
Test Case Generation From

UML Interaction Overview Diagram

and Sequence Diagram

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Deepak Kumar Meena

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008, India

June 2013

Test case generation from

UML Interaction Overview Diagram

and sequence Diagram

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Deepak Kumar Meena
(Roll- 211CS3072)

Under the guidance of

Prof. Ramesh Kumar Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008, India

June 2013

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled �Test Case Generation

from UML Interaction Overview Diagram and Sequence Diagram �
submitted by Deepak Kumar Meena is a record of an original research work

carried out by him under my supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science and Engineering with the specialization of Software Engineering in the de-

partment of Computer Science and Engineering, National Institute of Technology

Rourkela. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Place: NIT Rourkela Prof. Ramesh Kumar Mohapatra
Date:June 2013 Dept. of Computer Science and Engineering

National Institute of Technology, Rourkela
Odisha-769008

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. Ramesh Kumar Mohapatra for his advice during my thesis work. As my

supervisor, he has constantly encouraged me to remain focused on achieving my

goal. His observations and comments helped me to establish the overall direction

of the research and to move forward with investigation in depth. She has helped

me greatly and been a source of knowledge.

I am very much indebted to Prof. Ashok Kumar Turuk, Head-CSE, for his

continuous encouragement and support. He is always ready to help with a smile.

I am also thankful to all the professors of the department for their support.

I am really thankful to my all friends and Research Scholars. My sincere thanks

to everyone who has provided me with kind words, a welcome ear, new ideas, use-

ful criticism, or their invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Depart-

ment who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Deepak Kumar Meena

Email : deepakmeena.iiita@gmail.com

Abstract

The most important part of the testing attempts is the test case generation.

Unified modeling language(UML) is the most generally used to describe design

specification and analysis by both academic and industry. UML models offer a lot

of information that should not be ignored in testing.

Testing of software is a time-consuming activity which requires a great deal

of planning and resources. In scenario-based testing, test scenarios are used for

generating test cases, test drivers etc. By combining different UML components,

different views of the program under test are used. UML provides the capability

to enhance (explore) the static structure and dynamic behavior of a software

system. Different UML strategies and techniques are implemented during the

whole software development life cycle. Therefore UML becomes the source of test

case generation. The main problems in testing object oriented programs is test

case selection, it is impossible to stimulate the program with all data of the input

domain.

A pragmatic approach is to concentrate on typical message sequences as mod-

eled using the sequence diagram. Testing based on sequence diagrams seems to

be intuitive. Each sequence diagram specifies one test case or set of test cases.

We proposed a method generate test cases using Interaction Overview diagram

and sequence diagram. Our work considers interaction operators of UML 2.0 Se-

quence diagram like alt , loop par to generate test cases. First we construct the SD

and Interaction Overview diagram for the given problem .After this we generate

XMI code for these diagram using magic draw software ,its generate ID’s of all

nodes and all paths. Then we developed an intermediate graph, named UML in-

teraction graph(UIG) and message dependency graph of sequence diagram. From

the generated UIG, we generate different case, for represent different scenarios.

The generated test cases achieve message path coverage.

Keywords: UML models, sequence diagram, interaction overview diagram, com-

bined fragment, UML interaction graph, test cases.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

