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ABSTRACT 
 

This thesis presents mathematical analysis of the photovoltaic (PV) model along with the 

comprehensive analysis of a resonant circuit based soft switching boost converter for PV 

applications. The converter maintains a Zero Voltage Switching (ZVS) turn-on and turn-off 

of the main switch, and Zero Current Switching (ZCS) turn-on and ZVS turn-off of the 

auxiliary switch due to the resonant circuit incorporated in the same. Detailed operation of 

the converter, analysis of various modes, simulation as well as experimental results for the 

design has also been aptly presented. Switching and conduction losses across the switches 

and the diodes have been calculated and analysed, and some light has also been thrown on the 

design of inductor used in the practical implementation. The Perturbation and Observation 

(P&O) method has been used in order to track the Maximum Power Point (MPP) from the PV 

panel. This soft switching technique has been aimed to be used in telecom services where 

there is a necessity of 48 V regulated DC bus voltage. The systems are modelled and 

simulated in PSIM 64 bit version 9.0 environment and is experimentally validated in FPGA 

environment. Thus, the feasibility and the effectiveness of the system were also proven 

through theoretical analysis and experimental results. 
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1.1 MOTIVATION 

Production of clean and green energy for modern power systems has become an 

increasingly burning area of research among the scientific community [1] and electrical 

energy from photovoltaic (PV) is currently regarded as the prerequisite sustainable resource, 

since it is free, abundant, clean and distributed over the earth. However, low efficiency is 

observed in photovoltaic systems accounting for the fact that it depends on parameters such 

as external temperature and irradiation [2].  

In order to maximize the effectiveness of PV module, the PV power system also has to 

track the maximum possible power regardless of the unpredictable variations in the 

parameters and as they are generally integrated with specific control algorithms, in order to 

extract the maximum possible power, it becomes highly imperative that the MPP is achieved 

effectively. Some MPPT techniques like Perturbation and Observation, Current 

Compensation and Incremental Conductance methods have been proposed in [3-5] to track 

the MPP in an effective way. In this report, the Perturbation and Observation technique has 

been adopted for simplicity purposes.  

1.2 PV ENERGY SYSTEM IN INDIAN SCENARIO 

India imports more than 80% of its oil; hence it has a huge dependency on external 

sources for development. With depleting fossil reserves worldwide, there has been a threat to 

India’s future energy security. Hence, the government of India is investing huge capital on 

development of alternative sources of energy such as solar, small hydroelectric, biogas and 

wind energy systems apart from the conventional nuclear and large hydroelectric systems [3]. 

The distribution of power generation from various sources according to the Ministry of 

New and Renewable Energy, Government of India as on 31.01.2013 is shown in Table 1.1. 

TABLE 1.1: DISTRIBUTION OF POWER GENERATION IN INDIA FROM DIFFERENT SOURCES 

Technology Capacity Installed (GW) 
Total Installed Capacity 

(%) 

Thermal 167 52.02 

Hydro 48 14.95 

Renewable 53 16.51 

Gas 49 15.26 

Nuclear 4 2.14 
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From the year 2002 onwards, renewable grid capacity as a percentage of total capacity has 

increased by almost four times. In April 2002, renewable energy based power generation 

installed capacity was 3497 MW which was 3% of the total installed capacity in the country. 

India today stands among the top five countries of the world in terms of renewable energy 

capacity with an installed base of over 19000 MW of grid interactive renewable power which 

is around 11% of our total installed capacity. 

Although the solar generation concept is popular among space applications, it is yet to get 

its importance in domestic applications owing high costs associated with generation of 

electricity from the solar arrays. However, the Ministry of New and Renewable Energy 

(MNRE), Government of India has taken several steps to highlight the generation of solar 

energy in Indian energy sector. India in particular should utilise the opportunity of higher 

solar insolation levels than most of the countries in the world to harness solar energy. The 

estimated potential of solar power that can be harnessed on the surface is 50MW/sq.km. 

1.3 PV ENERGY SYSTEMS FOR PORTABLE APPLICATIONS 

This energy generation system consists mostly of capacities below 100W. They have a 

huge range of applications ranging from powering calculators, educational toys, solar lamps, 

traffic signals, mobile chargers, etc. They are usually made up of poly crystalline material of 

solar cells due to their higher energy density over a small area and fits in the portable 

applications. However, this system is not highly commercialised due to battery technology 

required to store the power generated and high cost of poly crystalline silicon solar cells. 

They generally use lithium ion batteries [4] to store energy due to its high energy capacity 

and light in weight. These systems come handy when power is required on move and has a 

potential to revolutionise the current era of electronics with free power on move. The simple 

mobile charger based on PV energy system consists of a small solar module generally made 

of poly crystalline silicon, connected to the electrical load through a buck/boost converter for 

regulation of voltage at the load end [5]. This regulation is usually done using a feedback loop 

that senses the output voltage and tries to keep it at the desired output voltage required.  

