

 “STUDY OF ADAPTIVE SIGNAL
 PROCESSING”

 Submitted by:
 Manas Ranjan patra
 (109ei0334)

 Under the guidance of
 Prof. Upendra Kumar Sahoo

 National Institute of Technology, Rourkela
 Orissa-769008

April 2013

National Institute of Technology, Rourkela-769008

ii

 ACKNOWLEDGEMENT

I wish to thank Prof. Sukadev Meher (HOD) NIT,Rourkela.I express my
gratitude to my supervisor, prof. Upendra ku. Sahoo for his invaluable
guidance .I am thankful to my faculty advisor Prof. Ayas Kanta Swain
for helping me in clearing doubts & directing me towards the
completion of my work. Last but not the least,I wish to thank prof. Sarat
kumar Patra HOD at computer center, for his guidance &
encouragement. I would also like to thank all professors& friends of
NIT,Rourkela for their supports, given not just over the past four years,
but always.

 Manas Ranjan Patra

National Institute of Technology, Rourkela-769008

iii

 CERTIFICATE

 National Institute Of Technology
 Rourkela

This is to certify that the thesis entitled “STUDY OF ADAPTIVE SIGNAL PROCESSING”

submitted by MANANAS RANAJAN PATRA (Roll. No. 109EI0334) in partial fulfillment of

the requirements for the award of Bachelor of Technology in Electronics & Instrumentation

Engineering during session2012-13 at National Institute of Technology, Rourkela. A bonafide

record of research work carried out by them under my supervision and guidance. The candidates

have fulfilled all the prescribed requirements. The Thesis which is based on candidates’ own

work, have not submitted elsewhere for a degree/diploma.

In my opinion, the thesis is of standard required for the award of a bachelor of technology
degree in Electronics & Instrumentation Engineering.

Prof Upendra kumar Sahoo (HOD) Prof. Sukadev Meher
 Electronics& Communication
Electronics & Communication
 Department,NITRourkela
 Department,NITRourkela

National Institute of Technology, Rourkela-769008

iv

 ABSTRACT

An adaptive filter is a digital filter that can adjust its coefficients to give the best match t An

adaptive filter is a digital filter that can adjust its coefficients to give the best match to a given

desired signal. When an adaptive filter operates in a changeable environment the filter

coefficients can adapt in response to changes in the applied input signals. Adaptive filters

depend on recursive algorithms to update their coefficients and train them to near the optimum

solution. An everyday example of adaptive filters is in the telephone system where, impedance

mismatches causing echoes of a signal are a significant source of annoyance to the users of the

system. The adaptive signal process is here to estimate and generate the echo path and

compensate for it. To do this the echo path is viewed as an unknown system with some impulse

response and the adaptive filter must mimic this response.

Adaptive Filters are generally implemented in the time domain which works well in most

scenarios however in many applications the impulse response become long, and increasing the

complexity of the filter beyond a level where it can no longer be implemented efficiently in the

time domain. An example of acoustic echo cancellation applications is in hands free telephony

system. However there exists an alternative solution and that is to implement the filters in the

frequency domain. The Discrete Fourier Transform or Fast Fourier Transform (FFT) allows the

conversion of signals from the time domain to the frequency domain in an efficient manner.

Despite the efficiency of the FFT the overhead involved in converting the signals to the

frequency domain does place a restriction on the use of the algorithm. When the impulse

response of the unknown system and hence the impulse response of the filter is long enough

however this is not an issue since the computational cost of the conversion is much less than that

of the time domain algorithm. The actual filtering of the signals requires little computational

cost in the frequency domain. Investigation of the so-called crossover point, the point where the

frequency domain implementation becomes more efficient than the time domain implementation

is important to establish the point where frequency domain implementation becomes practical

National Institute of Technology, Rourkela-769008

v

CONTENTS:

Introduction 1

1.1 Project Specification ___ 1

1.2 Echo Cancellation in long distance telephony ____________________________ 1

Chapter 2 Filtering ___ 3

2.1 Digital Filters ___ 3
2.1.1 Analogue Filters __ 3
2.1.2 Discrete Time Signals(DTS) __ 3
2.1.3 Introduction to Digital Filters __ 4
2.1.4 Advantages of Digital Filtering ______________________________________ 4
2.1.5 Disadvantages of Digital Filtering ____________________________________ 4

2.2 Convolution ___ 5

2.3 FIR and IIR Filters ___ 5

2.4 Recursive and Non Recursive Filters ____________________________________ 6

Chapter 3 Time Domain Adaptive Filtering ____________________________________ 7

3.1 Introduction __ 7

3.2 Adaptive Filters in System Identification mode ___________________________ 7

3.3 Time Domain Adaptive Filtering Algorithms _____________________________ 8
3.3.1 The LMS Algorithm explained ______________________________________ 8

3.4 The importance of µ and N __ 9

3.5 The Weakness of the LMS Algorithm __________________________________ 13

Chapter 4 Filtering in the Frequency Domain ________________________________ 14

4.1 Transforms __ 14
4.1.1 Introduction __ 14
4.1.2 Discrete Fourier Transform __ 14
4.1.3 Properties of the Discrete Fourier Transform ___________________________ 14

4.2 The Fast Fourier Transform __ 15
4.2.1 Introduction __ 15
4.2.2 The Computational Complexity _____________________________________ 15

4.3 The Overlap-Save Algorithm ___ 16
4.3.1 Introduction __ 16
4.3.2 The Overlap-Save Algorithm _______________________________________ 16

4.4. An Adaptive Frequency Domain Algorithm _____________________________ 18
4.4.1 Introduction __ 18
4.4.2 The Fast LMS Algorithm __ 19
4.4.3 The First Input Block ___ 21

National Institute of Technology, Rourkela-769008

vi

4.5 The Cross-Over Point ___ 22
4.5.1 Time Domain Implementation ______________________________________ 22
4.5.2 Frequency Domain Implementation __________________________________ 22

Chapter 5 Implementation of the Fast LMS ____________________________________ 24

5.1 Introduction ___ 24

5.2 The NIDAQ Card ___ 25

5.3 Threads ___ 25
5.3.1 Introduction __ 25
5.3.2 Thread Attributes __ 25
5.3.3 Thread Synchronization ___ 26
5.3.4 The Mutex __ 26
5.3.5 Problem Encountered ___ 26