List of Abbreviations ix

1 Introduction 2

1.1 Motivation . 3

1.2 Problem Definition . 4

1.3 Thesis Organization . 4

2 Related Work 6

3 UML Models 9

3.1 UML 2.0 Sequence Diagram . 9

3.2 Interaction overview Diagram . 10

4 BASIC CONCEPT AND TEST ADEQUACY CRITERION 12

4.1 Test case (TS) . 12

4.2 Message path coverage criterion . 12

4.3 Basic Interaction Coverage Criterion 13

4.4 Cyclomatic Complexity . 13

5 Proposed Approach 15

5.1 UML Interaction Graph . 15

5.2 Intermediate Representation . 21

v

5.3 Test case Generation . 21

5.3.1 Algorithm . 24

5.4 WORKING OF OUR ALGORITHM 26

6 Conclusion and Scope of Future Work 30

Bibliography 32

List of Figures

5.1 UML 2.0 sequence diagram for ATM withdraw use case 17

5.2 Snapshot of XMI code of sequence diagram 18

5.3 Message Dependency Graph for Sequence Diagram 19

5.4 Interaction Overview Diagram for ATM withdraw activity 20

5.5 Snapshot of XMI code of Interation Overview Diagram 21

5.6 Control Flow Graph for Interaction Overview Diagram 22

5.7 UML Interaction Graph (UIG) for ATM withdraw use case 23

5.8 A snapshot of program . 28

vii

List of Tables

5.1 Extracted message dependency from the sequence diagram 16

5.2 Extracted control flow from the Interaction Overview diagram . . . 21

5.3 Valid Paths . 26

5.4 Generated Test cases corresponding to the Paths 27

viii

List of Abbreviations

UML Unified Modeling Language

IOD Interaction Overview Diagram

SD Sequence Diagram

TS Test Case

UIG UML Interaction Graph

ATM Automated Teller Machine

STC Set of Test Cases

STCID Set of Test Cases from Interaction Diagrams

Chapter 1

Introduction

Motivation and Objectives

Problem Definition

Thesis Organization

Chapter 1

Introduction

Software testing is an important and an expensive process when developing a

system. Software testing is a process in which defects are identified and subjected

for rectification and finally make sure that all the defects are rectified, and ensure

that the product is a quality product. Creation of test cases is possibly the most

difficult step in testing. Test cases are commonly designed based on program

source code. Therefore, designing a large number of test cases and carrying out the

tests turn out to be very labor-intensive and time consuming. To reduce testing

cost, test case generation from design documents has the added advantage of

allowing test cases to be available early in the software development cycle, thereby

making test planning more effective. The Unified Modeling Language (UML)

is a general-purpose visual modeling language that is used to specify, visualize,

construct, and document the artifacts of a software system.

In this thesis, we propose a test case generation method using interaction

overview diagram and sequence diagram (SD). Sequence diagram are used for

modeling the dynamic aspects of the system. SD represents the behavioral aspects

of a system because they show how the messages are exchanged among objects.

Interaction overview diagram can picture a control flow with nodes which contain

visualizing of a sequence of activities. It shows dependency between the important

sequences of a system, which can be presented by an activity diagram.

We use sequence diagram and interaction diagram as a source of test case gen-

eration. Our generated test suite aims to cover various interaction faults as well

as scenario faults. For generating test data, sequence diagram alone may not be

2

1.1 Motivation

enough to decide the different components, i.e input, expected output pre condi-

tion and post condition of a test case. We propose to collect this information from

the use case template, class diagram and data dictionary. These are associated

with the use case for which the sequence diagram is considered in our work.

UML 2.0 SD combines multiple scenarios by the help of combined (interaction)

fragments. There are different types of combined fragments in UML 2.x such as

loop, alt and par. Execution of combined fragment is controlled by an operator

called interaction operator. Interaction overview diagram can picture a control

flow with nodes which contain visualizing of a sequence of activities. It shows

dependency between the important sequences of a system, which can be presented

by an activity diagram. In our approach, we transform sequence diagram and

interaction overview diagram into an intermediate graph using XMI Code. This

intermediate representation is called UML Interaction Graph (UIG) and message

dependency graph of sequence diagram. From the intermediate graph, we generate

different test cases, which represent different scenarios. In this thesis, we use UML

diagrams to represent concurrent activities and generate test scenarios.

1.1 Motivation

Today’s world software systems and their designs grow larger and more complex

and this trend likely to continue in the near future. The only constant factor is that

high quality of a software system is required. There is a relation between quality

of a design and the quality of a system. If the software is bigger and complex then

we need check that it works for all inputs and satisfys all the condition in software

, that’s why we need software testing.

Software testing is an important and an expensive process when developing a

system. Software testing is a process in which defects are identified and subjected

for rectification and finally make sure that all the defects are rectified, and ensure

that the product is a quality product. Creation of test cases is possibly the most

difficult step in testing. Test cases are commonly designed based on program

source code. In our thesis we generate test case from UML interaction overview

3

1.3 Thesis Organization

diagram and Sequence diagram. Where sequence diagram provides the dynamic

view of a system and interaction overview diagram describes control flow among

nodes.

1.2 Problem Definition

This thesis work focuses generating test cases for ATM problem. First we draw

UML interaction overview diagram and sequence diagram for ATM problem. From

IOD and SD we draw control flow graph and XMI code. With the help of XMI

code and control flow graph we generate java code. From this java code we find

all possible valid path. After generated all valid path we generated test cases for

these valid paths.

