load. So here also (like in two area) the frequency and tie line power flow of each area should 

have to be controlled  

             Talking about the state space modelling of this four area power system, it is just like 

as the modelling of two area power system. In case of a two area power system there are two 

control areas and one tie line present. Each control area is made up of four blocks. So there 

were nine state equations found out.  Here four control areas are connected with each other 

by six tie lines. So there can be twenty two state equations are for this power system. The 

modelling and state equations for a four area power system are given in reference [21]. 
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CHAPTER-3 

DESIGN OF OPTIMAL REGULATOR AND OPTIMAL 

COMPENSATOR  

3.1    Introduction: 

          Now days the use conventional integral controllers is very rare in Load Frequency 

Control of power systems as they produce very slow dynamic response for the system. With 

the wide development of control system, many different controllers have been invented 

which are much more effective than integral controllers.  

            Hence to overcome the demerits of conventional integral controller some optimal 

controllers (Linear Quadratic Regulator, Linear Quadratic Gaussian) are introduced with 

integral controller which produce quite better static as well as dynamic response [21]. 

            This chapter deals with the study and application of optimal Regulator (LQR) and 

optimal compensator (LQG) and demonstrates how much they are effective over the 

conventional controllers.  

3.2    Linear Quadratic Regulator: 

            Linear Quadratic Regulator is an optimal controller which is a very well known 

controller due to its wide area use. Why it is called linear is that, it is applicable to linear 

systems. Quadratic means is heaving a quadratic objective function to be minimised. 

            Load frequency control of power system is basically a non linear system. So for the 

application of Linear Quadratic Regulator the system is linearized about a single operating 

point. A state space model is found out which is the linearized form of the non linear system, 

for Linear Quadratic Regulator to be applied.   

3.2.1  Design of Optimal Controller (LQR): 

         In case of optimal control technique the inputs (control inputs) are taken as linear 

combination of all nine states being fed back. The nine states being feedback are x1, x2... x9 

and the control inputs can be written as like below: 
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1 11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9u k x k x k x k x k x k x k x k x k x                  (3.1) 

                           2 21 1 22 2 23 3 24 4 25 5 26 6 27 7 28 8 29 9u k x k x k x k x k x k x k x k x k x              (3.2) 

Where’ K’ is a (2×9) matrix called Feed Back Gain matrix and is given by: 

                            

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29

k k k k k k k k k
K

k k k k k k k k k
 

  
 

 

The state equation of the system is: 

   x Ax Bu


                                                                                                                         (3.3) 

As, step load change of constant magnitude is =0 i.e. ‘ d = 0’ 

The equation of output is: 

y Cx Du                                                                                                                         (3.4) 

But, the matrix ‘D ‘is always assumed to zero for a control system with feedback. 

So, the output equation is: 

y Cx                                          where ‘C’ is a (2×9) matrix called Output Matrix. 

So finally, the overall system state space model under consideration can be written as follow: 

x Ax Bu


   and  y Cx                                                                                               (3.5) 

The equation for the control input is given by :  

u Kx                                                                                                                                 (3.6) 

Where               1

2

u
u

u
 

  
 

 and     T1 2 3 4 5 6 7 8 9x x x x x x x x x x  

3.2.2  Determination of Feedback Gain Matrix (K): 

           From the definition of optimal control problem designing the control law is that to find 

out the feedback gain matrix ‘K’ such that the given Performance Index will be minimised 

while the system transfers from initial state x(0)≠0 to origin with in infinite time ,  x(∞)=0. 
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Generally the quadratic form of PI is taken as: 

T T

0

1PI (x Qx u Ru)dt
2



 
                                                                                              

(3.7) 

Where, ‘Q’ is the ‘State Weighing Matrix’ which is real, symmetric and positive semi 

definite in nature and ‘R’ is the ‘Control Weighing Matrix’ heaving real, symmetric and 

positive definite character. 

            The two matrices Q and R are obtained according to the below system requirements. 

1) The deviations of Area Control Errors about the steady state values are minimized. In this 

case these deviations are: 

1 1 1 tie(1,2) 1 1 7ACE B f P B x x                                                                                    (3.8) 

 2 2 2 tie(1,2) 2 4 7ACE B f P B x x                                                                                  (3.9) 

2) The deviations of ACEdt about the steady state values are minimized. For this case these 

deviations are x8 and x9. 

3) The deviations of control inputs (u1and u2) about the steady state values are minimized. 

By these considerations, the Performance Index (PI) takes a form: 

2 2 2 2 2 2
1 1 7 2 4 7 8 9 1 2

0

1PI [(B x x ) (B x x ) (x ) (x ) (u ) (u ) ]dt
2



       
          

(3.10) 

 i.e.,       2 2 2 2 2 2 2 2 2
1 1 1 1 7 7 2 4 2 4 7 8 9 1 2

0

1PI [B x 2B x x 2x B x 2B x x x x u u ]dt
2



        
     

(3.11) 

So the matrices’’ and ‘R’ are presented as: 

2
1 1

2
2 2

1 2

B 0 0 0 0 0 B 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 B 0 0 B 0 0

Q 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

B 0 0 B 0 0 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 
 
 

 
 
 
 
  
 
 
 

                                    1 0
R

0 1
 

  
 
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The matrices A, B (chapter-2), Q and R are found out. 

