
FPGA Implementation of RSA algorithm and to

develop a crypto based security system

 A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology
In

Electronics and Communication Engineering

Submitted by:

Ranjeet Behera (109ec0215)

&

Pradhan Abhisek (109ec0337)

Under the supervision of

 Prof. Ayas Kanta Swain

Department of Electronics and Communication Engineering,

National Institute of Technology, Rourkela

 2012-2013

FPGA Implementation of RSA algorithm and to

develop a crypto based security system

 A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology
In

Electronics and Communication Engineering

Submitted by:

Ranjeet Behera (109ec0215)

&

Pradhan Abhisek (109ec0337)

Under the supervision of

 Prof. Ayas Kanta Swain

Department of Electronics and Communication Engineering,

National Institute of Technology, Rourkela

2012-2013

National Institute of Technology, Rourkela

C E R T I F I C A T E

 This is to certify that the Thesis entitled, ‘FPGA Implementation of RSA algorithm and to

develop a crypto based security system’ submitted by Ranjeet Behera & Pradhan Abhisek in

partial fulfillment of the requirements for the award of Bachelor of Technology Degree in Electronics

an Communication Engineering at the National Institute of Technology, Rourkela is a bona fide

work carried out by them under my supervision. To the best of my knowledge and belief the matter

embodied in the Thesis has not been submitted by them to any other University/Institute for the award of

any Degree/Diploma.

Prof. Ayas Kanta Swain

Department of Electronics and Communication Engineering,
National Institute of Technology Rourkela

A C K N O W L E D G M E N T

We have taken efforts in making this project. However, it would not have been possible without

the kind support and help of many individuals and organizations. We would like to extend our

sincere thanks to all of them.

 We take this opportunity to express our profound gratitude and deep regards to our guide Prof.

Ayas Kant Swain for his monitoring, exemplary guidance and constant encouragement

throughout the course of this thesis. The help, guidance and blessing given by him time to time

shall carry us a long way in the journey of life on which we are about to embark.

We are obliged to members of VLSI Lab, the PhD personnel and especially Jagannath Sir for the

valuable information provided by them and their support. We are grateful for their cooperation

during the period of our assignment.

Lastly, we thank our parents, brother, sisters and friends for their constant encouragement

without which this assignment would not be possible.

A B S T R A C T

 This project is aimed to implement RSA algorithm on FPGA and to use the cryptography

algorithm (RSA) to develop a crypto based security system.

 The control and data path of RSA algorithm (decryption only) is implemented on FPGA to

behave as an independent password checker for the security system. The encryption part of the

algorithm is done by the system itself. The system has the different public key for encryption for

different users and the corresponding private key of the user is saved in the FPGA. The system

generates a random 16-bit number and encrypts it using the encryption algorithm of RSA and

sends the encrypted message to the FPGA using a USB to serial cable and the FPGA decrypts it

using the decryption algorithm of FPGA and sends back the decrypted message to the system.

The system checks the random message it generated before with the decrypted message send by

FPGA for the particular user. If both the data matches then the system welcomes the user and if

it doesn’t matches then it will give two more chances for entering the correct user name and

connecting the correct FPGA.

