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Abstract

An Outlier is an observation which is different from the others in a sample. Usually an

anomaly occurs in every data due to measurement error. Anomaly detection is identi-

fying anomalous data for given dataset that does not show normal behavior. Anomaly

detection can be classified into three categories: Unsupervised, Supervised and Semi-

supervised anomaly detection. Anomaly detection is used variety of domains like fault

detection, fraud detection, health monitoring system, intrusion detection. The outlier

detection can be grouped into 5 main categories: statistical-based approaches, depth-

based approaches, clustering approaches, distance-based approaches and density-based

approaches. Distance -based methods i.e. Index-based algorithm, Nested-loop algorithm

and LDOF are discussed. To reduce the false positive error in LDOF, we proposed

MLDOF algorithm. We tested LDOF and MLDOF by implementing on several large

and high-dimensional real datasets obtained from UCI machine repository. The experi-

ments show that the MLDOF improves accuracy of anomaly detection with respect to

LDOF and reduces the false positive error.

Keywords : Anomaly, LDOF, Index-based, Nested-Loop.
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Chapter 1

Introduction

Outlier detection defined as finding outliers in data that do not show normal behav-

ior.These data which do not conform are called as anomalies, outliers, exceptions.

Anomaly and Outlier can be used interchangeably. Anomaly detection is important

because it causes data translate to significant information in different variety of appli-

cations.

1.1 Outliers

An Outlier is an observation which is different from the others in sample. Outliers

arise due to many reasons like malicious activity.Example credit card fraud etc. Outlier

detection is different from noise removal though it is very much similar to it. A key

difference between noise removal and outlier detection is data in noise removal that is

Figure 1.1: Outliers

N1 and N2 are normal data. o1 and o2 are two outliers and points in O3 is also
considered as an outlier.
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not of interest to analyst, but acts as a hindrance to data analysis whereas in outlier

detection the data are interesting to the data analyst.

1.2 Causes of an Outliers

• Data quality poor / contaminated data

• Malfunctioning of equipment, manual error.

• Good but exceptional data

1.3 Outlier Detection Approach

It is used to define a area representing normal behavior and declare any area of obser-

vation in the data that does not belong to normal region as an outlier.

Some factors make this approach very challenging:

• Defining a normal region that encompasses every possible normal behavior is

very difficult. The boundary between normal and anomalous behavior is often not

precise. Anomalous observation that lies close to the boundary can be normal and

vice versa.

• Due to malicious actions often anomalous observations appear normal, thereby

making it difficult to define the normal behavior.

• The exact notion of an anomaly is different for different application domains. So

appllication of a technique developed in one domain to a different domain cannot

be straightforward.

• Major issue of models used by anomaly detection techniques is availability of

labeled data for validating or training.

• The noise data tends to be similar to the actual anomalies and hence it is very

difficult to distinguish and remove.

It is not easy to solve the problem of anomaly detection due to these challenges. In

fact, most of the existing outlier detection techniques solve a specific formulation of the

problem.
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Figure 1.2: Example of anomalies in 2-D dataset

1.4 Outliers Types

The three categories of Anomalies classification are [1]:

1. Point Anomalies

The instance is called outlier if it anomalous with respect to the rest of the data.

It is simplest type of anomaly and is the focus of majority of research on anomaly

detection.

2. Contextual Anomalies

If a data instance is anomalous in a specific context but not otherwise. Induced

by the structure in the dataset, as a part of the problem formulation the notion

of a context has to be specified. Each data objects is defined using the following

two sets of attributes:

• Contextual attributes : These attributes are used to determine the context

(or neighborhood) for that object. For object, in spatial datasets like deter-

mining the location, the latitude and longitude are the contextual attributes.
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For a time-series data, the contextual attribute is the time which can deter-

mine the position of an instance on the entire sequence.

• Behavioral attributes : The behavioral attributes define the non-contextual

characteristics of an instance. Considering a spatial dataset describing the

average rainfall of the entire world. So at any location the amount of rainfall

is the behavioral attribute.

3. Collective Anomalies: The collection of related data objects is anomalous with

respect to the data is called collective anomalies.Individual data instances in a

collective anomaly may not be outliers by themselves, but their occurrence together

as a collection is anomalous.

