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                                ABSTRACT 

                                                                                                                                                                      

An adaptive filter is a digital filter that can adjust its coefficients to give the best match t An 

adaptive filter is a digital filter that can adjust its coefficients to give the best match to a given 

desired signal. When an adaptive filter operates in a changeable environment the filter 

coefficients can adapt in response to changes in the applied input signals. Adaptive filters 

depend on recursive algorithms to update their coefficients and train them to near the optimum 

solution. An everyday example of adaptive filters is in the telephone system where, impedance 

mismatches causing echoes of a signal are a significant source of annoyance to the users of the 

system. The adaptive signal process is here  to estimate and generate the echo path and 

compensate for it. To do this the echo path is viewed as an unknown system with some impulse 

response and the adaptive filter must mimic this response. 

 

Adaptive Filters are generally implemented in the time domain which works well in most 

scenarios however in many applications the impulse response become long, and increasing the 

complexity of the filter beyond a level where it can no longer be implemented efficiently in the 

time domain. An example of  acoustic echo cancellation applications  is in hands free telephony 

system. However there exists an alternative solution and that is to implement the filters in the 

frequency domain. The Discrete Fourier Transform or  Fast Fourier Transform (FFT) allows the 

conversion of signals from the time domain to the frequency domain in an efficient manner. 

Despite the efficiency of the FFT the overhead involved in converting the signals to the 

frequency domain does place a restriction on the use of the algorithm. When the impulse 

response of the unknown system and hence the impulse response of the filter is long enough 

however this is not an issue since the computational cost of the conversion is much less than that 

of the time domain algorithm. The actual filtering of the signals requires little computational 

cost in the frequency domain. Investigation of the so-called crossover point, the point where the 

frequency domain implementation becomes more efficient than the time domain implementation 

is important to establish the point where frequency domain implementation becomes practical  
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   Chapter 1  

1 Introduction:-  

 
1. Project Specification 

Adaptive signal are widely used in many Situations where the Characteristics of some filter or 

other are unknown. One application for these filters is quite an important part of today's 

telephone system, compensating for the echo problem, and the task of the adaptive filter is to 

mimic this impulse response. Implementation Adaptive filter is common in the time domain, 

however it for an unknown system with a very long impulse response to it becomes more 

efficient in Place the filter in the frequency domain. The objective of this project is to investigate 

the Design and Implementation of adaptive filtering algorithms in the frequency domain, with 

emphasis on their use in "system identification" problems. Simulate   the adaptive filtering 

algorithms in the time and frequency domains and compare them from the point of view of 

performance and Implementation complexity (in particular, to determine the "crossover point" 

where frequency-domain Implementation becomes more efficient). A suitable laboratory bench 

test a real circuit Involving should be constructed in order to Demonstrate the functionality in 

near-real-time. With the completion of the project we have a fully operational should adaptive 

filter based in the frequency- domain. This adaptive signal process will be applicable where the 

length of the unknown system's impulse response is long enough for practical Implementation of 

frequency domain adaptive filtering. Time domain adaptive filtering entirely Will not be 

Replaced as it is. A possible application for the adaptive filter in the frequency domain acoustic 

Arises in Echo cancellation for hands free telephony. 

1.2 Echo Cancellation in long distance telephony 

Echoes in the telephone system Occur When a speech signal encounters an impedance mismatch 

in the telephone circuit. A portion of the signal is reflected when it meets any impedance 

mismatch as illustrated in Figure 1.1. If the delay between the speech and the returning cast is 

long then the cast can be a significant source of annoyance to the users of the telephone system. 

The most Effective solution to this problem has been cast that of adaptive cancellation, Figure 

1.1 shows the layout of such a system [1]. 
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Figure 1.1 Echo Cancellations 

 

The hybrid is basically a bridge circuit with three ports and it is here that impedance mismatches 

can occur if the bridge is not perfectly balanced [1]. The adaptive filter is in essence the echo 

canceller. This filter operates in system identification mode (see Section 3.2) with the echo path 

representing the unknown system the filter is to identify. Notice the inputs to the adaptive filter, 

speech from the transmitter constitutes the desired response and Equation 1.0 represents the 

error signal.  

  

                                                   e(n) = s(n) - y(n)          1 

 

where  y(n) is the output of the adaptive filter and s(n) is composed of the other speaker’s speech 

and the echo of the speaker's own speech. For satisfactory operation of the echo canceller, the 

length of the filter's impulse response must be greater than the length of the longest echo path.
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Chapter 2  

Filtering 

Having introduced the project in the previous chapter it is time to introduce digital filtering. 

Adaptive filters are mainly implemented with digital filters, digital filtering therefore has a 

significant role to play in this project.  

 

2.1 Digital Filters 

2.1.1   Analogue Filters 

Analogue filters are systems or networks that alter a given signal in a specified manner. The 

wave-shape, amplitude-frequency and the phase-frequency are three components of any given 

signal that can be altered. 

 

2.1.2  Discrete Time Signals 

It is now appropriate to explain what we mean by a discrete time (digital) signal. Generally 

signals that occur naturally are continuous, i.e. they are defined for all points in time. A discrete 

time signal however is only defined at specific points in time, for all other points in time it is 

zero. Discrete time signals may in fact be described as sampled versions of analogue signals. 

The sampling rate of the discrete time signal must be chosen high enough to adequately 

represent the information contained in the sampled signal. In order to ensure that this is the case 

we use at least the Nyquist rate, which is twice the frequency of the highest frequency 

component of the given signal. 

