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Abstract 

This thesis diagnoses the damaged vibrating structural members of different materials using the 

parametric responses of the dynamic system. Almost all engineering structures designed for long 

life span are influenced by alteration in loading patterns. Changes in the loading patterns, loss of 

load carrying capacity of structures with time and impact of environment often lead to the 

structural damage. Therefore, early diagnosis of damage can avert the sudden failure of the 

structures by rendering the system to sound monitoring of the response generated. Damage 

diagnostic tool for condition monitoring of the structural systems appealed the scientists and 

researchers for more analysis.  The modal parameters of the vibrating structures play a crucial 

role in monitoring the damaged structures. In the present analysis, special attention has been 

focused for detecting the damages present in Al, composite and steel beam structures by 

comparing the characteristics of damaged and undamaged state of the structures. In the current 

research, damage detection of damaged cantilever and fixed-fixed beam is carried out using 

numerical, finite element analysis (FEA), fuzzy logic and neural network techniques. Numerical 

analysis has been performed on the cantilever beam & fixed-fixed beam with damage in the 

transverse direction to obtain the vibration parameters of the beam members utilizing the 

expression of strain energy release rate and stress intensity factor. The presence of damage in a 

structural member introduces local stiffness that affects its dynamic characteristics. The local 

stiffness matrices have been determined using the inverse of local dimensionless compliance 

matrix for finding out the deviations in the vibrating signatures of the damaged beam structures 

from that of the intact beams. Finite Element Analysis has been carried out to derive the vibration 

indices of the damaged structures using the overall stiffness matrix, total stiffness matrix, 

stiffness matrix of the intact beams. It is concluded from the conducted research that the 

performance of the damage diagnosis techniques depends on several factors for example, the 

material type, the number of sensors used for acquiring the dynamic response, position and 

severity of damages. Different artificial intelligent model based on fuzzy logic, neural network 

have been designed using the estimated vibration signatures for damage diagnosis in beam 

structures with higher precision and remarkably low calculating time.  
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In recent times, damage diagnosis in the vibrating beam structures challenges the scientists 

and researchers due to the usage of varieties of materials. The existence of damage or fault 

like crack, fracture, surface irregularities etc. in a beam structure for prolonged time enhances 

the chances the system failure which lead to causalities and loss of properties. In various 

engineering systems, vibration response of the structural members can be utilized as an 

effective tool for damage arbitration. The current chapter presents the various damage 

diagnosis methods that are being used over the time. The background and motivation in the 

field of analysis of dynamically vibrating damaged structures has been depicted in the first 

section. The second part of this chapter describes the aims and objective of the research. The 

last part of the current chapter gives a brief description of each chapter of the thesis for the 

current research. 

1.1 Motivation for Damage Diagnosis 
Engineering structures play a pivotal role in many areas like the bridges, construction sites, 

industries, towers etc. Long life span is the most important parameters required for these 

structures. The failure or irregular behavior of engineering structures may cause devastation 

in transportation system leading to loss of lives and property. Hence, structural integrity of 

the structural member is to be maintained by installing a efficient and reliable monitoring, so 

that proper remedial measures can be taken.  

Many techniques have been implemented in the past for damage diagnosis. Some of these 

methods are based on visual detection using some dye and other use sensors involving 

acoustic emission, magnetic field, eddy current, radiographs and thermal fields to identify 

local damage. The drawbacks of these methods are their inability to test the structure without 

going in to minute structural analysis which is very time consuming. Moreover, if damage is 

rooted away from the surface and deep within the structure, it may not be detectable by these 

localized methods. The changes in the modal parameters of the structural beam member are 

used by the researchers to characterize the damage using various reverse engineering 

Chapter 1
                                INTRODUCTION
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techniques like Artificial Intelligence (AI) based techniques for quicker and precise 

estimation.  

Motivated by the above reasons, this thesis aims at exploring the use of AI techniques such as 

fuzzy and neural network for damage diagnosis in engineering structures at an early stage by 

perceiving the vibration responses. 

1.2 Objectives of the thesis 

Various engineering fields like mechanical, civil, aerospace etc. by some way or other 

associated with the services of structural members. So to ensure the safe operation, damage of 

any kind is to be diagnosed properly so that any sudden failure of the system can be halted to 

introduce required measures. Therefore, early identification of damage is very much required 

to avoid the complete abortion of any system in a functioning mode. 

Different types of beam elements constitute the structures which are main supports of almost 

every engineering system. Therefore, it is obvious that the structures are subjected to 

fluctuation of loading i.e. static loading & dynamic loading. So the load carrying capacity of 

the structures gradually diminishes which results in the formation of damage in the member. 

Moreover, the environmental conditions are also having a huge impact on the structures. 

Hence life span of the structural element is drastically reduced. An analytical model can be 

developed utilizing the presence of damage which helps in the investigation of effect of the 

damage on the vibration characteristics of the system. An additional stiffness is introduced in 

the structural beam member due to the presence of damage, which can be utilized along with 

the existing boundary conditions to express the vibration chacteristics of the beam in terms of 

mathematical equation. The modal parameters such as the natural frequency, mode shape and 

damage characteristics such as the damage depth and damage position can be extracted from 

the characteristics equation. The present investigation aims to develop an intelligent diagnosis 

system of structures consisting of different materials like aluminium, steel and glass fiber 

reinforced composite beam using the deviation in modal parameters of the structural members 

due to the presence of damage.  
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For this prospect, cantilever beams & fixed-fixe beams of Al, steel and composite materials 

with uniform cross section have been examined, which act as a structural member in various 

engineering applications. The dynamic responses of the structural beam members have been 

evaluated in the undamaged state, which act as the basis for standardization. Thereafter, 

damages of various severities at different positions have been introduced and thus alterations 

in modal parameters have been identified for each state of damage. Consequently, a 

correlation has been established between the dynamic behavior and the existence of damage 

in the structures which helps in the development of different AI technique based model to 

conduct the structural health monitoring, varying the damage characteristics for different 

materials. The objective is to compare the results obtained from different methods for damage 

diagnosis.  

In the present analysis, extensive literature survey has been carried out related to the domain 

of damage diagnosis in engineering applications. From the previous analysis, it is observed 

that the results obtained by the researchers have not been effectively used to design tools for 

real applications such as damage diagnosis of different materials. In the current investigation, 

an attempt has been made to design and develop a tool using the dynamic behavior of 

damaged and undamaged beam structure using theoretical analysis, finite element analysis, 

experimental analysis and artificial intelligence techniques. 

The different stages for the present analysis are listed below: 

1. Theoretical analysis for the cantilever and fixed-fixed beam structures with damage have 

been performed to evaluate the modal parameters. 

2. Finite Element Analysis (FEA) has been carried out to measure the vibration responses of 

the damaged and undamaged cantilever beam and fixed-fixed beam with different damage 

characteristics. 

3. First three relative natural frequencies and average relative mode shape differences of the 

damaged structural beams are estimated by the observations obtained from the experimental 

set up.  

4. The vibration responses such as natural frequencies and mode shapes obtained from 

theoretical, finite element and experimental methodologies have been used to design the 
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models based on artificial intelligence techniques. The developed AI based models have 

made use of the first three relative natural frequencies and first three average relative mode 

shape differences as the input parameters and relative crack positions and relative damage 

depths as the outputs. 

The theoretical study has been materialized for a structural beam element with a damage to 

obtain the vibration characteristics by utilizing the expressions of strain energy release rate 

and stress intensity factors. The presence of damages produces the local stiffness at the 

localized damage position and lowers the stiffness of the structure. The stiffness matrix has 

been formulated to explore the impact of relative damage position on the dimensionless 

compliances of the structure varying the boundary conditions. The arbitrated vibration 

signatures from theoretical, finite element and experimental analysis of the beam member 

have been used to conceptualize and train the AI model (fuzzy, neural network). 

Conclusively, relative damage positions and relative damage depths are the outputs from the 

model. 

The results obtained from the various methodologies such as theoretical, finite element, 

experimental, fuzzy, neural network conceived in the current investigation have been 

compared and a close agreement has been found. Concrete conclusions have been drawn from 

the results of respective sections. The results are approved by experimentations performed for 

the various techniques mentioned above.  

1.3 Organization of the thesis 
 
The content of the thesis is organized as follows: 

The investigations carried out in the present research for damage identification in faulty 

structures are presented in following chapters. 

Chapter 1 depicts the effect of damage on the functionality execution of different engineering 

applications and also outlines the methodologies being adopted by the researchers to diagnose 

damages in different industrial applications involving the structural beam elements. The 

motivation to carry out the research along with the focus of the current analysis is also 

explained in this chapter. 
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Chapter 2 is the literature survey section representing the published work from the domain of 

damage identification using vibration signatures and AI techniques. This chapter also 

expresses the classification of techniques in the field of damage diagnosis and justifies the 

need of current analysis.  

Chapter 3 presents the theoretical model to estimate the vibration characteristics (natural 

frequencies, mode shapes) by using stress intensity factor, strain energy release rate and 

employing different boundary conditions. The presence of damage in the structure introduces 

flexibility at the localized damage position which in turn, brings down the natural frequencies 

and the change in the mode shapes. This concept has been applied in the numerical 

interpretation to detect the existence of damages in the structure beam members and also to 

estimate the damage positions and their intensities. 

Chapter 4 of this work develops the finite element model of the damaged structural beams to 

arbitrate the vibration responses, which in turn can be utilized to determine the presence of 

damage and damage characteristics. The responses from finite element analysis are arranged 

in contrast to the responses obtained from experimental method and numerical analysis for 

validation.  

Chapter 5 introduces the implementation of fuzzy inference system for damage identification 

in structural beams. In this section, the paths for developing the fuzzy models are illustrated. 

The triangular, Gaussian and trapezoidal membership functions based intelligent model with 

their detail architecture are briefly discussed. The comparison of fuzzy based results and 

experimental results is also presented. 

Chapter 6 presents a reverse engineering based artificial neural network technique for 

effective diagnosis of damage in a structure. The multi layer perceptron with the input and 

output parameters are depicted and narrated thoroughly. The results from artificial neural 

network are presented and discussed to demonstrate the implementation of the AI model. 

Chapter 7 presents the experimental procedure along with the instruments used for validating 

the results from methodologies being adopted in the present investigation for damage 
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identification. The test specimen fabrication steps are outlined. The results from the 

developed experimental set-up have been obtained and presented for discussion. 

Chapter 8 provides a comprehensive review of the results obtained from all the techniques 

adopted in the current research. 

Chapter 9 discusses the conclusions drawn from the research carried out on the current topic 

and gives the recommendations for scope of future work in the same domain. 
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This chapter presents a contemporary study of the vibration based damage identification in 

structural systems. The main objective is to study the developments made by researchers 

during the last few decades. Different issues like implementation of damage diagnosis 

methods, general methods of classification, and a review of a selected group of methods are 

discussed. Finally, the applications of artificial intelligence techniques for damage diagnosis 

are discussed from the early developments. 

2.1  Introduction 

The literature review section presents the analysis of the published work confined to the areas 

of structural health monitoring, damage detection algorithm, damage diagnostic 

methodologies and modal testing. The review begins with the description of different 

vibration analysis methods used for damage identification. Besides, vibration of damaged 

structures, fault identification methodologies to develop damage diagnostic tool using Finite 

Element Analysis (FEA) and wavelet technique are discussed. Then, the artificial intelligence 

techniques (fuzzy logic, neural network) based models for damage identification can be 

designed. The aim of the present investigation is to develop an artificial intelligent technique, 

which can be capable to predict the presence of damage irrespective of the material and 

dimension used for vibrating structures. The possible directions for research can be obtained 

from the analysis of the literature cited in this section.  

From the authentic works, wide variations are observed in damage identification of various 

systems. In spite of the fact that, there is a wide variation in development of fault diagnostic 

methodology, the upcoming section demonstrates the review of the literature relevant to 

damage detection and identification. 

Chapter 2 

LITERATURE REVIEW
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2.2 Methodologies for damage detection 

Researchers have zeroed in on many techniques for identification of fault in various stages of 

engineering structures applications. Dynamics based methods are found to be effectively used 

for health monitoring in irregular systems. The recent methods seasoned for fault diagnosis 

are presented below. 

Douka et al. [1] have presented a method for determining the location and crack depth in double 

cracked beam. For diagnosing the crack, variation in natural frequency and anti-resonance properties 

are used by them. Huh et al. [2] have used a methodology in which the rate of vibration energy 

determined from the accelerations of the beam structures to detect a local damage. This method is 

approved by using a uniform beam with an open crack both by Numerical and experiment method. 

Nahvi et al. [3] have used natural frequencies and mode shapes of the beam structure as input 

parameters for analytical and finite element method to identify the crack in cantilever beam. Darpe et 

al. [4] have analyzed the cracked rotor with a crack present at the center imposed with axial forces for 

it’s unbalanced response with the help of electro-dynamic exciter to differentiate between rotating and 

non rotating conditions. Hein et al. [5] have presented a new method for identification of delamination 

in homogeneous and composite beams. They have used Haar wavelets and neural networks to 

establish the mapping relationship between frequencies, Haar series expansion of fundamental mode 

shapes of vibrating beam and delamination status. They have revealed that the simulations show the 

proposed complex method can detect the location of delaminations and identify the delamination 

extent with high precision. Curry et al. [6] have suggested a fault detection and isolation methodology 

based on fixed threshold using a closed loop system with the help of sensors. They have noticed the 

fault and distinguished the failure for each sensor. Hoffman et al. [7] have employed a diagnostic 

technique based on neural network. As described in the paper, it is impossible to determine the degree 

of imbalance in a bearing system using single vibration feature and to overcome this problem they 

have used the neural network technique for processing of multiple features. For the purpose of fault 

detection of different bearing conditions they have employed different neural network technique and 

compared their performances. They have found that the developed algorithm can be suitably used for 

identifying the presence of defects. Salam et al. [8] have analyzed the lateral vibration of an Euler-

Bernoulli beam accompanied with a single edge open crack to compare the mode shapes of damaged 

and undamaged beam by a interpreted formula for the stress correction factor in terms of the damage 

characteristics. Sanza et al. [9] have developed a new method for health monitoring of rotating 

machinery by utilizing the capabilities of wavelet transform and auto associative neural network for 
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arbitrating the vibration responses. Numerical and experimental dynamic analysis is performed to test 

the effectiveness of the results obtained. Murigendrappa et al. [10] have diagnosed damaged pipes of 

aluminium & mild steel with water as fluid medium at different pressure utilizing the variations in 

natural frequencies.  

