

VLSI IMPLEMENTATION OF AES

ALGORITHM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI Design and Embedded System

Submitted by

SAURABH KUMAR

Roll # 211EC2117

Department of Electronics and communication

Engineering

National Institute of Technology, Rourkela

 2011-2013

VLSI IMPLEMENTATION OF AES

ALGORITHM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI Design and Embedded Systems

Submitted by

SAURABH KUMAR

Roll # 211EC2117

Under the guidance of

PROF. K. K. MAHAPATRA

Department of Electronics and communication

Engineering

National Institute of Technology, Rourkela

 2011-2013

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis titled, “VLSI IMPLEMENTATION OF AES

ALGORITHM” submitted by Saurabh Kumar, Roll No-211EC2117 in partial fulfilment

of the requirements for the award of Master of Technology Degree in Electronics &

Communication Engineering with specialization in VLSI Design and Embedded System

during 2011-2013 at the National Institute of Technology, Rourkela is an authentic work

carried out by him under my supervision and guidance.

 To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or Diploma.

PLACE-NIT Rourkela

DATE-03/06/2013

Prof. (Dr.) K. K. Mahapatra
Department of Electronics &

Communication Engineering

National Institute of Technology, Rourkela

Dedicated To My Family

And

My Teachers

iv

 ACKNOWLEDGEMENT

I am grateful to my research advisor Prof. K. K. Mahapatra for providing me the

opportunity to realize this work. He inspired, motivated, encouraged and gave me full

freedom to do my work with proper suggestions throughout my research work. I am grateful

to Prof. K. K. Mahapatra for his kind and moral support throughout my academics at

National Institute of Technology, Rourkela.

Next, I want to express my respects to Prof. S. K. Patra, Prof. S. Meher, Prof. A.

K. Swain, Prof. P. K. Tiwari, Prof. S. K. Behera, Prof. D. P. Acharya and Prof. N.

Islam for teaching me and also helping me how to learn. They have been great sources

of inspiration to me and I thank them from the bottom of my heart. I would like to thank

Vijay Kumar Sharma sir, my senior, for helping me in VLSI.

I would like to thank all faculty members and staff of the Department of Electronics

and Communication Engineering, N.I.T. Rourkela for their generous help in various ways

for the completion of this thesis.

I would like to thank all my friends and especially my classmates for all the thoughtful and

mind stimulating discussions we had, which prompted us to think beyond the obvious. I‟ve

enjoyed their companionship so much during my stay at NIT, Rourkela.

I must thank Preeti madam, Jagannath sir and Tom sir for their support and help. I also thank

Srinivas sir and Venkatratnam sir for their good attitude and behaviour.

I am especially indebted to my parents for their love, sacrifice, and support. They are my

first teachers after I came to this world and have set great examples for me about how to

live, study, and work.

SAURABH KUMAR

Saurabhsit098@gmail.com

v

CONTENTS

ACKNOWLEDGEMENTS………………………………………………..…………………iv

LIST OF TABLES………………………………………………………………………..... viii

LIST OF FIGURES…………………………………………………………………………...ix

ABSTRACT……………………………………………………………………………..…….1

CHAPTER 1 INTRODUCTION……………………………………………...……....3

1.1 MOTIVATION………………………………………………………………………....4

1.2 LITERATURE REVIEW……………………………………………………………….6

1.2.1 High Speed AES Design………………………………………………………....6

1.2.2 Architecture and Implementation of S-BOX………………………………….....7

 1.3 RESEARCH OBJECTIVE……………………………………………………………..8

 1.4 ORGANIZATION……………………………………………………………………...8

CHAPTER 2 ADVANCED ENCRYPTION STANDARD (AES)

ALGORITM……………………………………………………………………………….9

 2.1 DEFINITION AND HISTORY OF CRYPTOGRAPHY……………………………..10

 2.2 GALOIS FIELD……………………………………………………………………….11

 2.3 THE DATA ENCRYPTION STANDARD (DES)……………………………………11

 2.4 THE ADVANCED ENCRYPTION STANDARD (AES)……………………………12

 2.4.1 Subbytes/Inverse Subbytes Transformation……………………………………….14

 2.4.2 Shiftrows/Inverse Shiftrows Transformation……………………………………...16

 2.4.3 Mixcolumns/Inverse Mixcolumns Tranformation………………………………...16

 2.4.4 Addroundkey Transformation and Key Expansion……………………………….17

 2.4.4.1 Addroundkey Transformation……………………………………………….17

 2.4.4.2 Key Expansion………………………………………………………………17

 2.5 COMPOSITE FIELD ARITHMATIC S-BOX………………………………………..18

 2.5.1 Addition operation in GF (2
4
)……………………………………………………..20

 2.5.2 Squaring operation in GF (2
4
)……………………………………………………..20

 2.5.3 Multiplication with constant, λ…………………………………………………….21

 2.5.4 Galois field GF (2
4
) multiplication………………………………………………...22

 2.5.4.1 Multiplication with constant, φ……………………………………………..22

vi

 2.5.4.2 Galois field GF (2
2
) multiplication…………………………………………23

 2.5.5 Multiplicative Inversion in GF (2
4
)………………………………………………..24

CHAPTER 3 IMPLEMENTATION OF PROPOSED ARCHITECTURE

FOR S-BOX……………………………………………………………………………….25

 3.1INTRODUCTION……………………………………………………………………...26

 3.2 PROPOSED ARCHITECTURE OF S-BOX………………………………………….26

 3.2.1 Introduced an operator (op) after merging of some blocks……………………….27

 3.2.2 Implementation of multiplicative inverse in GF (2
4
) using multiplexor………….28

 3.2.3 Reduced the critical path of multiplication in GF (2
2
)……………………………30

 3.3 IMPLIMENTATION OF PROPOSED ARCHITECTURE OF S-BOX……………..31

 3.3.1 ASIC Implementation of MI in GF (2
4
)…………………………………………..31

 3.3.1 ASIC Implementation of multiplication in GF (2
2
)……………………………….32

 3.3.3 ASIC and FPGA Implementation of proposed S-BOX…………………………...32

 3.4 CONCLUSION………………………………………………………………………..34

CHAPTER 4 HIGH SPEED AES ENCRYPTION……………………………..35

 4.1 INTRODUCTION……………………………………………………………………36

 4.2 PROPOSED ARCHITECTURE FOR AES ENCRYPTION ALGORITHM………..36

 4.3 FPGA IMPLEMENTATION OF PROPOSED ARCHITECTURE OF AES………37

 4.4 CONCLUSION………………………………………………………………………39

CHAPTER 5 FULL CUSTOM DESIGN FOR PROPOSED S-BOX…….40

 5.1 INTRODUCTION…………………………………………………………………....41

 5.2 NOVAL XOR GATE FOR LOW POWER FULL CUSTOM DESIGN OF S-BOX...41

 5.2.1 Conventional schematic for XOR gate and its simulated output………………….42

 5.2.2 Proposed novel XOR schematic, layout and its simulated output………………...43

 5.2.3 Comparison between Conventional and Proposed XOR Gate…………………….44

 5.3 SCHMATIC AND LAYOUT DESIGN FOR FIRST MODIFICATION OF

PROPOSED ARCHITECTURE OF S-BOX……………………………………….44

 5.4 SCHMATIC AND LAYOUT OF PROPOSED MULTIPLICATIVE INVERSE (MI)

IN GF (2
4
)…………………………………………………………………………...46

vii

 5.5 SCHEMATIC AND LAYOUT OF PROPOSED ARCHITECTURE OF

MULTIPLICATION IN GF (2
2
)……………………………………………………..48

 5.6 SCHEMATIC AND LAYOUT OF FOUR BIT XOR USING THE PROPOSED

NOVEL XOR GATE………………………………………………………………...49

 5.7 SHEMATIC OF PROPOSED S-BOX………………………………………………...50

 5.8 LAYOUT AND POST LAYOUT SIMULATION RESULTS OF PROPOSED

 S-BOX………………………………………………………………………………...51

 5.9 CONCLUSION………………………………………………………………………..54

CHAPTER 6 CONCLUSION AND FUTURE WORK…………………….....55

 6.1 CONCLUSION………………………………………………………………………..56

 6.2 FUTURE WORK……………………………………………………………………...56

REFERENCES..57

PUBLICATIONS………………………………………………………………………..60

viii

LIST OF TABLES

Table I: Round key size and number of rounds in three versions of AES…………………..12

Table II Subbytes Transformation Table…………………………………………………......15

Table III: Inverse SubBytes Transformation Table………………………………………......15

Table IV: Pre-computed results of the multiplicative inverse operation in GF (2
4
)…………24

Table V: MI in GF (2
4
)……………………………………………………………………….29

Table VI: Comparison of MI in GF (2
4
) in ASIC……………………………………………31

Table VII: Comparisons of multiplication in GF (2
2
) in ASIC………………………………32

Table VIII: FPGA Implementation Results and Comparisons In Xilinx Vertex-II Pro….......33

Table IX: FPGA Implementation Results and Comparisons in Spartan6

(xc6slx16-3csg324)...…..........33

Table X: ASIC Implementation Results and Comparisons…………………………………..34

Table XI: Design Summary of FPGA Implementation of proposed AES algorithm………...38

Table XII: Comparison Results between Conventional and Proposed XOR………………...44

Table XIII: Comparison Results between Post layout and before Post layout simulation…...54

ix

LIST OF FIGURES

Figure 2-1 Basic step of Encryption in cryptography………………………………………..10

Figure 2-2 Symmetric Key Cryptography……………………………………………………11

Figure 2-3 Rounds of AES Encryption algorithm………………………………………........13

Figure 2-4 SubBytes Transformation………………………………………………………...14

Figure 2-5 ShiftRows Transformation for AES Encryption………………………………....16

Figure 2-6 MixColumns transformation of AES Encryption………………………………...17

Figure 2-7 AddRoundKey transformation of AES Encryption………………………………17

Figure 2-8 SubBytes and Inverse SubBytes transformation in composite field……………...18