C O N T E N T S
List of figures

List of tables

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 2

1.2 Problem statement 2

1.3 Organization of thesis 3

CHAPTER 2: BACKGROUND INFORMATION 4

2.1 Basics of RSA algorithm 5

2.1.1 Finding large prime numbers 5

2.1.2 Finding the public key (e) 6

2.1.3 Determine the private key (d) 6

2.1.4 Encryption 6

2.1.5 Decryption 7

2.2 Existing Architectures for Modular Multiplication 7

2.2.1 Carry Save Adders and Redundant Representation 7

2.2.2 Circuit Description 8

2.2.3 Montgomery Multiplication Algorithm 9

2.2.4 Algorithm 1: Montgomery multiplication 10

2.2.5 Algorithm 2: Fast Montgomery multiplication 11

2.2.6 Newer Architectures for Modular Multiplication 13

2.2.7 Faster Montgomery Algorithm 13

2.2.8 Algorithm 3: The Faster Montgomery multiplication 15

CHAPTER 3: RSA ALGORITHM: FPGA IMPLEMENTATION 17

3.1 Modeling Technique 18

3.2 Structural Elements of Multipliers 18

3.3 Architecture for Faster Montgomery Architecture 19

3.3.1 Carry save adder 19

3.3.2 Lookup Table 20

3.3.3 Register 21

3.3.4 M register 22

3.3.5 One-Bit Shifter 23

3.3.6 Data path Result 23

3.3.7 MUX 24

3.3.8 Data path 25

3.4 Medium 26

3.5 MUart 26

3.6 Controller 27

CHAPTER 4: GRAPHICAL USER INTERFACE (GUI) 30

 4.1 Approach 31

4.2 Single User – Single System: Working 31

4.2.1 Enter Correct User Name 32

4.2.2 Verifying Password 34

CHAPTER 5: CONCLUSION AND FUTURE WORK 35

 REFERENCES 37

LIST OF FIGURES

Figure No. Title Page No.
 2.1 Architecture for the loop of algorithm 2 12

 2.2 Architecture for Algorithm 3 16

 3.1 Block diagram showing components that were

 Implemented for the Faster Montgomery Architecture 19

 3.2 Data path 1 & 2 25

 3.3 Medium‐ Buffer to MUart 26

 3.4 MUart 26

 3.5 Simulation of Medium 29

 4.1 Windows asking to enter correct user name 32

 4.2 pop up window after entering wrong user name 32

 4.3 Pop up window after exceeding no. of attempts 33

 4.4 Final window when one has exceeded the no. of attempts 33

 To enter correct username

 4.5 pop up window when password matches 34

 4.6 Final window welcoming the user 34

LIST OF TABLES
Table No. Title Page No.

 3.1 Data path States 27

 3.2 Medium States 28

C H A P T E R - 1

I N T R O D U C T I O N

Page | ‐ 1 ‐

1. Introduction

1.1 Motivation

 The rising growth of data communication technique and electronic transactions over the web

has made system security to become the most important issue over the network. To provide

modern security features, public-private key cryptosystems are used. One of such cryptosystem

is RSA algorithm. Though computation in RSA takes more time by if the message to be

encrypted is generated randomly then RSA will prove to be good cryptography algorithm for

system security.

 For the better working of RSA based cryptosystem the system has the public key for

decryption and the user will have the device containing the private key assigned to the user. And

instead of entering the password the user will just have to insert the device to the system and the

system will do the cross checking of the password for that particular user and allow access

accordingly. As the user will not know the password as well as the password length so he can’t

give the password to any other person and the person will be solely responsible for any wrong

doing in the system.

1.2 Problem statement

 The primary objective of this project is to implement the decryption part of RSA algorithm in

FPGA and the encryption part in the system with a GUI (in visual basic .NET) to connect to the

FPGA with a USB to serial cable.

Page | ‐ 2 ‐

1.3 Organization of thesis

 The Thesis has been divided into five chapters including this one. The first chapter provides

an introduction and gives an overview of the project. The second chapter explains the basic

concepts regarding RSA algorithm and various components used in implementation of RSA

algorithm. The third chapter deals with the implementation of decryption part of RSA algorithm

on FPGA. It also includes the VHDL coding for various component used for implementation of

the algorithm. Chapter four concerns with the graphical user interface (GUI) developed in visual

basic for the encryption part of RSA algorithm. This chapter also deals with the connection

made with FPGA to act as a ‘single system -single user’ crypto system. The last and final

chapter provides the future aspect of this project along with inference drawn from this project.

Page | ‐ 3 ‐

C H A P T E R – 2

B A C K G R O U N D

I N F O R M A T I O N

Page | ‐ 4 ‐

2. Background Information

2.1 Basics of RSA algorithm

RSA algorithm is a cryptographic algorithm introduced in the year 1978 by Ron Rivest, Adi

Shamir and Leonard Adleman. RSA implemented following two important ideas:

 1. Public-key encryption. In RSA, encryption keys are made public while the

decryption keys are kept private, so only the person with the correct decryption key can decipher

an encrypted message. Everyone has their own encryption and corresponding decryption keys.

The keys are made in such a way that the decryption key cannot be easily deduced from the

public encryption key.

 2. Digital signatures. The receiver may need to verify that a transmitted message is

actually originated from the sender, and didn't just come from authentication. This is done with

the help of the sender's decryption key, and later the signature can be verified by anyone, using

the corresponding public encryption key. Signatures therefore cannot be copied. Also, no signer

can later deny having signed the message.

