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Abstract

Images are characterized by features. Machines identify and recognize a scene or

an image by its features. Edges, objects, and textures are some of the features that

distinguish one image from another. There could be many common features in similar

images. But, in those commonalities there lies a distinction in terms of features known

as subtle features. Numerous algorithms have been reported to extract features from

images. Few of them are reliable. Some of them do well under a constrained envi-

ronment. Many of them fail miserably under low intensity, noise etc. The prominent

features are very well identified by many algorithms, whereas the subtle features are

often overlooked. In this thesis an attempt has been made to develop an algorithm

to extract very subtle features from a given image. A new method has been proposed

on the principle of phase congruency to detect features in images. The proposed

method uses S-Transform to calculate phase congruency. The proposed method is

able to calculate the subtle features even in the very low intensity images. Finally, an

application of the proposed method in fingerprint minutiae extraction has also been

demonstrated.
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Chapter 1

Introduction

Images are characterized by features. To identify features such as edges and their

significance, one should strive for a dimensionless quantity like intensity invariance

and orientation invariance. Since such dimensionless quantity would provide abso-

lute significance of feature points irrespective of intensity and orientation, one could

universally apply them to any image. With such quantities it would be possible to

compare or match images independent of their local properties.

A lot of effort has already been put in this direction to detect invariant measures

of high level structures in images. Hu [3] developed a series of invariant moments

to recognize binary objects. Then, a lot of work was done on geometric invariance,

i.e, identification of geometric properties of objects that remain invariant to imaging

transformations. All the work in the area of geometric invariance has been summarized

in the book by Mundy and Zisserman [4]. However, very little work has been carried

out in the direction of identifying invariant quantities that might exist in low level or

early vision for tasks such as feature detection and detection matching. Some work in

this direction has been carried out by Koenderink and DooRN [5], who recognized the

importance of differential invariants associated with motion fields and Florack et. al

[6], who proposed differential invariants for characterizing a number of image contour

properties.

Our visual system is robust and can identify significant features even under widely

varying conditions. Our interpretation of an image is largely unchanged even if the

order of illumination is changed by several orders of magnitude. Similarly our inter-

pretation of an image is largely unchanged by changes in spatial magnification, though
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Introduction

Figure 1.1: Image showing range of subjective brightness of human eye [1].

the degree of tolerance is not same as it for for illumination variance. Thus to detect

image features of low level, illumination and contrast invariance are the main form

of invariance needed and to some extent, image magnification. Finally, one has to

decide whether a detected feature is an actual feature or not, depending on the value

of quantity used for feature detection. Thus thresholding is needed. So, if one has

an invariant measure of significance of features, the problem of deciding a threshold

value is greatly eased.

The thresholding problem has plagued feature detection since a long time. Ex-

isting Gradient based edge detection methods developed by Sobel(1969), Marr and

Hildreth [7], Canny [8], [9] and others are sensitive to variations in image illumination,

blurring, and magnification. Empirical determination of image gradient values that

correspond to significant edges is usually done. Efforts to determine threshold values

automatically have not been been successful and such applicability of such methods

is very limited [8], [10]. Developing feature detectors in spatial domain is difficult

because it is hard to avoid characteristics, such as intensity gradients, contrast levels,

or equivalent quantity, local to image.

Since development of invariant feature detectors is difficult in spatial domain, we

migrate to frequency domain for developing invariant feature detectors. Morrone et

al. [11] and Morrone and Owens [12] has developed model of feature perception called

local energy model. This model postulates that features are perceived at points in an

image where Fourier components are maximally in phase.

2
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A lot of work on the local energy model has been done. Morrone and Burr [13]

showed that the local energy model successfully explains psychological effects in hu-

man feature perception. Owens et al. [14] have proposed an edge detector that when

applied to its own output produces no further change. Such edge detectors are projec-

tions in mathematical sense. They showed that the energy feature detector is a true

projection and does not proliferate edges when applied to a line drawing. Venkatesh

and Owens [15] examined feature classification based on local energy detection and

showed that local energy is intrinsically capable of classifying features because of the

use of odd and even filters. Feature classification allows for the elimination of certain

types of features from the edge map, simplifying the task of object recognition.

Owens [16] demonstrated that points in image, at which local energy function has

a local maximum, are stable with respect to large class of image variations. Morrone

et al. [17] proposed a novel method for scale selection used in edge detection, where

the scale size varied dynamically with the convolution output, i.e., the the stronger

the output, the smaller the spatial scale. Robbins and Owens [18] proposed a method

for detection of 2D image features that relied upon maximal 2D order in the phase

domain of the image signal. Points of maximal phase congruency correspond to all

the different types of 2D features.

