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ABSTRACT

In this thesis, we study the following topics in complex analysis:-

(a) Some basic results like Lebesegue’s covering lemma, Maximum modulus theorem and

Schwarz lemma.

(b)The basic principle of Normal Family; results like Roche’s theorem, Hurwitz theorem

and the Montel’s theorem.

(c) The basic theory regarding Harmonic functions.

Moreover, in this thesis we plan to focous on the advance theory of Harmonic functions.

We study Poisson kernel and it’s properties and finally we give the detail prove of the

Harnack’s theorem.
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NOTATION

English Symbols

R the set of real number.

C the complex plane.

D the unit disk {z ∈ C : |z| < 1}.

B(a,R) the closed ball center at a and radius R.

H(G) set of analytic functions in G.

A ⊂ B A is a proper subset of B.

v



CHAPTER 1

INTRODUCTION

In this thesis, we plan to focus mainly on the theory of Harmonic functions. In Chapter

2, we discuss some basic and standard results on complex analysis and we study Some

basic results like Lebesegue’s covering lemma, Maximum modulus theorem and Schwarz

lemma. In the beginning of chapter 3, we focus the spaces of continuous function. Then

we study on the Normal family, which will help us to understand the Montel’s Theorem.

In chapter 4, we plan to study the harmonic functions, Poisson kernel and the Harnack’s

theorem.
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CHAPTER 2

REVIEW OF SOME IMPORTANT RESULTS IN COMPLEX

ANALYSIS

In this chapter, we wish to revise some important results of Complex analysis. We start

with the Connectedness and Compactness of metic space. Next, we focus on some results

regarding compactness and connectedness of metic space. We also study the following

basic results: Heine-Borel theorem, Lebesgue covering lemma and schwarz’s lemma.

Definition 2.1 (Connectedness). Ametric space (X, d) is connected if the only subset

of X which are both open and closed are ϕ and X. If A ⊂ X then A is connected subset

of X if the metric space (A, d) is connected.

Example 2.2. :The set of real number i.e. R is connected.

Proposition 2.3. A set X ⊂ R is connected iff X is an interval.

Proof. suppose X = [a, b], where a,b∈ R. Let A ⊂ X be an open subset of X such

that a ∈ A and A ̸= X. We will show that A cannot also be closed and hence X must be

connected. Since A is open and a ∈ A there is an ϵ > 0 such that [a, a+ ϵ] ⊂ A. Let r =

sup{ϵ : [a, a+ ϵ) ⊂ A}

Claim: [a, a + ϵ) ⊂ A. Infact, if a ≤ x < a + r then, putting h = a + r − x > 0, by

the definition of supremum there is an ϵ with r − h < ϵ < r and [a, a + ϵ) ⊂ A. But

a ≤ x = a+ (r − h) < a+ ϵ implies x ∈ A and our claim is established.

However, a+ r ∈ A : for if, on the contrary, a+ r /∈ A then, by the openness of A, there

is a δ > 0 with [a + r, a + r + δ) ⊂ A, contradicting the definition of r. Now if A were

also closed then a + r ∈ B = X − A which is open. Hence we could find a δ > o such
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that (a+ r− δ, a+ r] ⊂ B, contradicting the above claim. Similarly we can prove this for

other intervals. �

Definition 2.4 (Compactness). A subset K of a metric space X is compact if for

every collection G of open sets in X with property K ⊂ (G : G ∈ G). A collection of set

G satisfying above condition is called a cover of K. If each member of G is an open set

it is called an open cover of K.

Example 2.5. :

(1) The empty set and finite sets are compact.

(2) The set D = {z ∈ C : |z| = 1} is not compact.

Proposition 2.6. Let K be a compact subset of X; then :

(a) K is closed;

(b) If F is closed and F ⊂ K then F is compact.

Proof. To prove part (a) we will show that K = K. Let x0 ∈ K. So ∃ B(x0; ϵ)∩K ̸=

ϕ for each ϵ > 0. Let Gn = X−B(x0;
1
n
) and suppose that x0 /∈ K. Then each Gn is open

and K ⊂
∞∪
n=1

Gn. Since K is compact there is an integer m such that K ⊂
m∪

n=1

Gn. But

G1 ⊂ G2 ⊂ ... so that K ⊂ Gm = X − B(x0;
1
m
).But this gives thatB(x0;

1
m
) ∩K = ϕ, a

contradiction. Thus K = K.

To prove part (b) let G be an open cover of F. Then, since F is closed. G ∪ {X − f} is

an open cover of K. Let G1, ..., Gn be sets inG such that K ⊂ G1 ∪ ... ∪ Gn ∪ (X − F ).

Clearly, F ⊂ G1 ∪ ... ∪Gn and so F is compact. �

Corollary 2.7. Every compact metric space is complete.

Definition 2.8 (sequentially compact). A metric space (X, d) is sequentially compact

if every sequence in X has a convergent subsequence .