1.3 Thesis Organization

The rest of the thesis is organized as follows: A literature survey is being carried

out in chapter 2. We have discussed UML models in chapter 3. Basic concept

and test case adequacy have been discussed in chapter 4. Proposed approach

have been discussed in chapter 5. In chapter 6 we gave conclusions , scope for

the future work an also the limitations are discussed.

4

Chapter 2

Related Work

Chapter 2

Related Work

Many testing techniques are developed to generate tests from different UML dia-

grams [4] [6] [8] [10] [13]. Abdurazik and Offut et al. [7] developed a technique to

generate test cases from UML state diagrams, which helps performing class-level

testing but do not address test case generation. Kim et al. [15] us present a ap-

proach to generate test cases from UML activity diagram. Sharma et al. [1] have

used SD (Sequence Diagram) for generating the test cases. In their work they

have converted the SD into sequence diagram graph (SDG), and then traversed

the SDG to generate the test cases. Swain et al. [3] have proposed a method

for generating the test cases using sequence diagram and activity diagram. First

they have converted the sequence diagram and activity diagram into model flow

graph (MFG) to show the behavioral aspects. Then, they have generated the test

cases from the MFG. This is a very complex task. Nayak et al. [9] in their pro-

posed method have converted the SD into SCG (Structure Composite Graph) for

test case generation. Samuel et al. [2] in their work they proposed a method for

generating test cases from SD by transforming into Sequence Dependency Graph

(SDG). Then, the SDG is traversed to generate test cases. Li Bao-Lin et al. [5]

have proposed a method to generate test cases with the combination of SD and

OCL expression. In this method, first they have constructed a tree for represent-

ing the SD, then traversed the SD for generating the test cases. In [10], sequence

diagrams are combined with pre conditions and post conditions for the referenced

methods. The paper proposes three different techniques for initializing objects,

but all of these involve initialization from outside, e.g. based on a database of

6

objects. Linzhang et al. [11] proposed a method to automatically generate test

cases from UML activity diagrams using a gray-box method. In their method

they generated test cases directly from UML activity diagrams. Their proposed

method described the advantage of black box testing to analyze the expected ex-

ternal behavior and white box testing to cover the internal structure of the activity

diagram of the system under test to generate test cases. Briand and Labiche [6]

generated functional system test requirements from UML analysis artifacts such

as use cases, their corresponding sequence and collaboration diagrams, class dia-

grams and OCL used in all these artifacts. But, then did not generate test cases.

In Gnesi et al. [16] an approach for formal test case generation from UML state

charts is proposed. In contrast with the above discussed approaches, we generate

actual test cases from combination of sequence diagram and interaction overview

diagrams. As we use interaction diagrams therefore it detects interaction faults.

In our approach, no redundant test cases are generated. As compare to other re-

lated work, in our approach, we have proposed a method for generating test cases

for concurrent systems.

7

Chapter 3

UML Models

UML 2.0 Sequence Diagram

Interaction overview Diagram

Chapter 3

UML Models

3.1 UML 2.0 Sequence Diagram

Sequence diagram provides the dynamic view of a system. An important charac-

teristic of a sequence diagram is that time passes from top to bottom, the inter-

action starts near the top of the diagram and ends at the bottom. A sequence

diagram shows object interactions arranged in time sequence. It represents various

possible interactions among different objects during an operation. There are 12

types of combined fragments in UML 2.0. A combined fragment has one or more

processing sequence. Each combined fragment has one operator called interaction

operator, one or more operands called interaction operands and zero or more guard

conditions. Depending on the guard condition, the decision is made on what all

operands need to be processed. UML sequence diagrams represent concurrency

through the par combined fragment.

Loop (minint , maxint , [guard])-The loop operand will be repeated a num-

ber of times.

minint-the interaction must loop at least this number of times.

maxint (optional)-the interaction may not loop more than this number of times.

[guard] (optional)-after the first minint iterations, the condition is tested before

each additional loop iteration , if the condition is false, then the loop is abandoned.

alt : The interaction operator alt means that the combined fragment represents a

choice or alternatives of behavior. It selects one interaction to be executed from a

set of interactions ,the selected interaction follows a true [guard] condition or an

9

3.2 Interaction overview Diagram

[else] condition if none of the guard conditions are true (think of it as the case of

if statements);guards are specified over the lifeline of the object which eventually

contains the evaluated variable(s).

par : The interaction operator par defines potentially parallel execution of be-

haviors of the operands. Parameters are optional (they can be used if the diagram

behaves in different ways) when they referred in different occurrences.