So, the optimal control law is given by u Kx  . 

The feedback gain matrix ‘K’ is given by 1 TK R B S  

Where,’S’ is a real, symmetric and positive definite matrix which is obtained by solving the 

matrix Riccatti Equation given by: 

T 1 TA S SA SBR B S Q 0                                                                                       (3.12) 

So, the overall closed loop equation with state feedback control is: 

cx Ax B( Kx) (A BK)x A x


                                                                           (3.13) 

Where cA = (A BK)  is a matrix called closed loop system matrix. The Eigen values of cA  

will show the stability of the system with state feedback controller. 

3.2.3  Analysis of System Using MATLAB: 

           By putting the appropriate values of parameters the matrices A, B, Q and R are 

calculated. Proper MATLAB code is written in MATLAB-R2010a to obtain the matrices S, 

K and Ac. A MATLAB command [K, S] = lqr (A, B, Q, R) is being used in this case to find 

out the values of the matrices ‘K ‘and ‘S’. 

            The calculated matrices A, B, Q and R are shown below: 

0.05 6 0 0 0 0 6 0 0
0 2.5 2.5 0 0 0 0 0 0

5.2083 0 12.5 0 0 0 0 0 0
0 0 0 0.05 6 0 6 0 0

A 0 0 0 0 2.5 2.5 0 0 0
0 0 0 5.2083 0 12.5 0 0 0

0.4442 0 0 0.4442 0 0 0 0 0
0.425 0 0 0 0 0 1 0 0

0 0 0 0.425 0 0 1 0 0

  
  
  
  
  
 

  
 
 
 
  

    

0 0
0 0

12.5 0
0 0

B 0 0
0 12.5
0 0
0 0
0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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0.180625 0 0 0 0 0 0.425 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0.180625 0 0 0.425 0 0

Q 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.425 0 0 0.425 0 0 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 
 
  
 
 
 
 
 
 
 
 

                            
1 0

R
0 1
 

  
 

 

After the MATLAB program ran the calculated values S, K and Ac are obtained as follows: 

0.4226 0.8294 0.1538 0.063 0.1156 0.02 0.2737 1 0
K

0.063 0.1156 0.02 0.4226 0.8294 0.1538 0.2737 0 1
    

     
 

The matrix Ac 

c

0.05 6 0 0 0 0 6 0 0
0 2.5 2.5 0 0 0 0 0 0

10.4908 10.3673 14.423 0.7871 1.4444 0.2504 3.4208 12.5 0
0 0 0 0.05 6 0 6 0 0

A 0 0 0 0 2.5 2.5 0 0 0
0.7871 1.4444 0.2504 10.4908 10.3673 14.423 3.4208 0 0
0.4442 0 0 0.4442 0 0 0 0 0
0.425 0 0 0 0 0 0 1 0

0 0 0 0.42

 


  


 
   


5 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
  

 

The Eigen values of matrix ‘A’ (state matrix) are: 

0, 0, -13.068, -13.052, -0.38±3.189i, -0.991±2.262i,-1.2376 

All Eigen values do have negative real part rather than two Eigen values are zero. This is a 

marginally stable system. 

The Eigen values of matrix ‘Ac’(closed loop system matrix) are: 

-13.0594, -13.0758, -1.034±3.4078i, -1.4791±2.5810i, -1.3521,-0.7439; -0.6887 
 
The negative real part of all the Eigen values of ‘Ac’ proves that the system is stable.  
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           So finally we concluded that after the application of state feedback controller the 

system became stable. 

3.3    State Estimation by Kalman Filter: 

            To design a control system on the basis of stochastic ( non deterministic) plant we 

cannot depend on full state feedback as we could not predict the state vector x(t) for the 

stochastic plant. 

            Hence, there is requirement of an observer which can estimate the state vector on the 

basic of measured output y(t) and present known input u(t). By the use of pole placement 

method an observer can be designed, that has poles at the desired location. But due to some 

demerits of pole placement method it is not applicable for this case. 

            Some demerits of pole placement method due to which it is not applicable for the 

present case: 

1. Pole placement technique is could not be applied or it will not take in to account to 

the power spectra of process and measurement noise. It means pole placement 

technique is not useful when noise is introduced to the system. 

2. The system taken here is a two area power system for load frequency control, which is 

a Multi Input and Multi Output (MIMO) system. But pole placement observer can 

only be applied to those systems heaving Single Input and Single output (SISO). 

Hence, it is not applicable for the system under study. 