Figure 2-9 The conventional S-box architecture in composite field…………………………19

Figure 2-10 Meaning of symbols used in Figure 2-9………………………………………....19

Figure 2-11 Logical hardware diagram of squarer for GF (2
4
)……………………………....21

Figure 2-12 Logical hardware diagrams for multiplication with constant, λ………………...21

Figure 2-13 Logical hardware implementation of GF (2
4
) multiplier………………………..22

Figure 2-14 Hardware implementation of multiplication with φ…………………………….23

Figure 2-15 Hardware implementation of GF (2
2
) multiplication……………………….......23

Figure 3-1 4:1 multiplexer for (a) LSB output and (b) MSB output for 2 bits output of

multiplication in GF (2
2
)…………………………………………………….......31

Figure 3-2 Proposed Multiplicative Inverse architecture………………………………….....31

Figure 3-3 Hardware implementation Result of S-box obtained from XC2VP30 device using

ChipScope pro logic analyzer…………………………………………………......32

Figure 4-1 the proposed architecture of AES encryption algorithm………………………....37

x

Figure 4-2 Simulation Output of proposed AES encryption for 128 bits in

Xilinx ISE 13.4…………………………………………………………………..38

Figure 5-1 Conventional Schematic for XOR gate………………………………………......42

Figure 5-2 Simulated output of Conventional XOR………………………………………....42

Figure 5-3 Proposed Schematic for novel XOR………………………………………...........43

Figure 5-4 Simulated output for proposed Schematic of novel XOR……………………......43

Figure 5-5 Layout of proposed novel XOR gate………………………………………….....44

Figure 5-6 Schematic of the operator (op)……………………………………………….......45

Figure 5-7 Layout of the Schematic drawn in Fig.5-6……………………………….............45

Figure 5-8 Schematic for Proposed Multiplicative Inverse (a) MSB as „0‟ (b) MSB as „1‟....46

Figure 5-9 Layouts for Proposed Multiplicative Inverse (a) MSB as „0‟ (b) MSB as „1‟.......47

Figure 5-10 Complete Schematic for Proposed Multiplicative Inverse in GF (2
4
)……..........47

Figure 5-11 Complete Layout of Proposed Multiplicative Inverse in GF (2
4
)…………........47

Figure 5-12 Schematic of proposed architecture of multiplication in GF (2
2
)………….........48

Figure 5-13 Layout of proposed architecture of multiplication in GF (2
2
)……………..........48

Figure 5-14 Schematic of multiplication in GF (2
4
)………………………………….............49

Figure 5-15 Layout of multiplication in GF (2
4
)…………………………………………......49

Figure 5-16 Schematic and Layout of 4 bits XOR (a) Schematic and (b) Layout of (a)…….50

Figure 5-17 Schematic of proposed S-BOX……………………………………………........50

Figure 5-18 Simulated output of Schematic of proposed architecture of S-BOX………........51

Figure 5-19 the optimized layout of proposed S-BOX……………………………………....52

Figure 5-20 DRC check of layout…………………………………………………................52

xi

Figure 5-21 LVS match of layout…………………………………………………………....52

Figure 5-22 Layout after parasitic extraction…………………………………………...........53

Figure 5-23 Design summary and device count after parasitic extraction…………………...53

Figure 5-24 Post layout simulated output after parasitic extraction………………………….54

1

In the present era of information processing through computers and access of private

information over the internet like bank account information even the transaction of money,

business deal through video conferencing, encryption of the messages in various forms has

become inevitable. There are mainly two types of encryption algorithms, a private key (also

called symmetric key having a single key for encryption and decryption) and public key

(separate key for encryption and decryption). In terms of computational complexity, private

key algorithm is less complex than a public key algorithm. The simple architecture of private

key algorithm attracts the VLSI implementation through the basic digital components like

basic gates and flip-flops. Moreover, the high throughput architecture can be realized for

encryption of very large amounts of data, e.g., images and videos, in real time. National

Institute of Standards and Technology (NIST) adopted Advanced Encryption Standard (AES)

as the standard for encryption and decryption of blocks of data. The draft is published under

the name as FIPS-197 (Federal Information Processing Standard number 197). AES is a

symmetric key block cipher. It encrypts data of block size 128 bits. The AES algorithm is

used in diverse application fields like WWW servers, automated teller machines (ATMs),

cellular phones and digital video recorders.

The AES is an iterative algorithm. It encrypts the data using four different transformations

namely SubBytes, ShiftRows, MixColumns and AddRoundkeys. SubBytes transformation

(also called substitution) is a non-linear operation in AES wherein each byte of a state is

mapped to a different value. The SubBytes transformation is done through S-box and it is the

most complex steps in terms of cost and implementation. Use of ROM table and composite

field arithmetic are two techniques to perform substitutions. The ROM based approach

requires high amount of memory and also it causes low latency and low throughput because

of ROM access time. Composite field arithmetic is more suitable for S-box implementation

of high speed AES encryption.

In the present work, hardware optimization for AES architecture has been done in different

stages. The critical path delay in architectural path has been reduced using different logic

components. For instance, there are a number of XOR gates and its combination in logic path

of substitution block which uses Galois field (GF) arithmetic. The equation in GF has been

restructured in order to have low delay components in the critical path. Moreover, the basic

ABSTRACT

2

components in GF arithmetic are also replaced with the digital components that can be

realized using multiplexers. For the AES implementation, merging technique has been used

wherein ShiftRows, MixColumns and AddRoundkeys transformations are performed in a

single VLSI module. Two different architectures of AES, namely iterative and concurrent,

have been implemented in Xilinx FPGA.

The hardware comparison results show that as AES architecture has critical path delay of

9.78 ns when conventional s-box is used, whereas it has a critical path delay of 8.17 ns using

proposed s-box architecture. The total clock cycles required to encrypt 128 bits of data using

a proposed AES architecture are 86 and therefore, throughput of the AES design in Spartan-6

of Xilinx FPGA is approximately 182.2 Mbits/s.

To achieve the very high speed, full custom design of the s - box in composite field has been

done for the proposed s-box architecture in Cadence Virtuoso. The novel XOR gate is

proposed for use in s-box design which is efficient in terms of delay and power along with

high noise margin. The implementation has been done in 180 nm UMC technology. Total

dynamic power in the proposed XOR gate is 0.63 µW as compared to 5.27 µW with the

existing design of XOR. The designed s-box using proposed XOR occupies a total area of

27348 µm
2
. The s-box chip consumes 22.6 µW dynamic power and has 8.2 ns delay after

post layout simulation has been performed.

3

INTRODUCTION

CHAPTER 1

4

In this chapter the motivation, research objectives and the organization of the thesis is

presented.

1.1 MOTIVATION

With worldwide communication of private and confidential data over the computer networks

or the Internet, there is always a possibility of threat to data confidentiality, data integrity and,

also data availability. Data encryption maintains data confidentiality, integrity and

authentication. Information has become of the most important assets in growing demand of

need to store every single importance of events in everyday life. Messages need to be secured

from unauthorized party. Encipherment is one of the security mechanisms to protect

information from public access. Encryption hides the original content of a message so as to

make it unreadable to anyone, except the person who has the special knowledge to read it.

In the past cryptography means only encryption and decryption using secret keys,

nowadays it is defined in different mechanisms like asymmetric-key encipherment (public-

key cryptography) and symmetric-key encipherment (called as privet-key cryptography). The

public key algorithm is complex and has very high computation time. Private Key algorithms

involve only one key, both for encryption as well as decryption whereas, public key

algorithms involve two keys, one for encryption and another for decryption. There were

many cryptographic algorithms proposed such as Data Encryption Standard (DES), 2-DES,

3-DES, Elliptic Curve Cryptography (ECC), the Advanced Encryption Standard (AES) and

other algorithms. Many investigators and hackers are always trying to break these algorithms

using brute force and side channel attacks. Some attacks were successful as it was the case

for the Data Encryption Standard (DES) in 1993[21].

The Advanced Encryption Standard (AES) is considered as one of the strongest

published cryptographic algorithms. National Institute of Standards and Technology (NIST)

adopted Advanced Encryption Standard (AES) as the standard for encryption and decryption

of blocks of data after the failing of the Data Encryption Standard (DES). The draft is

published under the name as FIPS-197 (Federal Information Processing Standard number

197)[5]. Moreover, it is used in many applications such as in ATM Machines, RFID cards,

cellphones and large servers. AES is widely used for encryption of audio/video data contents

in real time.

5

Due to the significance of the AES algorithm and the numerous real –time

applications, the main concern of this thesis will be presenting new efficient hardware

implementations for this algorithm.

AES algorithm is an iterative algorithm, which requires many computation cycles. A

software platform cannot provide the high speed encryption of data, specially used for real-

time applications. Audio/video content encryption is required in real-time in business deals

via video conferencing. Therefore, dedicated hardware implementation is inevitable in such

applications. Hardware implementation can be done through different architectures trading

throughput with area and power consumption. At any time, designing best architecture for a

particular design with low area and low latency is a challenge. Hardware implementations of

the AES algorithm vary according to the application. While some applications require very

high throughputs as in e-commerce servers, others require a medium throughput range as in

designs for cell phones. Some others require very low area and low power implementations to

be used application as RFID cards.

The AES is an iterative algorithm and uses four operations in different rounds, namely

SubBytes, ShiftRows, MixColumns and Key Additions transformations. SubBytes

transformation is done through S-box. S-box is the vital component in the AES architecture

that decides the speed/throughput of the AES[1]. The ROM based approach requires high

amount of memory and also it causes low latency because of ROM access time. Therefore,

composite field arithmetic is more suitable for S-box (substitution) implementation its

hardware optimization for VLSI implementation is very important to reduce the area and

power of the AES architecture.

We have designed a custom S-box for AES encryption. Firstly the logic verification

has been done by FPGA implementing using VHDL code of the S-box in Xilinx ISE and

ASIC using 0.18 µm standard cell technology library. The optimization of the design has

been done by proposing novel circuit for smaller components like XOR gate and other circuit

components like Galois Field (GF) multiplier. The XOR has been designed using minimum

number of transistors and it has high noise margin and low power consumption as compared

to existing XOR designs.