2.3 Analysis of different methodologies for damage detection  
In this section, the various techniques applied for damage detection in vibrating structures 

have been outlined. The different methods that have been proposed by various experimenters 

for damage identification are categorized into four sections such as: 

 

1. Classical method 

2. Finite Element Method  

3. AI method 

4. Miscellaneous methods. 

2.3.1  Damage detection using classical methods 

This section presents the review of energy based method, analytical methods, algorithms 

based on dynamic responses etc. used for arbitrating the damage location and its intensity in 

dynamically vibrating damaged structures. The works of various researchers connected to the 

above methodologies are discussed below. 

Chinchalkar [11] has extracted the first three natural frequencies of the cracked beam to 

identify the crack using a finite element by considering the different boundary conditions and 

crack depth. Loutridis et al. [12] have interpreted the dynamic behavior of the cracked 

structure theoretically and experimentally by a new technique based on instantaneous 

frequency and empirical mode decomposition. A compliance matrix is formulated by Tada et 

al. [13] in damaged structure for determining the crack location and crack depth. A modal 

analysis is conducted by Ravi et al. [14] on an aluminium sheet having micro cracks 

generated by compression loading and the deformation is tracked using the acoustic emission 

technique. Owolabi et al. [15] have investigated the position and severity of crack for Al 

fixed-fixed and simply supported beams by fixing the first three natural frequencies and mode 

shapes. Dado [16] has worked out a mathematical model to observe the crack position and 
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severity for beams with various end conditions such as pinned-pinned, clamped free, 

clamped-pin and clamped-clamped considering the beam to be Euler-Bernoulli beam and 

concluded that the results obtained are useful input parameters to codify the crack though the 

assumptions don’t have the convergence with the real time applications. Babu et al. [17] have 

proposed a technique using the amplitude deviation curve, which is a modification of the 

operational deflection shape for crack identification in rotors. Gounaris et al. [18] have 

established a functional relationship between the crack parameters and modal responses 

assuming development of an open crack and the results are approved by the Eigen mode 

comparison of damaged and undamaged beam. Patil et al. [19] have assumed the cracks as 

rotational spring for developing an algorithm for damage properties evaluation in a slender 

Euler-Bernoulli beam using variation in natural frequencies and transfer matrix method. 

Prasad et al. [20] have analyzed crack growth rate at different frequencies using the 

experimental setup to determine the effect of location in a vibrating cantilever beam. Al-said 

[21] has implemented the crack diagnostic method using the alteration in natural frequencies 

for a stepped cantilever beam carrying concentrated masses and subsequent results obtained 

are validated by finite element method. Wang et al. [22] have investigated the crack position 

and severity of a composite cantilever having a surface crack by establishing a dependency 

between frequencies of the vibrating cantilever beam and material properties.  

The finite element methods and wave propagation technique have been used for estimating 

the size and severity of damages and those are being discussed in the next section. 

2.3.2 Damage detection using finite element method  

Apart from the classical methods, the finite element methods are also implemented by various 

experimenters for damage detection in affected structures, those have been reviewed in this 

section.  

Ostachowicz et al. [23] have proposed a method assuming an open and closed crack with 

triangular disk finite elements. He has analyzed the forced vibrations of the beam, the effects 

of the crack locations and sizes on the vibration behavior and discussed a basis for crack 

identification. Krawczuk et al. [24] have proposed a finite spectral element method & wave 
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propagation analysis to determine the modal parameters of a cracked Timoshenko beam. 

Saavedra et al. [25] have developed a finite element stiffness matrix for the vibration analysis 

of the multi-beam structure with different boundary conditions. Kisa [26] has investigated to 

trace the cracks and nature of cracks in a composite structure made of graphite fiber 

reinforced polyamide cantilever. He has modeled the problem using finite element and the 

component mode synthesis methods. He has used fracture mechanics theory to derive 

stiffness matrix as the increase of the compliance matrix calculated with proper stress 

intensity factor and strain energy release rate expressions. He has studied the effects of 

location and depth of crack and the volume fraction and orientation of fiber on the natural 

frequencies and mode shapes of the beam with transverse no propagating open crack. 

Chandros et.al [27] have analyzed the dynamic characteristic of a breathing crack and have 

compared the effect of breathing crack and open crack on natural frequency of the damaged 

beam. They have considered the non-linearity associated with the breathing crack using one 

dimensional crack beam theory. They have observed that a fatigue crack behaves as breathing 

crack in absence of preload and will result in smaller drop in natural frequency. Qian et al. 

[28] have employed stress intensity factor to realize a finite element model for crack detection 

in a damaged beam and the results obtained are validated by the experimentation performed 

on complex structures. Panigrahi [29] have performed a three dimensional non-linear finite 

element analysis to evaluate the normal and shear stress along the overlap zone in a fiber 

reinforced composite material. Shekhar et al. [30] has determined the dynamic responses 

utilizing a model based on finite element analysis. 

Besides the classical methods, wave propagtaion and finite element methods, Artificial 

Intelligence Techniques are also being fitted by researchers for damage identification. 

2.3.3 Damage detection using AI technique 

In this section different types of Artificial Intelligence Techniques are discussed in the field 

of damage detection in damaged structures. The AI techniques again are categorized in two 

sub group. 
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a) Fuzzy Inference method 

b) Neural Network method 

 
2.3.3.1 Fuzzy inference method 
 
In this section, or damage identification technique supplemented with different fuzzy 

inference models are outlined. 

Chandrashekhar et al. [31] have proposed that, for the damage diagnosis the geometric and 

measurement uncertainty are the issues to be taken care of. They have addressed the 

uncertainty associated with the fuzzy logic system for structural damage detection utilizing 

the results obtained from Monte Carlo simulation involving the study of changes in the 

damage indicator due to uncertainty in the geometric properties of the beam. Boutros et al. 

[32] have identified the transient and gradual abnormalities using fuzzy logic approach with 

the help of four condition monitoring indicators. They have compared the fuzzy based 

technique in two different applications with satisfactory validation. Miguel et al. [33] have 

developed a decision making segment based on fuzzy logic the damage diagnosis 

applications. The input and output parameters of an isolation system are successfully utilized 

in laboratory equipments to maintain the uncertainty level with in the acceptable range. Parhi 

[34] has developed a fuzzy inference based guiding mechanism for multiple robots working 

in obstacles hindered environment. They have been designed to navigate in an environment 

without hitting any obstacles along with other robots. Fox [35] has analyzed the role of fuzzy 

logic in medical diagnosis and reveals the presence of various concerns regarding the 

information-processing techniques in the development of medical computing. Dash & Parhi 

[36] have used the fuzzy logic based techniques to detect the cracks in a cantilever beam of 

uniform cross section. They have utilized the dynamic characteristics such as change in 

natural frequencies and mode shapes as input to the fuzzy model to predict the crack position 

and severity, which is subsequently validated by finite element and experimental methods. 

Angelov et al. [37] have used the developed fuzzy system for image classification in on line 

mode utilizing the approaches cited for improving the realization of on line fuzzy classifier. 

Zimmermann [38] has obtained the comparatively effective solution for linear vector 
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maximum problem through fuzzy linear programming approach for solving linear vector 

maximum problem. Sugumaran et al. [39] have proposed a decision tree of a fuzzy classifier 

for selecting best few feature that will differentiate the fault condition of the bearing from 

given trained samples. The vibration signal from a piezoelectric transducer is captured for 

different types of fault condition of bearing and is used to build the fuzzy rules. The results 

obtained from the fuzzy classifier are encouraging when compared with that of the 

experimental analysis. Kim et al. [40] have come up with a computer based damage diagnosis 

system for concrete structures using Fuzzy set theory. They have applied the enhanced 

technique to diagnose the damage using the damage attributes as building blocks to model the 

fuzzy inference system and the results obtained are very encouraging when compared with 

the standard ones. Mohanta et al. [41] have done the justice to the maintenance scheduling of 

a captive power plant with the help of a fuzzy Markov model, taking the various parameters 

affecting the failure repair cycle in to account. Parhi [42] has developed a fuzzy inference 

based navigational control system for multiple robots working in a clumsy environment. They 

have been designed to navigate in an environment without hitting any obstacles along with 

other robots. 

2.3.3.2 Neural network method  

In this section, the important role played by Artificial Neural Networks (ANN) for damage 

characterization has been described.  

Eski et al. [43] have proposed damage detection technique for an experimental industrial 

welding robot via neural network modeling, for which measurement parameters are extracted 

from the Joint accelerations of robot. They have analyzed the welding robot having six degree 

of freedom to note the related values and accelerations. The results confirm the robot stability 

of RBNN to interpret the acceleration of manipulator joints in a prescribed trajectory. Parhi & 

Dash [44] have analyzed the cantilever beam with multiple crack for it’s vibrational 

characteristics, which in turn is being utilized to train the neural network controller 

complemented with back propagation technique. Paviglianiti et al. [45] have developed a 

method for detecting and isolating sensor faults in industrial robot manipulators. They have 

adopted a procedure to separate the disturbance effect from the effect of the fault generated in 
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the system. The dynamics of the proposed methodology has been refined by using radial basis 

functions neural network. Mehrjoo et al. [46] have presented a damage identification inverse 

algorithm to investigate the damage severities of joints in truss bridge structure using back 

propagation neural network method. Saravanan et al. [47] have implemented the fault 

diagnosis in bevel gear box with the effcetiveness of an artificial neural network, wave let and 

proximal support vector machine. Wu et al. [48] have proposed a damage diagnosis technique 

for internal combustion engine using discrete wavelet transform (DWT) and neural network. 

The DWT technique has been amalgamated with the selective feature of energy spectrum for 

the development of the purposed fault detection algorithm. Oberholster et al. [49] have come 

up with a technique for online structure health monitoring of blades with axial flow utilizing 

neural network. The vibration responses are extracted from the experimental test structures 

for the modeling of neural network by the implementation of frequency response function and 

finite element models. They are assured regarding the online damage classification using 

sensor for the test structures by their proposed technique. Agosto et al. [50] have coupled the 

neural network method with a combination of vibration and thermal damage detection 

signatures to develop a damage defection tool, which they have implemented on sandwich 

composite for the purpose of damage detection. Ghate et al. [51] have developed a multi layer 

perceptron neural network based classifier for damage detection in induction motors which is 

inexpensive, reliable by engaging the available information such as stator current. They have 

used simple statistical parameters as input feature and principal component analysis has been 

used for reduction of input dimensionality. They have also certified their methodology to 

noise based technique. Das & Parhi [52] have presented an artificial neural network (ANN) 

technique to predict crack location and crack depth in a cracked cantilever beam. They have used first 

three relative natural frequencies and relative mode shapes as input parameters to the ANN and 

obtained relative crack location and crack depth as output parameters. They have obtained local 

stiffness using strain energy release rate at the location of the crack. Parhi & Chaudhury [53] have 

presented a paper using the concept of fuzzy logic and artificial neural network (ANN) for damage 

diagnosis of the cracked cantilever beam. They have used the local flexibility introduced at the crack 

location as parameter to detect the presence of crack with its location and size. The analysis is based 

on using hybrid membership functions (triangular, trapezoidal, Gaussian) as input to fuzzy controller 

and trapezoidal membership functions as output. 
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2.3.4 Miscellaneous techniques used for Damage detection 

Besides all techniques reviewed above, some miscellaneous methods and tools are also very 

important in identifying the damage with refined accuracy and some of them are briefly 

discussed in this section. 

Gentil and Messina [54] have investigated the usefulness of continuous wavelet transform (CWT) 

technique to detect the crack in beam structure by minimizing measurement data and baseline 

information of the structure. They have used the intrinsic capability of the wavelet for translating the 

data into the CWT and the redundancy of the data of the CWT in the functional space is able to locate 

the cracks even in the presence of noisy data. Rao et al. [55] have presented a method for crack 

identification in a cracked cantilever beam by the vibration signatures using continuous 

wavelet transform technique. The results obtained from this method on comparison with the 

analytical and experimental methods give satisfactory remarks. Kim et al. [56] have proposed 

a methodology for condition-based maintenance scheme in industrial machines by correctly 

measuring the remaining life of the machine component utilizing the support vector machine 

tool. The results obtained have been very satisfying and can be used as an important tool for 

prediction of remaining life of machineries. Zheng et al. [57] have presented a tool for 

dynamic stability analysis of damaged hollow beams. According to him each damage is 

attached with a local flexibility coefficient which is a function of intensity of damage. He has 

used least squared method to formulate the shallow cracks and deep cracks. In this work, he 

has adapted Hamilton’s principle to formulate the governing equation by employing the 

flexibility coefficient of the cracks which serves as that of the rotational spring. Quek et al. 

[58] have analyzed the sensitivity of wavelet technique in the identification of cracks in beam 

structures considering the effects of different crack properties, boundary conditions, and 

wavelet functions. From the analysis, they have concluded that the wavelet transform is a 

useful tool in identification of cracks in beam structures. Cao et al. [59] have developed a 

genuine Laplacian technique to form an enhanced damage identification algorithm. They 

have noted the modal curvature to develop the diagnostic technique. The results from the 

proposed Laplacian scheme have been compared with experimental results to only have 

encouraging remarks. Karagac et al. [60] have investigated the effect of crack ratios and crack 

location on the fundamental frequency of a cantilever slender beam with an edge crack subjected to 
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free vibration and lateral buckling. They have established that the presence of cracks reduce the 

fundamental frequency and buckling load. Rus et al. [61] have developed a methodology based 

on hyper singular shape sensitivity boundary integral equation for solution of the inverse 

problem for crack identification. The accuracy and convergence of the sensitivity for the 

proposed method has been verified with the simulation and experimentation. Friswell [62] 

has described the use of inverse method in the detection of damage location and size by using 

vibration responses and identified the abnormal parameters associated with the model. 

Moreover, he has pointed out a number of concerns involved in this method for health 

monitoring, including modeling error, environmental efforts, damage localization and 

regularization. Fagerholt et al. [63] have analyzed the fracture behavior of a cast aluminium 

alloy by making use of classical flow theory for modeling the fracture. They have also taken 

care of Digital Image Correlation (DIC) to obtain information of the displacement and strain 

field in the test specimen. The results from the numerical analysis are found to be in very 

good agreement with the experimental data. An & Sohn [64] have proposed a damage 

identification technique utilizing the impedance and guided wave signals obtained from 

piezoelectric transducers mounted on surface. The proposed technique is very effective on 

high temperature condition. Fledman [65] has presented the application of Hilbert transform 

to non-stationary and nonlinear vibration system by conceptualizing the actual mechanical 

signals and utilizes the Hilbert transform for diagnosis of mechanical systems. 