The various steps involved in RSA algorithm are :

2.1.1 Finding large prime numbers

 Finding ‘n’ is the first step of the algorithm, where ‘n’ is the product of two prime

numbers ‘p’ & ‘q’. The number ‘n’ will be revealed in the encryption and decryption keys, but

the numbers ‘p’ and ‘q’ will not be explicitly shown. The prime numbers ‘p’ and ‘q’ should

be large such that it will be very difficult to derive from ‘n’.

n ൌ p כ q (1)

Page | ‐ 5 ‐

2.1.2 Finding the public key (e)

 Choose a number ‘e’ such that ‘e’ is co-prime to φ (n), where φ (n) is the Euler’s

totient function that counts the number of positive integers less than or equal to ‘n’ that

are relatively prime to ‘n’ i.e.

߮ ሺ݊ሻ ൌ ሺ݌ െ 1ሻሺݍ െ 1ሻ (2)

&

,൫݁݀ܿܩ ߮ሺ݊ሻ൯ ൌ 1 (3)

Where, 1 ൏ ݁ ൏ ߮ሺ݊ሻ

2.1.3 Determine the private key (d)

Determine the private key ‘d’ such that‘d’ is the multiplicative inverse of the public

key ‘e’ i.e.

݀ିଵ ൌ ݁ ሺ݉݀݋൫߮ሺ݊ሻ൯ሻ (4)

2.1.4 Encryption

Let ‘m’ be the message (integer type) that is to be encrypted using public key ‘e’ to

give the encrypted message as ‘c’ where ‘c’ i as calcul ted as

ܿ ൌ ݉௘ ሺ݉݀݋ሺ݊ሻሻ (5)

Page | ‐ 6 ‐

http://en.wikipedia.org/wiki/Relatively_prime

2.1.5 Decryption

The decrypted message ‘m’ is found out using the private key‘d’ and is calculated

as:

݉ ൌ ܿௗ ሺ݉݀݋ሺ݊ሻሻ (6)

2.2 Existing Architectures for Modular Multiplication

2.2.1 Carry Save Adders and Redundant Representation

Addition is the core operation of most algorithms for modular multiplication .Different

methods for addition in hardware: carry ripple addition, carry select addition, and carry look

ahead addition and others. The primary disadvantage of these methods is the carry propagation,

as it is directly proportional to the length of the operands. It may not be a big problem for

operands of size 32 or 64 bits but the typical operand size in cryptographic applications range

from 160 to 2048 bits. So the resulting delay has a significant influence on the time complexity

of these adders.

The carry save adder seems to be the most cost effective adder for our application. Carry

save addition is a method for an addition without carry propagation. It is simply a parallel

ensemble of n full-adders without any horizontal connection. Its function is to add three integers

(n-bit) X, Y, and Z to produce two integers C and S as results such that

C + S = X + Y + Z,

Where C represents the carry and S the sum.

Page | ‐ 7 ‐

The ith bit si of the sum S and the (i + 1)st bit ci+1 of carry C are calculated using the boolean

equations

si = xi xor yi xor zi

ci+1 = xiyi and xizi and yizi

c0 = 0

When carry save adders are used in an algorithm one uses a notation of the form

(S, C) = X + Y + Z

This indicates that two results are produced by the addition.

The results are now represented in two binary words, an n-bit word S and an (n+1) bit word C.

Of course, this representation is redundant in the sense that we can represent one value in several

different ways. This redundant representation has the advantage that the arithmetic operations are

fast, because there is no carry propagation. On the other hand, it brings to the fore one basic

disadvantage of the carry save adder:

It does not solve our problem of adding two integers to produce a single result. Rather, it

adds three integers and produces two such that the sum of these two is equal to that of the three

inputs. This method may not be suitable for applications which only require the normal addition.

2.2.2 Circuit Description

A Carry-Save Adder is just a set of one-bit full-adders, without having the usual carry-

chaining. Therefore, an CSA of n-bit receives three n-bit operands, namely A (n-i)...A (0), B (n-

i)...B (0), & CIN (n-i)...CIN (0), and generates two n-bit result values, SUM (n-i)...SUM (0) and

COUT (n-i)...COUT (0).