Lemma 2.9 (Lebesgue’s covering Lemma). If (X, d) is sequentially compact and G is

an open cover of X then there is an ϵ > 0 such that if x is in X, there is a set G in G

with B(x; ϵ) ⊂ G.
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Proof. We will prove this lemma by method of contradiction. Suppose that G is an

open cover of X and no such ϵ > 0 can be found. In particularly, for every integer n

there is a point xn in X such that B(xn;
1
n
) is not contained in any set G in G. Since

X is sequentially compact there is a point x0 in X and a subsequence {xnk
} such that

lim
n→∞

xnk
= x0. Let G0 ∈ G such that x0 ∈ G0 and choose ϵ > 0 such that B(x0; ϵ) ⊂ G0.

Now let N be such that d(x0, xnk
) <

ϵ

2
∀ nk ≥ N . Let nk be any integer larger than both

N and
2

ϵ
and let y ∈ B(xnk

;
1

nk

). Then by triangle inequality

d(x,y) = d(x0, xnk
) + d(xnk

, y) <
ϵ

2
+

1

nk

< ϵ

That is B(xnk
; 1
nk
) ⊂ B(x0, ϵ) ⊂ G0. Which is a contradiction to fact that xn has a

convergent subsequence x0 in X. So our choice of xnk
is wrong. �

Remarks 2.10. The following are two common misinterpretation of Lebesgue’s cov-

ering Lemma:

(1) This lemma gives one ϵ > 0 such that for any x, B(x; ϵ) is contained in some member

of G.

(2) Also it is believed that for the ϵ > 0 obtained in the lemma, B(x; ϵ) is contained in

each G in G such that x ∈ G.

Theorem 2.11. Let (X, d) be a metric space; then the following are equivalent state-

ment:

(a) X is compact;

(b) Every infinite set in X has a limit point;

(c) X is sequentially compact;

(d) X is complete and for every ϵ > 0 there are a finite number of points x1, ..., xn in X

such that X =
n∪

k=1

B(xk; ϵ).

Theorem 2.12 (Heine-Borel Theorem). A subset K of Rn(n ≥ 1) is compact iff K is

closed and bounded.
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Theorem 2.13 (The Maximum principle). Let Ω ⊂ C and suppose α is in the interior

of Ω. We can therefore, choose a positive number ξ such that B(α, ξ) ⊂ Ω, it readily

follows that there is a point ξ in Ω with |ξ| > |α| i.e if α is a point in Ω with |ξ| > |α| for

each ξ in the set Ω then α belongs to ∂Ω.

Theorem 2.14 (Maximum Modulus theorem). If f is analytic in a region G and a

is a point in G with |f(a)| ≥ |f(z)| ∀z in G then f must be a constant function.

Theorem 2.15 (Schwarz’s lemma). Let D = {z : |z| < 1} and suppose f is analytic

on D with

(a) |f(z)| ≤ 1 for z in D.

(b) f(0) = 0.

Then |f ′
(0)| ≤ 1 and |f(z)| ≤ |z| ∀z ∈ D. Moreover if |f ′(0)| = 1 or |f(z)| = |z| for some

z ̸= 0 then there is a constant c, |c| < 1 such that f(w) = cw ∀ w in D.

Proof. Let define g : D → C by

g(z) =
f(z)

z
⇒ f ′(0) = g(0) for z ̸= 0,

then g is analytic in D. According to Maximum Modulus theorem for |z| ≤ r and

0 < r < 1, we have |g(z)| =
|f(z)|
|z|

≤ r−1, (∵ |f(z)| ≤ 1 ∀z ∈ D). As r→̌1, we

have |f(z)| ≤ |z| ∀ z ∈ D and |f ′(0)| = |g(0)| ≤ 1. If |f(z)| ≤ |z| for some z in D,

z = 0 or |f ′(0)| = 1, then |g| assumes its maximum value inside D. Then again by

applying maximum modulus theorem, |g(z)| ≡ c for some constant c with c = 1, since

|g(z)| = |f(z)|
|z|

= c, so we have f(z) = cz ∀ z ∈ D. �
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CHAPTER 3

NORMAL FAMILY AND MONTEL’S THEOREM

In this chapter, we discuss mainly about the spaces of analytic functions, Normal

family and the famous Montel’ Theorem. In the beginning of this chapter, we focus on

spaces of continuous function.

1. Spaces of Continuous functions

Proposition 3.1. If G is open in C. then there is a sequence {Kn} of compact subsets

of G such that G =
n∪

i=1

Ki. Moreover, the sets {Kn} can be chosen to satisfy the following

conditions:

(a) Kn ⊂ intKn+1.

(b) K ⊂ G and K compact implies K ⊂ kn for some n.

(c) Every component of C∞ −Kn contains a component of C∞ −G.

Proof. (a) For each positive integer n, let Kn = {z : |z| < n}∩{z : d(z,C−G) ≥ 1

n
}.

Since Kn is bounded and it is intersection of two closed subsets of C. So Kn is compact.

