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Abstract

This thesis diagnoses the damaged vibrating structural members of different materials using the
parametric responses of the dynamic system. Almost all engineering structures designed for long
life span are influenced by alteration in loading patterns. Changes in the loading patterns, loss of
load carrying capacity of structures with time and impact of environment often lead to the
structural damage. Therefore, early diagnosis of damage can avert the sudden failure of the
structures by rendering the system to sound monitoring of the response generated. Damage
diagnostic tool for condition monitoring of the structural systems appealed the scientists and
researchers for more analysis. The modal parameters of the vibrating structures play a crucial
role in monitoring the damaged structures. In the present analysis, special attention has been
focused for detecting the damages present in Al, composite and steel beam structures by
comparing the characteristics of damaged and undamaged state of the structures. In the current
research, damage detection of damaged cantilever and fixed-fixed beam is carried out using
numerical, finite element analysis (FEA), fuzzy logic and neural network techniques. Numerical
analysis has been performed on the cantilever beam & fixed-fixed beam with damage in the
transverse direction to obtain the vibration parameters of the beam members utilizing the
expression of strain energy release rate and stress intensity factor. The presence of damage in a
structural member introduces local stiffness that affects its dynamic characteristics. The local
stiffness matrices have been determined using the inverse of local dimensionless compliance
matrix for finding out the deviations in the vibrating signatures of the damaged beam structures
from that of the intact beams. Finite Element Analysis has been carried out to derive the vibration
indices of the damaged structures using the overall stiffness matrix, total stiffness matrix,
stiffness matrix of the intact beams. It is concluded from the conducted research that the
performance of the damage diagnosis techniques depends on several factors for example, the
material type, the number of sensors used for acquiring the dynamic response, position and
severity of damages. Different artificial intelligent model based on fuzzy logic, neural network
have been designed using the estimated vibration signatures for damage diagnosis in beam

structures with higher precision and remarkably low calculating time.
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Chapter 1
INTRODUCTION

In recent times, damage diagnosis in the vibrating beam structures challenges the scientists
and researchers due to the usage of varieties of materials. The existence of damage or fault
like crack, fracture, surface irregularities etc. in a beam structure for prolonged time enhances
the chances the system failure which lead to causalities and loss of properties. In various
engineering systems, vibration response of the structural members can be utilized as an
effective tool for damage arbitration. The current chapter presents the various damage
diagnosis methods that are being used over the time. The background and motivation in the
field of analysis of dynamically vibrating damaged structures has been depicted in the first
section. The second part of this chapter describes the aims and objective of the research. The
last part of the current chapter gives a brief description of each chapter of the thesis for the
current research.

1.1 Motivation for Damage Diagnosis

Engineering structures play a pivotal role in many areas like the bridges, construction sites,
industries, towers etc. Long life span is the most important parameters required for these
structures. The failure or irregular behavior of engineering structures may cause devastation
in transportation system leading to loss of lives and property. Hence, structural integrity of
the structural member is to be maintained by installing a efficient and reliable monitoring, so

that proper remedial measures can be taken.

Many techniques have been implemented in the past for damage diagnosis. Some of these
methods are based on visual detection using some dye and other use sensors involving
acoustic emission, magnetic field, eddy current, radiographs and thermal fields to identify
local damage. The drawbacks of these methods are their inability to test the structure without
going in to minute structural analysis which is very time consuming. Moreover, if damage is
rooted away from the surface and deep within the structure, it may not be detectable by these
localized methods. The changes in the modal parameters of the structural beam member are

used by the researchers to characterize the damage using various reverse engineering

1



techniques like Artificial Intelligence (AI) based techniques for quicker and precise

estimation.

Motivated by the above reasons, this thesis aims at exploring the use of Al techniques such as
fuzzy and neural network for damage diagnosis in engineering structures at an early stage by

perceiving the vibration responses.

1.2 Objectives of the thesis

Various engineering fields like mechanical, civil, aerospace etc. by some way or other
associated with the services of structural members. So to ensure the safe operation, damage of
any kind is to be diagnosed properly so that any sudden failure of the system can be halted to
introduce required measures. Therefore, early identification of damage is very much required

to avoid the complete abortion of any system in a functioning mode.

Different types of beam elements constitute the structures which are main supports of almost
every engineering system. Therefore, it is obvious that the structures are subjected to
fluctuation of loading i.e. static loading & dynamic loading. So the load carrying capacity of
the structures gradually diminishes which results in the formation of damage in the member.
Moreover, the environmental conditions are also having a huge impact on the structures.
Hence life span of the structural element is drastically reduced. An analytical model can be
developed utilizing the presence of damage which helps in the investigation of effect of the
damage on the vibration characteristics of the system. An additional stiffness is introduced in
the structural beam member due to the presence of damage, which can be utilized along with
the existing boundary conditions to express the vibration chacteristics of the beam in terms of
mathematical equation. The modal parameters such as the natural frequency, mode shape and
damage characteristics such as the damage depth and damage position can be extracted from
the characteristics equation. The present investigation aims to develop an intelligent diagnosis
system of structures consisting of different materials like aluminium, steel and glass fiber
reinforced composite beam using the deviation in modal parameters of the structural members

due to the presence of damage.



For this prospect, cantilever beams & fixed-fixe beams of Al, steel and composite materials
with uniform cross section have been examined, which act as a structural member in various
engineering applications. The dynamic responses of the structural beam members have been
evaluated in the undamaged state, which act as the basis for standardization. Thereafter,
damages of various severities at different positions have been introduced and thus alterations
in modal parameters have been identified for each state of damage. Consequently, a
correlation has been established between the dynamic behavior and the existence of damage
in the structures which helps in the development of different Al technique based model to
conduct the structural health monitoring, varying the damage characteristics for different
materials. The objective is to compare the results obtained from different methods for damage

diagnosis.

In the present analysis, extensive literature survey has been carried out related to the domain
of damage diagnosis in engineering applications. From the previous analysis, it is observed
that the results obtained by the researchers have not been effectively used to design tools for
real applications such as damage diagnosis of different materials. In the current investigation,
an attempt has been made to design and develop a tool using the dynamic behavior of
damaged and undamaged beam structure using theoretical analysis, finite element analysis,

experimental analysis and artificial intelligence techniques.

The different stages for the present analysis are listed below:

1. Theoretical analysis for the cantilever and fixed-fixed beam structures with damage have
been performed to evaluate the modal parameters.

2. Finite Element Analysis (FEA) has been carried out to measure the vibration responses of
the damaged and undamaged cantilever beam and fixed-fixed beam with different damage
characteristics.

3. First three relative natural frequencies and average relative mode shape differences of the
damaged structural beams are estimated by the observations obtained from the experimental
set up.

4. The vibration responses such as natural frequencies and mode shapes obtained from

theoretical, finite element and experimental methodologies have been used to design the



models based on artificial intelligence techniques. The developed AI based models have
made use of the first three relative natural frequencies and first three average relative mode
shape differences as the input parameters and relative crack positions and relative damage
depths as the outputs.

The theoretical study has been materialized for a structural beam element with a damage to
obtain the vibration characteristics by utilizing the expressions of strain energy release rate
and stress intensity factors. The presence of damages produces the local stiffness at the
localized damage position and lowers the stiffness of the structure. The stiffness matrix has
been formulated to explore the impact of relative damage position on the dimensionless
compliances of the structure varying the boundary conditions. The arbitrated vibration
signatures from theoretical, finite element and experimental analysis of the beam member
have been used to conceptualize and train the AI model (fuzzy, neural network).
Conclusively, relative damage positions and relative damage depths are the outputs from the

model.