Sequence diagrams are sometimes called event diagrams, event scenarios, and

timing diagram. A sequence diagram shows, as parallel vertical lines (lifelines),

different processes or objects that live simultaneously, and as horizontal arrows,

the messages exchanged between them, in the order in which they occur. This

allows the specification of simple run time scenarios in a graphical manner.

3.2 Interaction overview Diagram

Interaction overview diagram describes control flow among nodes. It can show

dependency between the important sequence of system, which can be presented

by activity diagram. Interaction overview diagram can be defined by tuple

IOD =< n0, nf, F,D, I, E > where

N: initial node

N: nf1,nf2....... nfn set of final nodes

F:Set of fork nodes

D:Set of decision node

I:Set of interaction node

E:Edge connecting the IOD nodes

10

Chapter 4

BASIC CONCEPT AND
TEST ADEQUACY CRITERION

Test case (TS)

Message path coverage criterion

Basic Interaction Coverage Criterion

Cyclomatic Complexity

Chapter 4

BASIC CONCEPT AND TEST
ADEQUACY CRITERION

4.1 Test case (TS)

A test case is the triplet T [I,D,O] where I is the initial state of the system at

which the test data is input, D is the test data input to the system, and O is the

expected output of the system. [12]

A perfect test data must satisfy all specifications i.e. namely it must satisfy

all test adequacy criterion. A test adequacy criterion helps to decide whether a

set of test cases are sufficient, for software under testing. A testing criterion is a

rule or a collection of rules which tells us the requirements that a set of test cases

should satisfy.

4.2 Message path coverage criterion

A message sequence path represents the behavior to be tested and describes the

interactions among the objects necessary to realize the corresponding functionality.

Given a test set TS and a sequence diagram SD, in order to satisfy the message

path criterion, it is required that TS must cause each possible message path in SD

to be taken at least once [5]. A message sequence path begins at the entry of the

tree and ends at the exit node. A message path is an overall process of message

sending.

12

4.4 Cyclomatic Complexity

4.3 Basic Interaction Coverage Criterion

A basic path is a complete path through an interaction overview diagram where

each loop is exercised either zero or one time. This ensures that all iterations in

an interaction overview diagram are exercised.

4.4 Cyclomatic Complexity

Cyclomatic complexity [14] defines the number of independent paths in the ba-

sic set of a program. Cyclomatic complexity (or conditional complexity) is a

software metric (measurement). It was developed by Thomas J. Mccabe Sr. in

1976 and is used to indicate the complexity of a program. It directly measures

the number of linearly independent paths through a program source code. Cyclo-

matic complexity is computed using the control flow graph of the program: the

nodes of the graph correspond to indivisible groups of commands of a program,

and a directed edge connects two nodes if the second command might be executed

immediately after the first command. Cyclomatic complexity may also be applied

to individual functions, modules, methods or classes within a program.

M=E-N+2P

Where

M=Complexity

E=The number of edges of the graph

N=The number of nodes in the graph

P=The number of connected components (exit nodes).

13

Chapter 5

Proposed Approach

UML Interaction Graph

Chapter 5

Proposed Approach

In our proposed approach, we have taken UML 2.0 sequence diagram and interac-

tion overview diagram as input, because SD allows the complex scenarios to repre-

sent in one sequence diagram and IOD describes control flow among nodes. First,

we draw the sequence diagram (SD) and interaction overview diagram (IOD), af-

ter this we generate XMI code for these diagram. From XMI code we get IDs of

all objects and sequence(path). After that we transform these diagrams into a

graphical representation named UML Interaction Graph (UIG) using XMI ID’s.

Next, we calculate all possible paths from graph. Now , we create JAVA code for

ATM problem using XMI ID’S. Then we generate the test cases . After that we

insert all input values and conditions in our code and check that are satisfied or

not.

5.1 UML Interaction Graph

An UIG is generated from the sequence diagram and interaction overview diagram

which represents the possible control flow and message dependency between nodes.

For construction of UIG, we use two tables to show message dependency and

control flow between nodes. Then, we generate test cases using UIG.