The design optimization has been done by replacing conventional modules in AES

architecture with a module which best suits for the area and latency reduction. Further, we

have synthesized two different design styles of AES, namely, iterative and concurrent

(pipeline) for implementation in Xilinx FPGA. Iterative architecture can be realized with low

6

area, but throughput is low as compared to concurrent architecture which has higher

throughput.

1.2 LITERATURE REVIEW

The Advanced Encryption Standard (AES) algorithm has published by NIST as a draft FIPS-

197 in 2001. There are numerous hardware implementations were suggested for it, among all

the implementation mostly they have targeted the AES with 128-bits key size [1-3]. This key

size is considered to be appropriate for most of the commercial applications, where using

higher key sizes is considered as excess of resources. It involves higher area implementations

with longer processing time and not easy to implement for small scale devices. Key sizes of

192-bit and 256 bits are used mostly in top secret military applications to confirm the

maximum level of security.

1.2.1 High Speed AES Design

AES algorithm is an iterative algorithm, which requires many computation cycles. A software

platform cannot provide the high speed encryption of data, specially used for real-time

applications. Audio/video content encryption is required in real-time in business deals via

video conferencing. Therefore, dedicated hardware implementation is inevitable in such

applications.

Hardware implementation can be done through different architectures trading

throughput with area and power consumption. The design optimization can be done by

replacing conventional modules in AES architecture with a module which best suits for the

area and latency reduction details in [13, 14].

Further, there are mainly two different design styles found and its implementation in

different devices namely, iterative and concurrent (pipeline) for implementation in Xilinx

FPGA [9, 10]. It has observed that concurrent implementation requires less time but the area

is large with high power consumption. The transformations used in different rounds are same

so, algorithm can be used repeatedly and area and power can save with the improvement in

speed [13, 17]. The iterative implementation could be efficient as per the requirement

published in [10].

7

1.2.2 Architecture and Implementation of S-Box

There are four transformations in the AES algorithm among all the transformation, SubBytes

is complex and non-linear. There are two techniques found to implement S-BOX, one using

RAM and another using composite field arithmetic architecture. The implementation of the

composite field S-BOX is accomplished using combinational logic circuits rather than using

pre-stored S-BOX values.

S-BOX substitution starts by finding the multiplicative inverse of the number in GF

(2
8
), and then applying the affine transformation. Implementing a circuit to find the

multiplicative inverse in the finite field GF (2
8
) is very complex and costly, therefore, [19]

has suggested using the finite field GF (2
4
) to find the multiplicative inverse of elements in

the finite field GF (2
8
). First detailed implementation of the composite field S-BOX was

published in [16].

The S-Box is at the major of any AES implementation and is measured a full

complexity design consuming the main portion of the power and energy inexpensive of the

AES hardware. The substitute way is to design the S-Box circuit using combinational logic

directly from its arithmetic operations. This method has a fine delay - path from S-Box

processing. The AES algorithm can be implemented on a varied range of platforms under

different constraints [2]. In transportable applications figuring resources are usually restricted

and dedicated hardware implementation of the safety purpose is essential.

AES Implementation using FPGA (Field Programmable Gate Array) is not

appropriate for such applications generally due to size and power limitations. A full-custom

chip is more suitable for compact small foot-print design in such a case. The Galois Field

arithmetic for S-Box, it is very clearly evident that the implementation of S-Box/InvS-Box

needs a large number of XOR operations [15].

The novel XOR has been designed using minimum number of transistors and it has

high noise margin and low power consumption as compared to existing XOR designs. The

new approach to minimize the silicon - area of S-Box design demonstrated by using a new 2-

input XOR gate for low-power composite field arithmetic to reduce the power dissipation and

delays for the complete circuit [15].

8

1.3 RESEARCH OBJECTIVE

Based on the above discussion, the main objectives for efficient AES algorithm designs are:

1. To propose the high speed S-BOX and its implementation in FPGA and ASIC.

2. In Composite Field Arithmetic, XOR is used in addition so, XOR has been designed

using minimum number of transistors and it has high noise margin and low power.

3. Full custom design of S-BOX for AES Encryption algorithm.

4. Implementation of high speed architecture of AES algorithm.

1.4 ORGANIZATION

This thesis is organized as follows:

Chapter 2 describes the AES algorithm in details. The four encryption steps are

presented: Byte Substitution, Shift Rows, Mix Column and finally Add Round Key. It

also describes the details of S-BOX implementation in Composite Field Arithmetic.

In Chapter 3, a proposed architecture of S-box with some modification in Conventional

architecture is presented. The implementation results of proposed architecture in FPGA

and ASIC with comparisons of previous work is also provided.

In Chapter 4, a high speed 128-bits pipelined and iterative AES encryption using new

efficient merging technique is presented. The simulated output and comparisons with

conventional works is also provided.

In Chapter 5, a proposed two inputs novel XOR gate has been presented with

comparison of conventional XOR. The schematic and layout of all the require blocks and

proposed S-BOX have been presented and comparison of post layout and before post

layout simulation results have been done.

Finally, the conclusion and future work are presented in Chapter 6.

9

CHAPTER 2

ADVANCED

ENCRYPTION

STANDERD (AES)

ALGORITHM

10

The brief introduction of Advanced Encryption Standard (AES) and its steps has discussed in

this chapter. Literature review of AES, S-BOX architecture and its implemented conventional

hardware design is also present.

2.1 DEFINITION AND HISTORY OF CRYPTOGRAPHY

Information need to be secured from unauthorized party. Cryptography is one of the security

mechanisms to protect information from public access. Cryptography is a Greek origin word

which means “secret writing” to make the information secure and immune to attacks. Classic

cryptography was used for top-secret communications between people. This kind of

cryptography is commonly applied by replacing the message letters with other letters using

definite formula. Nowadays it‟s changed into algorithm based cryptography according to

demand by the users. It has two processes encryption and decryption, in the first process

encryption; the Plain text (Original message) will be converted into secured text or Ciphertext

(Encrypted message) using a specific algorithm which is shown in Figure 2-1. The second

process is decryption which is the reverse process of encryption; here Ciphertext will be

converted into Plain text using all the inverse steps applied for encryption.

Figure 2-1 Basic step of Encryption in cryptography

There are mainly two types of encryption algorithms, a private key (also called symmetric

key) and public key. Private Key algorithms involve only one key, both for encryption as

well as decryption whereas; public key algorithms involve two keys, one for encryption and

another for decryption.

The private Key algorithm is less complex and easy to implement for high speed application.

Figure 2-2 illustrates the concept private key cryptography, an entity can send an encrypted

message through insecure channels to another entity but the key should be sent from a secure

channel to decrypt the message in Symmetric key cryptography. Advanced Encryption

Standard (AES) is a private key algorithm [1, 3].

Plaintext

(Original message)

Cryptographic

Algorithm

Ciphertext

(Encrypted Message)

11

Figure 2-2 Symmetric Key Cryptography.

2.2 GALOIS FIELD

The Galois field (GF) or Finite Field with a finite number of elements are extensively used in

cryptography. The total number of element present in GF is called the order of fields. A GF is

of the form p
n
, where n is a positive integer and p is a prime number also called the

characteristic of the Galois field.

There are many cryptographic algorithms using GF among them, the AES algorithm uses the

GF (2
8
). The data byte can be represented using a polynomial representation of GF (2

8
).

Equation 2.1 shows the polynomial representation of data bytes in Finite Fields.

 ()

 (2.1)

Arithmetic operation is totally different from normal arithmetic algebra; an addition can be

found using bit-wise XOR operation. In Galois field, the multiplication product of

polynomials will be modulo an irreducible polynomial so final answer can be within the used

finite field. The polynomial which cannot be factorized of two or more than two is called as

irreducible polynomial.

2.3 THE DATA ENCRYPTION STANDERED (DES)

National Institute of Standard and Technology (NIST) published a proposal from IBM in

1973 for symmetric key cryptosystem. DES was accepted and published in March 1975 as a

draft of Federal Information Processing Standard (FIPS). It was finally published in January

1977 as FIPS 46 in the Federal Register.

DES is 64-bit cryptosystem, here 64-bit plain text takes and creates a 64-bit cipher text for

the encryption process. Similarly, in decryption of a 64-bit cipher text taken to convert into

Insecure channel

Plain text

1010110…

Key Key

Cipher text

11000011…..

Secure channel

Plain text

1010110…

Encryption

 Decryption

1101000… 1101000…

12

64-bit plain text. There is 56-bit same key has been used for both encryption and decryption.

Round-key generator generates the different round key for each round.

The linear cryptanalysis attack could break the DES algorithm and made it unconfident

algorithm. Several published brute force attacks started to fail DES algorithm. The NIST

started looking for replacement of DES algorithm because of its failure.

The NIST specifications required 128 bits block size and three different key sizes of 128, 192

and 256 bits, should be an open algorithm. The NIST declared that Rajndael cipher was

selected as Advanced Encryption Standard (AES).

2.4 THE ADVANCED ENCRYPTION STANDARD (AES)

The National Institute of Standards and Technology (NIST) announced that Rajndael

pronounced as “Rain Doll” planned by two Belgium researchers Joan Daemen and Vincent

Rijment was adopted as Advanced Encryption Standard (AES) for encryption and decryption

of blocks of data. The draft is published in December 2001, under the name as FIPS-197

(Federal Information Processing Standard number 197).

The criteria defined by selecting AES fall into three areas Security, Implementation and cost

of the algorithm. The main emphasis was the security of the algorithm to focus on resistance

of cryptanalysis attacks, implementation cost should be less so it can be used for small

devices like smart cards.

The AES algorithm is a private key block cipher. It encrypts data of block size 128 bits. It

uses three key sizes, 128 bits, 192 bits and 256 bits in three versions. AES uses three different

types of round operations. Table I shows the number of rounds in three versions of AES. But,

in each version final round key is 128 bits.