The work done so far in the direction of feature detection from local energy model

depends mostly on finding points of maximal phase congruency from maxima in local

energy. Local energy is a dimensional quantity, proportional to phase congruency.

However, local energy is dependent on local contrast. Thus, to identify whether a

local energy value corresponds to feature is again dependent on the choice of threshold

value.

Kovesi [19] proposed a method to find Phase Congruency, a dimensionless measure

for feature detection, independent of local contrast. However, Phase Congruency has

not been successfully used for feature detection because of the following reasons:

1. Since Phase Congruency is a normalized quantity, it is highly sensitive to noise.

2. The existing methods of finding Phase Congruency is ill-conditioned if all fre-

quency components are very small, or if there is only one frequency component

3
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present in the signal.

3. The existing methods for calculating Phase Congruency do not provide good

localisation of features.

Sensitivity of Phase Congruency to noise is the biggest problem associated with

Phase Congruency. This thesis aims to detect Phase Congruency directly, without

using the notation of Local Energy. In this work, a method has been proposed to

calculate Phase Congruency using S-Transform. Since, the proposed method is de-

pendent on S-Transform, it provides good localization of features. Moreover, the way

Phase Congruency is calculated, makes it independent of trivial cases of having only

one or very few Fourier components. As far as noise is considered, the proposed

method can also be combined with the denoising techniques while calculating Phase

Congruency. However, such denoising techniques would work only for additive noises.

This thesis is organized as follows. In Chapter 2, we introduce the S-Transform

and its properties. We then discuss the advantages of S-Transform over other multi-

resolution techniques. In Chapter 3, we discuss feature detection algorithm based on

Phase Congruency. We begin this chapter with the definition of Phase Congruency.

We describe the existing work on Phase Congruency briefly. It is followed by the

proposed algorithm, described in detail with diagram. Finally, Results and Simulation

are presented in Chapter 4. In section 4.1 of this chapter, we provide the comparative

analysis of the proposed algorithm with the existing edge detection techniques. In

section 4.2, application of the proposed method for feature detection is discussed in

the field of biometrics. Finally, Chapter 5 presents the concluding remarks, with the

scope for further research work.

4



Chapter 2

S-Transform

2.1 Signals and their types

A signal is a function that conveys information about the behavior or attributes of

some phenomenon. In the context of image processing, a signal is a physical quantity

which varies with space and contains information about space.

Signals may broadly be classified into the following two types:

1. Stationary Signals

2. Non-Stationary Signals

Stationary signal are the signals which have all the frequency components present at

all times of the signal. Non-stationary signals are the signals in which all the frequency

components are not present at all the times in the signal.

An example of stationary signal is shown in Figure 2.1(a). This signal has all

frequency components at all points. This signal is given by

f(t) = cos(2π10t) + cos(2π25t) + cos(2π50t) + cos(2π100t) (2.1)

To analyze this type of signal, one can simply apply Fourier transform and get all

the frequency components of the signal (See Figure 2.1(c)). Since, all frequency com-

ponents are present at all times, the original signal can be successfully reconstructed

from inverse of Fourier transform.

An example of a non-stationary signal is given in Figure 2.1(b). This signal has four

frequency components, whose lifespan is disjoint in time domain. The four frequency

5
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components contained in the signal are 10Hz, 25Hz, 50Hz, and 100Hz. Each of these

frequency is present for a duration of 0.25 seconds and only one frequency component

is present at any instant of time. Fourier transform is applied on this signal and is

shown in Figure 2.1(d). Since, Fourier transform gives information only about the

frequencies contained in the signal, and not about the time at which these frequencies

are present in the signal, it cannot be used to reconstruct the original signal.

An image is a non-stationary signal. Image consists of edges which divide the it

into regions. Smooth regions in the image have dominant low frequency components

while edges have dominant high frequency components. Since, an image neither con-

sists only of smooth regions, nor only of edges, but a mixture of both, an image is

essentially a non-stationary signal.

To analyze a non-stationary signal such as image, we need multi-resolution tech-

niques. Multi-resolution techniques give us time-frequency representation (TFR).

TFR can be used to deduce the information about which frequency components are

present at what time in the original signal.

Many multi-resolution techniques exist. Some of them are :

1. Short Time Fourier Transform

2. Wavelet Transform

3. S-Transform

S-Transform has many advantages over Short Time Fourier Transform and Wavelet

Transform. A detailed discussion on this is presented in Section 2.5.

