
INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

A THESIS

SUBMITTED TO THE

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

IN THE PARTIAL FULFILMENT

FOR THE DEGREE OF

MASTER OF SCIENCE IN MATHEMATICS

BY

SMRUTILEKHA DAS

UNDER THE SUPERVISION OF

Dr. DIVYA SINGH

 

DEPARTMENT OF MATHEMATICS

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

MAY, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The present thesis consisting of three chapters is devoted to the study of Intuitionistic

fuzzy topological spaces. After giving the fundamental definitions we have discussed the

concepts of intuitionistic fuzzy continuity, intuitionistic fuzzy compactness, and separation

axioms, that is, intuitionistic fuzzy Hausdorff space, intuitionistic fuzzy regular space,

intuitionistic fuzzy normal space etc.
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Chapter 1

Preliminaries and Introduction

1.1. Intuitionistic Fuzzy Set

Fuzzy sets were introduced by Zadeh [11] in 1965 as follows: a fuzzy set A in a nonempty

set X is a mapping from X to the unit interval [0, 1], and A(x) is interpreted as the degree

of membership of x in A. Intuitionistic fuzzy sets [1] can be viewed as a generalization of

fuzzy sets that may better model imperfect information which is in any conscious decision

making. Intuitionistic fuzzy sets take into account both the degrees of membership and

of nonmembership subject to the condition that their sum does not exceed 1. Let E

be the set of all countries with elective governments. Assume that we know for every

country x ∈ E the percentage of the electorate that have voted for the corresponding

government. Denote it by M(x) and let µ(x) = M(x)/100 (degree of membership, validity,

etc.). Let ν(x) = 1 − µ(x). This number corresponds to the part of electorate who

have not voted for the government. By fuzzy set theory alone we cannot consider this

value in more detail. However, if we define ν(x) (degree of non-membership, non-validity,

etc.) as the number of votes given to parties or persons outside the government, then

we can show the part of electorate who have not voted at all or who have given bad

voting-paper and the corresponding number will be π(x) = 1 − µ(x) − ν(x) (degree of

indeterminacy, uncertainty, etc.). Thus we can construct the set {〈x, µ(x), ν(x)〉 : x ∈ E}.

Intuitionistic fuzzy sets (IFS) are applied in different areas. The IF-approach to artificial
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intelligence includes treatment of decision making and machine learning, neural networks

and pattern recognition, expert systems database, machine reasoning, logic programming

etc. IFSs are used in medical diagnosis and in decision making in medicine. There are

also IF generalized nets models of the gravitational field, in astronomy, sociology, biology,

musicology, controllers, and others. Along with these IFS are also studied extensively in

the topological framework introduced by D. Coker which is the basis of our work.

Definition 1.1.1 [1]: Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS for

short) A is an object having the form A = {〈x, µA(x), νA(x)〉 : x ∈ X} where the functions

µA : X → I and νA : X → I denote the degree of membership (namely µA(x)) and the

degree of non-membership (namely νA(x)) of each element x ∈ X to the set A, respectively,

and 0 ≤ µA(x) + νA(x) ≤ 1, for each x ∈ X.

Example 1.1.2: Every fuzzy set A on a non-empty set X is obviously an IFS having the

form A = {〈x, µA(x), 1− µA(x)〉 : x ∈ X}

1.2. Basic Operations on IFS

Definition 1.2.1 [1]: Let X be a non empty set, and the IFSs A and B be in the form

A = {〈x, µA(x), γA(x)〉 : x ∈ X} and B = {〈x, µB(x), γB(x)〉 : x ∈ X}

1. A ⊆ B iff µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ X.

2. A = B iff A ⊆ B and B ⊆ A.

3. A = {〈x, γA(x), µA(x)〉 : x ∈ X}.

4. A
⋂
B = {〈x, µA(x)

∧
µB(x), γA(x)

∨
γB(x)〉 : x ∈ X}
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5. A
⋃
B = {〈x, µA(x)

∨
µB(x), γA(x)

∧
γB(x)〉 : x ∈ X}

6. [ ]A = {〈x, µA(x), 1− µA(x)〉 : x ∈ X}

7. 〈 〉A = {〈x, 1− γA(x), γA(x)〉 : x ∈ X}

Example 1.2.2 [4]: Let X = {a, b, c}

A = 〈x, ( a
0.5
, b
0.5
, c
0.4

), ( a
0.2
, b
0.4
, c
0.4

)〉, B = 〈x, ( a
0.4
, b
0.6
, c
0.2

), ( a
0.5
, b
0.3
, c
0.3

)〉,

C = 〈x, ( a
0.5
, b
0.6
, c
0.4

), ( a
0.2
, b
0.3
, c
0.3

)〉, D = 〈x, ( a
0.4
, b
0.5
, c
0.2

), ( a
0.5
, b
0.4
, c
0.4

)〉,

E = 〈x, ( a
0.6
, b
0.6
, c
0.5

), ( a
0.1
, b
0.2
, c
0.2

)〉

Here Ā = 〈x, ( a
0.2
, b
0.4
, c
0.4

), ( a
0.5
, b
0.5
, c
0.4

)〉, A ⊆ E because µA(x) ≤ µE(x) and γA(x) ≥ γE(x),

for every x ∈ X. Further, A
⋃
B = {〈x, µA(x)

∨
µB(x), γA(x)

∧
γB(x)〉 : x ∈ X} = C and

A
⋂
B = {〈x, µA(x)

∧
µB(x), γA(x)

∨
γB(x)〉 : x ∈ X} = D.

Definition 1.2.3 [4]: Let {Ai : i ∈ J} be an arbitrary family of IFS in X .Then

(a)
⋂
Ai = {〈x,

∧
µAi(x),

∨
γAi(x)〉 : x ∈ X}

(b)
⋃
Ai = {〈x,

∨
µAi(x),

∧
γAi(x)〉 : x ∈ X}

Definition 1.2.4 [4]: The IFS 0∼ and 1∼ in X are defined as

0∼ = {〈x, 0, 1〉 : x ∈ X}

1∼ = {〈x, 1, 0〉 : x ∈ X},

where 1 and 0 represent the constant maps sending every element of X to 1 and 0, respec-

tively.

Corollary 1.2.5 [4]: Let A ,B ,C be IFSs in X . Then

(a) A ⊆ B and C ⊆ D ⇒ A
⋃
C ⊆ B

⋃
D and A

⋂
C ⊆ B

⋂
D,

(b) A ⊆ B and A ⊆ C ⇒ A ⊆ B
⋂
C,
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(c) A ⊆ C and B ⊆ C ⇒ A
⋃
B ⊆ C,

(d) A ⊆ B and B ⊆ C ⇒ A ⊆ C,

(e) A
⋃
B = Ā

⋂
B̄,

(f) A
⋂
B = Ā

⋃
B̄,

(g) A ⊆ B ⇒ B̄ ⊆ Ā,

(h) (Ā) = A,

(i) 1∼ = 0∼ and 0∼ = 1∼.

1.3 Images And Preimages of IFS

Definition 1.3.1 [4]: Let X and Y be two nonempty sets and f : X → Y be a function.

(a) If B = {〈y, µB(y), γB(y)〉 : y ∈ Y } is an IFS in Y ,then the preimage of B under f

denoted by f−1(B) is the IFS in X defined by

f−1(B) = {〈x, f−1(µB)(x), f−1(γB)(x)〉 : x ∈ X},

where f−1(µB)(x) = µB(f(x)) and f−1(γB)(x) = γB(f(x)).