Now consider the set S = {z : |z| < n + 1} ∩ {z : d(z,C − G) ≥ 1

n+ 1
} is open. Hence

Kn ⊂ S and S ⊂ Kn+1. So Kn ⊂ int Kn. G is an open set, so G =
∞∪
n=1

Kn. Then we can

get G =
∞∪
n=1

intKn.

(b) If K is compact subset of G, then the set intKn form an open cover of K. So K ⊂ Kn

for some n.

(c) Now we ant to prove that every component of C∞−Kn contains a component of C∞−G.

The unbounded component of C∞ −Kn must contain ∞. So the component of C∞ −G
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which contains ∞. Also the unbounded component contains {z : |z| > n}. So if D is a

bounded component, it contains a point z with d(z,C−G) <
1

n
. According to definition

this gives a point w in C − G with |z − w| < 1

n
. But then z ∈ B

(
w;

1

n

)
⊂ C∞ − Kn;

since disks are connected and z is in the component D of C∞ − kn, B

(
w,

1

n

)
⊂ D. If D1

is the component of C∞ − D that contains w it follows that D1 ⊂ D. �

Proposition 3.2. C(G,Ω) is a metric space.

Proof. According to above theorem we have G =
∞∪
n=1

kn where kn is compact and

kn ⊂ intkn+1. Define ρn(f, g) = sup{d(f(z), g(z)) : z ∈ kn} for all functions f , g ∈

C(G,Ω).

(3.1) ρ(f, g) =
∞∑
n=1

(
1

2

)n(
ρn(f, g)

1 + ρn(f, g)

)
Now, first we have to show that the series in (3.1)is convergent, let t = ρn(f, g), then

t

1 + t
≤ 1. So the series in (3.1) dominated by the series

∞∑
n=1

(
1

2

)n

, which is a convergent

series . Now we have to show that ρ is a metric on C(G,Ω). It can be easily shown that

ρ(f, g) > 0, ρ(f, g) = 0 ⇔ f = g, ρ(f, g) = ρ(g, f). Now only we have to establish the

triangle inequality condition, i.e to show that ρ(f, g) ≤ ρ(f, h) + ρ(h, g). Since ρn(f, g) is

a metric space, so we have

ρn(f, g) ≤ ρn(f, h) + ρn(h, g)

⇒ ρn(f, g)

1 + ρn(f, g)
≤ ρn(f, h) + ρn(h, g)

1 + ρn(f, h) + ρn(h, g)
≤

(
ρn(f, h)

1 + ρn(f, h)

)
+

(
ρn(h, g)

1 + ρn(h, g)

)
⇒

∞∑
n=1

(
1

2

)n(
ρn(f, g)

1 + ρn(f, g)

)
≤

∞∑
n=1

(
1

2

)n(
ρn(f, h)

1 + ρn(f, h)

)
+

∞∑
n=1

(
1

2

)n(
ρn(h, g)

1 + ρn(h, g)

)
⇒ ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

So C(G,Ω) is a metric space. �

Lemma 3.3. Let the metric ρ be defined as (3.1). If ϵ > 0 is given then there is a

δ > 0 and a compact set K ⊂ G such that for f and g in C(G,Ω), sup{d(f(z), g(z)) : z ∈
7



K} < δ ⇒ ρ(f, g) < ϵ. Conversely, if δ > 0 and a compact set K are given, there is an

ϵ > 0 such that for f and g in C(G,Ω), ρ(f, g) < ϵ ⇒ sup{d(f(z), g(z)) : z ∈ K} < δ.

Proof. First we want to prove sup{d(f(z), g(z)) : z ∈ K} < δ ⇒ ρ(f, g) < ϵ.

Let ϵ > 0 is fixed and p be a positive number such that
∞∑

n=p+1

(
1

2

)n

<

(
1

2

)
ϵ and Put

K = Kn. Choose δ > 0 such that 0 ≤ t ≤ δ gives
t

1 + t
<

1

2
ϵ. Let f, g ∈ C(G,Ω) such

that sup{d(f(z), g(z)) : z ∈ K} < δ. Since Kn ⊂ Kp for 1 ≤ n ≤ p, 0 < ρn(f, g) <

δ for 1 ≤ n ≤ p. This gives
ρn(f, g)

1 + ρn(f, g)
<

(
1

2

)
ϵ. for 1 ≤ n ≤ p .Here,

ρ(f, g) =
∞∑
n=1

(
1

2

)n(
ρn(f, g)

1 + ρn(f, g)

)

=

p∑
n=1

(
1

2

)n(
ρn(f, g)

1 + ρn(f, g)

)
+

∞∑
n=p+1

(
1

2

)n(
ρn(f, g)

1 + ρn(f, g)

)

<

p∑
n=1

(
1

2

)n(
ϵ

2

)
+

ϵ

2

<
ϵ

2
+

ϵ

2
= ϵ.