Chapter 6 Further Applications __ 28

6.1 Introduction ___ 28

6.2 Time Domain Adaptive Equalizer _____________________________________ 29

6.3 Frequency Domain Adaptive Equalizer _________________________________ 30

Chapter 7 Conclusion __ 31
 7.1 Achievements

Reference

 Bibliography

Chapter 1 Introduction

1

 Chapter 1

1 Introduction:-

1. Project Specification

Adaptive signal are widely used in many Situations where the Characteristics of some filter or

other are unknown. One application for these filters is quite an important part of today's

telephone system, compensating for the echo problem, and the task of the adaptive filter is to

mimic this impulse response. Implementation Adaptive filter is common in the time domain,

however it for an unknown system with a very long impulse response to it becomes more

efficient in Place the filter in the frequency domain. The objective of this project is to investigate

the Design and Implementation of adaptive filtering algorithms in the frequency domain, with

emphasis on their use in "system identification" problems. Simulate the adaptive filtering

algorithms in the time and frequency domains and compare them from the point of view of

performance and Implementation complexity (in particular, to determine the "crossover point"

where frequency-domain Implementation becomes more efficient). A suitable laboratory bench

test a real circuit Involving should be constructed in order to Demonstrate the functionality in

near-real-time. With the completion of the project we have a fully operational should adaptive

filter based in the frequency- domain. This adaptive signal process will be applicable where the

length of the unknown system's impulse response is long enough for practical Implementation of

frequency domain adaptive filtering. Time domain adaptive filtering entirely Will not be

Replaced as it is. A possible application for the adaptive filter in the frequency domain acoustic

Arises in Echo cancellation for hands free telephony.

1.2 Echo Cancellation in long distance telephony

Echoes in the telephone system Occur When a speech signal encounters an impedance mismatch

in the telephone circuit. A portion of the signal is reflected when it meets any impedance

mismatch as illustrated in Figure 1.1. If the delay between the speech and the returning cast is

long then the cast can be a significant source of annoyance to the users of the telephone system.

The most Effective solution to this problem has been cast that of adaptive cancellation, Figure

1.1 shows the layout of such a system [1].

Chapter 1 Introduction

2

Transmitter

Receiver

Hybrid
Adaptive

Filter

+

-

+

Hybrid

Transmitter

Adaptive

Filter

Receiver+

-

+

Common

Line
X(n) X(n)

e(n) e(n)

Speaker A

Speaker Echo

Return Paths

Clean

Signal

Clean

Signal

Speaker B

Y(n) Y(n)

Speaker B

signal + echo of A

Speaker A

signal + echo of B

Figure 1.1 Echo Cancellations

The hybrid is basically a bridge circuit with three ports and it is here that impedance mismatches

can occur if the bridge is not perfectly balanced [1]. The adaptive filter is in essence the echo

canceller. This filter operates in system identification mode (see Section 3.2) with the echo path

representing the unknown system the filter is to identify. Notice the inputs to the adaptive filter,

speech from the transmitter constitutes the desired response and Equation 1.0 represents the

error signal.

 e(n) = s(n) - y(n) 1

where y(n) is the output of the adaptive filter and s(n) is composed of the other speaker’s speech

and the echo of the speaker's own speech. For satisfactory operation of the echo canceller, the

length of the filter's impulse response must be greater than the length of the longest echo path.

Chapter 2 Digital Filtering

3

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0.5

1

Sample Number

A
m

p
lit

u
d
e

Discrete Time Signal

y(nT) or y(n)

Chapter 2

Filtering

Having introduced the project in the previous chapter it is time to introduce digital filtering.

Adaptive filters are mainly implemented with digital filters, digital filtering therefore has a

significant role to play in this project.

2.1 Digital Filters

2.1.1 Analogue Filters

Analogue filters are systems or networks that alter a given signal in a specified manner. The

wave-shape, amplitude-frequency and the phase-frequency are three components of any given

signal that can be altered.

2.1.2 Discrete Time Signals

It is now appropriate to explain what we mean by a discrete time (digital) signal. Generally

signals that occur naturally are continuous, i.e. they are defined for all points in time. A discrete

time signal however is only defined at specific points in time, for all other points in time it is

zero. Discrete time signals may in fact be described as sampled versions of analogue signals.

The sampling rate of the discrete time signal must be chosen high enough to adequately

represent the information contained in the sampled signal. In order to ensure that this is the case

we use at least the Nyquist rate, which is twice the frequency of the highest frequency

component of the given signal.

 Nyquist Rate 2 f max 2

Figure 2.1 A Discrete Time Signal obtained by sampling an analogue sine wave

Chapter 2 Digital Filtering

4

2.1.3 Introduction to Digital Filters

The system or network in the case of digital filters are mathematical algorithms, these

algorithms operate on digital signals and attempt to modify these signals in the same way

analogue filters modify analogue signals. Equation 2.1 defines the operation of linear digital

filters [2].







1

0

)()()(
N

k

knxkhny 2.1

where h(k), k = 0,1…N-1 are the filter coefficients, x(n) is the filter input and y(n) is the filter

output. We note at this point that the above Equation represents the convolution of the input

signal x(n) with the filter’s impulse response h(k) to give the filter output y(n). There will be

further discussion of convolution in Section 2.2.

2.1.4 Advantages of Digital Filtering

 Automatic updating of frequency Response if a programmable processor is used, which

means that adaptive filtering can be implemented more easily.

 The filter output and input can be stored for further use.

 Some characteristics are not possible with analogue filters.

 Can easily take advantage of advances in VLSI technology.

 Performance is not affected by temperature variations or by slight differences in

components making it possible to repeat the characteristics from one filter to the next.

 More than one signal can be filtered at a time.

 Precision is only limited by word length.

 It is possible to use digital filters at lower frequencies, which are often found in

biomedical applications. [2]

2.1.5 Disadvantages of Digital Filtering

 The speed at which the filter operates may be limited by the speed of the processor or by

the number of arithmetic operations involved. This number increases as the specifications

of the filter are tightened.

 Digital filters are subject to round-off noise encountered in computation and if the input

signal was sampled to Analogue to Digital Conversion noise.

