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Abstract 

 

Amidst all the evolutionary optimization algorithms Teaching–Learning-Based Optimization 

(TLBO) seems to be a promising technique with relatively competitive performances. It 

outperforms some of the well-known metaheuristics regarding constrained benchmark 

functions, constrained mechanical design, and continuous non-linear numerical optimization 

problems. This dissertation presents the application of TLBO to various problems of 

mechanical engineering. Both constrained and unconstrained optimization has been 

performed on some manufacturing processes and design problems. Parametric optimization 

of three non-conventional machining processes namely electro-discharge machining, electro-

chemical machining and electro-chemical discharge machining, have been carried out and 

the results are compared with other evolutionary algorithms. Improvement in the existing 

TLBO algorithm has been incorporated in this dissertation using two schemes namely bit 

string mutation and replacement of worst solutions with fresh ones. Performance evaluation 

of these modifications have been presented in this dissertation by solving six optimization 

problems using original TLBO and proposed modifications. It has been found that better 

results are achieved in reaching the global optimal values by the use of these modifications. 

However, the results prefer the use of bit string mutation over scheme of replacing the worst 

solutions with fresh solutions in addition to the original logic of TLBO. The bit wise mutation 

and replacement of the worst solutions with fresh ones, proved an added advantage to the 

existing algorithm. Both these modifications resulted in a steeper convergence rate and 

finally provided global optimal solutions, and in some cases even better solutions than 

previously published results. With the use of better optimization techniques, it is now 

possible for the process engineers to reach near optimal parametric setting of various 

machining process in a real time manufacturing environment. 
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Chapter 1: Introduction 

 

1.1 Non Conventional Machining Processes 

Conventional machining processes require that the work piece material to be stressed 

beyond the yield point to achieve material removal. This certainly requires the cutting tool to 

be harder than the work piece material. Alloys with alloying elements such as tungsten, 

chromium, vanadium, molybdenum etc, have high hardness, high heat resistance and high 

strength to weight ratio. Machining of such alloys by conventional means is difficult as well as 

time consuming. Hence, there is a need to develop better machining processes to handle the 

shortcoming of the conventional processes. As a result, these processes are termed as non-

traditional machining methods. 

The main reasons for the development and use of new machining processes are stated 

below. 

1. High strength alloys or brittle materials: The hardness of the work piece material 

(typically above 400HB) is often harder than the cutting tool material or when it 

becomes necessary to machine hardened materials. 

2. Complex shapes and surfaces: Particularly in manufacturing of moulds and dies, 

complex shapes and surfaces are required to be produced on already hardened 

materials. In such cases, it is a necessity to use more advanced machining 

processes. Sometimes, the work piece is too flexible, slender, or delicate to withstand 

the cutting or grinding forces, or the parts are too difficult to fix. 

3. Accuracy and surface finish: High accuracies on dimensions and better surface finish 

on hard materials are often produced by slow conventional machining accompanied 

by a number of finishing processes. This makes the process uneconomical and time 

consuming. Also the temperature rise and residual stresses in the work piece are not 

desirable or acceptable. 

4. Difficult geometry: With addition to complex geometries, it is also required to produce 

long holes with length to diameter ratio greater than 100 or produce holes of diameter 

less than 0.1 mm. 

 

These requirements have led to the development of chemical, electro-chemical, thermal, 

electro-thermal, mechanical, and other means of material removal. Over the last four 

decades, there has been a large increase in the number of non-traditional machining 

processes (NTMP) [1]. Today, non-traditional machining processes with vastly different 
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capabilities and specifications are available for a wide range of applications. These 

processes are classified according to the nature of energy employed in machining as 

discussed below [1]: 

1 Chemical and electro-chemical processes like chemical milling, electro-chemical 

machining, electro-chemical grinding, electro-chemical honing etc. 

2 Thermal and electro-thermal processes like electric discharge machining, laser beam 

machining, plasma arc machining, electron beam machining, and ion beam machining 

etc. 

3 Mechanical processes like ultrasonic machining, abrasive jet machining, and water jet 

machining etc. 

4 Hybrid processes like electro-chemical discharge grinding, abrasive electrical discharge 

machining, vibration-assisted electro-chemical machining etc. 

 

1.1.1 Electro-Discharge Machining (EDM) 

Formation of craters by electric discharges on cathode was first reported by Joseph 

Priestley in 1766. His observations are as follows [2]: 

 

“After discharging a battery, of about forty square feet, with a smooth brass knob, I 

accidently observed upon it a pretty large circular spot, the centre of which seemed to be 

superficially melted. (…) After an interruption of melted places, there was an entire and exact 

circle of shining dots, consisting of places superficially melted, like those at the centre.” 

“Examining the spots with a microscope, both the shining dots that formed the central 

spot, and those which formed the external circle, appeared evidently to consist of cavities, 

resembling those in the moon, as they appear through a telescope, the edges projecting 

shadows onto them, when they were held in the sun.” 

 

Since then electric discharges have been used for a variety of tasks including material 

removal which was attempted by Russian scientists Boris and Natalya Lazarenkoat at 

Moscow University in 1943. The interest in spark machining initiated a number of studies and 

research in the 1950s. 

 

The schematic diagram of an EDM process is shown in Figure 1.The work piece is 

attached to the X-Y Table which is electrically attached to the positive terminal of the power 

supply. The tool is electrically attached to the negative terminal of the power supply and is 

either made of brass, copper, graphite or stainless steel. It is attached to the tool holder and 

feeding mechanism which are servo controlled. The dielectric pump constantly delivers 
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dielectric between the inter electrode gap (IEG). A DC pulse generator is used to supply the 

power for the machining operation. The mechanism of material removal in a discharge 

process can be summarised as follows [2]: 

 

 

Figure 1. Schematic diagram of EDM process 

 

1. With the application of voltage, an electric field builds up between the two electrodes at 

the position of least resistance. The ionization leads to the breakdown of the dielectric 

which results in the drop of the voltage and the beginning of flow of current.  

2. Electrons and ions migrate to anode and cathode respectively at very high current 

density. A column of vapor begins to form and the localized melting of work commences. 

The discharge channel continues to expand along with a substantial increase of 

temperature and pressure.  

3. When the power is switched off the current drops; no further heat is generated, and the 

discharge column collapses. A portion of molten metal evaporates explosively and/or is 

ejected away from the electrode surface. With the sudden drop in temperature the 

remaining molten and vaporized metal solidifies. A tiny crater is thus generated at the 

surface.  

4. The residual debris is flushed away along with products of decomposition of dielectric 

fluid. The application of voltage initiates the next pulse and the cycle of events."  

Also, due to the inertia of the surrounding fluid, the pressure within the spark becomes quite 

large and may possibly assist in 'blasting' the molten material from the surface leaving a 
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fairly flat and shallow crater. The amount of metal removed per spark depends upon the 

electrical energy expended per spark and the period over which it is expended [2]. 

 

1.1.2 Electro-Chemical Machining (ECM) 

The basis of the ECM process is the phenomenon of electrolysis - the laws established 

by Faraday in 1833. The principle and equipment used in the ECM process are illustrated in 

Figure 2. The work piece and tool are the anode and cathode respectively of an electrolytic 

cell and a constant potential difference (usually about 5-30 V) is applied across them 

producing a high current density of 10–200 A/cm 

 

A suitable electrolyte (NaCl or NaNO3 aqueous solution) is chosen so that the cathode 

shape remains unchanged during electrolysis. The electrolyte is pumped at a rate of 3-60 

m/s, through the gap between the electrodes to remove the machining waste (i.e. dissolved 

material, usually metal hydroxide) and to diminish unwanted effects such as those that arise 

with cathodic gas generation and electrical heating. The rate at which metal is then removed 

from the anode is approximately in inverse proportion to the distance between the 

electrodes. As machining proceeds and with the simultaneous movement of the cathode at a 

typical rate, e.g. 0.02 mm/s towards the anode, the gap width along the electrode length will 

gradually tend to reach a steady state value. Under these conditions, a shape that is 

approximately a negative mirror image of the cathode will be reproduced on the anode as the 

cathode does not alter during the ECM process. A typical gap width then can be about 0.4 

mm. 

 

Figure 2 : Schematic diagram of ECM process 
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The ECM process can handle a large variety of materials limited only by their electro-

chemical properties and not by their strength. This process is characterized by high metal 

removal rates for high-strength and difficult-to-machine alloys. Fragile parts that are not 

easily machinable can be shaped by the ECM process. Certain characteristics of the ECM 

process such as the ability to machine three-dimensional curved surfaces without the 

striation marks, stress-free and burr-free machining, no thermal damage to the work piece, 

and ideally no tool wear etc., make this process widely applicable. However, the main 

limitation of the ECM process is the high initial investment along with high power 

consumption and large floor space requirement. Therefore, use of this process is a costly 

affair. This problem is further compounded by the corrosion, toxicity, and safety-related 

problems of the electro-chemical machining process. Also, electro-chemical machining is a 

complex process and it is difficult to predict the changes that may occur in the inter-electrode 

gap. The electrolyte properties vary due to the emission of a considerable amount of heat 

and gas bubbles. In addition, hydrodynamic parameters such as pressure also vary along 

the electrolyte flow direction and make the analysis quite complicated. 

 

1.1.3 Electro-Chemical Discharge Machining 

Electro-chemical discharge machining (ECDM) is a non-traditional machining process 

which combines the attributes of both Electro-chemical machining (ECM) and Electro-

discharge machining (EDM) [3]. Similar to the ECM process when a voltage is applied across 

the tool and auxiliary electrode, reduction of electrolyte with liberation of hydrogen gas takes 

place at the cathode tip. When the applied voltage is increased beyond a threshold value, 

hydrogen gas bubbles evolve in large number at the tip of cathode and grow in size. Their 

nucleation site density increases, current path gets restricted between cathode and 

electrolyte interface causing discharge to occur at this interface instantly. Thus, discharge in 

ECDM always occurs when the voltage in an electrolytic cell is increased beyond a threshold 

value [4]. Figure3 shows the schematic diagram of the ECDM. The tool is attached to the tool 

holding and feeding arrangement while the auxiliary electrode is place just beneath the work 

piece holding platform. The level of electrolyte in machining chamber is constantly 

maintained such that the inter-electrode gap (IEG) is sufficiently flooded with electrolyte at all 

times. 

 

ECDM is a very recent technique in the field of advanced machining to machine 

electrically non conductive materials using electro-chemical discharge phenomenon [5]. This 

process can be used to machine hard and high strength to weight ratio materials. Also, 

intricate designs can be machined. One of the major advantages of ECDM over ECM or 
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EDM is that the combined metal removal mechanisms in ECDM yields a much higher 

machining rate [3]. 

 

 

Figure 3 : Schematic diagram of ECDM process 

 

Non-traditional machining has always been a costly affair due to high initial investment 

cost, high power consumption, safety requirements and large floor area. This problem is 

further aggravated by the corrosion, toxicity, safety-related problems, high power electrical 

grids, automation requirements and many more. Non-conventional machining have always 

been a complex process involving precise mechanisms which makes the total machining 

process unpredictable and sensitive to the controlling parameters. The hydrodynamic 

parameters of the electrolyte or dielectric such as pressure, flow, temperature etc. also 

influence the machining performance. Hence, it is imperative to know the correct optimal 

settings of the controlling parameters for a cost effective machining. In this thesis, three non- 

conventional machining processes (already described) are considered for the parametric 

optimization of controlling parameters. 

 

1.2 Design of Mechanical elements 

Engineering design of mechanical elements is described by very large numbers of 

variables and it is imperative for the designer to specify appropriate values for these 

variables. Skilled designers often use their expert knowledge, experience, and judgment to 

specify these variables to design effective engineering elements. Because of the complexity 
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and large size of a typical design task, even the most expert designers are unable to 

consider all the variables at the same time. Design optimization of mechanical elements is 

defined as the application of optimization algorithms and techniques to the problems in 

engineering design in order to help the designers in improving the system's performance, 

weight, reliability, and/or cost. In this thesis, three elements from the mechanical domain 

have been considered. The design problem associated with all the three elements 

considered [6] are solved using evolutionary algorithms and a few results have also been 

compared with those of conventional techniques and other evolutionary algorithms. 

 

1.2.1 Pressure Vessel Design 

Cylindrical or spherical pressure vessels (e.g. hydraulic cylinders, gun barrels, pipes, 

boilers and tanks) are commonly used in industry to carry both liquids and gases under 

pressure.  When  the  pressure  vessel  is  exposed  to  this  pressure,  the  material 

comprising  the  vessel  is  subjected  to  pressure  loading and  hence stresses  from  all 

directions. The normal stresses resulting from this pressure are functions of the radius of the  

element  under  consideration,  the  shape  of  the  pressure  vessel  (i.e. open ended 

cylinder, closed end cylinder, or sphere) and the applied pressure. Two types of analysis are 

commonly applied to pressure vessels.   The  most common  method  is  based  on  a  

simple  mechanics  approach  and  is  applicable  to “thin wall” pressure vessels which by 

definition have a ratio of inner radius ® to wall  thickness (t) of r/t≥10. The second method is 

based on elasticity solution and is always applicable regardless of the r/t ratio and can be 

referred to as the solution for “thick wall” pressure vessels.   Both types of analysis are 

discussed here, although for most engineering applications, the thin wall pressure vessel can 

be used. 

 

For analysis of thin-walled pressure vessels, several assumptions are made which are as 

follows.  

1. Plane sections remain plane 

2. The ratio r/t ≥10 with t being uniform and constant 

3. The  applied  pressure (p)  is  the  gage  pressure  (note  that  p  is  the difference 

between the absolute pressure and the atmospheric pressure) 

4. Material is linear-elastic, isotropic and homogeneous. 

5. Stress distributions throughout the wall thickness do not vary 

6. Element  of  interest  is  remote from  the end  of  the  cylinder  and  other geometric 

discontinuities. 

7. Working fluid has negligible weight 
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Cylindrical Vessels: A cylindrical pressure with wall thickness, t, and inner radius, r, is 

considered (see Figure 4). A gauge pressure, p, exists within the vessel by the working fluid 

(gas or liquid).  For  an  element sufficiently  removed from  the ends  of  the cylinder  and  

oriented   as  shown  in  Figure  12.1,  two  types  of  normal  stresses  are generated: hoop, 

σh , and axial, σa, that both exhibit tension of the material and are represented by 

σ1andσ2respectively. 

 

Figure 4 : Cylindrical Thin-Walled Pressure Vessel 

 

For the hoop stress, consider the pressure vessel section by planes sectioned by planes 

a, b and c for Figure 5. A  free  body  diagram  of  a  half  segment  along  with  the 

pressurized  working  fluid  is  shown  in Figure 6. Note  that only  the  loading  in  the  x-

direction is shown and that the internal  reactions in the  material  are  due  to  hoop  stress 

acting on incremental  areas, A, produced  by  the  pressure  acting  on  projected  area,  Ap. 