2.2 Derivation of S-Transform

The S-Transform was developed by R. G. Stockwell [20]. It is used to perform multi-

resolution analysis on signals and it gives very good Time-Frequency Representation

(TFR). It gives information about all the Fourier components that are present at a

given point in a signal.

6
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Figure 2.1: (a) Stationary signal, (b) Non-Stationary Signal, (c) Fourier Transform
of Stationary Signal in (a), and (d) Fourier Transform of Stationary Signal in (b).
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2.2 Derivation of S-Transform S-Transform

The S-Transform for continuous 1-dimensional signal h(t) is given by :

S(τ, f) =

∫ ∞
−∞

h(t)
| f |√

2π
e−

(τ−t)2f2
2 e−2iπftdt (2.2)

S-Transform is an extension of Short Time Fourier Transform and Wavelet Transform

and can be derived from both.

2.2.1 Derivation from Short Time Fourier Transform

The Fourier transform of continuous 1-dimensional signal h(t) is given by:

H(f) =

∫ ∞
−∞

h(t)e−i2πftdt (2.3)

If the time series h(t) is windowed (or multiplied point by point) with a window

function g(t), then the resulting spectrum is

H(f) =

∫ ∞
−∞

h(t)g(t)e−i2πftdt (2.4)

The S-Transform can be found by first defining a particular window function, a nor-

malized Gaussian

g(t) =
1

σ
√

2π
e−

−t2
2σ2 (2.5)

and then allowing the Gaussian to be a function of translation τ and dilation (or

window width) σ

S∗(τ, f, σ) =

∫ ∞
−∞

h(t)
1

σ
√

2π
e

−(t−τ)2

2σ2 e−i2πftdt (2.6)

which for a particular value of σ is similar to the definition of Short Time Fourier

Transform, given by,

STFT (τ, f) =

∫ ∞
−∞

h(t)w(t− τ)e−i2πftdt (2.7)

Taking width of the window σ to be proportional to the inverse of the frequency

σ(f) =
1

| f |
(2.8)

8



2.3 Properties of S-Transform S-Transform

one gets the S-Transform as :

S(τ, f) =
| f |√

2π

∫ ∞
−∞

h(t)e−
(t−τ)2f2

2 e−i2πftdt (2.9)

2.2.2 Derivation from Wavelet Transform

The Continuous Wavelet Transform can be defined as a series of correlations of the

time series with a function called a wavelet:

W (τ, d) =

∫ ∞
−∞

h(t)w(t− τ, d)dt (2.10)

The S-Transform of a function h(t) can be derived by a CWT with a specific mother

wavelet multiplied by a phase factor

S(τ, f) = ei2πfτW (τ, d) (2.11)

where the mother wavelet is defined as

w(t, f) =
| f |√

2π
e−

t2f2

2 e−i2πft (2.12)

2.3 Properties of S-Transform

1. Absolutely Referenced Phase Information : The phase factor ei2πft in

Equation 2.11 helps to get absolutely referenced phase information. This phase

factor splits the mother wavelet into two parts, Gaussian window and oscil-

latory exponential kernel e−i2πft. The kernel remains stationary while Gaus-

sian window moves. Kernel being stationary, localizes the real and imaginary

components of spectrum independently, thus localizing amplitude and phase of

spectrum independently.

9



2.3 Properties of S-Transform S-Transform

2. Relation to Fourier Transform : The S-Transform is related to Fourier

transform in the following way:

H(f) =

∫ ∞
−∞

S(τ, f)dτ (2.13)

Thus, this relationship can be used to calculate Inverse S-Transform.

h(t) =

∫ ∞
−∞
{
∫ ∞
−∞

S(τ, f)dτ}ei2πftdf (2.14)

3. Instantaneous Frequency : An extension of instantaneous frequency is pro-

vided by the S-Transform. S-Transform can be written in polar notation as

S(τ, f) = A(τ, f)eΦ(τ,f) (2.15)

where,

A(τ, f) =
√
Real(S(τ, f)) + Im(S(τ, f)) (2.16)

and

Φ(τ, f) = tan−1{ Im(S(τ, f))

Real(S(τ, f))
} (2.17)

Thus, Instantaneous Frequency (IF) is given by,

IF (τ, f0) =
1

2π

d

dτ
{2πτf0 + Φ(τ, f0)} (2.18)

4. Linearity : S-Transform is a linear operation. Thus,

ST{g(t) + h(t)} = ST{g(t)}+ ST{h(t)} (2.19)

Proof of Linearity :

