
Improved Modified Condition/ Decision Coverage

using Code Transformation Techniques

Sangharatna Godboley
(Roll no.: 211CS3293)

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Odisha - 769 008, India

Improved Modified Condition/ Decision Coverage

using Code Transformation Techniques

Thesis submitted in partial fulfillment

of the requirements for the degree

of

Master of Technology

by

Sangharatna Godboley
Roll no-211CS3293

under the guidance of

Prof. Durga Prasad Mohapatra and Prof. Banshidhar Majhi

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Odisha,769 008, India

May 2013

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

June 2, 2013

Certificate

This is to certify that the work in the thesis entitled “Improved Modified Condition/

Decision Coverage using Code Transformation Techniques” by Sangharatna

Godboley is a record of an original research work carried out under my supervision and

guidance in partial fulfillment of the requirements for the award of the degree of Master of

Technology in Computer Science and Engineering. Neither this thesis nor any part of it has

been submitted for any degree or academic award elsewhere.

Prof. Banshidhar Majhi Prof. Durga Prasad Mohapatra

Professor Associate Professor

Acknowledgement

I owe deep gratitude to the ones who have contributed greatly in completion of this

thesis.

Foremost, I would like to express my sincere gratitude to my supervisors, Prof. Durga

Prasad Mohaptra and Prof. Banshidhar Majhi for providing me with a platform to work

on challenging areas of Modified Condition/ Decision Coverage and Concolic Testing. Their

profound insights and attention to details have been true inspirations to my research.

I am very much indebted to Prof. Shantanu Kumar Rath, Prof. Ashok Kumar Turuk,

Prof. Pabitra Mohan Khilar, and Prof. Bibhudatta Sahoo, for their encouragement and

insightful comments at different stages of thesis that were indeed thought provoking.

I express my gratitude to Prof. Rajib Mall of IIT Kharagpur for providing the necessary

inputs and guidance at different stages of my work.

I am also indebited to Mr. Avijit Das of Advanced Systems Laboratory, Defence R &

D Organisation, Hyderabad and Mr. Prasad Bokil of TRDDC, Pune for suggestions and

guidance of my thesis work.

Most importantly, none of this would have been possible without the love of Mr. J. R.

Godboley(Papa), Mrs. Rama Devi Godboley(Mumy), Er. Vivekratna Godboley(Brother),

Prof. Buddharatna Godboley(Brother), and Er. Rajaratna Godboley(Brother). My family

to whom this dissertation is dedicated to, has been a constant source of love, concern,

support and strength all these years. I would like to express my heartfelt gratitude to them.

I also appreciate the company of Mr. Yogendra Soni, Mr. Subhrakanta Panda, Mr.

Yeresime Suresh and Mr. Vijay Sarthi for their unique ideas and help whenever required.

I would like to thank all my friends and lab-mates(Sanjaya Panda, Srinivasulu Dasari,

Dinesh Kottha Reddy, Adepu Sridhar, Pratik Agarwal, Suchitra Kumari Mishra, Alina

Mishra, and Swagatika Swain) for their encouragement and understanding. Their help can

never be penned with words.

Sangharatna Godboley

Abstract

Modified Condition / Decision Coverage (MC / DC) is a white box testing criteria aim-

ing to prove that all conditions involved in a predicate can influence the predicate value

in the desired way. In regulated domains such as aerospace and safety critical domains,

software quality assurance is subjected to strict regulations such as the DO-178B standard.

Though MC/DC is a standard coverage criterion, existing automated test data genera-

tion approaches like CONCOLIC testing do not support MC/DC. To address this issue

we present an automated approach to generate test data that helps to achieve an increase

in MC/DC coverage of a program under test. We use code transformation techniques for

transforming program. This transformed program is inserted into the CREST TOOL. It

drives CREST TOOL to generate test suite and increase the MC/DC coverage. Our tech-

nique helps to achieve a significant increase in MC/DC coverage as compared to traditional

CONCOLIC testings.

Our experimental results show that the proposed approach helps to achieve on the average

approximately 20.194 % for Program Code Transformer(PCT) and 25.447 % for Exclusive-

Nor Code Transformer. The average time taken for seventeen programs is 6.89950 seconds.

Keywords: CONCOLIC testing, Code transformation techniques, MC/DC, Coverage

Analyser.

Contents

1 Introduction 2

1.1 Software Testing . 2

1.1.1 Software Testing Goals . 2

1.1.2 Software Testing Life Cycle . 3

1.1.3 Software Testing Techniques . 3

1.1.4 Software Testing Strategies . 4

1.2 Problem Statement . 6

1.2.1 Automated Testing . 6

1.2.2 The objective of our approach . 6

1.3 Organization of the Thesis . 7

2 Basic Concepts 9

2.1 Some Relevent Definitions . 9

2.2 Modified Condition/ Decision Coverage . 10

2.3 Determination of Predicates . 12

2.4 CONCOLIC Testing . 13

2.4.1 Definition . 14

2.4.2 Process . 15

2.5 Summary . 16

3 Review of Related Work 17

3.1 Automated testing for branch coverage . 17

3.2 MC / DC Automatic Testing . 18

3.3 Other related works . 19

3.4 Summary . 20

CONTENTS ii

4 Program Code Transformer Technique 21

4.1 Formal Definition . 21

4.2 Our first proposed approach MC/DC Tester-I [MT-I] 22

4.3 Program Code Transformer . 23

4.3.1 Description of Algorithm 1 . 24

4.3.2 Description of Algorithm 2 . 26

4.3.3 Description of Algorithm 3 . 27

4.3.4 Example of PCT . 28

4.3.5 Complexity of PCT . 28

4.4 CONCOLIC Testing . 28

4.5 MC/DC Coverage Analyser . 29

4.5.1 Description of Algorithm 4 . 30

4.6 Experimental Study . 30

4.6.1 PCT details . 30

4.6.2 CREST details . 31

4.6.3 CA details . 38

4.6.4 Experimental Reqiurements . 38

4.6.5 Results . 40

4.6.6 Time constraints . 41

4.6.7 Comparison Between BCT and PCT 41

4.7 Limitation of PCT . 43

4.8 Conclusion . 43

5 Exclusive-Nor Code Transformer Technique 44

5.1 Our Proposed Approach MC/DC Tester-II [MT-II] 44

5.2 X-Nor Code Transformer (X-NCT) . 45

5.2.1 Description of Algorithm 1 . 46

5.2.2 Description of Algorithm 2 . 47

5.3 Exclusive-NOR operation . 48

5.4 Example for X-NCT . 48

5.5 Complexity for X-NCT . 51

5.6 CONCOLIC Tester . 51

5.7 MC/DC Coverage Analyser . 51

5.8 Experimental Study . 51

5.8.1 X-NCT details . 51

CONTENTS iii

5.8.2 Experimental Reqiurements . 52

5.8.3 Results . 53

5.8.4 Comparison Between XCT and X-NCT 54

5.8.5 Analysis of Result . 54

5.9 Conclusion . 57

6 Conclusions and Future Work 58

6.1 Contributions . 58

6.1.1 Program Code Transformer . 58

6.1.2 Exclusive-Nor Code Transformer . 59

6.1.3 Coverage Analyser . 59

6.2 Future Work . 59

BIBLIOGRAPHY 61

List of Figures

1.1 An example program for coverage criteria . 5

2.1 Schematic representation for different gates 11

2.2 An example program to explain CONCOLIC testing 14

4.1 Schematic representation of our first approach [MT-I] 23

4.2 An example showing concept of PCT . 27

4.3 Transformed form of Fig. 4.2 . 28

4.4 Transformed program from PCT . 31

4.5 An Example program from chapter 4 . 33

4.6 Compilation of original program . 33

4.7 Run execution of original program . 34

4.8 Generated Test data in input file for original program 34

4.9 Automatically generated coverage file for original program 35

4.10 Transformed program of original program . 35

4.11 Compilation of transformed program . 36

4.12 Run execution of transformed program . 36

4.13 Generated Test data in input file for transformed program 37

4.14 Automatically generated coverage file for transformed program 37

4.15 Screenshot of Coverage analyser . 38

4.16 Time Constarint Graph . 42

4.17 Comparison between transformation techniques BCT and PCT 43

5.1 Schematic representation of our second approach [MT-II] 45

5.2 An example for X-NOR operation . 49

5.3 Transformed program for Fig. 5.2 . 49

5.4 Transformed program from X-NCT . 52

LIST OF FIGURES v

5.5 Comparison between transformation techniques XCT and X-NCT 55

5.6 Analysis of all example program for Evaluated MC/DC coverage percentage 56

5.7 Increase in MC/DC percentage comaparision analysis for all example programs 57

5.8 Comparison analysis for PCT and X-NCT 57

List of Tables

2.1 Truth table for two variables . 10

2.2 Truth table for three variables . 10

2.3 MC/DC result for four variables . 12

4.1 Summary of Characteristics of the program under test for PCT 39

4.2 Coverage Calculated by Coverage Analyser for PCT 40

4.3 Time Constraint . 41

4.4 Coverage percentage for BCT and PCT technique 42

5.1 Truth table for X-NOR operation . 48

5.2 Truth table for first variable (a) after applying X-NOR operations 50

5.3 Truth table for second variable (b) after applying X-NOR operations 50

5.4 Truth table for third variable (c) after applying X-NOR operations 50

5.5 Summary of Characteristics of the program under test 53

5.6 Coverage Calculated by Coverage Analyser 54

5.7 Coverage percentage for XCT and X-NCT technique 55

Chapter 1

Introduction

Software engineering proposes systematic and cost-effective methods to software develop-

ment process [1]. These methods have resulted from innovations as well as lessons learnt

from past mistakes. Software engineering as the engineering approach to develop software.

Software is usually subject to several types and cycles of verification and test. In the early

days of software development, software testing was considered only a debugging process for

removing errors after the development of software.

1.1 Software Testing

Software Testing is a process that detects important bugs with the objectives of having

better quality software. This is the way to increase reliability of software projects [2].

The technique software testing is responsible for achieving good quality software and high

software dependability. Software testing consists of the steps of execution of a system under

some conditions and compares with expected results [3]. The conditions should have both

normal and abnormal conditions to determine any failure under unexpected conditions.

1.1.1 Software Testing Goals

The main goals of software testing are divided into three categories and several subcate-

gories as follows:

1. Immediate Goal :

� Bug Discovery,

� Bug Prevention

1.1 Software Testing 3

2. Long-term Goals :

� Reliability,

� quality,

� customer,

� satisfaction,

� risk management

3. Post Implementation Goals :

� Reduced maintenance cost,

� Improved testing process

1.1.2 Software Testing Life Cycle

The testing process divided into a well-defined sequence of steps is termed as a software

testing life cycle (STLC). The STLC consists the following phases:

� Test planning,

� Test design,

� Test execution

� Test review/post execution.