The results obtained from the various methodologies such as theoretical, finite element,
experimental, fuzzy, neural network conceived in the current investigation have been
compared and a close agreement has been found. Concrete conclusions have been drawn from
the results of respective sections. The results are approved by experimentations performed for

the various techniques mentioned above.

1.3 Organization of the thesis
The content of the thesis is organized as follows:

The investigations carried out in the present research for damage identification in faulty

structures are presented in following chapters.

Chapter 1 depicts the effect of damage on the functionality execution of different engineering
applications and also outlines the methodologies being adopted by the researchers to diagnose
damages in different industrial applications involving the structural beam elements. The
motivation to carry out the research along with the focus of the current analysis is also

explained in this chapter.



Chapter 2 is the literature survey section representing the published work from the domain of
damage identification using vibration signatures and AI techniques. This chapter also
expresses the classification of techniques in the field of damage diagnosis and justifies the

need of current analysis.

Chapter 3 presents the theoretical model to estimate the vibration characteristics (natural
frequencies, mode shapes) by using stress intensity factor, strain energy release rate and
employing different boundary conditions. The presence of damage in the structure introduces
flexibility at the localized damage position which in turn, brings down the natural frequencies
and the change in the mode shapes. This concept has been applied in the numerical
interpretation to detect the existence of damages in the structure beam members and also to

estimate the damage positions and their intensities.

Chapter 4 of this work develops the finite element model of the damaged structural beams to
arbitrate the vibration responses, which in turn can be utilized to determine the presence of
damage and damage characteristics. The responses from finite element analysis are arranged
in contrast to the responses obtained from experimental method and numerical analysis for

validation.

Chapter 5 introduces the implementation of fuzzy inference system for damage identification
in structural beams. In this section, the paths for developing the fuzzy models are illustrated.
The triangular, Gaussian and trapezoidal membership functions based intelligent model with
their detail architecture are briefly discussed. The comparison of fuzzy based results and

experimental results is also presented.

Chapter 6 presents a reverse engineering based artificial neural network technique for
effective diagnosis of damage in a structure. The multi layer perceptron with the input and
output parameters are depicted and narrated thoroughly. The results from artificial neural

network are presented and discussed to demonstrate the implementation of the AI model.

Chapter 7 presents the experimental procedure along with the instruments used for validating

the results from methodologies being adopted in the present investigation for damage
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identification. The test specimen fabrication steps are outlined. The results from the

developed experimental set-up have been obtained and presented for discussion.

Chapter 8 provides a comprehensive review of the results obtained from all the techniques

adopted in the current research.

Chapter 9 discusses the conclusions drawn from the research carried out on the current topic

and gives the recommendations for scope of future work in the same domain.



Chapter 2
LITERATURE REVIEW

This chapter presents a contemporary study of the vibration based damage identification in
structural systems. The main objective is to study the developments made by researchers
during the last few decades. Different issues like implementation of damage diagnosis
methods, general methods of classification, and a review of a selected group of methods are
discussed. Finally, the applications of artificial intelligence techniques for damage diagnosis

are discussed from the early developments.

2.1 Introduction

The literature review section presents the analysis of the published work confined to the areas
of structural health monitoring, damage detection algorithm, damage diagnostic
methodologies and modal testing. The review begins with the description of different
vibration analysis methods used for damage identification. Besides, vibration of damaged
structures, fault identification methodologies to develop damage diagnostic tool using Finite
Element Analysis (FEA) and wavelet technique are discussed. Then, the artificial intelligence
techniques (fuzzy logic, neural network) based models for damage identification can be
designed. The aim of the present investigation is to develop an artificial intelligent technique,
which can be capable to predict the presence of damage irrespective of the material and
dimension used for vibrating structures. The possible directions for research can be obtained

from the analysis of the literature cited in this section.

From the authentic works, wide variations are observed in damage identification of various
systems. In spite of the fact that, there is a wide variation in development of fault diagnostic
methodology, the upcoming section demonstrates the review of the literature relevant to

damage detection and identification.



2.2  Methodologies for damage detection

Researchers have zeroed in on many techniques for identification of fault in various stages of
engineering structures applications. Dynamics based methods are found to be effectively used
for health monitoring in irregular systems. The recent methods seasoned for fault diagnosis
are presented below.

Douka et al. [1] have presented a method for determining the location and crack depth in double
cracked beam. For diagnosing the crack, variation in natural frequency and anti-resonance properties
are used by them. Huh et al. [2] have used a methodology in which the rate of vibration energy
determined from the accelerations of the beam structures to detect a local damage. This method is
approved by using a uniform beam with an open crack both by Numerical and experiment method.
Nahvi et al. [3] have used natural frequencies and mode shapes of the beam structure as input
parameters for analytical and finite element method to identify the crack in cantilever beam. Darpe et
al. [4] have analyzed the cracked rotor with a crack present at the center imposed with axial forces for
it’s unbalanced response with the help of electro-dynamic exciter to differentiate between rotating and
non rotating conditions. Hein et al. [5] have presented a new method for identification of delamination
in homogeneous and composite beams. They have used Haar wavelets and neural networks to
establish the mapping relationship between frequencies, Haar series expansion of fundamental mode
shapes of vibrating beam and delamination status. They have revealed that the simulations show the
proposed complex method can detect the location of delaminations and identify the delamination
extent with high precision. Curry et al. [6] have suggested a fault detection and isolation methodology
based on fixed threshold using a closed loop system with the help of sensors. They have noticed the
fault and distinguished the failure for each sensor. Hoffman et al. [7] have employed a diagnostic
technique based on neural network. As described in the paper, it is impossible to determine the degree
of imbalance in a bearing system using single vibration feature and to overcome this problem they
have used the neural network technique for processing of multiple features. For the purpose of fault
detection of different bearing conditions they have employed different neural network technique and
compared their performances. They have found that the developed algorithm can be suitably used for
identifying the presence of defects. Salam et al. [8] have analyzed the lateral vibration of an Euler-
Bernoulli beam accompanied with a single edge open crack to compare the mode shapes of damaged
and undamaged beam by a interpreted formula for the stress correction factor in terms of the damage
characteristics. Sanza et al. [9] have developed a new method for health monitoring of rotating

machinery by utilizing the capabilities of wavelet transform and auto associative neural network for
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arbitrating the vibration responses. Numerical and experimental dynamic analysis is performed to test
the effectiveness of the results obtained. Murigendrappa et al. [10] have diagnosed damaged pipes of
aluminium & mild steel with water as fluid medium at different pressure utilizing the variations in

natural frequencies.

2.3 Analysis of different methodologies for damage detection

In this section, the various techniques applied for damage detection in vibrating structures
have been outlined. The different methods that have been proposed by various experimenters

for damage identification are categorized into four sections such as:

1. Classical method
2. Finite Element Method
3. Al method

4. Miscellaneous methods.
2.3.1 Damage detection using classical methods

This section presents the review of energy based method, analytical methods, algorithms
based on dynamic responses etc. used for arbitrating the damage location and its intensity in
dynamically vibrating damaged structures. The works of various researchers connected to the

above methodologies are discussed below.