For equilibrium in the x-direction we sum forces on the incremental segment of width dy to be 

equal to zero such that: 

t

pr

forsolvingor

dyrpdytpAA

F

h

h

hph

x


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
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Where dy = incremental length, t = wall thickness, r = inner radius, p = gauge pressure, 

and σh is the hoop stress. 
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Figure 5. Cylindrical Thin-Walled Pressure Vessel Showing Coordinate Axes and Cutting 

Planes 

 

Figure 6 : Free-Body Diagram of Segment of Cylindrical Thin-Walled Pressure Vessel 
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For the axial stress, consider the left portion of section b of the cylindrical pressure 

vessel shown in Figure 7.  A  free  body  diagram  of  a  half  segment  along  with  the 

pressurized working fluid is shown in Figure 7. Note that the axial stress acts uniformly 

throughout the wall and the pressure acts on the end cap of the cylinder. For equilibrium in 

the y-direction we sum forces such that: 

stressaxialtheisandradiusinnertheisrwhere
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  (2) 

 

Figure 7 : Free-Body Diagram of End Section of Cylindrical Thin-Walled Pressure 

 

Note that in Equations 1 and 2, the hoop stress is twice as large as the axial stress.  

Consequently,  when  fabricating  cylindrical  pressure  vessels from rolled-formed plates,  

the longitudinal  joints must  be designed  to  carry  twice  as  much stress  as  the 

circumferential joints. 
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1.2.2 Welded Beam design 

The optimization problem of a welded beam is a simplified example of many complex 

design issues arising in structural engineering, which deals with designing the steel beams 

and connecting them to form large and complex structures like bridges, buildings, etc. It is 

used by many researchers as a benchmark problem for optimization. The problem of 

designing an optimal welded beam consists of dimensioning a welded steel beam and the 

welding length so as to minimize its cost subjected to constraints on shear stress, bending 

stress in the beam, the buckling load on the bar, the end the deflection of the beam, and side 

constraints. There are four design variables: which are shown with the letters (h, l, t, and 

b) in the Figure 8. Structural analysis of this beam leads formulation of objective functions 

subject to seven nonlinear constraints. The objective function can be evaluated by 

considering the different cost associated with the fabrication of the welded beam. This cost 

may or may not include material cost, labor cost, additional cost etc. These decisions are 

under the discretion of the designer during the formulation of the optimization problem. 

 

The different generic constraints can be those related to shear stress, bending stress, 

buckling load, end deflection or geometric feasibility. Formulations of few of them have been 

discussed below. It is to be noted that the allowable values for different parameters are 

decided after well consideration of the factor of safety. 

 

Shear stress constraint- The shear stress in the weld must be less than the maximum 

shear stress of the weld material. Generally the weld metal is similar to the base metal. Let 

Figure 8 : Nomenclature in welded beam 
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τ(x) be the shear stress in the material and τmax be the maximum shear stress allowed. Thus 

the mathematical formulation can be given by Equation 3. 

  max x
                                                                                                                           (3)

 

 

Bending stress constraint- The maximum bending stress induced in the beam should 

be less than the maximum allowed bending stress. Again this could be mathematically 

expressed as in Equation 4. 

                                                                                                        (4) 

 

Here σ(x) represents the bending moment induced in the beam and σmax is the allowable 

maximum bending stress. 

 

Geometrical constraints-The geometric feasibility plays an important role in the 

physical application of any design. It is quite obvious that in this problem the thickness of the 

weld bead (h) cannot be greater than the breadth of the beam (b). This can be 

mathematically expressed as in Equation 5. 

(5) 

 

End deflection constraint- For the design to successfully serve its intended purpose 

many physical deformations and displacements are limited. One such limitation may also be 

imposed on the design of welded beam. The end deflection should not be greater than the 

fixed numerical value. This constraint can be mathematically formulated as in Equation 6. 

  (6) 

Where δ(x) is the end deflection in the welded beam, while δmax is the maximum end 

deflection decided by the designer. 

 

Many such constrains can be formulated and applied to the optimization problem of the 

design of welded beam. One such problem is detailed in Chapter 4 of this thesis. 

 

1.2.3 Tension-Compression Spring Design 

A spring is an elastic object used to store mechanical energy. Springs are usually made 

out of spring steel. Small springs can be wound from pre-hardened stock, while larger ones 

are made from annealed steel and hardened after fabrication. Some non-ferrous metals are 

also used including phosphor bronze and titanium for parts requiring corrosion resistance 

and beryllium copper for springs carrying electrical current (because of its low electrical 

resistance). 

max)(  x

bh 

max)(  x

https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Spring_steel
https://en.wikipedia.org/wiki/Annealing_(metallurgy)
https://en.wikipedia.org/wiki/Ferrous
https://en.wikipedia.org/wiki/Phosphor_bronze
https://en.wikipedia.org/wiki/Titanium
https://en.wikipedia.org/wiki/Beryllium_copper
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When a spring is compressed or stretched, the force it exerts is proportional to its 

change in length. The rate or spring constant of a spring is the change in the force it exerts, 

divided by the change in deflection of the spring. That is, it is the gradient of the force versus 

deflection curve. An extension or compression spring has units of force divided by distance, 

for example lbf/in or N/m. Torsion springs have units of force multiplied by distance divided 

by angle, such as N·m/rad or ft·lbf/degree. The inverse of spring rate is compliance, that is: if 

a spring has a rate of 10 N/mm, it has a compliance of 0.1 mm/N. The stiffness (or rate) of 

springs in parallel is additive, as is the compliance of springs in series. 

 

 

Figure 9 : Nomenclature of a tension-compression spring 

 

Depending on the design and required operating environment, any material can be used 

to construct a spring, so long as the material has the required combination of rigidity and 

elasticity: technically, a wooden bow is a form of spring. Figure 9 shows the nomenclature of 

a generic spring considered for the design optimization. 

 

The designing of tension springs is same as that of compression springs except for the 

end hook that is found in tension springs only. The coils in a tension spring are usually 

wound tightly together so that there exists an initial tension Fi of magnitude approximating 

15-25% of maximum external load. This force is used to hold the spring accurately and do 

not deflect until the external force is greater than the inbuilt tension. 

Thus the deflection is given by the Equation 7 

https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Hooke%27s_law
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Deflection_(engineering)
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Tension_(physics)
https://en.wikipedia.org/wiki/Compression_(physical)
https://en.wikipedia.org/wiki/Torsion_spring
https://en.wikipedia.org/wiki/Newton_metre
https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Ft%C2%B7lbf
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And the spring stiffness is given by the Equation 8 

y

FF
k i
          (8) 

So the total load is the summation of initial load and load required for desired extension, 

which is given by the Equation 9 

kyFF i           (9) 

The stress produced in the wire of the spring at any cross section is due to the torsion and 

direct shear. So the basic design follows Equation 10 

3

8

d

FD
K


           (10) 

The stress produced in the spring is due to bending moment Frm and direct force F and is 

given by the Equation 11 

231

432

d

F

d

Fr
K m


           (11) 

Where: K1 is the stress concentration factor, rm and ri is the mean radius and inside radius of 

hook respectively 

 

1.3 Evolutionary Methods for Optimization 

Analytical or numerical methods have been applied to engineering computations since a 

long time to calculate the extreme values of a function. These methods may perform well in 

many practical cases but they fail in more complex design situations [6]. In real 

manufacturing problems, the number of machining parameters can be very large and their 

influence on the value to be optimized (the objective function) can be very complicated 

having nonlinear character. The objective function may be multimodal (i.e. have many local 

minimum or maximum), whereas the researcher is always interested in the global optimal 

values within the search space. Such problems cannot be handled by classical methods (e.g. 

gradient methods) at all as they converge at local optimal values [6]. In such complex cases, 

advanced optimization algorithms offer solutions to the problems because they find a 

solution near to the global optimum within reasonable time and computational effort. These 

techniques are stochastic in nature with probabilistic transition rules. These techniques are 

comparatively new and gaining popularity due to certain properties which the deterministic 

algorithm does not have. The examples include Genetic Algorithm (GA) [7], Differential 

Evolution (DE) [8]- [9], Particle Swarm Optimization (PSO) [10]- [11], Simulated annealing 
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(SA) [12], Artificial Bee Colony (ABC) [13] [14] [15] [16] etc. A few of them which are used in 

this thesis are discussed below. 

 

1.3.1 Genetic algorithm (GA) 

GA is an evolutionary algorithm technique which borrows the idea of survival of the 

fittest amongst an interbreeding population to create a search strategy [7].  It uses only the 

fitness value and no other knowledge is required for its operation. It is a robust search 

technique different to traditional algorithms which tend to be more deterministic in nature and 

get stuck up at local optima. The three basic operators of GA are reproduction, crossover 

and mutation. Initially, a finite population of feasible solutions to a specified problem is 

maintained. Through reproduction, it then iteratively creates new populations from the old by 

ranking the solutions according to their fitness values. Crossover leads to interbreeding the 

fittest solutions to create new off-springs which are optimistically closer to the optimum 

solution to the problem at hand. As each generation of solutions is produced, the weaker 

ones fade away without producing off-springs,  while the stronger mate, combining the 

attributes of both parents, to produce new and perhaps unique off-springs  to continue the 

cycle. Occasionally, mutation is introduced into one of the solution strings to further diversify 

the population in search for a better solution. 

 

1.3.2 Simulated annealing (SA) 

Simulated annealing is so named because of its analogy to the process of physical 

annealing of solids in which a crystalline solid is heated and then allowed to cool very slowly 

until it achieves its most regular possible crystal lattice configuration (i.e. its minimum lattice 

energy state) and thus is free of crystal defects. If the cooling schedule is sufficiently slow, 

the final configuration results in a solid with such superior structural integrity. Simulated 

annealing establishes the connection between this type of thermo- dynamic behaviour and 

the search for global minima for a discrete optimization problem. Furthermore, it provides an 

algorithmic means for exploiting such a connection [12]. At each iteration of a simulated 

annealing algorithm, the objective function generates values for two solutions (the current 

solution and a newly selected solution) which are then compared. Improved solutions are 

always accepted while a fraction of non-improving (inferior) solutions are accepted in the 

hope of escaping local optima in search of global optima. The probability of accepting non-

improving solutions depends on a temperature parameter which is typically non-increasing 

with each iteration of the algorithm. The key algorithmic feature of simulated annealing is that 

it provides a means to escape local optima by allowing hill-climbing moves (i.e. moves which 
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worsen the objective function value) which occur less frequently as the temperature 

parameter is finally decreased to zero. 

 

1.3.3 Artificial Bee Colony (ABC) 

Inspired by the intelligent foraging behaviour of honey bee swarms, the ABC algorithm 

was introduced to handle unconstrained benchmark optimization functions) [13] [14] [15] 

[16], similar to other well-known meta-heuristic algorithms. The colony of artificial bees 

consists of three groups:  employed, onlookers, and scout bees. The employed bees 

randomly search for food-source positions (solutions). Then, by dancing, they share 

information (communicate) about that food source such as nectar amounts (solutions 

qualities) with the onlooker bees waiting in the dance area at the hive. The duration of a 

dance is proportional to the nectar’s content (fitness value) of the food source being 

exploited by the employed bee. Onlooker bees watch various dances before choosing a 

food-source position according to the probability proportional to the quality of that food 

source. Consequently, a good food-source position attracts more bees than a bad one. 

Onlookers and scout bees, once they discover a new food-source position, may change their 

status to become employed bees. When the food-source position has been visited (tested) 

fully, the employed bee associated with it abandons it and may once more become a scout 

or onlooker bee. In a robust search process, exploration and exploitation processes must be 

carried out simultaneously [14]. In the ABC algorithm, onlookers and employed bees perform 

the exploration process in the search space while, on the other hand, scouts control the 

exploration process. 

 

All the nature-inspired algorithms such as GA, SA and ABC require algorithm-specific 

parameters to be set for their proper working in addition to the common control parameters 

of population size and number of generations. The major advantage with the proposed 

Teaching Learning based Optimization (TLBO) Algorithm is that it only requires the control 

over a few common parameters as compared to other evolutionary techniques. This makes 

the proposed algorithm almost parameter less [17] [6] [18]. 

 

1.3.4 Teacher-Learning Based Optimization (TLBO) 

TLBO is the simulation of a classical school learning process proposed by Rao et al. [17] 

[18] that consists of two stages. During the first stage, called Teacher Phase, a teacher 

imparts knowledge directly to his/her students. The better the teacher, the more knowledge 

the students obtain. However, the possibility of a teacher’s teaching being successful during 

the Teacher Phase, in practice, is distributed under Gaussian law. There are only very rare 
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students who can understand all the materials presented by the teacher (i.e., the right end of 

the Gaussian distribution). Most students will partially accept new learning materials (i.e., the 

mid part of the Gaussian distribution) and, in some cases, the teacher will have almost no 

direct effect on students’ knowledge (i.e., the left end of the Gaussian distribution). However, 

the possibility for most students to obtain new knowledge is not completely lost. During the 

second stage, called Learner Phase, a student may learn with the help of fellow students. 

Overall, how much knowledge is transferred to a student does not only depend on his/her 

teacher but also on interactions amongst students through peer learning.  

 

Teacher phase 

It is first part of the algorithm where learners learn through the teacher. During this 

phase a teacher tries to increase the mean result of the class room from any value M1 to his 

or her level. But practically it is not possible and a teacher can move the mean of the class 

room M1 to any other value M2 which is better than M1 depending on his or her capability. 

Considered Mj be the mean and Ti be the teacher at any iteration i. Now Ti will try to improve 

existing mean Mj towards it so the new mean will be Ti designated as Mnew and the difference 

between the existing mean and new mean is given by Equation 12. 

)(_ jFnewii MTMrMeanDifference 
     (12) 

Where  TF is a teaching factor that decides the value of mean to be changed and ri is a 

random number in the range [0, 1]. The value of TF can be either 1 or 2, which is again a 

heuristic step and decided randomly with equal probability as given in Equation 13. 

}]12){1,0(rand1[roundFT       (13) 

The teaching factor is generated randomly during the algorithm in the range of 1-2, in 

which 1 corresponds to no increase in the knowledge level and 2 corresponds to complete 

transfer of knowledge. The in between values indicates amount of transfer level of 

knowledge. The transfer level of knowledge can be any depending on the learners’ 

capabilities. In the present work, attempt was carried out by considering the values in 

between 1-2, but any improvement in the results was not observed. Hence to simplify the 

algorithm the teaching factor is suggested to take either 1 or 2 depending on the rounding up 

criteria. However, one can take any value of TF in between 1-2.Based on this 

Difference_Mean, the existing solution is updated according to Equation 14. 

iioldinew MeanDifferenceXX _,, 
     (14) 
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Learner phase: 

It is second part of the algorithm where learners increase their knowledge by interaction 

among themselves. A learner interacts randomly with other learners for enhancing his or her 

knowledge. A learner learns new things if the other learner has more knowledge than him or 

her. Mathematically the learning phenomenon of this phase is expressed in Equation 15. 

