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Abstract

The LPC2148 device is the latest system-on-chip (SOC), which belongs to the

ARM generation of devices. This generation of devices belongs to the powerful

32-bit ARM platform bringing in a lot of new features and flexibility to support

robust single, two and 3-phase metrology solutions. This thesis however, discusses

the implementation of 1-phase solution only. These devices find their application in

energy calculation and have the necessary architecture to support them.

Furthermore, for large scale manufacturing, the costs can become lower than

those of the electromechanical meters currently in production. This device presents

a totally electronic single phase energy meter for residential use, based on ARM

processor. A four digit display is used to show the consumed power. A prototype

has been implemented to adequate measurement up to 5A load current from a 230V

(phase to neutral) voltage. Higher current capacity can be easily obtained by simply

replacing the shunt resistor. And, by changing the transformer tap and the voltage

divider ratio, it can be easily manipulated for use in a 220 V supply.

The LPC2148 has a powerful 60 MHz CPU with ARM architecture. The

analog front end consists of up to two channel of 10-bit analog-to-digital converters

(ADC) based on a successive approximation architecture that supports differential

inputs, with conversion time 2.44 micro second per channel. The ADCs operate

independently and are capable to output 10-bit result. They can be grouped together

for simultaneous sampling of voltage and currents on the same trigger. A 32-bit

x 32-bit hardware on this chip can be used to further accelerate math intensive

operations during energy calculation. The software supports calculation of various

parameters for single phase energy calculation. The key parameters measured during

energy measurements are: RMS current and voltage, energies. Alternatively, the

design is ease to fits more computerized applications with features such as remote

reading , demand recording, multiple tariffs, checking, and other.

Keywords: LPC2148 processor, step down transformer, Variable load,current

transducer, operational amplifier, 16X2 LCD.
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Chapter 1

Introduction

This application note describes a single-phase power/energy meter. The design

measures active power/energy, potential, and current in a single-phase distribution

environment. The heart of the meter is an ARM processor. All measurements are

took in the digital domain and measurement results are available in LCD.

Power meters are sometimes mention to as energy meters and vise versa.

According to terminology, (active) power is a measure of what is required (or

consumed) in order to perform particular useful work. For example, a bulb with

a 100W rating consumes 100 watts of real power in order to create light (and heat).

Energy, per definition, is the measure of how much work has been required over a

known period of time. In the light bulb example, enlighten the bulb on for an hour

it will consume 100W × 3600s = 360000Ws (watt seconds) = 100Wh (watt hours) =

0.1kWh (kilowatt hours) of energy. The energy meter described in this application

note can be referred to as a energy meter or a watt-hour meter.All measurement

results can be calibrated in the digital domain, eliminate the need for any trimming

components. The calibration event can be self alter, and eliminate the time-spending

manual trimming required in traditional type electromechanical energy meters. The

Digital calibration is fast and efficient, minimize the overall calculation time and

cost. The brain of the meter is the software firmware code, which is provided open

source. In spite of it includes all the functionality required for a single-phase meter,

1



Chapter 1 Introduction

it can be alter and updated at any time,even in the working mode. The software

code is entirely written in C, which makes alteration easy.

1.1 Objective

The main aim of this intended project is to implement and construct a digital energy

meter for domestic appliances. This energy meter will measure the electrical energy

digitally, so user can easily identify how much energy they used at one time.

1.2 Scope of Project

Since the energy meter can calculate or determine the energy consumption of

household appliances, the data can be used for the following studies:

• Calculate the average electrical energy consumption of selected appliances used

in residential sector.

• Examine of the impact of energy efficiency labelling of domestic appliance.

• Forecast of future energy desire in residential sector based on end-use modelling

techniques.

• Implementation of special website/programmers that can teach and promote

efficient and wise use of energy.

1.3 Purpose and Description of Project

The LPC2148 device is the latest system-on-chip (SOC), which belongs to the

ARM generation of devices. This generation of devices belongs to the powerful

32-bit ARM platform bringing in a lot of new features and flexibility to support

robust single, two and 3-phase metrology solutions. This thesis however, discusses

2



Chapter 1 Introduction

the implementation of 1-phase solution only. These devices find their application in

energy calculation and have the necessary architecture to support them.

Furthermore, for large scale manufacturing, the costs can become lower than

those of the electromechanical meters currently in production. This device presents

a totally electronic single phase energy meter for residential use, based on ARM

processor. A four digit display is used to show the consumed power. A prototype

has been implemented to adequate measurement up to 5A load current from a 230V

(phase to neutral) voltage. Higher current capacity can be easily obtained by simply

replacing the shunt resistor. And, by changing the transformer tap & voltage divider

ratio, and it can be easily manipulated for use in a 220 V supply.

The LPC2148 has a powerful 60 MHz CPU with ARM architecture. The

analog front end consists of up to two channel of 10-bit analog-to-digital converters

(ADC) based on a successive approximation architecture that supports differential

inputs, with conversion time 2.44 micro second per channel. The ADCs operate

independently and are capable to output 10-bit result. They can be grouped together

for simultaneous sampling of voltage and currents on the same trigger. A 32-bit

x 32-bit hardware on this chip can be used to further accelerate math intensive

operations during energy calculation. The software supports calculation of various

parameters for single phase energy calculation. The key parameters measured during

energy measurements are: RMS current and voltage, energies. Alternatively, the

design is ease to fits more computerized applications with features such as remote

reading , demand recording, multiple tariffs, checking, and other.