Figure 1 shows the sequence diagram for the ATM (Automated Teller Machine)

withdraws use case. Using an ATM, customers can access their bank accounts in

order to make cash withdrawals, credit card cash advances, and check their ac-

count balances. The valid card users can access the ATM system. After validation

15

5.1 UML Interaction Graph

of card, PIN verification is done. The ATM system then sends the amount and

the account number to the bank system. The bank system retrieves the current

balance of the corresponding account and compares it with the entered amount.

If balance amount is greater than the entered amount then the amount can be

withdrawn and the bank system returns true otherwise returns false. Depending

on the return value, the ATM machine dispenses the cash and prints receipts or

displays the failure message.

Methods between objects
A1 card Info()
A2 Ask for PIN()
A3 Display Invalid Card ()
A4 Request PIN()
A5 Display Invalid PIN()
A6 PIN verified()
A7 Request for enter amount()
A8 Enter Amount()
A9 Display Error Message()
A10 Withdraw process()
A11 Display Error Message()
A12 Dispense Cash()
A13 Dispense Cash()
A14 Print Receipt()
A15 End

Table 5.1: Extracted message dependency from the sequence diagram

After that we generate XMI code from sequence diagram and show it in Figure

2. XMI code gives the IDs of all object and sequence(path). From XMI code we

find all possible paths in sequence diagram and after that we construct the UIG

for sequence diagram. With the help of XMI code we create java code , from this

code we can check our test cases.

16

5.1 UML Interaction Graph

Figure 5.1: UML 2.0 sequence diagram for ATM withdraw use case

17

5.1 UML Interaction Graph

Figure 5.2: Snapshot of XMI code of sequence diagram

With the help of Table 1 and XMI code , we generate message dependency graph

for the sequence diagram of Figure 1. Figure 3 shows the above graph.

Figure 4 shows the interaction overview diagram for ATM withdraws activity. It

represents the possible control flow between nodes.

Table 2 illustrates the control flow between the nodes extracted from the interac-

tion overview diagram.

After that we generate XMI code from interaction overview diagram and show it

in figure 5. XMI code gives the IDs of all object and sequence (path) . From XMI

code we find all possible paths in sequence diagram and after that we construct

the UIG for sequence diagram. With the help of XMI code we create java code ,

from this code we can check our test cases.

With the help of Table 2 and XMI code , we generate control flow graph for the

interaction overview diagram of Figure 4. Figure 6 shows the above graph.

18

5.1 UML Interaction Graph

Figure 5.3: Message Dependency Graph for Sequence Diagram

19

5.1 UML Interaction Graph

Figure 5.4: Interaction Overview Diagram for ATM withdraw activity

20

5.3 Test case Generation

Unique Identity Number Interaction Nodes
B1 Insert a card
B2 Invalid Card
B3 Request PIN ()
B4 Invalid PIN
B5 Enter Amount
B6 Validate Amount
B7 Display Error message
B8 Update balance
B9 Dispense Cash
B10 End

Table 5.2: Extracted control flow from the Interaction Overview diagram

Figure 5.5: Snapshot of XMI code of Interation Overview Diagram

5.2 Intermediate Representation

With the help of message dependency graph and control flow graph, we construct

the UML Interaction Graph (UIG).

5.3 Test case Generation

Testing requires executing a program on a set of test cases and comparing the

actual results with the expected results. A test case consists of a test input value,

its expected output and the constraints, i.e. the pre condition and post condition

for that input value [12]. In this section, we propose an algorithm to generate test

cases. After constructing the UML Interaction Graph (UIG), we traverse the UIG

21

5.3 Test case Generation

Figure 5.6: Control Flow Graph for Interaction Overview Diagram

22

5.3 Test case Generation

Figure 5.7: UML Interaction Graph (UIG) for ATM withdraw use case

23

5.3 Test case Generation

for generation of the test cases. Now we present our proposed methodology for

test case generation, in pseudo code form.

5.3.1 Algorithm

Algorithm 1: Set of Test Cases from Interaction Diagrams (STCID) Input : UML

Interaction Graph (UIG)

Output : Set of test cases (STC) Steps

1. Itemize nodes of the graph UIG

2. Create initial node i.e. (In) = current node (Cn)

3. While (In! =Ln) where Ln =last node

4. Evaluate TCi = < TID, PreCond, I/P , O/P, PostCond >

i. Get test case ID (TID)

ii. Add pre condition value for statei

iii. Add input values for statei

iv. Add output values for statei

v. Add post condition value for statei

5. If parallel nodes is present, then

Call ConcurrentTestCaseGeneration(CTG)