Page | ‐ 8 ‐

The most important application of a carry-save adder is to calculate the partial products in

integer multiplication. Doing this allows architectures, where a tree of carry-save adders (a so

called Wallace tree) is used to calculate the partial products very fast. One 'normal' adder is then

used to add the last set of carry bits to the last partial products, which gives the final

multiplication result. Generally, a very fast carry-look ahead or carry-select adder is used for the

last stage, so as to obtain the optimal performance

Complexity Model

For comparison of different algorithms we need a complexity model that allows for a realistic

evaluation of time and area requirements of the considered methods. The delay of a full adder (1

time unit) is taken as a reference for the time requirement and quantifies the delay of an access to

a lookup table with the same time delay of a single time unit. Now the area estimation is based

on empirical studies in full- custom and semi-custom layouts for adders and storage elements:

The area for 1 bit in a lookup table corresponds to 1 area unit. A register cell requires 4 area units

per bit and a full adder requires 8 area units. These values provide a powerful and realistic model

for evaluation of area and time for most algorithms for modular multiplication.

2.2.3 Montgomery Multiplication Algorithm

The Montgomery algorithm [Algorithm 1] computes P = (X*Y* (2n)-1) mod M. The idea of

Montgomery is to keep the lengths of the intermediate results smaller than n+1 bit. This is

achieved by interleaving the computations and additions of new partial products with divisions

by 2; each of them reduces the bit- length of the intermediate result by one.

Page | ‐ 9 ‐

The key concepts of the Montgomery algorithm [Algorithm 1(2.2.4)] are the following:

• Adding a multiple of M to the intermediate result does not change the value of the final

result; because the result is computed modulo M. M is an odd number.

• After each addition in the inner loop the least significant bit (LSB) of the intermediate

result is checked. If it is 1, that means intermediate result is an odd no., so we add M to

make it even. This even number can be divided by 2 without remainder. This division by 2

reduces the intermediate result to n+1 bit again.

• After successive n steps these divisions all add up to (one division by 2n).

The Montgomery algorithm is very easy to implement since it operates least significant

bit first and does not require any comparisons. A modification of [Algorithm 1 (2.2.4)] with

carry save adders is given in [Algorithm 2 (2.2.5)]:

2.2.4 Algorithm 1: Montgomery multiplication
• Inputs: X,Y, M with 0<=X, Y<M

• Output: P = (X*Y(2n)-1) mod M

• n: number of bits in X;

• xi : ith bit of X;

• s0 : LSB of S;

1) S := 0 ; C := 0 ;

2) For(i=0;i<n;i++){

3) (S,C) := S + C + xi *Y ;

4) (S,C) := S + C + p0 *M;

5) S := S DIV 2; C := C DIV 2 ; }

6) P := S + C;

7) If (P > M) then P := P – M;

Page | ‐ 10 ‐

2.2.5 Algorithm 2: Fast Montgomery multiplication
• Inputs: X,Y, M with 0<=X, Y<M

• Output: P = (X*Y(2n)-1) mod M

• n: number of bits in X;

• xi : ith bit of X;

• s0 : LSB of S;

1) S := 0 ; C := 0 ;

2) For(i=0;i<n;i++){

3) (S,C) := S + C + xi *Y ;

4) (S,C) := S + C + p0 *M;

5) S := S DIV 2; C := C DIV 2 ; }

6) P := S + C;

If (P > M) then P: = P – M;

In this algorithm the delay of one pass through the loop is reduced from O (n) to O (1).

This remarkable improvement of the propagation delay inside the loop of [Algorithm 2

(2.2.5)] is due to the use of carry save adders to implement step (3) and (4) in [Algorithm 1a

(2.2.4)].

Step (3) and (4) in [Algorithm 2(2.2.5)] represent carry save adders. S and C denote the sum

and carry of the three input operands respectively.

Of course, the additions in step (6) and (7) are conventional additions. But since they are

performed only once while the additions in the loop are performed n times which is

subdominant with respect to the time complexity.

Page | ‐ 11 ‐

Figure 1 shows the architecture for the implementation of the loop of [Algorithm 2

(2.2.5)]. The layout comprises of two carry save adders (CSA) and registers for storing the

intermediate results of the sum and carry. The carry save adders are the dominant occupiers

of area in hardware especially for very large values of n (e.g. n > 1024).

Next we shall see the changes that were made in [Fig. 2] to reduce the number of carry

save adders in Figure1 from 2 to 1, thereby saving considerable hardware space. However,

these changes also brought about other area consuming blocks such as lookup tables for

storing pre-computed values before the start of the loop.

Fig 2.1: Architecture for the loop of algorithm 2

Page | ‐ 12 ‐

There are various modifications to the Montgomery algorithm in [5], [6] and [7]. All

these algorithms aimed at decreasing the operating time for faster system performance and

reducing the chip area for practical hardware implementation.