     Nyquist Rate 2 f max             2 

Figure 2.1 A Discrete Time Signal obtained by sampling an analogue sine wave 



Chapter 2                                                                                                                 Digital Filtering  

 

4 
 

2.1.3 Introduction to Digital Filters  

The system or network in the case of digital filters are mathematical algorithms, these 

algorithms operate on digital signals and attempt to modify these signals in the same way 

analogue filters modify analogue signals. Equation 2.1 defines the operation of linear digital 

filters [2]. 







1

0

)()()(
N

k

knxkhny                   2.1 

where h(k), k = 0,1…N-1 are the filter coefficients, x(n) is the filter input and y(n) is the filter 

output. We note at this point that the above Equation represents the convolution of the input 

signal x(n) with the filter’s impulse response h(k) to give the filter output y(n). There will be 

further discussion of convolution in Section 2.2.   

2.1.4   Advantages of Digital Filtering  

 Automatic updating of frequency Response if a programmable processor is used, which 

means that adaptive filtering can be implemented more easily. 

 The filter output and input can be stored for further use. 

 Some characteristics are not possible with analogue filters. 

 Can easily take advantage of advances in VLSI technology. 

 Performance is not affected by temperature variations or by slight differences in 

components making it possible to repeat the characteristics from one filter to the next. 

 More than one signal can be filtered at a time. 

 Precision is only limited by word length. 

 It is possible to use digital filters at lower frequencies, which are often found in 

biomedical applications. [2] 

2.1.5  Disadvantages of Digital Filtering  

 The speed at which the filter operates may be limited by the speed of the processor or by 

the number of arithmetic operations involved. This number increases as the specifications 

of the filter are tightened. 

 Digital filters are subject to round-off noise encountered in computation and if the input 

signal was sampled to Analogue to Digital Conversion noise. 

 The design of digital filters is a far more complex task than designing an analogue filter. 

Computer aided design techniques in the right hands however do help to overcome this 

problem. Also once designed the system is usable with little or no modification for other 

different digital signal processing tasks. [2] 

 



Chapter 2                                                                                                                 Digital Filtering  

 

5 
 

2.2 Convolution 

In this sub-section, we will define the above term for the purposes of this project. Let us first 

define Correlation,  in essence the Cross Correlation of two waveforms is a method for 

comparing the waveforms. Consider two waveforms, both sampled at the same rate. The sum of 

the products of the corresponding pairs of points is represented as a measure of the correlation 

of the two waveforms. Convolution can now be introduced as the cross correlation of two 

signals with one of them reversed [4]. Equation 2.2 defines the process for continuous time 

signals. 

                                                   )(*)()( thtxty                                                              2.2 

where * denotes convolution, when x(t) and h(t) are two finite digital signals this Equation can 

be represented as  







iN

k

knxkhny
0

)()()(                                                      2.3 

Notice that this is the same as Equation 2.1, which describes the operation of digital filters. In 

this case one of the sequences to be convolved is the impulse Response of the digital filter. 

Therefore it can be recognized that digital filtering is an application of convolution. Convolution 

can be viewed as a description of how the input to a given system reacts with the system’s 

impulse response to produce an output. Convolution in the time domain is very computationally 

intensive and the fact that the convolution of two sequences can be calculated more efficiently if 

the signals are transformed from the time domain to the frequency domain is exploited in 

following chapters in an attempt to reduce the computation necessary for digital filters. 

  

2.3 FIR and IIR Filters 

There are two main types of digital filters, finite impulse response (FIR) and infinite impulse 

response (IIR) filters. The filter output is calculated in a similar manner for both types. Equation 

2.1 gives the equation for an FIR filter, the equation for an IIR filter is of the same form only 

that the sum is taken to infinity rather than to N-1 [2]. From this it is clear that for IIR filters the 

impulse response is of infinite duration whereas for FIR filters it is only of length N.   

 

There are a number of advantages specific to the different filters mentioned above [2]. 

1. FIR filters provide a linear phase response, this means that every frequency component 

of the applied signal will be delayed by the same amount, in other words there will be no 

phase distortion introduced by the filter. 

2. Word length has less impact on FIR filters 

3. If the filter specifications are tight, demanding a sharp cut-off frequency for example, IIR 
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filters require fewer coefficients. It will be shown later however that the computational 

efficiency of the FFT will significantly improve the implementation of FIR filters. 

4. The stability of IIR filters can often not be guaranteed whereas FIR filters realized 

according to Equation 2.1 will always be stable. 

5. Analog Filters can be readily transformed to equivalent IIR filters. This is not the case 

with FIR filters, however it is easier to synthesize filters of arbitrary frequency response 

with FIR filters. 

In general FIR filters are desirable and would be used where possible, however when filter 

specifications are very high IIR filters may be best suited to meet them. For this project we will 

deal only with FIR filters.   

2.4 Recursive and Non Recursive Filters 

Non-recursive filters are filters where the output depends only on current and previous input 

samples as depicted in Figure 2.3. An important property of non-recursive filters is they will 

always be stable. FIR filters are in general non-recursive, which in turn means that they are also 

always stable [2]. 

A recursive filter on the other hand is a filter whose output samples may depend on previous 

output samples as well as the current and previous input samples.  