            The fact here is that the measured output of the plant y(t) and the plant state vector 

x(t) are random (measured for infinite time) vectors. So, an observer is required that can 

estimate the state vectors on the basis of statistical description plant state and plant output 

vector.      

            Kaman filter is such an observer. It is an optimal observer which is minimizing the 

statistical measure of estimation error given by: 

0 0e (t) x(t) x (t)                                                                                                          (3.14) 

Where 0e (t)  is the estimated error and 0x (t) is the state vector estimated. 
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The state equation for kalman filter of a time invariant observer is written below: 

0 0 0x (t) Ax (t) Bu(t) L[y(t) Cx Du(t)]                                                (3.15)                      

Where ‘L’ is the  Kalman filter gain matrix. 

The plant considered here is heaving the following linear time invariant state space 

representation as follow: 

x(t) Ax(t) Bu(t) Fv(t)


                                                                                          (3.16) 

y(t) Cx(t) Du(t) z(t)                                                                                             (3.17) 

Where v(t) and z(t) are the process and measurement noise respectively 

            Kalman filter is generally the total opposite of optimal regulator. Kalman filter is 

responsible for minimization of  the covariance of estimation error given by: 

T
e 0 0R (t, t) E[e (t)e (t)]                                                                                                (3.18) 

Whereas, the optimal regulator is responsible for the minimization of the objective function 

(PI) on the basic of transient response, steady state response and control effects. 

            Why it is useful to minimize the covariance of estimation error is that the state vector 

X(t) is random in nature. The state vector x0(t), which is estimated is found out on the basis of 

measurement of output y(t) for a finite period of time ‘T’ such that “T  t”. Whereas the true 

random state vector x(t) is based on the output y(t) ,where t is infinite time. 

              Hence it would be the best that the kalman filter estimates not the true mean x(t) but 

the conditional mean xm(t) on the basis of output for finite time record . 

Where  mx t E[x(t) : y(T) T t]   and is called the conditional mean. 

There may be a little deviation in the estimated state vector x0(t) from the conditional mean 

xm(t) an it can be written as the estimated state vector is  

 0 mx (t) x t x(t)                                                                                                      (3.19) 

Where x(t)  could be called as the deviation from conditional mean. 
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The estimation error can be written as: 

T
0 0Re(t, t) E[e (t)e (t) : y(T) T t]                                                               (3.20) 

putting the value of  0 0e (t) x(t) x (t)   in the previous equation and after some 

mathematical evaluation we got 

   T T T
e m mR (t, t) E[x(t)x (t)] x t x t x(t) x (t)                                             (3.21) 

From the equation above it is cleared that the best of the estimated state vector can be 

obtained by equating x(t) 0  . As a result the estimated state vector will be equal to the 

estimated conditional mean i.e.  0 mx (t) x t which would minimize the conditional 

covariance matrix eR (t, t) .But minimization of eR (t, t) yields optimal observer which is 

generally the Kalman filter. 

            Basically the most important factor for kalman filter is the kalman gain matrix ‘L’ 

which has the contribution of minimizing the covariance of estimation error eR (t, t)  i.e. 

which equalizes the estimated state vector to the conditional mean vector (  0 mx (t) x t ). So 

derivation of L is explained below. 

3.3.1 Derivation of Kalman Gain Matrix ( L): 

The state equation of the optimal estimation error can be written as : 

 0 0e (t) A LC e (t) Fv(t) Lz(t)


                                                                           (3.22) 

As v(t) and z(t) both are white noises, the vector below can also be a white noise. 

w(t) Fv(t) Lz(t)                                                                                                        (3.23) 

So, the abbreviation of the state equation of the optimal estimation error can be written as: 

0 0 0e (t) A e (t) w(t)


                                                                                                     (3.24) 

Where A0 = A-LC. 
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So, after a lot of mathematical calculation a riccatic equation equation will be derived for the 

linear time invariant plant; 

0
0 0 T 0 T 1 0 Te

e e e e
d R (t, t) A R (t, t) R (t, t)A R (t, t)C Z (t)CR (t, t) FV(t)F

dt
   

                      
(3.25) 

Where Z(t)and V(t) are the power spectral densities of process and measurement noise. 

As the system here is a time invariant system so the riccatic equation can be written as: 

0 0 T 0 T 1 0 T
G e e G e e GA R R A R C Z C R FV F 0                                                     (3.26) 

Where,           1
GA A F Z C    and 1

GA A F Z C                                                               (3.27) 

From the matrix riccatic equation the value of 0
eR  is found out and then the value of’ L’ is 

found out by the below equation:  

 
0 T 1

eL R C Z                                                                                                                  (3.28) 

3.3.2 Analysis using MATLAB   

         Proper MATLAB code is written in MATLAB-R2010a to obtain the matrices Re
0, L 

and A0. A MATLAB command [L, Re
0,e]=lqe(A,F,C,F'*F,C*c') is being used in this case to 

find out the values of the matrices ‘L ‘and ‘Re
0’. 