 The design of digital filters is a far more complex task than designing an analogue filter.

Computer aided design techniques in the right hands however do help to overcome this

problem. Also once designed the system is usable with little or no modification for other

different digital signal processing tasks. [2]

Chapter 2 Digital Filtering

5

2.2 Convolution

In this sub-section, we will define the above term for the purposes of this project. Let us first

define Correlation, in essence the Cross Correlation of two waveforms is a method for

comparing the waveforms. Consider two waveforms, both sampled at the same rate. The sum of

the products of the corresponding pairs of points is represented as a measure of the correlation

of the two waveforms. Convolution can now be introduced as the cross correlation of two

signals with one of them reversed [4]. Equation 2.2 defines the process for continuous time

signals.

)(*)()(thtxty  2.2

where * denotes convolution, when x(t) and h(t) are two finite digital signals this Equation can

be represented as







iN

k

knxkhny
0

)()()(2.3

Notice that this is the same as Equation 2.1, which describes the operation of digital filters. In

this case one of the sequences to be convolved is the impulse Response of the digital filter.

Therefore it can be recognized that digital filtering is an application of convolution. Convolution

can be viewed as a description of how the input to a given system reacts with the system’s

impulse response to produce an output. Convolution in the time domain is very computationally

intensive and the fact that the convolution of two sequences can be calculated more efficiently if

the signals are transformed from the time domain to the frequency domain is exploited in

following chapters in an attempt to reduce the computation necessary for digital filters.

2.3 FIR and IIR Filters

There are two main types of digital filters, finite impulse response (FIR) and infinite impulse

response (IIR) filters. The filter output is calculated in a similar manner for both types. Equation

2.1 gives the equation for an FIR filter, the equation for an IIR filter is of the same form only

that the sum is taken to infinity rather than to N-1 [2]. From this it is clear that for IIR filters the

impulse response is of infinite duration whereas for FIR filters it is only of length N.

There are a number of advantages specific to the different filters mentioned above [2].

1. FIR filters provide a linear phase response, this means that every frequency component

of the applied signal will be delayed by the same amount, in other words there will be no

phase distortion introduced by the filter.

2. Word length has less impact on FIR filters

3. If the filter specifications are tight, demanding a sharp cut-off frequency for example, IIR

Chapter 2 Digital Filtering

6

filters require fewer coefficients. It will be shown later however that the computational

efficiency of the FFT will significantly improve the implementation of FIR filters.

4. The stability of IIR filters can often not be guaranteed whereas FIR filters realized

according to Equation 2.1 will always be stable.

5. Analog Filters can be readily transformed to equivalent IIR filters. This is not the case

with FIR filters, however it is easier to synthesize filters of arbitrary frequency response

with FIR filters.

In general FIR filters are desirable and would be used where possible, however when filter

specifications are very high IIR filters may be best suited to meet them. For this project we will

deal only with FIR filters.

2.4 Recursive and Non Recursive Filters

Non-recursive filters are filters where the output depends only on current and previous input

samples as depicted in Figure 2.3. An important property of non-recursive filters is they will

always be stable. FIR filters are in general non-recursive, which in turn means that they are also

always stable [2].

A recursive filter on the other hand is a filter whose output samples may depend on previous

output samples as well as the current and previous input samples.

Z-1Z-1 Z-1 Z-1

+

x(n)

h(0) h(1) h(2) h(3) h(4)

y(n)

x(n-3)x(n-2)x(n-1) x(n-4)

Figure 2.3 A Non-Recursive filter structure

Having introduced the concept of digital filters and the fact that the basis for digital filtering is

time domain convolution, in particular stable FIR filters we are now ready to move to the next

chapter where we shall discuss Adaptive Filtering.

Chapter 3 Time Domain Adaptive Filtering

7

Chapter 3 Time Domain Adaptive Filtering

3.1 Introduction

An adaptive filter is no more than a digital filter, which can adjust its characteristics. It adapts to

changes in its input signals automatically according to a given algorithm. The algorithm will

vary the coefficients according to a given criteria, typically an error signal to improve it's

performance.

In essence an adaptive filter is a digital filter combined with an adaptive algorithm, which is

used to modify the coefficients of the filter.

Adaptive filters are used in many diverse applications in today's world for example telephone

echo canceling, radar signal processing, equalization of communication channels and biomedical

signal enhancement.

Adaptive filters are useful [2]

 when the characteristics of a given filter must be variable

 when the spectrum of a given signal overlaps with the noise spectrum

 if the frequency band occupied by noise is unknown or may vary with time.

In most real world scenarios adaptive filters are realized using Finite Impulse Response (FIR)

filters, since they are guaranteed to be stable and are simple to use.

3.2 Adaptive Filters in System Identification mode

Since there are many applications for adaptive filters such as those just described, we often alter

the structure of the filter used to suit the application. In this project we are interested in the use

of adaptive filters for the purposes of system identification in which case a block diagram of the

filter will be of the form shown in Figure 3.1 [2]. Notice that the error signal in this case is the

difference between the filter output and the desired response, the output of the unknown system.

Chapter 3 Time Domain Adaptive Filtering

8

Unknown

System

Adaptive

Filter

+

X(n) d(n)

e(n)

-

+

y(n)

Figure 3.1 An adaptive filter in system identification mode

3.3 Time Domain Adaptive Filtering Algorithms

There are many algorithms used to adjust the coefficients of the digital filter in order to match

the desired response as well as possible. The LMS Algorithm is the more successful of the

algorithms because it is the most efficient in terms of both storage requirement and indeed

computational complexity [2]. Similar to the steepest descent algorithm on which the LMS

algorithm is based upon, the basic LMS algorithm updates the filter coefficients after every

sample.

3.3.1 The LMS Algorithm explained

The Least-Mean-Square algorithm in words [1]:

Updated Value

of tap-weight

vector

Old Value of

tap-weight

vector
x

Learning

rate

parameter
+

Tap-input

vectorx
Error

Signal

Figure 3.2 The LMS Algorithm in words

The simplicity of the LMS algorithm and ease of implementation means that it is the best choice

for many real-time systems [2].

