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ABSTRACT 

The simplest model to study the response of a rotor is a Jeffcott rotor. In this paper the 

equation of motion of the shaft centre was obtained by using Lagrange’s Equation and the 

path followed called the orbit was plotted using MATLAB. The amplitude of vibration and 

phase of an undamped rotor with free whirl, by considering eccentricity and by taking the 

effect of bow was also plotted separately. The response of the damped rotor was 

interpreted using Campbell diagram and the motion of shaft centre was plotted separately 

in a damped rotor. The amplitude and phase of vibration of the rotor geometrical centre 

was also plotted by considering free whirl, taking eccentricity into account and by taking the 

effect of bow separately.  

KEYWORDS: Damped and Undamped rotor, Campbell diagram, Eccentricity, bow. 
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INTRODUCTION 

Jeffcott rotor is the simplest model to study the flexural behaviour of rotor mass system. In 

this model the rotor was assumed to be massless and a point mass is attached to the rotor 

at some distance from the centre called eccentricity. The Jeffcott rotor is also referred to as 

De Laval rotor. The response of rotor deviates accordingly to various physical conditions.  

The speed of the rotor when match with the natural frequency then it is called critical 

speed. The speed of rotor below critical speed is called sub-critical speed and the speed 

above critical speed is called super-critical speed. In a damped rotor the direction of whirl 

determines the stability of the system. If the whirl speed is same as that of the shaft speed 

called (forward whirl) then rotor is stable in sub- critical range and in super- critical region 

depends on different parameters. On the other hand if the whirl speed is opposite to 

angular speed then the system becomes stable. The response is clearly understood by 

Campbell Diagram. The rotor is modelled by considering both damping and undamped 

condition. 

Although Jeffcott rotor is the more idealized model as compared to real life rotors used in 

steam turbine, jet planes, IC engine shaft etc. it retains some basic characteristics and allows 

us to gain a qualitative insight into important phenomena of rotor dynamics. 
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LITERATURE REVIEW 

The study of flexural behaviour of Jeffcott was carried out by many authors. Some of them 

are discussed here. 

             Dynamic behaviour of the Laval rotor with a transverse crack[9](2008): The study 
was carried out by Robert Gasch. This document introduced dynamic behavior of a rotor of 
a disc (rotor Laval) having a transverse crack in the elastic axis. With the help of a simple 
crack model were derived non-linear equations of motion. Due to the dominance by weight 
of the elastic deformation of the horizontal axis, the equations can be simplified to the 
linear equations, but time-variant. Floquet method was used to perform the stability 
analysis. Decomposition in orbit rotates forward and backward (for two-sided spectral 
analysis) becomes a useful tool for understanding complex dynamic phenomena. 

 
             Vibration analysis of periodically time-varying rotor system with transverse 
crack[8](2007): The study was conducted by Han Dong Ju. This paper proposes vibration 
analysis for rotor system periodically varying in time with the transverse crack based on 
complex modal analysis by introducing modulated coordinates. Crack modeling done by 
harmonically varying stiffness, for which investigated the dynamic behavior of crack 
breathing two structures based on modeling, vibration analysis associated with modal 
characteristics, turning, instability and the frequency response functions of direction 
(dFRFs). 

 
             Non-linear dynamic response of a balanced rotor supported on rolling element 
bearings[7](2004):  The study was carried out by S.P. Harsha. In this paper, the response of a 
balanced rigid rotor supported by rolling element bearings was studied. In the analytical 
formulation the contacts between the balls and races were considered as non-linear springs, 
whose stiffness are obtained by using Hertzian elastic contact deformation theory. The 
governing differential equations of motion were obtained by using Lagrange’s equations. 
The implicit type numerical integration technique Newmark-b with Newton–Raphson 
method was used to solve the non-linear differential equations iteratively. The appearance 
of regions of periodic, sub-harmonic and chaotic behaviour was seen to be strongly 
dependent on the radial internal clearance and rotor speed. Poincare maps and frequency 
spectra were used to elucidate and to illustrate the diversity of the system behaviour. 
 