 

Z-1Z-1 Z-1 Z-1

+

x(n)

h(0) h(1) h(2) h(3) h(4)

y(n)

x(n-3)x(n-2)x(n-1) x(n-4)

Figure 2.3  A Non-Recursive filter structure 

 

Having introduced the concept of digital filters and the fact that the basis for digital filtering is 

time domain convolution, in particular stable FIR filters we are now ready to move to the next 

chapter where we shall discuss Adaptive Filtering.  
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Chapter 3  Time Domain Adaptive Filtering 

3.1 Introduction 

An adaptive filter is no more than a digital filter, which can adjust its characteristics. It adapts to 

changes in its input signals automatically according to a given algorithm. The algorithm will 

vary the coefficients according to a given criteria, typically an error signal to improve it's 

performance.  

In essence an adaptive filter is a digital filter combined with an adaptive algorithm, which is 

used to modify the coefficients of the filter. 

Adaptive filters are used in many diverse applications in today's world for example telephone 

echo canceling, radar signal processing, equalization of communication channels and biomedical 

signal enhancement. 

 

Adaptive filters are useful [2] 

 when the characteristics of a given filter must be variable 

 when the spectrum of a given signal overlaps with the noise spectrum 

 if the frequency band occupied by noise is unknown or may vary with time. 

 

In most real world scenarios adaptive filters are realized using Finite Impulse Response (FIR) 

filters, since they are guaranteed to be stable and are simple to use.  

   

3.2 Adaptive Filters in System Identification mode 

Since there are many applications for adaptive filters such as those just described, we often alter 

the structure of the filter used to suit the application. In this project we are interested in the use 

of adaptive filters for the purposes of system identification in which case a block diagram of the 

filter will be of the form shown in Figure 3.1 [2]. Notice that the error signal in this case is the 

difference between the filter output and the desired response, the output of the unknown system. 
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Figure 3.1 An adaptive filter in system identification mode 

3.3 Time Domain Adaptive Filtering Algorithms 

There are many algorithms used to adjust the coefficients of the digital filter in order to match 

the desired response as well as possible. The LMS Algorithm is the more successful of the 

algorithms because it is the most efficient in terms of both storage requirement and indeed 

computational complexity [2]. Similar to the steepest descent algorithm on which the LMS 

algorithm is based upon, the basic LMS algorithm updates the filter coefficients after every 

sample.  

 

3.3.1 The LMS Algorithm explained 

The Least-Mean-Square algorithm in words [1]: 

Updated Value

of tap-weight

vector

Old Value of

tap-weight

vector
x

Learning

rate

parameter
+

Tap-input

vectorx
Error

Signal

 
Figure 3.2 The LMS Algorithm in words 

 

The simplicity of the LMS algorithm and ease of implementation means that it is the best choice 

for many real-time systems [2]. 

 

The implementation steps for the LMS algorithm  

 

1. Define the desired response. Set each coefficient weight to zero.  

 

h i 0 ,i 1,2,3,... , N ,                                                            3.0 
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For each sampling instant (k) carry out steps (2) to (4): 

2. Move all the samples in the input array one position to the right, now load the current 

data sample k into the first position in the array. Calculate the output of the adaptive 

filter by multiplying each element in the array of filter coefficients by the corresponding 

element in the input array and all the results are summed to give the output 

corresponding to that data that was earlier loaded into the input array. 

 

    y k
i 0

N 1

h i x i                3.1 

 

3. Before the filter coefficients can be updated the error must be calculated, simply find the 

difference between the desired response and the output of the adaptive filter. 

  

e k y k d k              3.2 

 

4. To update the filter coefficients multiply the error by µ, the learning rate parameter and 

then multiply the result by the filter input and add this result to the values of the previous 

filter coefficients.   

    h k 1 h k 2 e k x k             3.3 

 

 

There are also other LMS based algorithms, which include the complex LMS, the block LMS 

algorithm and the Time sequenced LMS algorithm [2]. 

3.4 The importance of µ and N  

A very important part of the algorithm is the updating of the filter coefficients as would be 

typical for all adaptive filter algorithms.  µ is critical for the update and must be chosen 

accurately to ensure the filter converges. Updating the filter coefficients is important because 

this is the part of the code that governs how well the filter will converge to the desired response. 

Another element that has a key role in this convergence is the number of filter coefficients N. 

Intuitively the number of coefficients must at least equal the length of the impulse response of 

the unknown system. The effects of varying both the value of µ and the number of filter 

coefficient, N is demonstrated in the project by varying these numbers and indicating the 

resulting effects by means of plotting error signals. The system that we are trying to identify for 

testing purposes is a modem echo path, which was provided by the project supervisor and is 
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shown in Figure 3.3. Figures 3.4 and 3.5 plot the error obtained against different values of µ and 

N respectively. The error signal in both cases consists of the mean square error calculated using 

the last fifty samples of the actual response obtained for each value of µ and N respectively. The 

error is defined as the difference between the actual and the desired response of the adaptive 

filter. In both cases the programs are run for 1000 samples for each value. In the case of µ it is 

true to say that better convergence can be expected if the program was to run for more samples. 