Chinchalkar [11] has extracted the first three natural frequencies of the cracked beam to
identify the crack using a finite element by considering the different boundary conditions and
crack depth. Loutridis et al. [12] have interpreted the dynamic behavior of the cracked
structure theoretically and experimentally by a new technique based on instantaneous
frequency and empirical mode decomposition. A compliance matrix is formulated by Tada et
al. [13] in damaged structure for determining the crack location and crack depth. A modal
analysis is conducted by Ravi et al. [14] on an aluminium sheet having micro cracks
generated by compression loading and the deformation is tracked using the acoustic emission
technique. Owolabi et al. [15] have investigated the position and severity of crack for Al
fixed-fixed and simply supported beams by fixing the first three natural frequencies and mode

shapes. Dado [16] has worked out a mathematical model to observe the crack position and
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severity for beams with various end conditions such as pinned-pinned, clamped free,
clamped-pin and clamped-clamped considering the beam to be Euler-Bernoulli beam and
concluded that the results obtained are useful input parameters to codify the crack though the
assumptions don’t have the convergence with the real time applications. Babu et al. [17] have
proposed a technique using the amplitude deviation curve, which is a modification of the
operational deflection shape for crack identification in rotors. Gounaris et al. [18] have
established a functional relationship between the crack parameters and modal responses
assuming development of an open crack and the results are approved by the Eigen mode
comparison of damaged and undamaged beam. Patil et al. [19] have assumed the cracks as
rotational spring for developing an algorithm for damage properties evaluation in a slender
Euler-Bernoulli beam using variation in natural frequencies and transfer matrix method.
Prasad et al. [20] have analyzed crack growth rate at different frequencies using the
experimental setup to determine the effect of location in a vibrating cantilever beam. Al-said
[21] has implemented the crack diagnostic method using the alteration in natural frequencies
for a stepped cantilever beam carrying concentrated masses and subsequent results obtained
are validated by finite element method. Wang et al. [22] have investigated the crack position
and severity of a composite cantilever having a surface crack by establishing a dependency

between frequencies of the vibrating cantilever beam and material properties.

The finite element methods and wave propagation technique have been used for estimating

the size and severity of damages and those are being discussed in the next section.

2.3.2 Damage detection using finite element method

Apart from the classical methods, the finite element methods are also implemented by various
experimenters for damage detection in affected structures, those have been reviewed in this

section.

Ostachowicz et al. [23] have proposed a method assuming an open and closed crack with
triangular disk finite elements. He has analyzed the forced vibrations of the beam, the effects
of the crack locations and sizes on the vibration behavior and discussed a basis for crack

identification. Krawczuk et al. [24] have proposed a finite spectral element method & wave

10



propagation analysis to determine the modal parameters of a cracked Timoshenko beam.
Saavedra et al. [25] have developed a finite element stiffness matrix for the vibration analysis
of the multi-beam structure with different boundary conditions. Kisa [26] has investigated to
trace the cracks and nature of cracks in a composite structure made of graphite fiber
reinforced polyamide cantilever. He has modeled the problem using finite element and the
component mode synthesis methods. He has used fracture mechanics theory to derive
stiffness matrix as the increase of the compliance matrix calculated with proper stress
intensity factor and strain energy release rate expressions. He has studied the effects of
location and depth of crack and the volume fraction and orientation of fiber on the natural
frequencies and mode shapes of the beam with transverse no propagating open crack.
Chandros et.al [27] have analyzed the dynamic characteristic of a breathing crack and have
compared the effect of breathing crack and open crack on natural frequency of the damaged
beam. They have considered the non-linearity associated with the breathing crack using one
dimensional crack beam theory. They have observed that a fatigue crack behaves as breathing
crack in absence of preload and will result in smaller drop in natural frequency. Qian et al.
[28] have employed stress intensity factor to realize a finite element model for crack detection
in a damaged beam and the results obtained are validated by the experimentation performed
on complex structures. Panigrahi [29] have performed a three dimensional non-linear finite
element analysis to evaluate the normal and shear stress along the overlap zone in a fiber
reinforced composite material. Shekhar et al. [30] has determined the dynamic responses

utilizing a model based on finite element analysis.

Besides the classical methods, wave propagtaion and finite element methods, Artificial

Intelligence Techniques are also being fitted by researchers for damage identification.

2.3.3 Damage detection using Al technique

In this section different types of Artificial Intelligence Techniques are discussed in the field
of damage detection in damaged structures. The Al techniques again are categorized in two

sub group.

11



a) Fuzzy Inference method

b) Neural Network method

2.3.3.1 Fuzzy inference method

In this section, or damage identification technique supplemented with different fuzzy

inference models are outlined.

Chandrashekhar et al. [31] have proposed that, for the damage diagnosis the geometric and
measurement uncertainty are the issues to be taken care of. They have addressed the
uncertainty associated with the fuzzy logic system for structural damage detection utilizing
the results obtained from Monte Carlo simulation involving the study of changes in the
damage indicator due to uncertainty in the geometric properties of the beam. Boutros et al.
[32] have identified the transient and gradual abnormalities using fuzzy logic approach with
the help of four condition monitoring indicators. They have compared the fuzzy based
technique in two different applications with satisfactory validation. Miguel et al. [33] have
developed a decision making segment based on fuzzy logic the damage diagnosis
applications. The input and output parameters of an isolation system are successfully utilized
in laboratory equipments to maintain the uncertainty level with in the acceptable range. Parhi
[34] has developed a fuzzy inference based guiding mechanism for multiple robots working
in obstacles hindered environment. They have been designed to navigate in an environment
without hitting any obstacles along with other robots. Fox [35] has analyzed the role of fuzzy
logic in medical diagnosis and reveals the presence of various concerns regarding the
information-processing techniques in the development of medical computing. Dash & Parhi
[36] have used the fuzzy logic based techniques to detect the cracks in a cantilever beam of
uniform cross section. They have utilized the dynamic characteristics such as change in
natural frequencies and mode shapes as input to the fuzzy model to predict the crack position
and severity, which is subsequently validated by finite element and experimental methods.
Angelov et al. [37] have used the developed fuzzy system for image classification in on line
mode utilizing the approaches cited for improving the realization of on line fuzzy classifier.

Zimmermann [38] has obtained the comparatively effective solution for linear vector
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maximum problem through fuzzy linear programming approach for solving linear vector
maximum problem. Sugumaran et al. [39] have proposed a decision tree of a fuzzy classifier
for selecting best few feature that will differentiate the fault condition of the bearing from
given trained samples. The vibration signal from a piezoelectric transducer is captured for
different types of fault condition of bearing and is used to build the fuzzy rules. The results
obtained from the fuzzy classifier are encouraging when compared with that of the
experimental analysis. Kim et al. [40] have come up with a computer based damage diagnosis
system for concrete structures using Fuzzy set theory. They have applied the enhanced
technique to diagnose the damage using the damage attributes as building blocks to model the
fuzzy inference system and the results obtained are very encouraging when compared with
the standard ones. Mohanta et al. [41] have done the justice to the maintenance scheduling of
a captive power plant with the help of a fuzzy Markov model, taking the various parameters
affecting the failure repair cycle in to account. Parhi [42] has developed a fuzzy inference
based navigational control system for multiple robots working in a clumsy environment. They
have been designed to navigate in an environment without hitting any obstacles along with

other robots.

2.3.3.2 Neural network method
In this section, the important role played by Artificial Neural Networks (ANN) for damage

characterization has been described.