             Dynamic behaviour of an AMB supported rotor subject to harmonic 
excitation[6](2007):  The study was conducted by S. P. Harsha. In this paper, the response of 
a balanced rigid rotor supported by bearings was elements studied. In analytical formulation 
of the contacts between the balls and races were considered nonlinear springs whose 
rigidity is obtained by using the theory of elastic deformation of contact Hertz. The 
differential equations of motion were obtained by using Lagrange's equations. The type of 
implicit numerical integration technique Newmark-b with the Newton-Raphson method was 
used to solve nonlinear differential equations iteratively.  
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The appearance of the regions of periodic behavior, sub-harmonic and chaotic it is heavily 
dependent on radial and rotor speed. Poincaré maps and frequency spectra were used to 
elucidate and to illustrate the diversity of the system behavior.                                                          
 
             Non-linear coupled dynamics of flexible blade–rotor–bearing systems [5](2009): The 
study was carried out by Ligang Wang, D.Q.Cao, Wenhu Huang. In this paper, the nonlinear 
dynamic behavior of a rotor system supporting interaction between the blades and rotor. 
Using Lagrange's equation was established nonlinear model of a time-dependent system 
rotor blade-bearing flexible, in which the rotor is supported by the journal bearings and 
blades is modeled as pendulums to analyze dynamic coupling between the elastic laminar 
and flexible shaft. To emphasize the gyroscopic effect of the rotor, it is assumed that the 
disk is located at an arbitrary position of the shaft. The use of orthogonal transformations, 
Equations 1 nodal diameter blade movement, which engage with the equations of the 
dynamics of the rotor are uncoupled with other equations of the blades. Then the 
parametric excitation terms in the system of the rotor blade support is simplified in terms of 
periodic transformations. The dynamic equations along with the forces of nonlinear oil film 
were solved numerically using the Runge-Kutta method. Bifurcation diagrams, three-
dimensional spectral plots and Poincaré maps' were used to analyze the dynamic behavior 
of the system. 
                                                   
             Theoretical analysis of the non-linear behaviour of a flexible rotor supported by 
herringbone grooved gas journal bearings[4](2006): The study was conducted by Cheng-Chi 
Wanga, Her-Terng Yaub, Ming-Jyi Jangc, Yen-Liang Yeh. In this work we studied the behavior 
of a flexible rotor supported by a publishing system that carries gas slotted pin. The finite 
difference method is used for successive relaxation technique to solve the Reynolds 
equation. The state system trajectories, Poincaré maps ofpower spectra and bifurcation 
diagrams are used to analyze the dynamic behavior of the rotor and the center of the 
magazine in the horizontal and vertical directions at different operating conditions. The 
analysis revealed a complex dynamic behavior comprising periodic responses and quasi-
periodic rotor and the center of the bearing.                                                        
 
 
             Non-linear dynamic analysis of dual flexible rotors supported by long journal 
bearings[3](2010): The study was conducted by Jian Cai-Wan Chang. In this paper, the 
vibration characteristics of two rotors equipped with long smooth bearings on both ends 
were investigated. Besides the nonlinear forces lubricated pairs a nonlinear elastic, damped 
coupling was assumed between the bearings and rotor pedestal. Rotation speed is used as 
the control parameter for observing various forms of periodic vibrations, quasi-periodic and 
chaotic. Different cross section and length of the axes, the mass of the bearings and even 
bearings are different approaches to analyze and discuss the difference in dynamic 
responses. Dynamic trajectories, Poincaré maps, bifurcation diagrams were used to analyze 
the behavior of the bearing center in the horizontal and vertical directions under different 
operating conditions. 
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             A fuzzy approach for the analysis of unbalanced nonlinear rotor systems[2](2005): 
The study was carried out by Yazhao Qiu, Singiresu S. Rao. Most components of the 
structural and mechanical systems or uncertainties considerable variation in their  
properties. Therefore, the performance characteristics of such systems are also subject to 
uncertainties. In the case of a rotor-bearing system, the restoring force of the bearing is 
usually represented nonlinear as third or fourth power shift or a piecewise linear function of 
displacement. The coefficients of these models are acquired from experiments and 
approximations, and can vary considerably during operation of the bearing. Therefore, it is 
reasonable to treat as uncertain values. Other parameters of support, such as the inertial 
properties of concentrated disks, distributed mass and damping of the rotating assemblies 
are also uncertain due to manufacturing and assembly errors and inaccurate operating 
conditions. It is known that the response to the vibration of a rotor is very sensitive to small 
changes or variations in the parameters of the bearing. Thus, any analysis and design of 
rotor bearing systems should take into account realistic uncertainties. In this paper, a 
methodology for fuzzy analysis of rotor-bearing systems with nonlinear numerical results to 
demonstrate the computational feasibility of the method. 
                                                         