1.4 CONVERTER TOPOLOGY FOR PV SYSTEMS 

DC-DC converters play an important role in interfacing the non-conventional energy 

sources like photovoltaic current to useful DC or AC form. It is therefore necessary that the 

interfacing converter should be highly efficient in transferring the power to ensure proper 

load management. The boost topology is the most popular topology for getting constant value 
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of high DC output [6] as it’s simple power circuit leads to high efficiency and high reliability 

at low cost. In case of hard switching boost converters, due to overlapping of voltage and 

current waveforms during switching and the reverse recovery of the diode with each 

switching cycle, there is a high amount of switching loss associated with it.  

In order to address these shortcomings, new power electronics circuits are designed based 

on resonant and soft-switching technologies [7]. In these cases, an increase in the efficiency 

of the system is accounted for, owing to non-overlapping of the voltage and current 

waveforms during switching. This results in decreased output ripple at higher values of 

frequencies [8]. Also, with an increase in frequency, it is possible to use smaller values of 

inductors and capacitors, which results in the reduction of the sizes of the components and 

thus increasing the power density [7]. However, the major challenge still remains as the 

design of the converter, especially when the constraints such as permissible stresses and 

conduction losses are stringent. 

This thesis presents a soft switching technique that provides ZVS turn-on and turn-off for 

the main switch. The auxiliary switch ensures ZCS turn-on and ZVS turn-off process with the 

help of resonant circuit. An anti-parallel diode is added across the main switch so as to make 

the voltage zero across it before current starts building up and a capacitor is connected across 

the same to reduce the rate of rise of voltage across switch during turning-off process, thus 

ensuring ZVS. The auxiliary switch operates with ZCS using the resonance. This soft 

switching method is preferred over other methods because the resonant circuit implemented 

for soft switching performs dual operation. It not only ensures ZVS turn-off of the main 

switch and auxiliary switch but also the ZCS turn-on of the auxiliary switch. Hence, along 

with the conduction losses of the auxiliary switch, the switching loss is also decreased 

tremendously.  

1.5 OVERVIEW OF PROPOSED WORKDONE 

A resonant boost converter is seen to have improved efficiency of converter systems by 

reducing the switching losses, due to the implementation of ZVS and ZCS. It reduces the 

switching stress by forcing the current/voltage of a switch to zero prior to a switching 

transition. However, they introduce high current/voltage stresses in the switch. Hence to 

overcome this problem, ZVS scheme is implemented for the main switch, but the auxiliary 

switch still suffers from the capacitive turn-on loss. Reversal of inductor current is adopted 

and all the switches were turned-on with zero-current switching (ZCS) without causing any 
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over current or voltage stresses for the auxiliary switch. Also, the switching frequency is 

increased with reduction in components sizes as consequence of it [2]. However, these 

technique isn’t feasible for wide load range and wide duty ratio range. The Zero Voltage 

transition (ZVT) and Zero Current Transition (ZCT) are able to solve the purpose [9-11]. 

Along with it, active-clamped current-fed-full-bridge converter is implemented for 

implementing ZVS condition over a wide range of load variation [12]. Various other soft 

switching techniques are also studied and discussed in the literature [13-14]. 

1.7 THESIS OBJECTIVES 

The following objectives are hopefully to be achieved at the end of the project. 

1) To study the mathematical modelling of PV array and observe its characteristics. 

2) To study the proposed DC-DC Soft Switching Boost Converter and detailed analysis 

of the operation in various modes. 

3) To validate the theoretical and simulation results experimentally in FPGA 

Environment. 

4) To study the comparison of efficiency mainly in terms of switching and conduction 

between the conventional hard switching DC-DC boost converter and the proposed 

soft switching DC-DC boost converter. 

1.8 ORGANISATION OF THE THESIS 

The thesis is organised into six chapters including the chapter of introduction. Each 

chapter is different from the other and is described along with the necessary theory required 

to comprehend it. 

Chapter 2 deals with the comparative study between various models of Photo-Voltaic 

(PV) array formulated exclusively using the data sheet parameters. The models used for 

comparative study in this paper  includes ideal single diode model, the two diode model, the 

simplified single diode model and the improved single diode model. A typical 19.8W model 

is simulated and the output characteristics are observed. The comparative study has been 

made on basis of the MPP tracking, the RMSD from the experimental. Further, the 

resemblance of the P-V and I-V curves as obtained on the basis of experimental data has also 

been included in this study. On the basis of all these performance indices, the best model that 

can be used for simulation purposes has been selected. It is envisaged that the work can be 

very useful for professionals who require simple and accurate PV simulators for their design. 