However, it is felt that the representation in Figure 3.4 of the comparison of the different values 

of µ offers the best view to realize the most suitable value of µ resulting in fast convergence and 

low final error. 
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Figure 3.3 The sample unknown system used represents a modem echo path  
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Figure 3.4 The effect of varying mu. 
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Figure 3.5 The effect of varying the number of filter coefficients  
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Figure 3.6 A sample of the input signal 
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Figure 3.7 The error convergence of the Time Domain Adaptive Filter  
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An examination of Figures 3.3 and 3.5 show the relationship between the length of the impulse 

response of the unknown system and the number of required filter coefficients. Although the 

unknown system in Figure 3.3 is fifty values at sample intervals close inspection indicates the 

last twenty years or so contribute little to the system. From this we can expect about thirty 

samples are sufficient to describe the system. This is reflected in Figure 3.5 where the error is 

dramatically reduced after twenty or filter coefficients thus clear that twenty five coefficients are 

sufficient for the adaptive filter. 

To illustrate the above points, the error signal shown in Figures 3.4, 3.5 and 3.7 were able to 

establish the value of μ to 3 × 10-3, and the value of N to 25. The applied input signal is a 

randomly generated signal comprising amplitudes of -3, -1, 1 and 3, and these amplitudes are 

common in telephone lines [3] An example of the applied input signal is shown in Figure 3.6. 

Figure 3.7 shows the convergence of time domain adaptive filter by plotting the difference 

between the desired filter response and real. 

 

3.5 The Weakness of the LMS Algorithm 

The LMS algorithm has a profound weakness, and that increases in computing costs to an 

undesirable level as the length of the impulse response increases. This is mainly due to the fact 

that the algorithm is in the time domain, leaving the algorithm in an obvious disadvantage when 

an impulse response is very long. The computing power required simply becomes too high for 

efficient use. There block LMS algorithm LMS versions that attempt to compensate for this 

problem in the time domain, frequency domain however adaptive filtering is the key to solving 

the problem very long impulse response. 

 

In the next chapter we will discuss some algorithms first fixed frequency domain based 

algorithms for adaptive frequency domain.   
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Chapter 4    Filtering in the Frequency Domain 

4.1 Transforms 

4.1.1 Introduction 

 Before discussing frequency domain filtering should probably take a step back and study the 

transition of data between time and frequency domains. The representation in the frequency 

domain of a signal is merely an alternative representation. It is often the case that the signals are 

represented in the frequency domain so that the use of discrete transforms to reduce the 

processing required for signal processing applications, such as convolution. Although some 

changes between the two domains, the Fourier Transform is the most widespread. The 

advantages of the Fourier transform in other transforms include [2].The efficiency of the Fast 

Fourier transform 

 Adequate representations of data for even short data lengths 

 More faithful representation of data  

 Components are sinusoidal and are not distorted when transmitted over linear systems 

 A high degree of familiarity and thus a lot of development. 

 

 

4.1.2 Discrete Fourier Transform 

The  discrete Fourier transform is a Fourier transform that can be used to transform the discrete-

time signals to the frequency domain. 

 

The equation used to calculate the discrete Fourier transform shown below. 

 

    X k
n 0

N 1

x nT e
jkwnT

   4.0 

 

where  k is the harmonic number of the transform component. 

It can be shown that this equation is analogous to the equation for calculating the Fourier 

Transform for continuous time signals [2]. 

 

4.1.3 Properties of the Discrete Fourier Transform 

 Symmetry 

An important property of the Discrete Fourier Transform can be illustrated by comparison of X 

(k) with X (k + N). The fact that these two elements are the same indicates the frequency with 
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period N. In general, the amplitude spectrum is also symmetric around harmonic N / 2 [2]. 

 

 Convolution 

The discrete Fourier transform can be used to calculate the circular convolution if we use 

zeros increase linear convolution can be calculated. The time convolution theorem states that 

convolution in the time domain is equivalent to multiplication in the frequency domain [2]. 

Equation 4.1 illustrates this in a mathematical way 

          kXkXFnxmxnx 21

1

21 *      4.1 

 

where x, x1 and x2 are finite periodic sequences of equal length and * denotes circular 

convolution F
-1

 denotes the Inverse Discrete Fourier Transform. This is a very important 

property of the Discrete Fourier Transform in the context of this project, since digital filtering 

is a form of convolution it is clear that we can now use multiplication to perform filtering if 

we transform the signals we use to the frequency domain [2]. 

 

 

 

4.2 The Fast Fourier Transform   

4.2.1 Introduction 

The Fast Fourier Transform (FFT) algorithm is used to calculate the discrete Fourier transform 

(DFT) of a vector x or in other words, to convert the vector x to the frequency domain. It uses 

the built in redundancy in the DFT to minimize the number of calculations required and 

therefore make the algorithm more efficient [2]. Inverse FFT (IFFT) is a version of the FFT that 

converts the signals back into the time domain. [2]  

 

4.2.2 The Computational Complexity 

To calculate the DFT directly N2 complex multiplies are required, if the FFT algorithm is used 

the number of operations for N a power of 2 is reduced to (N / 2) log2 (2N) + N complex 

multiplications adds complex [5]. To maximize the efficiency of the FFT is important that the 

block length N is a power of two. Remember that adding extra zeros to a signal to be Fourier 

transform does not change the result of Fourier transform of this signal. The block length is the 

length of the input block for which the FFT is computed. 
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4.3 The Overlap-Save Algorithm 