The implementation steps for the LMS algorithm

1. Define the desired response. Set each coefficient weight to zero.

h i 0 ,i 1,2,3,... , N , 3.0

Chapter 3 Time Domain Adaptive Filtering

9

For each sampling instant (k) carry out steps (2) to (4):

2. Move all the samples in the input array one position to the right, now load the current

data sample k into the first position in the array. Calculate the output of the adaptive

filter by multiplying each element in the array of filter coefficients by the corresponding

element in the input array and all the results are summed to give the output

corresponding to that data that was earlier loaded into the input array.

 y k
i 0

N 1

h i x i 3.1

3. Before the filter coefficients can be updated the error must be calculated, simply find the

difference between the desired response and the output of the adaptive filter.

e k y k d k 3.2

4. To update the filter coefficients multiply the error by µ, the learning rate parameter and

then multiply the result by the filter input and add this result to the values of the previous

filter coefficients.

 h k 1 h k 2 e k x k 3.3

There are also other LMS based algorithms, which include the complex LMS, the block LMS

algorithm and the Time sequenced LMS algorithm [2].

3.4 The importance of µ and N

A very important part of the algorithm is the updating of the filter coefficients as would be

typical for all adaptive filter algorithms. µ is critical for the update and must be chosen

accurately to ensure the filter converges. Updating the filter coefficients is important because

this is the part of the code that governs how well the filter will converge to the desired response.

Another element that has a key role in this convergence is the number of filter coefficients N.

Intuitively the number of coefficients must at least equal the length of the impulse response of

the unknown system. The effects of varying both the value of µ and the number of filter

coefficient, N is demonstrated in the project by varying these numbers and indicating the

resulting effects by means of plotting error signals. The system that we are trying to identify for

testing purposes is a modem echo path, which was provided by the project supervisor and is

Chapter 3 Time Domain Adaptive Filtering

10

shown in Figure 3.3. Figures 3.4 and 3.5 plot the error obtained against different values of µ and

N respectively. The error signal in both cases consists of the mean square error calculated using

the last fifty samples of the actual response obtained for each value of µ and N respectively. The

error is defined as the difference between the actual and the desired response of the adaptive

filter. In both cases the programs are run for 1000 samples for each value. In the case of µ it is

true to say that better convergence can be expected if the program was to run for more samples.

However, it is felt that the representation in Figure 3.4 of the comparison of the different values

of µ offers the best view to realize the most suitable value of µ resulting in fast convergence and

low final error.

0 5 10 15 20 25 30 35 40 45 50
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Sample unkown System (Modem Echo Path)

A
m

p
lit

u
d
e

Sample Number

Figure 3.3 The sample unknown system used represents a modem echo path

Chapter 3 Time Domain Adaptive Filtering

11

1 2 3 4 5 6 7

x 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-7

E
rr

o
r

Values of mu

Mean Square Error (Effect of varying mu)

Figure 3.4 The effect of varying mu.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

o
r

Values of N

Mean Square Error (Effect of varying N)

Figure 3.5 The effect of varying the number of filter coefficients

Chapter 3 Time Domain Adaptive Filtering

12

0 10 20 30 40 50 60 70 80 90 100

-3

-2

-1

0

1

2

3

A Sample of the Input Signal

Sample Number

A
m

p
lit

u
d
e
 (

V
)

Figure 3.6 A sample of the input signal

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample Number

A
m

p
lit

u
d
e

Convergence of Time Domain Adaptive Filter

Figure 3.7 The error convergence of the Time Domain Adaptive Filter

Chapter 3 Time Domain Adaptive Filtering

13

An examination of Figures 3.3 and 3.5 show the relationship between the length of the impulse

response of the unknown system and the number of required filter coefficients. Although the

unknown system in Figure 3.3 is fifty values at sample intervals close inspection indicates the

last twenty years or so contribute little to the system. From this we can expect about thirty

samples are sufficient to describe the system. This is reflected in Figure 3.5 where the error is

dramatically reduced after twenty or filter coefficients thus clear that twenty five coefficients are

sufficient for the adaptive filter.

To illustrate the above points, the error signal shown in Figures 3.4, 3.5 and 3.7 were able to

establish the value of μ to 3 × 10-3, and the value of N to 25. The applied input signal is a

randomly generated signal comprising amplitudes of -3, -1, 1 and 3, and these amplitudes are

common in telephone lines [3] An example of the applied input signal is shown in Figure 3.6.

Figure 3.7 shows the convergence of time domain adaptive filter by plotting the difference

between the desired filter response and real.

3.5 The Weakness of the LMS Algorithm

The LMS algorithm has a profound weakness, and that increases in computing costs to an

undesirable level as the length of the impulse response increases. This is mainly due to the fact

that the algorithm is in the time domain, leaving the algorithm in an obvious disadvantage when

an impulse response is very long. The computing power required simply becomes too high for

efficient use. There block LMS algorithm LMS versions that attempt to compensate for this

problem in the time domain, frequency domain however adaptive filtering is the key to solving

the problem very long impulse response.

In the next chapter we will discuss some algorithms first fixed frequency domain based

algorithms for adaptive frequency domain.

Chapter 3 Time Domain Adaptive Filtering

14

Chapter 4 Filtering in the Frequency Domain

4.1 Transforms

4.1.1 Introduction

 Before discussing frequency domain filtering should probably take a step back and study the

transition of data between time and frequency domains. The representation in the frequency

domain of a signal is merely an alternative representation. It is often the case that the signals are

represented in the frequency domain so that the use of discrete transforms to reduce the

processing required for signal processing applications, such as convolution. Although some

changes between the two domains, the Fourier Transform is the most widespread. The

advantages of the Fourier transform in other transforms include [2].The efficiency of the Fast

Fourier transform

 Adequate representations of data for even short data lengths

 More faithful representation of data

 Components are sinusoidal and are not distorted when transmitted over linear systems

 A high degree of familiarity and thus a lot of development.

4.1.2 Discrete Fourier Transform

The discrete Fourier transform is a Fourier transform that can be used to transform the discrete-

time signals to the frequency domain.

The equation used to calculate the discrete Fourier transform shown below.

 X k
n 0

N 1

x nT e
jkwnT

 4.0

where k is the harmonic number of the transform component.

It can be shown that this equation is analogous to the equation for calculating the Fourier

Transform for continuous time signals [2].