2.4 Concluding remarks from literature review 

The concluding remarks drawn from the above literature review are actually showing the 

direction for the concerned research conducted. Though, analytical methods and artificial 

intelligence (AI) techniques are already in use by various researchers, but the concentration is 

focused on same material without varying the damage characteristics. Therefore, analyzing 

the dynamic characteristics of different materials with variations in damage characteristics in 

the same platform is really interesting, which is explored in this research work.  

In the current research, a systematic effort has been made to develop AI based intelligent 

system for structural health monitoring of beam model using fuzzy inference, neural network 



   

17 

 

techniques. The dynamic parameters required to design and train the AI model have been 

obtained by using the theoretical, finite element and experimental analysis of the beam 

structure. 
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Presence of damage hinders the optimum performance of structural beam assembly or 

constituents of machinery. Presently, most of the failures encountered by various mechanical 

structures are due to material fatigue which leads to the development of different forms of 

damage like crack, fracture or any other irregularities. Therefore damage detection and 

localization is the main topic of discussion for various researchers across the globe. The 

dynamic characteristics such as natural frequencies and mode shapes due to vibration of 

whole structure are affected due to the presence of a crack as the stiffness of that structural 

element is altered i.e. there is a reduction in natural frequencies, an increase in modal 

damping.  

3.1 Introduction 
In the recent times, the modal parameters of damaged structure have been investigated 

thoroughly by different experimenters. The responses of vibrating members are found to alter 

due to presence of damage in the structure and the extent of variation is a function of damage 

intensity and it’s position. Engineers and scientists have pronounced the effect of damage on 

the natural frequencies and mode shapes of dynamically vibrating structure, utilizing which in 

turn can be efficiently utilized for developing crack identification algorithms can be 

actualized. This chapter puts forth a systematic approach to evolve a theoretical model to 

estimate the effect of damage on the dynamic characteristics of the cantilever beam & fixed-

fixed beam structure. The dimensionless compliance matrices and subsequently the local 

stiffness matrices can be developed by making use of the Stress intensity factor and strain 

energy release rate from linear fracture mechanics theory. Moreover, the stiffness matrix has 

been utilized to assess the deviation in the dynamic response of the damaged beams in 

contrast to that of the undamaged beam. In the theoretical interpretation, different boundary 

Chapter 3 

ASSESSMENT OF MODAL PARAMETERS OF BEAM 
STRUCTURE WITH DAMAGE IN TRANSEVERSE DIRECTION 
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conditions have been engaged to evaluate the natural frequencies and mode shapes for the 

cantilever and fixed-fixed beam structure with various damage depths and damage positions. 

The dynamic responses obtained from the theoretical modeling have been validated by 

comparing the results with that of the experimental analysis. 

3.2 Vibration attributes of damaged beam structures  
3.2.1 Theoretical interpretation 

In this section, theoretical modeling of cantilever beam and fixed-fixed beam is realized to 

estimate the vibration characteristics such as natural frequencies and mode shapes of the 

damaged structures with different relative damage positions and relative damage severities 

presents the approach adopted to build the theoretical model for measuring the modal and 

undamaged beam structure. During the interpretation of the theoretical outcomes, significant 

divergence is noticed for the first three mode shapes in the localized damage position, which 

can further be certified with the results obtained from the experimental analysis.  

 
3.2.1.1   Evaluation of local flexibility of the damaged beam under axial force and bending  

Fig. 3.1(a) and 3.1(b) illustrate cantilever & fixed-fixed beam, subjected to axial load (P1) and 

bending moment (P2), which effectuate combining effect in terms of longitudinal and transverse 

motion of the beam respectively. The beams contain damage in transverse direction of depth ‘a1’ 

having width ‘B’ and thickness ‘W’. The existence of damage in the beam structure modifies the 

localized flexibility square matrix of two dimensions.   

At the damaged portion, strain energy release rate can be explained as [13]; 
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The Kl1, Kl2 are Stress intensity factors for 1st mode of vibration for load P1 and P2 

respectively. The values of stress intensity factors from the referred article [13] are;  
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According to Castigliano’s theorem (Taking the assumption, strain energy due to the damage 

as Ut) the extra extension along the force Pi  is;  

(3.3)

(3.2)

Fig. 3.1 (a) Schematic diagram of cantilever beam 

Fig. 3.1 (b) Schematic diagram of fixed-fixed beam 
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The inversion of compliance matrix will lead to the formation of local stiffness matrix and 

can be written as; 
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The stiffness matrix for the damage position can be obtained as follows: 
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3.2.1.2  Vibration analysis of damaged beam structures 

A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a damage of severity ‘a1’ at a 

distance ‘L1’ from the fixed end is considered. Taking u1(x,t) and u2(x,t) as the amplitudes of 

longitudinal vibration for the sections before and after the damage and y1(x,t), y2(x,t) are the 

amplitudes of bending vibration for the same sections (Fig. 3.2.3). 

 

 

 

 

 

(3.11)

(3.12)

Fig. 3.2 Cantilever beam Model  
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The normal function for the system can be defined as 

)xKsin(A)xK(cosA)x(u u2u11 +=        (3.2.16a) 

)xKsin(A)xK(cosA)x(u u4u32 +=       (3.2.16b) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y8y7y6y51 +++=   (3.2.16c) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y12y11y10y92 +++=   (3.2.16d) 

Where
L
xx = ,

L
uu = ,

L
yy = , 

L
L1=β  

u
u C

LK ω
= ,

2/1

u
EC ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ

= ,
2/1

y

2

y C
LK ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ω
= ,

2/1

y
EIC ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ

= , μ = Aρ 

Ai, (i=1, 12) Constants are to be determined, from boundary conditions. The boundary 

conditions of the cantilever beam in consideration are: 

0)0(u1 = ; 3.2.17(a) 0)0(1 =y ; 3.2.17(b) 0)0(1 =′y ;  3.2.17(c) 0)1(u2 =′ ;  3.2.17(d) 

0)1("y 2 = ; 3.2.17(e) 0)1(y2 =′′′ ;  3.2.17(f) 

At the damaged section: 

)('u)('u 21 β=β ; 3.2.18(a) )(y)(y 21 β=β ; 3.2.18(b) )(y)(y 21 β′′=β′′ ;3.2.18(c)  

)(y)(y 21 β′′′=β′′′  3.2.18(d)       

Also at the damaged section (due to the discontinuity of axial deformation to the left and right 

of the damage), we have: 
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⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(duAE 1112

12111211
11

                       
(3.2.19) 

Multiplying both sides of the above equation by
1211KLK

AE

 
we get; 

))(y)(y(M))(u)(u(M)(uMM 12112221 β′−β′+β−β=β′                     (3.2.20) 

Similarly at the damaged section (due to the discontinuity of slope to the left and right of the 

crack)   

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(ydEI 1112

221112212
11

2

                   
(3.2.21) 

Multiplying both sides of the above equation by
2122

2 KKL
EI

 
we get, 

))(y)(y(M))(u)(u(M)(yMM 124123143 β′−β′+β−β=β′′                   (3.2.22)

  

Where, 
11

1 LK
AEM = , 

12
2 K

AEM = , 
22

3 LK
EIM = , 

21
24 KL
EIM =  

The normal functions, Eq. {3.2.16} along with the boundary conditions as mentioned above, 

yield the characteristic equation of the system as: 

0Q =                   (3.2.23) 
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Where Q is a 12x12 matrix and is expressed as 

1 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 G3 G4 -G7 -G8 0 0 0 0 

0 0 0 0 G4 G3 G8 -G7 0 0 0 0 

G1 G2 -G5 -G6 -G1 -G2 G5 G6 0 0 0 0 

G2 G1 G6 -G5 -G2 -G1 -G6 G5 0 0 0 0 

G1 G2 G5 G6 -G1 -G2 -G5 -G6 0 0 0 0 

S1 S2 S3 S4 -G2 -G1 G6 -G5 S5 S6 S7 S8 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 -T8 T7 

0 0 0 0 0 0 0 0 -T6 T5 T6 -T5 

S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 -T5 -T6 

Where G1= Cosh ( yK α ), G2=Sinh ( yK α ), G3= Cosh ( yK ), G4=Sinh ( yK ), G5=Cos ( yK α ),  

G6=Sin ( yK α ), G7=Cosh ( yK ), G8=Sin ( yK ),  

T5=Cos ( uK α ), T6=Sin ( uK α ), T7=Cos ( uK ), T8=Sin ( uK ) 

M12=
M1
M2

, M34= 3

4

M

M
 

S1=G2 + M3 yK G1, S2= G1 + M3 yK G2, S3= െG6 െ M3 yK G5, S4= G5െ M3 yK G6, S5 = 34M

Ky
, 

S6= 34M

Ky
T6, S7= 34-M

Ky
T5, S8= 34-M

Ky
T6, S9= M12 yK G2 

S10=M12 yK G1, S11=െM12 yK G6, S12= M12 yK G5 

Q =
(3.2.24) 
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S13= െM12 yK G2, S14=െM12 yK G1, 

S15= M12 yK G6, S16= െM12 yK G5, S17 = T5 –M1 uK T6, S18= T6 ൅ M1 uK  T5 

This determinant is a function of natural circular frequency (ωn), the relative position of the 

damage (L1/L) and the local stiffness matrix (K) which in turn is a function of the relative 

damage severity (a1/W). Similarly, local stiffness matrix for fixed-fixed beam can be derived. 

3.2.2  Numerical interpretation 

The cantilever and fixed-fixed beams of Al, Steel and Glass fiber reinforced Composite with 

and without damage have been engaged for numerical analysis, to estimate the relative 

natural frequencies and relative amplitude of vibration for different damage positions and 

damage severities. The dimensions of all beams is considered as 1000mm x 50mm x 8mm 

with different damage severities of 3mm, 4mm and 5mm at different positions i.e. middle of 

the beam, one fourth and three fourth of the total length of the beam from the fixed end. 

Mechanical properties (Young’s modulus, Poisson’s ratio, Density) of Al & steel are 

considered as 70 Gpa, 0.35, 2700 kg/m3 and 200 Gpa, 0.26, 7850 kg/m3 respectively. 

Young’s modulii (along longitudinal and transverse direction) of composite beam are found 

to be (from tensile & flexural test) 9 Gpa and 4.83 Gpa respectively. Poisson’s ratio (along 

longitudinal ‘Major’ and transverse direction ‘Minor’) of composite beam are found to be 

0.41 & 0.22 respectively. The density of the composite beam material is found to be 1950 

kg/m3.   

3.2.2.1 Results of numerical interpretation 

The theoretical analysis has been engaged to obtain the mode shapes for the first three modes 

of the damaged aluminum, composite and steel cantilever beam & fixed-fixed beam models 

with different damage positions and damage severities using the equation (3.2.24).  

3.3  Analysis of experimental results 
The cantilever beam and fixed-fixed beams of Al, glass fiber reinforced composite and steel 

embedded with and without damage with dimension (1000mm x 50mm x 8mm) have been 
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considered to conduct the experiments for arbitrating the relative natural frequency and 

relative amplitude of vibration. A number of experiments have been performed on the test 

specimens with different values of damage positions and damage severities to determine the 

first three mode shapes and natural frequencies. 

 

 

 

 

 

 

 

 

 

 
Fig. 3.3   Schematic block diagram of (a) Cantilever (b) Fixed-fixed beam experimental set ups 

(a) 

(b) 
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3.3.1  Experimental results 

The relative natural frequencies & relative mode shape differences obtained from 

experimentation (Fig. 3.3) for three relative damage positions (0.25, 0.50 and 0.75) and three 

relative damage severities (0.375, 0.500 and 0.625) have been compared with that of the 

numerical analysis of both damaged and undamaged beam structures. The comparisons are 

presented in Table 3.1 to Table 3.6. 

 3.3.2. Comparison between the results of numerical and experimental analyses 

The relative damage positions and relative damage severities of Al, composite & steel cantilever 

and fixed-fixed beams corresponding to nine sets of first three natural frequencies and first three 

mode shape differences from numerical and experimental analysis are presented in Table 3.1 to 

Table 3.6. 

The relative natural frequency and relative mode shape difference used in the above analysis 

can be defined as follows. 
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Table 3.2 Comparison of modal parameters and damage characteristics of Al 
fixed-fixed beam obtained from numerical and experimental analysis 

Table 3.1 Comparison of modal parameters and damage characteristics of Al 
cantilever beam obtained from numerical and experimental analysis 
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Table 3.3 Comparison of modal parameters and damage 
characteristics composite cantilever beam obtained from numerical 
and experimental analysis 

Table 3.4 Comparison of modal parameters and damage characteristics 
composite fixed-fixed beam obtained from numerical and experimental 
analysis 
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Table 3.5 Comparison of modal parameters and damage characteristics 
of Steel cantilever beam obtained from numerical and experimental 
analysis 

Table 3.6 Comparison of modal parameters and damage characteristics 
of Steel fixed-fixed beam obtained from numerical and experimental 
analysis 
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The first three columns of the Table 3.1 to Table 3.6 represent first three relative natural 

frequencies, where as the fourth, fifth and sixth number columns present the average relative 

mode shape difference for first three modes of vibration. The columns number seven & eight 

present the relative damage severity and relative damage position respectively obtained from 

numerical analysis. The columns number nine & ten present the relative damage severity and 

relative damage position respectively obtained from experimental analysis. 

3.4  Summary 
The conclusions drawn from the above analysis are described in this section. Due to the presence 

of damage the modal parameters of the damaged beams such as natural frequencies and mode 

shapes exhibit a significant divergence near the damage positions as compared to undamaged 

beam, which can be witnessed in the magnified views of the mode shapes. The vibration 

characteristics obtained from the numerical analysis have been validated using the results from 

experimental analysis and are found to be in very good agreement.  The deviation in the dynamic 

response can be used as the basis for fault detection in damaged structural members and the 

measured vibration parameters can also be used for design and development of reverse 

engineering methodologies for damage diagnosis. The proposed method can be effectively used 

to design artificial intelligent techniques based models for online structural health monitoring.  
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Damage in the transverse mode can lead to the complete failure of structural members 

subjected to vibration. Vibration based techniques are found wide application in the damage 

detection of structures as traditional methods like inspection with naked eye and non-

destructive techniques such as x-ray, ultrasonic test etc are not useful for periodic inspection. 