             On the non-linear dynamic behaviour of a rotor–bearing system[1](2004): The study 
was carried out by JingJianPing , MengGuang ,Sun Yi, Xia SongBo. Non-linear dynamic 
behavior of a rotor-bearing system is analyzed on the basis of a continuum model. The finite 
element method is adopted in the analyzes. Emphasis is placed on the so-called oil whip 
phenomena'''', which could lead to failure of the rotor system. The dynamic response of the 
system in a state of imbalance is addressed by the method of direct integration and mode 
superposition method. Found that a typical oil whip'''' phenomenon occurs successfully. 
Moreover, we analyze the behavior of fork oil whip phenomenon is very concerned about 
the current nonlinear dynamics. The rotor-bearing system is also tested by the simple 
discrete model. Significant differences were found between these two models. It is 
suggested that careful consideration must be made in such modeling nonlinear dynamic 
behavior of rotor system. 
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SYMBOLS 

xp(t)- X coordinate of point mass 

yp(t)- Y coordinate of point mass 

xc(t)- X coordinate of rotor centre 

yc(t)- Y coordinate of rotor centre 

m- Mass of point mass 

ω- Angular velocity of rotor 

ωw- Whirl speed of rotor 

ωn- Natural frequency of rotor 

ωcr- Critical speed of the rotor 

k- Stiffness of rotor 

x’p(t), x”p(t)- Velocity and acceleration  in X direction of point mass 

y’p(t), y”p(t)- Velocity and acceleration  in Y direction of point mass 

x’c(t), x”c(t) - Velocity and acceleration in X direction of rotor centre 

y’c(t), y”c(t)  - Velocity and acceleration in Y direction of rotor centre 

rp- Position of point mass in complex form 

r’p, r”p – Velocity and acceleration of point mass in complex form 

rc- Position of rotor centre in complex form 

r’c, r”c - Velocity and acceleration of rotor centre in complex form 

K- Kinetic Energy of point mass 

U- Potential Energy stored in the rotor due to rotation 

b- rotor bow length 

α- Angle of bow w.r.t eccentricity 

cn- Non-rotating damping coefficient 

cr- Rotating damping coefficient 
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1. UNDAMPED JEFFCOTT ROTOR 

 

 

Figure 1:  Set up of an undamped Jeffcott rotor 

1.1 Development of Equation of motion 

Consider a Jeffcott rotor rotating at angular speed ω with eccentricity e as shown in the 

above figure. Let the point mass be at P and the geometrical rotor centre is at C. Let us 

assume that the P always lies on the XY plane. Consider the instant at time t. Position P at 

time t is given by, 

xp(t)= xc(t)+ecos(ωt)   (1.1a) 

yp(t)= yc(t)+esin(ωt)   (1.1b) 

Velocity of P at time t is obtained by taking derivative of equations (1.1a,1.1b), 

x’p(t)= x’c(t)-eωsin(ωt)   (1.1c) 

y’p(t)= y’c(t)+eωcos(ωt)   (1.1d) 

The Kinetic Energy of mass is, 

K= ½*m(x’p
2+ y’p

2) 

=>K= ½*m((x’c(t)-eωsin(ωt))2+( y’c(t)+eωcos(ωt))2)  (1.1e) 

And Potential Energy is ,  
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U= ½*k((xc(t))2+( yc(t))
2)  (1.1f) 

 

Now Lagarnge equation can be written as  

 

  
(
      

    
)  

      

   
    

Where qi are the Lagrangian coordinates (xc,yc) 

 

Substituting the values  and solving we get, the equation of motion of C is, 

m x”c(t) +k xc(t)= me ω2cos(ωt)+Fx(t)   (1.1g) 

m y”c(t) +kyc(t)= me ω2sin(ωt) +Fy(t)   (1.1h) 

 where Fy(t), Fx(t) are unbalance forces in Xand Y direction respectively. 