Eski et al. [43] have proposed damage detection technique for an experimental industrial
welding robot via neural network modeling, for which measurement parameters are extracted
from the Joint accelerations of robot. They have analyzed the welding robot having six degree
of freedom to note the related values and accelerations. The results confirm the robot stability
of RBNN to interpret the acceleration of manipulator joints in a prescribed trajectory. Parhi &
Dash [44] have analyzed the cantilever beam with multiple crack for it’s vibrational
characteristics, which in turn is being utilized to train the neural network controller
complemented with back propagation technique. Paviglianiti et al. [45] have developed a
method for detecting and isolating sensor faults in industrial robot manipulators. They have

adopted a procedure to separate the disturbance effect from the effect of the fault generated in
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the system. The dynamics of the proposed methodology has been refined by using radial basis
functions neural network. Mehrjoo et al. [46] have presented a damage identification inverse
algorithm to investigate the damage severities of joints in truss bridge structure using back
propagation neural network method. Saravanan et al. [47] have implemented the fault
diagnosis in bevel gear box with the effcetiveness of an artificial neural network, wave let and
proximal support vector machine. Wu et al. [48] have proposed a damage diagnosis technique
for internal combustion engine using discrete wavelet transform (DWT) and neural network.
The DWT technique has been amalgamated with the selective feature of energy spectrum for
the development of the purposed fault detection algorithm. Oberholster et al. [49] have come
up with a technique for online structure health monitoring of blades with axial flow utilizing
neural network. The vibration responses are extracted from the experimental test structures
for the modeling of neural network by the implementation of frequency response function and
finite element models. They are assured regarding the online damage classification using
sensor for the test structures by their proposed technique. Agosto et al. [S0] have coupled the
neural network method with a combination of vibration and thermal damage detection
signatures to develop a damage defection tool, which they have implemented on sandwich
composite for the purpose of damage detection. Ghate et al. [51] have developed a multi layer
perceptron neural network based classifier for damage detection in induction motors which is
inexpensive, reliable by engaging the available information such as stator current. They have
used simple statistical parameters as input feature and principal component analysis has been
used for reduction of input dimensionality. They have also certified their methodology to
noise based technique. Das & Parhi [52] have presented an artificial neural network (ANN)
technique to predict crack location and crack depth in a cracked cantilever beam. They have used first
three relative natural frequencies and relative mode shapes as input parameters to the ANN and
obtained relative crack location and crack depth as output parameters. They have obtained local
stiffness using strain energy release rate at the location of the crack. Parhi & Chaudhury [53] have
presented a paper using the concept of fuzzy logic and artificial neural network (ANN) for damage
diagnosis of the cracked cantilever beam. They have used the local flexibility introduced at the crack
location as parameter to detect the presence of crack with its location and size. The analysis is based
on using hybrid membership functions (triangular, trapezoidal, Gaussian) as input to fuzzy controller

and trapezoidal membership functions as output.
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2.3.4 Miscellaneous techniques used for Damage detection

Besides all techniques reviewed above, some miscellaneous methods and tools are also very
important in identifying the damage with refined accuracy and some of them are briefly

discussed in this section.

Gentil and Messina [54] have investigated the usefulness of continuous wavelet transform (CWT)
technique to detect the crack in beam structure by minimizing measurement data and baseline
information of the structure. They have used the intrinsic capability of the wavelet for translating the
data into the CWT and the redundancy of the data of the CWT in the functional space is able to locate
the cracks even in the presence of noisy data. Rao et al. [55] have presented a method for crack
identification in a cracked cantilever beam by the vibration signatures using continuous
wavelet transform technique. The results obtained from this method on comparison with the
analytical and experimental methods give satisfactory remarks. Kim et al. [56] have proposed
a methodology for condition-based maintenance scheme in industrial machines by correctly
measuring the remaining life of the machine component utilizing the support vector machine
tool. The results obtained have been very satisfying and can be used as an important tool for
prediction of remaining life of machineries. Zheng et al. [57] have presented a tool for
dynamic stability analysis of damaged hollow beams. According to him each damage is
attached with a local flexibility coefficient which is a function of intensity of damage. He has
used least squared method to formulate the shallow cracks and deep cracks. In this work, he
has adapted Hamilton’s principle to formulate the governing equation by employing the
flexibility coefficient of the cracks which serves as that of the rotational spring. Quek et al.
[58] have analyzed the sensitivity of wavelet technique in the identification of cracks in beam
structures considering the effects of different crack properties, boundary conditions, and
wavelet functions. From the analysis, they have concluded that the wavelet transform is a
useful tool in identification of cracks in beam structures. Cao et al. [59] have developed a
genuine Laplacian technique to form an enhanced damage identification algorithm. They
have noted the modal curvature to develop the diagnostic technique. The results from the
proposed Laplacian scheme have been compared with experimental results to only have
encouraging remarks. Karagac et al. [60] have investigated the effect of crack ratios and crack

location on the fundamental frequency of a cantilever slender beam with an edge crack subjected to
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free vibration and lateral buckling. They have established that the presence of cracks reduce the
fundamental frequency and buckling load. Rus et al. [61] have developed a methodology based
on hyper singular shape sensitivity boundary integral equation for solution of the inverse
problem for crack identification. The accuracy and convergence of the sensitivity for the
proposed method has been verified with the simulation and experimentation. Friswell [62]
has described the use of inverse method in the detection of damage location and size by using
vibration responses and identified the abnormal parameters associated with the model.
Moreover, he has pointed out a number of concerns involved in this method for health
monitoring, including modeling error, environmental efforts, damage localization and
regularization. Fagerholt et al. [63] have analyzed the fracture behavior of a cast aluminium
alloy by making use of classical flow theory for modeling the fracture. They have also taken
care of Digital Image Correlation (DIC) to obtain information of the displacement and strain
field in the test specimen. The results from the numerical analysis are found to be in very
good agreement with the experimental data. An & Sohn [64] have proposed a damage
identification technique utilizing the impedance and guided wave signals obtained from
piezoelectric transducers mounted on surface. The proposed technique is very effective on
high temperature condition. Fledman [65] has presented the application of Hilbert transform
to non-stationary and nonlinear vibration system by conceptualizing the actual mechanical

signals and utilizes the Hilbert transform for diagnosis of mechanical systems.
2.4 Concluding remarks from literature review

The concluding remarks drawn from the above literature review are actually showing the
direction for the concerned research conducted. Though, analytical methods and artificial
intelligence (Al) techniques are already in use by various researchers, but the concentration is
focused on same material without varying the damage characteristics. Therefore, analyzing
the dynamic characteristics of different materials with variations in damage characteristics in

the same platform is really interesting, which is explored in this research work.

In the current research, a systematic effort has been made to develop Al based intelligent

system for structural health monitoring of beam model using fuzzy inference, neural network
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techniques. The dynamic parameters required to design and train the Al model have been
obtained by using the theoretical, finite element and experimental analysis of the beam

structure.
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Chapter 3

ASSESSMENT OF MODAL PARAMETERS OF BEAM
STRUCTURE WITH DAMAGE IN TRANSEVERSE DIRECTION

Presence of damage hinders the optimum performance of structural beam assembly or
constituents of machinery. Presently, most of the failures encountered by various mechanical
structures are due to material fatigue which leads to the development of different forms of
damage like crack, fracture or any other irregularities. Therefore damage detection and
localization is the main topic of discussion for various researchers across the globe. The
dynamic characteristics such as natural frequencies and mode shapes due to vibration of
whole structure are affected due to the presence of a crack as the stiffness of that structural
element is altered i.e. there is a reduction in natural frequencies, an increase in modal

damping.