This technique can be effectively used to identify the damage severity and damage position 

utilizing the modal characteristics of the damaged beam structure.  The presence of damage 

introduces an additional flexibility at the localized damage position of the structure which in 

turn, alters the natural frequencies and the mode shapes. Therefore, damage can be diagnosed 

by utilizing the alteration in vibration responses. This chapter introduces finite element based 

methodology for identification of damage existing in structural systems. The results from the 

finite element analysis have been compared with that of the numerical analysis and 

experimental analysis. The comparison results are very encouraging. 

4.1 Introduction 
Damage identification in the structural members in many engineering applications is 

inevitable, considering the fact that almost all engineering system are subjected to various 

fluctuating loading conditions. The vibration parameters of the damaged structures can be 

effectively utilized for evaluating the damage characteristics present in the beam members. 

The realization of FEA technique is found to be very satisfying when compared with that of 

the theoretical analysis.  

Chapter 4 

FINITE ELEMENT BASED DAMAGE IDENTIFICATION 
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In this present analysis for damage identification in structural beam members, finite element 

based model is adopted to characterize the damage with respect to it’s severity and position. 

The dynamic behavior of the structure is altered with the presence of damage. The results 

obtained from finite element analysis of the damaged and undamaged structural beam 

members of Aluminium, composite and steel are validated with the theoretical and 

experimental results.  

4.2 Finite element analysis 
Finite element analysis (FEA) is a numerical method for solving a differential or integral 

equation. It has been applied to a number of physical problems, where the governing 

differential equations are available. The method essentially consists of assuming the 

piecewise continuous function for the solution and obtaining the parameters of the functions 

in a manner that reduces the error in the solution. Due to the systematic and useful modeling 

of the complex shapes, FEA finds wide applications in many technical applications. Different 

vibrating structures can be analyzed by employing the suitable boundary conditions. 

Commercial finite element packages are available to take care of the various problems 

occurred in many engineering applications. FEA is realized, first by dividing the structure 

into a number of small parts which are known as finite elements and the procedure adopted to 

attain these small elements is known as discretization.  Each element of the structure is 

generally associated with an equation of motion and that can be easily approximated. The 

each element has nodes as end points. The nodes are connecting point between the elements. 

The finite elements and nodes as together are known as finite element mesh or finite element 

grid. Subsequently, the equation of motion for each finite element is formulated and solved. 

The solution for each finite element brought together to attain the global mass and stiffness 

matrix describing the dynamic response of the whole structure. The displacement associated 

with the solution explores the motion of the nodes of the finite element mesh. This global 

mass and stiffness matrix represent the lumped parameter approximation of the structure and 

can be analyzed to obtain natural frequencies and mode shapes of damaged vibrating 

structures. 
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4.2.1   Analysis of damaged beam structures using finite element analysis (FEA) 

In the current section, FEA is used for vibration analysis of a cantilever damaged beam (Fig. 

4.1). The relationship between the displacement and the forces can be expressed as; 

          

 
 
 
Where overall flexibility matrix Covl  can be expressed as; 

  

The displacement vector in equation (4.1) is due to the damage. 

                         

 

 

The forces acting on the beam element for finite element analysis are shown in Fig. 4.1. 

Where,  

R11: Deflection in direction 1 due to load in direction 1 
R12= R21: Deflection in direction 1 due to load in direction 2  
R22: Deflection in direction 2 due to load in direction 2. 

Under this system, the flexibility matrix Cintact of the intact beam element can be expressed as; 

          

Where,                       

             

The displacement vector in equation (4.2) is for the intact beam. 

The total flexibility matrix Ctot of the damaged beam element can now be obtained by  

Covl = 

R11 -R12 

-R21 R22 

(4.2) Cintact 
uj – ui 

θj – θi 
=

Uj 

Øj 

Cintact = 
Le/EA       0

  0     Le/EI

(4.1) Covl 
uj – ui 

θj – θi 

Uj 

Øj 
=

Fig. 4.1 Damaged beam element subjected to axial and bending forces. 

Le 

Lc 

θj (Øj) 

ui (Ui) 

a1

uj (Uj) 

θi (Øi) 
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Through the equilibrium conditions, the stiffness matrix Kc of a damaged beam element can 

be obtained as [30]  

Kc=DCtot                    (4.4) 

Where D is the transformation matrix and expressed as; 

      

 

 

By solving the stiffness matrix Kc, the natural frequencies and mode shapes of the damaged 

cantilever beam can be obtained. Similarly, for fixed-fixed beam the stiffness matrix and 

subsequently the natural frequencies and mode shapes can be obtained. This mathematical 

approach has been conceived by ANSYS commercial package to estimate the natural 

frequencies and mode shapes of beam structures. In the current analysis, ANSYS (Version 

10) has been used to determine the vibration responses of damaged and undamaged cantilever 

and fixed-fixed of different materials such as Al, composite and steel. The FEA model of the 

meshed composite cantilever & fixed-fixed beam and the ANSYS generated beam models of 

first three modes of vibration are shown in the fig.A.1 to fig.A.12. .The results of the finite 

element analysis for the first three modes of the damaged beam are compared with that of the 

numerical analysis and experimental analysis of the damaged beam and are presented in 

Table 4.1 to Table 4.6. 

 

4.3  Results and discussion of finite element analysis 
 
This section presents an in depth analysis of the results obtained from finite element analysis 

and briefly discusses the outcome from the proposed methodologies. 

It is observed that, the presence of damage in the cantilever beam model have noticeable 

effect on the vibration characteristics of the beam. A beam element with a crack subjected to 

axial and bending forces for Finite Element Analysis has been presented in Figure 4.1. The 

displacement vector and force vector have been applied to calculate the overall matrix. The 

total flexibility matrix that is produced due to the presence of cracks on the cantilever beam 

-1 DT 

D = 

-1 0 
 0 -1 
 1  0 
 0  1 

Ctot   =  Cintact + Covl = 
-R12Le/EA+ R11

-R21 Le/EI+ R22

(4.3) 
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has been derived, which is subsequently used to formulate the stiffness matrix for the multi 

cracked beam. Finally, the formulated matrices are used to calculate the first three natural 

frequencies and first three mode shapes of the cantilever beam structure. These vibration 

parameters obtained from the finite element analysis have been used to estimate the crack 

characteristics present on the structural member. The results from the FEA have been 

validated using the results from experimental and theoretical analysis for multiple crack 

identification. The results obtained from Finite Element Analysis are presented in fig.A.1 to 

fig.A.12. Table 4.1 to Table 4.6 presents relative damage positions and relative damage 

severities of Al, composite and steel cantilever & fixed-fixed beam obtained from FEA, 

numerical analysis and experimental analysis corresponds to nine set of relative deviation of 

first three natural frequencies and first three mode shape differences. The results are found to 

be well in agreement showing the effectiveness of the developed FEA methodology. 
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Table 4.1 Comparison of modal parameters and damage characteristics of Al 
cantilever beam obtained from FEA, numerical and experimental analysis 

Table 4.2 Comparison of modal parameters and damage characteristics of Al fixed-
fixed beam obtained from FEA, numerical and experimental analysis 
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Table 4.3 Comparison of modal parameters and damage characteristics of 
composite cantilever beam obtained from FEA, numerical and experimental 
analysis 

Table 4.4 Comparison of modal parameters and damage characteristics of 
composite fixed-fixed beam obtained from FEA, numerical and experimental 
analysis 
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Table 4.5 Comparison of modal parameters and damage characteristics of steel 
cantilever beam obtained from FEA, numerical and experimental analysis 

Table 4.6 Comparison of modal parameters and damage characteristics of steel 
fixed-fixed beam obtained from FEA, numerical and experimental analysis 
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4.4  Summary 
In the present study, an effective and compatible method for damage detection for structural 

beam members has been presented. From the diagnosis of the vibration responses, it is 

observed that there is deviation of mode shapes and natural frequencies for the damaged 

beam in contrast to the undamaged beam. The vibration responses i.e. the natural frequencies 

and mode shapes obtained from the FE analysis are found to be in good agreement with 

theoretical and experimental analysis. The proposed method can be utilized to model any 

practical engineering structure and on-line condition monitoring of damaged structures. 
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Most of the structural failures encountered are caused by material fatigue and presence of 

damages in structures. Therefore, damages of any form are to be diagnosed as earliest as 

possible to maintain the integrity of the structures. In spite of the existence so many 

traditional methods, but presence of any damage can’t be ensured without diagnosing the 

entire structure. In the current section, a fuzzy logic based technique has been proposed for 

structural damage identification. The proposed methodology utilizes the modal characteristics 

of the beam structure using reverse engineering techniques and anticipates the position and 

severities of the damage present in the system. 

5.1 Introduction 
By definition, fuzzy logic (FL) is a multi valued logic, which allows intermediate values to be 

defined between linguistic expressions like yes/no, high/low, true/false. In the last few 

decades, researchers have used the FL methodology for applications such as feature 

extraction, classification and detection of geometrical features in objects etc. Fuzzy system 

has the capability to imitate the human behavior by following the different reasoning phases 

in order to make the computer program behave like humans. In traditional computing, actions 

are taken based on data with precision and certainty.  In soft computing, erroneous data are 

employed for decision making. The exploration of the erroneous and uncertainty influences 

the remarkable human ability to understand various engineering applications.  FL can specify 

mapping rules in terms of words rather than numbers. Another basic concept in FL is the 

fuzzy if–then rule which is mostly used in development of fuzzy rule based systems.  FL can 

model nonlinear functions of arbitrary complexity to a desired degree of accuracy. FL is a 

convenient way to map an input space to an output space and is one of the tools used to 

model a multi-input, multi-output system. Hence the fuzzy approach can be effectively 

employed to develop a damage diagnostic tool using the vibration responses of structures. 

Chapter 5 

ANALYSIS OF FUZZY INFERENCE SYSTEM FOR 

DAMAGE DIAGNOSIS 
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In the present chapter, a damage diagnosis algorithm using fuzzy inference system has been 

formulated and the performance has been evaluated. The fuzzy system for damage diagnosis 

has been designed with six inputs (first three relative natural frequencies and first three 

relative mode shape differences) and two outputs (relative damage position, relative damage 

severity). A number of fuzzy linguistic terms and fuzzy membership functions (triangular, 

trapezoidal and Gaussian) have been used to develop the proposed damage identification 

technique. The modal parameters obtained from the numerical, finite element and 

experimental analyses have been used to establish the rule base for designing of the fuzzy 

system. The performance of the proposed fuzzy based system for damage diagnosis have 

been compared with the results obtained from FEA, numerical and experimental analysis and 

it is observed that, the proposed fuzzy model can be effectively exploited for structural health 

monitoring.  

5.2 Fuzzy inference system 
A fuzzy logic system (FLS) essentially takes a decision by nonlinear mapping of the input 

data into a scalar output, using fuzzy rules. The mapping can be done through input/output 

membership functions, fuzzy if–then rules, aggregation of output sets, and defuzzification. 

An FLS can be considered as a collection of independent multi-input, single-output systems. 

The FLS maps crisp inputs into crisp outputs. It can be seen from the figure that the FIS 

contains four components: the fuzzifier, inference engine, rule base, and defuzzifier. The rule 

base of the FLS system can be developed using the numeric data. Once the rules have been 

established, the FLS can be viewed as a system that utilizes inputs and process them using the 

fuzzy rule database and fuzzy linguistic terms to get output vector. The fuzzifier takes input 

values and verifies the degree of association to each of the fuzzy sets through membership 

functions.  

 
The fuzzy system generally consists of five steps. They are as follows, 

Step 1 

Inputs to fuzzy system: The fuzzy system at first is fed with the input parameters and then 

the system recognizes the degree of association of the data with the corresponding fuzzy set 

through the membership functions.  
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Step 2 

Application of fuzzy operator: After the fuzzification of the inputs, the fuzzy model 

measures the degree to which each of the antecedents satisfies for each rule of the fuzzy rule 

data base. If the rule has a more than one part, the fuzzy operator is employed to obtain a 

single value for the given rule. 

Step 3 

Application of method for fulfillment of rules: Method is applied to reshape the output of 

the membership functions, which is represented by a fuzzy set. The reshaping of the output is 

done by a function related to the antecedent. 

Step 4 

Aggregation of results: The results obtained from each rule are unified to get a decision 

from the system. Aggregation process leads to a combined fuzzy set as output.  

Step 5 

Defuzzification: In this process the defuzzification layer of the fuzzy system incorporate 

method like centroid, maxima etc in order to convert the fuzzy set into crisp value, which will 

be easier to analyze. 

5.2.1 Modeling of fuzzy membership functions 

One of the most important features in designing a fuzzy inference system is to determine the 

fuzzy membership functions. The membership function defines the fuzzy set and also 

provides a measure of degree of imprecise dependencies or analogy of an element to a fuzzy 

set. The membership function can take any shape, but some commonly used examples for real 

applications are Gaussian, triangular, trapezoidal, bell shape etc. In a fuzzy set, elements with 

non zero degree membership are known as support and elements with degree of one are 

known as core of the fuzzy set. The membership functions are generally represented as μF(x). 

Where, μ is the degree of weight of the element x to the fuzzy set F. The height or magnitude 

of the membership function is usually referred to zero to one. Hence, any element from the 

fuzzy set belongs to the set with a degree ranging from [0, 1].    

From the Fig. 5.1(a) (triangular membership function) the point ‘c’, ‘d’, ‘e’ represents the 

three vertices of the triangular membership function μF(x) of the fuzzy set ‘F’.  It is observed 
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that the element at ‘c’ and ‘e’ is having membership degree equivalent to zero and the 

element at ‘d’ is having membership degree equivalent to one. The mathematical 

representation of the fuzzy triangular membership function of μF(x) can be explained as 

follows.  

  

 

 

 

Where c, w, n are the center, width and fuzzification factor respectively. The graphical 

presentation of the fuzzy Gaussian membership function can be seen in Fig. 5.1(b). 

  

 

 

 

 

 

 

 

The trapezoidal membership function (Fig. 5.1 (c)) has two base points (0.2, 0.5) and two 

shoulder points (0.3, 0.4). A mathematical expression for the trapezoidal membership 

function is presented below. A graphical representation of the trapezoidal membership 

function has been shown in Fig. 5.1 (c).  