(b) If A = {〈x, λA(x), νA(x)〉 : x ∈ X} is an IFS in X ,then the image of A under f

,denoted by f(A) is the IFS in Y defined by

f(A) = {〈y, f(λA)(y), (1− f(1− νA))(y)〉 : y ∈ Y }

f(λA)(y) =


supx∈f−1(y) λA(x) if f−1(y) 6= φ

0, otherwise,
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(1− f(1− νA)(y)) =


infx∈f−1(y) νA(x) if f−1(y) 6= φ

1, otherwise,

For the sake of simplicity, let us use the symbol f−ν(A) for 1− f(1− νA).

Proposition 1.3.2 [4]: Let A, Ai(i ∈ J) be IFSs in X,B,Bj(j ∈ K) IFSs in Y and

f : X → Y a function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) and if f is injective, then A = f(f−1(A)),

(d) f(f−1(B)) ⊆ B and if f is surjective, then f(f−1(B)) = B,

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),

(h) f(
⋂
Ai) ⊆

⋂
f(Ai) [ if f is injective, then f(

⋂
Ai) =

⋂
f(Ai)],

(i) f−1(1∼) = 1∼ (j) f−1(0∼) = 0∼,

(k) f(1∼) = 1∼ , if f is surjective (l) f(0∼) = 0∼,

(m) f(A) ⊆ f(Ā), if f is surjective,

(n) f−1(B̄) = f−1(B).

Proof. Let Bj =
{
〈y, µBj , γBj〉 : y ∈ Y

}
, Ai = {〈x, λAi , ϑAi〉 : x ∈ X}, where (i ∈ J, j ∈

K) and B = {〈y, µB, γB〉 : y ∈ Y }, A = {〈x, λA, ϑA〉 : x ∈ X} .

(a) Let A1 ⊆ A2 . Since λA1 ≤ λA2 and ϑA1 ≥ ϑA2 , we obtain f(λA1) ≤ f(λA2) and

1 − ϑA1 ≤ 1 − ϑA2 ⇒ f(1 − ϑA1) ≤ f(1 − ϑA2) ⇒ 1 − f(1 − ϑA1) ≥ 1 − f(1 − ϑA2) from
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which it follows that f(A1) ⊆ f(A2) .

(c) f−1(f(A)) = f−1(f(〈x, λA, ϑA〉)) = f−1(〈y, f(λA), f−(ϑA)〉) = 〈x, f−1(f(λA)),

f−1(f−(ϑA))〉 ⊇ 〈x, λA, ϑA〉 = A. [ Notice that f−1(f(λA)) ≥ λA and f−1(f−(ϑA)) =

f−1(1− f(1− ϑA)) = 1− f−1(f(1− ϑA)) ≤ 1− (1− ϑA) = ϑA].

(h) f(
⋂
Ai) = f(〈x,

∧
λAi ,

∨
ϑAi〉) = 〈y, f(

∧
λAi), f−(

∨
ϑAi)〉 ⊆ 〈y,

∧
f(λAi),∨

f−(ϑAi)〉 =
⋂
f(Ai). [ Notice that f(

∧
Ai) ≤

∧
f(Ai) and f−(

∨
ϑAi) = 1 − f(1 −∨

ϑAi) = 1− f(
∧

(1− ϑAi)) ≥ 1−
∧
f(1− ϑAi) =

∨
(1− f(1− ϑAi)) =

∨
f−(ϑAi).]
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Chapter 2

Intuitionistic Fuzzy Topological Space

2.1. Intuitionistic fuzzy topological space

Definition 2.1.1 [4]: An intuitionistic fuzzy topology (IFT) on a nonempty set X is a

family τ of IFS in X satisfying the following axioms

(T1) 0∼, 1∼ ∈ τ

(T2) G1

⋂
G2 ∈ τ , for any G1, G2 ∈ τ

(T3)
⋃
Gi ∈ τ , for any arbitrary family {Gi : Gi ∈ τ, i ∈ I}.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space and any IFS

in τ is known as intuitionistic fuzzy open set in X .

Example 2.1.2 [4]: Let X = {a, b, c}

A = 〈x, ( a
0.5
, b
0.5
, c
0.4

), ( a
0.2
, b
0.4
, c
0.4

)〉, B = 〈x, ( a
0.4
, b
0.6
, c
0.2

), ( a
0.5
, b
0.3
, c
0.3

)〉,

C = 〈x, ( a
0.5
, b
0.6
, c
0.4

), ( a
0.2
, b
0.3
, c
0.3

)〉, D = 〈x, ( a
0.4
, b
0.5
, c
0.2

), ( a
0.5
, b
0.4
, c
0.4

)〉.

Then the family τ = {0∼, 1∼, A,B,C,D} of IFSs in X is an IFT on X .

Proposition 2.1.3 [4]: Let (X, τ) be an IFTS on X . Then we can also construct several

IFT on X in the following way

(a) τ0,1 = {[ ]G : G ∈ τ}

(b) τ0,2 = {〈 〉G : G ∈ τ} .

Proof: (a) (T1) 0∼, 1∼ ∈ τ0,1 is obvious.

(T2) Let [ ]G1, [ ]G2 ∈ τ0,1.
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Since G1, G2 ∈ τ , therefore G1

⋂
G2 = 〈x, µ1

∧
µ2, γ1

∨
γ2〉 ∈ τ . This implies that

([ ]G1)
⋂

([ ]G2) = 〈x, µG1

∧
µG2 , (1− µG1)

∨
(1− µG2)〉

=
〈
x, µG1

∧
µG2 , 1− (µG1

∧
µG2)

〉
∈ τ0,1.

(T3) Let {[ ]Gi, i ∈ J,Gi ∈ τ} ⊆ τ0,1. Since
⋃
Gi = 〈x,

∨
µGi ,

∧
γGi〉 ∈ τ , we have

⋃
([ ]Gi) = 〈x,

∨
µGi ,

∧
(1− µGi)〉

= 〈x,
∨

µGi , 1−
∨

µGi〉 ∈ τ0,1.

(b) (T1) It is obvious that 0∼ and 1∼ ∈ τ0,2 .

(T2) Let 〈 〉G1, 〈 〉G2 ∈ τ0,2.

Since G1, G2 ∈ τ , therefore G1

⋂
G2 = 〈x, µ1

∧
µ2, γ1

∨
γ2〉 ∈ τ .

Thus, (〈 〉G1)
⋂

(〈 〉G2) = 〈x, (1−γ1)
∧

(1−γ2), γ1
∨
γ2〉 = 〈x, 1− (γ1

∨
γ2), γ1

∨
γ2〉 ∈ τ0,2

(T3) Let {〈 〉Gi, i ∈ J,Gi ∈ τ} ⊆ τ0,2. Since
⋃
Gi = 〈x,

∨
µGi ,

∧
γGi〉 ∈ τ , we have⋃

(〈 〉Gi) = 〈x,
∨

(1− γGi),
∧
γGi〉 = 〈x, 1− (

∧
γGi),

∧
γGi〉 ∈ τ0,2.

Definition 2.1.4 [4]: Let (X, τ1) ,(X, τ2) be two IFTSs on X. Then τ1 is said to be

contained in τ2 if G ∈ τ2 for each G ∈ τ1 . In this case, we also say that τ1 is coarser than

τ2.