1.1.3 Software Testing Techniques

In software world it has been noticed that 100% efficient software testing is not possible.

But an effective testing can solve this problem but to follow the effective testing is very dif-

ficult. The method to determine effective test case is known as Software Testing Technique.

Two objectives are making the effective test cases that are detection of numbers of bugs

and coverage of testing area. The different levels of testing Unit testing, Integration testing,

Function Testing, System testing, and Acceptance testing. The detailed testing stages are

followed:

1. Unit Testing: Each System Component of whole software is individually tested for

all functionality and its interfaces.

1.1 Software Testing 4

2. Integration Testing: Process of mixing and testing multiple building blocks to-

gether. The individual tested component, when mixed with other components, is

untested for interfaces. Therefore it may have bugs in integrated workspace. So, the

purpose of this testing is to uncover this bug.

3. Function Testing: To measure systems functional component quality is the main

purpose of functional testing. This is to expand the bugs related to problems between

system behavior and specifications.

4. System Testing: Its objective is not to test particular function, but it tests the

system on various platforms where bugs exist.

5. Acceptance Testing: This technique used by customer after software developed.

Compares the process of the final status of project and agreement of acceptance criteria

performed by the customer.

1.1.4 Software Testing Strategies

Testing strategies are mainly divided into two categories:

1. Black Box Testing: The structure of software is not considered only the functional

requirements of the module are taken under consideration. In this the software system

act as a black box taking input test data and and giving output results.

2. White Box Testing: As everything is transparent in glass like that in this software

it visible in all aspects it is called as glass box testing. Structure, design and code of

software should be studied for this type of testing. Also it is called as development or

structural testing [3].

There are several white box coverage criteria [4] [5]. Let us take a sample program

as shown in Fig. 1.1.

� Statement Coverage: In these coverage criteria each and every statement of a

module is executed once, we can detect every bug. For example: If we want to

cover the each line so we need to follow all test cases. Case 1- x=y=m, where m

is any number. Case 2- x=m, y=m’, where m and m’ are different numbers. If

Case 1 fails then all parts of the code never execute. Now consider the Case 2,

here loop execute Case 3- x < y and Case 4- x > y will execute. This criterion

1.1 Software Testing 5

Figure 1.1: An example program for coverage criteria

is very poor criteria because Case 3 and Case 4 are sufficient for all statements

in code. But, if both Case 3 and Case 4 will execute, so Case 1 never execute.

Therefore it is a poor criteria.

� Branch Coverage: Each decision node traversed at least once. The possible

outcomes are either TRUE or FALSE. For a last example Test cases are designed

as: Test Case 1- x=y, Case- 2 x 6= y, Case3- x > y, Case4- x < y.

� Modified Condition / Decision Coverage: It enhances the condition cover-

age and decision coverage criteria by showing that each condition in a decision

independently affects the result of the decision. For example, for the expression

(A ||B), test cases (TF), (FT), and (FF) provide MC/DC.

� Multiple Condition Coverage: This is the strongest criteria. Here all possible

outcomes of each condition in decision taking under consideration. It requires

sufficient test cases such that all points of entry invoked at least once. Ex. If an

AND results FALSE, no need to evaluate further steps, and if an OR result TRUE

so again no need to evaluate further steps. Possible test cases: Case 1- A=TRUE,

B=TRUE, Case 2- A=TRUE, B=FALSE, Case 3- A=FALSE, B=TRUE, Case

4- A=FALSE, B=FALSE.

1.2 Problem Statement 6

1.2 Problem Statement

This section shows the overview of our work. First, automated testing is discussed and

then the objective of our proposed approach is discussed.

1.2.1 Automated Testing

This achieved by using an automated test software or tool. Testing activity saved about

40% to 50% of the overall software development effort. Automated testing [6] appears as

a promising technique to reduce test time and effort. This is used in regression testing,

performance testing, load testing, network testing and security testing. This tool concept

speeds up the test cycle as they can overcome the faster rate of the manual testing process.

This can be done in two ways: first create scripts with all the required test cases embedded

in them. Second design software that will automatically generate test cases and run them on

the program or the system to be tested. This can be very complex and difficult to develop

but once if it designed then we can save huge amount of time, cost, and effort. Therefore,

it is possible to use these techniques to invoke the necessary information for test cases.

1.2.2 The objective of our approach

The main aim is to develop an automated approach to generate test cases that can achieve

MC/DC coverage [2]. To reach our aim, we propose the concept. The CONCOLIC testing

is the combination of concrete and symbolic testing and it was originally designed to achieve

branch coverage [7].

In our approach, we have used CREST TOOL which is a CONCOLIC tester [8]. In our

work we present the code transformer in which we insert program code under test and get

the transformed program as output. Transformed program is nothing but additional nested

if-else that’s having true and false branches for each decision with the original program.

This transformation is used to get an increase in MC/DC test data. This additional branch

does not affect the original program. This transformed program is now inserted to CREST

TOOL and we get MC/DC test suite which consists of test data. The tester also generates

concrete input values for the transformed code to achieve an increase in MC/DC for the

original program.

1.3 Organization of the Thesis 7

Coverage analyzer proposed to calculate the coverage percentage. We need to provide

MC/DC test data for each and every clause and need to provide the original program. At

last we get the coverage percentage. In our observations, when we are inserting our original

program with CONCOLIC tester, some MC/DC test data are generated. Using these values

and our program, we calculate a coverage percentage. Secondly by adding code transformer,

we insert transformed program to CONCOLIC tester and get MC/DC test data using these

values, again we calculate the coverage percentage. Now we get two different coverage

percentages, but we can observe that the second percentage is improved by some value.

Hence, we achieved an increase in MC/DC by using our approach code transformer.

1.3 Organization of the Thesis

The rest of the thesis is organized into chapters as follows:

Chapter 2 contains the basic concepts used in the rest of the thesis. The chapter contains

the definitions of condition, decision, logic gates, group of conditions. We describe the

determination of predicates. Then, we present some basic concepts of modified condition/

decision coverage with an example. Finally, we discuss the concepts of CONCOLIC testing

with an example.

Chapter 3 provides a brief review of the related work relevant to our contribution. We

discuss the work related to automated test data generation, modified condition/descision

coverage, and CONCOLIC testing.

Chapter 4 presents the technique for Program Code Transformer(PCT). We introduce

some formal definitions followed by concepts and algorithms for our program code trans-

former approach. We proposed the algorithms for Pogram Code Transformer, Quine-

McMulsky Method, Generate Nested If-Else Conditions, and Coverage Analyzer. We discuss

experimental study and comparision with related work.

Chapter 5 deals with the technique for Exclusive-NOR Code Transformer. We proposed

the algorithm for Exclusive-NOR Code Transformer and Generate Nested If-Else Conditions.

We discuss experimentas details, requirements, analysis of results, and comparision with

related work.

1.3 Organization of the Thesis 8

Chapter 6 concludes the thesis with a summary of our contributions. We also briefly

discuss the possible future extensions to our work.

Chapter 2

Basic Concepts

In this chapter, first we discuss some relevent definitions which will be used in our ap-

proach. Then, we discuss the concepts regarding MC/DC coverage, followed by a technique

for Boolean derivative method and CONCOLIC testing approach.

2.1 Some Relevent Definitions

Below, we discuss some relevent definitions that will be used in our approach.

1. Condition: Boolean statement without any Boolean operator is called as condition

or clause.

2. Decision: Boolean statement consisting of conditions and zero or many Boolean

operators is called as decision or predicate. A decision with no Boolean operator is a

condition [9].

Example: Let’s take an example: if((a>100) && ((b<50) ||(c>40))

Here, in the if-statement whole expression is called as predicate or decision, && and

||are the Boolean operators and (a > 100), (b < 50) and (c > 40) are different

conditions or clause.

3. Group of Conditions: Boolean statement consisting of two or more conditions and

one or more operators is called as a group of conditions.

Example: statement1: if ((A && B) ||(C && D)).

Here A, B, C, D are four different conditions and (A && B), (C && D) are two groups

of conditions. Statement 1 is nothing but the decision statement.

2.2 Modified Condition/ Decision Coverage 10

Table 2.1: Truth table for two variables
x y 2- NAND 2-NOR 2-XOR 2-XNOR

0 0 1 1 0 1

0 1 1 0 1 0

1 0 1 0 1 0

1 1 0 0 0 1

Table 2.2: Truth table for three variables
x y z 3-AND 3-OR 3-NAND 3-NOR 3-XOR 3-XNOR

0 0 0 0 0 1 1 0 0

0 0 1 0 1 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 0

1 0 0 0 1 1 0 1 1

1 0 1 0 1 1 0 0 0

1 1 0 0 1 1 0 0 0

1 1 1 1 1 0 0 1 1

4. Logic Gates: They are the fundamental building blocks of digital electronics and

perform some logical functions. Most of the logic gates accept two binary inputs and

result in single output in the form of 0 or 1. Table 2.1 and Table 2.2 show the truth

table for two and three variables respectively [9].

2.2 Modified Condition/ Decision Coverage

MC/DC was designed to take the advantages of Multiple Condition testing when retaining

the linear growth of the test cases. The main purpose of this testing is that in the application

code each and every condition in a decision statement affects the outcome of the statement

[10] [11]. MC/DC needs to satisfy the followings:

� Each exit and entry point in the code is invoked.

� Each and every condition in a decision statement is exercised for each possible output.

� Each and every possible output of every decision statement is exercised.

� Each and every condition in a statement is shown to independently affect the output

of the decision stated.

2.2 Modified Condition/ Decision Coverage 11

Figure 2.1: Schematic representation for different gates

To understand MC/DC approach completely we need to show the schematic representa-

tion of logical operator and the truth table of program code. Fig. 2.1 shows the schematic

representation of the example predicate given below: Example: Z= (A ||B) && (C ||D) In

this example A, B, C, D is four different conditions and Z is the output. For four conditions,

we have sixteen combinations and outcomes respectively. MC/DC looks for the pair of test

cases in which one condition changes the value and all others will remain as it is and it

affects the output. Table 2.3 shows the representation for sixteen combinations.

To evaluate MC/DC using the gate level approach, each Boolean logical operator in

a predicate in the code is examined to calculate whether the requirement-based test has

observably exercised the operator using the minimum test. This concept is combination of

condition coverage and decision coverage.