 Table I: Round key size and number of rounds in three versions of AES

Cipher Key size No. Of Rounds (Nr) Round Key size

128 bits 10 128 bits

192 bits 12 128 bits

256 bits 14 128 bits

13

The initialization is done by adding first round key (128 bits) with 128 bits plain text. In

subsequent steps, the following transformations are done: SubBytes, ShiftRows,

MixColumns and AddRoundKey. The last round is different from the previous rounds as

there is no MixColumns transformation. Figure 1 shows the round in AES. The internal 128

bits data in AES are represented in the form of 4x4 square matrix containing elements of size

8 bits and named as state elements. The decryption process involves of the inverse steps,

decryption round contains of: Inverse S-BOX used for Byte Substitution, Inverse Shift Rows,

Add Round Key and Inverse Mix Columns. The round keys will be generated using a unit

called the key generation unit. This unit will be generating 176, 208 or 240 bytes of round

keys depending on the size of the used key.

Figure 2-3 Rounds of AES Encryption algorithm.

ShiftRows

AddRoundKey

SubBytes

 ShiftRows

 SubBytes

MixColumns

 Plain text

 Round Key (i)
AddRoundKey

 Round Key (Nr)
AddRoundKey

 Cipher text

 For i = 1

 to Nr-1

 round

 F

in
al

 r
o

u
n
d

Round Key (0)

14

2.4.1 SUBBYTES/INVERSE SUBBYTES TRANSFORMATION

The first transformation, SubBytes, is used for encryption and inverse SubBytes used for

decryption. The SubBytes substitution is a nonlinear byte substitution that operates

independently on each byte of the State using a substitution table (S-box). Take the

multiplicative inverse in the finite field GF (2
8
) and affine transform to do the SubBytes

transformation. Inverse affine transform have to find for inverse SubBytes transformation

then multiplicative inverse of that byte.

Figure 2-4 SubBytes Transformation [5].

Figure 2-4 indicates that how the transformation can be done. There are two hexadecimal

digits a and b in one state element, the left digit (a) defines the row and the right digit (b)

defines the column of the substitution table. The junction of these two digits is the new bytes.

Inverse SubBytes transformation is inverse of SubBytes transformation. It can find in the

similar way only table which is used for mapping the byte is different. The SubBytes

transformation is done through S-box. There are two techniques to perform substitutions, (i)

using S-BOX table, and (ii) using composite field arithmetic. There are separate tables for

SubBytes and its inverse; Table II is used for SubBytes transformation and Table III used for

its inverse. It can be found using S-box architecture in composite field arithmetic which is

discussed in the next chapter.

15

Table II: Subbytes Transformation Table [16]

Table III: Inverse SubBytes Transformation Table [16]

16

SubBytes table is also called as S-box and inverse SubBytes table is an Inverse S - box. There

are two parts of affine transformation and its inverse; a constant matrix will be multiplied

with the data in multiplication part, then the addition part, where a constant vector is added to

multiplication result.

2.4.2 SHIFTROWS/INVERSE SHIFTROWS TRANSFORMATION

The transformation is called ShiftRows performs in encryption, in which rows are cyclic

shifting to the left. The number of shifting depends upon the row number of the state matrix.

First row no shifting, second row one byte, third row two bytes and fourth row three byte

shifting left. In the decryption, InvShiftRows transformation performs the right cyclic shifting

operation inverse of ShiftRows; number of shifting depends on number of row number.

Figure 2-5 shows the Cyclic ShiftRows transformation for AES algorithm.

Figure 2-5 ShiftRows Transformation for AES Encryption.

2.4.3 MIXCOLUMNS/INVERSE MIXCOLUMNS TRANFORMATION

The MixColumns transformation functions after the ShiftRows on the State column-by-

column, considering each column as a four-term polynomial. Inverse MixColumns are the

inverse process of MixColumns which is used in the decryption of cipher text. The columns

are considered as polynomials over GF (2
8
) and multiplied modulo x

4
 + 1 with a fixed

polynomial A (x), given in equation 2.2.

 A(x) = {03} x
3
 + {01} x

2
 + {01} x + {02}. (2.2)

The algorithm for MixColumns and Inverse MixColumns involves multiplication and

addition in GF (2
8
). The MixColumns multiplies the rows of the constant matrix by a column

in the state. Figure 2-6 describes the operation of this transformation; key addition is the next

transformation of the encryption.

17

Figure 2-6 MixColumns transformation of AES Encryption.

2.4.4 ADDROUNDKEY TRANSFORMATION KEY EXPANSION

2.4.4.1 AddRoundKey Transformation

The AddRoundKey adds the round key word with each column of state matrix. It is similar to

MixColumns; the AddRoundKey proceeds one column at a time. The most important in this

transformation, that it includes the cipher key. The state column will get XOR with key

which is generated by key generator and create another state as shown in Figure 2-7.

Figure 2-7 AddRoundKey transformation of AES Encryption.

2.4.4.2 Key Expansion

The key expansion term describes the operation of generating all Round Keys from the

original input key. The initial round key is original key in case of encryption and in case of

decryption the last group of the generated by key expansion keys will be original keys. As

mentioned earlier this initial round key will be added to the input firstly before starting the

encryption or decryption iterations. The 128 bits key size, 10 groups of round keys will be

generated with 16 bytes size. The round keys are generated word by word. There are some

similar encryption transformations used to generate the round key.

Constant matrix

State State

18

2.5 COMPOSITE FIELD ARITHMATIC S-BOX

The SubBytes transformation, done through S-BOX mapping is computationally inefficient

when implemented using a ROM. But, it is not efficient for applications requiring very high

throughput as ROM accessing involves one complete clock cycle for mapping one 8-bits state

element and consequently 16 clock cycles are required to transform the 128 bits data (16

bytes). To increase the throughput, parallel ROMs are required resulting in large size of chip

area.

Therefore, a more feasible solution is to implement an S - box is by using composite

field arithmetic which uses only logic elements in the implementation. The S-BOX

substitution starts by finding the multiplicative inverse of the data in GF (2
8
), and then

applying the affine transformation. Figure 2-8 shows steps for the one byte forward and

inverse SubBytes transformation using composite field arithmetic.

Figure 2-8 SubBytes and Inverse SubBytes transformation in composite field [6].

 To find the S-BOX transformation first multiplicative inverse of GF (2
8
) then affine

transformation calculated. Similarly, for InvSubBytes first InvAffine transformation then

multiplicative inverse has to be calculated. There are one major operation involve here, which

is to find the multiplicative inverse in GF (2
8
). This can be done by breaking the GF (2

8
)

elements in GF (2
4
) and some more logical blocks. I.e., Any arbitrary polynomial in GF (2

8
)

can be represented as bx+c using an irreducible polynomial x
2
+Ax+B. Here, b is the most

significant nibble and c is the least significant nibble. The multiplicative inverse can be found

by using the following equation (2.3).

1

2 2 1 2 2 1

2 1 2 1

()

() ()()

(()) ()(())

bx c

b b B bcA c x c bA b B bcA c

b b c b c x c b b c b c 



 

 



      

      

 (2.3)

19

Where, A=1, B=λ, as the irreducible polynomial used is x
2
+x+λ. Figure 2.9 shows the block

diagram to find the multiplicative inverse in GF (2
8
) using GF (2

4
). Figure 2.10 shows the

meanings the symbols used in Figure 2.9. The mapping structure in different fields along with

the irreducible polynomials is as follows.

GF (2
2
) → GF (2) : x

2
+ x + 1

GF ((2
2
)

2
) → GF (2

2
) : x

2
+ x + φ

GF (((2
2
)
2
)

2
) → GF ((2

2
)

2
) : x

2
+ x + λ

Figure 2-9 The conventional S-box architecture in composite field [6].

Figure 2-10 Meaning of symbols used in Figure 2-9.

Isomorphic mapping is the first step performed on the 8 bits sub byte input. The

output of the isomorphic mapping is given to the input of multiplicative inverse (MI) module.

Subsequently, inverse isomorphic mapping and affine transformations are the steps that

follow. The detailed discussion of each block has given below.

(2.4)

Sub Byte

out
GF(28)

Element in

4

4

4

4 4

8 8

δ

x
2
 ×λ

×

×

×

δ
-1

AT x
-1

Affine transformation AT

×

Multiplication operation in GF (24)

δ
-1

 Inverse Isomorphic mapping to GF (24)

Addition Operation in GF (24)

δ Isomorphic mapping to Composite Fields

x
2
 Squarer in GF (24)

×λ Multiplication with constant, λ in GF (24)

x
-1

 Multiplicative inversion in GF (24)

20

2.5.1 Addition operation in GF (2
4
)

The addition operation in Galois Field can be interpreted to simple bitwise XOR operation

between the two elements.

2.5.2 Squaring operation in GF (2
4
)

The squaring operation of 4 bits, i.e. x
2
 term can be modulo reduced using the irreducible

polynomial from (2.4), x
2
 + x + φ. It can reduce into lower order of Galois field, by setting x

2

= x + φ and replacing it into x
2
. Doing above operation GF (2

4
) is converted into GF (2

2
),

here nibble is converted into 2 bit stream. It can be represented using equation 2.5.

 ()

 (2.5)

Where k {k3k2k1k0} is the four bits output of squarer and q {q3q2q1q0} is the input bit

steam, here qh, kh, ql, and kl are higher 2 bits of q and k and lower 2 bits of q and k

respectively. Now GF (2
2
) can be converted into GF (2), the x

2
 term can be replaced x

2
 = x +

1. For the case of x
3
, it can be obtained by multiplying x

2
 by x, i.e. x

3
 = x(x) + x = x

2
 + x.

after Substituting for x
2
, x

3
 = x + 1 + x. The two x terms are presented which cancel out each

other, leaving only x
3
 = 1. Performing all the substitution output bit stream can be calculated

by input bit streams in GF (2) the final expression yields the following equation 2.6.