Proposition 2.1.5 [4]: Let {τi : i ∈ J} be a family of IFTS on X . Then ∩τi is also an

IFT on X. Furthermore, ∩τi is the coarsest IFT on X containing all τ ′is.

Proof: Let {τi : i ∈ J} be a family of IFTS on X. We have to show that ∩τi, i ∈ J is an

IFT on X .

(i) 0∼ ∈ τi, for every i ∈ J . From this it follows that 0∼ ∈ ∩τi. Similarly, 1∼ ∈ ∩τi
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(ii) Let G1, G2 ∈ ∩τi. Then G1, G2 ∈ τi, for every i ∈ J and hence, G1 ∩G2 ∈ τi, ∀i ∈ J .

Thus, G1 ∩G2 ∈ ∩τi.

(iii) Let {Gj : j ∈ K} ⊆ ∩τi. Then {Gj : j ∈ K} ⊆ τi, for every i ∈ J and hence,⋃
j∈K Gj ∈ τi, ∀i ∈ J . Thus,

⋃
j∈K Gj ∈ ∩τi.

Clearly, it is the coarsest topology on X containing all τ ′is. Since if τ
′

is any other IFT on

X which contains every τi, then obviously it will also contain ∩τi.

2.2. Basis and Subbasis for IFTS

Definition 2.2.1 [9]: Let α, β ∈ (0, 1) and α+ β ≤ 1. An intuitionistic fuzzy point (IFP

for short) px(α,β) of X is an IFS of X defined by px(α,β) = 〈x, µp, γp〉, where for y ∈ X

µp(y) =


α if y = x

0 if y 6= x,

γp(y) =


β if y = x

1 if y 6= x,

In this case, x is called the support of px(α,β). An IFP px(α,β) is said to belong to an IFS

A = 〈x, µA, γA〉 of X, denoted by px(α,β) ∈ A , if α ≤ µA(x) and β ≥ γA(x).

Proposition 2.2.2 [9]: An IFS A in X is the union of all IFP belonging to A.

Definition 2.2.3: A collection B of IFS on a set X is said to be basis (or base) for an

IFT on X, if

(i) For every px(α,β) in X, there exists B ∈ B such that px(α,β) ∈ B.
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(ii) If px(α,β) ∈ B1∩B2, where B1, B2 ∈ B, then ∃B3 ∈ B such that P x
(α,β) ∈ B3 ⊆ B1∩B2.

Proposition 2.2.4: Let B be a basis for an IFT on X. Let τ contains those IFS G of X

for which corresponding to each px(α,β) ∈ G, ∃B ∈ B such that px(α,β) ∈ B ⊆ G. Then τ is

an IFT on X.

Proof:

(i) Since 0∼ does not contain any IFP, therefore for it the condition is vacuously true.

Further, 1∼ contains every IFP and for it the condition follows from the definition of

the basis.

(ii) Let Gi = 〈x, µGi , νGi〉, where i ∈ I, be a family of members of τ . We have to prove

that
⋃
i∈I Gi ∈ τ . That is

⋃
i∈I Gi = {〈x,∨µGi(x),∧νGi(x)〉 : x ∈ X} ∈ τ . Let

px(α,β) ∈
⋃
i∈I Gi. Then, px(α,β) ∈ Gj for some j ∈ I. Therefore ∃Bj ∈ B such that

px(α,β) ∈ Bj ⊆ Gj ⊆
⋃
i∈I Gi ∈ τ .

(iii) Let G1, G2 ∈ τ . If G1 ∩ G2 = 0∼ then obviously G1 ∩ G2 ∈ τ . Now, suppose that

px(α,β) ∈ G1 ∩ G2. Then there exist B1, B2 ∈ B such that px(α,β) ∈ B1 ⊆ G1 and

px(α,β) ∈ B2 ⊆ G2. That is, px(α,β) ∈ B1 ∩B2 ⊆ G1 ∩G2. By the definition of the basis

there exists B3 ∈ B such that px(α,β) ∈ B3 ⊆ B1 ∩ B2. Thus px(α,β) ∈ B3 ⊆ G1 ∩ G2.

Hence G1 ∩G2 ∈ τ .

Proposition 2.2.5: Let τ be an IFT on a set X, generated by a basis B. Then members

of τ are precisely the union of members of B, that is, G ∈ τ iff G =
⋃
α∈ABα, where

Bα ∈ B, ∀α ∈ A.
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Proof: Clearly B ⊆ τ . Since τ is a topology on X, therefore any arbitrary union of

members of B belongs to τ . That is,
⋃
α∈ABα ∈ τ as Bα ∈ B. Conversely suppose

that G ∈ τ . Then for each px(α,β) ∈ G, ∃ Bx ∈ B such that px(α,β) ∈ Bx ⊆ G. Thus

G =
⋃
px
(α,β)

∈GBx.

Definition 2.2.6 [9]: Let (X, τ) be an IFTS. Then a subfamily S ⊆ τ is called a subbasis

for τ if the family of finite intersections of members of S forms a base for τ .

Definition 2.2.7 [4]: The complement Ā of an IFOS A in an IFTS (X, τ) is called an

intuitionstic fuzzy closed set (IFCS) in X.

2.3. Closure and Interior of IFS

Definition 2.3.1 [4]: Let (X, τ) be an IFTS and A = 〈x, µA, γA〉 be an IFS in X. Then

the fuzzy interior and fuzzy closure of A are defined by

cl(A) =
⋂
{K : K is an IFCS in X and A ⊆ K},

int(A) =
⋃
{G : G is an IFOS in X and G ⊆ A}.

Note that cl(A) is an IFCS and int(A) is an IFOS in X. Further,

(a) A is an IFCS in X iff cl(A) = A;

(b) A is an IFOS in X iff int(A) = A.

Example 2.3.2 [4]: Let X = {a, b, c}

A = 〈x, ( a
0.5
, b
0.5
, c
0.4

), ( a
0.2
, b
0.4
, c
0.4

)〉,B = 〈x, ( a
0.4
, b
0.6
, c
0.2

), ( a
0.5
, b
0.3
, c
0.3

)〉,

C = 〈x, ( a
0.5
, b
0.6
, c
0.4

), ( a
0.2
, b
0.3
, c
0.3

)〉,D = 〈x, ( a
0.4
, b
0.5
, c
0.2

), ( a
0.5
, b
0.4
, c
0.4

)〉.

Then the family τ = {0∼, 1∼, A,B,C,D} of IFSs in X is an IFT on X .

If F = 〈x, ( a
0.55

, b
0.55

, c
0.45

), ( a
0.3
, b
0.4
, c
0.3

)〉, then
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int(F ) =
⋃
{G : G is an IFOS in X and G ⊆ F} = D, and

cl(F ) =
⋂
{K : K is an IFCS in X and F ⊆ K} = 1∼.

Proposition 2.3.3 [4]: For any IFS A in (X, τ) we have

(a) cl(Ā) = int(A)

(b) int(Ā) = cl(A)

Proof: (a) Let A = 〈x, µA, γA〉 and suppose that the IFOS’s contained in A are indexed

by the family {〈x, µGi , γGi〉 : i ∈ J}. Then, int(A) = 〈x,∨µGi ,∧γGi〉 and hence

int(A) = 〈x,∧γGi ,∨µGi〉. · · · · · · · · · (1)

Since Ā = 〈x, γA, µA〉 and µGi ≤ µA, γGi ≥ γA, for every i ∈ J we obtain that {〈x, γGi , µGi〉 :

i ∈ J} is the family of IFCS’s containing Ā, that is,

cl(Ā) = 〈x,∧γGi ,∨µGi〉. · · · · · · · · · (2)

Hence from equation (1) and (2) we get cl(Ā) = int(A).