1.4 Literature Review

In [1], the development of an Energy Meter (EM) this paper help to visualize the

setup .It presents a single phase electrical energymeter based on a microcontroller

from Microchip TechnologyInc. PIC family.This paper has demonstrated the

possibility of calculating the electrical energy consumption with a microcontroller

3



Chapter 1 Introduction

based electronic meter, as an alternative to the conventional electromechanical

meters.

The developed platform consists of two notable components to measure different

kinds of the power consumption, voltage and current [2]. The power quantities are

sensed and transformed in low level signals using the step down transformer and

current transducer.

Voltage and current sensing circuit uses TL-081 [3] op-amp and LA-55P [4]

component to make both the voltage and current signal measurable.

The TL-081 JFET-input operational amplifier family is designed to offer a wider

selection than any previously developed operational amplifier family.This devices

feature high slew rates, ,low input offset-voltage temperature coefficient and low

input bias and offset input currents.

The Current Transducer LA-55P is used for the electronic measurement of

currents: DC, AC, pulsed, with galvanic isolation between the primary circuit (high

power) and the secondary circuit (electronic circuit).

In [5], an AC Meter development for AC Energy Monitors is described which has

four main sections: signal filtering,Energy Metering and processing, power supply.

In [6] an electronic system is described to measure the real, imaginary and

apparent energies delivered to a load of an AC circuits. The proposed system is

directly connected to a Personal Computer for monitoring the power consumption.

In [7], Explained the design and implementation of Energy Meter, and the

interface between a processor,sensing circuitand display can be categorized into

two main distinctive portions. The first portion consists of the interface between

processor and current/voltage sensing circuit . The second portion comprises the

interface between the 16 x 2LCD and the processor;the interfaces in the first portion

and second portion are both using the standard cables.

4



Chapter 1 Introduction

1.5 Contributions

In most of the reviewed related literatures for sensing the voltage and current signal,

Energy Meter Sensors are employing. Accordingly in order to control the measured

data, calculating and then display, aprocessor should be operated. Data transmission

will be possible through a specific device with unique properties.

In this thesis, all related calculation and transmission of the measured data via

ADC port to a serial adaptor is done with only ARM Processor.

The objective of this intended project is to implement a digital Energy Meter

using ARM processor(LPC2148), measure rms voltage, rms current, consumed

energy and display to LCD. LPC2148 is the processor used in this thesis which

can measured data through ADC.

The desired Energy Meter (EM) is successfully implemented based on ARM

processor(LPC2148).

5



Chapter 2

MEASUREMENT OF ENERGY

RELATED QUANTITIES

2.1 General Theory and Principles

2.1.1 Real Power

For time varying voltages and currents, the power transfer to a load is also time

varying. This time varying power is referred to as instantaneous consumed power.

The real power is the average value of the instantaneous consumed power.The Mean

Power rely on the rms value of load voltage and load current and the phase angle

between them

P =
1

2
VmIm cos (θv − θi) = VrmsIrms cos (θv − θi) (2.1)

The real power (P), in watts, dissipated in an AC R-L, R-C, R-L-C circuit is

dissipated in the resistance onlyfor AC sinusoidal current and voltage,

P = I2R (2.2)

6



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.1: The instantaneous power p(t) entering a circuit.

2.1.2 Apparent Power

Apparent power is the combination of reactive power and true power, and it is the

multiplication of a circuit’s voltage and current, without regards to phase angle.

Apparent power is calculated in the unit of Volt-Amps (VA) and is symbolized by

the capital letter S.

The Apparent Power (S), in volt amperes (VA), is the product of the rms value

of voltage and current.

S =
1

2
VmIm = VrmsIrms (2.3)

2.1.3 Power Factor

The Power Factor (pf) is the cosine of the phase difference between voltage and

current. Power factor can also be found by dividing real power (P) by apparent

power (S); so we have:

P.F =
P

S
= cos(θv − θi) (2.4)

P = ApparentPower × PowerFactor = S × P.F (2.5)

7



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

2.1.4 Reactive Power

Explanation for reactive power says that, In an Alternative Current circuit voltage

and current go rise and fall at the same period, only Active power is transmitted

in circuit and when there is a time shift between voltage and current both active

and reactive power are transmitted. But, when calculated the average in time, the

average real power be found causing a net flow of energy from one section to another

section, whereas average reactive power is null, regardless of the network or state

of the system. In the instance of reactive power(imaginary power), the amount of

energy passing in one direction is been equal to the amount of energy passing in

the opposite direction (or different parts -capacitors, inductors, etc- of a network,

exchange the reactive power). It producing a result that reactive power is neither

produced nor consumed.

But, in reality we calculated reactive power losses, introduce so many equipment’s

for imaginary power compensation to reduce electricity consumption and cost.

The Reactive Power (Q), in volt amperes reactive (VAR), is the power which

toggle between the supply and the reactance of the load and can be calculated from

following equation;

Q = VrmsIrms sin(θv − θi) (2.6)

It show that the Reactive Power is imaginary part of the Complex Power S.