Following five steps are used to determine the MC/DC coverage:

1. Develop a proper representation of the program.

2. Find the test inputs, which can be obtained from the requirement based tests of the

software product.

3. Remove the masked test cases. The masked test case is one whose output for a

particular gate hidden from all others outputs.

2.3 Determination of Predicates 12

Table 2.3: MC/DC result for four variables

A B C D Z A B C D

1 F F F F F

2 F F F T F 10 6

3 F F T F F 11 7

4 F F T T F 12 8

5 F T F F F 7 6

6 F T F T T 2 5

7 F T T F T 3 5

8 F T T T T 4

9 T F F F F 11 10

10 T F F T T 2 9

11 T F T F T 3 9

12 T F T T T 4

13 T T F F F

14 T T F T T 15 14

15 T T T F T 13

16 T T T T T 13

4. Calculate MC/DC based on Table 2.3.

5. At last the results of the tests are used to confirm correct operation of the program.

For the details of constructing the MC/DC table the readers may refer to [11].

2.3 Determination of Predicates

The method of determining predicate px is given here, which simply uses the Boolean

derivative designed by Akers et al. [12] One benefit of this method is that the problem of

redundancy of the same clause is handled properly, i.e. the fact that the clause appearing

many times is represented explicitly. For a predicate p with variable x, let px = true,

represents the predicate p and each occurrence of x is replaced by true and px = false,

represents the predicate p and each occurrence of x is replaced by false. It may be noted

that, here neither px = true nor px = false contains any occurrences of the clause x. Now,

here we combine two expressions with the logical operator Exclusive OR:

2.4 CONCOLIC Testing 13

px = px=true ⊕ px=false (2.1)

It turns out that px describes the exact conditions under which the value of x determines

that of p. If the values for the clauses in px are taken so that px is true, then the truth value

of x determines the truth value of p. If the clauses in px are taken so that px evaluates to

false, then the truth value of p is independent of the truth value of x. Now, let’s take an

example: Consider the statement,

p = x ∧ (y ∨ z) (2.2)

If the major cause is x, then the Boolean derivative [13] finds truth assignments for y and

z as follows:

px = px=true ⊕ px=false (2.3)

px = (true ∧ (y ∨ z))⊕ (false ∧ (y ∨ z)) (2.4)

px = (y ∨ z)⊕ false (2.5)

px = y ∨ z; (2.6)

This shows the deterministic answer, three choices of values make y ∨ z = true, (y = z =

true), (y = true, z = false), (y = false, z = true).

2.4 CONCOLIC Testing

In this section we discuss about CONCOLIC testing definition and process.

2.4 CONCOLIC Testing 14

Figure 2.2: An example program to explain CONCOLIC testing

2.4.1 Definition

The CONCOLIC testing [14]concept combines a concrete constraints execution and sym-

bolic constraints execution [15] to automatically generate test cases for full path coverage.

This testing generates test suites by executing the program with random values. At ex-

ecution time both concrete and symbolic values are saved for executing path. The next

iteration of the process forces is selected for different path. The tester selects a value from

the path constraints and negates the values to create a new path value [16]. Then the tester

finds concrete constraints to satisfy the new path values. These constraints are inputs for

all next execution. This process performed iteratively until exceeds the threshold value or

sufficient code coverage obtained.

Let us take an example Fig. 2.2, calculate speed category of bike when distance and

time are given. Tester starts by executing the method with random strategy. Assume that

tester has set the values of distance=120 and time=-5 in km and hours respectively. During

execution time both concrete and symbolic values are saved for executing path. For input

constraints to execute the similar path, it is must that each statement with decision branch

calculates the similar value. The first statement (Line 6 in Fig. 2.2) will execute as true,

because initially the distance is equal to 120, which is more than zero i.e.

(Distance > 0) (2.7)

2.4 CONCOLIC Testing 15

Now it’s the time for a second branch statement which becomes false because time is

automatic set as negative value i.e.

¬(time > 0) (2.8)

Therefore, the present branch statement is combined with the previous branch statement

to form a new path statement:

(Distance > 0) ∧ ¬(Time > 0) (2.9)

The method fails in the execution of the second condition, so it is altered by negating the

branch constraints. When the last condition is negated, the expression becomes:

(Distance > 0) ∧ (Time > 0) (2.10)

Now, this new path is passed to a solver to determine whether there exists an input that

executes the new path. Definitely there will be many solutions but a tester picks one among

all and executes for the next iteration. This time the input can be distance=60 and time=1

in km and hour respectively. Now it will execute without throwing any exception and return

the category of speed. This path has the following constraints:

(Distance > 0) ∧ (time > 0) ∧ (speedcategory < 20) ∧ (speedcategory < 40) (2.11)

where,

speedcategory = distance/time (2.12)

This process continues until the stopping criteria is met. This could be possible only

when the iteration exceeds the threshold value and sufficient coverage is obtained.

2.4.2 Process

The CONCOLIC testing process is carried out using the following six steps [16]:

1. Symbolic Variables Declaration: In starting, user has to decide which variable

will be symbolic variables so that symbolic path formula is made.

2.5 Summary 16

2. Instrumentation: A target source code is statically instrumented with probes, which

keep track of symbolic path conditions from a concrete execution path when the target

code is executed. Ex: At each branch, a probe is inserted to track the branch condition.

3. Concrete Execution: The instrumented code is compiled and run with given input

values. For the first time the target code assigned with random values. For the second

time onwards, input values are getting from step 6.

4. Evaluation of symbolic path formula X: The symbolic execution module of the

CONCOLIC testing executions collects symbolic path conditions over the symbolic

input values at every branch point collides along the concrete execution path. When-

ever s statement of the target code is executed, a corresponding probe inserted at s

updates the symbolic structure of symbolic variables if statements are an assignment

statement, or gathers a corresponding symbolic path condition c, if s is a branch state-

ment. Therefore at last symbolic path formulas X is built at the last point of the ith

execution by combining all path conditions c1, c2, c3 where cj is executed earlier than

cj+1∀1 ≤ j.

5. Evaluation of symbolic path formula X’ for the next input values: To find

X’ we have to negate one path condition cj and removing after path conditions (i.e,

cj+1, cn) of X’. If X’ is not satisfiable, another path condition c′j is negated and after

path condition are removed, till satisfiable formula is getting. If there are no more

paths to try, the algorithm stops executing.

6. Choosing the next input values: Constraints solver generates a model that satisfies

X’. This model takes decision for next concrete input values and this procedure is

repeated again from Step 3 with this input value.

2.5 Summary

We discussed relevant definitions which are useful to our approach. We explained def-

inition, criterion, and process of modified condition/ decision coverage in detailed. We

determined the boolean derivative predicates. At last of this chapter we discussed about

the definition and process of the CONCOLIC testing.

Chapter 3

Review of Related Work

In this chapter we will discuss the existing work on Automated Testing for Branch Cov-

erage and MC/DC [10] [17].

3.1 Automated testing for branch coverage

Automated test data generation for structural coverage is a very known topic of software

testing. Search-based testing, symbolic testing, random testing and CONCOLIC testing are

different type of automated branch coverage testing.

1. Search-based testing: The generation of test data is like a searched based opti-

mization problem. McMinn [18] describes solutions in his survey. Solutions of this

problem using Evolutionary Testing (ET) method are like Genetic Algorithm (GA)

and like Hill Climbing (HC). These solutions are to achieve branch coverage.

2. Symbolic testing: Cadar et al. [19] Says that test data generated by symbolic ex-

ecution used by the Symbolic testing technique. King et al. [15] describes that the

execution assigns a symbolic statement instead of concrete values to code variables as

a path is followed by the program structure. At last the result will show the concrete

test data that execute these paths.

3. Random testing: An easy technique for automated test generation is described by

Duran [20] [21] [22] [23]. If the technical meaning contrasts random with systematic, it

is in the sense that fluctuations in physical measurements are random (unpredictable

or chaotic) vs. systematic (causal or lawful). Godefroid et al. [24] say random testing

provides low code coverage. The then branch of the conditional statement if (x ==

3.2 MC / DC Automatic Testing 18

100) then has only one chance to be exercised out of 232 if x is a 32-bit integer code

input that is randomly initialized.

4. CONCOLIC Testing: Kim et al. [16] says the technique combines a concrete dy-

namic execution and a symbolic execution to automatically generate test cases for path

coverage is known as CONCOLIC testing. In our approach we will use CONCOLIC

tester CREST [25] an open source CONCOLIC testing tool for C code structures.

CONCOLIC represent CONCrete + symbOLIC tests [7] [14] [16].

3.2 MC / DC Automatic Testing

Awedikian et al. [10] proposed an approach to automatically generate test data to satisfy

MC/DC. The steps are as follows:

1. For each predicate, compute the sets for MC/DC coverage.

2. Following the proposed fitness function, compute:

(a) Improved approach function

i. Control dependencies

ii. Data dependencies

(b) Branching fitness function

3. Generate test data using Meta heuristic algorithms.

Liu et al. [26] proposed to replace the branch fitness with a flag cost function that considers

the data dependence relationship between the use of the flag and its definitions and creates

a set of conditions.

Bokil et al. have proposed a tool AutoGen that reduces the cost and effort for test data

preparation by automatically generating test data for C code. Autogen takes the C code and

a criterion such as statement coverage, decision coverage, or Modified Condition/Decision

Coverage (MC/DC) as input and generates non-redundant test data that satisfies the spec-

ified criterion.

3.3 Other related works 19

3.3 Other related works

Awedikian et al. [10] have given a concept for automatic MC/DC test generation. They

used ET methods to generate test inputs to achieve MC/DC coverage. The concept is

modified approach of the branch distance computation. They perform based on control and

data dependencies of the code. Their objective was MC/DC coverage. However, a drawback

of local maxima as the HC algorithm performs data search in limited scope. This shows the

solution is not globally optimal.

Pandita et al. [27] have given an instrumental method for generating extra conditional

statements for automating logical coverage and boundary value coverage. In this method

they used symbolic execution. The coverage of the extra conditional statements increases the

logical coverage and boundary value coverage of program code. However, the drawbacks are

it does not effectively handle Boolean statements containing ||(OR) operators and it inserts

many infeasible conditions into a program.

Hayhurst et al. [28] proposed a modified work of logic gate testing in MC/DC. From pro-

gram they are creating a logic gate structure of the Boolean statements. Further they used

Minimizing Boolean simplification method to decrease the number of logic gates. However,

investigation of the process left.

Kuhn et al. [29] and Ammann et al. [4] proposed methods for generating test suite for

making a clause which independently affects the result of the predicate. Their methods help

to manually determine the independent effect. In particular they applied the Exclusive OR

logic to calculate these conditions. However, investigation of automation of the method is

left.