(b) Let A = 〈x, µA, γA〉 and suppose that the family of IFCS’s containing A is given by

{〈x, µGi , γGi〉 : i ∈ J}. Then we have that cl(A) = 〈x,∧µGi ,∨γGi〉 and hence,

cl(A) = 〈x,∨γGi ,∧µGi〉. · · · · · · · · · (3)

Since Ā = 〈x, γA, µA〉 and µA ≤ µGi , γA ≥ γGi , for each i ∈ J , we obtain that {〈x, γGi , µGi〉 :

i ∈ J} is the family of IFOS’s contained in Ā, that is,

int(Ā) = 〈x,∨γGi ,∧µGi〉. · · · · · · · · · (4)
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Hence, from equation (3) and (4) we get int(Ā) = cl(A).

Proposition 2.3.4 [4]: Let (X, τ) be an IFTS and A,B be IFSs in X. Then the following

properties holds

(a) int(A) ⊆ A

(b) A ⊆ cl(A)

(c) A ⊆ B ⇒ int(A) ⊆ int(B)

(d) A ⊆ B ⇒ cl(A) ⊆ cl(B)

(e) int(int(A)) = int(A)

(f) cl(cl(A)) = cl(A)

(g) int(A ∩B) = int(A) ∩ int(B)

(h) cl(A ∪B) = cl(A) ∪ cl(B)

(i) int(1∼) = 1∼

(j) cl(0∼) = 0∼ .

Proposition 2.3.5 [4]: Let (X, τ) be an IFTS. If A = 〈x, µA, γA〉 is an IFS in X,then we

have

(i) int(A) ⊆ 〈x, intτ1(µA), clτ2(γA)〉 ⊆ A

(ii) A ⊆ 〈x, clτ2(µA), intτ1(γA)〉 ⊆ cl(A),

where τ1 and τ2 are fuzzy topological spaces on X defined by

τ1 = {µG : G ∈ τ} τ2 = {1− γG : G ∈ τ} .

Proof: (i) Let A = 〈x, µA, γA〉 and suppose that the family of IFOSs contained in A

are indexed by the family {〈x, µGi , γGi〉 : i ∈ J}. Then int(A) = 〈x,∨µGi ,∧γGi〉. Each
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member of the family of fuzzy open sets {µGi : i ∈ J} ∈ τ1 is contained in µA and

hence
∨
{µGi : i ∈ J} ≤ intτ1(µA). Again each member of the family of fuzzy closed

sets {γGi : i ∈ J} ∈ τ2 contains γA and hence
∧
{γGi : i ∈ J} ≥ clτ2(γA). Thus we get

int(A) ⊆ 〈x, intτ1(µA), clτ2(γA)〉 ⊆ A.

(ii) Let B = 〈x, µB, γB〉. Then from (i), we get int(B) ⊆ 〈x, intτ1(µB), clτ2(γB)〉 ⊆ B, or

B̄ ⊆ 〈x, clτ2(γB), intτ1(µB)〉 ⊆ int(B) = cl(B̄). · · · · · · · · · (1)

Now suppose that A = B̄, i.e. 〈x, µA, γA〉 = 〈x, γB, µB〉. Then, from (1) we get A ⊆

〈x, clτ2(µA), intτ1(γA)〉 ⊆ cl(A).

Corollary 2.3.6 [4]: Let A = 〈x, µA, γA〉 be an IFS in (X, τ).

(a) If A is an IFCS, then µA is fuzzy closed in (X, τ2) and γA is fuzzy open in (X, τ1).

(b) If A is an IFOS, then µA is fuzzy open in (X, τ1) and γA is fuzzy closed in (X, τ2).

Proof: (a) Let A = 〈x, µA, γA〉 be an IFS in (X, τ). If A is an IFCS, then it means

that cl(A) = A, and hence from part (ii) of the previous result, we get 〈x, µA, γA〉 =

〈x, clτ2(µA), intτ1(γA)〉. This implies that µA = clτ2(µA) and γA = intτ1(γA). Hence, µA is

fuzzy closed in (X, τ2) and γA is fuzzy open in (X, τ1).

(b) Let A = 〈x, µA, γA〉 be an IFS in (X, τ). If A is an IFOS, then A = int(A). From part

(i) of the previous result, we get 〈x, µA, γA〉 = 〈x, intτ1(µA), clτ2(γA)〉. Thus, µA = intτ1(µA)

and γA = clτ2(γA) and hence µA is fuzzy open in (X, τ1) and γA is fuzzy closed in (X, τ2).

Example 2.3.7 [4]: Consider the IFTS (X, τ), where X = {a, b, c},

A = 〈x, ( a
0.5
, b
0.5
, c
0.4

), ( a
0.2
, b
0.4
, c
0.4

)〉, B = 〈x, ( a
0.4
, b
0.6
, c
0.2

), ( a
0.5
, b
0.3
, c
0.3

)〉,

C = 〈x, ( a
0.5
, b
0.6
, c
0.4

), ( a
0.2
, b
0.3
, c
0.3

)〉, D = 〈x, ( a
0.4
, b
0.5
, c
0.2

), ( a
0.5
, b
0.4
, c
0.4

)〉, and

τ = {0∼, 1∼, A,B,C,D}. Let F = 〈x, ( a
0.55

, b
0.55

, c
0.45

), ( a
0.3
, b
0.4
, c
0.3

)〉, then
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intτ1(µF ) = sup{O : O ≤ F,O ∈ τ1} = ( a
0.5
, b
0.5
, c
0.4

) and clτ2(γF ) = inf{K : F ≤ K,Kc ∈

τ2} = ( a
0.5
, b
0.4
, c
0.4

).

2.4. Intuitionistic Fuzzy Neighbourhood

Definition 2.4.1 [6]: Let px(α,β) be an IFP of an IFTS (X, τ). An IFS A of X is called an

intuitionistic fuzzy neighborhood (IFN for short) of px(α,β) if there is an IFOS B in X such

that px(α,β) ∈ B ⊆ A.

Theorem 2.4.2 [6]: Let (X, τ) be an IFTS. Then an IFS A of X is an IFOS if and only

if A is an IFN of px(α,β) for every IFP px(α,β) ∈ A.

Proof: Let A be an IFOS of X. Clearly, A is an IFN of every px(α,β) ∈ A. Conversely,

suppose that A is an IFN of every IFP belonging to A. Let px(α,β) ∈ A. Since A is an IFN

of px(α,β), there is an IFOS Bpx
(α,β)

in X such that px(α,β) ∈ Bpx
(α,β)
⊆ A. So we have A =⋃

{px(α,β) : px(α,β) ∈ A} ⊆
⋃
{Bpx

(α,β)
: px(α,β) ∈ A} ⊆ A and hence A =

⋃
{Bpx

(α,β)
: px(α,β) ∈ A}.

Since each Bpx
(α,β)

is an IFOS, A is also an IFOS in X.

2.5. Intuitionistic Fuzzy Continuity

Definition 2.5.1 [4]: Let (X, τ) and (Y, φ) be two IFTSs and let f : X → Y be a function.

Then f is said to be fuzzy continuous iff the preimage of each IFS in φ is an IFS in τ .