 
 

 

 

 

 

 

Fig. 5.1(a) Triangular membership function 

μF(x) = 

0 if x ≤ c 

 (x- c) / (d- c) if c ≤x ≤ d 

 (e- x) / (e- d) if d ≤x ≤ e 

0 if x ≥ e 
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μF(x) 

c
0

d e 

Fig. 5.1(b) Gaussian membership function

μF (x, c, w, n ) = Exp [-0.5{(x - c) / w}n] 
1 

x

μF(x) 

0 c

μF(x, 0.2,0.3, 0.4, 0.5)= 

0 when x ≤ 0.2 
(x – 0.2) / (0.3 – 0.2) when 0.2 ≤ x ≤0.3

1 when 0.3 ≤ x ≤0.0.4

(0.5 – x) / (0.5 – 0.4) when 0.4 ≤ x ≤0.5

Fig.5.1(c) Trapezoidal membership function
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5.2.2 Modeling of fuzzy controller using fuzzy rules 
 
The understanding of the input data and the output data for a real application is often vague 

due to the intricate dependencies of the input and output variables of the working domain. 

Fuzzy inference system posses the approximation features by the help of fuzzy membership 

functions and fuzzy IF-THEN rules. In the process of development of a fuzzy model, the 

domain knowledge helps in selecting the appropriate membership functions and development 

of fuzzy rules. This membership functions are designed by using the suitable fuzzy linguistic 

terms and fuzzy rule base. The fuzzy rule base or the conditional statements are used for 

fuzzification of the input parameters and defuzzification of the output parameters. The fuzzy 

model can be designed with single input and multi output (SIMO), multi input and single 

output (MISO), multi input and multi output (MIMO). During the design of the fuzzy model, 

the fuzzy operations like fuzzy intersection, union and complement are used to develop the 

membership functions. Hence, the fuzzy model takes the input parameters from the 

application at a certain state of condition and using the rules it will provide a controlled action 

as desired by the system. A general model of a fuzzy inference system (FIS) is shown in Fig. 

5.2. 

The inputs to the fuzzy model for damage identification in the current analysis comprises  

Relative first natural frequency = “FNF”; Relative second natural frequency = “SNF”;  

Relative third natural frequency = “TNF”; Relative first mode shape difference = “FMD”;  

Relative second mode shape difference = “SMD”; Relative third mode shape difference = 

“TMD” 

The linguistic term used for the outputs are as follows; 

Relative damage position = “RDP”  

Relative damage severity = “RDS”  

 

5.2.3 Modelling of defuzzifier 

The final step in building of a fuzzy system is to convert the fuzzy output set into a crisp 

output. So, the input to the defuzzifier is the aggregate output fuzzy set and output is a single 

number. The crisp output represents the possible distribution of the inferred fuzzy control 

action. Selection of the defuzzification strategy depends on the features of the application.  
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The relationship between the fuzzy output set (F), defuzzifier and crisp output (K0) can be 

established in the following equation;     

K0 = defuzzifier (F); 

There are several defuzzification methods used for development of fuzzy system. Some of 

them are listed below; 

 Centroid of the area,                 
 Mean of maximum 
 Weighted average method      
  Height method 

 
5.3 Analysis of the fuzzy controller used for damage identification 

The fuzzy models developed in the current analysis, based on triangular, Gaussian and 

trapezoidal membership functions have got six input parameters and four output parameters. 

The linguistic term used for the inputs are as follows; 

• Relative first natural frequency = “FNF”;  

• Relative second natural frequency = “SNF”;  

• Relative third natural frequency = “TNF”;  

• Average relative first mode shape difference = “FMD”;  

• Average relative second mode shape difference = “SMD”;  

• Average relative third mode shape difference = “TMD”. 

The linguistic term used for the outputs are as follows; 

• Relative damage position = “RDP”  

Fig.5.2 Fuzzy controller for current analysis 
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• Relative damage severity = “RDS” 

The pictorial view of the triangular membership, Gaussian membership, trapezoidal 

membership fuzzy models are shown in Fig. Fig. 5.3 (a), Fig. 5.3 (b) and Fig. 5.3 (c) 

respectively. Some of the fuzzy linguistic terms and fuzzy rules (Twenty numbers) used to 

design and train the knowledge based fuzzy logic systems are represented in Table 5.1 and 

Table 5.2 respectively. The membership functions used in developing the fuzzy inference 

system for damage diagnosis are shown in Fig.5.4 to Fig.5.6. Nine membership functions 

have been used for each input parameters to the fuzzy model. In designing the output 

membership functions for the output parameters such as relative damage position (RDP) and 

relative damage severity (RDS), twelve membership functions are considered. The 

defuzzification process of the triangular, Gaussian, trapezoidal membership functions are 

presented in Fig 5.7, Fig. 5.8 and Fig. 5.9 respectively by activating the rule no 5 and rule no 

15 from Table 5.2. 

 

 

 

 

 

 

 

 

 

 

RDP 

RDS 

FNF 
SNF 
TNF 
FMD 
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Fig. 5.3(c) Trapezoidal fuzzy model 

Outputs Inputs 

Fuzzy Model 

 

FNF 
SNF 
TNF 
FMD 
SMD 
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Inputs Outputs 

Fig. 5.3(b) Gaussian fuzzy model 

Fuzzy Model 
RDS 

RDP 

Fig. 5.3(a) Triangular fuzzy model 

Inputs Outputs 

Fuzzy Model FNF 
SNF 
TNF 
FMD 
SMD 
TMD 

RDS 

RDP 
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5.3.1 Fuzzy mechanism for damage identification 

Based on the above fuzzy subsets, the fuzzy control rules are defined in a general form as 

follows: 

ijklmnRDS is RDS andijklmnRDP is RDP  then )nTMD  is TMD
and mSMD is SMD andlFMDisFMDandkTNFisTNFandjSNF is SNF and iFNF is (FNF If

where i=1 to 9, j=1 to 9, k = 1 to 9, l= 1 to 9, m= 1 to 9, n= 1 to 9  

As “FNF”, “SNF”, “TNF”, “FMD”, “SMD”, “TMD” have ten membership functions each. 

From equation (4.1), two set of rules can be written 

ijklmnRDS is RDS  then )nTMD  is TMD
and mSMD is SMD andlFMDisFMDandkTNFisTNFandjSNF is SNF and iFNF is (FNF If

ijklmnRDP is RDP  then )nTMD  is TMD
and mSMD is SMDandlFMDisFMDandkTNFisTNFandjSNF is SNF and iFNF is (FNF If

According to the usual fuzzy logic control method [91,205], a factor ijklmnW is defined for the 

rules as follows: 

)moddif(μ Λ )moddif(μ Λ )(moddifμ Λ )(freqμ Λ )(freqμ Λ )(freqμ W ntmdmsmdlfmdktnfjsnfifnfijklmn nmlkji
=

 

Where freqi , freqj and freqk are the first, second and third relative natural frequencies of the 

cantilever beam with damage respectively ; moddifl, moddifm and moddifn  are the average 

first, second and third relative mode shape differences of the cantilever beam with damage 

respectively. By applying the composition rule of inference [36, 42], the membership values 

of the relative damage position and relative damage severity, (position)RDP and (severity)RDS 

can be computed as; 

      

 

 
The overall conclusion by combining the outputs of all the fuzzy rules can be written as 
follows: 

  

(4.1)

(4.2)

(4.4)
(severity)

 10  10  10  10  10  10RDSμ....    (severity)
ijklmnRDSμ ...   (severity)

111111RDSμ(severity)RDSμ

 (position)
  10  10  10  10  10  10RDPμ...   (position)

ijklmnRDPμ ...   (position)
111111RDPμ(position)RDPμ

∨∨∨∨=

∨∨∨∨=

(4.3) 
               )(  ijklmn W )(

             )position(  ijklmn W )position(
ijklmnRDP

severity
ijklmnRDSseverity

ijklmnRDS
ijklmnRDP

μμ

μμ

Λ=

Λ=
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The crisp values of relative damage position and relative damage severity are evaluated using 

the centre of gravity method [42] as:  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4(a) Membership functions for relative 
natural frequency for first mode of vibration. 

Fig. 5.4(b) Membership functions for relative 
natural frequency for second mode of vibration. 

Fig. 5.4(c) Membership functions for relative 
natural frequency for third mode of vibration. 

Fig. 5.4(d) Membership functions for relative 
mode shape difference for first mode of vibration. 

Fig. 5.4(e) Membership functions for relative mode 
shape difference for second mode of vibration. 

Fig. 5.4(f) Membership functions for relative mode 
shape difference for first mode of vibration. 

Fig. 5.4 (g) Membership functions for relative damage severity. 

Fig. 5.4 (h) Membership functions for relative damage position. 

Fig. 5.4 (a) - (h)  Membership functions for triangular fuzzy model. 

(4.5)

∫ ⋅
∫ ⋅⋅==

∫ ⋅
∫ ⋅⋅==

ty)  d(severi  (severity)RDSμ
ty)  d(severi  (severity)RDS   μ  (severity) RDSgeseveritylativedama

on)  d(positi  (position)RDPμ
on)  d(positi)  (positionRDP  μ (position RDPgepositionlativedama

Re

Re
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Fig. 5.5(a) Membership functions for relative 
natural frequency for first mode of vibration. 

Fig. 5.5(b) Membership functions for relative 
natural frequency for second mode of vibration. 

Fig. 5.5(c) Membership functions for relative 
natural frequency for third mode of vibration. 

Fig. 5.5(d) Membership functions for relative 
mode shape difference for first mode of vibration. 

Fig. 5.5(e) Membership functions for relative mode 
shape difference for second mode of vibration. 

Fig. 5.5(f) Membership functions for relative 
mode shape difference for first mode of vibration. 

Fig. 5.5 (g) Membership functions for relative damage severity. 

Fig. 5.5 (h) Membership functions for relative damage position. 

Fig. 5.5 (a) - (h)  Membership functions for triangular fuzzy model. 
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Fig. 5.6(a) Membership functions for relative 
natural frequency for first mode of vibration. 

Fig. 5.6(b) Membership functions for relative 
natural frequency for second mode of vibration. 

Fig. 5.6(c) Membership functions for relative 
natural frequency for third mode of vibration. 

Fig. 5.6(d) Membership functions for relative 
mode shape difference for first mode of vibration. 

Fig. 5.6(e) Membership functions for relative mode 
shape difference for second mode of vibration.

Fig. 5.6(f) Membership functions for relative 
mode shape difference for first mode of vibration. 

Fig. 5.6 (g) Membership functions for relative damage severity. 

Fig. 5.6 (h) Membership functions for relative damage position. 

Fig. 5.6 (a) - (h) Membership functions for trapezoidal fuzzy model. 
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Membership Functions 
Name  

Linguistic 
Terms 

Definition of the Linguistic terms 

L1F1,L1F2,L1F3 FNF 1 to 3 Low ranges of relative natural frequency for first mode of 
vibration  

M1F1,M1F2, M1F3 FNF 4 to 6 Medium ranges of relative natural frequency for first 
mode of vibration  

H1F1,H1F2,H1F3 FNF 7 to 9 Higher ranges of  relative natural frequency for first mode 
of vibration  

L2F1,L2F2,L2F3 SNF 1 to 3 Low ranges of relative natural frequency for second mode 
of vibration  

M2F1,M2F2,M2F3 SNF 4 to 6 Medium ranges of relative natural frequency for second 
mode of vibration  

H2F1,H2F2,H2F3 SNF 7 to 9 Higher ranges of  relative natural frequencies for second 
mode of vibration  

L3F1,L3F2,L3F3 TNF 1 to 3 Low ranges of relative natural frequencies for third mode 
of vibration  

M3F1,M3F2,M3F3 TNF 4 to 6 Medium ranges of relative natural frequencies for third 
mode of vibration  

H3F1,H3F2,H3F3 TNF 7 to 9 Higher ranges of  relative natural frequencies for third 
mode of vibration  

S1M1,S1M2,S1M3 FMD 1 to 3 Small ranges of  first relative mode shape difference  

M1M1,M1M2,M1M3 FMD 4 to 6 medium ranges of  first relative mode shape difference  

H1M1,H1M2,H1M3 FMD 7 to 10 Higher ranges of first  relative mode shape difference  

S2M1,S2M2,S2M3 SMD 1 to 3 Small ranges of  second relative mode shape difference  

M2M1,M2M2,M2M3 SMD 4 to 6 medium ranges of second relative mode shape difference  

H2M1,H2M2,H2M3 SMD 7 to10 Higher ranges of second  relative mode shape difference  

S3M1,S3M2,S3M3 TMD 1 to 3 Small ranges of  third relative mode shape difference  

M3M1,M3M2,M3M3 TMD 4 to 6 medium ranges of  third relative mode shape difference  

H3M1,H3M2,H3M3 TMD 7 to 10 Higher ranges of third  relative mode shape difference  

SP1,SP2,SP3,SP4 RDP 1 to 4 Small ranges of relative damage position  

MP1,MP2,MP3,MP4 RDP 5 to 8 Medium ranges of relative  damage position  
HP1,HP2, HP3,HP4 RDP 9 to 12 Higher  ranges of relative  damage position  
LS1,LS2,LS3,LS4 RDS 1 to 4 Lower ranges of relative damage severity  
MS1,MS2,MS3,MS4 RDS5 to 8 Medium ranges of relative  damage severity  
US1,US2,US3,US4 RDS 9 to 12 Upper ranges of relative  damage severity  

Table 5.1 Description of fuzzy linguistic terms. 
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Sl. No. Examples of some rules used in the fuzzy model 
1 If FNF is H1F1, SNF is M2F2, TNF is M3F1, FMD is H1M2, SMD is H2M4, TMD is 

H3M3, then RDS is LS4 and RDP is SP3. 

2 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is H1M1, SMD is H2M1, TMD is 
H3M2, then RDS is LS2 and RDP is SP4. 

3 If FNF is L1F3, SNF is L2F4, TNF is L3F4, FMD is M1M2, SMD is H2M2, TMD is 
H3M3, then RDS is LS3 and RDP is SP2. 

4 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is H1M3, SMD is H2M4, TMD is 
H3M4, then RDS is MS2 and RDP is SP3. 

5 If FNF is M1F1, SNF is L2F2, TNF is L3F3, FMD is H1M1, SMD is H2M1, TMD is 
H3M2, then RDS is MS1 and RDP is SP2. 

6 If FNF is L1F1, SNF is L2F2, TNF is L3F3, FMD is H1M3, SMD is M2M1, TMD is 
H3M4, then RDS is MS2 and RDP is MP1. 

7 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is M1M2, SMD is H2M1, TMD is 
H3M1, then RDS is MS1 and RDP is SP1. 