2.2.6 Newer Architectures for Modular Multiplication

Herein, a summary of these algorithms and architectures is given. These have been

designed so as to meet the core requirements of most modern devices: small chip area and

low power consumption.

2.2.7 Faster Montgomery Algorithm

In Figure 1, the layout for the implementation of the loop of (Algorithm 2) consists of

two carry save adders. For large word sizes (e.g. n = 1024 or higher), this would require

considerable hardware resources to implement the architecture of (Algorithm 2). The reason

for this optimized algorithm is that of reducing the chip area for practical hardware

implementation of (Algorithm 2). This is possible if we can precompute the four possible

values to be added to the intermediate result within the loop of Algorithm 2, thus reducing

the number of carry save adders used from 2 to 1.

There are four possible scenarios:

• If the sum of the values (odd) of S and C is an even number, and if the actual bit xj of X

is 0, then we add 0 before we perform the reduction of S and C by division by 2.

• If the sum of the old values of S and C is an odd number, and if the actual bit xj of X is

0, then we must add M to make the intermediate result even. Afterwards, we divide S

and C by 2.

Page | ‐ 13 ‐

• if the sum of the old values of S and C is an even number, and if the actual

bit xi of X is 1, but the increment xi *Y is even, too, then we do not need to

add M to make the intermediate result even. Thus, in the loop we add Y before

we perform the reduction of S and C by division by 2. The same action is

necessary if the sum of S and C is odd, and if the actual bit xi of X is 1 and Y is odd as

well. In this case, S+C+Y is an even number, too.

• If the sum of the old values of S and C is odd, the actual bit x: of X is 1, but the

increment x: *Y is even, then we must add Y and M to make the intermediate result

even. Thus, in the loop we add Y+M before we perform the reduction of S and C by

division by 2.

The same action is necessary if the sum of S and C is even, and the actual bit xi of X

is 1, and Y is odd. In this case, S+C+Y+M is also an even number. The computation of

Y+M can be done prior to the loop. This saves one of the two additions which are

replaced by the choice of the right operand to be added to the old values of S and C.

Now [Algorithm 3(2.2.8)] is a modification of Montgomery's method which takes

advantage of this idea.

The advantage of [Algorithm 3(2.2.8)] in comparison to [Algorithm 1(2.2.5)] can be

seen in the implementation of the loop of [Algorithm 3(2.2.8)] in Figure 2. The possible

values of I are stored in a lookup-table, where the actual values of x, y0, s0 and c0.

Address the lookup table. The operations in the loop are now reduced to one table

lookup and one carry save addition. Doing this allows both of these activities to be

performed concurrently. Point to be noted is that the shift right operations that

implement the division by 2 can be done by routing.

Page | ‐ 14 ‐

2.2.8 Algorithm 3: The Faster Montgomery multiplication

• Inputs: X,Y, M with 0<=X, Y<M

• Output: P = (X*Y(2n)-1) mod M

• n: number of bits in X;

• xi : ith bit of X;

• s0 : LSB of S ; c0 : LSB of C ; y0 : LSB of Y;

• R: pre-computed value of Y + M;

1) S := 0 ; C := 0 ;

2) For(i=0;i<n;i++){

3) if ((s0 = c0) and not xi) then I := 0 ;

4) if ((s0 ≠ c0) and not xi) then I := M ;

5) if((not (s0 xor c0 xor y0) and xi) then I := Y ;

6) if(((s0 xor c0 xor y0) and xi) then I := R ;

7) (S,C) : = S + C +I;

8) S := S DIV 2; C := C DIV 2 ; }

9) P := S + C;

10) If (P > M) then P := P – M;

Page | ‐ 15 ‐

 Fig. 2.2: Architecture for Algorithm 3

Page | ‐ 16 ‐

C H A P T E R – 3

R S A A L G O R I T H M:

F P G A I M P L E M E N T A T I O N

Page | ‐ 17 ‐

3. RSA Algorithm: Hardware Implementation

3.1 Modeling Technique

The design of the architectures was done using Very High Speed Integrated Circuit

Hardware Description Language (VHDL) and the complete source codes for 32 to 1024 bit

implementations of Fast Montgomery, Faster Montgomery and Optimized Interleaved

multipliers are available in electronic form.