4.1.3 Properties of the Discrete Fourier Transform

 Symmetry

An important property of the Discrete Fourier Transform can be illustrated by comparison of X

(k) with X (k + N). The fact that these two elements are the same indicates the frequency with

Chapter 5 Implementation of the Fast LMS

15

period N. In general, the amplitude spectrum is also symmetric around harmonic N / 2 [2].

 Convolution

The discrete Fourier transform can be used to calculate the circular convolution if we use

zeros increase linear convolution can be calculated. The time convolution theorem states that

convolution in the time domain is equivalent to multiplication in the frequency domain [2].

Equation 4.1 illustrates this in a mathematical way

          kXkXFnxmxnx 21

1

21 *  4.1

where x, x1 and x2 are finite periodic sequences of equal length and * denotes circular

convolution F
-1

 denotes the Inverse Discrete Fourier Transform. This is a very important

property of the Discrete Fourier Transform in the context of this project, since digital filtering

is a form of convolution it is clear that we can now use multiplication to perform filtering if

we transform the signals we use to the frequency domain [2].

4.2 The Fast Fourier Transform

4.2.1 Introduction

The Fast Fourier Transform (FFT) algorithm is used to calculate the discrete Fourier transform

(DFT) of a vector x or in other words, to convert the vector x to the frequency domain. It uses

the built in redundancy in the DFT to minimize the number of calculations required and

therefore make the algorithm more efficient [2]. Inverse FFT (IFFT) is a version of the FFT that

converts the signals back into the time domain. [2]

4.2.2 The Computational Complexity

To calculate the DFT directly N2 complex multiplies are required, if the FFT algorithm is used

the number of operations for N a power of 2 is reduced to (N / 2) log2 (2N) + N complex

multiplications adds complex [5]. To maximize the efficiency of the FFT is important that the

block length N is a power of two. Remember that adding extra zeros to a signal to be Fourier

transform does not change the result of Fourier transform of this signal. The block length is the

length of the input block for which the FFT is computed.

Chapter 5 Implementation of the Fast LMS

16

4.3 The Overlap-Save Algorithm

4.3.1 Introduction

The overlap-add and overlap-save are the two main algorithms implementing fixed-frequency

domain convolution block and as we know from Section 2.2 of convolution and digital filtering

are essentially the same. Therefore, these algorithms are two examples of algorithms that take

advantage of the fact that multiplication in the frequency domain is equivalent to convolution in

the time domain. In this project we focus on the overlay-Save method as it is more

computationally efficient [2]. In the Overlap-Save algorithm input sequences overlap, a 50%

overlap is usually considered the most efficient. The current values of the input sequence

consisting of the current input block concatenated with the previous input block. This means that

the latest N samples of the current input stream is stored to concatenate with the next input

block. Circular convolution calculated results in the rotation of the circular artifacts, which

appear as the last N samples of the IFFT output. These samples are simply discarded and the

remaining samples are concatenated to give the output of the overlap save algorithm. The

savings-matching algorithm was carried out in this project, included in the accompanying disc

shaped overlapsave.m. To test the accuracy of the algorithm of its output was compared to the

output of the filter function in MATLAB. The difference between the two methods was around

10-16. The algorithm is executed as illustrated in Figure 4.1 [4].

Input Block Length 2N N Zeros + Impulse Response

2N point FFT 2N point FFT

Y(f) = X(f) x H(f)

2N point IFFT

Y(n) + circular artifacts

Figure 4.1 Block Diagram for the overlap-save algorithm.

4.3.2 The Overlap-Save Algorithm

Let N be the length of the impulse response of the system, the modem echo path as used in

Chapter 3. The length of the input sequence is then twice this at 2N.

Chapter 5 Implementation of the Fast LMS

17

1. N zeros are added to the impulse response if necessary so that the result of the FFT will be

the same length as that of the FFTs of the input sections.

2. The FFT of the impulse response is calculated and stored in memory because it will

remain unchanged.

     khFFTkW  4.2

3. Next the current block of the input is taken and the FFT of it is calculated, for the first

block there are N zeros in front of it for subsequent blocks the previous input block

precedes the current input block.

     kxFFTkX  4.3

4. The two FFTs are now multiplied , each element in one of the arrays will be multiplied by

the corresponding element in the other. This procedure corresponds to convolution in the

time domain. [1]

      kWkXkY . 4.4

5. The IFFT of Y(k) must now be calculated to bring the results back to the time domain.

     kYIFFTny  4.5

6. The second half of this result is dumped
1
 for each convolution.

The first half is added to an array as the output of the filter for the given input block.

7. The input block is updated applying 50% overlap and steps 3 to 7 are repeated.

1
 This seemingly important data can be simply discarded because zeros missing input data, which is usually added

to convolution effects. A convolution rule is that if N2 is the length of the impulse response and N1 is the length
of the input signal then N2-1 zeros are added to the input sequence and the N1-1 zeros must added to the
impulse response allowing to obtain correct linear convolution. Note that the zeros are added at the beginning of
the impulse response and in this case there is no corresponding zeros added to each block of input data and thus
zeros instead of N data samples prior to N, what we have here is 2N data samples. With 50% overlap intact the
second half of each convolution sum may be dumped as it contains data that is a result of the circular
convolution.

Chapter 5 Implementation of the Fast LMS

18

8. This algorithm has been tried and tested in the overlapsave.m file, which is included on

 the disc accompanying this report. It is a fine algorithm so long as the filter coefficients are

 known. In the next section we will consider an algorithm that will enable adaptive filters to

 operate in the frequency domain.

FFT IFFTX Save Last Block

+ Delay

X

FFT

Append

Zero Block

Delete Last

Block

IFFT

X FFT
Append

Zero Block +

Conjugate

d(n)

y(n)

Gradient

Constraint

u(n)

mu

U(k) Y(k)

U*(k) E(k) e(n)

Fig 4.2 Block Diagram for the Fast LMS algorithm[1]

4.4. An Adaptive Frequency Domain Algorithm

4.4.1 Introduction

Some research on this topic quickly identifies rapid LMS algorithm [6] as the main frequency

domain based adaptive algorithm and frequency domain adaptive filter based on this algorithm

Chapter 5 Implementation of the Fast LMS

19

for the purpose of this project. The version of the Fast LMS explored in this project is based on

the method of convolution superposition of savings, this makes filtering. Regarding the updating

of the filter coefficients fast LMS algorithm is based on their equivalent time domain. A

significant difference is that the fast LMS operates on blocks, introducing a latency time for the

system. The block diagram of Figure 4.2 illustrates the flow of the algorithm [6]

4.4.2 The Fast LMS Algorithm

As in the overlap-save algorithm N is the length of the impulse response of the unknown system.