Now, we want to prove ρ(f, g) < ϵ ⇒ sup{d(f(z), g(z)) : z ∈ K} < δ.

Let K and δ are given, Since G =
∞∪
n=1

kn =
∞∪
n=1

intKn and K is compact there is an integer

p ≥ 1 such that K ⊂ Kp; this gives ρp(f, g) ≥ sup{d(f(z), g(z)) : z ∈ K}. Choose ϵ > 0

such that 0 ≤ s ≤ 2pϵ.

⇒ s

1− s
<

2pϵ

1− 2pϵ
= δ ⇒ s

1− s
< δ

and for 0 ≤ t ≤ δ ⇒ t

1 + t
<

s

1 + s
= 2pϵ

So if ρp(f, g) < ϵ ⇒ ρp(f, g)

1 + ρp(f, g)
< 2pϵ

⇒ ρp(f, g) < δ ⇒ sup{d(f(z), g(z)) : z ∈ K} < δ

�
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2. Normal Family

Definition 3.4 (Normal family). A set F ⊂ C(G,Ω) is normal if each sequence in F

has a subsequence which converges to a function f in C(G,Ω).

Proposition 3.5. A set F ⊂ C(G,Ω) is normal iff for every compact set K ⊂ G

and δ > 0 there are function f1, ..., fn in F such that for f in F there is at least one k,

1 ≤ k ≤ n, with sup{d(f(z), fk(z)) : z ∈ K} < δ.

Proof. Suppose F is normal and let K and δ > 0 be given.By lemma 3.3 there is

an ϵ > 0 such that ρ(f, g) < ϵ ⇒ sup{d(f(z), g(z)) : z ∈ K} < δ holds. But since F̄ is

compact F is totally bounded. So there are f1, ..., fn in F such that F ⊂
n∪

k=1

{f : ρ(f, fk) <

ϵ} But from the choice of ϵ this gives

F ⊂
n∪

k=1

{f : d(f(z), fk(z)) < δ, z ∈ K}

that is F satisfies the condition of proposition.

Conversely, F satisfied the stated property. From this, it is follows that F also satisfies

this condition, assume that F is closed. But since C(G,Ω) is complete. And again using

3.3 it is follow that F is totally bounded . From theorem 2.11 F is compact and therefore

normal. �

Definition 3.6 (Equicontinuous at a point). A set F ⊂ C(G,Ω) is equicontinuous at

a point z0 ∈ G iff for every ϵ > 0 such that for |z − z0| < δ, d(f(z), f(z0)) < ϵ for every f

in F.

Definition 3.7 (Equicontinuous over a set). F is equicontinuous over a set E ∈ G

if for every ϵ > 0 there is a δ > 0 such that for z and z0 in F and |z − z0| < δ,

d(f(z), f(z0)) < ϵ ∀ f ∈ F.

Proposition 3.8. Suppose F ⊂ C(G,Ω) is equicontinuous at each point of G; then F

is equicontinuous over each compact subset of G.

9



Proof. Let K ⊂ G be compact and fix ϵ > 0. Then for each w in K there is a ωw > 0

such that d(f(w
′
), f(w)) <

ϵ

2
∀ f ∈ F whenever |w = w

′| < δw. Now {B(w; δw) : w ∈ K

from an cover of K; by lemma 2.9 there is a δ > 0 such that each z ∈ K,B(z; δ) is

contained in one of the sets of the cover so if z and z′ are in K and |z − z′| < δ there is a

w in K with z′ ∈ B(z; δ) ⊂ B(w, δw). That is, |z − w| < δw and |z − z
′ | < δw. This gives

d(f(z), f(w)) <
ϵ

2
and d(f(z′), f(w)) <

ϵ

2
. So that

d(f(z), f(z′)) < d(f(z), f(w)) + d(f(z′), f(w))

<
ϵ

2
+

ϵ

2
= ϵ

and F is equicontinuous over K. �

Theorem 3.9 (Arzela-Ascoli theorem). A set F ⊂ C(G,Ω) is normal iff the following

two conditions are satisfied:

(a) For each z ∈ G,{f(z) : f ∈ F} has compact closure in Ω.

(b) F is equicontinuous at each point of G.

3. Montel’s Theorem

In this section we discuss about some results in spaces of holomorphic functions, which

help for proving famous Montel’s theorem.

Theorem 3.10 (Rouche’s Theorem). Suppose f and g are meromorphic in a neighbor-

hood of B(a;R) with no zeros or poles on the circle γ = {z : |z−a| = R}. If zf , zg (pf ,pg)

are the number of zeros(poles) of f , g inside γ counted according to their multiplicities

and if |f(z) + g(z)| < |f(z)|+ |g(z)| on γ, then Zf − Pf = Zg − Pg.