ST{g(t) + h(t)} = S(τ, f) =
| f |√

2π

∫ ∞
−∞
{g(t) + h(t)}e−

(t−τ)2f2
2 e−i2πftdt (2.20)

which can be rewritten as

ST{g(t) + h(t)} = S(τ, f) = { | f |√
2π

∫ ∞
−∞

g(t)e−
(t−τ)2f2

2 e−i2πftdt}

+ { | f |√
2π

∫ ∞
−∞

h(t)e−
(t−τ)2f2

2 e−i2πftdt}(2.21)

10



2.4 Discrete S-Transform S-Transform

= ST{g(t)}+ ST{h(t)}

Thus,

ST{g(t) + h(t)} = ST{g(t)}+ ST{h(t)} (2.22)

2.4 Discrete S-Transform

The S-Transform of a discrete 2-dimensional signal f(x, y) is given by:

S(x, y, kx, ky) =
M−1∑
α=0

N−1∑
β=0

F (α + kx, β + ky)e
−2π2(α

2

k2x
+β2

k2y
)
e2πi(αx+βy) (2.23)

Here,

� x corresponds to x-coordinate in space.

� y corresponds to y-coordinate in space.

� kx corresponds to frequency along x-axis.

� ky corresponds to frequency along y-axis.

� F is the Fourier transform of original image.

11



2.5 Advantages of S-Transform S-Transform

The algorithm to compute 2-dimensional S-Transform [21] of an image is given by

Algorithm 1.

Algorithm 1: Compute2DST

Data: I: Input Image, M : Rows, N : Columns

Result: S: Resultant S-Transformed matrix on I

1 F (α, β)← FFT (I(x, y)) ;

2 forall the (kx, ky)(kx, ky 6= 0) do

3 Compute the Frequency domain Gaussian localizing window at the current

frequency W (α, β)← (kx, ky) : e
−2π2(α

2

k2x
+β2

k2y
)

;

4 Shift the Fourier Spectrum F (α, β)toF (α + kx, β + ky) ;

5 Compute the point-wise multiplication of F (α + kx, β + ky) and W (α, β) ,

and denote it as Mkx,ky(α, β) ;

6 Skx,ky(x, y)← IFFT (Mkx,ky(α, β)) ;

7 For the frequencies (kx, 0)and(0, ky), the Gaussian window function becomes

e
−2π2 α2

k2x and e
−2π2 β

2

k2y respectively. And compute steps 4-6. ;

8 For the frequency (0, 0), S0,0(x, y)← mean{I(x, y)} ;

2.5 Advantages of S-Transform

1. The Short Time Fourier Transform (STFT) has a fixed resolution but S-Transform

gives a good time resolution for high frequency components and good frequency

resolution for low frequency components, which is best suited for images. S-

Transform is equivalent to applying several STFT with different sized windows.

Thus, S-Transform is superior to STFT.

2. Wavelet Transform gives phase information local to translated window but S-

Transform gives absolutely referenced phase information, which can be used

for evaluating phase congruency. It has already been explained in Section 2.3,

Property 1.

3. S-Transform can be used for denoising images containing additive noise. For this

purpose, we can use the linearity property of S-Transform described in Section

12



2.6 Summary S-Transform

2.3, Property 4.

4. S-Transform is directly related to Fourier Transform but Wavelet Transforms

are not related to Fourier Transform. Relationship between S-Transform and

Fourier Transform has already been explained in Section 2.3, Property 2. Thus,

S-Transform is invertible but not all Wavelet Transforms are invertible.

5. S-Transform also provides superior time resolution compared to wavelet resolu-

tion.

2.6 Summary

The S-Transform is more powerful that other multi-resolution techniques like STFT

and Wavelet Transform. The phase of the S transform referenced to the time origin

provides useful and supplementary information about spectra that is not available

from locally referenced phase information in the CWT [20]. The major disadvan-

tage of S-Transform is its very high computational time complexity which makes it

impractical in many cases.

13



Chapter 3

Novel Feature Detection based on
Phase Congruency

Images are characterized by features such as edges and object. At the edges and

boundary of objects, the Fourier components of the images are in same phase. Alter-

natively, we can say that edges and objects, can be characterized by the phase of the

Fourier components.

For example, consider square wave and its few Fourier components given in Figure

3.1. If we observe the square wave and its Fourier components, we will see that at the

rising edge of the square wave, all the Fourier components are rising, i.e., they have a

phase value of zero radians. We also see that at the falling edge of the square wave,

the Fourier components are falling, i.e., they all have a phase value of π radians.

Similarly, if we consider a triangular wave and its Fourier components, we observe

Figure 3.1: Few Fourier components of a square wave are shown.