At any iteration i, considering two different learners Xi and Xj where i ≠ j 

)()()(

)()()(

,,

,,

ijijiioldinew

jijiiioldinew

XfXfIfXXrXX

XfXfIfXXrXX




    (15) 

Accept Xnew if it gives better function value. 



 

 

Chapter 2: Literature Review 

 

2.1 Electro-Discharge Machining (EDM) 

A thermal model simulating discharge super position and capable of representing post-

EDM surfaces was presented by Izquierdo [19]. It was concluded that location, discharge 

and development of temperature fields on irregular surfaces affected the material removal 

rate as much as 50% due to the superposition of multiple discharges. Using a finite element 

based model and considering the effect of superposition of multiple discharges the 

temperature fields inside the work piece was calculated and based on this the machined 

surface was generated. 

 

Tantra et al. [20] proposed a combination of Taguchi and TOPSIS method in solving the 

multi-response parameter optimization problem in green-EDM. Multi-criteria decision making 

was performed on the developed analytical and the ranking of responses was based on the 

scores obtained by the summation of final global preference weights. A Triangular variation 

was used to give preference values to the output responses in the fuzzy domain. Based on 

the closeness coefficient values, combinations were identified for the factor levels for the 

optimal machining performance. This analysis of closeness coefficients identified that the 

peak current was the most influencing parameter in multi-performance characteristics. 

 

An anode erosion model was developed by Patel [21]. This model assumed a Gaussian-

distributed heat flux on the surface of anode material. It was also assumed that the area 

upon which the heat flux was incident increased with time. A simple cathode erosion model 

using the photoelectric effect as the dominant source of energy was augmented with energy 

balance for gas discharge and presented by Dibitonto[22]. Coguz [23] investigated on the 

machined surface profile of 2080 tool steel under variation of machining parameters. It was 

found that the increase in discharge current, pulse duration and dielectric flushing pressure 

increase the surface. The obtained surface profile information was transferred to computer in 

digitized form and was then modeled in the form of Fourier series.  

 

A model on cylindrical plasma and variable mass was presented by Eubank [24]. Three 

differential equations considering energy balance, radiation and fluid dynamics were 

combined with plasma equations of state. Electron balance procedure was adopted to 
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handle problems with the zero-time boundary conditions. Electro-discharge texturing based 

on the effect of dielectric fluid and change in the resistance in the dielectric during each 

voltage pulse was modeled by McGeough and Rasmussen [25]. The theoretical predictions 

were consistent with the practical findings that the length of the voltage ‗on time and peak 

current determined the surface roughness in texturing. 

 

Thangadurai and Asha [26] attempted to evaluate the performance of electric discharge 

machining during machining of AA6061-wt.10% B4Cp metal matrix composite. Response 

surface methodology combined with Box-Behnken design (BBD) of experiments was used 

for the modeling of EDM process responses like material removal rate, tool wear rate and 

surface roughness. The input parameters considered for the modeling were current, pulse 

on-time and pulse off-time. The analysis of variance suggested the use of non-linear 

quadratic models to model the experimental data points of BBD. All factors were found to be 

significant in the determination of surface roughness while only current and pulse on-time 

were dominant on material removal rate. An error of 5% was calculated during a consistency 

check between the theoretical and experimental findings. 

 

2.2 Electro-Chemical Machining (ECM) 

A two-dimensional inter-electrode gap model was proposed by Bhattacharyya et al. 

[27].The numerical model of the metal removal rate was considered as an objective function 

with the electrolyte flow velocity and tool feed rate as the design variables. The three 

constraints considered were passivity, temperature and choking. The authors considered 

only a single-objective optimization problem and optimized it using a less accurate graphical 

solution technique. This model was based on many simple assumptions, such as the 

constant void fraction and electrolyte conductivity as a function of the void fraction only, 

constant electrolyte pressure throughout its flow path.  

 

A cost model of the ECM process was proposed by El-Dardery [28]considering various 

costs involved in the machining process. The cost equation comprised of decision variables, 

namely electrolyte flow rate, feed rate and voltage. The combination of optimum values of 

decision variables were obtained by partial differentiation of the cost function with respect to 

decision variables. The values of decision variables obtained were not practical as no 

constraints were considered for the model. Hewidy et al. [29]analyzed the different 

components of ECM cost (such as costs of machining, cost of electrolyte used , cost of 

power consumption and cost of labor) with the objective to meet the practical production 

requirements of a company by setting the basic principles for selecting an electro-chemical 
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machine. The authors stated the impossibility of having a generic model for this purpose. In 

other work, Hewidy et al. [30]modeled the performance of low-frequency vibrations assisted 

ECM by using an analytical approach. 

 

Acharya et al. [31]presented a multi-objective optimization model for the ECM process 

with minimization of dimensional inaccuracy, maximization of the material removal rate and 

maximization of tool life as conflicting objectives. The decision variables considered were 

tool feed rate, electrolyte flow velocity, and applied voltage. The constraints considered were 

those of passivity, temperature and choking. Linearizing the objective functions and 

constraint equations by regression analysis was done to solve the optimization problem by 

goal programming. This model surpassed the limitations of the model proposed by 

Bhattacharyya et al. [27]but did not considered the variable bounds for feed rate and 

differences in the inter-electrode gap. The shortcomings of the model proposed by Acharya 

et al. [31] were overcome by Choobineh and Jain [32]. As tool life is overachieved in most 

practical cases, only two objective functions were considered, i.e. maximization of the 

material removal rate and maximization of dimensional accuracy and the third objective to 

maximize the tool life was eliminated. The authors used vertex method to find appropriate 

distribution of the objective functions. The modified goal-programming problem was then 

solved in the same way as in Acharya et al. [31].  

 

Jain and Jain [33] presented the optimization model based on the analysis given in 

Acharya et al. [31] with modifications such as expanding the range of variable bound for the 

tool feed rate and electrolyte flow velocity without linearizing the objective functions and 

constraints. Single objective optimization to minimize the dimensional inaccuracy was done 

by employing genetic algorithm. However the passivity constraint was violated in their 

approach. Rao et al. [1] attempted to verify any further improvement in the solution by using 

some other optimization techniques such as particle swarm optimization (PSO) to the same 

optimization model. PSO was employed in this work for single-objective and multi-objective 

optimization of electro-chemical machining process parameters. The optimization model 

given in Acharya et al. [31] was considered by expanding the variable bound ranges for the 

tool feed rate and electrolyte flow velocity. 

 

2.3 Electro-Chemical Discharge Machining (ECDM) 

The ECDM phenomenon is explained by various researchers based on their 

experimental studies. Crichton and McGough [34] performed streak photography to get 

insight into the various stages of discharge by applying an 85 V pulse for a duration of 200 
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µs. They concluded that electrical discharge between cathode tool and electrolyte interface 

occurs due to: (a) generation of electrolytic gas at the surface of electrodes; (b) the growth of 

layers of low ionic concentration near the electrodes and formation of oxide films on the 

anode surface; and (c) the local variations in the electrolyte flow pattern caused by flow 

stagnation and eddy. These researchers have identified the reasons for discharge but the 

cause of discharge or the origin of driving force which is needed for discharge to take place 

has not been dealt with. Basak and Ghosh [35] had developed theoretical model for material 

removal rate and then estimated the nature of MRR characteristics under different input 

conditions. The experimental result indicates that, the MRR can be substantially increased 

by introducing an additional inductance in the circuit. Various control parameters involved in 

the ECDM process are electrolyte, temperature, applied voltage, inductance, current, pulse 

density, discharge frequency, etc. Kulkarni et al. [4] proposed the basic mechanism of 

temperature rise and material removal through experimental observations of time-varying 

current in the circuit. Wuthricha and Fasciob[36] had reviewed the machining of non-

conducting materials like glass or ceramics using electro-chemical discharge machining with 

more focus on experimental difficulties. Mediliyegedara et al. [3] presented the new 

developments in process control for the hybrid ECDM process and carried out a system 

identification experiment to obtain the dynamics of the system and a process control 

algorithm was implemented. 

 

Sarkar et al. [37]described the development of a second order, non-linear mathematical 

model for establishing the relationship among machining parameters during an ECDM 

operation. Various parameters considered were applied voltage, electrolyte concentration 

and inter-electrode gap and the responses includes material removal rate, radial overcut and 

thickness of heat affected zone. The model was developed based on response surface 

methodology and finally the output of the work recommended that applied voltage has 

significant effects on all the responses as compared to other machining parameters.  

 

Samanta and Chakraborty [13]used the advanced optimization technique for the parameter 

optimization for ECDM process. Artificial bee colony algorithm was used to maximize 

material removal rate and minimization of heat affected zone and operating cost. Rao and 

Kalyankar [17] presented a comparative study between Steepest Ascent, Artificial Bee 

Colony and Teaching learning based Optimization algorithms in terms of population size, 

number of generations and computational time. 
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2.4 Constrained mechanical design problems 

Sandgren [38]proposed an algorithm for the solution of nonlinear mathematical 

programming problems containing integer, discrete, zero-one, and continuous design 

variable. The algorithm implemented a branch and bound procedure in conjunction with 

either a quadratic programming method or exterior penalty function. Variable bounds were 

independently handled from design constraints which removed the necessity of reformulation 

of the problem at each branching node. Examples were also presented demonstrating the 

utility of the algorithm for solving design problems. 

 

Kannan and Kramer [39] also proposed an algorithm for the solution of nonlinear 

mathematical programming problems containing integer, discrete, zero-one, and continuous 

design variable. The augmented Lagrange multiplier method combined with Powell’s method 

and Fletcher and Reeves Conjugate Gradient method were used to solve the optimization 

problem wherein penalties were imposed on the constraints for integer/discrete violations. 

Several case studies were presented to illustrate the use of this algorithm. Coello [40] 

presented the proposal of using co-evolution to adapt the penalty factors of a fitness function 

incorporated in a genetic algorithm for numerical optimization. The solutions produced were 

better than those previously reported in the literature for other techniques that have been 

fine-tuned using a lengthy trial and error process to optimize a certain problem or set of 

problems. The technique presented was also easy to implement and was suitable for 

parallelization. 

 

Ray and Liew[41] introduced an optimizing algorithm based on the fact social 

interactions enable individuals to adapt and improve quickly than biological evolution based 

on genetic inheritance alone. The algorithm exploited the intra and intersociety interactions 

within a formal society and the civilization model to solve single objective constrained 

optimization problems. Montes and Coello [42] presented a multi-member evolution strategy 

(SMES) to solve global nonlinear optimization problems. The approach did not require the 

use of a penalty function nor any extra parameters (besides those used with an evolution 

strategy). Instead, it used a diversity mechanism by allowing infeasible solutions to remain in 

the population. This technique helped the algorithm to reach the near global. The approach 

was tested with published benchmarks. The results stated that the computational cost 

(measured by the number of fitness function evaluations) is lower than the required cost of 

the other techniques compared. 
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Parsopoulos and Vrahatis [43] investigated the performance of the recently proposed 

Unified Particle Swarm Optimization method on constrained engineering optimization 

problems. A penalty function approach was employed and the algorithm was modified to 

preserve feasibility of the encountered solutions. The algorithm was applied on four well–

known engineering problems with better results. He and Wang [44] employed the notion of 

co-evolution to adapt penalty factors and proposed a co-evolutionary particle swarm 

optimization approach (CPSO) for constrained optimization problems. The proposed CPSO 

was population based and easy to implement in parallel where, penalty factors also evolved 

using PSO in a self-tuning way. Results for well-known constrained engineering design 

problems demonstrated the effectiveness, efficiency and robustness on initial populations of 

the proposed method. Moreover, the CPSO obtained some solutions better than those 

previously reported by various researchers. 

 

Huang et al. [45] presented a differential evolution approach based on a co-evolution 

mechanism, named CDE to solve constrained problems. A special penalty function was 

designed to handle the constraints and then a co-evolution model was presented and 

differential evolution (DE) was employed to perform evolutionary search in spaces of 

solutions and penalty factors. The solutions and penalty factors evolved interactively and 

self-adaptively, and satisfactory solutions and suitable penalty factors were obtained 

simultaneously. Simulation results based on many benchmark functions demonstrated the 

effectiveness, efficiency and robustness of the proposed method. 

 

Liu et al. [46] proposed a hybrid algorithm named PSO-DE, which integrated particle 

swarm optimization (PSO) with differential evolution (DE) to solve constrained numerical and 

engineering optimization problems DE was incorporated to update the previous best 

positions of particles forcing PSO to jump out of stagnation. The hybrid algorithm increased 

the convergence and improved the algorithm's performance. Testing was done on 11 well-

known benchmark test functions and five engineering optimization functions. Comparisons 

revealed that PSO-DE outperformed or performed equally to seven state-of-the-art 

approaches in terms of quality of the resulting solutions. 

 

Akay and Karaboga[47] used the Artificial Bee Colony (ABC) algorithm to solve large 

scale optimization problems, and engineering design problems by extending the basic ABC 

algorithm by adding a constraint handling technique in the selection step of ABC algorithm in 

order to give preference to the feasible regions of entire search space. Nine large scale 

unconstrained test problems and five constrained engineering problems were solved by 
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using the ABC algorithm and the performance was compared against those of state-of-the-

art algorithms. 

 

Ragsdell and Phillips [48] illustrated the sensitivity of a design to variations in 

uncontrollable parameters. The procedure was applied to the design of welded beam 

structures which resulted in low-cost design with minimal sensitivities. Dominant constraints 

were chosen which contained variations of uncontrollable parameters. A dual objective 

function was formed and trade-off curves were presented from which the optimal solution 

was selected. The minimization was carried out using generalized reduced gradient. 

 

Leandro and Viviana [49] presented combinations of an ant colony inspired algorithm 

(ACA) and chaotic sequences (ACH) and employed it in well-studied continuous optimization 

problems of engineering design. Two case studies were described and evaluated. The 

results indicated that ACA and ACH handled such problems efficiently both in terms of 

precision and convergence, and in most applications they outperform previous published 

results. 

 



 

 

Chapter 3: Parametric 

Optimization of Non-

Conventional Machining 

 

Non traditional machining has always been a costly affair due to high initial investment 

cost, high power consumption, safety requirements and large floor area. This problem is 

further aggravated by the corrosion, toxicity, safety-related problems, high power electrical 

grids, automation requirements and many more. Non conventional machining have always 

been a complex process involving precise mechanisms which makes the total machining 

process unpredictable and sensitive to the controlling parameters. The hydrodynamic 

parameters of the electrolyte or dielectric such as pressure, flow, temperature etc. also 

influence the machining performance. Hence it is imperative to know the correct optimal 

settings of the controlling parameters for a cost effective machining. 