All the systems here are modelled and simulated in MATLAB/Simulink environment. 
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Chapter 3 describes the design of a soft switching technique that provides ZVS turn-on 

and turn-off for the main switch. The auxiliary switch ensures ZCS turn-on and ZVS turn-off 

process with the help of resonant circuit. An anti-parallel diode is added across the main 

switch so as to make the voltage zero across it before current starts building up and a 

capacitor is connected across the same to reduce the rate of rise of voltage across switch 

during turning-off process, thus ensuring ZVS. The auxiliary switch operates with ZCS using 

the resonance. This soft switching method is preferred over other methods because the 

resonant circuit implemented for soft switching performs dual operation. It not only ensures 

ZVS turn-off of the main switch and auxiliary switch but also the ZCS turn-on of the 

auxiliary switch. Hence, along with the conduction losses of the auxiliary switch, the 

switching loss is also decreased tremendously. A detailed analysis of the mode by mode 

operation, design and simulation for the same, along with the calculation of the losses 

incurred in the converter has been done. The losses due to the inductors and the capacitors 

have not been taken into account and only the losses due to the switches and the diodes have 

been considered. Experimental results have also been shown for validation of the simulation 

results obtained. The procedure, used to design the main inductor has also been put forward 

here.  

Chapter 4 presents the simulation results of the Soft Switching DC-DC Boost Converter 

carried out in PSIM. The results are validated experimentally in the Laboratory. The gate 

pulses of both the main and auxiliary MOSFET along with the voltage and current waveforms 

of the same are illustrated. The ZVS and ZCS is ensured in both the case. The PWM pulses 

are given to the control circuit through FPGA. 

Chapter 5 concludes the work performed so far. The possible limitations in proceeding 

research towards this work are discussed. The future work that can be done in improving the 

current scenario is mentioned. The future potential along the lines of this work is also 

discussed. 

 

 

 

 

 



Page | 7  
 

CHAPTER 2 

 

 

 

 

 

 

 

 

PV Array Modelling 

 



Page | 8  
 

2.1 INTRODUCTION 

A solar cell is basically a p-n junction fabricated in a thin wafer of semiconductor. Being 

exposed to sunlight, photons with energy greater than the band-gap energy of the 

semiconductor create some electron-hole pairs proportional to the incident irradiation []. 

Generally, the I-V characteristics for a PV module composed of series connected cells based 

on single exponential model expressed as: 
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All the other parameters are mostly calculated through sets of non-linear equations. 

 

2.2 MATHEMATICAL MODELLING OF PV ARRAY: 

2.2.1 Ideal Single Diode Model (ISDM) 

 

Fig.2.1PV cell modeled as ideal single diode circuit 

The simplest equivalent circuit of a solar cell is a current source in parallel with a diode as 

illustrated in Fig.2.1. The output of the current source is directly proportional to the intensity 

of light falling on the cell i.e. photocurrent. Here the diode determines the I-V characteristics 

of the cell. The accuracy is increased by including temperature dependent diode saturation 

current (I0), temperature dependent photocurrent (Iph) and diode ideality factor (A) which lies 

between 1 and 2. 

In an ideal cell Rs=Rsh=0, which is usually a common assumption. The equations are 

given as: 
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Output current (Ipv): 
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Here the ideality factor is assumed to be 1.6. However the output curve doesn’t give 

accurate shape between the maximum power point the open-circuit voltage because of the 

exclusion of Rs. here the leakage current to the ground due to Rsh is also excluded. 

2.2.2 Simplified Single Diode Model(SSDM) 

 

Fig 2.2 PV cell modelled as simplified single diode circuit 
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From the Fig.2.2, in the simplified single diode model the effect of shR  is neglected for 

mathematical simplicity. The equation (2.1) reduces to 

]1[
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The typical I-V output characteristics of P-V cell is represented by following equations [7]:  

Module photo-current ( Iph):  
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The current output of PV-module ( Ipv): 
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2.2.3 Improved single Diode Model (ImSDM): 

 

The improved Single Diode Model is based on the idealized Ideal Single Diode Model. 

However, in order to cope up with the mathematical complexity it is modeled with an entirely 

different set of mathematical equations. The computation of these equations avoids the use of 

a non-linear solver [9]. In the Improved Single Diode Model the effects of sR and shR  are 

neglected for mathematical simplicity. The equation (2.1) reduces to: 
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This model basically contains three unknown parameters namely phI , oI  and A . 

We know that 
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    TTGVTGV ococ  ||,, 0                  (2.12) 

Where  TGVoc ,  represents the open circuit voltage at T and  0,TGVoc  represents the open 

circuit voltage at the reference temperature. 