Xiao et al. [8] proposed suggestions on how we can use CONCOLIC testing tools [24] [19]

and how we can improve CONCOLIC testing.

Ammann et al. [4] proposed predicate transformation issues. They have introduced a new

way to express the requirement that tests “ independently affect the outcome of a decision”

by defining the defining the term determination, and separating minor and major clauses.

August et al. [30] presented paper which shows the ability of the mechanisms presented

to overcome limits on ILP previously imposed by rigid program control structure. They

3.4 Summary 20

have proposed boolean minimization technique are applied to the network both to reduce

dependence height and to simplify the component expression.

3.4 Summary

In this chapter we discussed about related work on Automated Testing for Branch Coverage

and MC/DC. We also discussed other related works.

Chapter 4

Program Code Transformer

Technique

This chapter presents a detailed explanation of the proposed automatic test generation [31]

approach for MC/DC. Here we will see the formal definition and detailed description of our

Program Code Transformer Technique.

4.1 Formal Definition

Our objective is to achieve structural coverage on a given program code under test (X),

in the context of a given coverage criteria (Y). It uses the tester tool that aims to achieve

coverage criterion (Y’). Therefore, our aim is to transform X to X’ such that the problem

of achieving coverage in X with respect to Y is transformed into the problem of achieving

structural coverage in X’ with respect to Y’. Few defined terms are the followings:

1. COVERAGE (Y, X, M): It shows the percentage of coverage achieved by a test

suite (M) over a given program under test (X) with respect to given coverage criteria

(Y).

2. OUTPUT(X, I): It shows the output result of a program code under test (X) subject

to an input (I).

3. (X ` M): It shows that a test suite (M) is generated by the tester tool β for the

program (X) code under test.

4.2 Our first proposed approach MC/DC Tester-I [MT-I] 22

We now defined our proposed approach. For a given X, the idea is to transform X to X’,

where X’ = X+Z and Z is the code added to X such that the following requirements are

met.

R1:∀ : [Output(X, I) = Output(X ′, I)], (4.1)

where I is the collection of inputs to X.

The above statement’s states that Z should not have any side effect on X. Z has a side

effect if the execution of X’ produces a different result from the one produced by the exe-

cution of X, when executed with same input I.

R2: If the test suite M1 is generated from X’ by the tester tool β, then

∃M1 : [((X ′ →M1) ∧ Coverage(Y ′, X ′,M1) = 100%)⇒ (Coverage(Y,X,M1) = 100%)]

(4.2)

The requirement states that if there exists a test suite M1 that achieves 100% coverage

on X’ with respect to Y’, then coverage of M1 on X with respect to Y is 100%.

4.2 Our first proposed approach MC/DC Tester-I [MT-

I]

Our approach developing MC/DC TESTER-I [MT-I], has central logic to extend the

CONCOLIC testing to get increased MC/DC. Transformation of program code under test

to include extra conditions is a feasible alternative to achieve increased MC/DC. After

program transformation, we let it drive a CONCOLIC tester CREST to generate test suite.

A proper representation of the test data generation by our MC/DC TESTER-I [MT-I]) is

shown in Fig. 4.1. MT-I consists of three components:

1. Program code transformer,

2. Tester for CONCOLIC testing,

3. Coverage Analyser.

4.3 Program Code Transformer 23

Figure 4.1: Schematic representation of our first approach [MT-I]

From the Fig. 4.1, program code under test is entered to the transformer, and it modifies

the code by generating and adding conditional statements on the bases of the MC/DC

coverage. We use the Boolean logic simplification technique to develop transformer. This

approach converts a complex Boolean statement into a simpler form and generates additional

statements from these simple expressions [13]. The transformed code is then passed to

the CONCOLIC tester which executes all the branches of the transformed program and

automatically generates the inputs for the feasible path. The original program code and the

test data generated by the tester for the transformed program code are passed to the coverage

analyzer. The analyzer calculates the percentage of MC/DC achieved in the program under

test by the generated test data.

4.3 Program Code Transformer

We named our approach Program Code Transformer (PCT). The objective is based on

the fact that MC/DC of a program is equivalent to testing of flip-flops and logic gates.

4.3 Program Code Transformer 24

PCT converts each predicate in an entered program code to the standard sum-of product

(SOP) form by Boolean algebra [13]. After this we use QUINE-Mc-MLUSKY Technique

OR Tabulation Method to minimize the sum of product. The statement is then suppressed

into simple conditions with empty true and false branches and inserted in the program

before the predicate. The purpose of inserting empty true and false branches is to avoid

duplicate statement executions as the original predicate and the statement in its branches

are retained in the program during transformation. It is a simple process to retain the

functional equivalence of the code and yet produces additional test cases for increased

MC/DC coverage. Thus, PCT consists of mainly three steps and the second step consists

of two sub steps as shown in Fig. 4.1. The pseudo-code representation of PCT is given in

Algorithm1.

Algorithm1: Program Code Transformer .
Input :X

Output :X’

Begin

for each statement s∈X do

if && or ||occurs in s then

List Predicate←adding in List(s)

end if

end for

for each predicate p ∈ List Predicate do

P SOP ← gen sum of product(p)

P Meanterm ← Convert to Minterm(P SOP)

P Simplifeid ← Mini Sumofproduct Tabulation(P Minterm)

List Statement ← generate Nested Ifelse PCT(P Simplified)

X’← insert code(List Statement,X)

end for

return X’

4.3.1 Description of Algorithm 1

1. Identification of predicates The objective of this step (First for loop in Algorithm

1) is to identify the predicates in program code under test. This step is executed

once in the whole process. All conditional expressions with Boolean operators are

predicates. Further process will proceed after this.

4.3 Program Code Transformer 25

2. Simplification From Algorithm 1 (line 2-4). First it generates the sum of product

standard form and then it uses Tabulation method to minimize expression identified

above.

(a) Sum of Product: Line 2 in Algorithm 1 takes a predicate as input and generates

the standard sum of product form. Here, we may give a justification of generating

sum of product (SOP), not product of sum (POS) because the structure of the

POS will fail for OR operator condition. All should be in AND operator condition

which doesn’t show flexibility of the standard format.

(b) Minimization: Lines 3-4 in Algorithm1 are responsible for calling another al-

gorithm Algorithm 2 for minimizing expressions. Here we use Quine-Mc-Mlusky

Technique or Tabulation method to minimize expression. Another technique

could be Karnaugh Map, but we will use Tabulation method which having ad-

vantage which overcoming the problem of Karnaugh maps.

3. Nested If-else Generation: Using line 5-6 in Algorithm 1 the additional conditional

expressions are generated and inserted into the program code under test. From previ-

ous step we get minimized expression in SOP form. Using Algorithm 3, we generate

empty If-else conditions. Line 7 returns the transformed program. The pseudo-code

representation of Minimisation of SOP Tabulation Method is given in Algorithm 2.

Algorithm2: Minimization of SOP Tabulation Method .
Input :P Minterm

Output :P Simp

Begin

for each min term m∈P Minterm do

1 List M ← Convert to binary(minterm)

end for

2 List L ←sort(List M)

for each List l∈L do

for each group first to group last∈groups do

for each bit∈toatal bits do

3 one bit diff term←Compare(grp current,grp next)

end for

if 1 bit diff term=1&&existed legal dash position then

4 bit will replaced with char – and put chekchar t

4.3 Program Code Transformer 26

else

5 put check char ∗ for uncompared group

end if

end for

end for

6 Prime Implicant ← Uncompared any more and indicated with ∗
7 essential Prime Implicant← Coveragetable(minterms,Prime Implicant)

8 simplified function P Simp←assigning variables and compliment variables to test

Prime Implicant

4.3.2 Description of Algorithm 2

Algorithm 2 performs mainly five steps. Lines 1-2 show the conversion of minterm to

binary form. Lines 3-5 shows the comparison between groups and marking un-compared

group. Line 6 determines prime implicant. Line 7 determines essential prime implicant. Line

8 shows the use of Patrik’s method to get simplified function. The pseudocode representation

for generating empty if-else conditional statements is given in Algorithm 3.

Algorithm3: PCT generateNestedIfElse .
Input :p

Output :Statement list //list of statement in c

Begin

for each && connected cond grp∈p do

for each condition a∈cond grp do

if a is the firstcondition then

make an if statement m with a as the condition

Statement list←add list(m)

else

make a nested if statement m with a as the condition make an empty Truebranch

Tb and an empty Falsebranch Fb in order

Statement list←add list(strcat(m,Tb,Fb))

end if

end for

make an empty Falsebranch Fb for the first condition

Statement list←add list(Fb)

end for

4.3 Program Code Transformer 27

Figure 4.2: An example showing concept of PCT

for each condition∈p and /∈ any cond grp do

repeat line 4,8 and 9

end for

if P is an else if predicate then

make an if(false) statement m

make an empty Truebranch Tb

Statement list←add list(strcat(m,Tb))

end if

return Statement list

4.3.3 Description of Algorithm 3

The PCT generateNestedIfElse method decomposes the minimized SOP expression into

a set of nested if else constructs. The minimized SOP expression contains simple conditions

or groups of conditions connected with OR operator. The conditions within a group of con-

ditions are connected with AND operators. For every condition in each group. This method

creates nested if conditions and corresponding else conditions (Lines 1-7 in Algorithm 3).

This ensures that each condition is evaluated to both true and false values. The iteration

over all the groups ensures that the process is applied to every condition in the predicate.

Line 8 repeats these steps for simple condition if they are part of the minimized SOP ex-

pression. Lines 9-11 insert a dummy if statements in the program if the identified predicate

was an else-if predicate. Line 12 returns list of statements. The generated nested if-else

statements are then inserted into the program under test before the particular predicate.

The insert Code method in Algorithm 1 performs this task.

4.4 CONCOLIC Testing 28

Figure 4.3: Transformed form of Fig. 4.2

4.3.4 Example of PCT

We explain the working of the PCT with an example. Consider the example of godboley-

Weight function shown in Fig. 4.2. After identifying the predicates, we generate SOP form

and minimize it using Tabulation method; We get the following form: (((p > 70)&&(q <

80)) ||((p > 70)&&(r < 90))||((p > 70)&&(s < 100))); The transformed code for godboley-

Weight function is shown in following Fig. 4.3. The above program contains empty true

and false branches. This confirms that the Transformation of code does not have any effect

on the program because there are no executable statements in these empty branches.