 ()

Here we know that similar term in XORing operation will get cancelled, after that

polynomial substitution has to do which is discussed earlier. Equation 2.7 gives the logical

expression for all the output bits.

 (2.7)

21

The equation (2.7) can be realized hardware logic diagram usingan XOR operationn

anddiagramsm drawn in figure 2.11.

Figure 2-11 Logical hardware diagram of squarer for GF (2
4
)

2.5.3 Multiplication with constant, λ

The multiplication with constant λ, which value is {1100} in GF (2
4
) will give the

polynomials. Modulo reduction can be performed by substituting x
2
 = x + φ using the

irreducible polynomial in (2.4) to yield the logical expression. The final output bits k in the

form of input bits q can be calculated using irreducible polynomial, which represented in

equation 2.8. There are total three XOR gate is required to implement the multiplication with

λ. There are two XOR gates in critical path which will give the maximum delay. Figure 2-12

shows the logical hardware of equation 2.8.

 (2.8)

Figure 2-12 Logical hardware diagrams for multiplication with constant, λ

4

k

4

q

4

k

4

q

22

2.5.4 Galois field GF (2
4
) multiplication

The GF (2
4
) multiplier is a major component to find the multiplicative inverse using

composite field arithmetic operation. It requires more hardware to implement in

combinational logic. It is multiples of 4 bits with 4 bits and results also in 4 bits. Let k = qw,

where k in the 4 bits binary output and q and w are 4 bits inputs. It can be observed that

multiplication and addition operation in GF (2
2
), multiplication in GF (2

2
) is a major

component in it.

 It can be converted into a lower form of Galois field using irreducible polynomial

present in equation 2.4. The final expression of logic implementation can be represented in

equation 2.9. Figure 2-13 shows the logical hardware implementation of GF (2
4
)

multiplication. Here „+‟ represents the XOR operation.

 () (2.9)

Figure 2-13 Logical hardware implementation of GF (2
4
) multiplier

2.5.4.1 Multiplication with constant, φ

The multiplication with constant φ, which has a constant value φ = {10}2 is an element of

GF (2
2
). It has two bits value that can be also represented in the form of combinational logic

in equation 2.10. Figure 2-14 shows the hardware implementation of combinational logic.

Here k is a two bits output and q two bits input of the component.

GF (2
2
) multiplier.

23

 (2.10)

Figure 2-14 Hardware implementation of multiplication with φ

2.5.4.2 Galois field GF (2
2
) multiplication

The Galois field (2
2
) multiplier is the major component in GF (2

4
) multiplication, which exist

in the critical path. It can be represented in the input bit streams by using irreducible

polynomial presents in equation 2.4.

 It also implemented using combinational logic which presents in equation 2.11.

Figure 2-15 shows its hardware implementation in composite field arithmetic. Here k is two

bits output and q and w are the two bits input of the component.

 (2.11)

Figure 2-15 Hardware implementation of GF (2
2
) multiplication

k

q

w

24

2.5.5 Multiplicative Inversion in GF (2
4
)

The multiplicative inverse of q (where q is an element of GF (2
4
)) is an intermediate

component of multiplicative inverse. It has derived a formula to compute the multiplicative

inverse of q, such that *

 +. The inverses of the individual bits can be

computed from the logical equation and pre-computed value can be stored in RAM. The pre-

computed value can be seen in table IV which will used to find the multiplicative inverse.

The method using logic equation is given in equation 2.12.

Table IV: Pre-computed results of the multiplicative inverse operation in GF (2
4
) [16].

The table containing the results of the multiplicative inverse in hexadecimal is shown above.

The equation given below helped to hardware implementation in combinational logic where

„+‟ indicates the XOR operation.

1

3 3 3 2 1 3 0 2

1

2 3 2 1 3 2 0 3 0 2 2 1

1

1 3 3 2 1 3 1 0 2 0 2 1

1

0 3 2 1 3 2 0 3 1 3 1 0 3 0

2 2 1 2 1 0 1 0

q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q q q

q q q q q q q q









   

    

     

    

    
 (2.12)

25

CHAPTER 3

IMPLEMENTATION OF

PROPOSED

ARCHITECTURE FOR

S-BOX

26

3.1 INTRODUCTION

The SubBytes transformation is a non-linear operation in AES wherein each byte of a state is

mapped to a different value. The SubBytes transformation is done through S-box. There are

two techniques to perform substitutions, (i) using ROM table [10−12], and (ii) using

composite field arithmetic [13−15]. The SubBytes transformation, done through S-box

mapping is computationally inefficient when implemented using a ROM. But, it is not

efficient for applications requiring very high throughput as ROM accessing involves one

complete clock cycle for mapping one 8-bits state element and consequently 16 clock cycles

are required to transform the 128 bits data (16 bytes).

To increase the throughput, parallel ROMs are required resulting in large size of chip

area. Therefore, a more feasible solution is to implement an S - box is by using composite

field arithmetic which uses only logic elements in the implementation. Substitution is the

most complex steps in terms of cost and implementation [13]. Therefore, its hardware

optimization for VLSI implementation is very important to reduce the area and power of the

AES architecture. The ROM based approach requires high amount of memory and also it

causes low latency because of ROM access time. Therefore, composite field arithmetic is

more suitable for S-box (substitution) implementation.

The Speed improvement along with an area reduction has been the most challenging

research in VLSI implementation. We propose a high speed VLSI architecture for S-box. The

FPGA implementation of the architecture is done along with comparison with some existing

transformation techniques. The proposed architecture has delayed improvement and low

power consumption. The silicon validation of the architecture is done by programming

XC2VP30 device on Virtex-II Pro FPGA board. The proposed architecture is also

implemented in ASIC using 0.18 µm standard cell technology library.

3.2 PROPOSED ARCHITECTURE OF S-BOX.

The new architecture of S-BOX has proposed after 3 modifications in conventional

architecture of S-BOX.

I. Introduced an operator (op) after merging of some blocks.

II. Implementation of multiplicative inverse in GF (2
4
) using multiplexor.

III. Reduced the critical path of multiplication in GF (2
2
)

27

3.2.1 Introduced an operator (op) after merging of some blocks.

An operator (op) has introduced after merging of blocks like squarer, multiplication with

constant λ, a GF (2
4
) multiplier and a four bits XOR. The equation of op has introduced using

Galois field irreducible conversion technique and in the form of an input bit stream. One

major operation involve here is finding the multiplicative inverse in GF (2
8
).

This can be done by breaking the GF (2
8
) elements in GF (2

4
). I.e., Any arbitrary

polynomial in GF (2
8
) can be represented as bx+c using an irreducible polynomial x

2
+Ax+B.

Here, b is the most significant nibble and c is the least significant nibble. The multiplicative

inverse can be found by using the following expression [16].

1

2 2 1 2 2 1

2 1 2 1

()

() ()()

(()) ()(())

bx c

b b B bcA c x c bA b B bcA c

b b c b c x c b b c b c 



 

 



      

      

 (1)

 Where, A=1, B=λ, as the irreducible polynomial used is x
2
+x+λ. Figure 3 shows the

block diagram to find the multiplicative inverse in GF (2
8
) using GF (2

4
) [16]. The mapping

structure in different fields along with the irreducible polynomials is as follows.

GF (2
2
) → GF (2) : x

2
+ x+ 1

GF ((2
2
)

2
) → GF (2

2
) : x

2
+ x+ φ

GF (((2
2
)
2
)

2
) → GF ((2

2
)

2
) : x

2
+ x+ λ (2)

The expression b
2
λ+c (b+ c) in Eq. (1) Can be written as,

2 2 2()b bc c b b c c      (3)

Representing b, c and λ as,

 b= bHx+ bL, c = cHx+ cL, λ = λHx+ λ L

Where bH and bL are the upper and lower 2-bits of b, similarly, cH and cL are the upper

and lower 2-bits of c and λH and λL are the upper and lower 2-bits of λ. The bλ, i.e.,

Multiplication with λ can be written as,

2

H H L Hb b x b x    (4)

28

And therefore,

2

H H L H H Lb c b x b x c x c       (5)

Now from Eq. (5),

2

2 2 2

2

()

() ()

()

()

H H H H H L H L

H H H H H H L H L H L H

L L H H H H

b b c

b x b c x c b x b

b b c b c b b b c x

b c b b c



 

   

  



     

     

  

 (6)

Here, λ = (1100)2 and φ = (10)2. Performing operations in GF ((2
2
)

2
), the following

value can be obtained in terms of upper (b) lower nibble (c) bits of inputs. We can reduce the

blocks in the proposed architecture from its conventional architecture of S-BOX.

(0)

(0) (0) (1) (1) (2) (3) (3) (3)

(3) (2) (0) (3) (5) (7)

(1)

(0) (1) (1) (0) (1) (1) (2) (2)

(2) (3) (3) (2) (2) (3) (5) (6)

(2)

(0) (2) (1) (3) (2) (0) (2) (2)

op

b c b c b c b c

b c in in in in

op

b c b c b c b c

b c b c in in in in

op

b c b c b c b c

b

   

    

   

     

   

 (3) (1) (3) (3) (1) (2) (4) (6)

(3)

(3)((0) (3) (6)) (3)((0) (1) (2))

(2) (1) (1) (2) (1) (3) (4)

c b c in in in in

op

b in in in c b b b

b c b c in in in

    

     

    

 (7)

Where, in(0), in(1), in(2), in(3), in(4), in(5), in(6) are the input bits in the isomorphic

mapping module (δ).

3.2.2 Implementation of multiplicative inverse in GF (2
4
) using multiplexor.

MI in GF (2
4
) represented by the symbol x

-1
 and multiplication in GF (2

4
) are the two main

components falls in the critical path of the design. MI in GF (2
4
) consists of complex logic

given by [12].