The open circuit voltage formula is derived by substituting I=0 in (2.11) 
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Substituting for  TGVoc ,  and  0,TGVoc  in eq (13) we get  
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Rearranging the above equation we get 
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Here we have Irswhich can be found by 
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Furthermore, the equation for the MPP under STC can be expressed as  
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Now the unknown parameter A can be derived by substituting (2.16) into (2.17) 
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Thus we can find the unknowns A  and  scI  



Page | 12  
 

Now 
phI is determined by the equation 

 TKIGI iscph                   (2.19) 

where G the incident irradiance (kW/m2) , Iscis the short circuit current at STC (in A), T  

is the temperature difference between the module temperature and the STC temperature, and

iK  is the current temperature coefficient. 

Finding the value of the unknowns and replacing in (2.11) we get the exact modelling of 

the improved single diode model. 

2.2.4 Single Diode Model with Rs and Rsh (SDM) 

From the Fig.2.3, we include the effect of both Rs and Rsh. The equation can be written 

basically through three points as specified on the data sheet namely the short circuit point, the 

maximum power point and the open circuit point. 
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Fig.2.3. PV cell modeled as single diode circuit including Rs and Rsh 

Another equation can also be derived using the fact that, at the MPP, the slope of the P-V 

curve is zero. 
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0
dV

dP
at MPP                                                                              (2.23) 

So far there are four equations available, but there are five parameters to find, therefore a 

fifth equation has to be found. For this purpose can be used the derivative of the current with 

the voltage at short-circuit conditions, which is mainly determined by the shunt resistance Rsh. 

shRdV

dI 1
 at I=Isc                  (2.24) 

From the expression of the current at short-circuit and open circuit conditions, the photo-

generated current Iph and the saturation current Io can be expressed: 
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From eq.(2.25) and (2.20) we get 
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The second term in the parenthesis from the above equation is neglected as it is very less 

compared to the first term. 
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Solving for the saturation current we get 
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Combining equation (2.25) (2.28) and (2.21) we get 
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 Now we apply the maximum power point (MPP); 
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V
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In order to obtain the derivative of the power at MPP, the derivative of Eq. (2.29) with 

voltage should be found. However, since (2.29) is a transcendental equation, and it is 

expressed in the form 

),( VIfI                 (2.31) 

Differentiating we get 
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From (2.33) and (2.30) 
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From the above equations 
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These equations lead to the equation: 
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              (2.36)  

Now we can determine all the three unknown parameters, the Rs, A, and Rsh using the 

equations. As these equations do not allow separating the unknowns, they are solved using 

numerical methods. 

(2.35) 



Page | 15  
 

2.2.5 Two Diode Model 

 
Fig.2.4. PV cell modelled as two diode circuit 

For Two Diode Model, we considered two diodes as shown in the Fig.2.4 which consists 

of two parallel diodes instead of a single diode as before. It led to increase in accuracy of the 

model with greater resemblance to experimental data. This model is known to have better 

accuracy at low irradiance level which allows for a more accurate prediction of PV system 

performance [12]. To reduce computational time, the input parameters are reduced. Here Rs 

and Rsh are excluded for simplicity.  

The output current of the cell may be described as 

21 ddphpv IIII 
                  (2.37)                     

 

where Id1 is the current through diode d1 and is given by 
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                                                                         (2.38)                                

And Id2 is the current through diode d2 which is given by  
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                                                                         (2.39)                                        

Where Io1 is the reverse saturation current of diode 1 and I02is the reverse saturation currents 

of diode 2, VT1and VT2are the thermal voltages of diode 1 and diode 2 respectively. A1 and 

A2represent the diode ideality factors. It requires the computation of five parameters, namely 

IPV,  Io1,  I02, a1  and  a2. To simplify, several researchers assumed  a1=1 & a2=2. 
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2.2.6 Improved Simplified Single Diode Model 

The I-V characteristics of the PV device depend on its internal characteristics (RS, RP) and 

on the external influences such as irradiation level and temperature. The model has four 

parameters (IPH, IS, A, RS). As the parallel resistance is high, for simplicity, ISC is assumed to 

be equal to IPV. 

Generally, the I-V characteristics for a PV module composed of series connected cells 

based on single exponential model is expressed as 

 1)/)(exp(  SSSPVoPVS AKTNRIVqIII
                                    (2.40) 

The light-generated current of the PV cell depends linearly on the solar irradiation and is 

affected by the change in surrounding temperature.  

The module photocurrent is given by: 

GTKII ISCPV )(                    (2.41) 

The nominal saturation current at standard temperature and irradiation is given by: 

1)/exp( 0, 


TAKNV

I
I

SNOC

SC
RS

                 (2.42) 

The PV model proposed in [8] is improved by replacing the conventional approach of 

obtaining the saturation current by the equation: 

1)/)exp(( , 




TAKNTKV

TKI
I

sVNOC

ISC
O

                (2.43) 

This modification aims to match the open-circuit voltages of the model with the experimental 

data for a wide variation in temperature. The inclusion of current and voltage coefficient KI 

and KV in (2.42) gives (2.43). The above equation gives a new approach of dependency of Io 

in temperature such that, the temperature is a linear variation of the open-circuit voltage 

(VOC). 