S = P + j Q = Re {S}+ j Im {S} (2.7)

S = I2rmsZ = I2rms(R + j X) = P + j Q (2.8)

where

P = VrmsIrms cos(θv − θi) = Re {S} = I2rmsR (2.9)

Q = VrmsIrms sin(θv − θi) = Im {S} = I2rmsX (2.10)

8



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.2: Real power dissipated in Resistive circuit

Therefore the equations below can be written as:

V (t) = Vm sin(wt− θ) (2.11)

I(t) = Im sin(wt) (2.12)

The instantaneous power is given by

P (t) = VmIm sin(wt) sin(wt− θ) =
1

2
× VmIm × 2× sin(wt) sin(wt− θ) (2.13)

P (t) =
1

2
VmIm[{cos(wt)− cos(wt− θ) + sin(wt)− sin(wt− θ)}

−{cos(wt)− cos(wt− θ)− sin(wt)− sin(wt− θ)}]

(2.14)

P (t) =
1

2
VmIm[cos {wt− (wt− θ)} − cos {wt+ (wt− θ)}] (2.15)

P (t) =
1

2
VmIm[cos θ − cos(2wt− θ)] (2.16)

pR(t) = V (t)× I(t) = VrmsIrms cos(2wt) (2.17)

9



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Since the phase angle between resistive current and voltage is null, the circuit has

neither a lagging nor a leading power factor; therefore the load is Resistive and draws

only active power.

From the above equation 2.17 it is clear that whatever may be the value of cos2wt

can not be greater than one hence the value of P can not be negative value. The

value of P is always positive regardless of the instantaneous direction of voltage v

and current i, that define the energy is flowing in its conventional direction it means

from source to load and P is given the rate of energy consumption by the load and

this is called active power. As this power is absorbed due to resistive effect of an

electrical circuit hence it is also called resistive power.

For a purely inductive circuit, v leads i by 900 as shown in Figure

θ = 900(inductive)

Figure 2.3: Inductive circuit and Reactive Power

The power absorbed or deliver by the inductor can be found as below:

PL(t) =
1

2
VmIm[cos θ − cos(2wt− θ)] (2.18)

10



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Put θ = + 90o (inductive)

PL(t) =
1

2
VmIm[0− cos(2wt− 90o)] (2.19)

PL(t) =
1

2
VmIm sin(2wt) (2.20)

PL(t) = VrmsIrms sin(2wt) (2.21)

The net flow of power to the pure (ideal) inductor is zero over a full cycle, and

no energy loss is observed in the transaction.

In the above expression, it is found that the power is flowing in alternative

directions. From 0o to 90o it will have positive half cycle, from 90o to 180o it

will have negative half cycle, from 180o to 270o it will have again positive half

cycle and from 270o to 360o , it will have again negative half cycle. Therefore this

power is alternating in nature with a frequency, twice of supply frequency. As the

power is flowing in alternating direction i.e.from load to source in one half cycle and

from source to load in next half cycle the average value of this power is vanished.

Therefore this power does not do any efficient work. This power is known as reactive

power. As the above illustrate reactive power expression is related to fully inductive

circuit, this reactive power is also called inductive power.

For a purely capacitive circuit, i leads v by 90o as illustrated in figure.

θ = −900(capacitive)

The power absorbed or delivered by the capaciter can be found as below:

PC(t) =
1

2
VmIm[cos θ − cos(2wt− θ)] (2.22)

Putθ = −900

11



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.4: Capacitive circuit and Reactive Power

PC(t) =
1

2
VmIm[0− cos(2wt− 90o)] (2.23)

PC(t) = −
1

2
VmIm sin(2wt) (2.24)

PC(t) = −VrmsIrms sin(2wt) (2.25)

Resemble to the previous case, it is apparent that the net flow of power to the

pure(ideal) capacitor is zero over a total cycle, and null energy loss is observed in

the transaction as well.

Hence in the expression of capacitive power, it is also indicate that the power

is flowing in alternative directions. From 0o to 90o it will have negative half cycle,

from 90o to 180o it will have positive half cycle, from 180o to 270o it will have again

negative half cycle and from 270o to 360o it will have again positive half cycle. So

this capacitive power is also alternating in nature with a frequency, twice of supply

frequency. Therefore, as inductive power and the capacitive power does not do

any efficient work. This power is also a reactive power.

The consumed power equation can be re-written as:

P (t) =
1

2
VmIm[cos θ − cos(2wt− θ)] (2.26)

P (t) =
1

2
VmIm[cos θ − cos 2wt cos θ − sin 2wt sin θ] (2.27)

12



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

This above expression has two part of consonant; first one is 1
2
VmIm cos θ(1 −

cos 2wt) which never goes negative as because value of (1−cos 2wt) always greater

or equal to zero but can not equal to negative value.

This portion of the single phase consumed power equation represents the

expression of reactive power which is also known as true power or real power.

The mean of this power will recognize have some non zero value means the power

physically does some efficient work and that is why this power is also called real

power or sometimes it is denoted as true power.

Figure 2.5: Single phase active and reactive power

Second term is 1
2
sin θ sin 2wt which will have negative and positive cycles.

Hence average of this component is vanished. This consonant is known as reactive

component as it travels forth and back on the line without doing any efficient work.

13



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Both active power and reactive power have equalamount of watts but to

emphasize the fact that reactive component represents a non-active power,and it is

calculated in terms of volt-amperes reactive or in short VAR.

2.1.5 Power and Impedance triangle

It is possible to show the relation between S, P and Q in the form of a triangle,and

known as the power triangle as shown in Figure (a). A similar relation between Z,X

and R can be given by the Impedance triangle as shown in Figure (b).

Figure 2.6: Power Triangle, Impedance Triangle.

If S exist in the first quadrant; the reactive power is positive; which means that

the circuit has a lagging power factor and the load is inductive, and if S is in the

fourth quadrant the power is reactive; which means that the load is capacitive and

the circuit has a leading power factor , as illustrated in Figure.

2.2 Operational Considerations

As per the general theory and principles of the Power calculation; voltage and current

is the capital part of the operation therefore measurement of the current and voltage

is the prime requirement.
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Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.7: Power triangle

After calculating the values of the current and voltage; calculation of the all other

energy related quantities is possible.