29

1

3 3 3 2 1 3 0 2

1

2 3 2 1 3 2 0 3 0 2 2 1

1

1 3 3 2 1 3 1 0 2 0 2 1

1

0 3 2 1 3 2 0 3 1 3 1 0 3 0

2 2 1 2 1 0 1 0

q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q q q

q q q q q q q q









   

    

     

    

    
 (8)

Where,
1 1 1 1

3 2 1 0
q q q q

   
 is 4-bits MI of 4-bit value 3 2 1 0

q q q q and + sign indicates XOR

operation. It is evident that the realization of MI in GF (2
4
) requires a number of exclusive-or

(XOR) gates. By eliminating the XOR gates, delay and area can be reduced. Table V shows

the input and output combination of MI in GF (2
4
). The input combinations can be divided

into two equal halves.

In the first half, MSB will have value „0‟ and in the second half, MSB will be „1‟.

This can be realized by a multiplexer, wherein, for „0‟ MSB in input, the 4-bit output will be

given by a combination of three input bits (except MSB). Similarly, for MSB= „1‟, the 4-bit

output will have 3-bit input combination (except MSB). The combinational logic of the first

half and second half can be represented in terms of three input bits.

Table V: MI in GF (2
4
) [16]

Input to MI

in GF (2
4
)

Output

from MI in

GF (2
4
)

q3q2q1q0 q3
-1

q2
-1

q1
-1

q0
-1

0000 0000

F
ir

st
 h

al
f

0001 0001

0010 0011

0011 0010

0100 1111

0101 1100

0110 1001

0111 1011

1000 1010

S
ec

o
n

d
 h

al
f

1001 0110

1010 1000

1011 0111

1100 0101

1101 1110

1110 1101

1111 0100

30

By using a multiplexer, one of the outputs, can be selected depending on the MSB of

the input. It is obvious that the combinational logic contains in equation (9a) and (9b) only

OR and AND gates instead of XOR gates.

       

   

       

       
 

1

3 2 1 0 2 1 0 2 1 0 2 1 0

1

2 2 1 0 2 1 0

1

1 2 1 0 2 1 0 2 1 0 2 1 0

1

0 2 1 0 2 1 0 2 1 0 2 1 0

2 1 0

q q q q or q q q or q q q or q q q

q q q q or q q q

q q q q or q q q or q q q or q q q

q q q q or q q q or q q q or q q q

or q q q

















 (9a)

       

       

   

       

     

1

3 2 1 0 2 1 0 2 1 0 2 1 0

1

2 2 1 0 2 1 0 2 1 0 2 1 0

2 1 0 2 1 0

1

1 2 1 0 2 1 0 2 1 0 2 1 0

1

0 2 1 0 2 1 0 2 1 0

q q q q or q q q or q q q or q q q

q q q q or q q q or q q q or q q q

or q q q or q q q

q q q q or q q q or q q q or q q q

q q q q or q q q or q q q
















 (9b)

3.2.3 Reduced the critical path of multiplication in GF (2
2
)

The Figure 2-15 shows the conventional architecture of multiplication in GF (2
2
). It is evident

that there are two XOR gates and one AND gate in the critical path of GF (2
2
) multiplication.

The output equation can be written as in equation (10).

(0) (1) (1) (0) (0)

(1) (1) (1) (0) (1) (1) (0)

z x y x y

z x y x y x y

 

  
 (10)

The above equation can be implemented using two 4:1 parallel multiplexers as follows.

Suppose y is the select line. Then, for different values of y, multiplication result z, from Eq.

(10), will have values as given in TABLE III. Figure 3-1 shows the proposed architecture of

multiplier using two multiplexers.

One XOR gate has been eliminated from the critical path by using 4:1 multiplexer,

i.e., there is one XOR gate and one multiplexer only in critical path, as compared to two XOR

gates in conventional. Here, x and y are the 2 two bits inputs and z is the two bits output of

the multiplication in GF (2
2
).

31

Figure 3-1 4:1 multiplexer for (a) LSB output and (b) MSB output for 2 bits output of

multiplication in GF (2
2
)

3.3 IMPLIMENTATION OF PROPOSED ARCHITECTURE OF S-BOX

Figure 3-2 shows the proposed architecture of S-box for AES has been implemented in Xilinx

FPGA and 180nm ASIC. The device taken for the implementation is XC2VP30 on Virtex-II

pro board. For the comparison, S-box architecture in [16] has also been implemented using

multiplicative inverse structure in the XC2VP30 device.

Figure 3-2 Proposed Multiplicative Inverse architecture

3.3.1 ASIC Implementation of MI in GF (2
4
)

The proposed multiplicative inverse implementation has been done in ASIC design. Table VI

shows the ASIC implemented results and comparisons. It is evident that the proposed

methods are delay and area efficient. The total dynamic power is also less.

Table VI: Comparison of MI in GF (2
4
) in ASIC

Technology

0.18 µm

Conventional

structure

Proposed

structure

Area (µm
2
) 352 279.41

Total Dynamic

Power (µW)

97.58 62.93

Delay (ns) 0.79 0.52

MUX_1
z (0)

„0‟

X(0)

x (1)
x (0) xor x (1)

y

MUX_2
z (1)

„0‟

x (1)

x (0) xor x (1)

x (0)

y

4

4

×

GF(28)

Element

in

δ

4

4

8

Multiplicative

Inverse Out

×

δ-1
MUX

4

8

Op

32

3.3.2 ASIC Implementation of multiplication in GF (2
2
)

The proposed architecture of multiplication in GF (2
2
) has implemented in ASIC. Table VII

shows the speed and power improvement as compare with conventional architecture.

Table VII: Comparisons of multiplication in GF (2
2
) in ASIC

Technology

0.18 µm

Conventional

structure

Proposed

structure

Area (µm
2
) 123.00 126.40

Total Dynamic

Power (µW)

28.64 24.45

Delay (ns) 0.41 0.23

3.3.3 ASIC and FPGA Implementation of proposed S-BOX

The conventional S-box as well as proposed S-box architectures has been implemented using

VHDL code. The device taken for the implementation is XC2VP30 on Virtex-II pro board.

The proposed architecture has also implemented in Spartan 6 for the comparison, S-box

architecture in [16] has also been implemented using multiplicative inverse structure in the

XC2VP30 device.

The design synthesis has been done in different Xilinx devices. Table VIII shows the

hardware utilization summary in terms of Slices and LUTs. Power consumption has been

measured by Xpower analyser tool in ISE 10.1. From Table VIII, it is evident that there is an

improvement in terms of delay and power consumption in the proposed structure as

compared to the structure in [16].

Figure 3-3 Hardware implementation Result of S-box obtained from XC2VP30 device

using ChipScope pro logic analyzer

33

It can be seen that there is considerable area improvement in terms of FPGA slices, and speed

improvement (the critical path delay) in our proposed method as compared to conventional

architectures of S-box. Table IX shows the comparison results using a Spartan 6. The large

improvement can be seen after implementing in SPARTAN6 (XC6SLX16-3CSG324). The

improvement in terms of slices, LUTS and delay is also optimized. As compared to Xilinx

vertex-II pro cost is less of this device so, it is useful for low utilization hardware

implementation.

Figure 3.3 shows the sample outputs obtained from FPGA through the ChipScope pro

logic analyzer after programming the XC2VP30 device. Table X shows the delay, power and

area comparison in ASIC implementation using 180nm standard cell technology library. The

proposed architecture has delay improvement of about 0.9 ns (=16 %) as compared to the

conventional s-box architecture in [16] with little area cost.

TABLE VIII: FPGA IMPLEMENTATION RESULTS AND COMPARISONS IN XILINX VERTEX-II

PRO

 Proposed

structure

Structure in [16] Structure in

[14]

Device XC2VP30 XC2VP30 XC2V1000

of Slices 36 48 153

of 4-input

LUTs

63 85 NA

Max. Delay

(ns)

15.0 15.6 10.82

Total Power

(W)

7.27 9.74 NA

TABLE IX: FPGA IMPLEMENTATION RESULTS AND COMPARISONS IN

SPARTAN6 (XC6SLX16-3CSG324)

 Proposed Structure Conventional Structure

of Slices 24 30

of 4-input

LUTs

54 81

Max. Delay

(ns)

15.23 15.63

Total Power

(mW)

20 20

34

TABLE X: ASIC IMPLEMENTATION RESULTS AND COMPARISONS

3.4 CONCLUSION

An optimized architecture of S-box for AES encryption is proposed in this thesis. This novel

architecture is implemented both in ASIC as well as FPGA. The ASIC implementation

indicates speed improvement compared to conventional structure while maintaining area

constant. FPGA implementation shows improvement in delay and area while a significant

enhancement in terms of power compared to conventional architecture.

Technology

0.18 µm

Proposed

Structure

Conventional

Structure in [16]

Area (µm
2
) 3968 3715

Gate Counts 404.89 379.08

Delay 4.6

(Improvement =16 % from

conventional)

5.51

Total Dynamic

Power (mW)

2.4985 2.4380

Efficiency

(kbps/µm
2
)

(Throughput/Area)

438.25 390.57

35

CHAPTER 4

HIGH SPEED AES

ENCRYPTION

36

4.1 INTRODUCTION

The data encryption maintains data confidentiality, integrity and authentication. AES

(Advanced Encryption Standard) is a standard for encryption and decryption of blocks of

data. It is adopted by the National Institute of Standards and Technology (NIST) and

published under the name as FIPS-197 (Federal Information Processing Standard number

197). AES is widely used for encryption of audio/video data contents, data on smart cards,

automated teller machines (ATMs), WWW servers, Network traffic, cellular phones, etc.

AES algorithm is an iterative algorithm, which requires many computation cycles. A

software platform cannot provide the high speed encryption of data, specially used for real-

time applications. Audio/video content encryption is required in real-time in business deals

via video conferencing. Therefore, dedicated hardware implementation is inevitable in such

applications. Hardware implementation can be done through different architectures trading

throughput with area and power consumption. At any time, designing best architecture for a

particular design with low area and low latency is a challenge.