Definition 2.5.2 [4]: Let (X, τ) and (Y, φ) be two IFTSs and let f : X → Y be a function.

Then f is said to be fuzzy open iff the image of each IFS in τ is an IFS in φ.

Example 2.5.3 [4]: Let (X, τ0) and (Y, φ0) be two fuzzy topological space in the sense of

Chang.

(a) If f : X → Y is fuzzy continuous in the usual sense, then in this case, f is fuzzy
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continuous iff the preimage of each IFS in φ0 is an IFS in τ0. Consider the IFTs on X and

Y , respectively, as follows:

τ = {〈x, µG, 1− µG〉 : µG ∈ τ0} and φ = {〈y, λH , 1− λH〉 : λH ∈ φ0}.

In this case we have for each 〈y, λH , 1 − λH〉 ∈ φ, µH ∈ φ0. f−1(〈y, λH , 1 − λH〉) =

〈x, f−1(λH), f−1(1− λH)〉 = 〈x, f−1(λH), 1− f−1(λH)〉 ∈ τ .

(b) Let f : X → Y be a fuzzy open function in the usual sense. Then f is fuzzy open

according to definition (2.5.2). In this case we have, for each 〈x, µG, 1− µG〉 ∈ τ , µG ∈ τ0

and hence, f(〈x, µG, 1− µG〉) = 〈y, f(µG), f−(1− µG)〉 = 〈y, f(µG), 1− f(µG) ∈ φ.

Proposition 2.5.4 [4]: f : (X, τ) → (Y, φ) is fuzzy continuous iff the preimage of each

IFCS in φ is an IFCS in τ .

Proof: Let f : (X, τ) → (Y, φ) is fuzzy continuous. Let B = 〈y, µB, γB〉 is an IFS in

φ, B̄ = 〈y, γB, µB〉 is IFCS in φ. f−1(B̄) = 〈x, f−1(γB), f−1(µB)〉 = f−1(B). since f is

continuous, so by definition of continuous f−1B̄ = f−1(B) ∈ τ .

conversely given f : (X, τ) → (Y, φ) and the preimage of each IFCS in φ is an IFCS in τ .

We have to show f is fuzzy continuous. Let B = 〈y, µB, γB〉 is IFS in φ, B̄ = 〈y, γB, µB〉

is IFCS in φ. f−1(B̄) = 〈x, f−1(γB), f−1(µB)〉 = f−1(B). Since f is a function from X, τ

to Y, φ.So f−1 is a function from Y, φ to (X, τ).B̄ is IFCS in φ,So f−1(B) = f−1(B) is an

IFCS in X. ⇒ f−1(B) ∈ τ . Hence f is fuzzy continuous.

Proposition 2.5.5 [4]: The following are equivalent to each other.

(a) f : (X, τ)→ (Y, φ) is fuzzy continuous.

(b) f−1(int(B)) ⊆ int(f−1(B)) for each IFS B in Y .
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(c) cl(f−1(B)) ⊆ f−1(cl(B)) for each IFS B in Y .

Proof: (a) ⇒ (b) Given f : (X, τ) → (Y, φ) is fuzzy continuous. Then we have to show

that f−1(int(B)) ⊆ int(f−1(B)), for each IFS B in Y . Let B = 〈y, µB, γB〉 be an IFS

in Y . Let int(B) = {〈y,∨µHi ,∧γHi〉 : i ∈ I}, where µHi ≤ µB and γHi ≥ γB for each

i ∈ I. By the definition of continuity f−1(int(B)) is an IFS in τ . Now, f−1(int(B)) =

f−1(〈y,∨µHi ,∧γHi〉) = 〈x, f−1(∨µHi), f−1(∧γHi)〉 = 〈x,∨(f−1(µHi)),∧(f−1(γHi))〉 ⊆ int(f−1(B)),

since f−1(µHi) ≤ f−1(µB) and f−1(γHi) ≥ f−1(γB), for every i ∈ I.

(b) ⇒ (a) Given f−1(int(B)) ⊆ int(f−1(B)), for each IFS B in Y . To show that f is

fuzzy continuous. Let B = 〈y, µB, γB〉 be an IFS in φ. We have to show that f−1(B) is an

IFS in τ . We know that B is open in Y iff int(B) = B and hence, f−1(int(B)) = f−1(B).

But according to our assumption f−1(int(B)) ⊆ int(f−1(B)), therefore we get f−1(B) ⊆

int(f−1(B)). Hence, f−1(B) = int(f−1(B)), i.e., f−1(B) is an IFS in τ and this proves

that f is fuzzy continuous.

(a) ⇒ (c) Given f : (X, τ) → (Y, φ) is fuzzy continuous. We have to show that

cl(f−1(B)) ⊆ f−1(cl(B)), for each IFS B in Y . Let B = 〈y, µB, γB〉 be an IFS in

Y . Let cl(B) = {〈y,∧µFi ,∨γFi〉 : i ∈ I}, where µFi ≥ µB and γFi ≤ γB, for each i ∈

I. Since f is fuzzy continuous iff the inverse image of each IFCS in Y is an IFCS in

X, therefore f−1(cl(B)) is an IFCS in X. Now, f−1(cl(B)) = f−1(〈y,∧µFi ,∨γFi〉) =

〈x, f−1(∧µFi), f−1(∨γFi)〉 = 〈x,∧(f−1(µFi)),∨(f−1(γFi))〉 ⊇ cl(f−1(B)), since f−1(µFi) ≥

f−1(µB) and f−1(γFi) ≤ f−1(γB), for every i ∈ I.

(c) ⇒ (a) Given that cl(f−1(B)) ⊆ f−1(cl(B)), for each IFS B in Y . We have to prove

that f is fuzzy continuous, that is, we have to show that the inverse image of each IFCS
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in Y is an IFCS in X. Let B = 〈y, µB, γB〉 be an IFCS in Y . We have to show that

f−1(B) is an IFCS in X. Since B = cl(B), therefore f−1(B) = f−1(cl(B)) but it is given

that cl(f−1(B)) ⊆ f−1(cl(B)), hence cl(f−1(B)) ⊆ f−1(B) = f−1(cl(B)). So from this

we conclude that f−1(B) = cl(f−1(B)), i.e., f−1(B) an IFCS in X. This proves that f is

fuzzy continuous.
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Chapter 3

Compactness and Separation Axioms

3.1. Intuitionistic Fuzzy Compactness

Definition 3.1.1 [4]: Let (X, τ) be an IFTS.

(a) If a family {〈x, µGi , γGi〉 : i ∈ J} of IFOS in X satisfy the condition
⋃
{〈x, µGi , γGi〉 :

i ∈ J} = 1∼ then it is called a fuzzy open cover of X. A finite subfamily of fuzzy open

cover {〈x, µGi , γGi〉 : i ∈ J} of X, which is also a fuzzy open cover of X is called a finite

subcover of {〈x, µGi , γGi〉 : i ∈ J}.

(b) A family {〈x, µKi , γKi〉 : i ∈ J} of IFCSs in X satisfies the finite intersection property

iff every finite subfamily {〈x, µKi , γKi〉 : i = 1, 2, · · · , n} of the family satisfies the condition⋂n
i=1{〈x, µKi , γKi〉} 6= 0∼.

Definition 3.1.2 [4]: An IFTS (X, τ) is called fuzzy compact iff every fuzzy open cover

of X has a finite subcover.