LPC2148, with two analog to digital (A/D) inputs, which is used for computing

the current and voltage values; is preferred due to the ease in programming and the

convenience of display data.

The general block diagram of Typical Connections inside Electronic Meters is

illustrated in Figure 2.8.

In general, all the sensors used for energy meter; work based on two types of signal

processing, namely analog and digital. This signal processing uses multiplication and

averaging for the finding of the information required by an energy meter.

In preceding portions in this chapter all the methods used in this thesis are

explained and in chapter 3 all used components regarding described methods are

clarified.

This section explain various part that constitute the hardware for the design of

a working 1-phase energy meter using the LPC2148. The LPC2148 analog front end

that consists of the ADC is differential and requires that the input voltages at the

pins do not exceed 3.3 volt . In order to meet this requirement, the current and

15



Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.8: Typical Connections Inside Electronic Meters

voltage inputs need to be step up and step down respectively. And addition, the

ADC not allows a negative voltage , therefore, AC signals from mains can not be

directly interfaced and need level shifters. This subsection describes the analog front

end used for current and voltage channels.

2.2.1 Current Sensing

Current Sensing however [1][16], poses much more difficult problems due to the

rich harmonic content in the current waveform. Current transducer sensor not only

requires a much wider measurement dynamic range, but also necessary to handling

of a much wider frequency range.

Considering merits and demerits, selection of which type of methods to be used

for sensing the current is challenging, so the chosen appropriate possible solution is

to employ the Hall Effect Sensor.
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2.2.2 Hall Effect

Hall Effect is a phenomenon through which a conductor carrying an electric

current(I) perpendicular to an applied magnetic field(B) develops a voltage gradient

which make 90 angles to both the current and the magnetic field.

2.2.3 Hall Effect Sensor

The Hall Effect [2] is an ideal sensing technology; in terms of measurement especially

at high frequency. The Hall element is build from a thin sheet of conductive material

along with output connections perpendicular to the direction of current flow in

conductive material. When influence to a magnetic field, it generate an output

voltage proportional to the magnetic field strength applied. The voltage output is

minor (µV) and needs additional electronics to achieve useful voltage levels to do

proper calculation. When the Hall element is merge with the associated electronics,

it create a Hall Effect sensor.

General Sensor depend on the Hall Effect is shown in the Figure 2.9.

2.2.4 Current Inputs

Figure 2.10 shows the analog front end for the current inputs, which is flow through

load. The current through load is measure by current transducer LA 55P. The

current transducer is connected in series with load, it wounded with same wire which

is connected to series. The transducer senses the current which is flow through the

wounded wire and generates the current which is flow through the resistance R. And

we are getting the voltage corresponding to the current which is flow through load.

The sensing voltage is low in amplitude and difficult to measure then it is passes

through amplifier. The amplification factor is depend upon values of R1 and R2,

and step up the voltage below 1 volt peak to peak. Output consist both positive

and negative cycle but processor ADC respond or measure only positive values, it

require level shifter to add a DC offset and pass to precision rectifier, It prevents
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Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.9: General Sensor depend on the Hall Effect

Figure 2.10: Analog Front End for Current Inputs
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any excursion of negative voltage.

Figure 2.11: Current sensing hardware circuit

2.2.5 Voltage Sensing

Voltage sensing [2][16] is usually obtained by using either the voltage division method

or a step down voltage transformer. Decision making about which method should

be used, is related to the work necessities. Above two mentioned approaches are

used in this project.

2.2.6 Voltage Division

Voltage Division is the most prefer way to divide down the line voltage based on

Ohm’s law. Relationship between input voltage Vin and Output voltage Vout is as

below.

Vout = Vin ×
R1

R1 +R2

(2.28)
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Chapter 2 MEASUREMENT OF ENERGY RELATED QUANTITIES

Figure 2.12: Voltage Division Circuit

2.2.7 Voltage Transformer

Voltage transformer are used to step down is an electromagnetic device which

consists of two or more coils wound on a magnetic core and changes the voltage

level in a circuit, under fixed frequency.

Consider an ideal transformer as shown in Figure 2.13.

Figure 2.13: Ideal transformer

The ratio of secondary and primary voltage can be obtained from equation as:

V1

V2

=
N1

N2

=
I2

I1
(2.29)
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As it is mentioned, ARM processor [LPC2148] is the device, which is been used in

this achievement and the maximum voltage can be sensed by microcontroller is 3.3

V DC.

2.2.8 Voltage Inputs

The analog front-end for voltage inputs is a little different from the analog front end

for the current inputs. The voltage from the mains is usually 230 V and needs to be

brought down to a measurable range.

Figure 2.14: Analog Front End for Voltage Inputs

Figure 2.14 shows the analog front end for the voltage inputs for a mains voltage

of 220 V. The voltage is brought down to approximately below 2.33 V RMS, which

is 3.33V peak and fed to the input, adhering to the LPC2148 analog limitation. A

common ground voltage can be connected to the GROUND input of the ADC.

In that figure 2.14, 220 volt is step down to 24 volt peak to peak through

step down transformer. The output of transformer is not measurable; to make

it measurable it passes through attenuator to step down the voltage below 1 volt

peak to peak. Output consist both positive and negative cycle but processor ADC

respond or measure only positive values, it require level shifter to add a DC offset
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and pass to precision rectifier, It prevents any excursion of negative voltage.

Figure 2.15: Voltage sensing hardware circuit.

Figure shows the input and output waveform of the analog front end for voltage

inputs. Input waveform has higher amplitude as compare to output waveform and

also the output waveform has a DC offset which make all the waveform values

positive as compare to input waveform.