We have designed the architecture of AES encryption which has low latency and low

power consumption. The design optimization has been done by replacing conventional

modules in AES architecture with a module which best suits for the area and latency

reduction. Further, we have synthesized two different design styles of AES, namely, iterative

and concurrent (pipeline) for implementation in Xilinx FPGA. Iterative architecture can be

realized with low area, but throughput is low as compared to concurrent architecture which

has higher throughput. Different implementation and hardware synthesis report have been

presented.

4.2 PROPOSED ARCHITECTURE FOR AES ENCRYPTION

ALGORITHM

The AES algorithm encrypts data in blocks of 128 bits. It uses three key sizes, 128 bits, 192

bits and 256 bits in three versions with three different Nr rounds 10, 12 and 14. But, in each

version final round key is 128 bits. 128 bits cipher key size is used in first version with 10

rounds of transformations. With initial Roundkey addition transformation, there are 9 rounds

of SubBytes, ShiftRows, MixColumns followed by AddRoundKeys transformations. The last

round (10th round) is different from the previous rounds as there is no MixColumns

transformation.

37

Figure 2-3 shows the rounds in AES of conventional architecture. The design

optimization has been done by replacing conventional modules of AES architecture with a

module which best suits for the area and high speed. Figure 4-1 shows our proposed

architecture, in which ShiftRows and AddRoundKeys are merged in MixColumns

transformation module. It means that these three transformations can be done using single

clock cycle.

The proposed architecture of S-BOX with all three modifications (which discussed in

the previous chapter) have used for SubBytes transformation in the proposed architecture of

AES encryption algorithm. Iterative architecture can be realized with low area and proposed

architecture helps to raise the speed.

Figure 4-1 the proposed architecture of AES encryption algorithm

4.3 FPGA IMPLEMENTATION OF PROPOSED ARCHITECTURE OF

AES

The conventional S-box as well as proposed S-box architectures has been implemented using

VHDL code. The design synthesis has been done in different Xilinx devices. Table XI shows

the device utilization summary of the proposed designs along with the conventional ones. It

can be seen that there is considerable area improvement in terms of FPGA slices, and speed

improvement (the critical path delay) in our proposed method as compared to conventional

architectures of S-box and AES encryption algorithm.

 AddRoundKey

 SubBytes

 SubBytes

 MixColumns

Plain text

 Round Key (i)

Round Key (Nr)
AddRoundKeys

 Ciphertext

For i

=1 to

Nr-1

round

 F
in

al
 r

o
u
n
d

Round Key (0)

38

The implementation of pipeline method takes more hardware. Therefore, it is not

possible to implement the pipeline architecture in Spartan devices. The AES iterative design

in Spartan6 FPGA takes 1 clock cycle in SubBytes transformation, 6 clock cycles in combine

in AddRoundKeys, MixColumns and ShiftRows transformations for single round.

Therefore for 10 rounds, it takes 10x (6+1) +16 =86 clock cycles. The maximum

delay in proposed AES iterative design is 8.17 ns. So, it will take (86x8.17 = 702.62) ns to

complete the AES transformation of 128 bits data. Figure 4-2 shows the simulation result of

AES iterative architecture for 128 bits plaintext data.

Figure 4-2 Simulation Output of proposed AES encryption for 128 bits in Xilinx ISE

13.4

Table XI: Design Summary of FPGA Implementation of proposed AES algorithm

Xilinx
FPGA Device

Spartan6 (xc6slx16-3csg324)
Virtex-II
pro

(xc2vp30)

Design

S-box AES Iterative
AES

Pipeline

With
conventional

logic

With
proposed

logic

With
conventional

logic
(% utilization)

With
proposed
logic (%

utilization)

With
proposed

logic
(% utilization)

No. Of
Slices

30 24
1017

 (44 %)

730

 (32 %)

9942

 (72 %)

No. Of
LUTs

81 54
2741

(30 %)

1838

 (20 %)

18597

 (67 %)

No. Of Slice
Registers

0 0
952

(5 %)

788

 (4 %)

5388

 (19 %)

Delay 15.63 ns 15.23 ns 9.78 ns 8.17 ns 8.58 ns

Power 20 mW 20 mW 21 mW 21 mW 13.86 W

39

4.4 CONCLUSION

In this chapter, new hardware architectures for the Advanced Encryption Standard (AES)

algorithm were presented. FPGA Xilinx technology was used to synthesise the designs and

provide post placement results using Xilinx ISE 10.1 for AES pipeline architecture and

Xilinx ISE 13.4 has used for the AES iterative algorithm. The maximum throughput of the

design is 185.815 Mbits/s. Medium resolution video (640x480) of true colour depth (24 bits

per pixel) has a bit rate of 184.3 Mbits/s.

Therefore, the proposed architecture implementation in spartan6 FPGA has enough

throughputs to encrypt the video resolution mentioned above in real time. Because, the

proposed iterative design has low area, it is suitable for the implementation in small devices

like, smart cards, cellular phones, etc.

40

CHAPTER 5

FULL CUSTOM

DESIGN FOR

PROPOSED S-BOX

41

5.1 INTRODUCTION

The S-Box (Substitution box) forms the core building block of any hardware implementation

of the Advanced Encryption Standard (AES) algorithm. This chapter presents a full custom

CMOS design of S-Box with low power and high speed GF (2
8
) Galois Field inversions

based on polynomial basis, using composite field arithmetic. Field Programmable Gate Array

(FPGA) implementation is not suitable for such applications mainly due to size and power

constraints. It‟s difficult to achieve highly compact implementation using FPGA

implementation.

 The proposed architecture shows that XOR is the major component which is used to

do the addition operation in composite field arithmetic. The optimization of the design has

been done by proposing novel circuit for smaller components like XOR gate and other circuit

components like Galois Field (GF) multiplier. The XOR has been designed using minimum

number of transistors and it has high noise margin and low power consumption as compared

to existing XOR designs. The full custom design is required for small devices like smart

cards and high rate of data transmission.

5.2 NOVAL XOR GATE FOR LOW POWER FULL CUSTOM DESIGN

OF S-BOX

It is clearly evident that the implementation of S-Box requires a large number of XOR

operations whose efficient and low power implementation can result in a significantly

improved CMOS S-Box hardware design. The numerous 2-input XOR gate designs have

been described to enhance the performance for several applications. A XOR gate using six

transistors including an inverter [15], is simulated in Cadence Spectre using UMC 180nm

technology. The simulated output can be seen in Figure 5-2. The conventional XOR gate

(Figure 5-1) has problem in two sets of input for that it‟s not giving proper output.

The novel XOR has been designed using minimum number of transistors. The pass

transistor concept is used to design proposed XOR gate can be seen in Figure 5-3. A novel

XOR has simulated in same technology and improvement can be seen in Figure 5-4. It has a

high noise margin and low power consumption as compared to conventional XOR gate

designs. The new approach to minimize the silicon - area of S-Box design demonstrated by

using a new 2-input XOR gate for low-power composite field arithmetic to reduce the power

dissipation and delays for the complete circuit.

42

5.2.1 Conventional schematic for XOR gate and its simulated output.

Figure 5-1 Conventional Schematic for XOR gate [15]

Figure 5-2 Simulated output of Conventional XOR.

The conventional XOR design has been simulated in spectre simulator of Cadence and can

see the error present in Figure 5-2. Whenever input A is zero level PMOS transistor should

pass the input B, and output Y should on proper level. But, it‟s giving the error of 0.3V.

43

5.2.2 Proposed novel XOR schematic, layout and its simulated output

A new novel XOR has proposed in Figure 5-3 and the simulated output can be seen in Figure

5-4. Figure 5-5 shows the layout of the proposed novel XOR which has drawn using Virtuoso

Layout Editor of Cadence. This gives the proper level for all the sequences of inputs.

Figure 5-3 Proposed Schematic for novel XOR

Figure 5-4 Simulated output for proposed Schematic of novel XOR

44

Figure 5-5 Layout of proposed novel XOR gate.

5.2.3 Comparison between Conventional and Proposed XOR Gate.

Table XII: Comparison Results between Conventional and Proposed XOR

 Proposed XOR Conventional XOR

Maximum Delay (ns) 0.061 73

Total Average

Dynamic Power (µw)

0.63 5.27

5.3 SCHMATIC AND LAYOUT DESIGN FOR FIRST MODIFICATION

OF PROPOSED ARCHITECTURE OF S-BOX

Equation 7 can be implemented in form of Schematic in Cadence spectre and layout of

operator (op) has done using Virtuoso Layout Editor. All the bits of operator (op) have

implemented in FPGA and verified the output of proposed S - Boxes, schematic of the

architecture in Figure 5-6 and an optimized layout can be seen in Figure 5-7. The proposed

novel XOR has used to implement the schematic and layout of operator (op) presents in

equation 7.

45

Figure 5-6 Schematic of the operator (op)

Figure 5-7 Layout of the Schematic drawn in Fig.5-6

46

5.4 SCHMATIC AND LAYOUT OF PROPOSED MULTIPLICATIVE

INVERSE (MI) IN GF (2
4
)

The Schematic and layout has done, Cadence spectra used for Schematic and layout has

drawn using the Virtuoso layout editor. There are two parts of MI one when taken MSB as

„0‟ and another for MSB as „1‟ shown in Figure 5-8. Figure 5-8 (a) for MSB „0‟ and (b) for

MSB „1‟ and complete Schematic is in Figure 5-10.

The layout of the multiplicative inverse (MI) is drawn partially wise first for the MSB

„0‟ and then of MSB „1‟; the implementation equation is given in equation 9. Where the

equation (9a) is for MSB „0‟; and (9b) is for MSB „1‟. The layout of the proposed

architecture of MI has drawn, which is presented in Figure 5-9 (a) Layout for MSB „0‟ , (b)

Layout for MSB „1‟. The complete optimized layout of MI has drawn in Figure 5-11.