14



3.1 Phase Congruency Novel Feature Detection based on Phase Congruency

that at the peak of the triangular wave, all the Fourier components of the wave are

at their peak and have the same phase.

Thus, from these two examples, we can conclude that features of images or signals

can be characterized by phase similarity of the Fourier components.

3.1 Phase Congruency

Phase Congruency is defined as the measure of degree of similarity of phase of Fourier

components of the signal. It varies from zero to one. A Phase Congruency of zero

implies that Fourier components of the signal are completely out of phase. And a

Phase Congruency value of one implies that all the Fourier components of the signal

have same phase.

3.2 Existing Work

The existing work on Phase Congruency by Kovesi [19] uses Wavelet Transform to

calculate Phase Congruency. It uses Gabor Filters to calculate Phase Congruency.

According to his work, Phase Congruency at a point x in the signal is defined as :

PC(x) =
Σo(Eo(x)− To)+

ε+ ΣoΣnAno(x)
(3.1)

where,

1. Eo(x) is the energy along an orientation. It is calculated as :

Eo(x) =
√
F 2
o (x) +G2

o(x) (3.2)

Fo(x) = ΣIo(x) ∗M e
n(x) (3.3)

Go(x) = ΣIo(x) ∗M o
n(x) (3.4)

M e
n(x) and M o

n(x) are even and odd components of wavelet and Io(x) is given

signal along a particular orientation.

2. To is the noise correction factor given by :

To = kA1
1−m−n

1−m−1
(3.5)
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and

A1 = elogA0(x,y) (3.6)

3. ε is used to check the condition when only 1 Fourier component is present at a

point.

4. Amplitude term Ano(x) is given by :

ΣoΣnAno(x) = ΣoΣn

√
Io(x) ∗M e

n + Io(x) ∗M o
n (3.7)

3.3 Proposed Approach

We propose a different approach to compute Phase Congruency based on S-Transform.

Since, the local energy is dependent on image characteristics such as illumination,

contrast, etc., we propose a method to compute Phase Congruency that does not

involve the calculation of local energy. We bypass the entire step of calculating local

energy at each point. Instead, we first apply S-Transform locally to each point in the

image. S-Transform gives us all the Fourier components at a particular point. We

then calculate the phase value for each Fourier component at the point and take the

standard deviation of phase values as the measure of Phase Congruency. The working

of proposed method for edge detection is illustrated in Figure 3.2.

Since, the proposed algorithm works locally, it will make the feature detection

process translation invariant. Moreover, the proposed algorithm 2 is also saved form

the trivial cases of having only one frequency component. If a point has only one

Fourier component, then S-Transform will associate high value to the Fourier com-

ponent present at the point and all other Fourier components at the point would be

associated with low value. But when we apply standard deviation to compute Phase

Congruency, the value of standard deviation becomes high leading to low Phase Con-

gruency. Figure 3.3 depicts for the edges detected using proposed method.

With slight modifications, the proposed algorithm can also be used to get the

orientation information of each feature point. The modified algorithm is given in

Algorithm 4. Figure 3.4 shows a fingerprint and its orientation information using

Algorithm 4, i.e., ModifiedPCImage. With the orientation information of features
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(a) (b)

Figure 3.3: (a) An input image (b) Edges detected in the input image (a) using
algorithm 2, i.e., ComputePCImage.

in the image, the detected features can be made rotation invariant with the concept

of binning.

3.3.1 Working of Proposed Algorithm ComputePCImage

In, Algorithm 2, we mentioned the steps required to compute the Phase Congruency

(PC) of an image. The algorithm takes an input image I of size M ×N and returns

an image C of same size, containing the Phase Congruency values for all points in the

input image I. In step 1, we simply normalize the input image. We do normalization

by dividing the intensity value in each pixel by the maximum possible intensity value.

In case of 8 bit gray scale images, we use value 255 for normalization.

In step 2, we add some intensity (say, 0.1) to each point and then re-normalize it

by value (1 + added intensity). The motivation behind this step is that a point with

zero intensity has zero energy. And zero energy implies that no Fourier components

exist at that point. So, at points with zero intensity, all Fourier components will have

zero magnitude, thus implying that the phases of all the components would be same.

If phases of all Fourier components are same, then by definition, Phase Congruency

will be 1. Thus, such points would be falsely detected as feature points. So, to avoid

detecting such points as feature points, we add some intensity at each point.

In step 3, we create an image C, which contains the Phase Congruency values

for each point of the image. Since, we want to emphasize on edges and would be
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(a) (b)

Figure 3.4: (a) Image of a Fingerprint, (b) Orientation Information of fingerprint
image in (a) using Algorithm 4, i.e., ModifiedPCImage.