Under Standard Temperature Conditions (STC), at MPP point (IMPP,VMPP) equation (2.40) is 

given by: 
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]1)/)([exp(  soSMPPMPPRSSCMPP NAKTRIVqIII               (2.44) 

The third parameter “A” is derived by substituting (2.42) in (2.44) and solving  
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             (2.45) 

The series resistance RS which represents the resistance inside each cell in the connection 

between cells, gives a more accurate shape between the maximum power point and the open-

circuit voltage. 

The fourth unknown parameter is given by: 
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                  (2.46) 

)/exp()/( oOCoRSV AKTqVAKTqIX                  (2.47) 
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                  (2.48) 

Solving (2.45) and (2.46) we can obtain the value of the unknown parameters. The inclusion 

of unknown parameter results in closer resemblance of the simulated model to the practical 

PV array, thus improving the output characteristic curve and minimizing the error at the 

remarkable points of the curve. 

2.3  SIMULATION RESULTS 

2.3.1 Analysis of P-Vpv and Ipv-Vpv Curves 

Fig. 2.5 and Fig.2.6 depict the typical P-V and I-V characteristics of various PV models at 

a particular temperature and irradiation. From this, following interpretations are made. The 

output curve for an ideal single diode model doesn’t guarantee accurate shape between the 

maximum power point and the open-circuit voltage because of the exclusion of Rs and also 

because of the exclusion of Rsh. Hence the graphs deviates completely from the experimental 

results obtained. For the single diode model with Rs only, the model is improved. The graph 

obtained coincides with the experimental result at Isc and Voc  but the MPP deviates greatly 

for the one obtained from experimental result. It even exhibits serious deficiencies when 

subjected to temperature variations. For the single diode model considering both Rs and Rsh, 
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the model is significantly improved and is almost approximated to the actual PV panel but, 

this approach demands significant computing effort and its accuracy deteriorates at low 

irradiance, especially in the vicinity of Voc . For the two diode model, the graph deviates from 

the experimental result near the vicinity of Isc but the graph has MPP near to the experimental 

MPP and the graph between the MPP and Voc is near to the experimental result. However, for 

the improved single diode model, the simulation result coincides closely with the 

experimental result and exactly at MPP. It takes advantage of the simplicity of ideal models 

and enhances the accuracy by deriving a mathematical representation, capable of extracting 

accurate estimates of the model parameters, directly related to manufacturer datasheets.  

 

Fig.2.5. Typical P-Vpv output characteristics for different PV equivalent circuits at a particular irradiation and 

temperature 

 

Fig.2.6. Typical Ipv-Vpv output characteristics for different PV equivalent models at a particular temperature and 

irradiation 
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2.3.2 Analysis of the RMSD values 

Table-2.1 gives the Root Mean Square Deviation (RMSD) comparison between the 

various PV models and thus the result clearly shows the order of preference of the model in 

order to get the approximate graph coinciding closely to the experimental datasheet values at 

MPP, Voc, Isc..However, the most accurate model is obtained by using the two diode model 

including Rs and Rsh. But because of the tremendous increase in the computation complexity 

involving seven parameters, its not used for study. Table-2.2 illustrates the point at which 

MPP is obtained. 

TABLE-2.1  RMSD values for different PV equivalent circuits 

Equivalent Circuit RMSD 

Ideal single diode 0.089(A) 

With Rs (SSDM) 0.068(A) 

With Rs and Rsh (SDM) 0.056(A) 

With two-diode 0.0547(A) 

With improved single diode 0.053(A) 

TABLE-2.2  MPP values for different PV equivalent circuits 

Equivalent Circuit MPP 

Ideal single diode 16.1(V), 1.42(A) 

With Rs(SSDM) 16.68(V), 1.51(A) 

With Rs and Rsh(SDM) 16.29(V), 1.46(A) 

With two-diode 16.31(V), 1.47(A) 

With improved single diode 16.30(V), 1.47(A) 
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3.1 INTRODUCTION 

 

Hard Switching converters comprise of those converters which obeys the conventional 

switching phenomenon. While the switch is turned ON, the voltage across the switch tends to 

decrease and the current across the switch tends to increase. This results in some switching 

losses. 

Switching losses and EMI can be reduced by using soft switching techniques at the 

expense of stress on the device. If the semiconductor device is made to turn off or turn on 

when current or voltage is zero, then the product of voltage and current during transition is 

zero which leads to zero power loss. 