 

The operators or the planners generally go by the provided manual or by their own 

experience to select the parametric values. Such decisions fall short of efficiency and 

effectiveness of the overall machining performance. To assist the operators and researchers 

to select the optimal parametric values this thesis presents three non conventional processes 

with intent to find the optimal process parameters. Keeping in view the complex non-linear 

mathematical formulations for both the objective function and the prevailing constraints 

evolutionary optimization has been employed to find the global extremas.  

 

The most essential task in the optimization process is the formulation of the optimization 

model. This involves identification of all decision variables to be optimized, objective 

functions and related constraints as functions of decision variables, declaration of limits for 

decision variables, and expression of the optimization problem as a mathematical equation in 

a standard form so that it can be directly used by the optimization algorithm. 
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3.1 Parametric optimization of Electro-discharge 

machining 

The experimental procedure is taken from the work of Thangadurai and Asha [26] where 

the authors evaluated the performance of electric discharge machining during machining of 

AA6061-wt.10% B4Cp metal matrix composite. The work piece material was A6061 wt. 10% 

B4Cp in the form of square bar having 18 mm x 18 mm x 84  axial  length [26]. The 

composition of aluminium composite is 90 % of AA6061 aluminium and 10 % of Boron 

carbide composite particulate. 

AA6061 – wt.10% B4Cp composite was machined using copper electrode of 14 mm 

diameter on ELECTRA PLUS EDM machine as shown in Figure. 10.  Positive  polarity  was  

maintained  for  the  work piece  and  negative  polarity  for  the  tool.  Commercial grade 

kerosene was used as the dielectric fluid and impulse jet flushing was used to flush the 

eroded materials from the sparking zone [26].  

 

Figure 10 : EDM machine set up [26] 

 

To investigate the effect of machining parameters on material removal rate, tool wear 

rate and surface roughness, three independent machining parameters i.e. current, pulse on-

time and pulse off-time were  considered  for  experimentation. The experiments  were  

designed  by  using  Minitab  version  16.0  (DOE).Response  Surface  Methodology  (RSM)  

was  used  as  a  tool  for  mathematical modelling  of  Material Removal Rate (MRR),Tool 

Wear Rate (TWR)  and  Surface Roughness (Ra).  RSM was employed to evaluate the 

relationship between the individual responses and the input machining parameters in the 

following functional form:  
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Objective function X = f (X1, X2, X3)  

Where X is the desired response and  f (X1, X2, X3) is the response function or response 

surface comprising of three machining parameters: current (X1), pulse on-time (X2) and pulse 

off-time (X3).The approximation of  X  has been presented by fitting second-order polynomial 

regression equation i.e., quadratic equation in the  form Equation 16:  

 

                   
               

 
   

 
        (16) 

       

                           

                                                                           

                                 

                                                

 

The experimental data required for development of response models have been 

collected by designing the experiment in Box-Behnken design (BBD) by varying each input 

parameter over three levels coded -1,0,+1. The levels and range of machining parameters 

selected in the study is tabulated in Table 1. 

 

Table 1 : Levels and range of machining parameters 

Variable A B C 

Level Current (A) 
Pulse on-time 

(μs) 
Pulse off-time 

(μs) 

-1 7.5 200 50 

0 12.5 600 125 

1 10 1000 200 

 

The depth of cut has been kept constant at 1 mm throughout the experimentation. The 

experimental design consists of 17 runs as outlined in Table 2. Each run was performed by 

using a composite material size 18 mm x 18 mm x 84 mm [26].  

 

Thangadurai and Asha [26] presented the mathematical modelling for three process 

responses namely MRR, TWR and Ra. These equations were formulated in uncoded or real 

units. However, in this thesis coded units have been used for the formulation of new 

response equations, which are further used in single and multi-objective optimization of 

process parameters.  

 



Teaching Learning Based Optimization Applied to Constrained Mechanical Design Problems Kumar 
 

Mechanical Engineering Department, National Institute of Technology - Rourkela 39 

 

Table 2 : Box Bekhen design for experiment on EDM 

Run 
no. 

Current 
(A) 

Pulse on-time 
(μs) 

Pulse off-time 
(μs) 

MRR 
(g/min) 

TWR(g/min) 
Ra 

(μm) 

1 7.5 600 200 0.0267 0.0041 5.769 

2 10 600 125 0.0351 0.0063 6.674 

3 12.5 600 200 0.0856 0.0063 7.342 

4 7.5 600 50 0.0287 0.0043 5.234 

5 10 1000 50 0.0411 0.0068 6.576 

6 7.5 1000 125 0.0301 0.0037 5.785 

7 12.5 200 125 0.0835 0.0052 7.235 

8 10 200 50 0.0398 0.0052 6.382 

9 10 600 125 0.0351 0.0062 6.659 

10 7.5 200 125 0.0325 0.0041 5.745 

11 12.5 600 50 0.0865 0.0077 7.523 

12 10 600 125 0.0352 0.0062 6.554 

13 10 1000 200 0.0498 0.0058 6.889 

14 10 200 200 0.0322 0.0052 6.221 

15 10 600 125 0.0386 0.0061 6.657 

16 12.5 1000 125 0.0937 0.0079 7.749 

17 10 600 125 0.0351 0.0058 6.554 

 

The equations presented by Thangadurai and Asha [26] are presented by Equations 17-19. 

 

                                                                      

                                                

                                                      

(17) 

                                                                   

                                                     

                                                         

      

(18) 

                                                                      

                                                        

                                          

(19) 
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3.2 Electro-chemical Machining 

The optimization model for the electro-chemical machining process is formulated in the 

present work based on analysis given by Bhattacharya and Sorkhel [27] and Acharya et al. 

[31].  

 

Figure 11 : The designed microprocessor based ECM set-up [27] 

 

The experiment is taken from Bhattacharya and Sorkhel [27] which was carried on a 

developed ECM setup, as shown in Figure 11, having automatic tool feeding and controlled 

electrolyte flow. The electrical circuitry of the ECM set-up includes a DC power supply with 

electrical elements for short-circuit prevention, spark detection and auto-trip-ping operation of 

the ECM system. Closed-loop control electronic circuitry for securing controlled tool feed 

rates was designed and developed using a Z-80 microprocessor integrated with predesigned 

driver circuitry and a signal processor a potentiometer [27]. A milli-voltmeter and an A-to-D 

converter, for processing signals. thus generating various tool feed rates with the help of a 

stepper motor driving system to achieve constant current machining conditions. The feed-

back signal consists of the change in the input AC that is supplied to the DC power supply 

module due to the fluctuation in the voltage drop across the gap between the tool and the 

work piece monitored by the three current transformers (CTs). These CTs arc placed across 

the three phases of the AC Input power line of the main ECM power supply unit. The system 

design has been made in such a way that the software-generated signals from an output port 

of the microprocessor will control the speed and direction of rotation of the stepper motor and 

thus in turn the tool feed rate [27].  
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A cylindrical solid brass tool of diameter 16 mm was used to carry out the experiments. 

The tool was insulated on the circumference to rectify the effect of stray current flow. 

Cylindrical work pieces of EN-8 steel having diameter 19 mm were used. NaCl was used as 

an electrolyte of varying concentrations, and its flow was based on cross flow methodology. 

The overcut considered for the analysis was the average radial overcut. 

 

Table 4 displays the experimental scheme used by Minitab 16.0, where each input 

parameters is coded in five levels i.e. -2,-1, 0, +1+2 and a RSM based design was used with 

7 centre points. The parametric search space for each input variable is tabulated in Table 3 

along with their representing symbols.  For the optimization problem the objective function 

and variable limits are defined by Equations 20-21. These equations have been converted 

into un-coded form before framing the modeling equations. For the optimization of parametric 

values Bhattacharya and Sorkhel [27] employed Gauss-Jordan Algorithm. The objective for 

multi response optimization was to maximize the material removal rate and to minimize the 

over cut while keeping the values of machining parameters within range. 

 

Table 3 : Parametric levels for experiment on ECM 

Parameters Symbol Levels 

  
-2 -1 0 1 2 

Electrolyte concentration 
(g/l) 

x1 15 30 45 60 75 

Electrolyte flow rate (l/min) x2 10 11 12 13 14 

Voltage (V) x3 10 15 20 25 30 

Inter electrode gap (mm) x4 0.4 0.6 0.8 1.0 1.2 

 

The mathematical relationship obtained for analysis of the various dominant machining 

parameters on the MRR and OC are given by Equations 20-21. 
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Acharya et al. [31]considered three decision variables for the mathematical modelling 

which are tool feed rate f(mm/s), electrolyte flow velocity U(cm/s), and applied voltage 

(V).Multi-objective optimization was carried for the ECM process with maximization of the 

material removal rate, minimization of dimensional inaccuracy, and maximization of tool life 

as three conflicting objectives. Constraints were used in this model such as temperature 

constraint, passivity constraint, and choking constraint. The parametric optimization problem 

was solved by goal programming after linearizing the objective functions and constraint 

equations by using regression analysis. 

Since the MRR is the product of tool feed rate and projected area the maximization of the 

tool feed rate would maximize the material removal rate (MRR) as the projected area is 

constant. Thus mathematically MRR can be expressed as Equation 22. 

 

                      (22) 

 

During an ECM process it is not possible to check the work piece dimensions unless a 

special techniques like Ultrasonic measurements are used. It is imperative to predetermine 

the control parameters to ensure the desired dimensional accuracy. Dimensional accuracy 

depends upon the difference in the inter-electrode gap at the inlet Yi to outlet Yo, which is 

given by Equation 23-24. 
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With Ko= Kx at the outlet. The objective of maximizing the dimensional accuracy is attained 

by minimizing the difference between the inter-electrode gap at the inlet Yi to outlet Yo 

Equation 23. 

 

Maximization of tool life is ensured by minimizing the number of sparks per unit length N as 

given by the Equations 25-26. 
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For the values of decision variables to be practical three constraints are considered for the 

modelsuch as Temperature, passivity and choking constraints. They are briefly described as 

follows [1]. 

 

3.2.1 Temperature constraint 

To avoid boiling the electrolyte, the electrolyte temperature at the outlet should be less 

than the electrolyte boiling temperature. Mathematically this can be expressed as Equation 

27. 
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3.2.2 Passivity constraint 

Oxygen evolved during electro-chemical machining forms an oxide film, which is the root 

cause of passivity. To avoid passivity, the thickness of the oxygen gas bubble layer must be 

greater than the passive layer thickness. Mathematically, this can be expressed as Equation 

28. 
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3.2.3 Choking constraint 

Hydrogen evolved at the cathode during the ECM process can choke the electrolyte 

flow. To avoid choking the electrolyte flow, the maximum thickness of the hydrogen bubble 

layer should be less than the equilibrium inter-electrode gap. Mathematically, it can be 

expressed as Equation 29. 
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where 
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Acharya et al. [31] formulated the objective functions subjected to the constraints of 

temperature, passivity, and choking which were directly used by the optimization algorithm. 

These mathematical formulations are represented by the Equations 30-33. 

 

Minimize 

128926.3155414.3372623.0381067.0

1

 eVUfZ       (30-a)  

391436.052255.2000742.0528345.3

2 eVUfZ        (30-b) 

fZ 3          (30-c) 

where,  

Z1 is dimensional inaccuracy (mm), Z2 is number of sparks per mm and Z3 is the 

material; removal rate, f is tool feed rate (µm/s), U is the electrolyte flow elocity(cm/s), 

e is a constant 2.718 

Subjected to:  

 Temperature constraint:  

01 321968.0351436.0088937.1133007.2   eVUf       (31) 

 Passivity constraint 

0157697.12546257.1526076.2844369.0  eVUf       (32) 

 Choking constraint:  

01 75651.11240542.0488362.2075213.0   eVUf       (33) 

Where the parameter bounds were defined as follows  
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3.3 Electro-chemical Discharge Machining 

This experiment is taken from [37] where parametric analysis on electro-chemical 

discharge machining of silicon nitride ceramics was carried out using steepest ascent 

method. In the experimental study, ECDM micro-drilling was performed on 20 x 20 mm and 5 

mm thick silicon nitride ceramics. A stainless steel tool with a diameter of 400 nm was 

chosen for the experiment. The selection of the electrolyte for a micro-ECDM process is very 
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much important because type and concentration determines the electro-chemical reaction. 

To carry out the experiment, aqueous NaOH salt solution was used for the electrolyte. The 

electrolyte concentration varied from 10 to 30 wt. % (e.g. 10-30 g NaOH salt per 100 ml of 

water). The flow of electrolyte was not considered because it removes the gas bubbles 

generated during machining operation, resulting in weak sparking and low material removal. 

Pulsed DC power supply was selected and experiments were carried out at five different 

voltage levels: 50 V, 54 V, 60 V, 66 V, and 70 V. The auxiliary electrode was made of 

stainless steel and larger than the cathode tool.  

 

After selecting the tool, electrolyte, range of applied voltage and inter-electrode gap 

setting, the experiments were carried out using stagnant electrolyte and stationary tool. The 

machining operation was performed for 45 min. The weight of the job was measured with an 

electronic weighting machine (accuracy of 1 x 10-4 g), and the diameter of the machined 

micro-holes and the average thickness of the heat affected zone along the radial direction 

were measured at magnifications of 5X and 10X, respectively, with a measuring microscope 

(Olympus STM6).  

 

To explore the multi-parametric combinations for the ECDM process on non-conducting 

ceramics, experiments were carried out according to a central composite second order 

rotatable design with 20 runs, 6 axial points and 6 centre points (see Table 6). MINITAB 

software was employed to determine the coefficients of mathematical modelling based upon 

response surface regression model. The applied voltage (V), electrolyte concentration(EC) 

and Inter-electrode gap(IEG) were considered as independent input parameters, while 

material removal rate (MRR), radial over-cut(ROC) and heat affected zone (HAZ) are the 

responses. The list of parameters with their corresponding low and high limits are tabulated 

in Table 5 with their corresponding variables. 

Table 5 : List of parameters, corresponding variables, low and high limits [37] 

Parameter Variable name Low limit High limit 

Applied voltage (V) X1 50 70 

Electrolyte concentration (wt 
%) 

X2 10 30 

Inter-electrode gap (mm) X3 20 40 

 

The relationship between the applied voltage, electrolyte concentration and inter electrode 

gap on the material removal rate, radial overcut and heat affected zone were derived using 

MINITAB and relevant experimental data [37]. The mathematical relationships are expressed 
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by Equations 34-36. The machining parameters with their corresponding low and high limit 

are tabulated in Table 5. 
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Chapter 4: Optimization of 

Constrained Design 

Problems 

 

Engineering design of mechanical elements is described by very large numbers of 

variables, and it is imperative for the designer to specify appropriate values for these 

variables. Skilled designers often use their expert knowledge, experience, and judgment to 

specify these variables to design effective engineering elements. Because of the complexity 

and large size of a typical design task, even the most expert designers are unable to 

consider all the variables at the same time. Design optimization of mechanical elements is 

defined as the application of optimization algorithms and techniques to the problems in 

engineering design in order to help the designers in improving the system's performance, 

weight, reliability, and/or cost. Optimization methodologies are applied during the product 

development stage to ensure that the finished design will have the high performance, high 

reliability, low weight, and/or low cost. Alternatively, optimization methods can be applied to 

existing products to identify potential design improvements. 