4.3.5 Complexity of PCT

The overall time complexity of PCT is O(n+mn)=O(mn), where m is the number of

predicates in a program and n is the number of statements in a program code.

4.4 CONCOLIC Testing

The transformed program of a program code under test from the PCT is passed to the

CREST TOOL. This tester achieves branch coverage through random test generation. CON-

4.5 MC/DC Coverage Analyser 29

COLIC tester is a combination of concrete and symbolic testing. The extra generated ex-

pressions lead to generation of extra test cases for the transformed program. Because of

random strategy different runs of the CONCOLIC tester may not generate identical test

cases. The generated test cases depend on the path on each run. All test cases are stored

in text files which form a test suite.

4.5 MC/DC Coverage Analyser

It determines the MC/DC coverage achieved by a test suite. It is required to calculate the

extent to which a program feature has been performed by test cases. In our approach, it is

essentially used to calculate if there are any changes in MC/DC coverage performed by the

test cases generated by the CREST TOOL using our approach. Coverage Analyser (CA)

examines the extent to which the independent effect of the component conditions on the

calculation of each predicate of the test data takes place. The MC/DC coverage achieved

by the test cases T for program input p denoted by MC/DC coverage is calculated by the

formula:

MC/DCcoverage = (Σi=1tonIi ÷ Σi=1tonci)× 100 (4.3)

Algorithm4 :MCDC COVERAGE ANALYSER.
Input :X,Test Suite // Program X and Test Suite is collection of Test cases

Output :MC/DCcoverage // % MC/DC achieved for X

Begin

for each statement s∈X do

if && or ||occurs in s then

List Predicate←adding in List(s)

end if

end for

for each predicate p∈List Predicate do

for each condition c∈p do

for each test case t d ∈ Test Suite do

if c evaluates to TRUE and calculate the outcome of p with t d then

True Flag←TRUE

end if

if c evaluates to FALSE and calculate the outcome of p without t d then

False Flag←TRUE

end if

4.6 Experimental Study 30

end for

if both True Flag and False Flag are TRUE then

I List←adding in List(c)

end if

C List←adding in List(c)

end for

end for

MC DC COVERAGE←(SIZEOF(I List)�SIZEOF(C List))× 100%

4.5.1 Description of Algorithm 4

Algorithm 4 describes the coverage analyzer. It takes a program and test suite as input

and produces coverage percentage. Line 1 shows identification of predicates. Lines 2-5 show

the determination of outcomes. Line 6 calculates the coverage percentage.

4.6 Experimental Study

In this section we observe experimental study with some requirements details, result, and

comaparision.

4.6.1 PCT details

Program Code transformer is built up of five modules viz. Predicate Identifier, Sum of

Product Generator, Qune-McMulsky Technique, Empty Nested If-Else conditional state-

ment generator, and Code Inserter. The size of prototype of PCT is 2577 lines of code.

The Predicate Identifier module reads the program under test which is written in C

language. The scanning is line by line execution. Wherever this module detects boolean

operators like &&, ||, and !, the module separte the whole line as it is and saves all predicate

to another file. The Sum-of-Product Generator module converts each predicate to Sum-of-

Product(SOP) form by using Boolean algebra laws. The formed SOP may be complex so

we required to test by using minimizing technique. For our approach, we have considered

Quine-McMulsky method. The reason behind choosing this technique is the disadvantage

of K-map. The K-map technique is easy to use upto four variables and in extreme case five

4.6 Experimental Study 31

Figure 4.4: Transformed program from PCT

variables, beyond which it is very difficult to use. In a program we generally cannot expect

number of conditions to be fixed, it may be in any number. But the Qune-McMulsky

method is usefull for n number of conditions. After minimisation, we get the simplified

form of SOP. The Empty Nested If-Else conditional statement generator module breaks the

minimized form of SOP in small simple condition and passes it to Code Inserter module.

The Code Inserter module inserts the transformed conditions into the program just above

the predicate detects. The process is repeated for all the predicates detected by Predicate

Identifier. Fig. 4.4 shows a transformed output from our PCT technique.

4.6.2 CREST details

In our experiments we have used CREST as the CONCOLIC tester. CREST is written in

C language and works for programs written in C language only. CREST performs symbolic

execution and concrete execution simultaneously. There are many search strategies like

DFS (Bounded Depth First Search), CFG (Control Flow Directed Search), Random, and

Uniform strategies that are used in CREST.

4.6 Experimental Study 32

CREST accepts C program and selects the concrete values for the symbolic variables.

The values for all the variables in a program are is saved in an input file. The number of

input files depends on number of iterations provided and on number of covered branches.

The values in input files are nothing but the test data or test cases. The collection of test

cases is test suite.

CREST is used on any modern LINUX or Mac operating systems. The main limitations

of CREST is that it can solve path constraints with integer variables. It cannot solve path

constraints with float, string, pointer variables, functions call, and native calls.

The process of CREST compilation and execution are shown from Fig. 4.5 to Fig. 4.14.

Fig. 4.5 the example program that we have taken from chapter 4. Fig. 4.6 shows the

compilation of original program with number of branches and number of nodes. Fig. 4.7

shows the run execution of the compiled program and results in number of reachable func-

tions, reachable branches, and covered branches by using any search strategies and number

of iterations provided. The input file is automatically generated and it consists of concrete

values as shown in Fig. 4.8. The coverage file consists of node number. This file is au-

tomatically generated as shown in Fig 4.9. Fig. 4.10 shows the transformed program of

original program. Rest of the figures from Fig. 4.11 to Fig. 4.14 shows the same process

for transformed program and from the figures it is clearly evident that all the values have

been increased.

4.6 Experimental Study 33

Figure 4.5: An Example program from chapter 4

Figure 4.6: Compilation of original program

4.6 Experimental Study 34

Figure 4.7: Run execution of original program

Figure 4.8: Generated Test data in input file for original program

4.6 Experimental Study 35

Figure 4.9: Automatically generated coverage file for original program

Figure 4.10: Transformed program of original program

4.6 Experimental Study 36

Figure 4.11: Compilation of transformed program

Figure 4.12: Run execution of transformed program

4.6 Experimental Study 37

Figure 4.13: Generated Test data in input file for transformed program

Figure 4.14: Automatically generated coverage file for transformed program

4.6 Experimental Study 38

Figure 4.15: Screenshot of Coverage analyser

4.6.3 CA details

Coverage Analyser is built up of four modules viz. Predicate Identifier, Test Suite Reader,

Effect Analyzer, and Coverage Calculator. The size of prototype is 971 lines of codes. The

Predicate Identifier module in CA is same with that of PCT. The second module Test

Suite Reader reads each test cases generated from CREST tool and passes it to the third

module Effect Analyzer. The Effect Analyzer module reads each predicate and test cases

and checks whether the test data makes each condition in a predicate both true and false.

It also check whether the conditon independently affect the result of whole predicate or not.

Finally, it identifies the number of independently affected conditons and the total number of

conditions and passes them to the fourth module. The fourth module Coverage Calculator

module calculates the percentage of MC/DC achieved by the test suite. Fig. 4.15 shows

the output of coverage analyser.

4.6.4 Experimental Reqiurements

In our experiments, we have considered seventeen example programs written in C lan-

guage. Some programs are open soure and some other programs are taken from student

4.6 Experimental Study 39

Table 4.1: Summary of Characteristics of the program under test for PCT
S.No Program LOC LOC’ Function Predicate Branch Branch’ Edges Edges’

1 Triangle 63 75 1 2 16 24 21 40

2 Next Date 106 135 6 3 32 46 42 70

3 ATM 150 241 1 10 54 98 78 163

4 Library 221 242 6 4 66 82 96 134

5 TCAS 272 338 10 10 88 146 151 299

6 Schedule 327 349 16 4 100 116 181 213

7 Tic-tac-toe 279 375 6 11 126 198 233 379

8 Elevator 445 530 6 8 158 224 273 571

9 Tokenizer 509 578 19 6 162 194 332 492

10 Ptok2 569 672 24 9 168 254 347 512

11 Replace 608 733 20 15 200 280 376 656

12 Ptok1 725 893 19 18 284 379 433 679

13 Phonex 1030 1198 33 19 348 578 647 928

14 ProgramSTE 1051 1254 28 25 384 538 687 1163

15 ProgramTR 1117 1311 42 23 362 474 708 1148

16 Sed 8678 10143 70 48 2690 4623 3727 5428

17 Grep 12562 13743 126 53 3768 6279 5249 7346

projects. All the experiments perfomed in a system having 1.85 GHz processing with 1 GB

RAM and having Ubuntu Linux operating system installed in it..

To measure the improvement in MC/DC we required to observe two observations, first

observation is calculation of MC/DC coverage percentage without code transformation.

Second observation is calculation of MC/DC coverage percentage with code transformer.

We have proposed code transformation technique i.e Program Code Transformer(PCT) and

Coverage Analyser(CA) to calculate coverage percentage.

Table 4.1 shows the characteristics of the programs under test. The column program,

shows the name of all example programs. Column LOC shows the number of lines of

codes in a program. LOC’ shows the number of lines of codes in transformed program by

using PCT respectively. Function and Predicate columns shows the number of functions

and predicates in a program. Branch column shows the number of branches in a program.

Branch’ shows the number of branches in a transformed program by using PCT. Edges

column shows the number of branch edges in a program. Edges’ shows the number of

branch edges in transformed program using PCT.

4.6 Experimental Study 40

Table 4.2: Coverage Calculated by Coverage Analyser for PCT
S.No Program M Cov M Cov PCT INC Using PCT

1 Triangle 75% 100% 25%

2 Next Date 71% 88.2% 17.2%

3 ATM 70% 94.7% 24.7%

4 Library 75% 100% 25%

5 TCAS 52.3% 73.7% 20.8%

6 Schedule 62.5% 82.9% 20.4%

7 Tic-tac-toe 65% 85% 20%

8 Elevator 63.9% 81.9% 18%

9 Tokenizer 64.7% 83% 18.3%

10 Ptok2 63% 78% 15%

11 Replace 57.8% 79% 21.2%

12 Ptok1 64.6% 85.2% 20.6%

13 Phonex 63.7% 81.8% 18.1%

14 ProgramSTE 62.4% 82.7% 20.3%

15 ProgramTR 64% 87% 23%

16 Sed 58.5% 73.4% 14.9%

17 Grep 53.8% 74.6% 20.8%

4.6.5 Results

We present the experimental results in Table 4.2. M Cov column shows the MC/DC

coverage percentage calculated by covergae analyser. None of the seventeen programs under

consideration has 100 % coverage. The minimum coverage percentage of 52.9 % is for TCAS

and maximum coverage percentage of 75 % is for the two programs (Triangle and Library).