Proof. If λ =
f(z)

g(z)
and if λ is a positive real number, then this inequality becomes

λ + 1 < λ + 1. This is a contradiction, hence the meromorphic function
f

g
maps γ onto

Ω = C − [0,∞). If l is a branch of the logarithm on Ω, then l

(
f(z)

g(z)

)
is well-defined

10



primitive for

(
f

g′

)(
f

g−1

)
in a neighborhood of γ.Thus

0 =
1

2πi

∫
γ

(f/g)
′
(f/g)−1

=
1

2πi

∫
γ

[f ′

f
− g

′

g

]
= (Zf − Pf )− (Zg − Pg).

So we have Zf − Pf = Zg − Pg. �

Theorem 3.11 (Hurwitz’s Theorem). Let G be a region and suppose the sequence

{fn} in H(G) converges to f . If f ̸≡ 0 , B(a;R) and f(z) ̸= 0 for |z − a| = R, then

there is an integer N such that for n ≥ N , f and {fn} have the same number of zeros in

B(a;R).

Proof. Let G be a region and {fn} in H(G) converges to f . Since f(z) ̸= 0 ∀ |z−a| =

R, let δ = inf{|f(z)| : |z − a| = R} > 0. But {fn} → f uniformly on |z| : |z − a| = R.

So there is an integer N such that if n ≥ N and |z − a| = R, then

|f(z)− fn(z)| <
1

2
δ < |f(z)| ≤ |f(z)|+ |fn(z)|.

According to Rouche’s theorem f and {fn} have same number of zeros in B(a;R). �

Definition 3.12 (Locally bounded). A set F ⊂ H(G) is locally bounded if for each

point a in G there are constants M and r > 0 such that for all f in F, |f(z)| ≤ M , for

|z − a| < r that is sup{f(z) : |z − a| < r, f ∈ F} < ∞.

Theorem 3.13 (Montel’s Theorem). A family F in H(G) is normal iff F is locally

bounded.

Proof. Suppose F is normal but fails to be locally bounded; then there is a compact

set K ∈ G such that sup{|f(z)| : z ∈ k, f ∈ F} = ∞. that is, there is a sequence {fn} in F

such that sup{|f(z)| : z ∈ k} ≥ n. Since F is normal there is a function f in H(G) and a

11



subsequence {fnk
} such that fnk

→ f . But this gives that sup{|fnk
(z)−f(z)| : z ∈ k} → 0

as K → ∞. If |f(z)| ≤ M for z in K,

nk ≤ sup{|fnk
(z)− f(z)| : z ∈ k}+M.

Since the right hand side converges to M , so this is a contradiction. So F is locally

bounded.

conversely, suppose F is locally bounded. Here we use Arzela-Ascoli theorem to show F

is normal and from (a) of theorem 3.9 the first condition is satisfied. Now only we have

to prove F is equicontinuous at each point of G. Let fix a point a ∈ G and ϵ > 0, so

according to hypothesis ∃ r > 0 and M > 0 such that B(a; r) ⊂ G and |f(z)| ≤ M

∀z ∈ B(a; r) and ∀ f ∈ F. Let |z − a| < 1
2
r and f ∈ F; then using Cauchy’s formula with

γ(t) = a+ reit, 0 ≤ t ≤ 2π, we get

|f(a)− f(z)| ≤ 1

2π

∣∣∣∣∫
γ

f(w)(a− z)

(w − a)(w − z)
dw

∣∣∣∣
≤ 1

2π
|a− z|

∣∣∣∣∫
γ

f(w)

(w − a)(w − z)
dw

∣∣∣∣(3.2)

At w = a ∣∣∣∣ limw→a

f(w)(w − a)

(w − a)(w − z)

∣∣∣∣ = M

(1/2)r
=

2M

r
(3.3)

At w = z ∣∣∣∣ limw→z

f(w)(w − z)

(w − a)(w − z)

∣∣∣∣ = M

(1/2)r
=

2M

r
(3.4)

According to Cauchy’s formula and from (3.3) and (3.4), we get∫
γ

f(w)

(w − a)(w − z)
dw = 2π

(
2M

r
+

2M

r

)
=

8Mπ

r
(3.5)

Putting the value of (3.5) in (3.2) , we get

|f(a)− f(z)| = 1

2π
|a− z|8Mπ

r
= |a− z|4M

r

Let δ = min

{
1

2r
,
rϵ

4M

}
. So |a − z| < δ. So |f(a) − f(z)| < ϵ ∀f ∈ F. Hence it is

proved. �
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CHAPTER 4

HARMONIC FUNCTIONS

1. Preliminaries

Definition 4.1.

If G is an open subset of C, then a function u : G → R is harmonic if it has continuous

second order partial derivative and it satisfies Laplace’s equation, that is

∂2u

∂x2
+

∂2u

∂y2
= 0.

Example 4.2.

(1)The real and imaginary part of any holomorphic function is a Harmonic function.

(2)The function f(x, y) = ex cos y is a Harmonic function.

Lemma 4.3. If v is a conjugate harmonic function of u, then u is a conjugate harmonic

function of v.

Proof. Given v is a conjugate harmonic function of u.