1.5 Data Labels

The labels associated with data instances denote whether that instance is normal data

or anomalous. Based on the extent to which the labels are available, the operation of

anomaly detection can be done in one of the following three modes:

1.5.1 Supervised Anomaly Detection

Techniques trained in supervised mode assume that the availability of labeled instances

of a training dataset for normal as well as anomaly classes. It’s approach is to build a

predictive model for normal against outlier classes. Any unseen data object is compared

against the predictive model to determine which class it belongs to. The two major

issues arise in supervised anomaly detection are discussed. Firstly , the anomalous

instances are fewer compared to the normal instances in the training data. Due to

imbalanced class distributions arise issues which have been addressed in the data mining

and machine learning literature. Secondly, it is usually challenging to obtain accurate

and representative labels for the anomaly class . There have been a number of techniques

proposed that inject artificial anomalies into a normal dataset to obtain a labeled training

dataset. Other than these two issues, the supervised anomaly detection problem is

similar to building predictive models.

1.5.2 Semi-supervised Anomaly Detection

In this Techniques, it assume that the training data has labeled objects only for the

normal class that operate in a semi-supervised mode. As they do not require labels
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for the anomaly class as they are more applicable than supervised techniques . For

example, in spacecraft fault detection, it is not easy to model to signify an accident

thats an anomaly scenario. The typical approach used in such techniques is to build a

model for the class corresponding to its normal behavior and use this model to identify

anomalies in the test data. A limited set of anomaly detection techniques exists that

assumes availability of only the anomaly instances for training. As it is difficult to obtain

a training dataset that covers every possible anomalous behavior that can occur in the

data so such techniques are not commonly used.

1.5.3 Unsupervised Anomaly Detection

It do not require training data in those techniques that operate in unsupervised mode,

and so most widely applicable. Assumption made that normal objects are far more

frequent than outliers in test data in this category of techniques. Thus techniques suffer

from high false positive rate if the assumption is not true. By using a sample of the

unlabeled dataset as training data many semi-supervised techniques can be madde to

operate in an unsupervised mode. IT assumes the test data contain very few anomalies

and model learned during training is robust to few anomalies.

1.6 Types of Anomaly Detection Techniques

1. Statistical-based Detection

(a) Distribution-based

(b) Depth-based

2. Deviation-based Method

3. Sequential exception.

4. Distance-based Detection

(a) Index-based

(b) Nested-loop

(c) Local-outliers

5. Density-based Detection

6. Clustering-based Detection
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1.7 Output of Anomaly Detection

Anomaly detection techniques outputs are one of the following two types:

1. Scores : An anomaly score is assigned to each object in the test data according to

their degree to which that object is considered an anomaly. The output of these

techniques is a ranked list of anomalies. An analyst may choose to either analyze

the top few anomalies or use a cutoff threshold to select the anomalies.

2. Labels : Each test object is assigned a label(normal or anomalous) using techniques

in this category.

1.8 Challenges

• How many outliers are there in the data?

• Method is unsupervised Validation can be quite challenging (just like for clustering)

• Finding needle in a haystack.

1.9 Assumptions

Number of normal observation is much more than the number of abnormal observa-

tions(anomalies) in data.

1.10 Applications

1. Fraud detection

Credit card fraud detection : Amount spent in a transaction which is very high

compared to the normal transaction for that person,it will be a point anomaly.

2. Intrusion detection

Network intrusion detection : Detection of anomalous activity (break-ins, pene-

trations, and other forms of computer abuse) in a computer related area.To gain

unauthorized access for information form the network, hackers launch ciber at-

tacks. It uses semi supervised and unsupervised anomaly detection techniques.
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3. Fault detection

Fault detection in Mechanical Units : Monitor the performance of industrial com-

ponents such as oil flow in pipelines, turbines , motors and detect defects that

might occur due to wear and tear or other unforeseen circumstances.



Chapter 2

Distance-based Outliers Methods

• Data is represented as a vector of features.

• It rely on the computation of distance value based on metric distance function.

• Distance-based outliers are rightly defined for k-dimensional datasets for any value

of k[2].

• Distance-based: An object O in a dataset T is a DB(p,D) outlier if at least fraction

p of the objects in T are grater than eual to distance D from O.

• The major approaches are

– Nearest Neighbors based

– Density based

8
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2.1 Indexed-based Method

By analyzing the multidimensional indexing schemes [3] we found that, for variants of

R-trees [4], k-d trees[5], andX-trees [6], range search lower bound complexity is (N11/k).