Figure 2.16: Input and output waveform

2.2.9 Data Analysis and Display

After voltage and current measurement procedure [3], next step is data analysis

and display. Samples are taken from ADC peripherals and passed through following
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steps :

• Offset Removal

Both voltage and current sample has a offset DC value, to measure the accurate

value of rms voltage and rms current offset removal is necessary.

• Gathering samples

After eliminating offset, accumulate 1000 sample in one second and calculate

rms voltage, rms current, and consumed power on the basis of 1000 samples.

• Display

16x2 LCD display for showing the calculated data or rms voltage, current and

energy, it is necessary.

Microsoft Visual Studio C is a programming language that is designed for

building an application that run on the .NET Framework. C is simple, efficient,

type-safe, and object-oriented.
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Chapter 3

DESIGN OF MEASUREMENT

SYSTEM AND DATA DISPLAY

3.1 General Design Procedure

As it is mentioned in 2.2.3 and 2.2.5 sections; [2][4][1] Current Transducer or Hall

Effect Sensor are the elements that can be used for current sensing whereas Resistive

Voltage Divider circuit and Voltage Transformer are utilized for voltage sensing. Two

voltages are obtained as the current and voltage signals which is used for energy

calculation.

The detailed Block Diagram of the desired digital energy meter is shown in figure

3.1 . The block diagram that shows the high-level interface used for a single-phase

energy meter application using the LPC2148. Current sensors are connected to the

current channels and a potential transformer is used for corresponding voltages. L

and N show the line and neutral voltages.

This system is designed based on an ARM processor [LPC2148] which acts as

a data acquisition processing and display system. A current and a voltage signal

are connected to its analog inputs and converted into digital form. The LPC2148

can therefore calculate the rms values of measured signals together with the energy
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consumed at the measurement terminals.

Figure 3.1: 1-Phase 2-Wire Star Connection detailed Block Diagram

In the last stage Data display is conducted using 16x2 LCD driver. It showing

the calculated data or rms voltage, rms current and consumed energy by load.

3.2 Hardware Design

After explaining the common principles of the design procedure [4][6], the next step

is to simulate the hardware using the multisim software; since not everything can be

simulated through software, some results need to acquired by relying on experiments.

The desired Energy Meter (EM) is successfully implemented based on ARM

processor, which is shown in Figure.

The details for the main parts of Energy Meter are presented in the following

sections.
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Figure 3.2: Photo of realized digital energy meter

3.2.1 ARM processor (LPC2148)

The ARM (Advanced RISC Machine) is a 32-bit microcontroller created by a

consortium of companies and manufactured in many different kind of versions. And

it is widely used in modems, cell phones, cameras, personal audio, pagers, and many

more embedded high end applications.

The LPC2148 is a low-power Complementary metal-oxide-semiconductor

(CMOS) 32-bit microcontroller used the enhanced RISC architecture which is used

as the main part of this project.Through executing powerful instructions in a single

clock cycle, the LPC2148 achieves throughputs approaching 17 MIPS sustained 25

MHz permit the system designer, to optimize power consumption versus processing

speed, operating Voltage range for this microcontroller is - 4.5V - 5.5V.

Generic RISC features:
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• A huge number of general purpose registers along with the compiler technology

to optimize register usage.

• A limited and ease instruction set.

• An emphasis on modify the instruction pipeline.

• Load and store architecture with ease addressing modes.

Features of LPC2148

• 16/32-bit ARM7TDMI-S microcontroller with in a tiny LQFP64 package.

• 32 kiloByte of on-chip SRAM and 512 kiloByte of on-chip Flash program

memory. 128 bit wide interface/accelerator to enables high speed 60 MHz

operation.

• In-System/In-Application Programming (ISP/IAP) through on-chip

boot-loader software. Single Flash sector or full chip erase with in 400

millisecond and programming of 256 bytes in 1 millisecond.

• Embedded ICE and Embedded Trace user interfaces offer real-time debugging

with the on-chip Real time Monitor software and high speed tracing of the

instruction execution.

• Two eight input channel 10-bit Analog to Digital converters provide a total of

up to 16 analog inputs channel, with conversion times as 2.44 µs per channel.

• Single 10-bit Digital to Analog converter provides variable analog output.

• Two 32-bit counters/timers (with four compare and four capture channels

each), Pulse Width Modulator unit (six outputs) and watchdog.

• Real-time clock equipped with an independent power and internal clock supply

permitting extremely low value of power consumption in power save modes.
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• Multiple serial interfaces including two Universal asynchronous

receiver/transmitter (16C550), two Fast Inter-IC(I2C) (400 kbit/s), SPI

and SSP with storing and variable data length capabilities.

• Vectored interrupt controller with superable priorities and vector addresses.

• Up to 47 of 5 V tolerant general purpose input/output pins in tiny LQFP64

package.

• level sensitive external interrupt(Up to nine edge) input pins available.

• 60 MHz maximum CPU clock is available from programmable on-chip

Phase-Locked Loop (PLL) with a settling time of 100 microseconds.

• On-chip crystal oscillator with different operating range of 1 MHz to 30 MHz

or with external oscillator vary from 1 MHz to 50MHz.

• Power saving modes include both Idle and Power-down.

• Individual enable/disable of the peripheral functions as well as the peripheral

clock scaling down for procure power optimization.

• Processor wake-up from Power-down mode through external interrupt.