 

Again proceeding in the similarly and applying Lagrange’s equation of motion of P is 

m x”p(t) +k xp(t)= kecos(ωt)+Fx(t)  (1.1i) 

m y”p(t) +kyp(t)= kesin(ωt) +Fy(t)  (1.1j) 

 

In complex form the equation of motion of point C is given by, 

m r”c(t) +k rc(t)= me ω2eiωt+Fn(t)  (1.1l) 

 

and the motion of point P is given by, 

m r”p(t) +krp(t)= keeiωt +Fn(t)               (1.1m) 

 
 
1.2 Free whirling 

In free whirling the effect of unbalance (due to eccentricity) is neglected and there is no 

external force on the system. So the equation of motion of C becomes, 

m x”c(t) +k xc(t)= 0   (1.2a) 

 

Let the solution of equation be xc(t)= Xcoest         where s ϵ C. 
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Substituting the above value of derivatives in equation (1.2.a) we get, 

(ms2+k)Xcoest=0    (1.2b) 

 

Since Xcoest≠0, 

 ms2+k=0.   (1.2c)   

The absolute value of s becomes, s= ωn=√    , the solution is 

xc(t)   =  X1eist  +  X2e-ist   (1.2d) 

 yc(t)  =  Y1eist   +    Y2e-ist  (1.2e) 

Where constants X1,2&Y1,2 are obtained from initial conditions. 

xc(0)= X1+X2;    x’c(0)=i(X1-X2) ωn     

yc(0)= Y1+ Y2;    y’c(0)=i(Y1- Y2) ωn 

Substituting the above values in equation (1.2.c,1.2.d) we get, 

xc(t)   =  xc(0)eist  +  
  

    

  
e-ist  (1.2f) 

Similarly, 

yc(t)   =  xc(0)eist   +  
  

    

  
e-ist  (1.2g) 

 

 
1.3 Unbalance Response 

In this section we consider the response of undamped Jeffcott rotor when we take the 
eccentricity into account. In this case the equation (1h) becomes,  

 

         m x”c(t) +k xc(t)= me ω2cos(ωt)   (1.3a) 

 

Let the solution is xc(t)= Xcocos(ωt) 

Performing similar operation as in equation (1.2a)and substituting the values of derivatives 
in equation (1.3a), we get, 

          (k-mω2) Xco= me ω2    (1.3b) 

Similarly, 
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(k-mω2) Yco= me ω2    (1.3c) 

which gives           
  

Yco= Xco=   
   

     
  = 

 (
 

   
)
 

  (
 

   
)
     (1.3d) 

 

 

1.4 Shaft bow 

Consider a Jeffcott rotor with initial bow. Let the bow makes an angle   with the eccentricity 
and let the bow length be b. Now when we take bow into account then the equation of 
motion of point C becomes, 

 

m r”c(t) +k rc(t)= me ω2eiωt+ kbei(ωt+α)+Fn(t)  (1.4a) 

 

The particular solution of the equation containing only the term linked with the shaft bow is 

rc= b*
   

 

   
     

          (1.4b) 

| rco |/b=
   

 

   
                      (1.4c) 
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2.JEFFCOTT ROTOR WITH VISCOUS DAMPING 

There are 2 types of damping effect exist in a damped rotor. They are: 

 Non-rotating damping – Damping that is directly associated stationary part of the 
rotor. This type of damping has a stabilizing effect and tends to reduce the amplitude 
of vibration. 

 Rotating damping – Damping that is directly associated with rotor is called rotating 
damping. This reduces amplitude of vibration in sub critical conditions but shows 
destabilizing effect in super critical range. 

2.1 Modelling of equation of motion 

Consider the rotor mass system as shown in the figure below: 

 

Figure 2:  Set up of a damped Jeffcott rotor 

The force caused by non-rotating viscous damping is proportional to the speed of the point 
C in a rotating frame of reference. 