By increasing the value of k, range search quickly reduces to O(N), giving at best a

constant time improvement reflecting sequential search. So, the procedure for finding

all DB(p, D) outliers has a worst case complexity of O(k N2). Compared to the depth-

based approaches, which have a lower bound complexity of (N k 2 ), DB outliers

scale much better with dimensionality. The framework of DBoutliers is applicable and

computationally feasible for datasets that have many attributes (i.e., k 5). This is

a significant improvement on the current state-of-the-art,where existing methods can

only realistically deal with two attributes [7, 8].The above analysis only considers search

time. When itcomes to using an index-based algorithm, most often for the kinds of

data-mining applications under consideration, it is a very strong assumption that the

right indexexists. In other words, a huge hidden cost to an index-based algorithm is

the effort to build the index in the first place. As will be shown in Sect. 6, the index

build-ing cost alone, even without counting the search cost,almost always renders the

index-based algorithms non-competitive.

Steps

1. Index is used to search for neighbors of each object O within radius D around that

object.

2. Once K (K = N(1-p)) neighbors of object O are found, O is not an outlier.

3. O(K*n2) is worst case computation complexity, K is the dimensionality and n is

the no. of objects in the dataset[9].

Pros : Scale carefully with K

Cons : Index construction process may take much time.
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2.2 Nested-loop Method

The nested loop calculate distances of instances to all other objects to find the instances

k nearest neighbors. Nested loop has a complexity of O(kN2), (k is the no. of dimensions

and N is the no. of data objects), and the no. of passes over dataset is linear to N. Due

to quadratic complexity,in respect to no. of objects, making it deficient for mining large

databases. Calculation of distances between objects is the major cost. Though Nested

loop is a good choice for high dimensionality datasets, the large number of calculations

makes it unsuitable[9].

Steps:

1. Divides the buffer space into two halves (first and second arrays)

2. Break data into blocks and then feed two blocks into the arrays.

3. Directly computes the distance between each pair of objects, inside the array or

between arrays

4. Decide the outlier.

5. Same computational complexity as the index-based algorithm[10].

6. Pros:

Avoid index structure construction

Try to minimize the I/Os
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2.3 Local Distance-Based Outlier Detection Factor (LDOF)

The previous outlier detection schemes are average when it comes to detecting outliers

in real world scattered datasets. LDOF uses the relative distance from an object to its

neighbors to measure how much objects deviate from their scattered neighborhood. The

higher outlier factor ,it more likely the point is an outlier. It is observed that outlier

detection schemes are more reliable when used in a top-n manner. This means that the

top n factors are taken as outliers, the n is decided by the user as per his requirements

[11].

We use a test case in which there are 3 clusters C1,C2 and C3 and four outlying points

O1,O2,O3,O4 are present. When we set a value ok k > 10 the cardinality of a cluster.

i.e. in this case C3 is the smallest cluster whose cardinality is 10. We solve this problem

by following method .

Figure 2.1: Test case to demonstrate effectiveness of LDOF
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2.3.1 Formal Definitions

• kth inner distance of xp

Let Np be the set of the k-nearest neighbors of object xp (excluding xp). The k-

nearest neighbors distance of xp equals the average distance from xp to all objects

in Np. More formally, let dist(x, x) > 0 be a distance measure between objects x

and ó. The k-nearest neighbors distance of object xp is defined as:

d̄xp = 1
k

∑
xiεNp

dist(xi, xp)

• kth inner distance of xp

Given the k-nearest neighbors set Np of object xp, the k-nearest neighbors inner

distance of xp is defined as the average distance among objects in Np as:

D̄xp = 1
k(k−1)

∑
xi,x́iεNp,i 6=í dist(xi, xí)

• LDOF of xp

LDOF (xp) =
d̄xp
D̄xp

Figure 2.2: Showcasing dxpandDxp

Here d̄xp mainly denotes the distance between the specified point and all other points

in the k neighborhood set of the point and D̄xp represents the distance between the

points in the k neighborhood set[12]. Another way to minimize calculation is to find

the median of the k neighborhood points and name is x́ and then calculate the distance

between points in k neighborhood set and x́. This minimizes calculations.
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Furthermore LDOF is often used as top-n LDOF and it is used as the following [11]:

Input : A given dataset D, natural numbers n and k.

Steps :

1. For each object o in D, retrieve o’s k-nearest neighbors

2. Calculate LDOF for each object o. The objects with LDOF < LDOFlb are directly

discarded

3. According to their LDOF values sort the object

Output :Highest LDOF values of first n objects.