Example 3.1.3 [4]: Consider the IFTS (X, τ), whereX = {1, 2}, Gn = 〈x, ( 1
n
n+1

, 2
n+1
n+2

), ( 1
1

n+2

, 2
1

n+3

)〉

and τ = {0∼, 1∼} ∪ {Gn : n ∈ N}. Note that
⋃
n∈NGn is an open cover for X, but this

cover has no finite subcover. Consider

G1 = 〈x, ( 1

0.5
,

2

0.6
), (

1

0.3
,

2

0.25
)〉

G2 = 〈x, ( 1

0.6
,

2

0.75
), (

1

0.25
,

2

0.2
)〉

G3 = 〈x, ( 1

0.75
,

2

0.8
), (

1

0.2
,

2

0.16
)〉
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and observe that G1 ∪ G2 ∪ G3 = G3. So, for any finite subcollection {Gni : i ∈

I, where I is a finite subset of N},
⋃
ni∈I Gni = Gm 6= 1∼, where m = max{ni : ni ∈ I}.

Therefore the IFTS (X, τ) is not compact.

Proposition 3.1.4 [4]: Let (X, τ) be an IFTS on X. Then (X, τ) is fuzzy compact iff

the IFTS (X, τ0,1) is fuzzy compact.

Proof: Let (X, τ) be fuzzy compact and consider a fuzzy open cover {[ ]Gj : j ∈ K} of

X in (X, τ0,1). Since
⋃

([ ]Gj) = 1∼ we obtain
∨
µG = 1, and hence, by γGj ≤ 1− µGj ⇒∧

γGj ≤ 1 −
∨
µGj = 1 − 1 = 0 ⇒

∧
γGj = 0, we deduce

⋃
Gj = 1∼. Since (X, τ) is

fuzzy compact there exist G1, G2, · · ·Gn such that
⋃n
i=1Gi = 1∼ from which we obtain∨n

i=1 µGi = 1 and
∧n
i=1(1− µGi) = 0, that is, (X, τ0,1) is fuzzy compact.

Suppose that (X, τ0,1) is fuzzy compact and consider a fuzzy open cover Gj : j ∈ K of

X in (X, τ). Since
⋃
Gj = 1∼, we obtain

∨
µGj = 1 and

∧
(1− µGj) = 0. Since (X, τ0,1) is

fuzzy compact there exist G1, G2, · · ·Gn such that
⋃n
i=1([ ]Gi) = 1∼, that is,

∨n
i=1 µGi = 1

and
∧n
i=1(1−µGi) = 0. Hence µGi ≤ 1−γGi ⇒ 1 =

∨n
i=1 µGi ≤ 1−

∧n
i=1 γGi ⇒

∧n
i=1 γGi = 0.

Hence
⋃n
i=1Gi = 1∼. Therefore (X, τ) is fuzzy compact.

Corollary 3.1.5 [4]: Let (X, τ), (Y, φ) be IFTSs and f : X → Y a fuzzy continuous

surjection. If (X, τ) is fuzzy compact, then so is (Y, φ).

Proof: Given that f is continuous and onto and (X, τ) is fuzzy compact. To show that

f(X) = Y is also fuzzy compact. Let us consider an open cover {Gj : j ∈ K} of Y , then⋃
j∈K Gj = 1Y∼. Let Gj = 〈y, µGj , γGj〉. Now, f−1(

⋃
j∈K Gj) = f−1(1Y∼)⇒

⋃
j∈K f

−1(Gj) =

1X∼ . Since Gj is open in Y , for every j ∈ K, therefore f−1(Gj) is open in X, for ev-

ery j ∈ K as the map f is fuzzy continuous. Thus the family {f−1(Gj) : j ∈ K}
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is an open cover for X and since X is compact this family has a finite subcover, say,

{f−1(G1), f
−1(G2), · · · , f−1(Gn)}. Thus,

⋃n
i=1 f

−1(Gj) = 1X∼ . Now, f(
⋃n
i=1 f

−1(Gj)) =

f(1X∼ )⇒
⋃n
i=1 f(f−1(Gj))) = f(1X∼ )⇒

⋃n
j=1(Gj) = 1Y∼, (as the map f is surjective). This

proves that Y is fuzzy compact.

Corollary 3.1.6 [4]: An IFTS (X, τ) is fuzzy compact iff every family {〈x, µKi , γKi〉 : i ∈

J} of IFCSs in X having the FIP has a nonempty intersection.

Proof: Assume that X is fuzzy compact i.e every open cover of X has a finite subcover.

Let {Ki = 〈x, µKi , γKi〉 : i ∈ J} be a family of IFCS of X. Also assume that this family

has finite intersection property. We have to show that
⋂
i∈J Ki =

⋂
i∈J{〈x, µKi , γKi〉 : i ∈

J} 6= 0∼. On the contrary suppose that

⋂
i∈J

Ki = 0∼ ⇒
⋂
i∈J

Ki = 0∼ ⇒
⋃
i∈J

Ki =
⋃
i∈J

〈x, γKi , µKi〉 = 1∼

Since for every i ∈ J , Ki is an IFCS of X, therefore Ki will be an IFOS of X. Thus,

{K̄i = 〈x, γKi , µKi〉 : i ∈ J} is an open cover for X. Since X is fuzzy compact therefore

this cover has a finite subcover, say,
⋃n
i=1 K̄i =

⋃n
i=1{〈x, γKi , µKi〉 : i ∈ J} = 1∼. Then,

n⋃
i=1

Ki = 1∼ ⇒
n⋂
i=1

Ki = 0∼.

Thus, the above considered family does not satisfy the FIP which is a contradiction. There-

fore,
⋂
i∈J Ki 6= 0∼.

Conversely, assume that the family of IFCS of X having FIP has nonempty intersection.

To show that X is compact let {Gi = 〈x, µGi , γGi〉 : i ∈ J} be an open cover of X. Suppose

that this open cover has no finite subcover, i.e. for every finite subcollection of the given
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cover, say,
n⋃
i=1

Gi 6= 1∼ ⇒ (
n⋃
i=1

Gi) 6= 1∼ ⇒
n⋂
i=1

Gi 6= 0∼.

As each Gi is an IFOS of X therefore, each Gi is an IFCS of X. Thus, {Ḡi = 〈x, γGi , µGi〉 :

i ∈ J} is a family of IFCS of X having FIP. So by the hypothesis it has nonempty

intersection, i.e., ⋂
i∈J

Gi 6= 0∼ ⇒ (
⋂
i∈J

Gi) 6= 0∼ ⇒
⋃
i∈J

Gi 6= 1∼.

This shows that the family {Gi = 〈x, µGi , γGi〉 : i ∈ J} is not a cover for X, which is a

contradiction. Therefore, the given family must have a finite subcover and this shows that

X is fuzzy compact.

Definition 3.1.7 [4]: (a) Let (X, τ) be an IFTS and A an IFS in X. If a family

{〈x, µGi , γGi〉 : i ∈ J} of IFOSs in X satisfies the condition A ⊆
⋃
{〈x, µGi , γGi〉 : i ∈ J},

then it is called a fuzzy open cover of A. A finite subfamily of the fuzzy open cover

{〈x, µGi , γGi〉 : i ∈ J} of A, which is also a fuzzy open cover of A, is called a finite subcover

of {〈x, µGi , γGi〉 : i ∈ J}.

(b) An IFS A = 〈x, µA, γA〉 in an IFTS (X, τ) is called fuzzy compact iff every fuzzy open

cover of A has a finite subcover.