 

3.2 MATHEMATICAL ANALYSIS OF SOFT SWITCHING BOOST CONVERTER 

 

The following assumptions are made for the operation and the analysis of the converter: (a) 

Output capacitance is large enough to obtain constant output voltage (b) Main inductor is large 

enough to have input current constant. 
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Fig. 3.1. The Soft Switching Boost Converter Topology 
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Fig. 3.2 Theoretical Waveforms of the Soft Switching Converter 

 

3.2.1 Analysis of various modes of operations 

A. Mode 1(t0-t1): 

At the beginning of this stage, the auxiliary switch Sa is turned on with ZCS while the 

main switch is off. A resonant loop consisting of Lm-Lr-Cr-Sa-Vin is formed because of the 

resonance between Lr and Cr. The current in Da reaches zero (soft turn-off) at the end of the 

interval. Now, when the current through Lm equals to the current through Lr, mode 1 ends. 

The voltages and currents are derived using KVL and KCL. 

The power loss in this interval is due to the conduction loss due to the switch Sa(PSa) and 

the main diode Dout (PDout) and they are given by: 








 


T

tt
RiP

onaa mtss
3

**)|( 012

21
                  (3.1) 

T

tti
P o

Dout 2

)(**7.0 01 

                                         (3.2) 



Page | 23  
 

PHOTO-

VOLTAIC 

(PV) 

PANEL

Din

Cin

LmDin

Sm

Din

Lr

Cr

Sa

Cout

Load

VoutVout

+

_

Cs

Da

Dout

 

B. Mode 2(t1-t2): 

In this interval, switch Sa remains on and the current through Lr increases due to the 

resonance between Lr and Cr. The drain voltage of main switch Sm starts to drop as the 

snubber capacitor discharges. This mode ends when the voltage of Cs drops to zero.  

The power loss in this mode is mainly due to the conduction loss in the switch Sa(PSa): 
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C. Mode 3(t2-t3):  

At the beginning of this interval, the anti-parallel diode of the main switch Sm is turned 

on, which makes the voltage across main switch zero by ZVS turn-on. This mode ends when 

the current through main inductor equals that of the resonant inductor current.  

The power loss in this mode is due to the conduction loss of both switch Sa(PSa) and the 

anti-parallel diode of switch Sm(PSm) and they are given by: 
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D. Mode 4(t3-t4): 

Here, in this mode, the main switch Sm is turned on at zero voltage condition and hence, 

there is no switching loss across it. The resonant capacitor is charged continuously in this 

mode. The load current is provided by the output capacitor.  

The power losses in this interval include conduction loss in main switch Sm (PSm) as well 

as auxiliary switch Sa(PSa): 
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E. Mode 5(t4-t5):  

In this mode, the current flows through the anti-parallel diode of Sa. Hence, the switch Sa 

is turned off under ZVS. Thus, there is no switching loss in Sa during turn-off. This mode 

ends when resonant capacitor Cr is fully charged. 

The power loss in this interval is due to the conduction loss across switch Sm(PSm)and the 

anti-parallel diode of switch Sa(PDsa). 
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F. Mode 6(t5-t6): 

In this interval, the current flows through the auxiliary diode Da instead of the anti-parallel 

diode of switch Sa. This mode ends when the main switch Sm is turned off.  

Here, the power loss is influenced by the switching loss of the auxiliary diode Da(PDa-sw) 

and the conduction loss across switch Sm(PSm) and Da(PDa). 
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G. Mode 7(t6-t7): 

In this mode, the main switch Sm is turned off under ZVS condition by the help of the 

snubber capacitor Cs. The energy is stored in the capacitor Cs. This mode ends when Cs is 

fully charged.  

Since, the main switch is turned off under ZVS, the switching loss across Sm is zero and 

the entire loss is contributed by the conduction loss of Da(PDa) 
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H. Mode 8(t7-t8):  

Here, in this mode, the resonant inductor Lr starts discharging and the energy is 

transferred to the load through the output diode (Dout). This mode comes to an end when Lr is 

discharged completely. Because of the ZVS condition, Dout doesn’t experience any switching 

loss and the power loss is due to the conduction loss across Da and Dout. 
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I. Mode 9 (t8-t9):  

In this interval, all the switches are turned off and the entire current flows through the Dout 

to the load. Hence this mode ends when Sa is turned on.  

The power loss is contributed by the switching loss of Da(PDa-sw) and the conduction loss 

of Dout (PDout). 
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3.3  THEORY OF MAIN SWITCH AND AUXILIARY SWITCH 

The auxiliary switch operates with such a duty ratio that enables the main switch to 

operate with soft switching. If the auxiliary switch is turned on, the resonant loop of the 

resonant inductor (Lr) and resonant capacitor (Cr) is made. ZVS area is guaranteed by turning 

on the auxiliary switch. The PWM pulses have to be made with a delay between the main 

switch and the auxiliary switch. A phase-difference can be obtained by delaying the carrier 

waveform. Points at which the switches turn on have to be fixed in order to realize soft-

switching with resonance. The minimum delay time must satisfy the equation.  

rr

o

rin
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                 (3.18) 

During the delay time, the auxiliary switch is turned ON. From the volt-second balance for 

the main inductor, the voltage-conversion ratio is defined by: 
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                 (3.19) 

where, Daux is the auxiliary switch duty ratio and Dmain is the main switch duty ratio. 