4.3.1 Introduction 

The overlap-add and overlap-save are the two main algorithms implementing fixed-frequency 

domain convolution block and as we know from Section 2.2 of convolution and digital filtering 

are essentially the same. Therefore, these algorithms are two examples of algorithms that take 

advantage of the fact that multiplication in the frequency domain is equivalent to convolution in 

the time domain. In this project we focus on the overlay-Save method as it is more 

computationally efficient [2]. In the Overlap-Save algorithm input sequences overlap, a 50% 

overlap is usually considered the most efficient. The current values of the input sequence 

consisting of the current input block concatenated with the previous input block. This means that 

the latest N samples of the current input stream is stored to concatenate with the next input 

block. Circular convolution calculated results in the rotation of the circular artifacts, which 

appear as the last N samples of the IFFT output. These samples are simply discarded and the 

remaining samples are concatenated to give the output of the overlap save algorithm. The 

savings-matching algorithm was carried out in this project, included in the accompanying disc 

shaped overlapsave.m. To test the accuracy of the algorithm of its output was compared to the 

output of the filter function in MATLAB. The difference between the two methods was around 

10-16. The algorithm is executed as illustrated in Figure 4.1 [4]. 

Input Block Length 2N N Zeros + Impulse Response

2N point FFT 2N point FFT

Y(f) = X(f) x H(f)

2N point IFFT

Y(n) + circular artifacts
 

Figure 4.1 Block Diagram for the overlap-save algorithm. 

 

4.3.2 The Overlap-Save Algorithm  

Let N be the length of the impulse response of the system, the modem echo path as used in 

Chapter 3. The length of the input sequence is then twice this at 2N.   
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1. N zeros are added to the impulse response if necessary so that the result of the FFT will be 

the same length as that of the FFTs of the input sections. 

 

2. The FFT of the impulse response is calculated and stored in memory because it will 

remain unchanged. 

                   

         khFFTkW                                             4.2 

 

3. Next the current block of the input is taken and the FFT of it is calculated, for the first 

block there are N zeros in front of it for subsequent blocks the previous input block 

precedes the current input block.   

                                 kxFFTkX                                             4.3 

 

4. The two FFTs are now multiplied , each element in one of the arrays will be multiplied by 

the corresponding element in the other. This procedure corresponds to convolution in the 

time domain. [1]  

 

                                         kWkXkY .                                            4.4 

 

5. The IFFT of Y(k) must now be calculated to bring the results back to the time domain. 

 

                                            kYIFFTny                                             4.5  

                   

6. The second half of this result is dumped
1
 for each convolution.     

The first half is added to an array as the output of the filter for the given input block.   

  

7. The input block is updated applying 50% overlap and steps 3 to 7 are repeated. 

                                                 
1
 This seemingly important data can be simply discarded because zeros missing input data, which is usually added 

to convolution effects. A convolution rule is that if N2 is the length of the impulse response and N1 is the length 
of the input signal then N2-1 zeros are added to the input sequence and the N1-1 zeros must added to the 
impulse response allowing to obtain correct linear convolution. Note that the zeros are added at the beginning of 
the impulse response and in this case there is no corresponding zeros added to each block of input data and thus 
zeros instead of N data samples prior to N, what we have here is 2N data samples. With 50% overlap intact the 
second half of each convolution sum may be dumped as it contains data that is a result of the circular 
convolution. 
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8. This algorithm has been tried and tested in the overlapsave.m file, which is included on 

         the disc accompanying this report. It is a fine algorithm so long as the filter coefficients are 

         known. In the next section we will consider an algorithm that will enable adaptive filters to 

        operate in the frequency domain. 

 

FFT IFFTX Save Last Block

+ Delay

X

FFT

Append

Zero Block

Delete Last

Block

IFFT

X FFT
Append

Zero Block +

Conjugate

d(n)

y(n)

Gradient

Constraint

u(n)

mu

U(k) Y(k)

U*(k) E(k) e(n)

 

 
 

Fig 4.2 Block Diagram for the Fast LMS algorithm[1] 

4.4.  An Adaptive Frequency Domain Algorithm 

4.4.1 Introduction 

Some research on this topic quickly identifies rapid LMS algorithm [6] as the main frequency 

domain based adaptive algorithm and frequency domain adaptive filter based on this algorithm 
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for the purpose of this project. The version of the Fast LMS explored in this project is based on 

the method of convolution superposition of savings, this makes filtering. Regarding the updating 

of the filter coefficients fast LMS algorithm is based on their equivalent time domain. A 

significant difference is that the fast LMS operates on blocks, introducing a latency time for the 

system. The block diagram of Figure 4.2 illustrates the flow of the algorithm [6] 

4.4.2 The Fast LMS Algorithm 

As in the overlap-save algorithm N is the length of the impulse response of the unknown system. 

2N measurement blocks are taken from the input at a time with 50% overlap as before. W will 

donate the filter coefficients, which are initialized to zero and updated after each block. 

The desired output is obtained by using the filter function in Matlab. The desired response of the 

adaptive filter is now known and can be used to update the coefficients correctly. Similar to the 

overlap-save algorithm add N zeros at the beginning of the input array to ensure correct results 

convolution 

 

1.  An input block of size 2N is taken from the input array, U the FFT of this block is calculated.  

    nuFFTkU                                             4.6 

 

2. Now the Filter output can be computed by multiplying the FFT of the input block, U(k) by 

the Filter coefficients as updated by the previous iteration of the algorithm.  

 

  )()( kWkUkY                                           4.7 

 

     This is transformed to the time domain by computing the IFFT of the above result. 