Figure 5-8 Schematic for Proposed Multiplicative Inverse (a) MSB as ‘0’ (b) MSB as ‘1’

(a) (b)

47

Figure 5-9 Layouts for Proposed Multiplicative Inverse (a) MSB as ‘0’ (b) MSB as ‘1’

Figure 5-10 Complete Schematic for Proposed Multiplicative Inverse in GF (2
4
)

Figure 5-11 Complete Layout of Proposed Multiplicative Inverse in GF (2
4
)

(a) (b)

48

5.5 SCHEMATIC AND LAYOUT OF PROPOSED ARCHITECTURE OF

MULTIPLICATION IN GF (2
2
)

The proposed architecture of multiplication in GF (2
2
) shown in Figure 3-1. Here, the

Schematic and Layout has drawn, Schematic has in Figure 5-12 and Layout in Figure 5-13.

We know that multiplication in GF (2
2
) is a major component to find the multiplication in GF

(2
4
) in composite field arithmetic which is essential for S-BOX. The schematic of

multiplication in GF (2
4
) and layout of it is shown in Figure 5-14 and 5-15 respectively.

Figure 5-12 Schematic of proposed architecture of multiplication in GF (2
2
)

Figure 5-13 Layout of proposed architecture of multiplication in GF (2
2
)

49

Figure 5-14 Schematic of multiplication in GF (2
4
)

Figure 5-15 Layout of multiplication in GF (2
4
)

The optimized layout of multiplication in GF (2
4
) has drawn in the Cadence Virtuoso Layout

Editor using UMC 180 nm technology. The area of the full custom design of multiplication

in GF (2
4
) is approximately 4000 µm

2
.

5.6 SCHEMATIC AND LAYOUT OF FOUR BIT XOR USING THE

PROPOSED NOVEL XOR GATE.

The four bit XOR is used to do the addition operation of four bits to implement the S-BOX.

The Schematic and Layout of 4 bit XOR has presented in Figure 5-16. Figure 5-16 (a) shows

the Schematic; and Fig. 5-16 (b) shown layout of it.

50

Figure 5-16 Schematic and Layout of 4 bits XOR (a) Schematic and (b) Layout of (a)

5.7 SHEMATIC OF PROPOSED S-BOX

The Schematic of proposed S-BOX has drawn using all the modification done in architecture

level, Schematic diagram can be seen in Figure 5-17. The simulated output of the proposed

architecture; shown in Figure 5-18 which is verified with the simulated output in FPGA.

Figure 5-17 Schematic of proposed S-BOX

51

Figure 5-18 Simulated output of Schematic of proposed architecture of S-BOX

5.8 LAYOUT AND POST LAYOUT SIMULATION RESULTS OF

PROPOSED S-BOX

To achieve the very high speed, full custom design of the s - box in composite field has been

done for the proposed s-box architecture in Cadence Virtuoso. The optimized layout of

proposed schematic of S-BOX has drawn in Virtuoso Layout Editor using the UMC 180nm

technology library. Figure 5-19 shows the complete layout; DRC (Design Rule Check) and

LVS (Layout and Schematic match) can be seen in Figure 5-20 and 5-21 respectively.

 The parasitic extraction has done which is required for post layout simulation, layout

after extraction shown in Figure 5-22 and extraction report shown in Figure 5-23. The post

Layout simulation result can be seen in the Figure 5-24. Table XIII shows the comparative

results of the proposed S-BOX which is compared between before post layout and after post

layout simulations. The design summary gives the total number no transistors (nmos and

pmos) presents in the layout and it also gives the total count of parasitic resistance and

parasitic capacitance.

52

Figure 5-19 the optimized layout of proposed S-BOX

Figure 5-20 DRC check of layout

Figure 5-21 LVS match of layout

53

Figure 5-22 Layout after parasitic extraction

Figure 5-23 Design summary and device count after parasitic extraction

54

Figure 5-24 Post layout simulated output after parasitic extraction

Table XIII: Comparison Results between Post layout and before Post layout simulation

 Post Layout Before Post Layout

Maximum Delay

(ns)

8.2 1.81

Total Average

Dynamic Power

(µw)

22.6 7.6

5.9 CONCLUSION

The novel XOR gate is proposed for use in s-box design which is efficient in terms of delay

and power along with high noise margin. The implementation has been done in 180 nm UMC

technology. The designed s-box using proposed XOR occupies a total area of 27348 µm
2
.

55

CHAPTER 6

CONCLUSION

AND FUTURE

WORK

56

6.1 CONCLUSION

We have proposed optimized VLSI architecture of S-box for AES algorithm.

The architecture of s-box in composite field has been modified in order to have

high speed and low areas. Using the proposed s-box, AES architecture has been

implemented using the merging technique in FPGA. The proposed AES

architecture has delayed improvement of approx. 1.6 ns along with area

improvement of 287 FPGA slices when implemented in the Spartan-6 FPGA of

Xilinx. The full custom design of the s-box has been done in 180 nm technology

in Cadence using novel XOR gate which has high speed and low power

consumption as compared to existing one. The designed s-box chip consumes

22.6 µW and has 8.2 ns delay after post layout simulation.

6.2 FUTURE WORK

 Full custom design of AES.

 Tape out of full custom AES.

 Video encryption in real-time using proposed design implemented in

FPGA.

57

REFERENCES

[1] B.A. Forouzan and D. Mukhopadhyay, Cryptography and Network Security, 2nd

Ed.,Tata McGraw Hill, New Delhi, 2012.

[2] M. I. Soliman, G. Y. Abozaid, “FPGA implementation and performance evaluation of

a high throughput crypto coprocessor,” Journal of Parallel and Distributed

Computing, Vol. 71 (8), pp.1075-1084, Aug. 2011.

[3] V. K. Pachghare, Cryptography and information security, E. E. Ed., PHI Learning,

New Delhi, 2009.

[4] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A Lightweight High-Performance

Fault Detection Scheme for the Advanced Encryption Standard Using Composite

Fields,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 19

(1), pp. 85-91, Jan. 2011.

[5] Federal Information Processing Standards Publication 197 (FIPS 197), available

online, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[6] X. Zhang, K. K. Parhi, “High-Speed VLSI Architectures for the AES Algorithm,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12 (9), pp.

957-967, Sep. 2004.

[7] M. Jridi and A. AlFalou, “A VLSI implementation of a new simultaneous images

compression and encryption method,” 2010 IEEE International Conference on

Imaging Systems and Techniques (IST), pp.75-79, July 2010.

[8] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsun Huang, and Cheng-Wen Wu, “A High-

Throughput Low-Cost AES Processor,” IEEE Communications Magazine, Vol.41

(12), pp.86-91, Dec. 2003.

[9] L. Ali, I. Aris, F. S. Hossain and N. Roy, “Design of an ultra-high speed AES

processor for next generation IT security,” Computers and Electrical Engineering,

Vol.37 (6), pp.1160-1170, Nov. 2011.

[10] K.H. Chang, Y.C. Chen, C. C. Hsieh, C. W. Huang and C. J. Chang, “Embedded a

Low Area 32-bit AES for Image Encryption/Decryption Application,” IEEE

International Symposium on Circuits and Systems, pp. 1922-1925, May 2009.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

58

[11] J. M. G. Criado, M. A. V. Rodriguez, J. M. S. Perez, J. A. G. Pulido, “A new

methodology to implement the AES algorithm using partial and dynamic

reconfiguration,” Integration, the VLSI Journal, Vol.43(1), pp. 72-80, Jan. 2010.

[12] J. V. Dyken, J. G. Delgado-Frias, “FPGA schemes for minimizing the power-

throughput trade-off in executing the Advanced Encryption Standard algorithm,”

Journal of Systems Architecture, Vol.56(2–3), pp. 116-123, Mar. 2010.

[13] I. Hammad, K. E. Sankary and E. E. Masry, “High-Speed AES Encryptor With

Efficient Merging Techniques,” IEEE Embedded Systems Letters, Vol.2 (3), pp.67-

71, Sept. 2010.

[14] N. Ahmad, R. Hasan, W. M. Jubadi, “Design of AES S-Box using combinational

logic optimization,” IEEE Symposium on Industrial Electronics & Applications,

pp.696-699, Oct. 2010.

[15] N. Ahmad, S. M. R. Hasan, “Low-power compact composite field AES S-Box/Inv S-

Box design in 65 nm CMOS using Novel XOR Gate,” Integration, the VLSI Journal,

Article in Press.

[16] Edwin NC Mui, “Practical Implementation of Rijndael S-Box Using Combinational

Logic,” Custom R&D Engineer Taxco Enterprise Pvt. Ltd.

[17] Jarvinen, K., Tommiska, M., and Skytta, “A Fully Pipelined Memoryless 17.8 Gbps

AES-128 Encryptor”. Proc. ACM/SIGDA 11th ACM Int. Symposium on Field-

Programmable Gate Arrays, FPGA 2003, Monterey, CA, USA, February 2003, pp.

207–215.

[18] Kimmo Järvinen, Matti Tommiska and Jorma Skyttä, “Comparative Survey of High

Performance Cryptographic Algorithm Implementations on FPGAs”, IEE Proceedings

- Information Security, vol. 152, no. 1, Oct. 2005, pp. 3-12.

[19] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi. “Efficient

Rijndael Encryption Implementation with Composite Field Arithmetic”, Workshop on

Cryptographic Hardware and Embedded Systems (CHES2001), pages 175–188, May

2001.

[20] Tim Good and Mohammed Benaissa, “Very Small FPGA Application-Specific

Instruction Processor for AES”, IEEE Transactions on Circuit and Systems-I, Vol. 53,

No. 7, July 2006.

59

[21] Data Encryption Standard (DES), FIPS PUB (46-3), Oct. 25, 1999, Federal

Information Processing Standard 46-3

60

PUBLICATIONS

1. Saurabh Kumar, V.K. Sharma and K.K. Mahapatra, “An Improved VLSI

Architecture of S-box for AES Encryption/Decryption,” 2013 IEEE International

Conference on Communication Systems and Network Technologies (CSNT) (Paper

published).

2. Saurabh Kumar, V.K. Sharma and K.K. Mahapatra, “Low latency VLSI

Architecture of S-box for AES Encryption/Decryption,” 2013 IEEE International

Conference on Circuit, power and computing Technologies (ICCPCT) (Paper

published).