Algorithm 2: ComputePCImage

Data: I: Input Image, M : Rows, N : Columns
Result: C: Resultant Image with Detected Features, M : Rows, N : Columns

1 Normalize I(x, y), i.e, convert all intensity values between (0, 1) ;
2 Add some intensity value to all points of normalized image and then

re-normalize it. Let this image be J(x, y) ;
3 Create and initialize image C(x, y) to contain zeros ;
4 Define local window size ;
5 Define core points of J(x, y) to be those points on which if window is placed,

then window will not cross J(x, y) ;
6 forall the (x, y) in core points of J(x, y) do
7 max← 0 ;
8 forall the rotangle in 0 to 2π increment σ do
9 W (x, y) ← local window of J(x, y) in the direction of rotangle ;

10 STW (x, y, kx, ky) ← STransform{W (x, y)} ;
11 temp ← ComputePC{STW (x0, y0, kx, ky)} ;
12 if temp < max then
13 max← temp ;

14 C(x, y)← max ;
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representing them by the high intensity values, we initialize the image C with dark

intensity values.

Algorithm 3: ComputePC

Data: I: Input Image, M : Rows, N : Columns

Result: Phase Congruency value, pcval for given Image

1 minstd← 1 ;

2 Φ(kx, ky) ← Phase{I(kx, ky)};

3 for each row r of Φ do

4 Normalise r, i.e. r ← r/π ;

5 tempstd ← std(r) ;

6 if tempstd < minstd then

7 minstd ← tempstd ;

8 for each column c of Φ do

9 Normalise c, i.e. c← c/π ;

10 tempstd ← std(c) ;

11 if tempstd < minstd then

12 minstd ← tempstd ;

13 pcval ← (1−minstd)

Considering the efficiency parameters of the algorithm, and computational com-

plexity of S-Transform, we would be applying S-Transform at each point locally. Ap-

plying S-Transform locally also provide us with the advantage that the feature points

detected would be translation invariant. To apply S-Transform locally, we define a

window size in step 4. We have worked with several window sizes and found out that

3× 3 window size gives better performance as shown in Figure 3.5.

In step 5, we identify core points of the image. Boundary points of the image are

all those points located near the boundary of the image, on which if local window is

placed, it will cross the boundary of the image. All points of the image which are not

boundary points are core points.

In step 6, we begin a loop, which will calculate the Phase Congruency for all core

points in the image. The proposed algorithm does not calculate the Phase Congruency
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(a) (b)

(c) (d)

Figure 3.5: (a) Input fingerprint image to Algorithm 2, i.e., ComputePCImage, (b)
Features detected using window size 3 × 3, (c) Features detected using window size
5 × 5, and (d) Features detected using window size 7 × 7. In (b),(c)&(d), we have
taken negative of all the output images.

21



3.3 Proposed Approach Novel Feature Detection based on Phase Congruency

for boundary points. Since number of such points is very less, they can be ignored

without significantly affecting the result.

In step 9, we extract the local window, W , at image location (x, y) of image J

in the direction of orientation. Edges may oriented in any direction and they are

detected when we apply the edge detection algorithm in a direction perpendicular to

their direction of orientation. So, to make detection algorithm robust, we take local

window at each position in the several possible direction of orientation. In step 10,

we apply S-Transform on the locally detected window, W and get an image STW .

In step 11, we get the Phase Congruency value for STW .

In for loop (steps 8 − 13), we calculate maximum PC value for each point along

orientations 0, σ, 2σ . . . 2π and store it in the image C in step 14.

3.3.2 Working of Proposed Algorithm ComputePC

Algorithm 3 takes an input image I representing different Fourier components con-

tained at a position. This algorithm returns returns a PC value which is maximum

along any row or column of the image I.

In step 4, we normalize each row to ensure that phase values lie between 0 and 1.

Since, all the phase values would be between 0 and 1, standard deviation value will

also lie between 0 and 1 and thus Phase Congruency value would be limited between

0 and 1. In step 5, we calculate the standard deviation for a particular row. In steps

6 − 7, we compare the present value of standard deviation with the minimum value

of standard deviation and update the minimum value, if it is greater. We repeat the

process similarly for all columns in for loop(steps 8− 12). Since, standard deviation

is a measure of dissimilarity among phase values and because we need a measure of
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similarity of phase values, we define Phase Congruency as (1−minstd).