Chapter 3

Motivation and Objective

3.1 Motivation

1. Solving the False Positive error of LDOF.

2. Improving the overall accuracy of outlier detection in numerical datasets

3.2 Objective

To improve the efficiency of existing LDOF algorithm by reducing false detection.

14



Chapter 4

Modified Local Distance-based

Outlier Factor (MLDOF)

The disadvantage of Local Distance-based Outlier Factor is false detection i.e. false

Positive error is high. We have introduced a new outlier detection method Modified

Local Distance-Based Outlier Factor (MLDOF) to overcome and to improve the accuracy

of the existing algorithm.

4.1 Features

1. It uses concept of KNN distance and KNN inner distance of a object.

2. It finds the Nearest neighbour of the points and decides it as outlier or not.

3. It reduces the false detection of normal data as outlier.

4.2 Algorithm

1. For each object p in D, retrieve p’s k-nearest neighbours;

2. LDOF calulated for each object p. the objects having LDOF ¡ LDOFlb are dis-

carded;

3. Objects sorted according to their LDOF values;

4. Identify indexes of point that can be a outlier.

5. Check for Nearest Neighbor for points that LDOF identified.

15
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6. If M+1, neighbors are found in the D- neighborhood,

then the search stops,

and O declared as non-outlier.

else

O declared as outlier.

4.3 Explanation

In this algorithm, it takes each object form the dataset and computes k nearest neighbor

individually. Nearest neighbor is calcluated using some underlying function. Then finds

kNN distance with respect to the objects neighbors and also finds kNN inner distance

of objects respectively. After that it computes the LDOF for each objects.If LDOF of

an object is less than lower bound then it is discarded.After discarding then sort the

objects according to their LDOF values. Then it identifies the indexes of point that can

be a outlier. Now check for the nearest neighbors of that points that are identified by

LDOF. If the nearest neighbor for points is greater than M where M=D(1-p)and p in

minimum fraction of objects in dataset that must be outside the D-neighborhood of an

outlier,then the points regarded as non-outlier. By doing that it discards some of the

points identified by LDOF and that reduces ths false detection of normal data as an

outliers.



Chapter 5

Experiment Details

In this algorithms,mainly uses k-nearest neighbor to find out the object is outlier or not.

5.1 Iris Data Set

Data Set Characteristics Multivariate Area Life

Number of Instances 150 Attribute Characteristics Real

Number of Attributes 4 Associated Tasks Classification

Date Donated 1988-07-01 Number of Web Hits 447188

Attribute Information :

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. Class

Iris Setosa

Iris Versicolour

Iris Virginica

Source :

• Creator: R.A. Fisher

• Donor: Michael Marshall (MARSHALL

• Date: July, 1988

17
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Information :

•• This is perhaps the best known database to be found in the pattern recog-

nition literature. Fisher’s paper is a classic in the field and is referenced

frequently to this day. (See Duda Hart, for example.) The dataset contains

3 classes of 50 instances each, where each class refers to a type of iris plant.

One class is linearly separable from the other 2; the latter are NOT linearly

separable from each other.

• Predicted attribute: class of iris plant.

• This is an exceedingly simple domain.

• This data differs from the data presented in Fishers article (identified by

Steve Chadwick, spchadwick@espeedaz.net) the 35th sample should be: 4.9,

3.1, 1.5, 0.2,”Iris-setosa” where the error is in the fourth feature. The 38th

sample: 4.9, 3.6, 1.4, 0.1,”Iris-setosa” where the errors are in the second and

third features.

5.2 Haberman’s Survival Data Set

Data Set Characteristics Multivariate Area Life

Number of Instances 306 Attribute Characteristics Integer

Number of Attributes 3 Associated Tasks Classification

Date Donated 1999-03-04 Number of Web Hits 47250

Attribute Information :

1. Age of patient at time of operation (numerical)

2. Patient’s year of operation (year - 1900, numerical)

3. Number of positive axillary nodes detected (numerical)

4. Survival status (class attribute)

1 = the patient survived 5 years or longer

2 = the patient died within 5 year

Source :

• Donor: Tjen-Sien Lim (limt ’@’ stat.wisc.edu)
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Information :

Dataset contains cases from a study that was conducted between 1958 and 1970 at

the University of Chicago’s Billings Hospital on the survival of patients who had

undergone surgery for breast cancer.