Corollary 3.1.8 [4]: An IFS A = 〈x, µA, γA〉 in an IFTS (X, τ) is fuzzy compact iff

for each family G = {Gi : i ∈ J}, where Gi = 〈x, µGi , γGi〉(i ∈ J), of IFOSs in X with

properties µA ≤
∨
i∈J µGi and 1 − γA ≤

∨
i∈J(1 − γGi) there exists a finite subfamily

{Gi : i = 1, 2, · · · , n} of G such that µA ≤
∨n
i=1 µGi and 1− γA ≤

∨n
i=1(1− γGi).

Example 3.1.9 [4]: Let X = I and consider the IFSs (Gn)n∈Z2 , where Gn = 〈x, µGn , γGn〉
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,n = 2, 3, · · · and G = 〈x, µG, γG〉 defined by

µGn(x) =


0.8, if x = 0,

nx, if 0 < x ≤ 1
n
,

1, if 1
n
< x ≤ 1.

γGn(x) =


0.1, if x = 0,

1− nx, if 0 < x ≤ 1
n
,

0, if 1
n
< x ≤ 1.

µG(x) =


0.8, if x = 0,

1, otherwise.

γG(x) =


0.1, if x = 0,

0, otherwise.

Then τ = {0∼, 1∼, G} ∪ {Gn : n ∈ Z2} is an IFT on X, and consider the IFSs Cα,β in

(X, τ) defined by Cα,β = {〈x, α, β〉 : x ∈ X}, where α, β ∈ I are arbitrary and α + β ≤ 1.

Then the IFSs C0.85,0.05, C0.85,0.15, C0.75,0.05 are all fuzzy compact, but the IFS C0.75,0.15 is

not fuzzy compact.

Corollary 3.1.10 [4]: Let (X, τ), (Y, φ) be IFTSs and f : X → Y a fuzzy continuous

function. If A is fuzzy compact in (X, τ), then so is f(A) in (Y, φ).

Proof: Let B = {Gi : i ∈ J}, where Gi = 〈y, µGi , γGi〉 , i ∈ J be a fuzzy open cover of

f(A). Then, by the definition of fuzzy continuity A = {f−1(Gi) : i ∈ J} is a fuzzy open

cover of A, too. Since A is fuzzy compact, there exists a finite subcover of A, i.e., there
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exists Gi(i = 1, 2, · · · , n) such that A ⊆
⋃n
i=1 f

−1(Gi). Hence f(A) ⊆ f(
⋃n
i=1 f

−1(Gi)) =⋃n
i=1 f(f−1(Gi)) ⊆

⋃n
i=1Gi. Therefore, f(A) is also fuzzy compact.

Lemma 3.1.11 (The Alexander subbase Lemma) [5]: Let δ be a subbase of an

IFTS (X, τ). Then (X, τ) is fuzzy compact iff for each family of IFCSs chosen from

δc = {K : K ∈ δ} having the FIP there is a nonzero intersection.

Definition 3.1.12 [5]: The product set X equipped with the IFT generated on X by the

family S is called the product of the IFTSs {(Xi, τi) : i ∈ J}. For each i ∈ J and for

each Si ∈ τi, we have π−1i (Si) ∈ τ . So πi is indeed a fuzzy continuous function from the

product IFTS onto (Xi, τi), ∀i ∈ J . The product IFT τ is the coarsest IFT on X having

this property.

Theorem 3.1.13 (Tychonoff Theorem) [5]: Let the IFTSs (X1, τ1) and (X2, τ2) be

fuzzy compact. Then the product IFTS on X = X1 ×X2 is fuzzy compact.

Proof: Here we will make use of the Alexander subbase lemma. Suppose, on the contrary

that there exists a family

P = {π−11 (Pi1) : i1 ∈ J1} ∪ {π−12 (Pi2) : i2 ∈ J2} · · · · · · · · · (1)

consisting of some of the IFCSs obtained from the subbase

δ = {π−11 (T1), π
−1
2 (T2) : T1 ∈ τ1, T2 ∈ τ2} · · · · · · · · · (2)

of the product IFT on X such that P has FIP and ∩P = 0. Now, it can be shown easily

that the families

P1 = {Pi1 : i1 ∈ J1}, P2 = {Pi2 : i2 ∈ J2} · · · · · · · · · (3)
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have the FIP, and since (Xi, τi)’s are fuzzy compact we have ∩P1 6= 0 and ∩P2 6= 0 which

means that

(∧µPi1 6= 0 or ∨ γPi1 6= 1), (∧µPi2 6= 0 or ∨ γPi2 6= 1) · · · · · · · · · (4)

But from ∩P = 0, we obtain

(∧µPi1 ◦ π1) ∧ (∧µPi2 ◦ π2) = 0, (∨γPi1 ◦ π1) ∨ (∨γPi2 ◦ π2)) = 1. · · · · · · · · · (5)

Hence there exist four cases.

Case-I If ∧µPi1 6= 0 and ∧µPi2 6= 0, then there exists x1 ∈ X1, x2 ∈ X2 such that

∧µPi1 (x1) 6= 0 and ∧µPi2 (X2) 6= 0 from which we obtain a contradiction to equation (5), if

it is evaluated in (x1, x2)

Case-II If ∨γPi1 6= 1 and ∨γPi2 6= 1, then we get a similar contradiction as in the first

case.

Case-III If ∧µPi1 6= 0 and ∨γPi1 6= 1, then there exist x1 ∈ X1, x2 ∈ X2 such that

∧µPi1 (x1) 6= 0 and ∨γPi2 (x2) 6= 1 from which we obtain ∧µPi2 (x2) = 0 and ∨µPi1 (x1) = 1

and then, since γPi1 ≤ 1− µPi1 for each Pi1 ,

∨γPi1 ≤ ∨(1− µPi1 ) = 1− ∧µPi1 ⇒ 1 = ∨γPi1 (x1) ≤ 1− ∧µPi1 (x1)⇒ ∧µPi1 (x1) = 0,

which is contradiction because ∧µPi1 (x1) 6= 0.

Case-IV If ∨γPi1 6= 1 and ∧µPi2 6= 0, then we obtain a similar contradiction as in the

third case.

Hence by the Alexander subbase lemma, (X, τ) is also fuzzy compact.
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3.2. Intuitionistic Fuzzy Regular Spaces

Definition 3.2.1 [7]: An IFTS (X, τ) will be called regular if for each IFP px(α,β) and each

IFCS C such that px(α,β) ∩ C = 0∼ there exists IFOS M and N such that px(α,β) ∈ M and

C ⊆ N .

Note: For the simplification of the notation we will write the IFP px(α,β) as x(α,β).

Proposition 3.2.2: If a space X is a regular space then for any open set U and in-

tuitionistic fuzzy point x(α,β) such that x(α,β) ∩ U
′

= 0∼, ∃ an open set V such that

x(α,β) ∈ V ⊆ V ⊆ U .

Proof: Suppose that X is a IFRS. Let U be an IFOS of X such that x(α,β) ∩U
′
= 0∼ and

U = 〈y, µU , γU〉. Then U ′ = 〈y, νU , µU〉 is an IFCS in X. Since X is regular, therefore ∃

two IFOSs V and W such that x(α,β) ∈ V , U ′ ⊆ W and V ∩W = 0∼. Now, W ′ is an IFCS

of X such that V ⊆ W ′ ⊆ U . Thus, x(α,β) ∈ V ⊆ V and V ⊆ W ′ ⊆ U , so V ⊆ U . Hence,

x ∈ V ⊆ V ⊆ U .