In this thesis three elements from the mechanical domain have been considered, which 

are Pressure Vessel Design [6], Welded Beam Design [6], and Tension Compression Spring 

Design [6]. The design problem associated with all the three elements considered are solved 

using evolutionary algorithms and a few results have also been compared with those of 

conventional techniques and other evolutionary algorithms. 

 

4.1 Pressure vessel design 

A cylindrical vessel is sealed at both ends by hemispherical heads as shown in Figure 12. 

The objective considered is to minimize the total cost, including the cost of the material, 

welding and forming. Four design variables namely: thickness of the shell (Ts ), thickness of 

the head (Th), inner radius (R) and the length of the cylindrical section (L) not including the 

head. The design vector is now defined as X=(x1, x2, x3, x4) = (Ts , Th, R, L). Rao and 

Savsani[6] provided optimal solutions for pressure vessel design by considering practical 
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values of Ts and Th as integer multiples of 0.0625 inch(available thicknesses of rolled steel 

plates), and R and L as continuous. 

 

Figure 12 : Variables used in design of pressure vessel 

 

However in this thesis values of Ts and Th are also considered as continuous in the quest for 

global minimum and for the ease of programming of the optimizing algorithm. The best 

solution reported is f(X) =6059.714339 with X= (0.8125, 0.4375, 42.098446, 176.636596). 

The problem is presented by the Equations 37-41. 

Minimize: 

  3
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2

1

2

32431 84.191661.37781.16224.0 xxxxxxxxxxf       (37) 

Subject to: 

  00193.0 311  xxxg           (38) 

  000954.0 322  xxxg          (39) 

0000,296,1
3

4
)( 3

34

2

33  xxxxg          (40) 

0240)( 44  xxg            (41) 

Where, 

20010,20010,991.0,991.0 4321  xxxx  

The above optimization problem was also solved by many researchers by using several 

optimization methods like branch and bound approach [38], Hybrid PSO-DE [46], Artificial 

Bee Colony (ABC) [47],an augmented Lagrangian Multiplier approach [39], Self adaptive 

penalty approach [40], Society and civilization algorithm [41], Ant colony algorithm [49], 

Evolutionary Strategy(ES) [42], Genetic Adaptive Search method (GeneAS) [50], Unified 

Particle Swarm Optimization (UPSO) [43], Co-evolutionary Differential Evolution (CoDE) [45], 

Co-evolutionary Particle Swarm Optimization (CPSO) [44]  etc.  
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4.2 Welded beam design 

 

Figure 13 : Variables used in design of welded beam 

 

This example is taken from Rao and Sivsani [6]. The objective is to design a welded 

beam at minimum cost. There are four design variables height of weld (h), length of weld (L), 

height of beam (t) and width of beam (b) as shown in Figure. 13. Design vector is defined as 

X=(x1, x2, x3, x4) = (h, L, t, b). Design is subjected to the constraints on shear stress (s), 

bending stress in the beam (r), buckling load on the bar (Pc ), end deflection of the beam (d) 

and side constraints. The best value reported in the literature is f(X) =1.724852 with X= 

(0.205730, 3.470489, 9.036624, 0.205730). The problem is presented by the Equations 42-

49. 

Minimize: 

)0.14(04811.010471.1)( 2432

2
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0)()( max6   xxg           (48) 
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Pc is the bar buckling load, L is the length of the bar, E is the modulus of Elasticity, G is the 

modulus of rigidity, τmax is the design shear stress of the weld,  σmax is the design normal 

stress of the weld, δmax is the maximum beam bending stress.  

 

This problem is solved by many researchers by using different optimization methods 

such as geometric programming [48], Hybrid PSO-DE [46], Artificial Bee Colony (ABC) [47], 

self adaptive penalty approach [40], society and civilization algorithm [41], Ant colony 

algorithm [49], Evolutionary Strategy(ES) [42], Unified Particle Swarm Optimization (UPSO) 

[43], Genetic Adaptive Search method (Gene-AS) [50], Co-evolutionary Particle Swarm 

Optimization (CPSO) [44], Co evolutionary Differential Evolution (CoDE) [45] etc.  

 

4.3 Design of Tension Compression spring 

This problem is taken from Rao and Savsani [6] which presents the minimization of the 

weight of a tension-compression spring as shown in Figure 14.The spring is subjected to 

constraints of surge frequency, minimum deflection, shear stress, limits on design variables 

and on outside diameter. 
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Figure 14 : Variables used in design of tension-compression spring 

 

The design variables are the wire diameter (d), the mean coil diameter (D) and the 

number of active coils (N). Design vector is defined as X=(x1, x2, x3) = (d, D, N). The best 

result reported is f(X) =0.012665 with X= (0.051749, 0.358179, 11.203763). The problem is 

presented by the Equations 50-54 
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This problem is solved by many researchers by using different optimization techniques 

such as self adaptive penalty approach [40], Hybrid PSO-DE [46], Ant colony algorithm [49], 

society and civilization algorithm [41], Evolutionary Strategy(ES) [42], Co-evolutionary 

Particle Swarm Optimization (CPSO) [44], Co-evolutionary Differential Evolution (CoDE) [45], 

Unified Particle Swarm Optimization (UPSO) [43], Artificial Bee Colony (ABC) [47] etc. 



 

 

Chapter 5: An Improved 

Teaching Learning Based 

Optimization 

 

The first proposal is the Bit string mutation, which was induced in the population 

generated at the end of every generation with a probability of 20%. The worst solutions at the 

end of the generation were now mutated in anticipation to escape the local optima. The 

second modification also proposed a similar methodology, but instead of mutating the 

solutions, fresh solutions were randomly generated which replaced the worst solutions in the 

population at the end of every generations. The Figure 16 displays the augmentation of 

these modifications with the original TLBO algorithm which is shown in Figure 15. 

Both the modifications were separately coded in program, thus providing the liberty of user 

based execution of algorithm. 

 

5.1 Demonstration of TLBO for Optimization 

Step-string procedure for the demonstration of improvement in TLBO is given in this 

section. For demonstration purpose four variable Rastrigin function is used. The function is 

defined in Equation 55. Rastrigin function is a multimodal, separable and regular function.  





n

i

ii xxxf
1

2 10)2cos(10[)(          (55) 

The procedure is demonstrated as follows: 

Step 1: Define the optimization problem and initialize the optimization parameters 

                               

                         

                               

                                             

Define optimization problem as: 

Minimise 



n

i

ii xxxf
1

2 10)2cos(10[)(         (56) 
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Figure 15 : Flow chart of TLBO 
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Figure 16 : Implementation of proposed modifications 

 

Step 2: Generate the initial population 

Generate random population according to the population size and the number of design 

variables. For TLBO, population size indicates the number of learners and the design 

variables indicate the subjects (i.e. courses) offered. This population is expressed as 
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The initial population generated for each design variable in tabulated below along with the 

values of the objective function f(x) (see Table 7). Each design variable is treated as a 

subject in this algorithm. 

Step 3: Teacher Phase 

The mean of the population generated for each design variable is calculated and is 

presented in Equation 57 

 

                                                         (57) 

 

The best solution amongst the learners is treated as a teacher in the teachers phase. In this 

example the best solution is given by Learner 2 and is presented in the Equation 58 
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                                                               (58) 

 

Table 7 : Generation of initial population 

Learner No. subject1 subject2 subject3 subject4 f(x) 

1 -1.54255 1.941589 1.941589 1.941589 35.33128 

2 1.920727 1.044732 1.044732 1.044732 9.35573 

3 1.185838 0.125134 0.125134 0.125134 16.33469 

4 0.835175 0.586012 0.586012 0.586012 62.35254 

5 -0.64475 -1.16085 -1.16085 -1.16085 34.66132 

6 3.855287 2.826904 2.826904 2.826904 58.75556 

7 -2.16617 0.098433 0.098433 0.098433 15.25123 

8 0.656307 2.99512 2.99512 2.99512 42.90981 

9 1.171594 0.440114 0.440114 0.440114 65.12544 

10 -0.46274 1.452789 1.452789 1.452789 84.96288 

 

The teacher now tries to shift the mean of the class according to the Equation 12. The value 

of teaching factor is randomly assumed as 1 or 2. This obtained difference is added to the 

current population to update its values using Equation 14. The modified solution and its 

corresponding objective function value are tabulated in Table 8. 

 

Table 8 : Modification during teachers phase 

Learner No. 
mod_subject

1 
mod_subject

2 
mod_subject

3 
mod_subject

4 
F(x) 

1 -1.22728 1.942047 1.948198 1.948202 23.152 

2 3.26655 1.048465 1.049788 1.052821 26.50918 

3 1.235617 0.125654 0.13029 0.131667 20.03148 

4 0.84626 0.589744 0.586662 0.590076 61.51662 

5 0.344104 -1.15512 -1.1518 -1.15262 32.5373 

6 4.613988 2.827799 2.83327 2.830954 78.30764 

7 -1.15655 0.107295 0.105853 0.100988 12.09622 

8 0.724649 3.002285 2.998315 3.001278 39.12445 

9 2.260716 0.449762 0.443671 0.442519 74.61957 

10 0.95199 1.459824 1.460122 1.459131 66.79285 

 

The next step is to accept all the new modified solutions which give a better function value. 

The old solutions are replaced by new ones in this case and the other solutions are carried 
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forward as it is. The new population at the end of Teachers phase is now tabulated in Table 

9. 

Table 9 : End of teachers phase 

Learner No. T-subject1 T-subject2 T-subject3 T-subject4 F(x)-Teacher 

1 -1.22728 1.942047 1.948198 1.948202 23.152 

2 1.920727 1.044732 1.044732 1.044732 9.35573 

3 1.185838 0.125134 0.125134 0.125134 16.33469 

4 0.84626 0.589744 0.586662 0.590076 61.51662 

5 0.344104 -1.15512 -1.1518 -1.15262 32.5373 

6 3.855287 2.826904 2.826904 2.826904 58.75556 

7 -1.15655 0.107295 0.105853 0.100988 12.09622 

8 0.724649 3.002285 2.998315 3.001278 39.12445 

9 1.171594 0.440114 0.440114 0.440114 65.12544 

10 0.95199 1.459824 1.460122 1.459131 66.79285 

 

Step 4: Learner Phase 

As already explained in Chapter 1, the learners increase their knowledge by mutual 

interaction. Two learners from the population at the end of Teachers Phase are randomly 

selected and modified population is generated by using the Equation 15. The modified 

population is tabulated in Table 10. 

 

Table 10 : Modification in learners phase 

Learner No. 
mod_subject

1 
mod_subject

2 
mod_subject

3 
mod_subject

4 
F(x) 

1 -2.97945 0.97807 1.884598 0.995533 17.07411 

2 1.920727 1.044732 1.044732 1.044732 9.35573 

3 1.260443 -1.19173 -0.53432 -0.2299 48.93188 

4 0.783307 0.562057 -0.61019 -0.92301 48.17058 

5 0.344104 -1.15512 -1.1518 -1.15262 32.5373 

6 3.657367 1.631821 1.910038 2.165568 63.13171 

7 -2.58578 -0.77481 0.05883 -0.61769 52.76482 

8 0.724649 3.002285 2.998315 3.001278 39.12445 

9 1.171594 0.440114 0.440114 0.440114 65.12544 

10 0.95199 1.459824 1.460122 1.459131 66.79285 
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The next step is similar to that of the teachers phase. Accept all the new modified solutions 

which give a better function value. The old solutions are replaced by new ones in this case 

and the other solutions are carried forward as it is. The new population at the end of 

Learners phase is now tabulated in Table 11. 

 

Table 11 : End of learner phase 

Learner No. L-subject1 L-subject2 L-subject3 L-subject4 F(x)-Learner 

1 -2.97945 0.97807 1.884598 0.995533 17.07411 

2 1.920727 1.044732 1.044732 1.044732 9.35573 

3 1.185838 0.125134 0.125134 0.125134 16.33469 

4 0.783307 0.562057 -0.61019 -0.92301 48.17058 

5 0.344104 -1.15512 -1.1518 -1.15262 32.5373 

6 3.855287 2.826904 2.826904 2.826904 58.75556 

7 -1.15655 0.107295 0.105853 0.100988 12.09622 

8 0.724649 3.002285 2.998315 3.001278 39.12445 

9 1.171594 0.440114 0.440114 0.440114 65.12544 

10 0.95199 1.459824 1.460122 1.459131 66.79285 

 

Step 5: Improvement in the algorithm 

The first proposal is the Bit string mutation, which was induced in the population 

generated at the end of every generation with a probability of 20%. The worst solutions at the 

end of the generation were now mutated in anticipation to escape the local optima. The 

second modification also proposed a similar methodology, but instead of mutating the 

solutions, fresh solutions were randomly generated which replaced the worst solutions in the 

population at the end of every generations. The Figure 16 displays the augmentation of 

these modifications with the original TLBO algorithm. Improvement in the existing algorithm 

can be achieved by either Bit string mutation of the worst solutions in the population 

generated at the end of the Leaner’s phase or by replacing the same by fresh solutions 

generated randomly within the search space. In this example Bit string mutation has been 

used to modify 20 % of the solutions which are regarded as the worst in the lot. The 

probability of the mutation is again taken as 20%. Bit string mutation is explained by an 

example as shown below. 

The worst solution at the end of the generation is given by Equation 59 where the fitness 

value is evaluated at 66.79285. 

                                                                             (59) 
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Each value of decision variable is now converted in to binary form and represented in the 

form of a string as shown below. For each bit in this string mutation probability (0.2 in this 

case) is compared against a random number between 0 and 1. Based on this comparison bit 

flipping is done to get the new binary string. 

For this example the values exist in decimal places, so in order to successfully convert them 

into binary, the value is multiplied by a suitable power of 10 for the sake of simplicity and 

ease of understanding. After bit string mutation has been completed the decimal value will be 

divided by the same power of 10 to get the modified decision variable value. Let us consider 

an exponent of 2 in this example. 

                                    

                                                       

                                                                              

                                                                                

                                              

                                                    

Similarly, all the mutated values of decision variables are evaluated and the new value 

replaces the existing solution in the final population. For the example considered so far, the 

values of decision variables and their corresponding function value are tabulated in Table 12. 

It can be easily pointed out that the learners 9 and 10 have undergone mutation at the end of 

the generation. Table 12 also serves as the initial population for the next generation. 

Inducing this mutation scheme greatly influences the algorithm to escape the local extrema 

and reach the near optimal global solutions.  