5.3 Seeds Data Set

Data Set Characteristics Multivariate Area Life

Number of Instances 210 Attribute Characteristics Integer

Number of Attributes 7 Associated Tasks Classification,

Clustering

Date Donated 2012-09-29 Number of Web Hits 22190

Attribute Information :

To construct the data, seven geometric parameters of wheat kernels were measured:

1. Different varieties of wheat:

(a) Kama

(b) Rosa

(c) Canadian

2. Area A

3. Perimeter P

4. Length of kernel

5. Width of kernel

6. Asymmetry coefficient

7. Compactness C = 4*pi*A/P2

Source :

• Magorzata Charytanowicz, Jerzy Niewczas Institute of Mathematics and Com-

puter Science, The John Paul II Catholic University of Lublin, Konstantynw

1 H, PL 20-708 Lublin, Poland. E-mail: mchmat,jniewczas@kul.lublin.pl

• Piotr Kulczycki, Piotr A. Kowalski, Szymon Lukasik, Slawomir Zak Depart-

ment of Automatic Control and Information Technology, Cracow University

of Technology, Warszawska 24, PL 31-155 Cracow, Poland and Systems Re-

search Institute, Polish Academy of Sciences, Newelska 6, PL 01-447 Warsaw,

Poland.E-mail: kulczycki,pakowal,slukasik,slzak@ibspan.waw.pl
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Information :

• The examined group comprised kernels belonging to three different varieties

of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected

for the experiment.

• High quality visualization of the internal kernel structure was detected using

a soft X-ray technique.

• It is non-destructive and considerably cheaper than other more sophisticated

imaging techniques like scanning microscopy or laser technology.

• The images were recorded on 13x18 cm X-ray KODAK plates.

• Studies were conducted using combine harvested wheat grain originating from

experimental fields, explored at the Institute of Agrophysics of the Polish

Academy of Sciences in Lublin.

• The dataset can be used for the tasks of classification and cluster analysis.

5.4 Breast Cancer Wisconsin (Original) Data Set

Data Set Characteristics Multivariate Area Life

Number of Instances 699 Attribute Characteristics Integer

Number of Attributes 10 Associated Tasks Classification,

Clustering

Date Donated 1992-07-15 Number of Web Hits 90885

Attribute Information :

1. Sample code number: id number

2. Clump Thickness: 1 - 10

3. Uniformity of Cell Size: 1 - 10

4. Uniformity of Cell Shape: 1 - 10

5. Marginal Adhesion: 1 - 10

6. Single Epithelial Cell Size: 1 - 10

7. Bare Nuclei: 1 - 10

8. Bland Chromatin: 1 - 10

9. Normal Nucleoli: 1 - 10

10. Mitoses: 1 - 10



21

11. Class:

2 for benign

4 for malignant)

Source :

•• Creator: Dr. WIlliam H. Wolberg (physician),University of Wisconsin Hospi-

tals Madison, Wisconsin, USA

• Donor: Olvi Mangasarian (mangasarian ’@’ cs.wisc.edu) Received by David

W. Aha (aha ’@’ cs.jhu.edu)

Information :

• Samples arrive periodically as Dr. Wolberg reports his clinical cases. The

database therefore reflects this chronological grouping of the data. This group-

ing information appears immediately below, having been removed from the

data itself :

1. Group 1: 367 instances (January 1989)

2. Group 2: 70 instances (October 1989)

3. Group 3: 31 instances (February 1990)

4. Group 4: 17 instances (April 1990)

5. Group 5: 48 instances (August 1990)

6. Group 6: 49 instances (Updated January 1991)

7. Group 7: 31 instances (June 1991)

8. Group 8: 86 instances (November 1991)

9. Total: 699 points (as of the donated datbase on 15 July 1992)

• Note that the results summarized above in Past Usage refer to a dataset of

size 369, while Group 1 has only 367 instances. This is because it originally

contained 369 instances; 2 were removed.



Chapter 6

Results and Discussions

We implemented both LDOF and MLDOF outlier detection methods on the datasets

over a large range of k.

In a classification task, the precision for a class is no. of true positives divided by the

total no. of elements labeled as belonging to the positive class. A perfect precision score

of 1 means that every result obtained by a search was relevant.

Example: A precision value of 1 for a class X means that every item labeled as belonging

to class X does indeed belong to class X.

Here precision is calculated to evaluate the performance of each algorithm.