• Single power supply(5 volt) chip with Brown-Out Detection (BOD) and

Power-On Reset (POR) circuits:

• CPU operating voltage range varies from 3.0 V to 3.6 V (3.3 V 10 %) with 5

V tolerant Input/Output pads.

Figure3.3 is shown the Pin out of LPC2148:

As it is illustrated in Port 0.28 and Port 0.30 is merge with AD0.1 and AD0.3

respectively serves as the analog inputs to the A/D converter so Pins 13 and 15 are

used as inputs for the voltage and current values.
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Figure 3.3: Pinout LPC2148

This ability of LPC2148 allows to use Port 0 pins as A/D converter and lets the

users read the values which are required therefore these two inputs should be in the

permissible range of at most 3.3 V for microcontroller.
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3.2.2 Hall Effect Sensor

The Hall Effect Sensor; empoly in this project is the LA-55P [1] is the element which

senses the required current with the methods that were subjected in the previous

chapter and helps to get accurate results. The Hall Effect Sensor is also called the

Current Transducer since it converts the current into voltage which can be applied

directly to the LPC2148 analog input after amplification. LA-55P is the device

used for the electronic measurement of current: Direct current,pulsed, Alternating

Current, mixed with the galvanic isolation in between the primary circuit (high

power) and the secondary circuit (electronic circuit).

Figure 3.4: LA 55P Current Transducer

Features of this device are as below:

This Hall Effect Sensor with a galvanic isolation between primary and secondary

circuit can be empoly for measurement purposes as this sensor has isolation voltage

up to 2500V and consumes very low power. This LA 55P sensor may be used in

AC variable speed drives, Uninterruptible Power Supplies (UPS), DC motor drives,

Switched Mode Power Supplies (SMPS).

Advantages:

• Excellent accuracy

• Very good linearity

• Low temperature drift
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• Optimized response time

• Wide frequency bandwidth

• No insertion losses

• Highly immunity to external interference

• Current overload capability.

3.2.3 TL081 Op Amp

The TL081 [5] series are general purpose operational amplifiers whose performance is

improved according to requirements of industrial standards. The TL081 amplifiers

offer many characteristic which make their application nearly foolproof: overload

protection on the input and output side, no latch-up when the common mode range

is exceeded, and the oscillations are prevented. Their performance is Best over a 00C

to +700C temperature range. This amplifier is the most important part which is

used as a attenuator, level shifter and precision rectifier, and the output of which is

applied to the processor to enable the calculation of the different parameter related

to current, voltage and energy meter.

Connection diagram of TL081 is as shown below:

Figure 3.5: Connection Diagram of TL081
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3.2.4 LCD

Liquid crystal display [6] or LCD as shown in Figure is one of the most used

devices for alphanumeric output in processor-based circuits. Their advantages

are their cost,reduced size and convenience of mounting the LCD directly on the

circuit board.LCD is classified according to their interface into Parallel and serial.

The Serial LCD requires less I/O resources but execute slower than their parallel

counterparts and are considerably more costly. In this project, parallel-driven LCD

devices based on the Hitachi HD44780 character-based controller, and which is by

far the most popular controller for microcontroller-driven LCD.

Figure 3.6: 16x2 LCD

The HD44780 is a dot-matrix liquid crystal display controller and driver. The

device displays ASCII alphanumeric characters like as Japanese kana characters,

and some symbols like in Figure 2.10. A single HD44780 can display up to two

28-character lines. An available extension diver makes possible addressing up to 80

characters. The HD44780U contains a 9,920 bit character-generator Read Only

Memory that generate a total of 240 characters: 208 characters with a 58 dot

resolution and 32 characters at a 510 dot resolution. The HD44780U device is

capable of storing 64x8-bit character data in its character generator Read access

Memory. This correlate to eight custom characters in 5x8-dot resolution or four

characters in 5x10-dot resolution. The HD44780U controller is programmable to

three different duty cycles: 1/8 for one line of 58 dots with cursor & 1/11 for one
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line of 510 dots with cursor, & 1/16 for two lines of 58 dots with cursor.

The in built commands include homing the cursor,setting display characters to

blink,clearing the display,turning the cursor on and off,turning the display on and

off,reading and writing data to the character generator,shifting the cursor and the

display right-to-left or left-to-right,and to display data ROM.

3.3 Software Development

After testing and simulation of every single part, the operational program for

processor is written under ARM-IDE in conformance with the designed circuit.

The implementation of software for the single-phase metrology is discussed in

this section. The first subsection discusses the set up of various peripherals of the

energy meter. Subsequently, the entire metrology software is described as two major

processes: background process and foreground process.

3.3.1 Peripherals Set Up

The major peripherals are the ADC of LPC2148, clock system, timer, LCD, and so

forth. The LPC2148 has two on-board analog-to-digital converters each of which

provides 10-bits of accuracy with a conversion time of about 2.44 µ sec. Each

converter has an 8-channel analog front end so that there are 16-channels of A/D

available.

For a single phase system at least two ADC are necessary to independently

measure one voltage and current. ADC 0.1 is used to measure the voltage samples

and ADC 0.3 is used to measure the current sample. The sampling of voltage and

current is completed by timer operation. Timer which has the clock frequency 1 MHz

is used to make the sample frequency 1 KHz by generate a delay of 1 millisecond.