8 If FNF is H1F1, SNF is M2F2, TNF is M3F1, FMD is H1M2, SMD is H2M2, TMD is 
H3M2, then RDS is MS2 and RDP is SP2. 

9 If FNF is L1F1, SNF is L2F4, TNF is L3F4, FMD is M1M1, SMD is M2M1, TMD is 
M3M2, then RDS is LS1 and RDP is MP2. 

10 If FNF is M1F1, SNF is L2F2, TNF is L3F1, FMD is M1M2, SMD is M2M2, TMD is 
H3M1, then RDS is LS1 and RDP is SP2. 

11 If FNF is M1F1, SNF is M2F1, TNF is M3F1, FMD is H1M3, SMD is H2M3, TMD is 
H3M4, then RDS is MS1 and RDP is SP4. 

12 If FNF is M1F1, SNF is L2F1, TNF is L3F1, FMD is H1M3, SMD is H2M2, TMD is 
H3M3, then RDS is LS2 and RDP is MP1. 

13 If FNF is M1F2, SNF is M2F1, TNF is M3F1, FMD is M1M1, SMD is H2M1, TMD is 
H3M2, then RDS is MS2 and RDP is MP2. 

14 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is H1M4, SMD is H2M1, TMD is 
H3M1, then RDS is MS1 and RDP is SP4. 

15 If FNF is M1F1, SNF is L2F1, TNF is L3F2, FMD is S1M1, SMD is S2M2, TMD is 
H3M1, then RDS is LS2 and RDP is MP1. 

16 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is H1M2, SMD is S2M1, TMD is 
H3M2, then RDS is LS1 and RDP is MP3. 

17 If FNF is M1F1, SNF is L2F3, TNF is L3F1, FMD is S1M2, SMD is M2M1, TMD is 
S3M1, then RDS is LS2 and RDP is MP3. 

18 If FNF is L1F1, SNF is L2F1, TNF is L3F1, FMD is H1M2, SMD is H2M2, TMD is 
H3M2, then RDS is LS3 and RDP is MP2.  

19 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is S1M2, SMD is H2M3, TMD is 
H3M1, then RDS is LS4 and RDP is MP1. 

20 If FNF is L1F3, SNF is L2F4, TNF is L3F4, FMD is S1M3, SMD is S2M2, TMD is 
S3M3, then RDS is LS3 and RDP is SP3. 

   Table 5.2 Examples of twenty fuzzy rules to be implemented in fuzzy model. 



   

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.7 Resultant values of relative damage severity and relative damage position from triangular 
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated.

Inputs 
Rule no 5 of Table 5.2 is effectuated Rule no 15 of Table 5.2 is effectuated 

Relative damage severity 0.1716

0.3641 Relative damage position

Output 
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Output 

Fig.5.8 Resultant values of relative damage severity and relative damage position from Guassian 
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated. 

Inputs 
Rule no 5 of Table 5.2 is effectuated Rule no 15 of Table 5.2 is effectuated 

  

0.1703 Relative damage severity 

0.3614 Relative damage position 
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0.1698 Relative damage severity 

Inputs
Rule no 15 of Table 5.2 is Rule no 5 of Table 5.2 is effectuated 

Fig. 5.9 Resultant values of relative damage severity and relative damage position from trapezoidal 
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated. 

Relative damage position0.3635 

Output 
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5.3.2 Results of fuzzy model 

In the current section, the fuzzy system based damage diagnosis is realized. The fuzzy model 

(Fig. 5.2) has been designed for Al cantilever beam with six inputs as first three relative 

natural frequencies and first three relative mode shape differences and two outputs as relative 

damage position and relative damage severity. Three types of membership functions 

(triangular, Gaussian and trapezoidal) has been employed to develop the fuzzy model 

(Fig.5.4, Fig.5.5, Fig.5.6). Defuzzification (Fig.5.7, Fig.5.8, Fig.5.9) of the inputs using 

triangular, Gaussian and trapezoidal membership functions have been done by activating the 

rule no. 5 and rule no. 15 form the Table 5.2. Similarly, fuzzy model for fixed-fixed beam can 

be modeled. Moreover, different fuzzy models can be designed for composite and steel beam 

structures. The results obtained for cantilever and fixed-fixed beam structures with three 

different materials from numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy 

trapezoidal model and experimental analysis are compared in Table 5.1 to Table 5.12. Nine 

sets of data from the Table 5.1 to Table 5.6 represents the first three relative natural 

frequencies and first three relative mode shape differences in the first six columns and rest of 

the columns represents the corresponding values of relative damage positions and relative 

damage severity obtained from numerical, finite element, fuzzy triangular, fuzzy Gaussian, 

fuzzy trapezoidal model and experimental analysis. 

5.4 Discussion 

The fuzzy system designed in the current research has been adopted for damage diagnosis in 

structural members of different materials such as Al, composite & steel. The various types of 

membership functions used for development of the knowledge based system are triangular, Gaussian 

trapezoidal as depicted in Fig. 5.1 (a) to Fig. 5.1 (c). The different schemes complemented in 

designing of the proposed system are presented in Fig. 5.2. The various linguistic terms and some of 

the fuzzy rules used for developing the fuzzy damage diagnostic tool have been exhibited in Table 

5.1 and Table 5.2 respectively. The complete architecture of different types of membership functions 

with the linguistic terms have been presented in Fig. 5.4 to Fig. 5.6. The results obtained for all three 

materials from fuzzy model with triangular, Gaussian and trapezoidal membership functions and 

experimental analyses are compared in Table 5.1 to Table 5.6 .The results from numerical, finite 

element and Gaussian fuzzy model analysis are shown in Table 5.7  to Table 5.12  and the results are 

found to be in very good agreement. From the analysis of the results presented in Table 5.1 to Table 
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5.6, it is observed that the percentage deviation of the results of the triangular membership function 

fuzzy model for Al, composite & steel cantilever and fixed-fixed beam structures are 7.65%, 7.59%, 

7.15%, 7.21%, 8.03%, 8.11%.  For Gaussian membership function percentage deviation of the results 

are found to be 5.10%, 5.16%, 4.95%, 5.02%, 6.19%, 6.63% and for trapezoidal membership 

function, deviation of the results are 7.38%, 7.45%, 6.93%, 6.98%, 7.68%, 7.72%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.3 Comparison of modal parameters and damage characteristics of Al cantilever beam 
obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and experimental 
analysis 

Table 5.4 Comparison of modal parameters and damage characteristics of Al fixed-fixed beam 
obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and experimental 
analysis 
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Table 5.6 Comparison of modal parameters and damage characteristics of composite fixed-
fixed beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and 
experimental analysis 

Table 5.5 Comparison of modal parameters and damage characteristics of composite 
cantilever beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model 
and experimental analysis 



   

61 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.7 Comparison of modal parameters and damage characteristics of steel cantilever 
beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and 
experimental analysis 

Table 5.8 Comparison of modal parameters and damage characteristics of steel fixed-fixed 
beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and 
experimental analysis 
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Table 5.9 Comparison of modal parameters and damage characteristics of Al cantilever 
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental 
analysis 

Table 5.10 Comparison of modal parameters and damage characteristics of Al fixed-fixed 
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental 
analysis 
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Table 5.11 Comparison of modal parameters and damage characteristics of composite 
cantilever beam obtained from Fuzzy Gaussian based model, FEA, numerical and 
experimental analysis 

Table 5.12 Comparison of modal parameters and damage characteristics of composite fixed-
fixed beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental 
analysis 
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Table 5.13 Comparison of modal parameters and damage characteristics of steel cantilever 
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental 
analysis 

Table 5.14 Comparison of modal parameters and damage characteristics of steel fixed-
fixed beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental 
analysis 
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5.5 Summary 

The fuzzy modeling implemented in the current section has been analyzed to get the 

following conclusions. The presence of damages in structural member has remarkable impact 

on the modal parameters of the dynamic structure. The first three relative natural frequencies 

and first three relative mode shape differences are engaged as inputs to the fuzzy model and 

relative damage positions and relative damage severity are the output parameters. The 

reliability of the proposed model has been established by comparing the results from the 

fuzzy models (Gaussian, trapezoidal, triangular) with that of the numerical, finite element and 

experimental analysis. The results are found to be well in agreement. Moreover, Guassian 

membership function is found to deliver better results compared to the other membership 

function and numerical & finite element analysis. Hence, the proposed Gaussian fuzzy model 

can be effectively used as damage identification tools in vibrating structures.  
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Though damage diagnosis is not a phenomena, the evolution of various techniques over the 

time has made a point that the smooth functioning of all structural members is only possible 

when the development of damage of any form is prohibited. Therefore estimating the 

potential of the damage is to be thoroughly diagnosed for maintaining the life span of the 

various structures. The change in dynamic characteristics of vibrating structures lay down the 

main platform for most of the damage diagnosis mechanism. In this section, artificial neural 

network based model is developed with requisite amount of trained data generated from back 

propagation technique. Finally, the results from the model have been compared with the 

experimental results to establish the robustness of the proposed neural method. 

6.1 Introduction 

This section of the thesis provides an introduction to basic neural network architectures and 

learning rules. 

The complex biological neural network in a human body has highly interconnected set of 

neurons, facilitates for various kind of output such as thinking, breathing, driving etc. 

Generally the neurons are believed to store the biological neural functions and memory and 

learning of the neural system facilitates for establishment of new connections between the 

neurons. The most interesting feature of this artificial neural network (ANN) is the novel 

structure of the information processing system. It is composed of a large number of highly 

interconnected processing elements (neurons) working in parallel to solve specific 

applications, such as pattern recognition or data classification, through a learning process. 

Learning in biological systems involves adjustments to the synaptic weights that exist 

between the neurons. Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to recognize patterns and detect trends that are too 

Chapter 6 

ARTIFICIAL NEURAL NETWORK BASED DAMAGE 
DIAGNOSIS FOR VIBRATING STRUCTURES 
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complex to be noticed by either humans or other computer techniques. Some of the 

advantages of the ANN are depicted below. 

Adaptive learning: The ability of the neural system lies in the capacity to adapt to the 

changing environment by adjusting the synaptic weights and perform according to the 

situation. This feature makes the neural network a methodology to address industrial 

applications in dynamic environment.  

Self-Organization: An artificial neural network can produce results for inputs that are not 

used during training by creating its own representation of the information it receives during 

learning time. This capability helps in solving problem of higher complexities. 

Real Time Operation: The neural network is composed of a large number interconnected 

neurons working in parallel to solve a specific problem. Neural networks learn by example. 

For this special hardware devices are being designed and manufactured which take advantage 

of this capability.  

Fault Tolerance: In case of failure of a neuron in neural network system there will be a 

partial destruction of a network which leads to only deterioration of quality of output rather 

than collapsing the system as a whole.  

This section introduces a feed forward multilayer neural network trained with back 

propagation technique for online multiple damage detection in structural beam members. The 

proposed neural network system has been designed with six input parameters (first three 

relative natural frequencies, first three relative mode shape differences) and two output 

parameters (relative damage position, relative damage severity). A comparison of results 

obtained from fuzzy, numerical, FEA, neural and experimental analysis have been conducted 

and it is observed that the developed neural network provides more accurate results as 

compared to other mentioned methods. Subsequently, the outputs from neural network are 

validated by the experimentation. 

6.2 Neural network technique 

Given this the description of neural network, it has been successfully implemented in many 

industrial applications such as industrial process control, sales forecasting, electronic noses, 
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modeling, diagnosing the Cardiovascular System and etc.  The parallel computing capability 

and the ability to perform under changing environment make the neural network a potential 

tool to address applications, which are hard to solve using analytical or numerical methods.  

6.2.1 Model of a neural network 

 

 

 

 

 

 

A neuron which can be used in a dynamic environment is shown in Fig. 6.1. An artificial 

neuron is a device with many inputs and one output. The neuron has two modes of operation; 

the training mode and the using mode. In the training mode, the neuron can be trained to fire 

(or not), for particular input patterns. In the using mode, when a taught input pattern is 

detected at the input, its associated output becomes the current output. If the input pattern 

does not belong in the taught list of input patterns, the firing rule is used to determine whether 

to fire or not. 

The main features of the neural model are as follows, 

 The inputs to the neuron are assigned with synaptic weights, which in turn affect the 

decision making ability of the neural network. The inputs to the neuron are called 

weighted inputs. 

 These weighted inputs are then summed together in an adder and if they exceed a pre-

set threshold value, the neuron fires. In any other case the neuron does not fire. 

 An activation function for limiting the amplitude of the output of a neuron. Generally 

the normalized amplitude range of the output of a neuron is given as the closed unit 

interval [0,1] or alternatively [-1,1]. 

Fig. 6.1 Neuron Model  
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Learning process of ANN: 

The learning for a neural network means following a methodology for modifying the weights 

to make the network adaptive in nature to changing environment. The learning rules may be 

broadly divided into three categories, 

1. Supervised learning: The supervised learning rule is provided with set of training data for 

proper network behavior. When the inputs are applied to the network, the outputs from the 

network are compared with the targets. Through the learning process the network will adjust 

the weights of the network in order to bring the outputs closer to the targets. 

2. Unsupervised learning: In this type of learning the network modifies the weights in 

response to the inputs to the network. This is suitable for applications requiring vector 

quantization.   

3. Reinforcement learning: In the reinforcement learning instead of being provided with the 

correct output, for each network input, the algorithm is only given a score. The score is the 

measure of network performance over some sequence of inputs. 

In mathematical terms, we can describe a neuron k by writing the following pair of equations: 

∑
1=

=
p

j
jkjk xwu
         

( )kk ufy =           

Where x1, x2,…..,xp are the input signals; wk1, wk2,…..,wkp are the synaptic weights of neuron 

k; uk is the linear combined output; ( )⋅f  is the activation function; and yk is the output signal 

of the neuron.  

6.2.2  Use of back propagation neural network  

The back propagation technique (Fig. 6.2) can be used to train the multilayer networks. This 

technique is an approximate steepest gradient algorithm in which the performance of the 

network is based on mean square error. In order to train the neural network, the weights for 

each input to the neural system should be so adjusted that the error between the actual output 

(6.1) 

(6.2) 
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and desired output is minimum. The multilayer neural system would calculate the change in 

error due to increase or decrease in the weights. The algorithm first computes each error 

weight by computing the rate of the error changes with the change in synaptic weights. The 

error in each hidden layer just before the output layer in a direction opposite to the way 

activities propagate through the network have to be computed and fed to the network by back 

propagation algorithm to minimize the error in the actual output and desired output by 

adjusting the parameters of the network. 