Our main objective is to improve our MC/DC coverage percentage and try to achieve 100 %

coverage. We propose PCT transformation technique to do what so all the original programs

get transformed. M Cov PCT column shows the MC/DC coverage percentage calculated

by coverage analyser for PCT. We observed that we got an increase in MC/DC percentage.

Two programs achieved 100 % viz. Triangle and Library. The minimum coverage percentage

for M Cov PCT is 73.4 %. PCT transformation technique having some disadvantage, so we

have proposed an efficient technique which overcomes the problem of PCT is Exclusive-NOR

Code Transformer(X-NCT). The average increase in MC/DC coverage percentage achieved

for seventeen program by using Program Code Transformer technique is 20.194 %.

4.6 Experimental Study 41

Table 4.3: Time Constraint
S.No Programs PCT (sec) CREST (sec) CA (sec) TOTAL TIME (sec)

1 Triangle 0.002673 0 3 3.002673

2 Next date 0.004548 0 3 3.004548

3 ATM 1.166958 1 3 5.166958

4 Library 0.007316 7 5 12.007316

5 TCAS 1.792756 2 5 8.792756

6 Schedule 0.010618 0 3 3.010618

7 Tic-tac-toe 1.682375 2 4 7.682375

8 Elevator 1.824791 0 4 5.824791

9 Tokenizer 1.473162 0 3 4.473162

10 Ptok2 2.001572 1 3 6.001572

11 Replace 1.523179 0 6 7.523179

12 Ptok1 1.918721 1 2 4.918721

13 Phonex 0.763241 2 4 6.763241

14 ProgSTE 1.629315 6 5 12.629315

15 ProgTR 1.427561 5 6 12.427561

16 Sed 2.347128 1 4 7.347128

17 Grep 2.71568 0 4 6.71568

4.6.6 Time constraints

In this section we disuss about time taken by our approach to complile and execute.

Time constraints is one of the important parameter in software development phases. We

calculate the time effort so that we can observe that time taken to calculate MC/DC coverage

percentage is efficient. Time constraint of seventeen programs is shown in Table 4.3.

Fig. 4.16 shows the graph for time constraints. Seventeen programs executed through

code transformer, CREST tool, and coverage analyzer and recorded their compilation and

execution time. The unit of time taken is in seconds. The average time taken for seventeen

programs is 6.89950 sec.

4.6.7 Comparison Between BCT and PCT

Das et al. [32] proposed a Boolean Code Transfomer technique in which he has taken

ten example program, according to his work we may observe our reults in Table 4.4. M-

Cov-BCT column represent the MC/DC coverage percentage for transformed program by

using transformation techniwue BCT. INC-Cov-BCT column shows the increase in cover-

4.6 Experimental Study 42

Figure 4.16: Time Constarint Graph

Table 4.4: Coverage percentage for BCT and PCT technique
S.No Program M-Cov-BCT INC-Cov-BCT M-Cov-PCT INC-Cov-PCT

1 Triangle 100% 25% 100% 25%

2 Next Date 89.5% 18.5% 88.2% 17.2%

3 ATM 93.3% 23.3% 94.7% 24.7%

4 Library 100% 25% 100% 25%

5 TCAS 70.6% 17.7% 73.7% 20.8%

6 Schedule 84.5% 22% 82.9% 20.4%

7 Tic-tac-toe 86% 21% 85% 20%

8 Elevator 82.5% 18.6% 81.9% 18%

9 Tokenizer 81% 17.7% 83% 18.3%

10 Replace 75% 17.2% 79% 21.2%

age percentage. The average coverage percentage for BCT is 20.6 %. M-Cov-PCT column

represents the MC/DC coverage percentage for transformed program by using transforma-

tion technique PCT. INC-Cov-PCT column shows the increase in coverage percentage. The

average coverage percentage for PCT is 21.06 %. The increased coverage percentage from

BCT to PCT is 0.46 % as shown in Fig. 4.17.

4.7 Limitation of PCT 43

Figure 4.17: Comparison between transformation techniques BCT and PCT

4.7 Limitation of PCT

It is possible that for a predicate PCT can skip to traverse for some conditions in same

predicate. For example if first condition of a predicate fails and the very next operator is

(OR) operator than PCT won’t execute further conditions.

Let’s take a predicate S1: if(a && b), where a and b are arbitrary boolean conditions. The

MC/DC coverage requires the test set of (t,t),(t,f), and (f,t) to satisfy the predicate a∧b.

Now, after transformation using PCT technique, the test set generated will be (t,t),(t,f),

and one of either (f,t) or (f,f). If (f,t) choosen then it will allow a to independently determine

the predicate outcome otherwise (f,f) does not allow.

The demerit of PCT forced us to propose new code transformer technique which execute

each condition for each predicate. In next chapter we discuss about Exclusive-NOR Code

transformer in details.

4.8 Conclusion

We proposed program code transformer technique to improve our MC/DC percentage. We

achieved 20.194 % coverage percentage for seventeen programs. We discussed experimental

study for our approach. As compared to other approach our transformer achieve 0.46 %

more. We discussed the time constraint parameter and we conclude that the average time

taken for seventeen programs is 6.89950 seconds.

Chapter 5

Exclusive-Nor Code Transformer

Technique

This chapter presents an explanation of the proposed approach i.e Automated test suite

generation approach for MC/DC coverage. In this technique we have used X-NOR operator

because it is more efficient than X-OR operator. X-NOR operator required less number of

gates in place of X-OR. X-NOR is less complex than X-OR. Compliment of X-OR results

X-NOR. Before describing our approach, first we present some definitions that will be used

in our approach.

5.1 Our Proposed Approach MC/DC Tester-II [MT-

II]

The main purpose of our proposed MC/DC tester is to extend the CONCOLIC testing to

get increased MC/DC coverage. Transformations of programs under test to include extra

conditions are a feasible alternative to attain that aim. After program transformation, let

us drive a CONCOLIC tester CREST Tool to generate MC/DC test suite. A representation

of the test data Suite generation is described in Fig. 5.1. The approach consists of three

components:

1. X-NOR Code Transformer

2. CONCOLIC Testing Tool

3. Coverage Analyser

5.2 X-Nor Code Transformer (X-NCT) 45

Figure 5.1: Schematic representation of our second approach [MT-II]

Fig. 5.1 describes the schematic representation of our approach. A program under test is

inserted as input to the X-NOR Code Transformer. It changes the code by generating and

adding extra conditional statements for the MC/DC coverage. This approach performs for

every clause of the Boolean statement to generate additional statements after identifying

the predicates. The transformed program is then passed to the CONCOLIC testing tool

which executes all the branches of the transformed program and generates the input for the

feasible path. The original program and the test data suite generated by the CONCOLIC

tester for the transformed program code is supplied to a coverage analyzer. The coverage

analyzer calculates the percentage of MC/DC coverage achieved in the program under test

by the generated test suite.

5.2 X-Nor Code Transformer (X-NCT)

We have named the code transformer as X-NCT i.e Exclusive Nor Code Transformer.

It uses the Exclusive-Nor gate to calculate the conditions under which each condition in

a predicate statement can independently determine the output of a predicate. It assigns

each occurrence of the condition in an expression first as true and then as false and then

performs X-Nor operation. The output of the X-Nor operation gives the condition under

5.2 X-Nor Code Transformer (X-NCT) 46

which the clause independently affects the expression results. These additional additional

conditions with empty true false inserted. The purpose of inserting empty true and false

branches is to avoid duplicate statement executions.

Thus, X-Nor comprises mainly of two major steps:

1. Identification of Predicates

2. Generation of Nested If-Else statements

Algorithm1: Exclusive-Nor Code Transformer .
Input :X //program X is in C syntax

Output :X’ //program X’ transformed

Begin

// start first step

for each statement s∈X do

if && or ||or unary !occurs in s then

List Predicate←adding in List(s)

end if

end for// stop first step // start second step

for each predicate p ∈ List Predicate do

List Statement ← generate Nested IfElse XNCT(p)//call algorithm2

X’← insert code(List Statement,p)

end for

return X’ // stop second step and return Transformed Program

5.2.1 Description of Algorithm 1

Step1: Identification of Predicate: From line number 1 to 5 in algorithm 1. In this step

our aim is to determine predicate on the basis of all conditional statements and Boolean

operators &&, ||and Unary!. This step is executed once in the whole process. The second

step is executed on the basis of each predicate.

Algorithm2: generate Nested IfElse XNCT .
Input :p // predicate p

Output :Statement list //list of statement in c

Begin

for each && condition c∈p do

5.2 X-Nor Code Transformer (X-NCT) 47

T a←p

T b←p

for each occurence of condition c a of c∈T a do

c a←TRUE

end for

for each occurence of condition c b of c∈T b do

c b←FALSE

end for

T c← Exclusive-Nor(T a,T b)

Create an If staement S 1 with T c as the predicate

Create an If staement S 2 with c as the condition

Create an empty Truebranch T B1

c’← Generate negation(c)

Create a Nested-ELSE-IF statement S 3 with c’ as the condition

Create an empty True Branch T B2

Statement list←addList(strcat(S 1,S 2,T B1,S 3,T B3))

end for

return Statement list

5.2.2 Description of Algorithm 2

Step2: Generation of Nested If-Else Statements: From line number 6 to 9, generate nested

if-else statements. This process is performed using the Boolean derivative method. Line-7

calls Algorithm 2 to add extra conditional statements. Algorithm 2 is based on the Boolean

derivative method which is executed for every condition in the predicate. The Exclusive-

Nor method in line-9 accepts two predicates and performs X-Nor operation on them and

returns a new predicate. From line 1-8, two temporary predicates forming input to the

Exclusive-Nor method, before performing operation clause under test, are replaced; once

by true and then by false. The true output of the new predicate that is returned by the

Exclusive- Nor method depicts the situation under which the condition under test in the

identified predicate can independently affect its results. The generated negative method in

Line 13 of Algorithm 2 accepts a clause as input and returns a new predicate that is the

negation of the input condition. The generated nested if-else statements are then inserted

into the original program just above the predicate and performed by insert code method in

algorithm 1 for each predicate.

5.3 Exclusive-NOR operation 48

Table 5.1: Truth table for X-NOR operation
a b z = a� b
0 0 1

0 1 0

1 0 0

1 1 1

5.3 Exclusive-NOR operation

In X-Nor MC/DC coverage, test data are successfully performed by taking initially a=0,

b=0 and output Z=1. Now the independent value of a=1 where b=0 remains unchanged,

the output of whole predicate is different (Z=0) means the individual value of is affected.