So, 

Fnxy=   (   
   

) =  -cn(
   
   

)    (2.1a) 

The force caused rotating viscous damping is proportional to the speed of point C as 
observed from a frame of reference rotating with the same speed of the rotor. Let the 
rotating axes are ζ and η. If the angular speed is constant the angle between 2 frames of  
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reference is given by θ= ωt. So the force as observed from the rotating frame of reference is 
given by: 

 

 

Frζη=  (   

   
) = -cr(

   
   

)   (2.1b) 

The coordinates of ζc, ηc can be expressed in the XY axes as follows: 

(  
  
) = R(  

  
)                 (2.1c) 

where R is the rotation matrix given by 

 

R= (
              
               

)  (2.1d) 

By further simplification the force caused by rotating damping in inertial frame of reference 
is given by, 

 

Frxy= -cr(
   
   

) –cr*ω(
  
   

)*(  
  
)   (2.1e) 

Hence the net force on the rotor is given by, 

 

(
  
  

)*(    
    

) +(
      

      
)*(   

   
) + (*

  
  

+     (
  
   

))*(  
  
) =       

(           

           
) + (  

  
)  (2.1f) 

 

The presence of damping  gives skew symmetric term in the stiffness matrix i.e to a 
circulatory matrix. The circulatory matrix vanishes when ω tends to 0. When the spin speed 
vanishes the rotor becomes a stationary system and it behaves like a natural system. 

 

In complex form the following is obtained, 

 

m r”c+(cr+cn)*r’c+(k-i ωcr)*rc= me ω2eiwt +Fn   (2.1g) 
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2.2 Free whirling 

 

In free whirling the effect due to eccentricity an external force is neglected. So the equation 
of motion becomes,          

    

m r”c+(cr+cn)*r’c+(k-i ωcr)*rc=0   (2.2a) 

                                                     
Let the solution of the homogenous equation be rc= rcoest      where rco,s ϵ C 

substituting the value of r’’c and r’c , we get, 

 

ms2+( cr+cn)s+( k-i ωcr) =0   (2.2b) 

the roots of the above quadratic equation with complex coordinates are 

 

s= σ+i ω= 
     

  
 ± √

                    

     (2.2c) 

Separating the real and imaginary parts we get, 

σ 1,2  = 
     

  
 ± 

 

  
√√   (

   

 
)
 

    (2.2d) 

ωw1,2 = ±
      

  
√√   (

   

 
)
 

         (2.2e)       

where            = 
 

 
  -  

        

   . 

 

Two solution of the equation (2.2b) can be found for each value of spin speed . Therefore 
the generalised solution of equation (2.2b) is given by 

 

rc= R1           + R2                   (2.2f) 

 

 where R1 and R2 can be obtained from initial conditions. 
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 Because of non - zero value of σ the motion of point C has an amplitude varying 
exponentially with time.  

 If σ is negative the amplitude decays with time and point C tends to point O and rotor 
has a stable behaviour because the whirl motion tends to reduce the amplitude. 

 On the other hand if σ is positive the amplitude grows exponentially and the motion 
is unstable. 

                

 

2.2.1 Campbell diagram 

The equation (2.2d) and (2.2e) can be written in the non-dimensional form as 

   

σ *= -( ζr+ζn) ±  √√              *  (2.2.1a) 

 

ωw*=            √√              * (2.2.1b) 

 

where, 

ωw*= ωw/ ωcr ,                                                  σ *= σ/ ωcr 

ω^= ω/ ωcr  ,                                                        *=[1-( ζr+ζn)2]/2    (2.2.1c) 

 ζr= cr/2                        ζn=   cn/2    

 

The plot of ωw* vs     is called Campbell Diagram. 

 

 

2.3 Unbalance response 

If the eccentricity of the rotor is e then the equation of motion of point C when there is no 
external force is given by, 

m r”c+(cr+cn)*r’c+(k-i ωcr)*rc= me ω2eiωt         (2.3a) 
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Let the solution of the equation be rc=rcoeiωt.                           (rcoϵ C) 

Substituting the value of r’c and r”c , we get, 

rco(-mω2+iωcn+k)= me ω2      (2.3b) 

{assuming no damping due to rotation} 

rco= me ω2 /(-mω2+iωcn+k)             (2.3c) 

Since    rco is complex so, 

| rco|=
    

√                 
              (2.3d) 

And  

ϕ=arctan(
      

     )   (2.3e) 

 

The amplitude and phase of  rco are plotted in non - dimensional form as functions of speed. 
Different curves are obtained with different values of ζn. 