 

 
 

Fig.3.1: Simulation diagram of kalman filter 
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         The above diagram is the simulink diagram of kalman filter where it is clearly seen 

that the the estimated states are found out based up on the measured output and present input 

for finite interval of time. 

            So finally we got to know that the kalman filter gives the best estimation of the state 

vectors on the basis of measured output and present input for finite period of time rather than 

infinite time interval.  

The matrices L and A0 are 

 2.8977   -0.2973   -0.2890
 0.3659    0.1359    0.1452
-0.3279    0.1247    0.1106
-0.2973    2.8977    0.2890

L  0.1359    0.3659   -0.1452
 0.1247   -0.3279   -0.1106
-0.2890    0.2890    0.5653
-0.6409  



 -0.0206   -0.0218
-0.0206   -0.6409    0.0218

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0

-2.9477 6 0 0.2973 0 0 -5.7110 0 0
-0.3659 -2.5 2.5 -0.1359 0 0 -0.1452 0 0
-4.8804 0 -12.5 -0.1247 0 0 -0.1106 -12.5 0
0.2973 0 0 -2.9477 6 0 5.7110 0 0

A 0.1359 0 0 -0.3659 -2.5 2.5 0.1452 0 0
0.1247 0 0 -4.8804 0 -12.5 0.1106 0 -12.5

0.7332 0 0 -0.73

 


32 0 0 -0.5653 0 0
1.0659 0 0 0.0206 0 0 1.0218 0 0
0.0206 0 0 1.0659 0 0 -1.0218 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.4    Linear Quadratic Gaussian (LQG): 

         In this chapter an optimal regulator (LQR) and an optimal observer (kalman filter) are 

designed separately for Load Frequency Control (LFC)of a two area power system. At first 

The Linear Quadratic Regulator is designed which is the cause of minimization of the 

quadratic objective function. Than an optimal observer (Kalman filter) is introduced for LFC 

with presence of noise (process and measurement noise) considered as white noises. The 
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combination of optimal regulator with the optimal observer forms a Optimal compensator 

which is called as Linear Quadratic Gaussian (LQG). 

            Hence LQR and KF are combined to form LQG which is applied to LFC of a two area 

power system in the presence of process and measurement noise. Why this is called LQG is 

that, it is basically applicable to linear plants, it is heaving a quadratic objective function and 

it is applied at the presence of white noise which has a Gaussian probability distribution. In 

abbreviation, the LQG design process can be written as follows. 

1. At first an optimal regulator is designed For the linearized (State space modelled) 

plant of Power system assuming the availability of  all the states (full-state feedback) 

and a quadratic objective function. The designed regulator creates a control vector on 

the basis of state vector (measured) x(t). 

2. A Kalman filter is designed on the basis of assumption of a control input, u(t), an 

output already measured, y(t) and process and measurement noises considered as 

white Gaussian noises, v(t) and z(t), with well known spectral densities of power. 

3. Both the regulator and observer, designed separately are combined together in to a 

compensator (optimal compensator) called Linear Quadratic Gaussian. The optimal 

compensator designed here generates a control input, u(t) on the basis of estimated 

state vector ‘x0(t)’ instead of the real state vector ‘x(t)’and output vector ‘y(t)’, that is 

already measured. 

           The designed parameters of optimal regulator are generally the state weighing matrix 

‘Q’ and the control weighing matrix ‘R’. Similarly the designed parameters of Kalman filter 

are the noise power spectral densities, V, Z and  . Hence ‘Q’, ‘R’, ‘V’, ‘Z’ and ‘ ’ will be 

the designed parameters of the optimal compensator applied to the closed loop power system. 

            A state space representation of the compensator operating a noisy plant is written 

below which represents the state and output equations: 

0 0x (t) (A BK LC LDK)x (t) Ly(t)


                                                               (3.29) 

                             0u(t) Kx (t)                                                                                                                (3.30) 

Where ‘L’ and ‘K’ are the kalman filter and optimal regulator gain matrices respectively. 
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.         

 

Fig. 3.2: Simulink diagram of LQG operating on LFC of two area power system 

           The above figure represents the simulink diagram of a linear Quadratic compensator 

operating on the load frequency control of a two area power system. it defines the state 

equation and the control law of linear quadratic regulator where the control law u=-Kx0 (t) is 

based on the estimated state x0 (t) and measured output y(t.) it will be seen that after the 

simulation, the LQG derives the same output as like the outputs of LQR. Means both the 

application of LQG and LQR are same but LQG is applicable at those places where process 

and measurement noise are taken in to account. 