In case 1 the pair of MC/DC coverage is case 3 with respect to a. Suppose a=1, b=1 and

output Z=0, now the independent value of b=0, a=1 unchanged and Z=1, the output of

predicate is changing it means the value of b affects the whole predicate. In case 3 the

pair of MC/DC coverage is case 4 with respect to b. Therefore, the X - Nor technique is

used for MC/DC test data suite. Another alternative of this concept is to use exclusive-OR

operation which can perform MC/DC coverage. There is no advantage to use in place of

each other but they are two different methods or concepts to generate nested if-else. The X

- Nor concept follows the laws of Boolean algebra for an Exclusive-NOR operation shown

in Table 5.1 to achieve an increase in MC/DC coverage.

5.4 Example for X-NCT

We describe the concept of X-NCT from Fig. 5.2, Fig. 5.3, and Fig. 5.2 shows the

original program. After applying Exclusive NOR operation, the results are shown in Table

5.2, Table 5.3, and Table 5.4 in the form of truth tables. We obtain the final transformed

program as in Fig. 5.3. The followings are the steps for three variables:

(true&&(b || c))� (false&&(b || c)) =!(b || c) (5.1)

(a&&(true || c))� (a&&(false || c)) = (!a || c) (5.2)

(a&&(b || true))� (a&&(b || false)) = (!a || b) (5.3)

5.4 Example for X-NCT 49

Figure 5.2: An example for X-NOR operation

Figure 5.3: Transformed program for Fig. 5.2

5.4 Example for X-NCT 50

Table 5.2: Truth table for first variable (a) after applying X-NOR operations

b c m=(true && (b ||c)) n=(false && (b ||c)) m � n

T T T F F

T F T F F

F T T F F

F F F F T

Table 5.3: Truth table for second variable (b) after applying X-NOR operations

a c m=(a && (true ||c)) n=(a && (false ||c)) m � n

T T T T T

T F T T T

F T F F T

F F F F T

Table 5.4: Truth table for third variable (c) after applying X-NOR operations

a b m=(a && (b ||true)) n=(a && (b ||false)) m � n

T T T T T

T F T F F

F T F F T

F F F F T

5.5 Complexity for X-NCT 51

5.5 Complexity for X-NCT

The overall time complexity of X-NCT is [O (X+MX) =O (MX)] where M is the number

of predicates and X is the number of statements in a program respectively.

5.6 CONCOLIC Tester

The transformed program of a program under test from X-NCT is passed to CONCOLIC

tester CREST Tool [1]. This tester achieves branch coverage through random test genera-

tion. CONCOLIC Tester is a combination of concrete and symbolic testing. The additional

generated expressions lead to generation of extra test cases for the transformed program.

Because of random strategy, different execution of the CONCOLIC tester may not generate

identical test cases. Test cases generation depends on the path of each execution. All test

cases stored in text files forms the test suite. We have already discussed the CREST tool

in Section 4.4.

5.7 MC/DC Coverage Analyser

It calculates the MC/DC coverage percentage achieved by a test suite. The MC/DC per-

centage coverage achieved by the test suite ‘T’ for program input ‘p’, is calculated by using

equation number 4.3. The algorithm for MC/DC Coverage Analyzer is already discussed in

Section 4.5.

5.8 Experimental Study

In this section we observe experimental study with some requirements details, result, coma-

parision with existance work, and analysis of results.

5.8.1 X-NCT details

Exclusive-NOR code Transformer is built up of four modules viz. Predicate Identifier,

X-NOR operator, Empty Nested If-Else conditional statement generator, and Code Inserter.

The size of prototype of X-NCT is 1381 lines of code.

5.8 Experimental Study 52

Figure 5.4: Transformed program from X-NCT

The Predicate Identifier module in X-NCT is same as PCT. For each predicates the rest

of three modules are executed. The advantage of choosing X-NOR operator is the less

number of gates and less complex than X-OR gate. In this technique X-NOR operator

module takes a predicate and creates two new predicates by assigning true and false to

the particular condition and performs X-NOR operation to generate a new predicate. It

repeats this step for every condition in the predicate. The Empty Nested If-Else conditional

statement generator generates addirional condiitons and passes all these condition to the

Code Inserter Module. The Code Inserter module again is similar to that of PCT. Fig. 5.4

shows a transformed output from our X-NCT technique.

5.8.2 Experimental Reqiurements

Table 5.5 shows the characteristics of the programs under test. Column program shows

the name of all example programs. Column LOC shows the number of lines of codes in

a program. LOC” shows the number of lines of codes in transformed program by using

X-NCT. Function and Predicate columns shows the number of functions and predicates in

5.8 Experimental Study 53

Table 5.5: Summary of Characteristics of the program under test
S.No Program LOC LOC” Function Predicate Branch Branch” Edges Edges”

1 Triangle 63 92 1 2 16 40 21 66

2 Next Date 106 164 6 3 32 80 42 138

3 ATM 150 310 1 10 54 178 78 308

4 Library 221 273 6 4 66 114 96 186

5 TCAS 272 440 10 10 88 262 151 590

6 Schedule 327 381 16 4 100 148 181 277

7 Tic-tac-toe 279 509 6 11 126 450 233 528

8 Elevator 445 666 6 8 158 466 273 870

9 Tokenizer 509 648 19 6 162 320 332 662

10 Ptok2 569 749 24 9 168 338 347 738

11 Replace 608 830 20 15 200 480 376 826

12 Ptok1 725 957 19 18 284 477 433 812

13 Phonex 1030 1325 33 19 348 947 647 1138

14 ProgramSTE 1051 1556 28 25 384 1064 687 1672

15 ProgramTR 1117 1478 42 23 362 800 708 1488

16 Sed 8678 11565 70 48 2690 6725 3727 6719

17 Grep 12562 14826 126 53 3768 9389 5249 8513

a program. Branch column shows the number of branches in a program. Branch” shows

the number of branches in a transformed program by using X-NCT. Edges column shows

the number of branch edges in a program. Edges” shows the number of branch edges in

transformed program using X-NCT respectively.

5.8.3 Results

We present the experimental results in Table 5.6. M Cov X-NCT column shows the

MC/DC coverage percentage calculated by coverage analyzer for X-NCT. In this column

we can observe that most of the programs achieved increase in MC/DC coverage percent-

age. Four programs viz. Triangle, Next-Date, ATM, and Library programs achieved 100 %

MC/DC coverage percentage. The minimum coverage percentage is 76.2 % for this tech-

nique. INC Using X-NCT column shows the differnce between the M Cov and M Cov X-

NCT and it means increase in coverage percentage by using X-NCT technique. The average

increase in MC/DC coverage percentage for seventeen program by using by using Exclusive-

NOR Code Transformer technique is 25.4470 %.

5.8 Experimental Study 54

Table 5.6: Coverage Calculated by Coverage Analyser
S.No Program M Cov M Cov X-NCT INC Using X-NCT

1 Triangle 75% 100% 25%

2 Next Date 71% 100% 29%

3 ATM 70% 100% 30%

4 Library 75% 100% 25%

5 TCAS 52.3% 86.4% 33.5%

6 Schedule 62.5% 89.6% 27.1%

7 Tic-tac-toe 65% 92% 27%

8 Elevator 63.9% 88.3% 24.4%

9 Tokenizer 64.7% 87.3% 22.6%

10 Ptok2 63% 84% 21%

11 Replace 57.8% 83.7% 25.9%

12 Ptok1 64.6% 88.3% 23.7%

13 Phonex 63.7% 87% 23.3%

14 ProgramSTE 62.4% 88.2% 25.8%

15 ProgramTR 64% 89.7% 25.7%

16 Sed 58.5% 79.7% 21.2%

17 Grep 53.8% 76.2% 22.4%

5.8.4 Comparison Between XCT and X-NCT

Das et al. [32] proposed another technique called as Exclusive OR Code Transfomer

technique in which he has taken seventeen example program, according to his work we

may observe our reults in Table 5.7. M-Cov-XCT column represent the MC/DC coverage

percentage for transformed program by using transformation technique XCT. INC-Cov-

XCT column shows the increase in coverage percentage. The average coverage percentage

for BCT is 24.84 %. M-Cov-X-NCT column represents the MC/DC coverage percentage for

transformed program by using transformation technique X-NCT. INC-Cov-X-NCT column

shows the increase in coverage percentage. The average coverage percentage for X-NCT is

25.447 %. The increased coverage percentage from XCT to X-NCT is 0.607 % as Fig. 5.5

5.8.5 Analysis of Result

As can be observed from Table 4.2 and 5.6 we have compared our results in a bar graph

shown in Fig. 5.6. Blue colured bar represent the level of MC/DC coverage percentage

for original example program. None of the programs achieved 100 % MC/DC coverage

percentage. Percentage varies from 52.9% to 75 % at the maximum. Red colured bar

5.8 Experimental Study 55

Table 5.7: Coverage percentage for XCT and X-NCT technique
S.No Program M-Cov-XCT INC-Using-X-CT M-Cov-X-NCT INC-Using-X-NCT

1 Triangle 100% 25% 100% 25%

2 Next Date 100% 29% 100% 29%

3 ATM 100% 30% 100% 30%

4 Library 100% 25% 100% 25%

5 TCAS 83.3% 30.4% 86.4% 33.5%

6 Schedule 87.5% 25% 89.6% 27.1%

7 Tic-tac-toe 91.6% 26.6% 92% 27%

8 Elevator 87.5% 23.6% 88.3% 24.4%

9 Tokenizer 88.2% 23.5% 87.3% 22.6%

10 Ptok2 83.5% 20.5% 84% 21%

11 Replace 81.5% 23.7% 83.7% 25.9%

12 Ptok1 88.3% 23.7% 88.3% 23.7%

13 Phonex 87% 23.3% 84% 23.5%

14 PrograSTE 86.6% 26.9% 88.2% 25.8%

15 ProgramTR 89.4% 22.4% 89.7% 25.7%

16 Sed 79.7% 21.2% 79.7% 21.2%

17 Grep 76.2% 22.4% 76.2% 22.4%

Figure 5.5: Comparison between transformation techniques XCT and X-NCT

5.8 Experimental Study 56

Figure 5.6: Analysis of all example program for Evaluated MC/DC coverage percentage

represent the level of MC/DC coverage percentage for transformed program using Program

Code Transformer technique to achieve increase in percentage. Two programs (Triangle

and Library) achieved 100 % as shown in Fig. 5.6. Percentage varies from 73.4 % to 100

%. Green colured bar represent the level of MC/DC coverage percentage for transformed

program using Exclusive-NOR Code Transformer. Four programs achieved 100 % coverage

as shown in Fig. 5.6. Percentage varies from 76.2 % to 100 %.