Algorithm 4: ModifiedPCImage

Data: I: Input Image, M : Rows, N : Columns

Result: C: Resultant Image with Detected Features, O: Resultant image

containing orientation values of points in image ,M : Rows, N :

Columns

1 Normalize I(x, y), i.e, convert all intensity values between (0, 1) ;

2 Add some intensity value to all points of normalized image and then

re-normalize it. Let this image be J(x, y) ;

3 Create and initialize image C(x, y) to contain zeros ;

4 Create image O(x, y) to contain orientation values ;

5 Define local window size ;

6 Define core points of J(x, y) to be those points on which ii window is placed,

then window will not cross J(x, y) ;

7 forall the (x, y) in core points of J(x, y) do

8 max← 0 ;

9 orientation← −1 forall the rotangle in 0 to 2π increment σ do

10 W (x, y) ← local window of J(x, y) in the direction of rotangle ;

11 STW (x, y, kx, ky) ← STransform{W (x, y)} ;

12 temp ← ComputePC{STW (x0, y0, kx, ky)} ;

13 if temp < max then

14 max← temp ;

15 orientation← rotangle ;

16 C(x, y)← max ;

17 O(x, y)← orientation ;
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Chapter 4

Simulation and Results

This chapter discusses the application of the proposed algorithms for edge detection.

Section 4.1 provides a comparative analysis of the proposed algorithm 2 with the

existing methods. Section 4.2 discusses the application of algorithm 2. This section

proposes an Algorithm 5 to detect minutiae features from fingerprint and compares

the result with an existing work.

4.1 Analysis of Proposed Edge Detector

The performance of the proposed algorithm is demonstrated on three test images in

this section. For comparison, the output of the Sobel (1969), Canny [9] and Kovesi

[22], [23], [24], [25] are also presented. The purpose of this comparison is to illustrate

some of the qualitative differences between the mentioned detectors. Canny edge

detector used automatic values for thresholding. Kovesi’s method used the following

parameters : Local frequency is obtained using two octave bandwidth filters over four

scales. Six number of orientations are used. Wavelength of smallest scale filter is

3 pixels. Scaling factor between successive filters is 2.1. Filters are constructed in

frequency domain instead of creating them in spatial domain and transforming to

frequency domain. Threshold used is 0.5. The sharpness of sigmoid function used to

weight phase congruency for frequency spread is 10. The proposed method used a

local window of size 5× 5 and a threshold value of 0.7.

Figure 4.1 (a) is the input image to the various edge detection methods, i.e., Sobel,

Canny, Kovesi’s method, and the proposed method. Figure 4.1 (b) shows the edges
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detected by the Sobel operator. Clearly, Sobel operator fails to detect most of the

edges. Figure 4.1 (c) shows the edges detected by the Canny’s method. The problem

with Canny edge detection algorithm is that for each edge in the original image, it

detects two edges. Figure 4.1 (d) shows the output of the Kovesi’s method [26]. In

this image, one can notice that not all detected edges have equal strength. Moreover,

some edges near corners are also dull. Figure 4.1 (e) shows the edges detected by Algo-

rithm ComputePCImage. This image is the output of Algorithm ComputPCImage

applied on input image 4.1 (a). Here, edges are clearly demarked from the rest of

the images. Moreover, if we just apply thresholding on this image, we get image 4.1

(f). This result is completely independent of the local image intensity. In Canny edge

detection algorithm [8] and Kovesi’s work [26], raw output is processed using non

maximal suppression and hysteresis thresholding. Such techniques are dependent on

the intensity values which might again defeat the entire purpose of detecting intensity

invariant features. The Algorithm ComputePCImage is completely independent of

intensity of the original image.

Figure 4.2 shows application of different edge detection algorithms on image con-

taining subtle features. Figure 4.2 (a) is the input image. This image contains a star

in the last box besides the line. The hollow star is marked by a boundary having very

slight change in the intensity with background. The existing algorithms of Sobel,

Canny, Kovesi fail to detect this star (See Fig 4.2 (b),(c),(d)). The proposed algo-

rithm 2 easily detects the star contained in the last box (See Fig 4.2 (e)). We then

apply a threshold value of 0.8 on Phase Congruency to get the thresholded image in

Fig 4.2 (f). Thus, the proposed algorithm outperforms the existing algorithms when

it comes to detect subtle features.