Claim : −v + iu is analytic. We know that f = u+ iv is analytic.

⇒ ∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

Now
∂

∂x
(−v) = −∂v

∂x
=

∂u

∂y
and

∂

∂y
(−v) = −∂v

∂y
= −∂u

∂x

Hence u is a conjugate harmonic function of v. �

Theorem 4.4. A function f on a region G is analytic iff Ref = u and Imf = v are

harmonic functions which satisfy Cauchy-Riemann equation.

Theorem 4.5. A region G is simply connected iff for each harmonic function u on G

, there is a harmonic function v on G such that f = u+ iv is analytic on G.
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Proposition 4.6. If u : G → R is harmonic, then u is infinitely differentiable.

Proof. Fix z0 = x0 + iy0 in G. Let δ chosen such that B(z0; δ) ⊂ G.

As u has a harmonic conjugate v in B(z0; δ). That means f = u+ iv is analytic.

⇒ It is infinitely differentiable on B(z0; δ).

so u is infinitely differentiable. �

Theorem 4.7 (Mean value Theorem). Let u : G → R be a harmonic function and let

B(a; r) be a closed disk contained in G. If γ is a circle |z − a| = r then

u(a) =
1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Proof. Let D be a disk such that B(a; r) ⊂ D ⊂ G and f be a analytic function on

D such that Ref = u. By cauchy integral formula

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz, where γ = B(z; r).

Let z − a = reiθ ⇒ dz = ireiθdθ.(4.1)

f(a) =
1

2πi

∫ 2π

0

f(a+ reiθ)

reiθ
dθ.

⇒ f(a) =
1

2π

∫ 2π

0

f(a+ reiθ)dθ.

so by taking the real part of equation (4.1), we get

u(a) =
1

2π

∫ 2π

0

u(a+ reiθ)dθ.

�

Theorem 4.8 (Maximum Principle{First Version}).

Let G be a region and suppose that u is a continuous real valued function on G with the

MVP. If there is a point a in G such that u(a) ≥ u(z) ∀ z ∈ G, then u is a constant

function.

Proof. Let set A be defined by A = {z ∈ G : u(z) = u(a)}. As u is continuous on the

set A is closed in G. If z0 ∈ A, then we choose a r such that B(z0; r) ⊂ G. Suppose ∃ a
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point b ∈ B(z0; r) such that u(b) ̸= u(a); then, u(b) < u(a). By continuity u(z) < u(a) =

u(z0) ∀ z in neighborhood of b. In particular ρ = |z0 − b| and b = z0 + ρ eiβ, 0 ≤ β < 2π.

So there is a proper interval I of [0, 2π] such that β ∈ I and u(z0 + ρeiθ) < u(z0) ∀ θ ∈ I.

So by MVP

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeiθ)dθ < u(z0),

Which is a contradiction. So B(z0; r) ⊂ A and A is open. so by defination 2.1 A = G. �

Theorem 4.9 (Maximum Principle{Second Version}).

Let G be a region and let u and v be two continuous real valued functions on G that have the

MVP. If for each point a in the extended boundary ∂∞G, lim sup
z→a

u(z) ≤ lim inf
z→a

v(z) then ei-

ther u(z) < v(z) ∀ z ∈ G or u = v.

Proof. Fix a in ∂∞G and for each δ > 0, let Gδ ∩B(a; δ). then by hypothesis,

0 ≥ lim
δ→0

[sup{u(z) : z ∈ Gδ} − inf{v(z) : z ∈ Gδ}]

= lim
δ→0

[sup{u(z) : z ∈ Gδ} − sup{−v(z) : z ∈ Gδ}]

≥ lim
δ→0

sup{u(z)− v(z) : z ∈ Gδ}

so lim sup
z→a

[u(z)− v(z)] ≤ 0 for each a ∈ ∂∞G.(4.2)

Let v(z) = 0∀ z ∈ G. That is, assume lim sup
z→a

u(z) ≤ 0 ∀ a ∈ ∂∞G. Claim: u(z) < 0 ∀ z ∈

G or u = 0. If we show that u(z) ≤ 0 ∀ z ∈ G, then by theorem 4.8 u ≡ 0. Suppose that

u satisfies (4.2) and there is a point b in G with u(b) > 0. Let ϵ > 0 be chosen so that

u(b) > ϵ and let B = {z ∈ G : u(z) ≥ ϵ}. If a ∈ ∂∞G then by proposition 4.6, there is a

δ = δ(a) such that u(z) < ϵ ∀ z ∈ G ∩ B(a; δ). By lemma 2.9 a δ can be found which is

independent of a.

That means, there is a δ > 0 such that if z ∈ G and d(z, ∂∞G) < δ then u(z) < ϵ. Thus

B ⊂ {z ∈ G : d(z, ∂∞G) ≥ δ}. This gives that B is a bounded plane and closed. So B

is compact. So B ̸= ϕ, there is a point z0 ∈ B such that u(z0) ≥ u(z) ∀ z ∈ B. Since

u(z) < ϵ for z ∈ G − B, it gives that u assumes a maximum value at a point in G. So
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u must be constant, which is nothing but the u(z0) and positive. Which contradict (4.2).