Precision= ND / NR

where,

ND= Number of detected real outliers in the dataset

NR=Number of real outliers in the dataset.
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6.1 Iris Dataset

We have taken total 60 instances in which 50 instances are normal and 10 instances

are outliers. Knowingly 10 outliers are taken to test the algorithms are working fine or

not. We ran both algorithms, for k=12; LDOF showed 13 instances as outliers where

3 instances are normal data which falsely detected as outliers and other 10 instances

are real outliers but in MLDOF showed 10 instances which are real outliers. We draw

confusion matrix for both the algorithms in figure.6.1 and figure.6.2. In order to compute

performance of the algorithm we draw the precision vs neighborhood size k graph, it is

shown in figure 6.3.

1. Input 50 instances of a class 10 instances of other class

2. Output:The following indexes as outliers [ 51 52 53 54 55 56 57 58 59 60 ]

Figure 6.1: Output of LDOF in Iris dataset

Figure 6.2: Output of MLDOF in Iris dataset
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Figure 6.3: Precision in Iris dataset

6.2 Haberman’s Survival Dataset

We have taken total 229 instances in which 225 instances are normal and 4 instances

are outliers.Knowingly 4 outliers are taken to test the algorithms are working fine or

not. We ran both algorithms, for k=6; LDOF showed 11 instances as outliers where

7 instances are normal data which falsely detected as outliers and other 10 instances

are real outliers but in MLDOF showed 5 instances in which 4 are real outliers and

1 normal data . We draw confusion matrix for both the algorithms in figure.6.4 and

figure.6.5. In order to compute performance of the algorithm we draw the precision vs

neighborhood size k graph, it is shown in figure 6.7. The 3-D projection of the dataset

is drawn showing normal data and outliers.

1. Input: 225 instances of a class 4 instances of other class

2. The following indexes as outliers [ 226 227 228 229]
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Figure 6.4: Output of LDOF in Haberman’s Survival dataset

Figure 6.5: Output of MLDOF in Haberman’s Survival dataset

6.3 Seed Dataset

We have taken total 150 instances in which 140 instances are normal and 10 instances

are outliers. Knowingly 10 outliers are taken to test the algorithms are working fine or

not. We ran both algorithms, for k=12; LDOF showed 14 instances as outliers where

4 instances are normal data which falsely detected as outliers and other 10 instances

are real outliers but in MLDOF showed 10 instances which are real outliers. We draw

confusion matrix for both the algorithms in figure.6.8 and figure.6.9. In order to compute

performance of the algorithm we draw the precision vs neighborhood size k graph, it is

shown in figure 6.10.

1. Input: 70 instances of 2 classes each 10 instances of other class

2. The following indexes as outliers [ 141 142 143 144 145 146 147 148 149 150 ]
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Figure 6.6: The 3-D projection of Haberman’s Survival Dataset

6.4 Breast Cancer Dataset

We have taken total 449 instances in which 444 instances are normal and 5 instances

are outliers. Knowingly 5 outliers are taken to test the algorithms are working fine or

not. We ran both algorithms, for k=10; LDOF showed 11 instances as outliers where

6 instances are normal data which falsely detected as outliers and other 5 instances are

real outliers but in MLDOF showed 7 instances in which 5 are real outliersand 2 normal

data. We draw confusion matrix for both the algorithms in figure.6.11 and figure.6.12.In

order to compute performance of the algorithm we drawn the precision vs neighborhood

size k graph, it is shown in figure 6.13.

1. Input: 444 instances of a class 5 instances of other class

2. Output: The following indexes as outliers [ 445 446 447 448 449 ]
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Figure 6.7: Precision in Haberman’s Survival dataset

Figure 6.8: Output of LDOF in Seed dataset
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Figure 6.9: Output of MLDOF in Seed dataset

Figure 6.10: Precision in Seed dataset
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Figure 6.11: Output of LDOF in Breast Cancer dataset

Figure 6.12: Output of MLDOF in Breast Cancer dataset
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Figure 6.13: Precision in Breast Cancer dataset



Chapter 7

Conclusion

In this thesis we have introduced a new outlier detection method Modified Local Distance-

Based Outlier Factor (MLDOF).Though K-nearest neighbor algorithm is easy to imple-

ment but to determine the value of K at prior is a diffcult task.Many number of iterations

were performed to determine the optimal value of K which was a very time consuming

process. We have shown that the Modified Local Distance Outlier Factor (MLDOF)

improves the accuracy of outlier detection with respect to LDOF and reduces the False

Positive Error.
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