The input signal frequency of voltage or current both have 50 Hz frequency and time

period 20 millisecond. In one cycle through ADC processor is getting a 20 sample

and in one seconds it getting a 1000 samples. On basis of one second or 1000 samples
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Table 3.1: LCD command

Code(hex) Command to LCD Instructin register

1 Clear display screen

2 Return home

4 Decrement cursor (shift cursor to left)

6 Increment cursor (shift cursor to right)

5 Shift display right

7 Shift display left

8 Display off, cursor off

A Display off, cursor on

C Display on, cursor off

E Display on, cursor blinking

F Display on, cursor blinking

10 Shift cursor position to left

14 Shift cursor position to right

18 Shift the complete display to the left

1C Shift the complete display to the right

38 2 lines and 5x7 matrix

C0 Force cursor to beginning to second line

80 Force cursor to beginning to first line
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LPC2148 measure the RMS voltage, RMS current and ENERGY consumed in one

second by load.

After calculating the RMS voltage and current, energy it will display to LCD.

This process is running continuously and update the value of RMS voltage ,RMS

current and energy, and display in LCD.

3.3.2 The Foreground Process

The foreground process [7][9][10][11] includes the initial set up of the LPC2148

hardware and software immediately after a device RESET. Figure shows the

flowchart for this process.

The initialization routines process involves the set up of the analog to digital

converter, clock system, general purpose input/output (GPIO) port pins, timer,

LCD. During normal operation, the background process informs the foreground

process every time a frame of data is available for processing. This data frame

composed of accumulation of energy for 1 second. This is equal in value to

accumulation of 50 or 60 cycles of measured data samples synchronized to the

incoming voltage signal. In parallel, a data sample counter keeps track of how

many samples have been accumulated over the frame period. This count value can

vary as the software synchronizes with the incoming mains frequency. The data

samples value set consist of processed current, voltage, active energy. All values are

accumulated and further process to obtain the RMS and mean values.
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Flow Chart diagram for Foreground process

Hardware setup;

Clock,ADC,

Timer,port pins,LCD

Reset

one second

of energy

accumulated

? Wait for

Background

Process

Calculate RMS values for

current voltage and Active

power

Display RMS value for voltage

current and Active power

No

Yes

3.3.3 The Formulae

This section briefly explain the formulae used for the rms load current & rms load

voltage and energy calculations.

Voltage and Current

As discussed in the above sections simultaneous voltage and current samples are

obtained from two channel of A/D converters at a sampling rate of 1000 Hz. Track

the number of data samples that are present in 1 second is kept and used to obtain
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the Root Mean Square values for voltage and current for each phase.

Vrms = Kv ×

√

∑sample count

i=1 V 2
i (t)

sample count
(3.1)

Irms = KI ×

√

∑sample count

i=1 I2i (t)

sample count
(3.2)

Where

Vrms = RMS value of voltage

Irms = RMS value of current

V(i) = Voltage sample at a sample instant ’i’

I(i) = Current sample at a sample instant ’i’

Sample count= Number of data samples in 1 second

Kv = Scaling factor for voltage

Ki = Scaling factor for current

Power and Energy: Consumer power and energy [8][13][14] are calculated

for a frames worth of active energy samples. These samples are phase rectified

and passed on to the foreground process which accumulate the number of samples

(sample count) and use the formulae shown below to calculate total active powers.

Pact = KP ×

∑sample count

i=1 Vi(t)× Ii(t)

sample count
(3.3)

Where

Pact = Actual power consumed by load

Kp = Scaling factor for power

V(i) = Voltage sample at a sample instant ’i’

I(i) = Current sample at a sample instant ’i’

Sample count= Number of data samples in 1 second

The consumed energy is then measured based on the active power value for each

frame:

Pact1 =
Pact

3600
(3.4)
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Where

Pact1 = Actual power consumed by load in 1 second.

3.3.4 The Background Process

The background process uses the timer as a trigger to collect voltage and current

samples (two values in total). These samples values are further processed and

accumulated in dedicated 32-bit registers. The background function deals mainly

with timing critical events in software. Once sufficient samples (1 second worth) has

been accumulated after then the foreground function is triggered to calculate the

final values of rms voltage, rms current, power and energy. The background process

is also completely responsible for energy calculation for each phase. Below the flow

chart diagram of the background process is shown.

In background process analog to digital converter took the 1000 samples in one

second of voltage and current. First eliminate the offset of both the voltage and

current sample and then calculated the RMS value of voltage, RMS value of current,

and Power consumed by load in one second. After processed calculation notify the

foreground process.

The determined instantaneous voltage and current samples are used to generate

the following information:

• Accumulated squared values of voltage and current for VRMS and IRMS

calculations.

• Accumulated energy samples to measure Active Energy.
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Flow Chart diagram for Background process

Read Voltage V

Read Current I

ADC sample @

1000sec
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instantaneous Power
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calculated
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Return to
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Chapter 4

EXPERIMENTAL RESULTS

Some measurements with the implemented Energy Meter are conducted regarding

the accuracy of the system for evaluation process. The required performance of the

prototype meter has been evaluated in the laboratory.

4.1 Testing Voltage and Current sensing Circuit

In order to see that voltage and current sensing circuit are correctly doing their

duties, input signal and its related output is controlled by a digital real time

oscilloscope.

Results are shown in the Figure 4.1 Input Current signal and Output Current

Signal with offset Figure 4.2 Input Voltage signal and Output Voltage Signal with

offset.

It is clearly observed on Figure 4.1,4.2 that the sinusoidal input signals is

amplified for current sensing and attenuated for voltage sensing circuit, then both

signals levels are shifted. The output of voltage and current sensing circuit has

positive value in both cycle faithfully with almost no phase shift.
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Figure 4.1: Input Current signal and Output Current Signal with offset

Figure 4.2: Input Voltage signal and Output Voltage Signal with offset

4.2 Testing for samples

In order to see that ADC of LPC2148 are correctly doing their duties, input signal

and its related output is controlled by a digital real time oscilloscope.