3.1 Introduction

In the recent times, the modal parameters of damaged structure have been investigated
thoroughly by different experimenters. The responses of vibrating members are found to alter
due to presence of damage in the structure and the extent of variation is a function of damage
intensity and it’s position. Engineers and scientists have pronounced the effect of damage on
the natural frequencies and mode shapes of dynamically vibrating structure, utilizing which in
turn can be efficiently utilized for developing crack identification algorithms can be
actualized. This chapter puts forth a systematic approach to evolve a theoretical model to
estimate the effect of damage on the dynamic characteristics of the cantilever beam & fixed-
fixed beam structure. The dimensionless compliance matrices and subsequently the local
stiffness matrices can be developed by making use of the Stress intensity factor and strain
energy release rate from linear fracture mechanics theory. Moreover, the stiffness matrix has
been utilized to assess the deviation in the dynamic response of the damaged beams in

contrast to that of the undamaged beam. In the theoretical interpretation, different boundary
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conditions have been engaged to evaluate the natural frequencies and mode shapes for the
cantilever and fixed-fixed beam structure with various damage depths and damage positions.
The dynamic responses obtained from the theoretical modeling have been validated by
comparing the results with that of the experimental analysis.

3.2 Vibration attributes of damaged beam structures

3.2.1 Theoretical interpretation

In this section, theoretical modeling of cantilever beam and fixed-fixed beam is realized to
estimate the vibration characteristics such as natural frequencies and mode shapes of the
damaged structures with different relative damage positions and relative damage severities
presents the approach adopted to build the theoretical model for measuring the modal and
undamaged beam structure. During the interpretation of the theoretical outcomes, significant
divergence is noticed for the first three mode shapes in the localized damage position, which

can further be certified with the results obtained from the experimental analysis.

3.2.1.1 Evaluation of local flexibility of the damaged beam under axial force and bending

Fig. 3.1(a) and 3.1(b) illustrate cantilever & fixed-fixed beam, subjected to axial load (P;) and
bending moment (P;), which effectuate combining effect in terms of longitudinal and transverse
motion of the beam respectively. The beams contain damage in transverse direction of depth ‘a;’
having width ‘B’ and thickness ‘W’. The existence of damage in the beam structure modifies the

localized flexibility square matrix of two dimensions.

At the damaged portion, strain energy release rate can be explained as [13];

1-v? : .
J =%(K 1 +K,)?, Where % = EV (for plane strain condition); (3.1a)
= %(for plane stress condition) (3.1b)

The Ky, Kj» are Stress intensity factors for 1" mode of vibration for load P; and P,

respectively. The values of stress intensity factors from the referred article [13] are;
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P, a._ . 6P Ay
ﬁ\%(ﬁ =K 5 Jma (EG)=Ke (3.2)

The expressions for F; and F; are as follows

N
a. 2W._ma s [0.752+2.02(a/W)+0.37(1-sin(az/2W))’
Fl(W) = ma tan(ZW)) { cos(arz/2W) } > (3.3)
P, (%) _ W s {0.923+o.199 (1—sin(a7r/2W))4}
ma 2W cos(arz /2W)
J

Fig. 3.1 (a) Schematic diagram of cantilever beam

1
ﬂ‘iﬁ j
I

Y

Fig. 3.1 (b) Schematic diagram of fixed-fixed beam

According to Castigliano’s theorem (Taking the assumption, strain energy due to the damage

as Uy) the extra extension along the force P; is;
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a

The form of strain energy will have, U, =IJ da = J‘ o, da
0

v Oa

ou
Where J= a—‘ the strain energy density function.
a

Hence, from equations (3.1) and (3.3), we can have

o7

—| | J(a)da |=u;

o { J1@ } u

Cj; the flexibility influence co-efficient by definition is

ou;
6P 6P oP, ¢

WB 0’ %
& angr | Ke K’ de=C,

and can be expressed as,

Using equation (3.8) the compliance C,;, Cas, Ci2 (=Cy)) are as follows;

BWT na

1n=- E' B W2 2(F, (&)) dg

g1
2 [aR@) a

127
2=Ca= g j EF, (&)F, (&) dg
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The dimensionless form of the influence co-efficient will be;

— E'BW’
=C, 3 szzczzw (3.12)

The inversion of compliance matrix will lead to the formation of local stiffness matrix and

can be written as;

-1
K:|:C11 C12:| :|:K11 I<12:| (313)
C21 C22 K21 K22

The stiffness matrix for the damage position can be obtained as follows:

k', k' c. c,
K;:|: ’11 ’12:|:|: ’11 ,12:|
k21 k22 C21 C22

3.2.1.2 Vibration analysis of damaged beam structures

A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a damage of severity ‘a;” at a
distance ‘L;’ from the fixed end is considered. Taking u;(x,t) and ux(x,t) as the amplitudes of
longitudinal vibration for the sections before and after the damage and y;(x,t), y2(x,t) are the

amplitudes of bending vibration for the same sections (Fig. 3.2.3).

,—bU1 * U:

— T

Y2

Fig. 3.2 Cantilever beam Model
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The normal function for the system can be defined as

1,(X)=A, cos(K X)+A, sin(K X) (3.2.16a)
1,(X)=A, cos (K X)+A, sin(K X) (3.2.16b)
¥, (X)=A; cosh (K X)+A, sinh(K,X) + A cos(K,X)+A sin(K,X) (3.2.16¢)
¥,(X)=A, cosh(K X)+A,, sinh(K,X) + A, cos(K,X)+A,, sin(K,X) (3.2.16d)
Wherex=%,ﬁ=%,§/=%, B:%

L E 1/2 ' 1/2 I 1/2
Ku:w_’cu: _ aKy: > 5Cy: _ >M:Ap
C p C n

Ai, (i=1, 12) Constants are to be determined, from boundary conditions. The boundary

conditions of the cantilever beam in consideration are:

U,(0)=0; 3.2.17(a) 3,(0)=0; 3.2.17(b) 7/(0)=0; 3.2.17(c) W,(1)=0; 3.2.17(d)
¥, ()=0;3.2.17(e) y"(1)=0; 3.2.17()

At the damaged section:
u' (B)=1u', (B); 3.2.18(a) ¥,(B)=y,(B); 3.2.18(b) ¥{(B)=¥5(P);3.2.18(c)

Yi(B)=y7(B) 3.2.18(d)

Also at the damaged section (due to the discontinuity of axial deformation to the left and right

of the damage), we have:
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AR ) —u e, [ B2 G (3.2.19)
dx dx dx
o : . AE
Multiplying  both  sides of the above equation by——— we get;
LKIIKIZ
M M,u'(B)=M, (@, (B)—u,(B)+M, (7, (B)-¥i(B)) (3.2.20)

Similarly at the damaged section (due to the discontinuity of slope to the left and right of the

crack)
EIdZYI—(le)szl (uz (L1 )— u, (Ll ))+K22 (dyz (Ll) - dYI (Ll)] o220
dx dx dx

Multiplying both sides of the above equation by ZL we get,

225721
MM, yi(B) =M, (u, (B) -1, (B) + M, (¥5(B)-¥1(B)) (3.2.22)
Where’Mlzi’ MzzAE’ ,= EI ’ .= 2EI
11 K12 LK22 L K21

The normal functions, Eq. {3.2.16} along with the boundary conditions as mentioned above,

yield the characteristic equation of the system as:

Q=0 (3.2.23)
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Where Q is a 12x12 matrix and is expressed as