           So finally we concluded that in this chapter a LQR is designed on the basis of present 

input and measured output. Then an optimal observer (Kalman filter) is designed which 

estimates the state vector at the presence of process and measurement noise considered as 

white Gaussian noise. And finally LQG is designed for LFC of a two area power system 

which creates an control input on the basis of estimated state vector and measured output for 

finite period of time. 
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CHAPTER 4 

TUNING OF PID LOAD FREQUENCY CONTROLLER 
VIA IMC 

 

4.1    Introduction:  

         Now days the complexity of power system is generally increases. so different control 

action or controllers like optimal controller, variable structure control,  robust control 

,conventional PI , PI controller, adaptive and self tuning control were used for LFC of power 

system. Meanwhile, PI and PID controllers were studied for LFC the simplicity of their 

execution. References[23] and [24] shows LFC of power system with fuzzy PI control[25] 

proposed load frequency controller PID tuning method for single area power system based on 

the tuning method in [26],and is extended for two area power system[19]. 

             In this chapter, a different unified method is described to design and tune a PID 

controller for load frequency control of power system with non reheat turbine. The method is 

applied here on the basis of internal model control .it is also applicable to multi area power 

systems like to a two area power system. 

4.2    IMC Design: 

            Here an internal model control (IMC) method is adapted for load frequency controller 

design. In Process control IMC is a very popular controller [22].in Fig.3.1, the IMC structure 

is shown where the plant to be controlled is ‘P’, and the plant model is ‘ P ’. 

 
Fig.4.1: IMC structure 
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           The procedure for IMC design goes as follows [22]: 

1. Decompose the model of the plant P in to two  different parts: 

M AP(s) P (s)P (s)
                                                                                                             (4.1) 

Where MP (s) invertible minimum-phase is part and AP (s)  is the no minimum phase 

part (all pass) with unity magnitude. 

2. Design an IMC controller  

1
M r

1Q(s) P (s)
( s 1)


                                                                                                     

(4.2) 

Where   is the tuning parameter and the desired set point response is ‘ r
1

( s 1) 
’. ‘r’ is the 

degree of  MP (s)  

            It is shown here that the IMC controller gives very good tracking performance .where 

as it is not satisfying the disturbance rejection performance some times. So a secondary 

controller Qd is included to optimise the disturbance rejection performance. 

 

The designed disturbance rejecting IMC controller is of the form: 
m

m 1
d m

d

s ... s 1Q (s)
( s 1)

   


                                                                                               
(4.3) 

Where d  is the disturbance rejection tuning parameter, 'm’ is the number of poles of P(s) .  

After that 1  ... m  should have to satisfy  

1 md s p ,...,p(1 P(s)Q(s)Q (s)) 0 
                                                                                      (4.4) 

Where 1 mp ,...,p  are the poles of P(s)  

 

                It could be shown that the IMC structure can be equivalent to the conventional 

feedback structure as like in the Fig.3.2. The feedback controller K is equals to 

 

d

d

QQK
1 PQQ


                                                                                                                      

(4.5) 

Here K is considered as the conventional PID controller. 
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                Direct implementation of IMC controller needs higher order transfer function 

knowledge if the model P is of higher order, which is discussed in LFC of power system. So 

here the IMC structure is transformed to a PID control structure.  

 
Fig.4.2: IMC equivalent conventional feedback configuration 

 

            The standard technique of tuning the PID parameters from IMC controllers is that we 

have to expand the controller block K shown in Fig.3.1 in to Malaren series. The first three 

terms coefficients of the Maclaurin series are the parameters of the PID controller. The 

procedure is obtained by the IMCTUNE package [27]. Here a new method is approximated 

for any higher order PID controller in frequency domain [26]. 
     

4.3    LFC PID Design: 
         First we have considered a isolated power system with a single generator supply. 

 
Fig. 4.3: Linear model of a single area power system 

The tuning of PID controller we know is to improve the performance of the load frequency 

control of power system. So, here we have to design a control law u K(s) f   , where K(s) 

has the form  

                           
p d

i

1K(s) K (1 T s)
Ts

  
                                                                                                  

(4.6) 
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In general, practically PID controller is implemented to reduce the noise effect. So, K(s) can 

be written for this case 

d
p

i

T s1K(s) K (1 )
Ts Ns 1

  
                                                                                             

(4.7) 

Where N is called as them filter constant. It is implemented in []. 
Ts

p d
i

1 1 eK(s) K (1 T )
Ts Ns 1


  

                                                                                      
(4.8) 

Where ‘T’ is a very small sampling rate. 

 

           Science the load frequency control of power system considers a little change in load, it 

can be represented by the single area model shown in Fig.3.3 . The drop characteristic here is 

the reciprocal of regulation constant ‘ 1
R ’ which improves the damping properties. So there 

are two methods or alternatives for load frequency control design .i.e. 

1. Design LFC of power system without drop characteristic. 

2. Design LFC of power system with drop characteristic. 

Here the second alternative is taken in to account for study. 