 

The complex equation 2.3c  when plotted directly (using MATLAB) gives the trajectory of 
point C. The trajectory of point P is obtained by adding    to C. 

 

The maximum amplitude occurs at ω^=
 

√     
 
  (from eq. 2.3d) and the corresponding 

maximum amplitude  

| rco|max= 
 

   √    
 
   (2.3f) 

 

If damping is low, then neglecting ζn
2,   | rco|max  e/2 ζn. 

The value (1/2 ζn) is referrd to as quality factor. It gives the magnitude of the response when 
the rotor crosses the critical speed. 

 

2.4 Shaft bow 
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Now consider a Jeffcott rotor with initial bow. Let the bow makes an angle   with the 
eccentricity and let the bow length be b. Now when we take bow into account then the 
equation of motion of point C becomes, 

             

m r”c+(cr+cn)*r’c+(k-i ωcr)*rc= me ω2eiwt + kbei(α+ωt)+Fn  (2.4a) 

 

To find the solution, let rc=rcoeiωt 

Now substituting the values of r’c and r”c in equation (2.3a),  and assuming (cr=0) we have 

rco = 
     

            
   (2.4b) 

Rearranging and separating the  real and imaginary parts we get, 

rco/b=    *(
     

               
)   (

     

               
)+   (2.4c) 

 

Now the speed at which shaft bow is maximum is given by, 

ω ^rmax=√     
    (2.4d) 

and the corresponding peak amplitude is given by, 

|rco|/b=
 

   √    
 
.              (2.4e)  
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RESULT AND DISCUSSIONS 

The response of the Jeffcott rotor was observed by considering various parameters like free 

whirling, eccentricity, and shaft bow of a damped and an undamp rotor. Assuming  

xc(0)=.005m, yc(0)=.003m &x’c(0)=3m/s,  y’c(0)=4m/s and ωn=357.77rad/s(from rotor 

properties). 

 

1.  

 A plot of xc(t) vs t gives, 

 

Figure 3: Representation of xc(t) vs t of undamped rotor 

 

 From the graph it is observed that the motion of yc(t) vs t is harmonic in nature.  

 

 A plot yc(t) vs gives, 
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Figure 4: Representation  of yc(t) vs t of undamped rotor 

 From the graph it is observed that the motion of yc(t) vs t is harmonic in nature. 

 

 Plot of yc(t) vs xc(t) gives, 

 

 

Figure 5: Orbit of point C of undamped rotor 

 

 From the graph it is observed that the plot of yc(t) vs xc(t) gives an ellipse called orbit. 
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2.                                                                                                                                                                                                                                               
 The plot of  Yco/e, Xco/e gives, 

 

Figure 6: Unbalance response of amplitude of Undamped Jeffcott rotor 

 

 From the graph it is observed that in the sub-critical rangei.e ω< ωcr , the whirling 
non- dimensional amplitude increases from 0 to infinity at ωcr. 

 On the other hand in the super- critical range i.e ω/>ωcr  the whirling amplitude is 
negative and decreases monotonically and when the speed tends to infinity the non-  
dimensional amplitude tends to (–1). 

      3. 

 The plot of | rco |/b vs  (ω/ ωcr) is shown, 

 

Figure 7:  Non dimensional response of undamped to shaft bow                                                
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 From the graph it is observed that in the sub-critical rangei.e ω< ωcr , the whirling 
non- dimensional amplitude increases from 1 to infinity at ωcr. 

 On the other hand in the super- critical range i.e ω/>ωcr  the whirling amplitude is 
negative and decreases monotonically and when the speed tends to infinity the non-  
dimensional amplitude tends to (–1). 

 

      4.      