1 0 ] 0 0 0 0 0 0 0 0 0
0 ] 0 ] 0 0 0 0 0 0 0 0
0 0 0 0 Gy Gs -G5 -Gg 0 0 0 0
0 0 0 0 Gs, Gi Gg -G, 0 0 0 0
G G, -Gs -G¢ -G -G» Gs Gg¢ 0 0 0 0
=1 G, G Gs -G -G -G -G¢ Gs 0 0 0 0
(3.2.24)
G G, Gs Gs¢ -G -Gy -Gs -G¢ 0 0 0 0

So S0 S Si2 Sz Sy Sis S Siz Sis -Ts  -Ts

Where G1= Cosh (K, a ), G;=Sinh (K,a ), Gs= Cosh (K, ), G4=Sinh (K, ), Gs=Cos (K,a),

Gg=Sin (K, ), G=Cosh (K, ), Gs=Sin (K, ),

Ts=Cos (K o), Te=Sin (K,a ), T/=Cos (K, ), Ts=Sin (K, )

M
Mj=—L, M34:&
M, M,
— — — — M
$1=G2+ M;3K, Gi, S;= G+ M3K, Gy, S3= —Gs — M3 K Gs, S4= Gs— M3 K Gg, Ss ===,
K
y

M M M —
— 34 — 34 — 34 —
S¢= =T, S7= =T5s, Ss= =T, So= M2K, Gz
Ky Ky Ky

SIOZMIZK_y G, SIIZ_MIZK_y Ge, S12= MlzK_y Gs
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Si3=—Mi2 K_sz, Sl4=—M12K_yG1,

Si5= MlZK_yGéa Si= —MlzK_sz, S17=Ts -MlK_uTﬁ, Sis= T+ M; K_u Ts

This determinant is a function of natural circular frequency (,), the relative position of the
damage (L;/L) and the local stiffness matrix (K) which in turn is a function of the relative

damage severity (a;/W). Similarly, local stiffness matrix for fixed-fixed beam can be derived.
3.2.2 Numerical interpretation

The cantilever and fixed-fixed beams of Al, Steel and Glass fiber reinforced Composite with
and without damage have been engaged for numerical analysis, to estimate the relative
natural frequencies and relative amplitude of vibration for different damage positions and
damage severities. The dimensions of all beams is considered as 1000mm x 50mm x 8mm
with different damage severities of 3mm, 4mm and Smm at different positions i.e. middle of
the beam, one fourth and three fourth of the total length of the beam from the fixed end.
Mechanical properties (Young’s modulus, Poisson’s ratio, Density) of Al & steel are
considered as 70 Gpa, 0.35, 2700 kg/m3 and 200 Gpa, 0.26, 7850 kg/m3 respectively.
Young’s modulii (along longitudinal and transverse direction) of composite beam are found
to be (from tensile & flexural test) 9 Gpa and 4.83 Gpa respectively. Poisson’s ratio (along
longitudinal ‘Major’ and transverse direction ‘Minor’) of composite beam are found to be
0.41 & 0.22 respectively. The density of the composite beam material is found to be 1950
kg/m’.

3.2.2.1 Results of numerical interpretation

The theoretical analysis has been engaged to obtain the mode shapes for the first three modes
of the damaged aluminum, composite and steel cantilever beam & fixed-fixed beam models

with different damage positions and damage severities using the equation (3.2.24).

3.3 Analysis of experimental results
The cantilever beam and fixed-fixed beams of Al, glass fiber reinforced composite and steel

embedded with and without damage with dimension (1000mm x 50mm x 8mm) have been
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considered to conduct the experiments for arbitrating the relative natural frequency and

relative amplitude of vibration. A number of experiments have been performed on the test

specimens with different values of damage positions and damage severities to determine the

first three mode shapes and natural frequencies.
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Fig. 3.3 Schematic block diagram of (a) Cantilever (b) Fixed-fixed beam experimental set ups
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3.3.1 Experimental results

The relative natural frequencies & relative mode shape differences obtained from
experimentation (Fig. 3.3) for three relative damage positions (0.25, 0.50 and 0.75) and three
relative damage severities (0.375, 0.500 and 0.625) have been compared with that of the
numerical analysis of both damaged and undamaged beam structures. The comparisons are

presented in Table 3.1 to Table 3.6.
3.3.2. Comparison between the results of numerical and experimental analyses

The relative damage positions and relative damage severities of Al, composite & steel cantilever
and fixed-fixed beams corresponding to nine sets of first three natural frequencies and first three
mode shape differences from numerical and experimental analysis are presented in Table 3.1 to

Table 3.6.

The relative natural frequency and relative mode shape difference used in the above analysis

can be defined as follows.

(Natural frequency of cracked beam)
(Natural frequency of undamaged beam)

Relative natural frequency =

Relative mode shape difference =

(Modal amplitude of undamaged beam — Modal amplitude of cracked beam)

Modal amplitude of undamaged beam
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Table 3.1 Comparison of modal parameters and damage characteristics of Al
cantilever beam obtained from numerical and experimental analysis

Mimnenical Expenmmental
ENF SNF TNF D ShD TMD

BEDE | RDP | RD3 | RDP

00070 | 00036 | 00002 | 00021 | 0O075 | 00037 | 0373 | 049 | 05375 | 050

09256 | 00883 | 00036 | 00043 | 0.0011 00036 | 0437 | 049 | 0500 | 0.30

05910 | 09702 | 00983 | 00083 | 00040 | 00007 | 0623 | 048 | 0625 | 050

08024 | 00064 | 00944 | 00016 | 00301 | 00161 | 0376 | 026 [ 0375 | 023

00837 | 09013 | 00280 | 0003% | 00004 (00373 | 04%4 | 024 | 0300 | 023

08661 | 00841 | 09732 | 0.008% | 00147 [ 00203 | 0625 | 026 | 0625 | 023

09090 | 00000 | 00008 | 00169 | 00682 | 00433 | 0369 | 073 | 0375 | 073

00008 | 00006 | 00305 | 00539 | 00428 | O0OTI1 | 0497 | 073 | 0300 | 073

09005 | 00931 | 00604 | 00724 | 00465 | 00313 | 0610 | 074 | 0625 | 073

Table 3.2 Comparison of modal parameters and damage characteristics of Al
fixed-fixed beam obtained from numerical and experimental analysis

Murmerical Expenmental
FNF SINF TNF MWD sniD D

ROS | RDP | EDS | EDP

05030 | 000908 | 00016 | 01484 | 00043 | 00038 | 0363 | 040 | 0373 | 05D

00868 | 00991 003

b
laa
=
(==
=
P
e |

00078 00103 | 0480 | 051 | 0500 | 050

60745 | 09987 | 09666 | 02670 [ 0136 | Q0094 | 027 | 031 | 0625 | 050

08600 | 09043 09936 | 01388 | 00333 (0237 | 0373 [ 027 ) 0373 ) 023

05008 | 00879 | 008867 | 03033 | Q0372 | 00227 | 0405 | 026 | 03500 [ 025

Qoots | 00737 (o742 | 041535 | 00887 00406 | 0620 | 024 ) 0823 | 023
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Table 3.3 Comparison of modal parameters and damage
characteristics composite cantilever beam obtained from numerical
and experimental analysis