For the implementation of the multipliers, a very structured approach was used which shows the

hierarchical decomposition of the multipliers into sub modules The basic units of the

architectures which comprises carry save adders, shift registers and registers were modeled as

components which are independently functional. These components are then wired together by

means of signals to construct the structure of the multiplier as shown in [Figure 3] for the Faster

Montgomery architecture [Figure 2].

3.2 Structural Elements of Multipliers

Every VHDL design consists of at least an Entity and Architecture pair. Entity describes the

interface of the system from the perspective point of its input and output, while Architecture

describes the behavior or the functionality of the digital system itself. In the next sub-sections,

the pair of Entity and Architecture, the structural elements in the Faster Montgomery architecture

presented in Figure 3 is described.

Page | ‐ 18 ‐

3.3 Architecture for Faster Montgomery Architecture

Fig. 3.1: Block diagram showing components that were implemented for

the Faster Montgomery Architecture

3.3.1 Carry save adder

The carry save adder is simply a parallel ensemble of n full-adders without having any

horizontal connection. The main purpose is to add three n-bit integers X, Y and Z so as to

produce two integers C and S such that

C + S = X + Y+ Z

Where C and S represent the usual carry and sum respectively.

Page | ‐ 19 ‐

3.3.2 Lookup Table

The lookup table is one of the most important units inside the new optimized architectures

in [Fig. 3]. It is used to store the values of pre-computations that are performed prior to the

execution of the loop. This eliminates time consuming operations that are performed inside the

loop, thus improving the speed of computation.

Page | ‐ 20 ‐

3.3.3 Register

The purpose of the Registers (i.e. Register C and Register S) in Figure 2 and Figure 10 are to

hold the intermediate values of the carry and sum respectively during the execution of the loop.

So the registers must have memory and be able to save their state over a given amount of time.

Such a behavior can be obtained by the following rules must be observed during the

implementation:

• The sensitivity list of a process should not include all the signals that are being read with

the process.

• If-Then-Else should be incompletely used.

Page | ‐ 21 ‐

3.3.4 M register

This register stores the modulus value. So it just needs an output, and cannot be changed once

the hardware is made.

Page | ‐ 22 ‐

3.3.5 One-Bit Shifter

The one-bit shifters inside Figure 2 and Figure 10 are used to perform 1-bit, right- shift

operations. The behavioral description of this unit is as shown in Figure below. Here, the least

significant bit of the input is discarded at the output, thereby reducing the bit length output by 1.

3.3.6 Data path Result

All the work done in the multiplication part was in 32 bit format. But actual value is 16 bit, so

this structure convers the 32 bit value to 16 bit by removing extra bits.

Page | ‐ 23 ‐

3.3.7 MUX

Multiplexers are used before the registers which can get value from 2 different locations

Page | ‐ 24 ‐

3.3.8 Datapath

The total representation of data path which contains the total flow of data, starting
from the data it gets from buffer to actual output or result.

Fig. 3.2:
Data

path 1
& 2

Page | ‐ 25 ‐

3.4 Medium

This acts as the buffer for the data that has to be transmitted and received . Data comes from the

serial port to MUart and stored in a temporary register a_1 and a_2 for the tho higher and lower

bytes of data respectively. Then it is transferred to a 32 bit register A because directly this

register will be accessed .While returning the output (to be transmitted by UART) the 16 bit

result is broken into 2 bytes and through MUX eac byte of data is passed to Uart.

3.5 MUart

A lighter version of Uart is implemented for use with requirement of Rx Tx and Ground pins to

be connected,so hardware area required decreases. A soft IP core is taken and is modified for

specific use.

Fig. 3.3: Medium- Buffer to MUart

Page | ‐ 26 ‐

Fig. 3.4: MUart

3.6 Controller

This has got FSM states for controlling the whole of Decryption process. Data first flows from

Uart to Medium to Datapath in a sequence do comtrol is easy .The control in datapath follows

the algorithm so different states are mentioned in the table. Then data moves to medium and

through Uart and serial cable back to PC.

 Table 3.1: Data path States

Array (8 downto 0) of STD_LOGIC_VECTOR (11 downto 0);

Page | ‐ 27 ‐

Table 3.2: Medium States

array(6 downto 0) of sts_logic_vector(5 downto 0)

Above shown is the different states the sub structural units can be. Following the concepts of

Algorithm 3 the total controller processor can be written down. With obvious addition of

hardware reset and small changes.