 

       kYIFFTny                                             4.8 

 

Due to circular convolution the first half of this result is simply discarded and the second half 

forms the output of the adaptive filter for the given input block. 

 

   NNyny
upto

21                                          4.9 

 

3. The error signal is computed next by means of simple subtraction to calculate the difference 

between the desired and the actual response. 
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y(n) - d(n)  e(n)                                          4.10 

 

where d(n) is the corresponding section of the desired response.  

The error is brought into the frequency domain by adding N zeros to the start of e(n) and by 

computing a 2N point FFT and the result is called E(k). 

 

    nezerosFFTkE ,                                         4.11 

The Gradient Constraint 

4.  The conjugate of U(k),U’(k) is found and this is multiplied by E(k) and the IFFT of the result 

is calculated. The second half of this result can be dropped due to circular convolution.  

      kUkEIFFTng '                                           4.12 

   Ngng
upto
 1                                            4.13 

 

 

5.  N zeros are now added to the end of what we are left with and the 2N point FFT of the 

resulting sequence is calculated and the result is multiplied by μ (the step size parameter) 

  

   ngng   followed by N zeros                                       4.14 

   )(1 ngFFTkW                                       4.15 

 

this is the filter coefficient update factor, W1(k) and is added to W(k) and this is how the 

update of the coefficients is conducted. 

 

W(k+1) = W(k)+W1(k)                                   4.16 

 

6. This newly updated W(k+1) will now be used as the filter coefficients for the next block of 

input. An error may exist, however as W(k) is updated more often this error will diminish as 

is indicated in Figure 4.3 which shows the convergence of the filter coefficients to near  

optimum performance. 
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Figure 4.3 The convergence of  the adaptive filter coefficients 

Note that the desired response and the adaptive filter output produces almost perfectly map on 

each other after only a few input blocks have been processed. Convergence can be best 

illustrated in Figure 4.4, where the error signal is the difference between the two previous 

signals. These figures were obtained with the value of μ adjusted to 2 x 10-3 N set at 50, though 

this does not implement the efficiency of the FFT which is used to verify fast LMS algorithm 

convergence. N is set to the length of the unknown system, which in this case represents the 

echo path modem previously introduced. In the real world would require an engineer to estimate 

the length of the impulse response of an unknown system and then choose the next power of 2 to 

use the FFT algorithm efficiency. Again, the input samples would be as illustrated in Figure 3.6. 

 

 

4.4.3 The First Input Block 

Also notice in Figure 4.3 that the results for the first input block are also very good despite being 

without previous values on which to base the filter coefficients. This is because the special 

status given to the first block in this version of the algorithm. Initially, the filter coefficients are 

set to zero and therefore the output for the first block would also be zero. To avoid this problem, 
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the error associated with the first input block is calculated y (n) being set to zero, which means 

that the error becomes very real answer desired, then this error is used to adjust the coefficients 

for filter and these are used to input the first block in place of the zeros, the coefficients are 

updated after that as usual in preparation for the next input block. 

4.5 The Cross-Over Point 

Now that we have examined both time and frequency domain applications it is time to compare 

the two domains in terms of computational complexity. 

  

4.5.1 Time Domain Implementation  

To calculate an actual output block from a real input block for a given filter we need N 

multiplied to generate each output value N. N2 also need to update the filter coefficients. This 

gives a total of 2N2 multiplied by the time domain LMS algorithm  

Time Operations = 2N
2
     4.17 

 

4.5.2 Frequency Domain Implementation   

There are 3 FFTs and 2 IFFTs each of length 2N where N is the length of the bock size, since 

the computation involved in calculating a 2N point IFFT is the same as that involved in 

calculating the FFT we can group IFFTs and FFTs together. Now we have 5 FFTs requiring 10N 

log2(2N) real multiplies and 5N log2(2N)+10N real adds [5]. In the rest of the algorithm there 

are two 2N complex vector products, relating to 16N real multiplies and 8N real adds, there is 

also one 2N point complex tap vector update requiring 4N real multiplies. Giving multiplies and 

adds an equal weighting we have an approximate total number of operations for the frequency 

domain implementation. 

 Frequency Operations = 15N log2(2N)+38N    4.18 

Note that this is only an approximation since in reality real multiplies are more computationally 

Note that this is only an approximation, since in actual fact are more computationally expensive 

multiplies that really adds, however, the figure can be used for comparison purposes. For 10,000 

samples per second, the computational cost of frequency domain and time domain approaches 

were compared and the results can be seen as operations per second requirements of the two 

approaches. The number above for operations in the frequency domain depends on N is a power 

of two and therefore a comparison with the time domain values are compared to N is a power of 

two. The crossing point was obtained 128, if N is however not allowed to be powers of two for 

the time domain, the crossover point can be less as shown in Figure 4.5. As N increase the 

proportion of the time domain operations to the operations in the frequency domain also 

increases linearly as shown in Figure 4.6
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Figure 4.5 Illustration of the Crossover Point 
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Chapter 5  Implementation of the Fast LMS      

5.1 Introduction 

The goal is to have a system that will then process values while enjoying the next set of 

values as in Figure 5.1. This system would not be enough to be classified as real-time, 

but rather as close to real time. To test real-world values of the system are read from the 

data acquisition card from National Instruments (NIDAQ). Unknown system used as a 

test system is merely a lowpass filter with a cutoff frequency of 140 Hz output of this 

filter is read through NIDAQ card and a block stored in the same memory, and this sends 

the adaptive filter algorithm as the desired response. The input to the filter is of the form 

shown in Figure 3.6. This will be sent to the filter, the unknown system through NIDAQ 

card. To carry out the task of reading in values, while values previously read are going to 

use wire processing. Topics that are not quite something that is true in the programming 

of every day and we are going to introduce the concept of topics in the next section. For 

the purpose of this project was considered to write a function to implement the FFT 

would take too long and so a function version is available online at [7].  