So it gives the prove of the theorem. �

2. Poisson Kernel and It’s Properties

Definition 4.10. The function

Pr(θ) =
∞∑

n=−∞

r|n|einθ

for 0 ≤ r < 1 and −∞ < θ < ∞, is called poisson kernel.

Let z = reiθ, 0 ≤ r < 1; then

1 + reiθ

1− reiθ
=

1 + z

1− z
= (1 + z)(1− z)−1

by expanding, we get

= (1 + z)(1 + z + z2 + ...) = 1 + 2
∞∑
n=1

zn

= 1 + 2
∞∑
n=1

rneinθ

Hence,

Re

(
1 + reiθ

1− reiθ

)
= 1 + 2

∞∑
n=1

rncosnθ

= 1 + 2
∞∑
n=1

rn(einθ + e−inθ)

2

= Pr(θ)

and also

1 + reiθ

1− reiθ
=

1 + reiθ − re−iθ − r2

|1− reiθ|2

so that

Pr(θ) =
1− r2

1− 2r cos θ + r2
= Re

(
1 + reiθ

1− reiθ

)
(4.3)
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Proposition 4.11. The poisson kernel satisfies followings:

(a)
1

2π

∫ π

−π

Pr(θ)dθ = 1;

(b) Pr(θ) > 0 ∀ θ, Pr(θ) = Pr(−θ), Pr is a periodic in θ with period 2π;

(c) Pr(θ) < Pr(δ) if 0 < δ < |θ| ≤ π;

(d) for each δ > 0 , lim
r→1−

Pr(θ) = 0 uniformly in θ for π ≥ |θ| ≥ δ.

Proof. (a) For a fixed value of r, 0 ≤ r < 1 , the series

Pr(θ) =
∞∑

n=−∞

r|n|einθ

converges uniformly in θ. So

1

2π

∫ π

−π

Pr(θ)dθ =
1

2π

∫ π

−π

∞∑
n=−∞

r|n|einθdθ

=
∞∑

n=−∞

r|n|
1

2π

∫ π

−π

einθdθ

=
∞∑

n=−∞

r|n|
1

2π
[einθ]π−π ×

1

in

=
∞∑

n=−∞

r|n|
1

2π
[einπ − e−inπ]× 1

in

=
∞∑

n=−∞

r|n|
1

2π
× 1

in
× 2i sinnπ

=
∞∑

n=−∞

r|n| × sinnπ

nπ
= 1

(b)

Pr(θ) =
1 + reiθ

1− reiθ
=

1 + reiθ − e−iθ − r2

|1− reiθ|2

= Re

(
1− r2

|1− reiθ|2

)
= (1− r2)(|1− reiθ|−2) > 0, since r < 1

and Pr(θ) = Pr(−θ) by equation (4.3).

(c) Let 0 < δ < |θ| ≤ π and define f : [δ, θ] → R by f(t) = Pr(t) .
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If 0 < δ < π then lim
r→1−

Pr(θ) = 0 uniformly in θ for δ ≤ |θ| ≤ π. If we fixed δ and 0 <

δ < π, then

P ′
r(θ) =

2r(1− r2) sin θ

(1− 2r cos θ + r2)2
< 0 for δ ≤ θ ≤ π

≥ 0 for − π ≤ θ ≤ −δ.

So Pr(θ) is increasing for −π ≤ θ ≤ −δ and decreasing for δ ≤ θ ≤ π. That is 0 <

Pr(θ) ≤ Pr(δ) =
1− r2

1− 2r cos θ + r2
when δ < |θ| ≤ π.

(d) For proving uniform convergence of Pr(θ), we have to show that lim
r→1−

[sup{Pr(θ)} :

δ < |θ| ≤ π] = 0 by (c), Pr(θ) ≤ Pr(δ) if δ < |θ| ≤ π. To prove this it is sufficient to

show that lim
r→1−

Pr(θ) = 0. Which is by (4.3). �

Theorem 4.12. Let D = z : |z| < 1 and suppose that f : ∂D → R is a continuous

function. Then there is a continuous function u : D → R such that

(a) u(z) = f(z) z ∈ ∂D;

(b) u is harmonic in D.

Moreover u is unique and defined by the formula

u(reiθ) =
1

2π

∫ π

−π

Pr(θ − t)f(eit)dt(4.4)

for 0 ≤ r < 1, 0 ≤ θ ≤ 2π

Corollary 4.13. Let a ∈ C, ρ > 0 and suppose his continuous real valued function

on {z : |z−a| = ρ}; then there is a unique continuous function w : B(a; ρ) → R such that

w is harmonic on B(a; ρ) and w(z) = h(z) |z − a| = ρ.