6. End If

7. STC = combination of TCi

8. In= Sn where Sn = Succeeding node

9. If (In= =Ln) then

UpdatePath of UIG

10. EndWhile

11. Return the SetofTestCases(STC)

12. Exit

24

5.3 Test case Generation

Algorithm 2: ConcurrentTestCaseGeneration(CTG)

Input: Concurrent Graph (CG) of UIG

Priority []: priority of activities Output: TestSet (TS)

Steps:

1. For each node Ni do

2. Push Ni into queue

3. While (Ni!= Null)

4. If priority (Ni) > priority (all nodes) then

5. Evaluate TCi= < TID, PreCond, I/P , O/P, PostCond >

i. Get test case ID (TID)

ii. Add pre condition value for statei

iii. Add input values for statei

iv. Add output values for statei

v. Add post condition value for statei

6. Remove Ni from queue

7. TS = combination of TCi

8. EndIf

9. EndWhile

10. EndFor

11. Return TS

12. Exit

25

5.4 WORKING OF OUR ALGORITHM

5.4 WORKING OF OUR ALGORITHM

Figure 1 shows the sequence diagram of a simple ATM withdraw use case and

Figure 4 shows the interaction overview diagram for ATM withdraw activity. In

Figure 7, (i=1..12) denotes a state corresponding to the sequence diagram and

interaction overview diagram. In Algorithm 1, first we itemize all the paths, and

then traverse all the paths of UIG graph for test case generation. Then, Steps

3 to 10 are iterated for each path in the UIG. Step 4 determines test cases for

each iteration which consists pre conditions, input, output and post conditions.

Algorithm 2 is called when concurrent node is encountered. In algorithm 2, the

priority queue contains the concurrent nodes from the fork node. Priority of each

concurrent node is stored in priority queue. Here, we set priority for concurrent

process. A priority queue contains the combination of concurrent activities from

the fork node. If the priority of is greater than the priority of, then is a legal

path. In our example, we set the priority of (Update Balance) is greater than the

priority of (Dispense Cash) in Figure 7. So, is a legal path. By applying proposed

algorithms, we enumerate 5 different paths from the UIG graph and generate 5

test cases. Paths are given in Table 3.

Path ID Valid Paths
P1 Start->v1->v2->End
P2 Start->v1->v3->v4->End
P3 Start->v1->v3->v5->v6->v7->End
P4 Start->v1->v3->v5->v6->v8->v9->End
P5 Start->v1->v3->v5->v6->v8->->(v10,v11)->v12->End

Table 5.3: Valid Paths

Then we generated the test cases corresponding to each path according our

algorithms. The test cases are shown in Table 4.

26

5.4 WORKING OF OUR ALGORITHM

Test case ID Pre-condition Input Output Post-condition
TID1 ATM is idle and

displaying a wel-
come screen

Insert a card Not an ATM card,
Eject Card

Displays a welcome
screen

TID2 ATM is idle and
displaying a wel-
come screen

Insert a card, Enter
PIN

Valid ATM card,
Display message
(Invalid PIN),
Eject Card

Displays a welcome
screen

TID3 ATM is idle and
displaying a wel-
come scree.n

Insert a card, Enter
PIN, Enter amount

Valid ATM card,
Valid PIN, Dis-
play error message
(Amount should be
multiple of 100),
Eject Card

Displays a welcome
screen

TID4 ATM is idle and
displaying a wel-
come screen

Insert a card, En-
ter PIN, Enter valid
Amount, Amount
> balance

Valid ATM card,
Valid PIN, Display
error message (In-
sufficient Balance),
Eject Card

Displays a welcome
screen

TID5 ATM is idle and
displaying a wel-
come screen

Insert a card, En-
ter PIN, Enter valid
Amount, Amount
< balance

Valid ATM card,
Valid PIN, Dis-
play message
(Please Collect
your money), Up-
date Balance, Eject
Card

Displays a welcome
screen

Table 5.4: Generated Test cases corresponding to the Paths

27

5.4 WORKING OF OUR ALGORITHM

Implementation of our approach

We used StarUML to produce UML 2.x SD design artifact and MagicDraw v.