2N measurement blocks are taken from the input at a time with 50% overlap as before. W will

donate the filter coefficients, which are initialized to zero and updated after each block.

The desired output is obtained by using the filter function in Matlab. The desired response of the

adaptive filter is now known and can be used to update the coefficients correctly. Similar to the

overlap-save algorithm add N zeros at the beginning of the input array to ensure correct results

convolution

1. An input block of size 2N is taken from the input array, U the FFT of this block is calculated.

    nuFFTkU  4.6

2. Now the Filter output can be computed by multiplying the FFT of the input block, U(k) by

the Filter coefficients as updated by the previous iteration of the algorithm.

 )()(kWkUkY  4.7

 This is transformed to the time domain by computing the IFFT of the above result.

     kYIFFTny  4.8

Due to circular convolution the first half of this result is simply discarded and the second half

forms the output of the adaptive filter for the given input block.

   NNyny
upto

21  4.9

3. The error signal is computed next by means of simple subtraction to calculate the difference

between the desired and the actual response.

Chapter 5 Implementation of the Fast LMS

20

y(n) - d(n) e(n) 4.10

where d(n) is the corresponding section of the desired response.

The error is brought into the frequency domain by adding N zeros to the start of e(n) and by

computing a 2N point FFT and the result is called E(k).

    nezerosFFTkE , 4.11

The Gradient Constraint

4. The conjugate of U(k),U’(k) is found and this is multiplied by E(k) and the IFFT of the result

is calculated. The second half of this result can be dropped due to circular convolution.

      kUkEIFFTng ' 4.12

   Ngng
upto
 1 4.13

5. N zeros are now added to the end of what we are left with and the 2N point FFT of the

resulting sequence is calculated and the result is multiplied by μ (the step size parameter)

   ngng  followed by N zeros 4.14

   )(1 ngFFTkW   4.15

this is the filter coefficient update factor, W1(k) and is added to W(k) and this is how the

update of the coefficients is conducted.

W(k+1) = W(k)+W1(k) 4.16

6. This newly updated W(k+1) will now be used as the filter coefficients for the next block of

input. An error may exist, however as W(k) is updated more often this error will diminish as

is indicated in Figure 4.3 which shows the convergence of the filter coefficients to near

optimum performance.

Chapter 5 Implementation of the Fast LMS

21

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Convergence quality

Sample Number

A
m

p
lit

u
d
e

Desired Response

Adaptive Filter Response

Figure 4.3 The convergence of the adaptive filter coefficients

Note that the desired response and the adaptive filter output produces almost perfectly map on

each other after only a few input blocks have been processed. Convergence can be best

illustrated in Figure 4.4, where the error signal is the difference between the two previous

signals. These figures were obtained with the value of μ adjusted to 2 x 10-3 N set at 50, though

this does not implement the efficiency of the FFT which is used to verify fast LMS algorithm

convergence. N is set to the length of the unknown system, which in this case represents the

echo path modem previously introduced. In the real world would require an engineer to estimate

the length of the impulse response of an unknown system and then choose the next power of 2 to

use the FFT algorithm efficiency. Again, the input samples would be as illustrated in Figure 3.6.

4.4.3 The First Input Block

Also notice in Figure 4.3 that the results for the first input block are also very good despite being

without previous values on which to base the filter coefficients. This is because the special

status given to the first block in this version of the algorithm. Initially, the filter coefficients are

set to zero and therefore the output for the first block would also be zero. To avoid this problem,

Chapter 5 Implementation of the Fast LMS

22

the error associated with the first input block is calculated y (n) being set to zero, which means

that the error becomes very real answer desired, then this error is used to adjust the coefficients

for filter and these are used to input the first block in place of the zeros, the coefficients are

updated after that as usual in preparation for the next input block.

4.5 The Cross-Over Point

Now that we have examined both time and frequency domain applications it is time to compare

the two domains in terms of computational complexity.

4.5.1 Time Domain Implementation

To calculate an actual output block from a real input block for a given filter we need N

multiplied to generate each output value N. N2 also need to update the filter coefficients. This

gives a total of 2N2 multiplied by the time domain LMS algorithm

Time Operations = 2N
2
 4.17

4.5.2 Frequency Domain Implementation

There are 3 FFTs and 2 IFFTs each of length 2N where N is the length of the bock size, since

the computation involved in calculating a 2N point IFFT is the same as that involved in

calculating the FFT we can group IFFTs and FFTs together. Now we have 5 FFTs requiring 10N

log2(2N) real multiplies and 5N log2(2N)+10N real adds [5]. In the rest of the algorithm there

are two 2N complex vector products, relating to 16N real multiplies and 8N real adds, there is

also one 2N point complex tap vector update requiring 4N real multiplies. Giving multiplies and

adds an equal weighting we have an approximate total number of operations for the frequency

domain implementation.