Proposition 3.2.3: Every subspace of regular space is also regular.

Proof: Let X be a IFRS and Y is a subspace of X. To prove that Y is regular. We know

that τY = {GY = 〈x, µG|Y , νG|Y 〉 : x ∈ Y,G ∈ τ}, where G = 〈x, µG, νG〉. Let x(α,β) be an

IFP in Y and FY is an IFCS of Y such that x(α,β)∩FY = 0∼. Since Y is a subspace of X, so

x(α,β) ∈ X and there exists an IFCS F in X such that the closed set generated by it for Y

is FY . Since X is regular space and x(α,β) ∩ F = 0∼, there exist two IFOSs M and N such

that x(α,β) ∈M = 〈x, µM , νM〉 and F ⊆ N = 〈x, µN , νN〉. Thus MY = 〈x, µM |Y , νM |Y 〉, and

NY = 〈x, µN |Y , νN |Y 〉 are open sets in Y such that x(α,β) ∈MY and FY ⊆ NY . Hence, Y is
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a regular subspace of X.

3.3. Intuitionistic Fuzzy Normal Spaces

Definition 3.3.1 [7]: An IFTS (X, τ) will be called normal if for each pair of IFCSs C1

and C2 such that C1 ∩C2 = 0∼ there exists IFOSs M1 and M2 such that Ci ⊆Mi(i = 1, 2)

and M1 ∩M2 = 0∼.

Proposition 3.3.2: If a space X is a normal space, then for each closed set F of X

and any open set G of X such that F ∩ G′ = 0∼ there exists an open set GF such that

F ⊆ GF ⊆ GF ⊆ G.

Proof: Let X be a normal space. Let F be a closed set in X and G be an open set in X

such that F ∩G′ = 0∼, then F ⊆ G. Let G = 〈x, µG, νG〉 and F = 〈x, νF , µF 〉. Since X is

normal and G′ is an IFCS in X, therefore there exist two disjoint IFOSs GF and GG′ , such

that F ⊆ GF , G′ ⊆ GG′ and GF ∩ GG′ = 0∼ This implies that G′G′ ⊆ G and GF ⊆ G′G′ .

But G′G′ is a closed set, therefore GF ⊆ G′G′ . Thus we have F ⊆ GF ⊆ GF ⊆ G.

3.4. Other Separation Axioms in IFTS

Definition 3.4.1 [9]: An IFTS (X, τ) is called

(a) T0 if for all x, y ∈ X, x 6= y ∃ U = (µU , νU), V = (µV , νV ) ∈ τ such that (µU , νU)(x) =

(1, 0), (µU , νU)(y) = (0, 1) or (µV , νV )(x) = (0, 1), (µV , νV )(y) = (1, 0).

(b) T1 if for all x, y ∈ X, x 6= y ∃ U = (µU , νU), V = (µV , νV ) ∈ τ such that (µU , νU)(x) =

(1, 0), (µU , νU)(y) = (0, 1), (µV , νV )(x) = (0, 1)and(µV , νV )(y) = (1, 0).

(c) T2 (or Hausdorff) if for all pair of distinct intuitionistic fuzzy points x(α,β), y(γ,δ) in

X, ∃U, V ∈ τ such that x(α,β) ∈ U, y(γ,δ) ∈ V and U ∩ V = 0∼.
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Example 3.4.2 [9]: Let X = {a, b} and let τ = {0∼, A,B, 1∼} where A = 〈x, (a
1
, b
0
), (a

0
, b
1
)〉

and B = 〈x, (a
1
, b
0
), (a

0
, b
1
)〉 then (X, τ) is an IFTS and it is T0, T1, T2.

Proposition 3.4.3 [9]: The following statement are equivalent in an IFTS (X, τ)

(1) (X, τ) is T1

(2) ({x}, {x′}) is IFC in (X, τ) ∀ x ∈ X.

Proposition 3.4.4 [9]: Every subspace of T1 space is T1.

Proof: Let X be a T1 IFTS and Z be subspace of X. So τZ = {GZ = 〈x, µG|Z , γG|Z〉 : x ∈

Z,G ∈ τ}, where G = 〈x, µG, γG〉. Let x, y ∈ Z such that x 6= y. Then, as Z ⊆ X, we have

x, y ∈ X such that x 6= y. Since X is T1, therefore ∃ U = (µU , νU), V = (µV , νV ) ∈ τ such

that (µU , νU)(x) = (1, 0), (µU , νU)(y) = (0, 1), (µV , νV )(x) = (0, 1) and (µV , νV )(y) = (1, 0).

Thus, there exist ∃ UZ = (µU|Z , νU|Z ), VZ = (µV|Z , νV|Z ) ∈ τZ such that (µU|Z , νU|Z )(x) =

(1, 0), (µU|Z , νU|Z )(y) = (0, 1), (µV|Z , νV|Z )(x) = (0, 1) and (µV|Z , νV|Z )(y) = (1, 0). This

proves that the subspace Z is also T1.

Proposition 3.4.5 [9]: Every subspace of T2 space is T2.

Proof: Let (X, τ) be a IF T2 space and A be subspace of X, where τA = {GA =

〈x, µG|A, νG|A〉 : x ∈ A,G ∈ τ} and G = 〈x, µG, νG〉. Let x(α,β) and y(γ,δ) be two dis-

tinct IFP in A, i.e., they have distinct supports. Then, clearly x(α,β) and y(γ,δ) are also

distinct IFPs in X and as X is T2, therefore ∃U, V ∈ τ such that x(α,β) ∈ U, y(γ,δ) ∈ V and

U ∩ V = 0∼. Thus, ∃UA, VA ∈ τA such that x(α,β) ∈ UA, y(γ,δ) ∈ VA and UA ∩ VA = 0∼.

Theorem 3.4.6: An IFP x(α,β) and a compact set K such that x(α,β) ∩ K = 0∼, in a

Hausdorff (HDF) space can be separated by disjoint open sets.

Proof: Let (X, τ) be an IFTS. Let K be a IF compact set in (X, τ). Since, x(α,β)∩K = 0∼,
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therefore x(α,β) /∈ K and µK(x) = 0; γK(x) = 1. Let y(ν,δ) ∈ K, then clearly x 6= y and

thus, x(α,β) and y(ν,δ) are distinct IFPs. Since X is HDF, therefore there exist two IFOSs

G
y(ν,δ)
x andGy(ν,δ) such thatG

y(ν,δ)
x ∩Gy(ν,δ) = 0∼. Thus, corresponding to each IFP inK there

exist two disjoint open sets separating that point with x(α,β). Clearly, K ⊆
⋃
y(ν,δ)∈K G

y(ν,δ)
x .

Since K is compact, therefore there exist finitely many open sets such that K is contained

into there union. Suppose that the union of these finitely many open sets be represented

by H and the intersection of corresponding IFOS containing x(α,β) be given by G. Now,

we want to show that G∩H = 0∼. On the contrary suppose that G∩H 6= 0∼. Then there

will exist an IFP, say, z(α′,β′) which will belong to the intersection of G and H, but this will

contradict the existence of the IFOSs of the type G
y(ν,δ)
x ∩Gy(ν,δ) = 0∼. Hence, G∩H = 0∼.
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