16.5 to produce IOD design artifact. We implemented our approach using Java

programming language in windows. A snapshot of sample output on a run over

the example of ATM withdraw use case is shown in Figure. 6

Figure 5.8: A snapshot of program

28

Chapter 6

Conclusion and Scope of Future Work

Chapter 6

Conclusion and Scope of Future
Work

We have proposed an approach to generate test cases from UML sequence diagram

and interaction overview diagram. Our approach first transformed the sequence

diagram and interaction overview diagram to an intermediate form called UML

interaction graph (UIG) using XMI code. Then, our approach has traversed the

graph to find the all valid path then we generate the test cases. Here, the message

dependency is identified using feature of UML 2.0 sequence diagrams called the

combined fragment. The information which are required for the test cases i.e.

input, output and states are recovered from the UIG. The test cases are suitable for

system testing and to detect interaction faults. In future, we want to optimize the

test cases for getting an appropriate amount of test cases by eliminating redundant

test cases.

30

Bibliography

Bibliography

[1] M. Sarma, D. Kundu and R. Mall, “Automatic Test Case Generation from

UML Sequence Diagrams”, In IEEE 15th International Conference on Ad-

vanced Computing and Communications, pp. 60-65, 2007.

[2] P. Samuel and A. T. Joseph, “Test Sequence Generation from UML Sequence

Diagrams”, , In IEEE Ninth ACIS International Conference on Software En-

gineering, Artificial Intelligence, Networking, and Parallel/Distributed Com-

puting,pp. 879-887, 2008.

[3] S. K. Swain and D. P. Mohapatra , “Test Case Generation from Behavioral

UML Models ”, International Journal of Computer Appli-cations,Volume-6,

pp. 5-11, September 2010.

[4] Emanuela G. Cartaxo, Francisco G. O. Neto and Patricia D. L. Machado,

“Test Case Generation by means of UML Sequence Diagrams and Labeled

Transition Systems ”, International Journal of Computer Applications,pp.

1292-1297, 2007.

[5] Li Bao-Lin, Li Zhi-shu, Li Qing and Chen Yan Hong, “Test Case auto-

matic Generation from UML Sequence Diagrams and OCL expression ”,

In IEEE International Conference on Computational Intelligence and Secu-

rity.,pp. 1048-1051, 2007.

[6] L. Briand and Y. Labiche, “A UML-Based Approach to System Testing ”,

Journal of Software and Systems Modeling, Springer Verlag, Volume-1, pp.

10-42, 2002.

32

Bibliography

[7] A. Abdurazik and J. Ofut, “Generating Tests from UML Specifications ”,

In the Proceedings of 2nd International Conference on Unified Modeling Lan-

guage (UML), Fort Collins, CO, 1999.

[8] S. K. Swain, D. P. Mohapatra and R. Mall , “Test case generation on use

case and sequence diagram ”, International Journal of Software Engineering,

Volume-3, pp. 2152, 2010.

[9] A. Nayak and D. Samanta , “Automatic test data synthesis using UML

sequence diagram ”, Journal of Object Technology,Volume-09, pp. 75-104,

2010. .

[10] F. Fraikin, and T. Leonhardt, “SEDITEC-testing based on sequence di-

agrams”, In Proceedings 17th IEEE International Conference on ASE,pp.

261266, 2002.

[11]] W.Linzhang, Y.Jiesong et al, “Generating Test Cases from UML Activity

Diagram based on Gray-Box Method ”, In Proceedings of the 11th Asia-

Pacific Software Engineering Conference (APSEC04),pp. 284-291, 2004.

[12] R. Mall . “Fundamentals of Software Engineering ”, Prentice Hall, 2nd edition

, 2003.

[13] “Object Constraint Language 2.0 is available from Object Mangement Groups

web site (http://www.omg.org/) ”,

[14] Ayan Nigam, Bhawna Nigam , Devendra Kumar Vatsa , “Generating all Nav-

igational Test Cases using Cyclomatic Complexity from Design Documents

for Mobile Application ”, International Journal of Computer Applications

(0975 8887), Volume 40 No.12, February 2012.

[15] H. Kim, S. Kang, J. Baik, and I. Ko. , “Test cases generation from

uml activity diagrams Application ”, Eighth ACIS International Confer-

ence on Software Engineering, Artificial Intelligence, Networking, and Paral-

lel/Distributed Computing, pages 556 561, 2007.

33

Bibliography

[16] S. Gnesi, D. Latella, M. Massink, and C. ISTI. , “Formal test-case generation

for uml statecharts ”, Proceedings of the Ninth IEEE International Conference

on Engineering Complex Computer Systems, pages 7584, Jan 2004.

34