 Frequency Operations = 15N log2(2N)+38N 4.18

Note that this is only an approximation since in reality real multiplies are more computationally

Note that this is only an approximation, since in actual fact are more computationally expensive

multiplies that really adds, however, the figure can be used for comparison purposes. For 10,000

samples per second, the computational cost of frequency domain and time domain approaches

were compared and the results can be seen as operations per second requirements of the two

approaches. The number above for operations in the frequency domain depends on N is a power

of two and therefore a comparison with the time domain values are compared to N is a power of

two. The crossing point was obtained 128, if N is however not allowed to be powers of two for

the time domain, the crossover point can be less as shown in Figure 4.5. As N increase the

proportion of the time domain operations to the operations in the frequency domain also

increases linearly as shown in Figure 4.6

Chapter 5 Implementation of the Fast LMS

23

0 100 200 300 400 500 600
0

2

4

6

8

10

12
x 10

6

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Length of impulse Response

Frequency V Time Domain Operations

Time Domain

Frequency Domain

Figure 4.5 Illustration of the Crossover Point

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

20

R
a
ti
o

Length of impulse Response

Ratio of Time Domain V Frequency Domain

Figure 4.6 The ratio between the time and frequency domain operation count

Chapter 5 Implementation of the Fast LMS

24

Chapter 5 Implementation of the Fast LMS

5.1 Introduction

The goal is to have a system that will then process values while enjoying the next set of

values as in Figure 5.1. This system would not be enough to be classified as real-time,

but rather as close to real time. To test real-world values of the system are read from the

data acquisition card from National Instruments (NIDAQ). Unknown system used as a

test system is merely a lowpass filter with a cutoff frequency of 140 Hz output of this

filter is read through NIDAQ card and a block stored in the same memory, and this sends

the adaptive filter algorithm as the desired response. The input to the filter is of the form

shown in Figure 3.6. This will be sent to the filter, the unknown system through NIDAQ

card. To carry out the task of reading in values, while values previously read are going to

use wire processing. Topics that are not quite something that is true in the programming

of every day and we are going to introduce the concept of topics in the next section. For

the purpose of this project was considered to write a function to implement the FFT

would take too long and so a function version is available online at [7].

Main Program

Write and Read

Values from

the NIDAQ card

Start Fast LMS

Thread

Get more

values

N

Y

End Program

Figure 5.1 Block Diagram Representing the two tier Process

Chapter 5 Implementation of the Fast LMS

25

5.2 The NIDAQ Card

The National Instruments Data Acquisition (NIDAQ) card is a powerful tool that allows the

computer to communicate with the outside world in a manner simple for the user to follow and

to use. The NIDAQ means that we can both write data to and read data from the outside world.

The card contains analogue to digital and digital to analogue converters so that the user can

input and output analogue signals to the specified pins on the connector. National Instruments

provide some sample programs to illustrate the use of common NIDAQ functions. The two

functions that we are interested in here are AO_Write and AI_Read, since these are the two used

in this project. AI_Read, reads an analogue input voltage, converts it to its digital equivalent and

returns the result as an integer code, this code can then be converted to the correct voltage value.

AI_VRead would do the above conversion for us, however it was felt that this code may contain

some unnecessary extras and so AI_Read was used. AO_Write takes an integer code

representing a voltage and outputs this value to the specified channel. Specification sheets and

other information including pin assignments and more detail on the functions can be found at

[8].

5.3 Threads

5.3.1 Introduction

A thread is a specified execution path in a process. Most processes consist of only one thread,

the primary thread, which is created when the process is begun. Processes can, however consist

of many threads. The primary thread can create another thread to take over some of its

workload, indeed this thread and all other threads can do the same. The idea of threading is to

utilize as much of the processing power of the processor or processors as possible. Generally we

should consider creating a new thread when the program encounters asynchronous activity.

Background tasks that the user needs to know nothing about can be carried out with efficiency

by using threads [9].

5.3.2 Thread Attributes

 Each thread is allocated its own stack from the owning process’s address space.

 Each thread has its own thread context, reflecting the state of its processor registers when

it was last executed.

 Every thread has a priority associated with it in order for the system scheduler to identify

the next thread that it should execute. The scheduler gives priority to threads which have

the highest priority associated with them. A thread inherits its priority according to the

Chapter 5 Implementation of the Fast LMS

26

process that creates it. [9]

5.3.3 Thread Synchronization

Threads cannot always just be created and run in a random manner with everything expected to

run smoothly. Threads must be able to work together and interact, to do this we may have to

work on the timing control. We can do this in one of two ways by using priority or

synchronization. Priority levels should always be set sensibly, for example simply assigning a

high priority to all threads defeats the purpose. Synchronization means that the threads are

coordinated and that their sequences of tasks happen in a required manner. To allow efficient

synchronization of threads Win32 supports synchronization objects, such as mutexes, critical

sections, semaphores and events [9]. Now if a thread is to perform a coordinated task it may be

forced to await a response from one of the aforementioned synchronization objects, once this is

received it is free to continue at least until its next synchronized task. If a thread is waiting for a

signal from a synchronization object it is removed from the system’s queue to avoid wasting

precious processor time. It was thought that mutexes could be used as a synchronization tool in

this project, however it was found that they were not suitable. The next subsections describe the

mutex object and explains why it could not be used and how the problem was resolved [9].

5.3.4 The Mutex

In essence a mutex is a narrow gate that lets threads through one at a time. Generally this gate

leads to a small section of code that needs exclusive access to shared data before the code can be

executed. The CreateMutex function creates a mutex and returns a handle to it. [9]

A mutex can be used to synchronize threads running from multiple processes. The threads

however must have process relative handles to the same mutex object. This can be achieved

using the aforementioned CreateMutex function. If a second call is made to this function with

the same mutex name specified the system will recognize this and simply return a handle to the

previously created mutex [9].

5.3.5 Problem Encountered

In the case of this project exclusive access to the input data (read in from the NIDAQ card) was

required to avoid the data being processed being overwritten prematurely. Synchronization is

obviously crucial here to ensure that data read in from the NIDAQ is processed before the mutex

is passed back to the thread reading in from the NIDAQ card. This is where the difficulties were

encountered. Both threads contained for loops and each for loop contained a call to

Chapter 5 Implementation of the Fast LMS

27

WaitforSingleObject [9], which means wait for the mutex handle. The problem was that the

same thread was grabbing the mutex before the second thread got a chance. To solve the

problem we found that we could only remove the mutexes and simply begin a new thread each

time data was read in, using the _beginthread [9] function. Efficiency now became the main

concern and to remove some of the inefficiencies of starting a new thread each time global

variables were used.

To verify this C implementation of the adaptive filter it and the Matlab version were run using

the same input and desired signals. The outputs of both implementations were compared and the

error was found to be of the order of 10
-16

. Having verified the operation of the Matlab version

in chapter 4 it can be said that the C implementation is now also verified. The code is included

on the disk accompanying this report.

In the next chapter we will explore possible applications of the adaptive frequency domain filter.