MNurmerical Experimental
FINF SMF TWF | FMD | SMD | TMD

RDE | RDP | EDS | RDP

00064 | 000G} | 00000 | 00075 | 00051 | 00015 [ 0373 | 052 | 0373 | 0530

00057 | 00003 [ 00008 | 00017 | 00055 | OU0063 | G308 | 048 | 0300 | 030

05614 | 00726 | 0.0008 | 00030 | G004 | 00037 | 0610 | 051 | G623 | 030

009246 | 00064 | 09046 [ 00051 | 00082 | G0137 | 0362 | 024 | 0375 | 023

00343 | 00010 [ 00385 | 00076 | 00004 | 00123 | 0507 | 025 | 0300 | 023

00671 [ 00841 | 00741 | 00087 | Q0024 [ G0401 | 0621 | 027 | 0623 | 025

(O00G | GO000 | 00911 | 00165 | GO110 | 00312 | 0381 | 075 | 0375 | 073

0.0007 | 00007 | 09311 [ 00330 | 00233 | 00264 | 0511 | 073 | 0300 | 073

00005 | 00047 [ 00616 | 0.0704 | 00361 | 00333 | 0617 | 074 | 0823 | 073

Table 3.4 Comparison of modal parameters and damage characteristics
composite fixed-fixed beam obtained from numerical and experimental
analysis

Murmerical Experimental
FINF SNF TNF FnD SMD | TMD

EDS | BRDP | EDS | RDP

00040 [ 00900 | 00018 | 00043 | 00001 | G.0066 | 05361 | 049 | 0375 | £.50

00872 | o003 | 00823 [ 00080 | 00125 | Q0237 | 0300 [ 052 | 0300 | 050

00735 | 00007 | 00676 | 00110 | 00087 | 00411 | 0631 052 | 0623 | 030

00008 | 00044 | GOO37 [ 01237 | 00263 | 00761 | 0372 023 | 0373 | 023
G.9007 | 00333 | 00860 [ 03741 | 00263 | 00379 | 0302 | 021 | 0300 | 023
00004 | 02768 | 09731 | 03699 | 00823 | 003531 | G634 | 027 | 0623 | 023
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Table 3.5 Comparison of modal parameters and damage characteristics
of Steel cantilever beam obtained from numerical and experimental
analysis

Nurmerical Experimental
FNF SINF IIF FnD | SMD | TMD

EDs | RDP | EDS | RDP

00970 | 05060 | GO006 | C0021 | 00060 | O0044 | 0374 | 030 | 05373 | 050

09935 | 00866 | 00002 | 00043 | 0LO0LD | 00045 | 0498 | 040 | 0500 | 050

09908 | 05676 | 0.0083 | 0008 | 0058 [ 00L03 | 0623 | 049 | 0623 | 050

00021 | 00043 | 00041 | GO0018 | 002838 | 00178 | 0374 | 02 0373 ) 02

LN

00333 | 00018 | 00873 | O004F | 000129 [ 00531 [ 0400 | 026 | 05300 | 02

(]

09633 | 09842 | 05744 | 00024 | 000122 [ GO274 | 0622 | 024 | 0623 | 023

0.0000 | 00000 | Q0005 | 00174 | 00607 | 00461 | 0376 | 076 | 0375 | 073

09003 | 00089 | 00703 | 00009 | 00477 [ 00603 | 0302 | 074 | 0300 | 075

00004 | 00913 | 00393 | 00743 | 00419 [ 00573 | 0622 | 074 | 0623 | 073

Table 3.6 Comparison of modal parameters and damage characteristics
of Steel fixed-fixed beam obtained from numerical and experimental
analysis

Murmerical Experimental
FINF SIF TINF D | SMD | TMD

EDs | RDP | EDs | EDP

00036 | 0.9007 | 09015 | 01444 | 00137 | 001353 | 0377 | 049 | 0375 | 050

09364 | 09092 | 00817 | 01713 | 01265 | 01117 | 0490 | 048 | 0300 | 0530

00736 | 00030 | 00636 | 02627 | 02137 | 02106 | 0623 | 049 | 0625 | 050

00000 | 00041 | 00033 | 01334 | 01366 | 01201 | 0376 | 028 | 0373 | 023

00027 | G087 | 00863 | 03899 [ 43328 [ 42203 | 0302 | 027 | 0300 | 623

D.oood | 0O751 | 09736 | 04082 | 03167 | 02406 | 0623 | 024 | $823 | 023
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The first three columns of the Table 3.1 to Table 3.6 represent first three relative natural
frequencies, where as the fourth, fifth and sixth number columns present the average relative
mode shape difference for first three modes of vibration. The columns number seven & eight
present the relative damage severity and relative damage position respectively obtained from
numerical analysis. The columns number nine & ten present the relative damage severity and

relative damage position respectively obtained from experimental analysis.

3.4 Summary

The conclusions drawn from the above analysis are described in this section. Due to the presence
of damage the modal parameters of the damaged beams such as natural frequencies and mode
shapes exhibit a significant divergence near the damage positions as compared to undamaged
beam, which can be witnessed in the magnified views of the mode shapes. The vibration
characteristics obtained from the numerical analysis have been validated using the results from
experimental analysis and are found to be in very good agreement. The deviation in the dynamic
response can be used as the basis for fault detection in damaged structural members and the
measured vibration parameters can also be used for design and development of reverse
engineering methodologies for damage diagnosis. The proposed method can be effectively used

to design artificial intelligent techniques based models for online structural health monitoring.
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Chapter 4
FINITE ELEMENT BASED DAMAGE IDENTIFICATION

Damage in the transverse mode can lead to the complete failure of structural members
subjected to vibration. Vibration based techniques are found wide application in the damage
detection of structures as traditional methods like inspection with naked eye and non-
destructive techniques such as x-ray, ultrasonic test etc are not useful for periodic inspection.
This technique can be effectively used to identify the damage severity and damage position
utilizing the modal characteristics of the damaged beam structure. The presence of damage
introduces an additional flexibility at the localized damage position of the structure which in
turn, alters the natural frequencies and the mode shapes. Therefore, damage can be diagnosed
by utilizing the alteration in vibration responses. This chapter introduces finite element based
methodology for identification of damage existing in structural systems. The results from the
finite element analysis have been compared with that of the numerical analysis and

experimental analysis. The comparison results are very encouraging.

4.1 Introduction

Damage identification in the structural members in many engineering applications is
inevitable, considering the fact that almost all engineering system are subjected to various
fluctuating loading conditions. The vibration parameters of the damaged structures can be
effectively utilized for evaluating the damage characteristics present in the beam members.
The realization of FEA technique is found to be very satisfying when compared with that of

the theoretical analysis.
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In this present analysis for damage identification in structural beam members, finite element
based model is adopted to characterize the damage with respect to it’s severity and position.
The dynamic behavior of the structure is altered with the presence of damage. The results
obtained from finite element analysis of the damaged and undamaged structural beam
members of Aluminium, composite and steel are validated with the theoretical and

experimental results.

4.2  Finite element analysis

Finite element analysis (FEA) is a numerical method for solving a differential or integral
equation. It has been applied to a number of physical problems, where the governing
differential equations are available. The method essentially consists of assuming the
piecewise continuous function for the solution and obtaining the parameters of the functions
in a manner that reduces the error in the solution. Due to the systematic and useful modeling
of the complex shapes, FEA finds wide applications in many technical applications. Different
vibrating structures can be analyzed by employing the suitable boundary conditions.
Commercial finite element packages are available to take care of the various problems
occurred in many engineering applications. FEA is realized, first by dividing the structure
into a number of small parts which are known as finite elements and the procedure adopted to
attain these small elements is known as discretization. Each element of the structure is
generally associated with an equation of motion and that can be easily approximated. The
each element has nodes as end points. The nodes are connecting point between the elements.
The finite elements and nodes as together are known as finite element mesh or finite element
grid. Subsequently, the equation of motion for each finite element is formulated and solved.
The solution for each finite element brought together to attain the global mass and stiffness
matrix describing the dynamic response of the whole structure. The displacement associated
with the solution explores the motion of the nodes of the finite element mesh. This global
mass and stiffness matrix represent the lumped parameter approximation of the structure and
can be analyzed to obtain natural frequencies and mode shapes of damaged vibrating

structures.
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4.2.1 Analysis of damaged beam structures using finite element analysis (FEA)
In the current section, FEA is used for vibration analysis of a cantilever damaged beam (Fig.