Proof. Consider f(eiθ) = h(a+ρeiθ). Then by maximum principle f is continuous on

∂D. If u : D → R is continuous function such that u is harmonic in D and u(eiθ) = f(eiθ)

then w(z) = u

(
z − a

ρ

)
is the desired function on B(a; ρ). �

Theorem 4.14. (Converse Mean Value Theorem)

If u : G → R is continuous function which has the mean value property, then u is har-

monic.
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Proof. Let a ∈ G and ρ chosen such that B(a; ρ) ⊂ G.

To show u is harmonic on B(a; ρ).

By corollary 4.13 there is a continuous function w : B(a; ρ) → R, which is harmonic in

B(a; ρ) and w(a + ρeiθ) = u(a + ρeiθ). Since u − w satisfies the MVP and (u − w)(z) =

0 for |z − a| = ρ. So by maximum principle u ≡ w in B(a; ρ). That means u must be

harmonic. �

3. Harnack’s Inequality and Harnack’s Theorem

In this section we discuss about the important inequality and theorem in Harmonic

functions. We start with the Harnack’s Inequality. If R > 0 then substituting
r

R
for r in

(4.3), we get

1− ( r
R
)2

1− 2( r
R
) cos θ + ( r

R
)2

=
R2 − r2

R2 − 2rR cos θ + r2
(4.5)

for 0 ≤ r < R and all θ. So if u is continuous on B(a; r) and Harmonic in B(a;r), then

u(a+ reiθ) =
1

2π

∫ π

−π

[
R2 − r2

R2 − 2rR cos(θ − t) + r2

]
u(a+Reit)dt(4.6)

Now from (4.5)

R2 − r2

|Reit − reiθ|2

and R− r ≤ |Reit − reiθ| ≤ R + r. Therefore

R− r

R + r
≤ R2 − r2

R2 − 2rR cos(θ − t) + r2
≤ R + r

R− r
.

Definition 4.15. If u : B(a; r) → R is continuous, harmonic in B(a;R), and u ≥ 0

then for 0 ≤ r < R and all θ

R− r

R + r
u(a) ≤ u(a+ reiθ) ≤ R + r

R− r
u(a).

This inequality is called Harnack’s Inequality. If G is an open subset of C then Har(G) is

the space of harmonic functions on G.
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Theorem 4.16. (Harnack’s Theorem) Let G be a region. Then

(a) The metric space Har(G) is complete.

(b) If {un} is a sequence in Har(G) such that u1 ≤ u2 ≤ ... then either un(z) → ∞

uniformly on compact subsets of G or {un} converges in Har(G) to a harmonic function.

Proof. (a) To show Har(G) is complete. It is sufficient to show that it is closed

subspace of C(G,R). So let {un} be a sequence in Har(G) such that un → u in C(G,R).

Then ∫
γ

u = lim
n→∞

∫
γ

un. where γ ∈ [−π, π]

So u has MVP. Then by theorem 4.14 u is Harmonic.

(b) Let us assume that u1 ≥ 0.Let u(z)=sup{un(z) : n ≥ 1} for each z in G. So for each

z in G, there may be two possibility occures

(i) u(z) = ∞ or u(z) ∈ R and

(ii) un(z) → u(z).

Let us define

A = {z ∈ G : u(z) = ∞}

B = {z ∈ G : u(z) < ∞}

then G = A ∪B and A ∩B = ϕ.

To show both A and B are open.

If a ∈ G, let R be chosen such that B(a;R) ⊂ G. By Harnack’s inequality

R− |z − a|
R + |z + a|

un(a) ≤ un(z) ≤ R + |z − a|R− |z + a|un(a)(4.7)

for all z ∈ B(a;R) and n ≥ 1. If a ∈ A then un(a) → ∞,the left half of (4.7) gives that

un(z) → ∞∀z ∈ B(a;R). That is B(a;R) ⊂ A and so A is open. Similarly if a ∈ B the

right half of (4.7) gives that u(z) < ∞ ∀ |z − a| < R.That is B is open.

Since G is connected, eithe rA = G or B = G. Suppose A = G; that is u ≡ ∞.

Again if B(a;R) ⊂ G and 0 < ρ < R then M = (R − ρ)(R + ρ)−1 and (4.7) gives that

Mun(a) ≤ un(z) for |z − a| ≤ ρ. Hence un(z) → ∞ uniformly for z in B(a;R).
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Now suppose B = G, or that u(z) < ∞∀ z ∈ G. If ρ < R then, there is a constant N ,

which depends only on a andρ such that Mun(a) ≤ un(z) ≤ Nun(a) for |z − a| ≤ ρ and

all n. So if m ≤ n

0 ≤ un(z)− un(z) ≤ Nun(a)−Mum(a)

≤ C[un(a)− um(a)]

for some constant C. Thus, {un(z)} is uniformly cauchy sequence on B(a; ρ). From

this{un} is a cauchy sequence in Har(G) and from (a), it must converge to a harmonic

function. Since un(z) → u(z), u is harmonic function. �
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