 

 
6.3  Analysis of neural network model used for damage detection 

A back propagation neural model [66] has been proposed for identification of damage (i.e. 

relative damage positions, relative damage severity) of structural beam members 

(Fig.6.3).The neural model has been designed with six input parameters and two output 

parameters.  

The inputs to the neural network model are FNF, SNF, TNF, FMD, SMD and TMD.   

The outputs from the neural model are as follows; 

Relative damage position = “RDP”  

Fig. 6.2 Back propagation technique  
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Relative damage severity = “RDS”  

The back propagation neural network has been made with one input layer, one output layer 

and eight hidden layers. The input layer contains six neurons, where as the output layer 

contains two neurons. The number of neurons in each hidden layers are different in order to 

give the neural network a diamond shape and for better convergence of results (Fig.6.4).   The 

neurons associated with the input layer of the network represent the first three relative natural 

frequencies and first three average relative mode shape difference. The relative damage 

position, relative damage severityare represented by the two neurons of the output layer of the 

neural network.   

 

 

 

 

 

 

 

6.3.1  Neural controller mechanism for damage detection 

The neural network used in the current investigation is a five-layered feed forward neural 

network model trained with back propagation technique [66]. The training of neural data is 

realized using the number of chosen layers. The input layer of the neural network consists of 

six neurons for first three relative natural frequencies and first three relative mode shape 

difference and the output layer consists of two neurons for relative damage positions and 

relative damage severities. The hidden layers i.e. 2nd, 3rd and 4th layer of the network 

comprises 9 neurons, 11 neurons and 9 neurons respectively. The number of neurons in each 
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Fig. 6.3 Neural network model 
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hidden layer has been decided using the empirical relation. Fig. 6.4 illustrates the neural 

network with its input and output signals for Al cantilever beam. Similarly, for composite and 

steel cantilever beam structures, neural network model can be designed. Moreover for fixed-

fixed beam of each material can also be integrated with the neural network model.  

 

The proposed neural network model for damage identification has been trained with 600 

patterns of data for each Al, composite & steel cantilever and fixed-fixed beam featuring 

various states of the beam members. Out of the several hundred testing data, some of them 

are presented for each material in Table 6.1 to Table 6.6. During the training, the models are 

fed with six input parameters i.e. first three relative natural frequencies and first three mode 

shape differences. The outputs are relative damage positions and relative damage severities.  

During training and during normal operation, the input patterns fed to the neural network 
comprise the following components: 

{ } frequency naturalfirst  ofdeviation  relative    y 1
1 =     (6.3(a)) 

     Fig. 6.4 Multi layered feed forward back propagation neural controller for damage identification 
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{ } frequency natural second ofdeviation  relative    y 1
2 =    (6.3(b)) 

{ } frequency natural  thirdofdeviation  relative     y 1
3 =     (6.3(c))                

{ } shape modefirst  ofdeviation  relative     y 1
4 = difference               

{ } shape mode second ofdeviation  relative     y 1
5 = difference                           

{ } shape mode  thirdofdeviation  relative     y 1
6 = difference                              

The outputs generated due to the distribution of the input to the hidden neurons are given by 

[66]: 

{ }( ) { }       yVf lay
j

lay
j =       (6.4) 

Where, 

{ } { } { }lay
j

i

1lay
i

lay
ji V   .yW =∑ −       (6.5)                

layer number (2 or 4) = lay   

label for jth neuron in hidden layer ‘lay’= j   

label for ith neuron in hidden layer ‘lay-1’= i  

Weight of the connection from neuron i in layer ‘lay-1’ to neuron j in layer ‘lay’= { }lay
jiW  

Activation function, chosen in this work as the hyperbolic tangent function = f (.), where,   

( )xf
ee
ee

xx

xx

=
+
−

−

−

         (6.6)       

In the process of training, the network output θactual, n (i=1 to 2) may differ from the desired 

output θdesired,n (n=1 to 2) as specified in the training pattern presented to the network. The 

measure of performance of the network is the instantaneous sum-squared difference between 

θdesired, n and θactual, n for the set of presented training patterns: 

(6.3(d)) 

(6.3(e)) 

(6.3(f)) 
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( )2
patterns

training all
n,actualn,desired2

1Err ∑ −= θθ       (6.7) 

Where θactual, n (n=1) represents relative damage position (“RDP”) 

            θactual, n (n=2) represents relative damage severity (“RDS”) 

During the development of the neural model, the error back propagation method is employed 

to train the network [66]. This method requires the computation of local error gradients in 

order to determine appropriate weight corrections to reduce error. For the output layer, the 

error gradient { }5δ  is:  

{ } { }
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−′= nactualndesiredVf ,,5

1
5 θθδ         (6.8) 

Hence, the local gradient for neurons in hidden layer {lay} is given by: 

{ } { }( ) { } { } ⎟
⎠

⎞
⎜
⎝

⎛
δ′=δ ∑ ++

k

1lay
kj

1lay
k

lay
j

lay
j WVf                    (6.9) 

Synaptic weights are updated according to the following expressions: 

( ) ( ) ( )1tWtW1tW jijiji +Δ+=+                    (6.10) 

and  ( ) ( ) { } { }1lay
i

lay
jjiji ytW  1tW −ηδ+Δα=+Δ                   (6.11) 

Where 

Momentum coefficient (chosen statistically as 0.2 in this work)= α  

Learning rate (chosen statistically as 0.35 in this work) = η   

Iteration number, each iteration consisting of the presentation of a training  

pattern and correction of the weights = t  

Following expression shows, the final output from the neural network as;  

        (6.12) 

where { } { }∑= ⎭⎬
⎫

⎩⎨
⎧

i iyniWnV
455       (6.13) 
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η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training  

     pattern and correction of the weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1 Comparison of modal parameters and damage 
characteristics of Al cantilever beam obtained from Neural 
Network based model 

Table 6.2 Comparison of modal parameters and damage 
characteristics of Al fixed-fixed beam obtained from Neural 
Network based model 



   

76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3 Comparison of modal parameters and damage 
characteristics of composite cantilever beam obtained from Neural 
Network based model

Table 6.4 Comparison of modal parameters and damage characteristics 
of composite fixed-fixed beam obtained from Neural Network based 
model 
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Table 6.5 Comparison of modal parameters and damage characteristics 
of steel cantilever beam obtained from Neural Network based model

Table 6.6 Comparison of modal parameters and damage 
characteristics of steel fixed-fixed beam obtained from Neural 
Network based model 
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Table 6.7 Comparison of modal parameters and damage characteristics of Al cantilever beam 
obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and 
Experimental analysis 

Table 6.8 Comparison of modal parameters and damage characteristics of Al fixed-fixed 
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and 
Experimental analysis 
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Table 6.9 Comparison of modal parameters and damage characteristics of composite cantilever 
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and 
Experimental analysis 

Table 6.10 Comparison of modal parameters and damage characteristics of composite 
fixed-fixed beam obtained from Neural Network based model, Fuzzy Gaussian based 
model, FEA and Experimental  
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Table 6.12 Comparison of modal parameters and damage characteristics of steel fixed-
fixed beam obtained from Neural Network based model, Fuzzy Gaussian based model, 
FEA and Experimental analysis 

Table 6.11 Comparison of modal parameters and damage characteristics of steel cantilever 
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and 
Experimental analysis 
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6.3.2 Neural network contollerl for diagnosis of damage 

The feed forward network has been trained with 600 different patterns of parameters to obtain 

the objective. Some of the test patterns are depicted in Table 6.1 to Table 6.6. The intelligent 

neural system has six numbers of input parameters in the input layer i.e. first three relative 

natural frequencies and first three average mode shape difference. The output layer has two 

outputs and they relative damage position and relative damage severity.  

6.4  Results and discussion of neural controller 

The five layer feed forward neural network model with back propagation technique for 

damage identification is shown with the complete architecture in Fig.6.4. This has been 

designed to predict the relative damage position and relative damage severity. The first three 

relative natural frequencies and first three average relative mode shape differences have been 

used as inputs to the input layer of the proposed network. These inputs are processed in the 

three hidden layers and finally the output layer provides the results for relative crack position 

and relative damage severity. The block diagram of the neural model with the input and 

output parameters is depicted in Fig.6.3. Out of several hundred training patterns that have 

been used to train the neural model, some of them along with the outputs from the model are 

shown in Table 6.1 to Table 6.6. Experiments have been carried out to validate the results 

obtained from different analyses performed on the damaged cantilever beam and fixed-fixed 

beam of Al, composite & steel. The results obtained from neural model, fuzzy Gaussian 

model, finite element analysis and experimental analysis are presented in Table 6.7 to Table 

6.12 and are found to be in close agreement. The different parameters presented in various 

columns of the Table 6.7 to Table 6.12 are expressed as, relative first natural frequency 

(FNF), relative second  natural frequency (SNF), relative of 3rd natural frequency (TNF), 

relative first mode shape difference (FMD), relative second mode shape difference (SMD), 

relative third mode shape difference (TMD) as inputs and the rest columns represents the 

outputs as relative damage position and relative damage severity obtained from 

corresponding investigation. The percentage of deviations of the results from neural model 
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with respect to experimental results observed for Al, composite & steel cantilever and fixed-

fixed beams as given in Table 6.2 (a) to Table 6.2 (f) are about 4.35%, 4.43%, 4.12%, 4.23%, 

4.79% and 4.97% respectively which is better than the performance of fuzzy Gaussian model. 

6.5  Summary 

This section expresses the final conclusions drawn from the analysis carried out in the present 

chapter. The neural network model has been designed on the basis of change of modal 

parameters such as natural frequencies and modes shapes due to presence of damages in 

structural members. The input parameters to the diamond shaped feed forward neural network 

model is the first three natural frequencies and first three average mode shapes. The outputs 

from the model are relative damage position and relative damage severity. Hundreds of 

training patterns have been developed to train the neural model for damage detection. The 

neural system has different numbers of neurons in all the five layers for processing the inputs 

to the model. By adopting the back propagation algorithm, it is observed that the difference 

between the actual output and desired output has been successfully reduced.  The results 

derived from the proposed neural network have been compared with the results obtained from 

numerical, FEA, fuzzy Gaussian model and experimental analysis to check the reliability of 

the model and the comparison results are found to be very encouraging.  
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The experimental analysis has been carried out to measure the natural frequencies and mode 

shapes of the damaged beam structures. The experimental set up has been shown in Fig.7.1. 

Experiments have been performed on the damaged beam structures with different damage 

positions and damage severities to validate the results obtained from theoretical, finite 

element and other artificial intelligent techniques used for damage diagnosis as discussed in 

the previous chapters of the thesis. This chapter briefly describes the systematic procedures 

adopted for experimental investigation and the required instrumentation for measuring the 

vibration parameters of the cantilever beam and fixed-fixed beam of different materials such 

as Al, composite & steel. 

 
7.1 Detail specifications of the vibration measuring instruments 
 
Experiments have been performed using the developed experimental set up (Fig. 7.1) for 

measuring the vibration responses (natural frequencies and amplitude of vibration) of the 

cantilever beams and fixed-fixed beam specimens made from Aluminum, composite and steel 

with dimension 1000mm x 50mm x 8mm. During the experiment, the damaged and 

undamaged beams have been subjected to vibration at their 1st, 2nd and 3rd mode of vibration 

by using an exciter and a function generator. The vibrations characteristics of the beams 

correspond to 1st, 2nd and 3rd mode of vibration have been recorded by placing the 

accelerometer along the length of the beams. The signals from the accelerometer which 

contains the vibration parameters such as natural frequencies and mode shapes are analyzed 

and shown on the vibration indicator. The Table 7.1 shown below gives the detail 

specifications of the instruments used in the current experimental analysis.  

 

 

Chapter 7
DESCRIPTION AND INSTALLATION OF 

EXPERIMENTAL SETUP 
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1.Vibration exciter   2. Delta Tron accelerometer   3. Composite  cantilever beam platform 
 
4.  Vibration Analyzer   5. Vibration Monitor   6. Function Generator  
 
7. Power amplifier   8. Power supply 
 
7.2 Experimental procedure and its architecture 
 
The authenticity of the results obtained from theoretical, finite element and AI based 

techniques for damage diagnosis have been validated by measuring the dynamic responses of 

the undamaged and damage Aluminum, composite & steel beam specimens through 

experimentation. The damages at various positions with different severities in the beam 

elements were introduced by wire EDM & Hack saw [32 teeth per inch] perpendicular in the 

transverse direction of the beam. The test specimens made from all three materials are of 

1000 mm length and have cross section of 50 mm x 8 mm. The composite cantilever beam 

Fig. 7.1 Experimental setup for current investigation 
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test sample was clamped at its one end by clamping device as shown in the Fig. 7.1. The free 

end of the beam specimen was excited by an appropriate signal from the function generator, 

which was amplified by the amplifier. The cantilever was excited at first three modes of 

vibration, and the corresponding natural frequencies and mode shapes were recorded by the 

accelerometer by suitable positioning, data acquisition system and adjusting the vibration 

generator at the corresponding resonant frequencies. Similar procedure is adopted by all types 

of beam of different materials embedded with or without damage of different severities at 

different positions. The responses generated by the accelerometers are analyzed by PULSE 

Lab shop Software integrated with a personal computer. The snap shots of the various 

instruments used in the current experimental analysis are shown in Fig. 7.2(a) to Fig. 7.2(h). 

The PCMCIA card is used to connect the vibration analyzer with the PULSE Labshop 

Software. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2 (a) Vibration Exciter 

1. Vibration Exciter  

Type       :  4808 [Permanent Magnetic Vibration 
Exciter] 
Force rating             :  112N sine peak (187 N with cooling) 
Frequency Range    :   5Hz to 10 kHz 
1st Resonance Freq. :  10 kHz 
Acceleration     :  700 m/s2 (71 g) 
Max. Displacement : 12.7 mm 
Manufacturer           : Bruel & kjaer 

2. Accelerometer 

Type           :  4513-001 
Make           :  Bruel & kjaer 
Sensitivity          :  10mv/g-500mv/g 
Frequency Range        :  1Hz-10KHz 
Supply voltage            :  24volts 
Operating temperature  
Range           : -500C to +1000cconnectors 
Manufacturer               : Bruel & kjaer 

7.2 (b) Accelerometer 
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3. Composite cantilever beam platform 

Damaged (severity 4 mm at middle) cantilever beams 
made from composite with dimension 1000 mm x 50 
mm x 8 mm is used in the set up shown. Apart from 
this fixed-fixed beam & cantilever of all three 
materials (Al, composite, steel) of damage severities 3 
mm, 4 mm, 5mm at middle, one fourth and three 
fourth of total length of beam is engaged for 
experimentation. 
 