4.3.1  LFC Design without drop characteristic: 

       1. A Non-Reheated Turbine is taken in the power system. so the plant with non-reheated 

turbine made of three different parts  

       a) A Governor with its dynamics: 

g
g

1G (s)
T s 1


                                                                                                                    

(4.9) 

        b) A turbine with its dynamics: 

t
t

1G (s)
T s 1


                                                                                                                  

(4.10) 

        c) Load and machine with their dynamics: 

p
p

P

K (s)
G (s)

T s 1


                                                                                                                 
(4.11) 
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Now the overall open loop transfer function without any drop characteristic is: 

p
p t g

P t g

K
P(s) G (s)G (s)G (s)

(T s 1)(T s 1)(T s 1)
 

  


                                            
(4.12) 

From the IMC-PID design method, as, model P is a minimum phase system, the IMC 

controller gets the form 

P t g1
3 3

(T s 1)(Ts 1)(T s 1)1Q(s) P (s)
( s 1) Kp( s 1)

   
 

   
                                                (4.13) 

          To improvise the disturbance response another controller Qd(s) is used. In Fig.3.3, we 

noticed that the change in load demand dP (s) must have to pass through the load and 

machine dynamics to affect the deviation in frequency f (s) . So for disturbance rejection Qd(s) 

is chosen which cancels the pole
P

1s
T


 . Let 

1
d

d

s 1Q (s)
s 1

 

                                                                                                                  

(4.14) 

Then 1 should have to satisfy 

P
P

1
d 1 3 3s 1dT s

T

s 1(1 P(s)Q(s)Q (s)) 1 0
( s 1) ( s 1)

 


  
        


                                  

(4.15) 

That is 

3

d
1 p

p p

T 1 1 1
T T

                                                                                                      

(4.16) 

By choosing appropriate values of   and d , the IMC controllers Q(s) and Qd(s) can be 

derived from equation () and() and then the corresponding PID could be tuned according to 

the method described previously. 

           Hence the procedure of IMC PID controller design for the LFC of a isolated power 

system contains the design of IMC controller first den it is expanded to tune the PID 

parameters. 
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4.3.2  LFC Design with Drop Characteristic: 

          For this case the plant model for LFC design is 

g t p

g t p

RG G G
P(s)

R G G G


                                                                                                        
(4.17) 

           Unlike the step response of P(s) which is non-oscillatory described in the previous 

section, the step response of the model for LFC with drop characteristics oscillatory and 

unstable some times. so LFC design of power system became more complicated. In[], it is 

shown that for LFC purpose, the third order transfer function of the model is reduced to 

second order neglecting the real pole. Then PID controller is tuned based on IMC method. 

This approximation only works for power system with non-reheated turbine. 

The reduced second order transfer function should be in the form: 

2
sn

2 2
n n

kP(s) e
s 2 s




                                                                                              
(4.18) 

Where   is the damping ratio,  n is the undammed frequency and   is the dead time. 

          For example, consider the second order reduced dead time model() with parameters 

from[]. If the IMC tuning parameters   and are taken as 0.1 and 0.4 respectively. Then we do 

have 

2

2

0.12s 0.33s 1Q(s)
0.02353s 0.4706s 2.353

 


                                                                          
(4.19) 

2

d 2

0.2292s 0.6523s 1Q (s)
0.16s 0.8s 1

 


                                                                                    
(4.20) 

The approximated PID controller is  

PID
1.0185K 0.6669 0.2235s

s
  

                                                                             
(4.21) 

4.4  Two Area Extension: 

       The tuning of IMC-PID controller can be extended for load frequency control of a two 

area power system. The difference between LFC for single are and multi area is that in multi 
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area case not only the area frequencies comes back to its set value but also the tie line power 

comes to its nominal value. In this case the Area Control Error (ACE), is used for feedback 

variable. Consider the model for LFC of two area power system shown in Fig.2.1. 

12
tie(1,2) 1 2

TP ( f f )
s

   
                                                                                             

(4.22) 

B1 and B2 both are the frequency bias coefficients, and the area control errors AEC1 and 

AEC2 are defined by  

1 tie(1,2) 1 1AEC P B f                                                                                                    (4.23) 

2 tie(1,2) 2 2AEC P B f                                                                                                (4.24) 

 

Fig.4.4. Equivalent closed loop system for LFC of two area power system 

            The load frequency control for each area could be tuned separately in this present 

case. Whereas, there is a tie line coupling between the areas, the tuning parameter of each 

area should be taken in to consideration.  

                        To give the guarantee of the stability of closed loop system when tie line is 

connected by tuning the decentralized controller, a closed loop system is arranged in Fig.3.4. 

in the figure ‘M’ is the transfer function from Ptie(1,2) to f1-f2 .At the absence of Ptie(1,2) it is 

very easy to find M(s)=M1(s)-M2(s). 