As we can observed we have compared our improved results for both the transforama-

tion technique in Fig. 5.7. Blue colured bar represent the increase in MC/DC coverage

percentage by using Program Code Transformer technique. Percentage varies from 15 %

to 25 %. Red colured bar represent the increase in MC/DC coverage percentage by using

Exclusive-NOR Code Transformer. Percentage varies from 21 % to 33.5 % as shown in

Fig.5.7.

From Fig. 5.8 we analyse the average coverage percentage for seventeen example pro-

grams. First bar represent the average MC/DC coverage percentage by using Program

5.9 Conclusion 57

Figure 5.7: Increase in MC/DC percentage comaparision analysis for all example programs

Figure 5.8: Comparison analysis for PCT and X-NCT

Code Transformer and the value is 20.19 %. Second bar represent the average MC/DC

coverage percentage by using Exclusive-NOR Code Transformer and the value is 25.447%.

5.9 Conclusion

We proposed Exclusive-NOR Code Transformer technique to improve our MC/DC per-

centage. We achieved 25.447%. coverage percentage for seventeen programs. We discussed

experimental study for our approach. As compared to other approach we achieved 0.607 %

more.

Chapter 6

Conclusions and Future Work

In this thesis we have proposed a novel approach to automatically increase the MC/DC

coverage of a program under test. Here we have presented an approach to automate the

test data generation procedure to achieve increased MC/DC coverage. We have used existing

CONCOLIC tester i.e crest tool with a code transformer based on sum of product (SOP)

boolean logical concept to generate test data for MC/DC. In the following, we summarize

the important contributions of our work. Finally, some suggestions for future work are

given.

6.1 Contributions

In this section, we summarize the important contributions of our work. There are three

important contributions, Program Code Transformer, Exclusive-NOR Code Transformer,

and Coverage Analyser.

6.1.1 Program Code Transformer

Program Code Transformer follows four steps including minimization of sum of prod-

uct by Tabulation Method. Code transformer gives an automated implementation of the

boolean derivative method. Our experimentation on example programs show 21.06% aver-

age increase in MC/DC using our PCT approach. The average time taken for seventeen

programs is 6.89950 seconds.

6.2 Future Work 59

6.1.2 Exclusive-Nor Code Transformer

Exclusive-NOR Code Transformer based on exclusive nor (X-NOR) operation to generate

test data for MC/DC. The advantage of our approach is that it achieves a significant increase

in MC/DC coverage. Our experimentation on example programs show 25.447% average

increase in MC/DC using our X-NCT approach.

6.1.3 Coverage Analyser

Also we have presented the coverage analyzer which calculates the coverage percentage

after accepting original programs and test cases.

6.2 Future Work

We briefly outline the following possible extensions to our work.

� We are planning to extend the CONCOLIC Tester (CREST) to solve path constraints

with float or pointer variables. It will then be possible for our approach to achieve

100% MC/DC coverage for most programs. In practice software developers and testers

want to generate the minimum number of test cases so that the time and effort required

for testing does not become an overhead. Therefore, a future version of our approach

will have the option of selection of test cases so that the total number of test cases

required to satisfy MC/DC can be reduced.

� Our work can be extended to compute MC/DC coverage percentage for a sliced version

of program to improve more coverage percentage. We may use CodeSurfer tool to slice

the program written in C language.

� Our work can also be extended in parallel distributed testing to increase scalability.

We may use SCORE-0.1.1 tool to resolve problem faced during use of CREST i.e bit

vector calculation. In this concept we design client server architecture for CONCOLIC

tester.

Dissemination of Work

1. Sangharatna Godboley, G.S.Prashanth, Durga Prasad Mohapatra and Bansidhar Ma-

jhi.Increase in Modified Condition/Decision Coverage Using Program Code Transformer, In

proceedings of 2013 3rd IEEE International Advance Computing Conference (IACC)

, Ajay kumar Garg College of Engineering Gaziyabad(U.P), Pages: 1401-1408, 22nd-

23rd Feb 2013. IEEE Catalog Number: CFP1339F-CDR, ISBN: 978-1-4673-4528-6

2. Sangharatna Godboley, Sai Prashanth, Durga Prasad Mohapatra and Bansidhar Ma-

jhi.Enhanced Modified Condition/Decision Coverage Using Exclusive-NOR Code Trans-

former, In proceedings of 2013 IEEE International Multi Conference on Automation,

Computing, Control, Communication and Compressed Sensing (IMAC4S), School of

Electronics, St. Joseph’s College of Engineering and Technology, Palai, Kottayam,India,

22nd - 23rd March 2013. ISBN:978-1-4673-5088-4

3. Sangharatna Godboley, Durga Prasad Mohapatra, and Bansidhar Majhi.Evaluation of

Coverage Percentage Using Exclusive-Nor Code Transformer and CREST Tool,Inernational.

Journal of Computer Applications in Technology, Special issue onSoftware Architec-

ture, Evaluation and Testing for Emerging Paradigms, 2013.(Communicated)

Bibliography

[1] R. Mall, Fundamentals of Software Engineering. New Delhi, India: PHI Learning

Private Limited, 3rd ed., 2009.

[2] Rtca, “Software considerations in airborne systems and equipment certification,” Oc-

tober, no. December 1992, 1992.

[3] N. Chauhan, Software Testing Principles and Practices. 2010.

[4] P. Ammann, J. Offutt, and H. Huang, “Coverage criteria for logical expressions,” in In

14th International Symposium on Software Reliability Engineering (ISSRE03, pp. 99–

107, IEEE Computer Society Press, 2003.

[5] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test generation for cover-

age criteria,” Software Maintenance, IEEE International Conference on, vol. 0, pp. 1–

10, 2010.

[6] M. D. Hollander, “Automatic unit test generation,” Master’s thesis, Delft University

of Technology, July 2010.

[7] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings of the 29th in-

ternational conference on Software Engineering, ICSE ’07, (Washington, DC, USA),

pp. 416–426, IEEE Computer Society, 2007.

[8] X. Qu and B. Robinson, “A case study of concolic testing tools and their limitations,”

in Proceedings of the 2011 International Symposium on Empirical Software Engineering

and Measurement, ESEM ’11, (Washington, DC, USA), pp. 117–126, IEEE Computer

Society, 2011.

[9] M. M. Mano, Digital Design. Upper Saddle River, NJ, USA: Prentice Hall PTR, 3rd ed.,

2001.

BIBLIOGRAPHY 62

[10] Z. Awedikian, K. Ayari, and G. Antoniol, “Mc/dc automatic test input data gen-

eration,” in Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, GECCO ’09, (New York, NY, USA), pp. 1657–1664, ACM, 2009.

[11] K. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A practical tutorial

on modified condition/decision coverage,” 2001.

[12] S. B. Akers, “On a theory of boolean functions,” pp. 487 – 498, Journal Society Indus-

trial Applied Mathematics, 7(4), December 1959.

[13] A. L. White, Programming Boolean expressions for testability, pp. 3110–3122. IEEE,

2004.

[14] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in In

ESEC/FSE-13: Proceedings of the 10th European, pp. 263–272, ACM, 2005.

[15] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,

pp. 385–394, July 1976.

[16] M. Kim, Y. Kim, and Y. Choi, “Concolic testing of the multi-sector read operation

for flash storage platform software,” Under Consideration for publication in Formal

Aspects of Computing, 2011. CS Dept. KAIST, Daejeon,South Korea and School of

EECS, Kyungpook National University, Daegu, South Korea.

[17] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/decision coverage

to software testing,” Software Engineering Journal, vol. 9, no. 5, pp. 193–200, 1994.

[18] P. McMinn, “Search-based software test data generation: a survey: Research articles,”

Softw. Test. Verif. Reliab., vol. 14, pp. 105–156, June 2004.

[19] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: auto-

matically generating inputs of death,” in Proceedings of the 13th ACM conference on

Computer and communications security, CCS ’06, (New York, NY, USA), pp. 322–335,

ACM, 2006.

[20] D. L. Bird and C. U. Munoz, “Automatic generation of random self-checking test cases,”

IBM Syst. J., vol. 22, pp. 229–245, Sept. 1983.

[21] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random test

generation,” in ICSE ’07: Proceedings of the 29th International Conference on Software

Engineering, (Minneapolis, MN, USA), IEEE Computer Society, 2007.

BIBLIOGRAPHY 63

[22] D. J. and S. Ntafos, “An evaluation of random testing,” IEEE Trans. Software Eng.

SE-10, pp. 438–444, july 1984.

[23] D. D. Cristian Cadar and D. Engler, “Klee:unassisted and automatic generation of

high-coverage tests for complex system programs,” in Software Maitenance, (San Diego,

CA), In USENIX Symposium on Operating Systems Design and Implementation (OSDI

2008), December 2008.

[24] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random testing,” in

Proceedings of the 2005 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’05, (New York, NY, USA), pp. 213–223, ACM, 2005.

[25] “Crest. http://code.google.com/p/crest..”

[26] B. W. P. C. X. Liu ., H. Liu and X. Cai, “A unified fitness function calculation rule for

flag conditions to improve evolutionary testing,” (Long Beach, CA,USA), pp. 337–341,

In proceeding of the 20th IEEE/ACM international conference on Automated Software

Engineering, ACM, 2005.

[27] N. T. Rahul Pandita, Tao Xie and J. de Halleus, “Guided test generation for coverage

criteria,” in In Software Maintainance, IEEE International Conference, 2010.

[28] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A practical tutorial

on modified condition/ decision coverage,” vol. NASA/TM-2001-210876, May 2001.

National Aeronautics and Space Administration , Langley Research Center Hampton,

Virginia 23681-2199.

[29] D. R. Kuhn, “Fault classes and error detection capability of specification-based testing,”

ACM Trans. Softw. Eng. Methodol., vol. 8, pp. 411–424, October 1999.

[30] D. August, J. W. Sias, J.-M. Puiatti, S. A. Mahlke, D. A. Connors, K. M. Crozier,

and W.-M. Hwu, “The program decision logic approach to predicated execution,” in

Computer Architecture, 1999. Proceedings of the 26th International Symposium on,

pp. 208–219, IEEE, 1999.

[31] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in Proceed-

ings of the 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, ASE ’08, (Washington, DC, USA), pp. 443–446, IEEE Computer Society,

2008.

BIBLIOGRAPHY 64

[32] A. Das, “Automatic generation of mc/dc test data,” Master’s thesis, IIT Kharagpur,

April 2012.