Chapter 6 Further Applications

28

Chapter 6 Further Applications

6.1 Introduction

As part of this project we investigated the possible applications of the LMS adaptive filter Fast

mode system identification. One possible application was investigated particularly adaptive

equalization. Essentially, implying adaptive equalization is compensating for unwanted linear

channel (such as telephone lines) additional filtering features. Inter Symbol Interference (ISI),

which is the interference caused by the received symbols overlap requires rather precise

equalization or compensation to reduce ISI caused by the channel. [3] In the identification

system generally depends on the availability of a desired response. This is not always practical,

so instead of looking for the real answer simply desired signal can generate the same preset (the

training sequence) at both the transmitter and receiver. Such transmission sequence and

application version generated in the receiver after a time equal to the channel transmission delay

as the desired response means that an appropriate input signal and the corresponding desired

response is available to establish the filter coefficients . This is done before the data

transmission and depends to some extent on the characteristics of the channel does not change

dramatically during the duration of the call in the case of application to the telephone network.

The training sequence must be at least as long as the impulse response of the equalizer to ensure

the necessary density in the channel bandwidth to be matched. [3] After this training period the

training sequence generator is turned off and the channel is now ready for data transmission as

illustrated in Figure 6.1. During transmission of data decisions are used to determine which

symbol was transmitted. A decision maker is simply a device that decides which symbol was

transmitted. Since the release of this decision-making is reliable, we can use it as the desired

response for data transmission that enables adaptive equalizer to track small changes in the

channel. [3]

Adaptive

Equalizer

Decision

Device

Training

Sequence

Generator

+
-

+

e(n)

y(n) d1(n) d(n)x(n)

Figure 6.1 A block diagram of the adaptive Equalizer

Chapter 6 Further Applications

29

6.2 Time Domain Adaptive Equalizer

The time-domain adaptive equalizer is investigated based on the LMS algorithm. The training

sequence is a randomly generated sequence of 1 and -1, this sequence is used as the input also

delayed by ten samples and is applied as the desired signal for the duration of the training

period. Although the exact delay is unknown, as long as the chosen value is sufficient adaptive

filter will adapt to introduce further delay if necessary. After the training period decision making

can be used to identify which symbol is transmitted and provide the filter coefficients have

converged properly during the training sequence can be used as the desired response. Figure 6.2

shows the convergence of the filter for a training period of length 200 with a value of μ set to

0.8 for the training period and reduced to 0.5 when applying the decision maker. The mean

square error is calculated as the difference between the desired response and the actual response.

Suitable values of μ chosen simply on the basis of trial and error in order to investigate this

application. Μ value is highest during the training period to provide fast convergence and

reduced to the period of data transmission for providing finer adjustment of the filter

coefficients during this period. Unknown system to be identified is the echo path modem used in

chapter 3 and therefore the length of the equalizer chosen was 25.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The mean square error

Sample Number

A
m

p
lit

u
d
e

Figure 6.2 The convergence of the time domain adaptive Equalizer

Chapter 6 Further Applications

30

6.3 Frequency Domain Adaptive Equalizer

This project investigates a frequency domain based adaptive equalizer LMS algorithm fast. The

training sequence is the same as that used for the time domain equalizer, except that this time

has to be divided into blocks of size N, where N is the length of the impulse response selected to

be a power of 2. N was chosen to be 32 according to the discussion in Chapter 4. The desired

response is delayed again for ten samples. The training sequence has a duration of 20 input

blocks of size N and after using the device of choice. Although convergence was not achieved

great figure 6.3 shows that the tie will certainly not converge.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The mean square error

Sample Number

A
m

p
lit

u
d
e

Figure 6.3 The convergence of the frequency domain adaptive Equalizer

31

Chapter 7 Conclusion

7.1 In Conclusion

In this study adaptive signal procesing is introduced by the transmission of a daily application

in echo cancellation in the telephone system. An introduction to digital filtering was introduced

then to give some background on the basic idea of digital filters and why so much work is put

into them instead of analog filters. Convolution concept is introduced, which helps depict digital

filtering as a mathematical process. Chapter 3 explains adaptive filtering, in particular mode

system identification. The LMS algorithm is introduced as the main adaptive algorithm in the

time domain and its operation is discussed. An alternative representation of signals in the

frequency domain is then introduced, which allows the convolution of two signals is calculated

in a much more efficient. The cost of converting the signals to and from the frequency domain

should be noted however, and filter impulse responses short that is too high to allow frequency

domain filter replace filter time domain. Substantial savings can be made as though the impulse

response increases, a crossing point was portrayed approximate. This report presents a possible

implementation of the fast LMS in the C programming language and a possible application as an

adaptive equalizer explored.

7.2 Achievements

 It was expected that the crossover point between the time domain and frequency domain

implementation is well defined but difficulties in identifying the suitable coefficients for

multiplication and prevented it adds, however, is considered to be given a good guideline figure.

The Matlab simulation of a time domain adaptive filter worked well, the investigation of the

effects of varying N, the number

and the results are portrayed. Simulation was achieved adaptive filter frequency domain in

N, for this filter is intuitively needs to be at least equal to the length of the impulse response of

the unknown system similar to the methodology in the domain of time and then go to the next

power of two to allow the use of FFT efficiency.

The translation of the fast LMS algorithm to the programming language C was achieved with

the development of a real-time architecture suitable for real time operation using a low pass

filter of the first order simple as a test system.

32

References

[1] “Communication Systems” 4
th

 edition, Simon Haykin

[2] On the Complexity of Frequency Domain Adaptive Filtering, Neil K. Jablon

[3] “Digital Signal Processing” by A Vallavaraj & C Gnanapriya

[4] “Adaptive Equalization” by L.Hanzo, C.H. Wong, M.S Yee

[5] IEEE Transactions on Signal Processing, Vol. 39,No. 10, October 1991

[6] www.music.miami.edu/programs/Mue/mue2003/research/jvandekieft/jvchapter2.

[7] http://www.ee.calpoly.edu/~jbreiten/C/

[8] http://www.interex.org/pubcontent/enterprise/jul01/13parksh.html,

[9] “Adaptive Filter Theory “ by Simon Haykin.

[10] en.wikipedia.org/wiki/adaptive filter

Bibliography

[1] “Signal Processing Algorithms in Matlab”

 S.Stearns and R.David, Chapter 9