 

Table 12 : Incorporation of proposed modification 

Learner No. subject1 subject2 subject3 subject4 f(x) 

1 -2.97945 0.97807 1.884598 0.995533 17.07411 

2 1.920727 1.044732 1.044732 1.044732 9.35573 

3 1.185838 0.125134 0.125134 0.125134 16.33469 

4 0.783307 0.562057 -0.61019 -0.92301 48.17058 

5 0.344104 -1.15512 -1.1518 -1.15262 32.5373 

6 3.855287 2.826904 2.826904 2.826904 58.75556 

7 -1.15655 0.107295 0.105853 0.100988 12.09622 

8 0.724649 3.002285 2.998315 3.001278 39.12445 

9 1.5748 0.0016 0.5497 0.6961 55.02163 

10 1.0096 1.4599 1.4603 1.4843 66.83056 
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A similar attempt can be replacing the worse solution at the end of each generation by 

fresh solutions which are randomly generated within the search space. Both these proposals 

of modifications have been induced in the coded algorithm, and comparison between the 

original algorithm and the proposed modifications in terms of performance have been 

thoroughly presented and discussed in the next chapter. 

 

Step 6: Termination criterion 

The algorithm halts when the termination criteria is satisfied else the algorithm restarts 

from step 3. The criterion used in this example is the maximum number of generations. 

Detailed progress of the optimization algorithm for one generation depicting the modifications 

in Teachers phase and the Learner phase is presented in Table 13. It is clearly observed 

from Table 13 that the average value for f(x) and the best function value of the objective 

function decreases as the algorithm progresses from Teachers phase to the Learner phase 

in the same generation of the optimizing algorithm, and thus guarantee the convergence in 

the algorithm. 
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Chapter 6: Results and 

Discussions 

 

It is observed from the literature that use of a particular optimization method or 

modification in a particular optimization method suits well to only a number of problems. 

However, the same method or modification may not work well for the other problems. In this 

work three unconstrained optimization problems are considered for the application of TLBO 

algorithm. All the problems considered for this purpose are taken from the production 

engineering domain and results are compared with those of previous published researches.  

The proposal of a modification in any optimization algorithm requires a check of that modified 

algorithm for a wide variety of problems before drawing any general conclusion for the 

modification incorporated. To check the performance of the proposed modifications, six 

constrained problems are considered in this work. After attending the results for each 

optimization problem individually, a combined result is also drawn and presented at the end 

of the discussion to finalize on the impact of the modifications proposed. 

 

6.1 Unconstrained Optimization Problems 

Three non conventional machining processes are considered as unconstrained 

optimization problems from the production engineering domain namely Electro-Discharge 

Machining, Electro-Chemical Machining and Electro-Chemical Discharge Machining. An 

attempt to find the optimal parametric values for all the machining processes stated above 

has been made using the TLBO algorithm. 

 

6.1.1 Optimization of Electro-Discharge Machining 

The problem is taken from Thangadurai and Asha [26] and their work is completely 

described in Chapter 3. The experimental design was regenerated for 17 runs using Minitab 

version 16.0 (DOE) and the corresponding experimental responses are tabulated in Table 2  

and have been directly used. Response  Surface  Methodology  (RSM)  was  used  to 

generate objective functions of  Material Removal Rate (MRR), Tool Wear Rate (TWR)  and  

Surface Roughness (Ra) which are presented by Equations 17-19.  
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Table 2 displays the Behnken design (BBD) used by Minitab 16.0, where each input 

parameter is coded in three levels i.e. -1, 0, +1. For the optimization problem the objective 

function and variable limits are defined by Equations17-19. These equations have been 

converted into uncoded form. The objective of multi response optimization is to maximize the 

material removal rate to minimize the tool wear rate and surface roughness while keeping 

the values of machining parameters within range. 

 

Apart from the single objective functions considered for this problem, a combined 

function is also used to perform the multi-objective optimization for the EDM parameters. The 

function and the variable limits are given by Equation 60. Equal weights are considered for 

all the responses in this multi-objective optimization problem, and thus w1= w2= w3 are all 

equal to (1/3). 

          
   

     
    

    

      
    

    

      
       (60) 

                   

                                       

                                                    

                                                     

                                                                             

                                                                             

                                                                             

For the verification of mathematical models considered the analysis of variance was 

carried out and is tabulated in Tables 14-16. The explained variation i.e. R-square value 

obtained for MRR, TWR and Ra are 99.7%, 99.1% and 99.3% respectively. Based on this 

value it can be ascertained that the model is able to simulate the EDM process responses. 

 

Table 14 : Analysis of variance for MRR-EDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 0.00872 0.00872 0.000969 245.56 0 

Linear 3 0.006777 0.006777 0.002259 572.51 0 

Square 3 0.001837 0.001837 0.000612 155.19 0 

Intera
ction 

3 0.000106 0.000106 0.000035 8.99 0.008 

Residual 
Error 

7 0.000028 0.000028 0.000004 
  

Lack-of-Fit 3 0.000018 0.000018 0.000006 2.48 0.201 

Pure Error 4 0.00001 0.00001 0.000002 
  

Total 16 0.008748 
    

R-Sq = 99.7% 
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Table 15 : Analysis of variance for TWR-EDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 0.000023 0.000023 0.000003 87.33 0 

Linear 3 0.000018 0.000018 0.000006 206.96 0 

Square 3 0.000002 0.000002 0.000001 20.83 0.001 

Interaction 3 0.000003 0.000003 0.000001 34.21 0 

Residual Error 7 0 0 0 
  

Lack-of-Fit 3 0 0 0 0.52 0.692 

Pure Error 4 0 0 0 
  

Total 16 0.000023 
    

R-Sq = 99.1% 
     

 

Table 16 : Analysis of variance for Ra-EDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 7.2921 7.2921 0.81023 108.48 0 

Linear 3 6.97312 6.97312 2.32437 311.2 0 

Square 3 0.07848 0.07848 0.02616 3.5 0.078 

Interaction 3 0.2405 0.2405 0.08017 10.73 0.005 

Residual Error 7 0.05228 0.05228 0.00747 
  

Lack-of-Fit 3 0.03777 0.03777 0.01259 3.47 0.13 

Pure Error 4 0.01452 0.01452 0.00363 
  

Total 16 7.34438 
    

R-Sq = 99.3% 
     

 

In this thesis both single objective and multi-objective optimization have been performed 

using TLBO algorithm. For the single objective optimization for maximizing the MRR, 

minimizing the TWR and Ra. A population size of 10 was used. The Teaching Factor was 

considered as 1 for all the generations of the algorithm. The TLBO algorithm has given a 

maximum MRR of 0.1004 g/min, minimum TWR of 0.00337 g/min and minimum Ra of 

5.2797 μm.  The results are tabulated in Table 17. 

 

Table 17 : Single objective results for EDM  

Single objective optimization 

 
MRR(g/min) TWR (g/min) Ra (μm) 

Current (A) 12.5 7.5 7.5 

Pulse on-time (μs) 1000 1000 1000 

Pulse off-time (μs) 200 200 50 

Optimal value 0.1004 0.00337 5.2797 
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For the multi-objective optimization the combined function has been used. It has already 

been established that these functions always gives compromising results by satisfying all the 

objectives. In our current study TLBO has also provided compromising solution for the 

combined objective function. Equal weights have been assumed in the combined objective 

function giving equal significance to all the process criteria. The minimum value obtained for 

the combined function is  0.59437, which corresponds to MRR of 0.03571 g/min,TWR of 

0.003377 g/min, and Ra of 6.0012 μm have been tabulated in Table 18. 

 

Table 18 : Multi-objective results for EDM  

Multi-objective optimization 

 
Numerical Opt. of 

RSM [26] 
TLBO 

Current (A)   12.5 7.5 

Pulse on-time (μs) 200 1000 

Pulse off-time (μs) 200 200 

Optimal value - 0.59437 

MRR (g/min) 0.079265 0.03571 

TWR (g/min) 0.00489051 0.003377 

Ra (μm) 6.8812 6.0012 

 

Thangadurai and Asha[26] employed Numerical Optimization techniques of RSM  for 

multi response material removal  rate,  tool  wear  rate  and  surface  roughness  

optimization. It is clearly seen that the results obtained by them are quite different from those 

obtained by TLBO technique. The values for TWR and Ra are better in the latter case, while 

the MRR value is found to have decreased. The former combination can be achieved by 

altering the relative weights assigned to the responses.  

 

6.1.2 Optimization of Electro-Chemical Machining 

Parametric optimization of ECM has been carried out by many researchers using 

different optimization techniques, however to check for any scope of further improvement 

TLBO has been applied to both single and multi-objective optimization of parameters. A 

similar attempt has been done by Rao and Kalyankar [17] where an individual attempt was 

made on both the objective functions. 

 

The problem is taken from Bhattacharya and Sorkhel [27] and their work is completely 

described in Chapter 3. The experimental design was regenerated for 31 runs using Minitab 
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version 16.0 (DOE) and the corresponding experimental responses are tabulated in Table 4  

and have been directly used. Response  Surface  Methodology  (RSM)  was  used  to 

generate objective functions of  Material Removal Rate (MRR) and  Over cut (OC) which are 

presented by Equations 20-21.  

 

Apart from the single object functions considered for this problem, a combined function 

is also used to perform the multi-objective optimization for the EDM parameters. The function 

and the variable limits are given by Equation 61. Equal weights are considered for all the 

responses in this multi-objective optimization problem, and thus w1= w2= w3 are all equal to 

(1/3). 

 

          
   

     
    

    

      
         (61) 

                   

                                                  

                                               

                                      

                                             

                                                                             

                                                                             

 

For the verification of mathematical models considered the analysis of variance was 

carried out and is tabulated in Tables 19-20 The explained variation i.e. R-square value 

obtained for MRR and OC are 65.0% and 74.7% respectively. Based on this value it can be 

ascertained that the model is able to simulate the ECM process responses. 

 

Table 19 : Analysis of variance for MRR-ECM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 14 1.08047 1.08047 0.077176 2.12 0.076 

Linear 4 0.72184 0.18477 0.046192 1.27 0.323 

Square 4 0.01578 0.01578 0.003946 0.11 0.978 

Interaction 6 0.34285 0.34285 0.057141 1.57 0.22 

Residual Error 16 0.58267 0.58267 0.036417 
  

Lack-of-Fit 10 0.55861 0.55861 0.055861 13.93 0.002 

Pure Error 6 0.02406 0.02406 0.004011 
  

Total 30 1.66314 
    

R-Sq = 65.0% 
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Table 20 : Analysis of variance for OC-ECM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 14 0.030243 0.030243 0.00216 3.37 0.011 

Linear 4 0.021587 0.021587 0.005397 8.42 0.001 

Square 4 0.005671 0.005671 0.001418 2.21 0.114 

Interaction 6 0.002984 0.002984 0.000497 0.78 0.6 

Residual Error 16 0.010257 0.010257 0.000641 
  

Lack-of-Fit 10 0.007115 0.007115 0.000711 1.36 0.367 

Pure Error 6 0.003143 0.003143 0.000524 
  

Total 30 0.0405 
    

R-Sq = 74.7% 
     

 

In this thesis both single objective and multi-objective optimization have been performed 

using TLBO algorithm. For the single objective optimization for maximizing the MRR, 

minimizing the OC a population size of 10 was used. The Teaching Factor was considered 

as 1 for all the generations of the algorithm. The TLBO algorithm has given a maximum MRR 

of 1.4551 g/min and minimum OC of 0.0818 mm.  The results are tabulated in Table 21. It is 

to be noted that the optimal value of OC is reported as 0.0818 mm, which is better than the 

result obtained by Rao and Kalyankar [17]. 

 

Table 21 : Single objective results for ECM  

Single objective optimization 

 
MRR 

(g/min) 
OC (mm) 

Electrolyte concentration (g/l) 75 15 

Flow rate (l/min) 10 10 

Voltage (V) 30 10 

Inter electrode gap (mm) 1.2 0.4 

Optimal value 1.4551 0.0818 

 

For the multi-objective optimization the combined function has been used. It has already 

been established that these functions always gives compromising results by satisfying all the 

objectives. In our current study TLBO has also provided compromising solution for the 

combined objective function. Equal weights have been assumed in the combined objective 

function giving equal significance to all the process criteria.  
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Table 22 : Multi-objective results for ECM  

Multi-objective optimization 

 
ABC[13] TLBO 

Electrolyte concentration (g/l) 15 15 

Flow rate (l/min) 10 10 

Voltage (V) 10 10 

Inter electrode gap (mm) 0.4 0.4 

Optimal value 0.3488 0.3488 

MRR (g/min) 0.4408 0.4408 

OC (mm) 0.0818 0.0818 

Iterations used 100 20 

 

The minimum value obtained for the combined function is 0.3488, which corresponds to 

MRR of 0.4408 g/min and OC of 0.0818 mm have been tabulated in Table 22. The results 

obtained by ABC algorithm is similar to that obtained by TLBO, but the number of generation 

used is five times less than that used by ABC. 

 

The modified TLBO is now applied to all the three objective functions derived from the 

experimental data of ECM given by Equations 20-21 and Equation 61, and a comparative 

study has been done between the proposed modifications and original TLBO. To quantify the 

comparison the algorithm is run for a fixed number of generations and normalised deviations 

are calculated between already published results and best solution within the final population 

generated by the algorithm. This normalised deviation is calculated by calculated by dividing 

the standard deviation value from the published optimal value for the current optimization, 

the algorithm is run for 20 times with a different seed value of the random number. 

 

Maximization of MRR 

The results obtained from the single objective optimization of Equation 20 have been 

solved using the original TLBO and the modifications suggested in the previous chapter. The 

calculated values are tabulated in Table 33. The tabulated data is also presented graphically 

for easy analysis in Figure 17. 
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Figure 17 : Comparison graph for ECM-MRR 

 

On comparative analysis of the table and the graph for the maximization of MRR, it is 

found that the average normalised standard deviations for original TLBO algorithm is 

0.212543, Mutation based TLBO is 0.0.82417 and Replacing worst solutions with fresh ones 

gives 0.064981. Contrary to the results found so far Mutation based TLBO has not performed 

better than its competitors in reaching the global optimal solution in the given number of 

iterations with zero normalised standard deviations. Instead the scheme of replacement by 

fresh solutions has given better results for such kind of optimization problem. However the 

Mutation scheme has performed better than the original TLBO algorithm. 

 

Minimization of radial overcut 

The results obtained from the single objective optimization for minimizing the overcut are 

given in Equation 30 which is subjected to constraints Equations 31-33 .The problem has 

been solved using the original TLBO and the modifications suggested in the previous 

chapter. The calculated values are tabulated in Table 34. The tabulated data is also 

presented graphically for easy analysis in Figure 18. 