  

Main Program

Write and Read

Values from

the NIDAQ card

Start Fast LMS

Thread

Get more

values

N

Y

End Program
 

Figure 5.1 Block Diagram Representing the two tier Process 
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5.2 The NIDAQ Card 

The National Instruments Data Acquisition (NIDAQ) card is a powerful tool that allows the 

computer to communicate with the outside world in a manner simple for the user to follow and 

to use. The NIDAQ means that we can both write data to and read data from the outside world. 

The card contains analogue to digital and digital to analogue converters so that the user can 

input and output analogue signals to the specified pins on the connector. National Instruments 

provide some sample programs to illustrate the use of common NIDAQ functions. The two 

functions that we are interested in here are AO_Write and AI_Read, since these are the two used 

in this project. AI_Read, reads an analogue input voltage, converts it to its digital equivalent and 

returns the result as an integer code, this code can then be converted to the correct voltage value. 

AI_VRead would do the above conversion for us, however it was felt that this code may contain 

some unnecessary extras and so AI_Read was used. AO_Write takes an integer code 

representing a voltage and outputs this value to the specified channel. Specification sheets and 

other information including pin assignments and more detail on the functions can be found at 

[8]. 

 

5.3 Threads 

5.3.1 Introduction 

A thread is a specified execution path in a process. Most processes consist of only one thread, 

the primary thread, which is created when the process is begun. Processes can, however consist 

of many threads. The primary thread can create another thread to take over some of its 

workload, indeed this thread and all other threads can do the same. The idea of threading is to 

utilize as much of the processing power of the processor or processors as possible. Generally we 

should consider creating a new thread when the program encounters asynchronous activity. 

Background tasks that the user needs to know nothing about can be carried out with efficiency 

by using threads [9]. 

 

5.3.2 Thread Attributes 

 Each thread is allocated its own stack from the owning process’s address space. 

 Each thread has its own thread context, reflecting the state of its processor registers when 

it was last executed. 

 Every thread has a priority associated with it in order for the system scheduler to identify 

the next thread that it should execute. The scheduler gives priority to threads which have 

the highest priority associated with them. A thread inherits its priority according to the 
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process that creates it. [9] 

 

5.3.3 Thread Synchronization 

Threads cannot always just be created and run in a random manner with everything expected to 

run smoothly. Threads must be able to work together and interact, to do this we may have to 

work on the timing control. We can do this in one of two ways by using priority or 

synchronization. Priority levels should always be set sensibly, for example simply assigning a 

high priority to all threads defeats the purpose. Synchronization means that the threads are 

coordinated and that their sequences of tasks happen in a required manner. To allow efficient 

synchronization of threads Win32 supports synchronization objects, such as mutexes, critical 

sections, semaphores and events [9]. Now if a thread is to perform a coordinated task it may be 

forced to await a response from one of the aforementioned synchronization objects, once this is 

received it is free to continue at least until its next synchronized task. If a thread is waiting for a 

signal from a synchronization object it is removed from the system’s queue to avoid wasting 

precious processor time. It was thought that mutexes could be used as a synchronization tool in 

this project, however it was found that they were not suitable. The next subsections describe the 

mutex object and explains why it could not be used and how the problem was resolved [9].   

 

5.3.4 The Mutex 

In essence a mutex is a narrow gate that lets threads through one at a time. Generally this gate 

leads to a small section of code that needs exclusive access to shared data before the code can be 

executed. The CreateMutex function creates a mutex and returns a handle to it. [9] 

A mutex can be used to synchronize threads running from multiple processes. The threads 

however must have process relative handles to the same mutex object. This can be achieved 

using the aforementioned CreateMutex function. If a second call is made to this function with 

the same mutex name specified the system will recognize this and simply return a handle to the 

previously created mutex [9].  

 

5.3.5 Problem Encountered 

In the case of this project exclusive access to the input data (read in from the NIDAQ card) was 

required to avoid the data being processed being overwritten prematurely. Synchronization is 

obviously crucial here to ensure that data read in from the NIDAQ is processed before the mutex 

is passed back to the thread reading in from the NIDAQ card. This is where the difficulties were 

encountered. Both threads contained for loops and each for loop contained a call to 
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WaitforSingleObject [9], which means wait for the mutex handle. The problem was that the 

same thread was grabbing the mutex before the second thread got a chance. To solve the 

problem we found that we could only remove the mutexes and simply begin a new thread each 

time data was read in, using the _beginthread [9] function. Efficiency now became the main 

concern and to remove some of the inefficiencies of starting a new thread each time global 

variables were used.   

To verify this C implementation of the adaptive filter it and the Matlab version were run using 

the same input and desired signals. The outputs of both implementations were compared and the 

error was found to be of the order of 10
-16

. Having verified the operation of the Matlab version 

in chapter 4 it can be said that the C implementation is now also verified. The code is included 

on the disk accompanying this report.   