 A graph was plot σ * vs ω^  by assuming  ζr=ζn  and taking 4 values of ζr (0,.1,.2,.3).the 
following result obtained. 

 

  

Figure 8: Decay rate plot of a damped Jeffcott rotor 

 

 For each value of ζr=ζn   we have two types of motion that is forward motion and 
backward motion because the equation (2.2.1a) has 2 solutions. 

 The forward motion tends to increase the amplitude and is unstable. 

 The backward motion tends to decrease the amplitude and is stable 

 

 A graph was plot ωw* vs  ω^  by assuming  ζr=ζn  and taking 4 values of ζr (0,.1,.2,.3) 
the following result obtained. The diagram hence obtained is called Campbell 
Diagram. 
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Figure 9: Campbell Diagram 

 

 From the graph it is observed that when the whirl speed is opposite to the same 
speed then the corresponding spiral motion is in backward direction and we have 
stable. 

 If the whirl speed is same as that of the same spin speed the corresponding spiral 
motion is in forward direction 
 

      5. 

 Plot of (| rco|/e) vs ω^ gives, 

 

Figure 10: Unbalance response of a damped Jeffcott rotor non – dimensional amplitude 
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 The non – dimensional amplitude is 0 when non – dimensional spin speed is zero. 
   

 And it tends to 1 when non – dimensional spin speed tends to infinity that is when 
the rotor operates in a super critical range. 

 

 And plot of Φ vs ω^ gives 

 

Figure 11: Unbalance response of a damped Jeffcott rotor of non – dimensional phase 

 The non –dimensional phase tends to –  when the rotor operates in a super critical 
range and it is equal to  /2 when the rotor operates at critical speed. 

 

6. 

 The point P and C are plotted with ζ/e, η/e as reference axes. 

 

Figure 12: Non-dimensional trajectories of point P and C in the rotating plane O ζ η 
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 The trajectory of C as observed from rotating frame of reference that is with ζ η axes 
is shown by the solid line. The trajectory of P is obtained by adding e to point C, it is 
shown by dotted line. 

 Different curves are obtained for different values of ζn. When ζn value is less the 
radius of spiral of C and P is more, on the other hand when ζn value is more the 
radius of spiral of C and P is less. 

      

 

7. 

 The plot of  rco/b vs ω^ gives, 

 

Figure 13: Response of damped Jeffcott rotor to shaft bow non- dimensional amplitude vs  
non dimensional spin 

 

 From graph it is observed that the the amplitude decreases and subsequently  
vanishes when the rotor operates in a super critical range. 

 

 At critical speed the amplitude becomes maximum and tends to infinity. 

 

 And plot of ϕ vs  ω^ gives, 
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Figure 14: Response of damped Jeffcott rotor to shaft bow non- dimensional phase vs  non 
dimensional spin 

 

 The response of the rotor by considering bow along with the phase angle is shown in 
the graph. The phase angle is  /2 at critical speed. 
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CONCLUSION AND FUTURE SCOPE 

In an undamped rotor the trajectory of the rotor centre may be circular, rotational or linear, 

it depends on the initial condition. Here the natural frequency of the Jeffcott rotor is ωn  and 

is independent of angular speed. From the amplitude response we observe that the 

amplitude tends to infinity at the critical speed or at resonance and decreases 

asymptotically when the speed increases that is when the rotor is allowed to operate in 

super critical state. In the super critical range, when the spin speed tends to infinity then the 

amplitude of point C tends to(- ) or in other words the point P moves towards O. This 

phenomenon is called self-centring and is generally favourable. 

                                                                 In a damped rotor the motion of point C as well as P is 

spiral. The radius of the spiral decreases with increase in damping coefficient and vice versa. 

When the whirl speed is same as spin speed called forward whirl, the rotor is stable in the 

sub critical range. On the other hand if the whirl speed is opposite to the spin speed then 

the operation is stable and the amplitude decays rapidly. 

                                                                    Though Jeffcott rotor is the ideal rotor and there is 

much more modification in the practical rotor but the response of the rotor to various 

parameters gives a base for study of real non-ideal rotors. Steps and methods should be 

developed to study the actual characteristics of practical used rotor, based on the response 

of the Jeffcott rotor.    
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