3.7 Simulation Result

 MATLAB Simulation for RSA algorithm, both in hard crude method of exponentiation and then

modulus to using Montgomery multiplication as a base was done. Both worked fine. Then, the

steps that are followed in the hardware were tested again using Mat LAB. Results were error

free.

Then simulation using ModelSim was done, [Fig. 4] below shows simulation of one of the

structural components.

Page | ‐ 28 ‐

Fig. 3.5: Simulation of Medium

Page | ‐ 29 ‐

C H A P T E R – 4

G R A P H I C A L U S E R

I N T E R F A C E (G U I)

Page | ‐ 30 ‐

4. Graphical User Interface (GUI)

 4.1 Approach

 Graphical User Interface (GUI) for implementing the encryption part of RSA

algorithm was done using visual studio 2010 (.NET). Visual basic was chosen to make the

interface due to special provisions available in it for serial port interface. The interface is made

such that whenever the user name is entered correctly it opens the COM port connected to the

FPGA for communication, checks for any exception such as if FPGA is connected or wrongly

connected and generates a 16-bit message randomly, encrypts it using the public key assigned to

that particular user name and sends the 16-bit encrypted message through the COM port in two

clock cycles with the higher sent first and then the lower byte. A USB to serial driver was

installed so that the USB port available in the system will send and receive data serially. Also a

USB to serial connecter was used to connect the system with the FPGA.

4.2 Single User – Single System: Working

 ‘Single user – single system’ means a particular can only be accessed by using a single

user name only that is assigned to it. The sequence of windows that appears for authentication

process can be given by the following steps:

Page | ‐ 31 ‐

4.2.1 Enter Correct User Name
 The first window that shows up asks for the correct user name. Enter the correct

user name and press OK. In this case we have assigned “ranjeet289” as the correct user name.

Fig. 4.1: window asking to enter correct user name

If the user name is incorrect then it will show “Invalid User Name” and will give two more

chance for entering the correct user name.

Page | ‐ 32 ‐

Fig. 4. 2: Pop Up window after entering wrong user name

 If one has used up all the attempts to enter the correct user name then a window will pop up

showing “You Have Exceeded the Number of Attempts” followed by the message “System Is

Shutting Down”.

Fig. 4.3: pop up window after exceeding no. of attempts

Fig. 4.4: Final window when one has exceeded the no. of attempts to enter
correct username

Page | ‐ 33 ‐

4.2.2 Verifying Password
After entering the correct user name, the system will randomly generate a 16-bit

message, encrypts it using public key and will send the data to FPGA as mentioned in the

previous section. Then it will wait for the FPGA to send the decrypted message back to the

system. Now the system will compare the decrypted message sent by FPGA with the original

message it generated. If both the passwords are same then it will show a pop up window with the

message “Password Accepted” followed by welcoming message to the user.

Fig 4.6: Final window welcoming the user

Fig 4.5: pop up window when password matches

Page | ‐ 34 ‐

C H A P T E R 5

C O N C L U S I O N A N D

F U T U R E W O R K

Page | ‐ 35 ‐

5. Conclusion and Future Work

A crypto based security system was developed using RSA algorithm as the cryptographic

algorithm. Each components used for the implementation on FPGA was optimized upto certain

level. Implementation of 16-bit encryption and decryption was done since 32-bit implementation

needed much more components that are available on Spartan 3E FPGA board. Since FPGA

doesn’t have USB port but only have serial port, a USB to serial driver was installed on the

system to send and receive data from the FPGA serially.

The future work that can be done in this regard includes

1) Optimization and IC design.

2) Implementation of better cryptographic algorithm for encryption and decryption

3) Develop driver for serial to USB communication.

Page | ‐ 36 ‐

Page | ‐ 37 ‐

R E F E R E N C E

[1] William Stallings, Cryptography and Network Security Principals and Practices, 4th

 Edition, Pearson Education, Inc., 2006, ISBN 81-7758-774-9.

[2] Ridha Ghayoula, ElAmjed Hajlaoui, Talel Korkobi, Mbarek Traii, Hichem Trabelsi,

 “FPGA Implementation of RSA Cryptosystem”, International Journal of Engineering and

 Applied Sciences 2:3 2006.

[3] M. D. Shieh, J. H. Chen, H. S. Wu, and W. C. Lin, "A new modular exponentiation

 Architecture for efficient design of RSA cryptosystem," IEEE Trans. Very Large Scale

 Integration. (VLSI) Syst., vol. 16, no. 9, pp. 1151-1161,Sep. 2008.

[4] opencores.org