Results are shown in the Figure 4.3 Input Voltage signal and Output Voltage

sampled Signal.

It is clearly observed on figure 4.3 that the sinusoidal input signals are correctly

sampled through ADC of LPC2148. Input is applied to the input port of ADC

channel and then ADC digital output is passed to Digital to Analog converter.

Analog output is traced, which is display in CRO as shown above.
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Figure 4.3: Input Voltage signal and Output Voltage sampled Signal.

4.3 Tests for sag of signal

The performance of the prototype meter is evaluated that it can measure the swell

and sag in a time limitation. In common electric circuit it is occur frequently, by

following test it showing the measuring ability.

Figure 4.4: Measurement setup for testing the sag and swell

Figure 4.4 shows the measurement setup for creating a swell and sag signal along
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with energy meter to measure the change.

Figure 4.5: Measured RMS voltage before and after saging the voltage signal

Figure 4.6: Voltage wave form along with sag

4.4 Tests on Current measurement

The performance of the prototype is evaluated by comparing the prototype reading

with the standard meter. Table 4.1 shows true RMS current as measured by standard

meter and proposed meter and relative (%) error.
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Table 4.1: Result of Current measurement in the laboratory with standard

multimeter meter & prototype energy meter

Number of

measurement

Measured rms value of

current (amp) (Standard

meter)

Measured rms value of

current (amp) (Prototype

meter)

Relative

Error (%)

1 0.2793 0.2799 -0.214823

2 0.2903 0.291 -0.24113

3 0.3016 0.302 -0.132626

4 0.3118 0.3125 -0.224503

5 0.3231 0.324 -0.278552

6 0.3324 0.3315 0.2707581

7 0.3427 0.3426 0.02918

8 0.3522 0.353 -0.227144

9 0.3619 0.361 0.2486875

10 0.3714 0.372 -0.161551

11 0.381 0.38 0.2624672

12 0.3906 0.3904 0.0512033

The measured values of current obtained from the readings of the sub standard

meter are considered as standard and compared with proposed method values to

check the accuracy of the metering system.

4.5 Tests on Voltage measurement

The performance of the prototype is evaluated by comparing the prototype reading

with the standard meter. Table 4.2 shows true RMS voltage as measured by standard

meter and proposed meter and relative (%) error.

The measured values of voltage obtained from the readings of the sub standard
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Table 4.2: Result of Voltage measurement in the laboratory with standard

multimeter meter & prototype energy meter

Number of

measurement

Measured rms value of

voltage (volt) (Standard

meter)

Measured rms value of

voltage (volt) (Prototype

meter)

Relative

Error (%)

1 130.45 130.56 -0.084323

2 140.1 140.35 -0.178444

3 150.4 150.14 0.1728723

4 160 159.93 0.04375

5 170.9 170.81 0.0526624

6 180.24 180.6 -0.199734

7 190.49 190.4 0.0472466

8 200.2 200.19 0.004995

9 210.1 209.98 0.0571157

10 220.17 219.77 0.1816778

11 230.1 229.8 0.1303781

12 240 239.6 0.1666667

meter are considered as standard and compared with proposed method values to

check the accuracy of the metering system.

4.6 Tests on Consumed Energy measurement

The performance of the prototype is evaluated by comparing the prototype reading

with the standard calculation. Table 4.3 shows the Energy measurement in the

laboratory with standard calculation & prototype energy meter and relative (%)

error.

The measured values of current obtained from the standard calculation and
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Chapter 4 EXPERIMENTAL RESULTS

Table 4.3: Result of Energy measurement in the laboratory with standard calculation

& prototype energy meter

Number of

measurement

Load Actual power

consumed in ONE

Hour(WaatHour)

Measured power

consumed in ONE

Hour(WaatHour)

Relative

Error

(%)

1 15 watt, 250 volt 13.2 13.1 0.757576

2 11 watt, 240 volt 10.1 10.2 -0.9901

3 100 watt, 230 volt 93.28 93 0.300172

4 100 watt, 250 volt 79.8 79.3 0.626566

compared with proposed method values to check the accuracy of the metering

system.
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Chapter 5

Conclusion

In this thesis design and implementation of reliable digital Energy Meter based

on ARM microcontroller is described. With the designed new energy meter;

measurement and LCD display of the desired data are possible. Each system section

is carefully designed to meet the desired accuracy and bandwidth. C language

code is firmware compact and the entire energy calculation algorithm is executed in

minimum number of CPU cycle.

In this achievement, different methods for sensing the current and voltage

are proposed and implemented. This system is designed based on an ARM

microcontroller which acts as a data acquisition processing and display system. A

current and a voltage signals are connected to their analog inputs and converted

into digital form. The sampled signals of the current and voltage are manipulated

by microcontroller to measure energy meter parameter. The microcontroller can

therefore evaluate the rms values of measured signals together with the consumed

energy at the measurement terminals which enable the calculation of all other energy

related quantities. In this case study we proposed a simple and versatile display

method where the measured data can be easily monitored and display for user.

The new measurement system will certainly help to decrease efficient usage of

time as compared to conventional method of getting the same results. All the table

gives comparison between the standard and prototype. It can be concluded that the
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Conclusion

accuracy up to 0.1% to 0.2% can be obtained for voltage and current measurement

and less then 1% accuracy can be obtained for energy calculation.

Future work may include monitoring system. In monitoring system we can easily

acquire all the voltage and current sample in every second. Then time to time we

can monitor the signal, if any swell and sag is occur it is display in monitor to inform

user.
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