 

On comparative analysis of the table and the graph for the minimization of OC, it is 

found that the average normalised standard deviations for original TLBO algorithm is 

0.09662, Mutation based TLBO is 4.89E-06 and Replacing worst solutions with fresh ones 

gives 0.031149. 
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Figure 18 : Comparison graph for ECM-OC 

 

 It is again evident that Mutation based TLBO has performed better than its competitors 

in reaching the global optimal solution in the given number of iterations with zero normalised 

standard deviation. However for this problem it is seen that the next winner is the scheme of 

replacement by fresh solutions having less deviation followed by the original TLBO algorithm.  

 

Multi-objective optimization of ECM process 

The optimization was also carried for the combined function represented by Equation 61. 

where both the objectives of maximizing the MRR and minimising the OC were 

simultaneously considered.  

 

On comparative analysis of the table and the graph (Figure 19) for this multi-objective 

problem, it is found that the average normalised standard deviations for original TLBO 

algorithm is 0.476929, Mutation based TLBO is 6.79E-05 and Replacing worst solutions with 

fresh ones gives 6.79E-05. In this particular case it is found that Mutation based TLBO and 

the scheme of replacement by fresh solutions have performed better than original TLBO in 

reaching the global optimal solution in the given number of iterations with zero normalised 

standard deviation.  
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Figure 19 : Comparison graph for ECM-multi-objective 

 

6.1.3 Optimization of Electro-chemical Discharge Machining 

Parametric optimization of ECDM has been carried out by many researchers using 

different optimization techniques, however to check for any scope of further improvement 

TLBO has been applied to both single and multi-objective optimization of parameters. A 

similar attempt has been done by Rao and Kalyankar [17] where an individual attempt was 

made on all the objective functions. 

 

This experiment is taken from Sarkar et al.[37] where parametric analysis on electro-

chemical discharge machining of silicon nitride ceramics was carried out using steepest 

ascent method. The details of this experiment have been thoroughly visited in Chapter 3.The 

equations representing the objective functions are presented by Equations 30-32. Apart from 

the single object functions considered for this problem, a combined function is also used to 

perform the multi-objective optimization for the EDM parameters. The function and the 

variable limits are given by Equation 57 and the combined objective function used for the 

multi-objective optimization is presented by Equation 57. 

 

max3min2min1 /*/*/*. MRRMRRwHAZHAZwROCROCwZMin                   (62) 

 

Where MRR, ROC and HAZ are the RSM based equations from Equations 30-32 

respectively, MRRmax, ROCmin and HAZmin are the optimized maximum, minimum and 

minimum values of MRR, ROC and HAZ respectively calculated from single objective 

optimization. w1, w2, w3 are the weights assigned to ROC, HAZ and MRR respectively. 
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Samanta and Chakraborty [13] had considered equal weights for all three responses, and 

thus w1= w2= w3 are all equal to 1/3). 

Table 23 : Analysis of variance for MRR-ECDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 0.58663 0.58663 0.06518 2.82 0.061 

Linear 3 0.39065 0.39065 0.13022 5.63 0.016 

Square 3 0.13473 0.13473 0.04491 1.94 0.187 

Interaction 3 0.06125 0.06125 0.02042 0.88 0.482 

Residual Error 10 0.23115 0.23115 0.02312 
  

Lack-of-Fit 5 0.0668 0.0668 0.01336 0.41 0.827 

Pure Error 5 0.16435 0.16435 0.03287 
  

Total 19 0.81778 
    

R-Sq = 71.7% 
     

 

Table 24 : Analysis of Variance for ROC-ECDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 0.06081 0.06081 0.006757 3.19 0.042 

Linear 3 0.040949 0.040949 0.01365 6.44 0.011 

Square 3 0.011953 0.011953 0.003984 1.88 0.197 

Interaction 3 0.007907 0.007907 0.002636 1.24 0.345 

Residual 
Error 

10 0.02118 0.02118 0.002118 
  

Lack-of-Fit 5 0.01085 0.01085 0.00217 1.05 0.479 

Pure Error 5 0.01033 0.01033 0.002066 
  

Total 19 0.08199 
    

R-Sq = 74.2% 
     

 

Table 25 : Analysis of Variance for HAZ-ECDM 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 0.006272 0.006272 0.000697 4.4 0.015 

Linear 3 0.004151 0.004151 0.001384 8.75 0.004 

Square 3 0.001346 0.001346 0.000449 2.84 0.092 

Interaction 3 0.000775 0.000775 0.000258 1.63 0.243 

Residual Error 10 0.001582 0.001582 0.000158 
  

Lack-of-Fit 5 0.000941 0.000941 0.000188 1.47 0.342 

Pure Error 5 0.000641 0.000641 0.000128 
  

Total 19 0.007854 
    

R-Sq = 79.9% 
     

 

Analysis of variance is carried out for all responses and a second order model is found 

to be fit (see Tables 23-25). The coefficient of determination (R2) for MRR, ROC, and HAZ 

are 71.7%, 74.2% and 79.9% respectively. Hence, the developed mathematical models 
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which link the various machining parameters with MRR ROC and HAZ can adequately be 

represented through the response surface methodology. 

 

Table 26 : Algorithmic parameters for Genetic algorithm and Simulated Annealing 

ABC [13] GA: 

Swarm size: 10 

Maximum no. of generations: 100 

Number of employed bees: 50% of 

swarm size 

Number of onlooker bees:  50% of 

swarm size 

Number of scouts per cycle: 1 

Number of cycles: 2000 

 

Population size: 60 

Maximum Number of generations; 100 

Selection function: stochastic uniform 

Elite count: 2 

Crossover fraction: 0.8 

Crossover function: scattered 

Mutation fraction: 0.2 

Mutation function: Gaussian 

Number of parameters: 6 Number of parameters: 8 

 

SA: TLBO 

Start point: origin 

Maximum Number of generations: 100 

Annealing function: fast annealing 

Re-annealing interval: 100 

Temperature update function: 

logarithmic 

Initial temperature: 100 

Acceptance probability function: SA 

acceptance 

Population size: 10 

Maximum Number of generations: 20 

Teaching factor: 2 

Number of parameters: 7 Number of parameters: 3 

 

Optimization of process parameters is presented using four different techniques namely, 

GA, SA, ABC and TLBO and the results are compared with those obtained by past research. 

Both single objective and multi-objective optimization was performed considering the 

experimental data and mathematical modeling of past researchers. Optimization toolbox in 

Matlab 7.0 was used to generate results by Genetic algorithm and Simulated Annealing 

algorithm optimization techniques whereas coding of both the Artificial Bee Colony algorithm 

and Teaching Learning based Optimization algorithm were developed in Matlab 7.0 .The 

final tuning of their controlling parameters for easy convergence is enlisted in Table 26. 
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Single objective optimization was performed using four different evolutionary 

optimization methods namely Genetic algorithm, Simulated Annealing algorithm, Artificial 

Bee Colony algorithm and Teaching Learning based Optimization algorithm with intent to 

maximize MRR (5), minimize ROC (6) and minimize HAZ (7). The upper and lower limits 

specified in Table 5 were used as variable boundaries for applied voltage, electrolyte 

concentration and inter-electrode gap. 

For the parameter values of X1 = 70, X2 = 20 and X3=20[13], the optimal value of MRR is 

stated as 1.62603 mg/hr [13] using ABC algorithm whereas their use in the (5) yields a MRR 

value of 1.3372 mg/hr. This was earlier pointed out and an improved solution was provided 

[17]. Table 27 resurrects the optimal MRR value as obtained by Samantha and 

Chakraborthy[13] and successfully displays the competency of TLBO algorithm [18] with GA, 

SA and ABC algorithms by arriving at MRR value of 1.62603 mg/hr instead of 1.5902 mg/hr 

as suggested by Rao and Kalyankar[17]. 

 

Table 27 : Results of single objective optimization-ECDM 

Response Steepest ascent 

[37] 

ABC 

Algorithm 

[13] 

Genetic Simulated 

annealing 

TLBO 

MRR(mg/hr) 

 

1.24453 

X1=70 

X2=18 

X3=27 

1.3372 

X1=70 

X2=20 

X3=20 

1.6167 

X1=70.09 

X2=9.9 

X3=19.9 

1.616 

X1=70.09 

X2=9.9 

X3=19.9 

1.626 

X1=70 

X2=10 

X3=20 

ROC(mm) 

 

0.11138 

X1=50 

X2=24 

X3=30 

0.05912 

X1=50 

X2=30 

X3=20 

0.0591 

X1=49.91 

X2=30.08 

X3=19.91 

0.0591 

X1=49.90 

X2=30.08 

X3=19.91 

0.0591 

X1=50 

X2=30 

X3=20 

HAZ (mm) 

 

0.055874 

X1=50 

X2=22 

X3=39 

0.05409 

X1=50 

X2=24.5 

X3=40 

0.055 

X1=49.9 

X2=24.65 

X3=39.61 

0.055 

X1=49.91 

X2=24.65 

X3=39.61 

0.0541 

X1=50 

X2=25 

X3=38 

 

For the multi-objective optimization of the responses for the ECDM process, a combined 

objective function was developed considering all the three models simultaneously. The 

model used by Samantha and Chakraborthy is given by (12). The multi-objective 

optimization of ECDM process and comparison of results with those of ABC algorithm is 

presented in Table 28. The minimum objective function value for the multi-objective 
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optimization is found to be 0.5844 which is similar to the results of Samanta and Chakraborty 

[13] and contrary to those of Rao and Kalyankar [17]. The values of MRR, ROC and HAZ 

also tally with the previously established results of Samanta and Chakraborty [13] using ABC 

algorithm. 

 

Table 28 : Results of multi objective optimization-ECDM 

Parameters and function ABCalgorithm[13] TLBOalgorithm 

Applied voltage (V) 50 50 

Electrolyte concentration (wt %) 30 30 

Inter-electrode gap (mm) 20 20 

MRR (mg/hr) 0.4860 0.4866 

ROC (mm) 0.0591 0.0591 

HAZ (mm) 0.0569 0.0569 

Combined objective function value 0.5843 0.5844 

Number of iterations 100 20 

 

The use of the combined objective function gives satisfactory multi-objective results for 

each of the objective function. In this case also TLBO has proven to be competent with the 

ABC algorithm by arriving at the previously established result of Samanta and Chakraborty 

[13] in less number of iterations. In addition, TLBO requires less number of parameters to be 

controlled as compared to ABC. The number of functional evaluations and computational 

burden is much less in case of TLBO. Importantly, TLBO is easy to understand and 

implement because it mimics a simple phenomenon whereas ABC simulates complex 

physical process of collection of honey by the bees. 

 

6.2 Constrained Optimization Problems 

Like other optimization algorithms (e.g. PSO, ABC, ACO, etc.), TLBO algorithm do not 

have any special mechanism to handle the constraints. For the constrained optimization 

problems it is necessary to incorporate a constraint handling technique with the TLBO 

algorithm even though the algorithm has its own exploration and exploitation powers. In this 

thesis, a penalty term is introduced within the objective function to handle the constraints 

within the TLBO algorithm.  During a constrain violation this penalty term is assigned a large 

number which makes the solution worst in itself. Consequently this worst solution is rejected 

by the algorithm in further iterations.  
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The modified TLBO is now applied to five constrained problems of mechanical domain, 

and a comparative study has been done between the proposed modifications and original 

TLBO. To quantify the comparison the algorithm is run for a fixed number of generations and 

normalised deviations are calculated between already published results and best solution 

within the final population generated by the algorithm. This normalised deviation is calculated 

by calculated by dividing the standard deviation value from the published optimal value for 

the current optimization problem for each of the examples considered in this thesis, the 

algorithm is run for 20 times with a different seed value of the random number. The 

optimization problems have been thoroughly discussed in the previous chapters. The results 

obtained are tabulated and discussed in terms of performance. 

 

6.2.1 Pressure vessel design 

The results obtained from the single objective optimization of Equation 33 subjected to 

constraints represented by Equations 34-37 have been solved using the original TLBO and 

the modifications suggested in the previous chapter. The calculated values are tabulated in 

Table 31. The tabulated data is also presented graphically for easy analysis in Figure 20. 

 

 

Figure 20 : Comparison graph for pressure vessel design 

 

On comparative analysis of the table and the graph for the design of pressure vessel, it 

is found that the average normalised standard deviations for original TLBO algorithm is 

0.03341,Mutation based TLBO is 0.000445 and Replacing worst solutions with fresh ones 

gives 0.205302. It is quite evident that Mutation based TLBO has performed better than its 

competitors in reaching the global optimal solution in the given number of iterations with zero 
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normalised standard deviations. It is also seen that the next winner is the original TLBO 

algorithm having less deviation followed by the scheme of replacement by fresh solutions. 

 

6.2.2 Welded beam design 

The results obtained from the single objective optimization of Equation 38 subjected to 

constraints represented by Equations 39-45 have been solved using the original TLBO and 

the modifications suggested in the previous chapter. The calculated values are tabulated in 

Table 30. The tabulated data is also presented graphically for easy analysis in Figure 21. 

 

 

Figure 21 : Comparison graph for welded beam design 

 

On comparative analysis of the table and the graph for the design of welded beam, it is 

found that the average normalised standard deviations for original TLBO algorithm is 

0.182017, Mutation based TLBO is 8.71E-07 and Replacing worst solutions with fresh ones 

gives 0.508163. This result is quite similar to that of pressure vessel design. Mutation based 

TLBO has again performed better than its competitors in reaching the global optimal solution 

in the given number of iterations with zero normalised standard deviations. It is also seen 

that the next winner is the original TLBO algorithm having less deviation followed by the 

scheme of replacement by fresh solutions. 

 

6.2.3 Design of tension compression spring 

The results obtained from the single objective optimization of Equation 46 subjected to 

constraints represented by Equations 47-49 have been solved using the original TLBO and 
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the modifications suggested in the previous chapter. The calculated values are tabulated in 

Table 32. The tabulated data is also presented graphically for easy analysis in Figure 22. 

 

 

Figure 22 : Comparison graph for tension-compression spring design 

 

On comparative analysis of the table and the graph for the design of tension 

compression spring, it is found that the average normalised standard deviations for original 

TLBO algorithm is 0.155941, Mutation based TLBO is 0.141266 and Replacing worst 

solutions with fresh ones gives 0.147421. It is again evident that Mutation based TLBO has 

performed better than its competitors in reaching the global optimal solution in the given 

number of iterations with comparably less normalised standard deviation. However for this 

problem it is seen that the next winner is the scheme of replacement by fresh solutions 

having less deviation followed by the original TLBO algorithm. On a close analysis it can also 

be said that all the three schemes have equally performed and have subtle differences in the 

overall normalised standard differences. 

 

6.2.4 Parametric optimization of ECM process 

The results obtained from the single objective optimization of Equation 30 subjected to 

constraints represented by Equations 31-33 have been solved using the original TLBO and 

the modifications suggested in the previous chapter. The calculated values are tabulated in 

Table 36-38.  
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Minimization of dimensional inaccuracy 

The increase is the dimensional accuracy is achieved by finding the combination of 

parameters which deliver the minimum value of the expression of dimensional inaccuracy 

given by Equation 30-a. The calculated values are tabulated in Table 36. The tabulated data 

is also presented graphically for easy analysis in Figure 23. 