Where Mi(s) is the transfer function from - Ptie(1,2) to if (i=1,2) 

 
p1 g1 t1 p1

1
g1 t1 p1 1 g1 t1 p1 1 1

G G G G
M (s)

1 G G G / R G G G K R



 

                                                      

(4.25) 



TUNING OF PID LOAD FREQUENCY CONTROLLER VIA IMC 
 

  Page 34  
  

 
p2 g2 t 2 p2

2
g2 t 2 p2 2 g2 t2 p2 2 2

G G G G
M (s)

1 G G G / R G G G K B
 


 

                                                 

(4.26) 

           Consider the example []. Just for simplicity purpose both the areas are assumed 

identical. Using the tuning parameters same as used in single area case ( d0.1, 0.4    ) the 

designed PID controllers are: 

1 2
2.3966K (s) K (s) 1.5692 0.5259s

s
   

                                                           
(4.27) 

           A LFC PID tuning procedure for power system was described on the basis of two 

degree IMC method. The two parameters tuned determine the operation performance of the 

resulted PID controller. The simulation and results are shown in chapter5 which are very 

effective. 
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CHAPTER-5 

RESULTS AND DISCUSSION 

 

5.1    Introduction: 

            The performance of LQR, Kalman filter, LQG with full state feedback and IMC-PID 

controller, along with the performance of integral and optimal controller are shown in the 

below figures. The responses shown here are in form of dynamic responses of each area 

frequencies and the power of tie line, for the two area power system model. The stability for 

closed loop system stability for the model using different controller has already been found 

out in chapter 3 by determining their Eigen values. 

5.2    Results and Discussion: 

            In this study here, first a optimal control law is generated for the power system 

stability, then the states are estimated by kalman filter at the presence process and 

measurement noises taken as white Gaussian noise. Then combining those both a optimal 

compensator is designed which recovers the responses of optimal regulator at the presence of 

noise. So, the operation of optimal compensator is equal to the operation of optimal regulator 

but it can work noise environment. 

            After that an IMC-PID controller is designed for LFC of power system and its results 

are compared with conventional integral Load Frequency Controller for a two area power 

system.  

5.2.1  Results of LQR for LFC of Two Area Power System: 

           Fig. 5.1 to Fig. 5.3 are showing the dynamic responses of deviation in frequency for 

both the areas ( 1f , 2f ) and the power deviation in tie line ( tie(1,2)P ) for a power system 

heaving two control areas with thermal non-reheat turbines. The change in load powers which 

are the input disturbances are taken as, 1 2d  = 0.01 pu , d  = 0.00 pu.  Again the Fig. 5.4 to Fig. 

5.7 shows the same responses of frequency deviation and tie line power deviation for load 

disturbances  1 2(d  = 0.0085 pu , d  = 0.0025 pu).  
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Fig.5.1: change in frequency V/S time in area-1 for  0.01 step load change in area-1  

 

Fig.5.2: change in frequency V/S time in area-2 for 0.01 step load change in area-1  

 

Fig.5.3: change in tie line power V/S time for 0.01 step load change in area-1  
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Fig.5.4: change in frequency V/S time in area-1 for d1 d2P  = 0.0085 pu , P = 0.0025 pu   

 

Fig.5.5: change in frequency V/S time in area-2 for d1 d2P  = 0.0085 pu , P = 0.0025 pu   

 

Fig.5.6: change in Tie Line power V/S time for d1 d2P  = 0.0085 pu , P = 0.0025 pu   

           So from the over two set of figures we got to know that, for load change in any of the 

areas or both the areas, the Linear Quadratic Regulator is able to bring the area frequencies 

and tie- line power flow to their pre defined values or nominal values. 
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5.2.2   Results of LQR for a Four Area Power System: 

           Like a two area power system LQR is applied to a four area interconnected power 

system by finding out its state space model [21]. As four control areas are there will be ten 

output states (Four for area output frequencies and six for tie lines) will be found out out of 

which only eight outputs are shown here.

Fig. 5.7: Change in Frequencies 1f , 2f & 3f  V/S time for 0.01 step load change in area-1

Fig. 5.8: Changes  4f , tie(1,2)P  & tie(3,1)P  V/S time for 0.01 step load change in area-1 

Fig. 5.9: changes tie(3,4)P  tie(1,4)P  V/S time for 0.01 step load change in area-1 
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5.2.3  Estimated States for LFC of Power System by Kalman Filter: 

           Fig. 5.10 to Fig. 5.12 are showing the estimated states of deviation in frequency for 

both the areas ( 1f , 2f ) and the power deviation in tie line ( tie(1,2)P ) for a power system 

heaving two control areas with thermal non-reheat turbines. The change in load powers which 

are the input disturbances are taken as, 1 2d  = 0.01 pu , d  = 0.00 pu.  these estimated states are 

estimated by an optimal observer Kalman filter at the presence of process and measurement 

noise taken as white Gaussian noise. The figures shows that the estimated states of frequency 

deviation and tie line power deviation are stable due to governor action. But the responses are 

oscillatory in nature. 