3.4  INDUCTOR DESIGN FOR PRACTICAL IMPLEMENTATION 

The initiation of the design procedure starts with the determination of the input parameters 

for the design. Various parameters involved are the selection of topology, output power, 

switching frequency, DC output voltage, minimum input voltage, maximum input voltage, 

maximum temperature, efficiency of the inductor and efficiency of the pre-regulator [1]. We 

know, 

)/)(1( pregoutLtot PP 
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Cutotcore PPP  2/
                 (3.21) 

Loss per core weight and core loss are given by 

weightPP totI /                   (3.22) 
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The calculation of the critical value of inductor hasn’t been mentioned in details for brevity. 

However, we know the value of the input current. The energy storage requirement of the 

inductor is now calculated using the formulae 

25.0 peakinputcriticalILE 
                 (3.24) 

The number of turns required is given by the following expressions. 
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In the laboratory, the inductor was made by taking a core TDK 5523 PC40Z with 43 turns. 
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The designed boost converter along with the PV panel and a control tracker for MPPT 

algorithm is simulated using PSIM 64 bit version 9.0. Table 4.1 shows the values of all the 

parameters used in the simulation and design of the converter. The simulation is performed 

under a 30 kHz switching frequency and a rated power of 36 W. 

TABLE 4.1 : PARAMETERS USED IN SIMULATION 

 

Parameter Label Value 

Output Voltage Vout 45 V 

Rated Power Prated 36 W 

Main inductor L 5.6 mH 

Resonant Inductor Lr 10 uH 

Resonant Capacitor Cr 100 nF 

Snubber Capacitor Cs 20 nF 

Switching Frequency fsw 30 kHz 

Input Capacitor Cin 4.9 nF 

Ripple Factor R.F. 25 % 
 
 

The PV array has an operating voltage of 18 V. The inclusion of series resistance and 

ideality factor as unknown parameters for PV modeling aided in the smoothness of the output 

characteristics between MPP and open-circuit voltage and thus, coincides closely with the 

experimental data obtained. The experiment is performed at 540 W/m
2
 and at 37

o
C.  Table4.2 

shows the components used in the experimental set up of the converter. 

 

TABLE 4.2 : COMPONENTS USED IN THE PROTOTYPE 

 

Components Devices 

Main Switch IRF54CN 

Auxiliary Switch IRF54CN 

Main Inductor Wound-type 

Resonant Inductor Wound-type 

Output Diode 1N4007S 

Auxiliary Diode 1N4007S 
 

 

4.1 SIMULATION RESULTS 

Simulation results of the main switch voltage and current waveforms shown in Fig. 4.1(b) 

depicts the ZVS turn on and turn off. The turning on of the anti-parallel diode of the main 

switch and the slope of the voltage provided by the snubber capacitor are responsible for the 

same. 
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The auxiliary switch voltage and current waveforms have been shown in Fig.4.1(c). The 

resonance between the inductor and the capacitor and the reversing of the inductor current 

leads to the turn on of the switch by ZCS. The anti-parallel diode present is responsible for 

the ZVS turn off of the auxiliary capacitor. Perturb and Observe (P&O) Method has been 

applied to extract the MPP and the duty ratio is fed to the main and auxiliary switch of the 

boost converter. The current through the input inductor which was assumed to be constant, 

has a small amount of ripple present which has been accounted for. 

 

Fig. 4.1. Simulation waveforms : Gating Signals ,Voltage and Current across main switch ,Voltage and Current 

across auxiliary switch, Current through input inductor L ,Current through resonant inductor Lr, Voltage across 

resonant Capacitor and Output Voltage 
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4.2 EXPERIMENTAL VALIDATION 

The experimental setup for the soft-switching Boost Converter along with the PV panel 

and load and FPGA Kit for pulse generation is shown in Fig. 4.2. The experimental results of 

the converter design have been shown in Fig.4.3. The input and output voltages are shown in 

the Fig. 4.3(a) and 4.3(b) which shows a considerable boost to around 45 V at the output with 

an input of 18 V to it. The turning on of the main switch leads to the storage of energy in the 

main inductor Lm, which is transferred to the output when the switch is turned off. 

 

Fig. 4.2. Prototype of the soft switching boost converter 

The main switch ZVS Turn-On has been shown in the Fig. 4.3(c). The current becomes 

negative on account of its flow through the antiparallel diode during the turning on condition. 