 

Figure 23 : Comparison graph for ECM-DA-constrained 

 

The single objective optimization of dimensional inaccuracy has yielded a optimal value 

of 17.4266 µm for the parameter values of tool feed rate f=8µm/s, electrolyte velocity U=300 

cm/s and voltage V=10 V. Rao et al. [1] attempted this problem by using particle swarm 

optimization and have given a better value of 15.452 µm for parameter values of tool feed 

rate f=8 µm/s, electrolyte velocity U=300 cm/s and voltage V=9.835 V. However the 

calculation of passivity constraint using the given parameter values give a negative value of -

0.051 and thus leads to violation of this constraint.  

 

On comparative analysis of the table and the graph for the maximization of MRR, it is 

found that the average normalised standard deviations for original TLBO algorithm is 

0.000638, Mutation based TLBO is 0.000478 and Replacing worst solutions with fresh ones 

gives 0.000434. Contrary to the results found so far Mutation based TLBO has not performed 

better than its competitors in reaching the global optimal solution in the given number of 

iterations with zero normalised standard deviations. Instead the scheme of replacement by 

fresh solutions has given better results for such kind of optimization problem. However the 

Mutation scheme has performed better than the original TLBO algorithm. 
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Maximizing tool life 

The increase is the tool life is achieved by finding the combination of parameters which 

deliver the minimum value of the expression of sparks per unit length given by Equation 30-

b. The calculated values are tabulated in Table 37. The tabulated data is also presented 

graphically for easy analysis in Figure 24. 

 

Figure 24 : Comparison graph for ECM-Sparks-constrained 

The single objective optimization of Equation 30-b (sparks per unit length) has yielded a 

optimal value of 1.0541 for the parameter values of tool feed rate f=8µm/s, electrolyte 

velocity U=300 cm/s and voltage V=21 V. This optimal value and the corresponding 

parametric combination is same as those found by using other evolutionary algorithms by 

previous researchers.  

On comparative analysis of the table and the graph for the minimization of OC, it is 

found that the average normalised standard deviations for original TLBO algorithm is 

0.317677, Mutation based TLBO is 0.758275 and Replacing worst solutions with fresh ones 

gives 0.478566. It is of a note that in this particular optimization problem has outperformed 

the modifications proposed in this thesis. However for this problem it is seen that the next 

winner is the scheme of replacement by fresh solutions having less deviation followed by the 

mutation based TLBO algorithm.  

 

Maximization of MRR 

The material removal rate in this analysis is considered to be the same as the rate of 

tool feed. The expression for the material removal rate is simple and does not require use of 

an algorithm. However, given the relevant constraints the optimization was carried out by all 

the three schemes already discussed. 
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Figure 25 : Comparison graph for ECM-MRR-constrained 

The single objective optimization of Equation 30-c (material removal rate) has yielded a 

optimal value of 26.67 for the parameter values of tool feed rate f=26.088 µm/s, electrolyte 

velocity U=300 cm/s and voltage V=21 V. This optimal value and the corresponding 

parametric combination is same as those found by using other evolutionary algorithms by 

previous researchers.  

On comparative analysis of the Table 38 and the graph (see Figure 25) for this multi-

objective problem, it is found that the average normalised standard deviations for original 

TLBO algorithm is 0.028538, Mutation based TLBO is 0.012909 and Replacing worst 

solutions with fresh ones gives 0.236877. In this particular case it is found that Mutation 

based TLBO has performed better than original TLBO and the scheme of replacement by 

fresh solutions, in reaching the global optimal solution in the given number of iterations with 

near-zero normalised standard deviation.  

Table 29 : Combined results of all constrained optimization problems 

Examples original mutation fresh 

Welded beam design 0.182017 8.71E-07 0.508163 

Pressure vessel design 0.03341 0.000445 0.205302 

Tension Compression spring design 0.155941 0.141266 0.147421 

ECM-Material removal rate 0.212543 0.082417 0.064981 

ECM-Radial overcut 0.095662 4.89E-06 0.031149 

ECM-Multi objective 0.476929 6.79E-05 6.79E-05 

ECM-DA-constrained 0.000638 0.000478 0.000434 

ECM-Sparks-constrained 0.317677 0.758275 0.478566 

ECM-MRR-constrained 0.028538 0.012909 0.236877 
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Figure 26 : Results based on all examples 
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Chapter 7: Conclusions 

 

Mechanical elements are integral features of any equipment and structures. The competitive 

world today demands effective and efficient equipment and machinery which necessitates 

optimization to be carried out at every stage from conceptualization to manufacturing to 

reduce the cost and proper utilization of scarce resources. Although non-traditional 

optimization techniques have been used in the past to solve optimization problems in both 

design and manufacturing domain but these algorithms have their own limitations and 

drawbacks. Evolutionary algorithms can effectively address some of the limitations of 

traditional algorithms; hence widely applied in various fields of engineering with varying 

degree of success. The quality of solutions generated by these algorithms is highly 

dependent on the tuning of algorithmic parameters. All evolutionary algorithms such as GA, 

SA, ABC and others require algorithm specific parameters in addition to the common 

parameters of population size and number of generations. A change in these algorithmic 

parameters changes the overall effectiveness of the algorithm. To avoid this difficulty, a 

population based optimization algorithm and its improved versions are presented in this 

dissertation and have been applied to different optimization problems of design and 

manufacturing domain.  

The non-conventional machining is a complex process involving large number of parameters 

which makes the total machining process unpredictable and sensitive to the controlling 

parameters. Hence, it is imperative to know the correct optimal settings of the controlling 

parameters for a cost effective machining. In this thesis, three such processes have been 

considered in which the process control has been difficult due to a large number of 

parameters acting on each of the processes. The parametric optimization of electro-

discharge machining, electro-chemical machining and electro-chemical discharge machining 

were solved in this thesis using a new evolutionary algorithm TLBO. Both single and multi-

objective optimization of the process responses have been carried out for all the machining 

processes and comparison of results have been performed with other evolutionary 

algorithms in terms of function evaluations, number of algorithm specific parameters, and 

better optimal values. TLBO has outperformed its competitors in some or the other aspect as 

already presented and discussed in the preceding chapter. 

It was found that similar to some other evolutionary techniques, TLBO also had the tendency 

of loosing diversity after some iterations and thus an additional step was required in the 
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algorithm to create population diversity. Incorporation of artificial diversification in the 

population of solutions already used by other nature inspired algorithms can enhance the 

probability of escaping the local extremes. Artificial Immune System optimization technique 

uses Receptor Editing to provide an addition mean for creating diversification in the 

population. Bacteria Foraging optimization algorithm uses Elimination and Dispersal as its 

third step in the algorithm to reject/modify the worst solution in the population. In this thesis, 

a similar attempt was made and two modifications have been suggested. 

Further improvement in the existing TLBO algorithm has been incorporated using two 

schemes namely bit string mutation and replacement of worst solutions with fresh ones. 

Performance evaluation of these modifications have been presented in this dissertation by 

solving six optimization problems using original TLBO and proposed modifications. It has 

been found that better results are achieved in reaching the global optimal values by the use 

of these modifications. However, the results prefer the use of bit string mutation over scheme 

of replacing the worst solutions with fresh solutions in addition to the original logic of TLBO. 

The reason behind the success of proposed modifications lies in its ability to re-route the 

direction of search away from the region of worst solutions and towards the global ones. 

Such attempts not only reduces the futile computation efforts near the forbidden search 

space but also helps the algorithm in case it gets stuck at the local minima or maxima. This 

concept is similar to the concept of elitism but acts in an opposite way where the rejection of 

worst solution is done instead of saving the elite solutions. 

The proposed modifications have to be further extended to other engineering problems to 

check for the suitability and robustness. A large amount of research work is required to 

properly establish the results obtained by this thesis which could not be done due to time 

constraints. 
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Chapter 9: Annexure 

 

This section presents a manual for using the developed code in Matlab 7.0. All the files 

used by Matlab to successfully run the optimization code are briefly described and 

instructions are provided lest any modifications are required in the existing code. 

This section will be useful to those wishing to fathom or use the logical coding of the 

optimizing software. It is to be noted that though this code can be further developed to solve 

very large scale problems, but presently this code is limited to solve only 2 to 4 variables 

problems involving any number of constraints. Following is the list of all the function and 

script files used by Matlab. The user intending to use the program should ensure availability 

of all these files in the current folder of the Matlab. 

 

 

 

 

  

 

Figure 27 : Snapshot of files used by Matlab 

 

Along with the Matlab files excel files are also required at some instances in the 

program, however the user can use other excel files with different names, provided he knows 

the syntax of xlswrite( ) and xlswrite( ) functions. These functions are inbuilt in the Matlab 

and account for import and export of data to excel files. All the necessary files have been 

briefly discussed below, and the user is expected to be thorough with them before attempting 
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the use of the optimization code. Any changes to the existing code elsewhere may be 

erroneous unless the user is suitably conversed with Matlab programming. 

 

Filename :cost.m 

This is a function file in Matlab where the input is the array of all the subjects and the 

number of learners associated with it. The function output is the cost array for all the 

learners. The term cost is used at many instances and in many forms, and it is to be noted 

that it analogous to the value of objective function defined for the current optimization 

problem. 

 

In the Figure above sub1, sub2, sub3, sub4 are the array of subjects and no_learners is the 

number of learners for the current problems. 

 

Filename :first_mod.m 

This is a function file in Matlab which holds the logic of the Teaching Learning based 

optimization algorithm. The initial population along with the cost array is fed to this function to 

receive the final population and its cost array. A single execution of this function incorporates 

both the Teachers phase and Learners phase to the input population and serves as a single 

generation for the TLBO algorithm. 

 

Constant teaching factor has been used during the complete execution of the algorithm. The 

value of teaching factor (TF) can be altered for the algorithm here at line # 54. The value of 

TF generally lies between 1 and 2. No other controlling parameter exists in this file, and thus 

no alteration should be done in the remaining codes, for the successful execution of this file. 

 

Filename :fun_value.m 

This is a function file in Matlab which holds the objective function or cost function. 

 

The design variables are named as sub1, sub2, sub 3 and so on. The function inputs the 

values of design variables and calculates the cost or the objective function value for the 

presented combination of design variables. 

 

Filename : gen_pop_sub1.m 

This function file creates initial population for all the subjects and returns an array. The 

input parameters are low limit, high limit and the number of learners. A population is created 
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based on the Gaussian Distribution. Certainly this function file is used a number of times in 

the program execution basad on the number of subjects or design variables. 

 

Above is the snapshot of the code used to generate the population. It is to be noted that an 

array of normalised random number is used to create a population between 0 and 1, and this 

population is further used to create initial popouation between the low and high limits. 

 

Filename :multi_runs.m 

This is a script file which reads user data from an excel sheet run_data.xlsx and based 

on the user data runs the master script file run.m for multiple times and returns back the 

program data to another excel file results.xlsx. The use of this script is to automate the 

generation of data for comparison between the different schemes of optimization algorithm. 

 

It should be noted that for exporting data into an excel sheet a special function xlswrite1(~)is 

used. This function is a modified version of xlswrite(~) which is found inbuilt in the Matlab 

library. 

 

Filename :mutation_binary.m 

This function is used to augment the proposed modification of bit string mutation with the 

existing TLBO algorithm. This function inputs the final population generated at the end of 

each iteration and outputs the modified population array. 

 

It is possible to alter the mutation probability in this function. It can be seen that in Line 7 a 

mutation probability of 0.2 is assigned to the variable Pm. The user is strictly advised to use 

a low mutation probability value in the code for good results. 
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Filename :run.m 

This is the master script file which controls all the inputs and outputs of the program. The 

optimization algorithm commences with the execution of this file. The user is advised to clear 

all existing variables before the execution of this script file. 

 

As seen in the above snapshot lines 16 and 17 controls the output options which are in 

addition to the results generated in the Matlab command window. 

 If the Boolean variable write2excel is assigned a value true, the program exports all the data 

to an excel file named main.xls. All the data generated during the Teacher and the Learner 

phase are written in this excel file for every generation completed. Each generation is 

properly numbered and uses a different sheet. The exportation of data can be seen online in 

the excel window as the program advances though all its generations. The writing of huge 

amounts of data in excel file requires CPU usage and hence the execution speed of the 

algorithm is affected. 

 

If the Boolean variable write2graph is assigned a value true, the program start plotting 

an online graph where the minimum value, maximum value and the average value of the 

cost array at the end of every generation is plotted. This online graphical output also slows 

down the execution of the program. 

 

Regeneration of the results is required for a comparative analysis and as random numbers 

are employed in the algorithm, a seed value is used to recreate the set of random numbers. 

 

In line # 51 it can be seen that a variable xxx(1) is assigned as seed value. This xxx variable 

value is currently imported from the excel file run_data.xlsx 

 

The snapshot below declares the input of low and high limits for each subject or design 

variable and the number of learners in the population. 
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In the line # 53 variable no_learners is assigned a numerical value which decides the 

number of learners in the optimization problem considered. It is imperative to know that the 

program code is limited to the use of only even numbers for this variable. In line numbers 54 

to 57 low limit and high limits are entered for each subject respectively. 

 

The ‘for’ loop starting at line # 68 as shown below decides on the maximum number of 

generations for the algorithm. In the napshot below it can be seen that presently the 

maximum number of generations is kept at 1000. 

 

The value can assume only positive integer values and can be directly changed in the code 

before the execution of the script file. 

 

Lines 87 to 90 are currently formatted as a comment as shown in the snapshot below. 

These lines can be uncommented and used if a comparative analysis is to be performed 

based on already published results. 

 

The above set of codes halts the optimization algorithm as soon as an already published 

optimal value is generated within the final population at the end of generation. During such 

halt of the algorithm the results displays the total number of generation in which the optimal 

value was achieved by the optimizing algorithm. 

 

Filename : worst2fresh.m 

This function is used to implement the proposed modification where the worst solution in 

the population is replaced by fresh solutions. This function inputs the final population 

generated at the end of each iteration and outputs the modified population array. 

 

It is possible to alter the selection probability in this function. It can be seen that in Line 7 a 

selection probability of 0.2 is assigned to the variable Pm. The user is strictly advised to use 

a low selection probability value in the code for good results. 

 

Filename : xlswrite1.m 

This is a modified version of xlswrite(~) function which is found inbuilt in Matlab library. 

This function opens and closes the excel file for each instance of data export. The algorithm 
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used for the optimization has numerous instances where data is to be written in excel files. In 

using this modified function, the excel file is opened at the start of the program run and is 

closed only after successful completion of all the generations. This modification is necessary 

to speed up the writing process in excel files. 

 

 

 

 

 