 

Fig.5.10: change in frequency V/S time in area-1 for 0.01 step load change in area-1 

 

Fig.5.11: change in frequency V/S time in area-2 for 0.01 step load change in area-1 

 

Fig.5.12: change in tie line power V/S time for 0.01 step load change in area-1  
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5.2.4  Results of LQG for LFC of Two Area Power System 

            Fig. 5.13 to Fig. 5.15 are showing the dynamic responses of deviation in frequency for 

both the areas ( 1f , 2f ) and the power deviation in tie line ( tie(1,2)P ) for a power system 

heaving two control areas with thermal non-reheat turbines. The changes in load powers 

which are the input disturbance are taken as 1 2d  = 0.01 pu , d  = 0.00 pu.  The figures here are 

comparing the results of LQR with the results of LQG for a two area power system. They 

show that the responses of LQG are around same as the responses of LQR. From the figures 

we can clearly see that, LQG recovers the performance of LQR from noise environment.   

 

Fig.5.13: change in frequency V/S time in area-2 for 0.01 step load change in area-1  

 

Fig.5.14: change in frequency V/S time in area-2 for 0.01 step load change in area-1  

 

Fig.5.15: change in tie line power V/S time for 0.01 step load change in area-1  
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5.2.5  Results of IMC-PID Controller for LFC of Two Area Power System: 

            Fig. 5.16 to Fig. 5.18 are showing the dynamic responses of deviation in frequency 

for both the areas ( 1f , 2f ) and the power deviation in tie line ( tie(1,2)P ) for a power system 

heaving two control areas with thermal non-reheat turbines. The figures show the 

performances of a PID controller for LFC of power system, tuned via Internal Model Control 

(IMC) . From figures we can clearly see that the responses are stable with very less overshoot 

and less settling time. So IMC-PID controller is a powerful controller which gives better 

stability for LFC of a two area power system. 

 

Fig.5.16: change in frequency V/S time in area-1 for 0.01 step load change in area-1  

 

Fig.5.17: change in frequency V/S time in area-2 for 0.01 step load change in area-1  

 

Fig.5.18: change in tie line power V/S time for 0.01 step load change in area-1  

            So finally from the figures we got to know that the IMC-PID controller gives better 

response than the Linear Quadratic Regulator for LFC of power system. 
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CHAPTER 6 

CONCLUSIONS AND SCOPE FOR FURTHER WORK 

 

6.1      Conclusions: 

          Model of a two area interconnected power system has been developed with different 

area characteristics for optimal and conventional control strategies. The control equations and 

the state equations have successfully been derived in continuous time for a two area power 

system. The model developed here has also been examined for the stability before and after 

the application of state feedback control. 

           Optimal control technique has a huge application over control engineering. An optimal 

regulator called Linear Quadratic Regulator (LQR) has been applied for Load Frequency 

Control (LFC) of a two area power system. A control law is generated on the basis of 

measured output and present states for infinite period of time.  A State space model was 

developed by the help of state equations for the application of LQR. So by the application of 

state feedback controller the stability of area frequency and tie line power was obtained 

which is been proved as one of the effective controller in this proposed work. 

          It is well known to everyone, that the optimal regulator (LQR) is not sufficient for full 

state feedback and also is not applicable at noisy environments. So an powerful observer, 

which is applicable for MIMO systems called Kalman filter is designed for the Load 

Frequency Control of a two area power system, at the presence of process and measurement 

noise. This observer minimizes the covariance of estimation error. The process and 

measurement noises in this type of observer are considered as white Gaussian noise. In this 

case all the states are estimate on the basis of present input and measured output for finite 

period of time.   

         The purpose of estimation of states using an optimal observer is to design a optimal 

compensator called Linear Quadratic Gaussian (LQG) for load frequency control of a two 

area power system at the presence of white Gaussian noise. So by the combination of optimal 

regulator and optimal observer an optimal compensator (LQG) has already been designed for 

LFC. The performance of LQG for LFC of power system are obtained and compared with 
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that of LQR.(shown in chapter 5). From the results of the optimal compensator, it is seen that 

it works as a optimal regulator at the presence of white Gaussian noise.   

          At last a PID controller is designed for LFC of the proposed power system via Internal 

Model Control (IMC). First an IMC controller is designed, a disturbance rejection IMC 

controller is designed then a model equivalent to feed back (conventional controller model) 

model is developed. This feedback model is compared with the conventional PID controller 

model and by Toyler series expansion the parameters of PID control are found out. So PID 

controller is designed on the basis of IMC controller and applied for LFC of a two are power 

system and well steblized responses are obtained. 

6.2    Scope for Future Work: 

1.     In this present work the load disturbances d1 and d2, are taken as deterministic (static) in 

nature. So, in future the work could be extended to time varying (dynamic) load disturbances.  

2.      The parameters in this work has been taken constant throughout the whole operation. 

But there may be parameter uncertainty due to wear and tear, temperature variation, 

imperfection of component, aging effect, environment changes etc. So during controller 

design the variation of parameter may be taken in to consideration.  

3.        The LFC of power system can be designed by PID controller via different optimization 

technique. 
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