7.2 (c) Composite cantilever platform 

4. Vibration Analyzer 

Type          :  3560L 
Product Name           :  Pocket front end 
Manufacturer         :  Bruel & kjaer 
Frequency Range      :  7 Hz to 20 Khz 
ADC Bits         :   16 

  Channels          :   2 Inputs, 2 Tachometer 
Input Type         :   Direct/CCLD 

7.2 (d) Vibration analyzer 

5. Vibration Monitor 

PULSE Lab Shop Software Version 12 
Manufacturer :  Bruel & kjaer 

7.2 (e) Vibration Monitor
6. Function Generator 

Model   :   FG200K   
Frequency 
Range  :   0.2Hz to 200 KHz      
Output Level :   15Vp-p into 600 ohms 
Rise/Fall Time   :  < 300 n Sec 
Manufacturer  :  Aplab 

7.2 (f) Function generator 
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7.3 Results and discussion of experimental analysis 
 

This section presents the analysis of the results obtained from the developed experimental set 

up. 

The damaged beam with different damage severities and damage positions have been tested 

to obtain the mode shape and natural frequency to validate the results from the various 

techniques mentioned above. Table 3.1 to Table 3.6 has been presented in chapter 3 compare 

the results from experimental and numerical analysis for damaged cantilever and fixed-fixed 

beam structures of Al, composite and steel and the results are found to be in close agreement. 

Nine sets of results for relative damage position and relative damage severities have been 

presented in Table 4.1 to Table 4.6 in chapter 4 to show the comparison between the 

experimental and finite element analysis. The results are found to be well in agreement. In 

chapter five, the results for relative damage position and relative damage severities from 

experimental analysis is compared with that of the fuzzy Gaussian, fuzzy triangular and fuzzy 

trapezoidal model in Table 5.3 and they are observed to be well in agreement. The results for 

relative damage position and relative damage severities from the neural model as discussed in 

chapter six are compared with that of the experimental set up and presented in Table 6.2 (a) to 

Table 6.2 (a). The results are found to be in close proximity.  

 

8.  Power Supply: 220V power supply, 50Hz 

7.  Power Amplifier 

Model   :   FG200K   
Frequency 
Range  :   0.2Hz to 200 KHz      
Output Level :   15Vp-p into 600 ohms 
Rise/Fall Time   :  < 300 n Sec 
Manufacturer  :  Aplab 

7.2 (g) Power amplifier 
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8.1  Introduction  

In the current chapter, investigation of the viability of the methods as mentioned in the thesis 

have been carried out, by systematically studying and presenting the performance of each 

methodology used for identification of damage in a  cantilever and fixed-fixed beam 

structures of different materials such as Al, composite and steel. The vibration characteristics 

of the damaged beam members have been engaged to develop the damage diagnostic 

applications. The various techniques applied in the current research for characterization of 

damage in damaged structures are theoretical analysis (Chapter-3), finite element analysis 

(Chapter-4), Fuzzy Inference System (Chapter-5), Artificial neural network (Chapter-6), 

Experimental technique (Chapter-7).  

8.2  Analysis of results 

In the present investigation, for development of damage diagnosis methodologies in structural 

systems, five different techniques (Chapter 3 to chapter 7) have been employed as cited in the 

introduction section of the current chapter. Besides the five chapters, the thesis comprises of 

two other introductory chapters including the Literature review. This section depicts the 

analysis of the results from different chapters of the current research. 

Chapter one the introduction section of the thesis presents the motivation factors to carry out 

the present research along with the aim and objective of the present diagnosis.  

In chapter two various methodologies applied by researchers since last few decades for 

damage identification in engineering systems have been discussed. Applications of AI 

techniques for damage and fault diagnosis in different mechanical and electrical systems have 

also been discussed. This section in particular, provides the knowledge for finalizing the 

motivation of research.  

Chapter 8 
RESULTS AND DISCUSSION 
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The analytical model used to compute the vibration parameters of damaged and undamaged 

cantilever beam structure (Fig. 3.1) and detailed discussion of the theoretical model have 

been made in chapter three of the thesis. During the vibration analysis of the damaged 

cantilever and fixed-fixed beam structures of different materials such as Al, composite and 

steel, the first three relative natural frequencies and first three relative mode shape differences 

of the damaged and undamaged beam have been arbitrated.  The experimental validation of 

the results from the theoretical model has been carried out in this chapter by using the 

developed experimental set up as shown in Fig. 3.5. A comparison of relative damage 

position and relative damage severities from the numerical and experimental analysis have 

been presented in Table 3.1 to Table 3.6, which shows the robustness of the analytical model 

developed for damage identification. 

In chapter four finite element analysis has been conducted to measure the vibration responses 

(natural frequencies, mode shapes) of the damaged cantilever and fixed-fixed beam structures 

of Al, composite and steel. Different damaged beam elements have been considered to 

perform the finite element analysis to estimate the first three natural frequencies and first 

three mode shapes. A comparison of results for relative damage position and relative damage 

severities from FEA, numerical analysis and experimental analysis have been shown in Table 

4.1 to Table 4.6 and they are found to be in close agreement.   

Chapter five describes the steps used to design and develop fuzzy inference system to 

diagnose the damage parameters (position, severity) present in beam like structures in section 

5.2. The fuzzy models have been designed with the help of triangular membership function 

(Fig.5.1 (a)), Gaussian membership function (Fig.5.1 (b)) and trapezoidal membership 

functions (Fig.5.1(c)). Detail architecture of the fuzzy inference system with the input and 

output parameters are shown in Fig. 5.2. The fuzzy models used in the current research for 

detection of damage position and their severity are fuzzy triangular (Fig. 5.3 (a)), fuzzy 

Gaussian (Fig. 5.3 (b)) and fuzzy trapezoidal (Fig. 5.3 (c)) models. The fuzzification 

mechanism using the triangular, Gaussian, triangular and trapezoidal membership functions 

with fuzzy linguistic terms in details are graphically presented in Fig. 5.4, Fig. 5.5 and Fig. 

5.6 respectively. The fuzzy linguistic terms used for formulation of the fuzzy inference 

system is expressed in Table 5.1. Out of several hundred fuzzy rules used for fabrication of 

the fuzzy system for damage identification, twenty numbers are presented in Table 5.2. The 
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defuzzification process adopted to estimate the relative damage position and relative damage 

severity by effectuating the rule no 5 and rule no 15 from Table 5.2 for triangular, Gaussian 

and trapezoidal fuzzy model are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 respectively. Center 

of gravity procedure has been followed to get the crisp value of the relative damage position 

and damage severity. The results for the damage attributes such as relative damage position 

and relative damage severity from the developed fuzzy models (triangular, Gaussian, 

triangular) are compared with that of the numerical, finite element and experimental analysis 

for validation in Table 5.3 (a) and Table 5.3 (l). From the analysis of results in Table 5.3 (a) 

to Table 5.3 (f), it is evident that the fuzzy Gaussian model provides the best results in 

comparison to other two fuzzy models, theoretical analysis and finite element analysis. 

Chapter six analyses the development of an artificial neural network model trained with back 

propagation technique for damage diagnosis in beam structures. The working principles with 

the main features of the neuron model (Fig. 6.1) and the back propagation technique (Fig. 

6.2) have been discussed in section 6.2.1. A schematic diagram representing the proposed 

neural network model with input and output parameters is shown in Fig. 6.3. The working 

model of the 5 layer neural network used in the current research for damage identification in 

beam members with the detail architecture has been exhibited in Fig. 6.4. Table 6.1 (a) to 

Table 6.1 (f) presents the test patterns required to train the neural model to estimate the 

relative damage position and relative damage severity. The results obtained from the neural 

model for diagnosing the damage characteristics are compared with the results obtained from 

the fuzzy models described in the above chapter, FEA and experimental analysis in Table 6.2 

(a) and Table 6.2 (f). By analyzing the results provided in Table 6.2 (a, f), it can be concluded 

that the proposed neural network gives better results in comparison to the fuzzy techniques 

mentioned in the Table 6.2 (a, f).   

The developed experimental set up comprises of the following instruments; 1- Vibration 

analyzer, 2- Accelerometer, 3- Composite cantilever platform, 4- Function Generator,  5- 

Power Amplifier, 6- Vibration Exciter, 7- Vibration monitor (embedded with PULSE 

Labshop software. Section 12.2 presents the procedures adopted to carry out the experiments 

to evaluate the natural frequencies and mode shapes of damaged and undamaged beam 

structures. Efforts have been made to reduce the effect of external parameter such as noise on 

the vibration signatures of the damaged beam during experimentation. 
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In the current investigation, identification and assessment of damages present in structural 

beam members from the measured vibration responses has been emphasized. In the research, 

to design and develop a damage diagnostic tool a vibrating structural member with damage in 

the transverse direction has been studied. During the diagnosis procedure, analytical method, 

finite element method and experimental method have been embraced to realize the actual 

working condition. The measured natural frequencies and mode shapes at different modes of 

vibration, which are known as modal parameters, have been used to develop inverse 

methodologies based AI techniques such as fuzzy logic, neural network techniques for 

identification of relative damage position and relative damage severity.  

From the analysis and discussion of the results from the various techniques cited in the above 

chapters, the following contributions and conclusions have been presented in section 14.1, 

14.2 and section 14.3 respectively.  

9.1  Contributions 

It is a fact that, the damages present in structural systems introduces a local flexibility, which 

is a function of damage characteristics such as position and severity. The change in flexibility 

changes the dynamic responses like frequency response and amplitude of vibration. In 

previous works done by various researchers, damage diagnosis of structures has been studied 

to explore the effect of damage on the natural frequencies and mode shapes. In the current 

research, effort has been made to design artificial intelligent inverse models to detect the 

damage positions and their severities present in structural systems using the natural 

frequencies and mode shapes.  

In the current research work, damage identification tool has been modeled using the stress 

intensity factors and strain energy release rate to estimate the deviations in the vibration 

Chapter 9 
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parameters due to the damage present in the damaged structures. Finite element analysis and 

experimental analysis have also been engaged on the damaged beam members of different 

materials with different boundary conditions to determine the impact of damages on the 

dynamic characteristics of the beams. Moreover, AI models have been composed for damage 

diagnosis using fuzzy inference system, artificial neural network. 

9.2  Conclusions 

The conclusions are drawn on the basis of results obtained from various analyses as discussed 

above. 

 Theoretical and finite element analyses have been presented to identify characteristics 

(natural frequencies, mode shapes) of the structural response that is associated with 

the presence of transverse damage.  

 During the analysis it is observed that, the alteration in frequency response due to the 

presence of damages is very less significant for small value of damage depth ratio. 

But the effect of damage severities is very prominent on the mode shapes. So, any 

change in frequency and mode shape allow characterizing the damage efficiently.  

 Experimentations on the damage cantilever & fixed-fixed beams of Al, composite and 

steel with different configuration of damage positions and damage severities have 

been performed to compare the modal parameters obtained from the analytical and 

finite element model and the results are found to be in very good agreement.  

 The vibration signatures from the first three modes of the cantilever & fixed-fixed 

beams of Al, composite and steel and the corresponding relative damage severities 

and damage positions have been used to design the fuzzy inference system for damage 

detection in structural beam members. 

 The fuzzy system has six inputs and two outputs. The fuzzy models are based on 

fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal membership functions. From 

the analysis of results, it has been found that, the proposed fuzzy inverse technique 

estimates the relative damage positions and their severities more accurately than the 
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theoretical and finite element analysis. Experimental data have also been used to 

validate the results from the fuzzy models.  

 From the analysis of the results of the three fuzzy models for relative damage 

severities and relative damage positions, it is observed that the fuzzy model with 

Gaussian membership function produces better results than the fuzzy model with 

triangular membership function, fuzzy model with trapezoidal membership function.  

Hence, the fuzzy Gaussian model was found to be most desirable to identify the 

damage in vibrating engineering systems.  

 A multi layer artificial neural network model with six inputs and two outputs has been 

devised for damage diagnosis in beam structures. The training patterns for the 

proposed neural network model have been derived from theoretical, finite element and 

experimental analysis. The results estimated by the neural network for relative 

damage severities and relative damage positions are very closer to the experimental 

results, thereby justify the engagement of neural model in damage diagnosis beam 

structures.  

 From the comparison of results (relative damage severities and relative damage 

positions) among the fuzzy models and neural model, it is clear that the results 

obtained from neural system are converging towards actual results in contrast to the 

fuzzy models. 

 The developed damage diagnosis tool can be utilized for online condition monitoring 

of turbine shafts, various engineering structures such as bridges, cranes, towers, 

industries, mechanical structures, beam like structures, marine structures, engineering 

applications, etc.  

9.3  Future work    

•  The artificial intelligent techniques can be used in hybrid form such as neuro-

fuzzy, GA-fuzzy, neuro-fuzzy-GA etc.  to diagnose faults in complex 

engineering structures.  

• The composite material used can be varied with different orientations for test 

specimen. Moreover, structural beam members of non-uniform cross section 

can also be considered for analysis. 
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• Apart from the mega structures, micro leveled structures can also be subjected 

to damage diagnosis techniques, which subsequently assist to ensure the 

functioning of small robots.  
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APPENDIX 

 

  

Fig. A. 1 Meshed composite cantilever beam model 

Fig. A. 2 Deformed shape for 1st mode of vibration of composite cantilever 
beam without damage 
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Fig. A. 3 Deformed shape for 2nd mode of vibration of composite cantilever 
beam without damage 

Fig. A. 4 Deformed shape for 3rd mode of vibration of composite cantilever  
beam without damage 
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 Fig. A. 6 Deformed shape for 1st mode of vibration of composite cantilever 
beam with damage 4mm 

Fig. A. 5 Meshed composite cantilever beam model with damage 4mm 
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Fig. A. 8 Deformed shape for 3rd mode of vibration of composite cantilever beam 
with damage 4mm 

Fig. A. 7 Deformed shape for 2nd mode of vibration of composite cantilever 
beam with damage 4mm 
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Fig. A. 9  Meshed composite fixed-fixed beam model with damage of 4 mm 

Fig. A. 10 Deformed shape for 1st mode of vibration of composite 
fixed-fixed beam with damage of 4 mm 
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Fig. A. 12 Deformed shape for 3rd mode of vibration of composite 
fixed-fixed beam with damage of 4 mm 

Fig. A. 11 Deformed shape for 2nd mode of vibration of composite 
fixed-fixed beam with damage of 4 mm 