This leads to a zero voltage across the switch and thus making ZVS possible across the main 

switch. It is seen that there is a reduction in the overlap between the current and the voltage 

waveforms thus leading to reduced switching losses. The switching loss is adjustable by 

adjusting the value of the snubber capacitor and it is so chosen so as to minimize the losses. 

The auxiliary switch ZCS Turn-On and ZVS Turn-Off has been shown in Fig. 4.3(d). The 

current has a nearly sinusoidal nature at the switching instant.  
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(b) 

 
(c) 

 
(d) 

Fig.4.3 (a) Input and Output voltages(Y-axis: 10V/div, X-axis (b) Gate pulses given to main switch and auxiliary 

switch (c) Voltage and Current across Main switch(Y-axis: voltage=15V/div, current=500mA/div) (d) Voltage 

and Current across Auxiliary Switch (Y-axis: voltage=15V/div, current=500mA/div) 

During turn off, the principle remains the same as the main switch as the ZVS condition is 

satisfied due to the anti-parallel diode. The main inductor current is shown in Fig. 4.3(e) 

The efficiency of the boost converter can be studied by the fact that, in any boost converter, 

the maximum loss is due to the switching and conduction loss across the switches and the 

diodes. Hence, here these losses are considered to have a comparative analysis between the 

hard switching and the soft switching boost converters. The maximum efficiency is witnessed 

at the same power output with efficiency of around 89% for conventional hard switching 

converter and around 94% for the soft switching converter which is illustrated in Fig. 4.4. 
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Fig. 4.4. Efficiency v/s  Percentage of Load Curves 
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5.1 CONCLUSIONS 

A soft switching boost converter using an auxiliary resonant circuit employing a single 

diode equivalent circuit of a PV panel has been presented in this report. A new approach to 

mathematical modeling of PV Module is incorporated for simplicity, ease to work and fast 

response time for simulation purpose. For extracting maximum power from the module, 

Perturb and Observe (P&O) control algorithm is implemented to track the Maximum Power 

Point (MPP). The simulation and the experimental results verify the soft switching of both the 

switches. A detailed analysis of the switching losses and conduction losses of the switches 

and the diodes has been accomplished.  A considerable difference has been found in the 

efficiency of the hard switching and the soft switching converter. An effective design of the 

inductors used in the soft switching boost converter has also been included. This soft 

switching technique can be used in telecom services where there is a necessity of low DC 

power with high DC bus voltage. Using this, it will not only result in better symbiotic 

working conditions and a new area of exploration: but the use of soft switching in extraction 

of the DC power will enhance the efficiency of the PV system implemented, thus makes the 

overall system cost effective. 
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APPENDIX 

A.1 MPP TRACKING USING PERTURB AND OBSERVE METHOD 

A PV panel requires a tracker to track the maximum power point (MPP) at all-time 

irrespective of the alterations in temperature and irradiation and the corresponding flow chart 

for implementing P&O method is shown in fig.4. A tracker consists of: a switch-mode boost 

converter to provide constant output voltage and a control with tracking capability to provide 

fixed input voltage to hold the array at maximum power point. Perturb and Observe (P&O) 

method periodically increments or decrements the panel voltage and compares the PV output 

power with that of the previous cycle. If the perturbation leads to an increase/decrease in 

module power, the subsequent perturbation occurs in the same/opposite direction. However, it 

has two parameters: the step size and the time between algorithm iteration. Hence, for faster 

tracking with accuracy, a trade-off is made between the two parameters. 

START

MEASURE 
V(k) AND I(k)

P(k)=V(k)*I(k)
∆P=P(k)-P(k-1)

∆P>0 V(k)-V(k-1)>0V(k)-V(k-1)<0

DECREASES 
ARRAY 

VOLTAGE

INCREASES 
ARRAY 

VOLTAGE

DECREASES 
ARRAY 

VOLTAGE

INCREASES 
ARRAY 

VOLTAGE

UPDATE
V(k-1)=V(k)
P(K-1)=P(k)

 

Fig.A.1. Flowchart for Perturb and Observe Method 
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A.2     LOSS CALCULATION AT DIFFERENT MODES 

Modes Conduction Losses (in mW) Switching Losses(in 

mW) 

Sa Sm Da Dout DSm DSa Da 

Mode 1 1.08   1.512    

Mode 2 5.39       

Mode 3 0.2246    0.54

6 

  

Mode 4 0.0163 1.97      

Mode 5  0.020    0.0204  

Mode 6  0.755     0.6790 

Mode 7   4.284     

Mode 8   3.024 4.032    

Mode 9    0.143   0.10125 

 

A.3 PARAMETERS OF THE PV ARRAY 

Parameters Value 

PMAX 36 W 

VMAX 17V 

IMAX 2.17A 

VOC 21.0V 

ISC 2.35A 
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