Figure 4.3 shows the application of various edge detection algorithms on the shaded

input image. The input image in Figure 4.3 (a) is derived from shading the upper

part of input image in Figure 4.1 (a). The Canny and Sobel edge detection algorithms

fail to detect any feature in the dark region in the upper part of input image. The

existing work of Kovesi is able to detect some features in the darker region. However,

the proposed algorithm performs best in detecting features in the darker region. Here,
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: (a) Input image, (b) Edges detected by the Sobel Operator, (c)Edges
detected by Canny Edge Detection Algorithm, (d) Raw output image from Kovesi’s
Phase Congruency, (e) Raw Output image by the proposed algorithm, and (f) Output
Image after thresholding applied to image (e).
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) Input image, (b) Edges detected by the Sobel Operator, (c)Edges
detected by Canny Edge Detection Algorithm, (d) Raw output image from Kovesi’s
Phase Congruency, (e) Raw Output image by the proposed algorithm, and (f) Output
Image after thresholding applied to the image (e).
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some of the features of the input image 4.1 (a) are lost during the shading (squares

inside the circles in top portion of the image) and no edge detection algorithm can

detect those features without apriori knowledge of the features. The proposed algo-

rithm being too sensitive also detects the slight variation in intensity in the middle of

image as feature.

4.2 Application in Biometrics

Biometrics is science of establishing identity of an individual based on certain unique

characteristics which are possessed only by the individual. Biometrics provide so-

lution to identity management to recognise individual [27]. The basic advantage of

biometrics is that, it can’t be stolen,forgotten or misplaced. Moreover, the biomet-

ric systems are difficult to fool, since the traits needed for such system belong to a

person uniquely. Some traditional and biometrics systems used for authentication are

shown in Figure 4.4. The underlying functioning of most of the biometric systems is

input image from user, preprocessing of the image to find region of interest, feature

extraction, and authentication of individual [28].

We tried to apply the proposed algorithm 4 for minutiae extraction from finger-

prints. We proposed an Algorithm 5 for minutiae extraction. The algorithm does

not need most of the pre-processing techniques used in traditional minutiae detection

algorithms. It replaces all the pre-processing techniques by the proposed algorithm 4.

We applied the algorithm 5 on the fingerprint. We compared it with the algorithm

[2]. The results are shown in Figure 4.5.

We perform a qualitative analysis of the proposed minutiae extraction algorithm

with [2]. We observe that the proposed algorithm 5 perform better. It can detect

more number of bifurcations. The Algorithm [2] detects all the features on the edges

itself. However, our algorithm performs better.
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Figure 4.4: Various forms of authentication. Traditional methods of authentication
using token based and knowledge based approaches (left). Use of biometrics to claim
identity (right)

Algorithm 5: ComputeMinutiae

Data: I: Input Image, M : Rows, N : Columns
Result: Minutiae Points with Orientation

1 Apply Algorithm 4 on input image I, i.e,
(PCImage,OrientImage)←ModifiedPCImage{I};

2 Threshold the image PCImage, i.e, binaryPC ← Thresholding{PCImage};
3 forall the (x, y) in binaryPC do
4 if binaryPC(x, y) = 1 then
5 if No. of 1− value neighbors = 1 then
6 Mark (x, y) as termination point;

7 if No. of 1− value neighbors >= 3 then
8 Mark (x, y) as bifurcation point;

9 Filter spurious minutiae using Euclidean distance. If distance < threshDist,
minutiae is spurious;

10 Remove extreme minutiae using region of interest;
11 Extract the orientation information of remaining minutiae points from

OrientImage;
12 Return the remaining minutiae points with their orientation;
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(a) (b)

Figure 4.5: (a) Minutiae detected by Algorithm [2], (b) Minutiae detected by the
algorithm 5 on same input image as (a).
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Chapter 5

Conclusion and Future Work

This thesis proposes novel feature detection technique based on Phase Congruency

using S-Transform. The first contribution is made to develop an approach for efficient

feature detection using S-Transform. The proposed approach is powerful enough to

extract the subtle features as well. The second contribution is made to modify the

proposed algorithm to extract the orientation information of the detected features.

This information is very useful for various applications in biometrics. Finally, the

application of the proposed algorithm is shown on fingerprint minutiae extraction.

To conclude with thesis, the proposed work have been critically analyzed and few

limitations have been observed. Further research work may be carried out on these

limitations to improve the proposed work. The complexity of S-Transform poses

a serious challenge from computational point of view. Thus, there is a stringent

requirement to reduce the complexity of S-Transform. There is scope to try Discrete

Orthonormal S-Transform (DOST) instead of S-Transform in the proposed approach.

For feature detection in noisy images, the proposed algorithm may not perform well

(due to its sensitivity), so appropriate denoising techniques need to be applied before

applying the proposed algorithm. Such denoising technique can be developed during

the implementation of the S-Transform to improve performance without increasing

the overall complexity.
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