In the next chapter we will explore possible applications of the adaptive frequency domain filter. 
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Chapter 6  Further Applications 

6.1 Introduction 

As part of this project we investigated the possible applications of the LMS adaptive filter Fast 

mode system identification. One possible application was investigated particularly adaptive 

equalization. Essentially, implying adaptive equalization is compensating for unwanted linear 

channel (such as telephone lines) additional filtering features. Inter Symbol Interference (ISI), 

which is the interference caused by the received symbols overlap requires rather precise 

equalization or compensation to reduce ISI caused by the channel. [3] In the identification 

system generally depends on the availability of a desired response. This is not always practical, 

so instead of looking for the real answer simply desired signal can generate the same preset (the 

training sequence) at both the transmitter and receiver. Such transmission sequence and 

application version generated in the receiver after a time equal to the channel transmission delay 

as the desired response means that an appropriate input signal and the corresponding desired 

response is available to establish the filter coefficients . This is done before the data 

transmission and depends to some extent on the characteristics of the channel does not change 

dramatically during the duration of the call in the case of application to the telephone network. 

The training sequence must be at least as long as the impulse response of the equalizer to ensure 

the necessary density in the channel bandwidth to be matched. [3] After this training period the 

training sequence generator is turned off and the channel is now ready for data transmission as 

illustrated in Figure 6.1. During transmission of data decisions are used to determine which 

symbol was transmitted. A decision maker is simply a device that decides which symbol was 

transmitted. Since the release of this decision-making is reliable, we can use it as the desired 

response for data transmission that enables adaptive equalizer to track small changes in the 

channel. [3]  

 

Adaptive

Equalizer

Decision

Device

Training

Sequence

Generator

+
-

+

e(n)

y(n) d1(n) d(n)x(n)

 
Figure 6.1 A block diagram of the adaptive Equalizer 
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6.2 Time Domain Adaptive Equalizer 

The time-domain adaptive equalizer is investigated based on the LMS algorithm. The training 

sequence is a randomly generated sequence of 1 and -1, this sequence is used as the input also 

delayed by ten samples and is applied as the desired signal for the duration of the training 

period. Although the exact delay is unknown, as long as the chosen value is sufficient adaptive 

filter will adapt to introduce further delay if necessary. After the training period decision making 

can be used to identify which symbol is transmitted and provide the filter coefficients have 

converged properly during the training sequence can be used as the desired response. Figure 6.2 

shows the convergence of the filter for a training period of length 200 with a value of μ set to 

0.8 for the training period and reduced to 0.5 when applying the decision maker. The mean 

square error is calculated as the difference between the desired response and the actual response. 

Suitable values of μ chosen simply on the basis of trial and error in order to investigate this 

application. Μ value is highest during the training period to provide fast convergence and 

reduced to the period of data transmission for providing finer adjustment of the filter 

coefficients during this period. Unknown system to be identified is the echo path modem used in 

chapter 3 and therefore the length of the equalizer chosen was 25. 
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Figure 6.2 The convergence of the time domain adaptive Equalizer 
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6.3 Frequency Domain Adaptive Equalizer 

This project investigates a frequency domain based adaptive equalizer LMS algorithm fast. The 

training sequence is the same as that used for the time domain equalizer, except that this time 

has to be divided into blocks of size N, where N is the length of the impulse response selected to 

be a power of 2. N was chosen to be 32 according to the discussion in Chapter 4. The desired 

response is delayed again for ten samples. The training sequence has a duration of 20 input 

blocks of size N and after using the device of choice. Although convergence was not achieved 

great figure 6.3 shows that the tie will certainly not converge. 
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Figure 6.3 The convergence of the frequency domain adaptive Equalizer
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Chapter 7  Conclusion 

7.1 In Conclusion 

In this study  adaptive signal procesing is introduced by the transmission of a daily application 

in echo cancellation in the telephone system. An introduction to digital filtering was introduced 

then to give some background on the basic idea of digital filters and why so much work is put 

into them instead of analog filters. Convolution concept is introduced, which helps depict digital 

filtering as a mathematical process. Chapter 3 explains adaptive filtering, in particular mode 

system identification. The LMS algorithm is introduced as the main adaptive algorithm in the 

time domain and its operation is discussed. An alternative representation of signals in the 

frequency domain is then introduced, which allows the convolution of two signals is calculated 

in a much more efficient. The cost of converting the signals to and from the frequency domain 

should be noted however, and filter impulse responses short that is too high to allow frequency 

domain filter replace filter time domain. Substantial savings can be made as though the impulse 

response increases, a crossing point was portrayed approximate. This report presents a possible 

implementation of the fast LMS in the C programming language and a possible application as an 

adaptive equalizer explored.  

 

7.2 Achievements 

 It was expected that the crossover point between the time domain and frequency domain 

implementation is well defined but difficulties in identifying the suitable coefficients for 

multiplication and prevented it adds, however, is considered to be given a good guideline figure. 

The Matlab simulation of a time domain adaptive filter worked well, the investigation of the 

effects of varying N, the number 

and the results are portrayed. Simulation was achieved adaptive filter frequency domain in 

N, for this filter is intuitively needs to be at least equal to the length of the impulse response of 

the unknown system similar to the methodology in the domain of time and then go to the next 

power of two to allow the use of FFT efficiency. 

The translation of the fast LMS algorithm to the programming language C was achieved with 

the development of a real-time architecture suitable for real time operation using a low pass 

filter of the first order simple as a test system. 
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