4.1). The relationship between the displacement and the forces can be expressed as;

Uj— U Uj
= Covl (4 1)
Gj - Gi (%]

Where overall flexibility matrix Coy can be expressed as;

Rll -R12
Covl =

'RZI R22
The displacement vector in equation (4.1) is due to the damage.

u (Uy) —> < Le > — (U

| 5 ——

0,(2) (@)

Le >

Fig. 4.1 Damaged beam element subjected to axial and bending forces.

The forces acting on the beam element for finite element analysis are shown in Fig. 4.1.

Where,

Ri1: Deflection in direction 1 due to load in direction 1
Ri>= Ry;: Deflection in direction 1 due to load in direction 2
Ry,: Deflection in direction 2 due to load in direction 2.

Under this system, the flexibility matrix Ciyct Of the intact beam element can be expressed as;
— Uj
uj ‘ = Cintact (42)
0;— 6 aj
Where, Le/EA 0

Cintact =

0 Le/El

The displacement vector in equation (4.2) is for the intact beam.

The total flexibility matrix Cy of the damaged beam element can now be obtained by
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LC/EA+ R11 -R12 (43)
_1{21 Le/El+ R22

Through the equilibrium conditions, the stiffness matrix K¢ of a damaged beam element can

be obtained as [30]

Ctot = Cintact+ Covl:

Ke=DCy; D (4.4)
Where D is the transformation matrix and expressed as;
-1 0
|10 -1
P=lr o
0 1

By solving the stiffness matrix Kc, the natural frequencies and mode shapes of the damaged
cantilever beam can be obtained. Similarly, for fixed-fixed beam the stiffness matrix and
subsequently the natural frequencies and mode shapes can be obtained. This mathematical
approach has been conceived by ANSYS commercial package to estimate the natural
frequencies and mode shapes of beam structures. In the current analysis, ANSYS (Version
10) has been used to determine the vibration responses of damaged and undamaged cantilever
and fixed-fixed of different materials such as Al, composite and steel. The FEA model of the
meshed composite cantilever & fixed-fixed beam and the ANSYS generated beam models of
first three modes of vibration are shown in the fig.A.1 to fig.A.12. .The results of the finite
element analysis for the first three modes of the damaged beam are compared with that of the
numerical analysis and experimental analysis of the damaged beam and are presented in

Table 4.1 to Table 4.6.

4.3  Results and discussion of finite element analysis

This section presents an in depth analysis of the results obtained from finite element analysis
and briefly discusses the outcome from the proposed methodologies.

It is observed that, the presence of damage in the cantilever beam model have noticeable
effect on the vibration characteristics of the beam. A beam element with a crack subjected to
axial and bending forces for Finite Element Analysis has been presented in Figure 4.1. The
displacement vector and force vector have been applied to calculate the overall matrix. The

total flexibility matrix that is produced due to the presence of cracks on the cantilever beam
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has been derived, which is subsequently used to formulate the stiffness matrix for the multi
cracked beam. Finally, the formulated matrices are used to calculate the first three natural
frequencies and first three mode shapes of the cantilever beam structure. These vibration
parameters obtained from the finite element analysis have been used to estimate the crack
characteristics present on the structural member. The results from the FEA have been
validated using the results from experimental and theoretical analysis for multiple crack
identification. The results obtained from Finite Element Analysis are presented in fig.A.1 to
fig.A.12. Table 4.1 to Table 4.6 presents relative damage positions and relative damage
severities of Al, composite and steel cantilever & fixed-fixed beam obtained from FEA,
numerical analysis and experimental analysis corresponds to nine set of relative deviation of
first three natural frequencies and first three mode shape differences. The results are found to

be well in agreement showing the effectiveness of the developed FEA methodology.
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Table 4.1 Comparison of modal parameters and damage characteristics of Al
cantilever beam obtained from FEA, numerical and experimental analysis

FEA MNumetical Experimental
ENF SNE TNF FMD SMD | TMD

ED5 | RDF | FDS | EDF | RDS | RDP

(o070 | 00036 | 09092 | 00021 | 00073 | 00037 | 0373 | 048 | 0373 | 048 | 0373 | 030

(0036 | 0.0883 | 00086 | 00043 | 00011 | 00036 | 0430 ) 048 | G287 | 048 | 0300 | 030

o010 | 09702 | 09985 | G.O083 | 00040 ) 00097 | 0624 | 048 | G628 | 048 | 0623 | 050

00024 | 0odad | 09044 | DO0LG | 00301 | 00161 | 0376 | 027 | 0376 | 026 | 0373 | 023

02337 | 00013 | 09830 | 00030 | 00004 | 00573 | 0406 [ 027 | 0404 | 024 | 0300 | 023

o661 | 00841 | 09752 | GOO0SD | 0.00147 | 00285 | O824 | 026 | 0623 | 026 | 0623 [ 02

(=]

00000 | 0O900 | 09908 | G.OL6D | 00682 | 00435 | 0371 | 074 | 0369 | 073 | 0373 [ 07

(=]

Lol | 00006 | 09305 | 00539 | 00420 ) 0OTED | 0487 | 072 | 0487 [ 073 | 0500 [ 0.7

La

09005 | 00031 | 09604 | 00724 | 00463 | 00513 | G622 [ 073 | 0610 [ 074 | 08625 | 07

()]

Table 4.2 Comparison of modal parameters and damage characteristics of Al fixed-
fixed beam obtained from FEA, numerical and experimental analysis

FEA Numerical Experimental
FNF SNF TNF FMD shiD | TMD

EDs | ELF | EDS | RDE | RDS | EDP

00030 | 0O006 | 09216 | 01434 | 00045 | 00030 | G37C [ 040 | D368 | 048 | 05375 | 050

00368 | 09001 | 00825 | 01727 | 00073 | 00003 | 0488 | 051 | 0480 [ 031 [ 0500 | 050

00743 | 00087 | DO666 | 02679 | 00136 | GO004 | 0626 [ 040 | 04627 | 331 | 0623 | 050

00000 | 00043 [ 09836 | 01338 [ 00533 | 0237 | 0374 | 026 | 05373 | 027 | £373 | 023

00003 | 0.087% | 09867 | 03033 | 00572 | 00227 | 0497 | 027 [ 0405 | 026 | 0500 | 02

[ o)
LN

Good [ o737 | 09742 [ 64133 | 00687 | 00406 | 0621 [ 024 | 0620 | 024 | 0623

=
[
LN
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Table 4.3 Comparison of modal parameters and damage characteristics of
composite cantilever beam obtained from FEA, numerical and experimental

analysis

FEA Mumerical Experimental
FNE SNF | TWF | FuD | SMD | TMD

EDS | EDP | RDS | RDP | RDS | EDP
00064 | 00000 [ (0000 | 00075 | 00051 | 00015 | 0374 | 051 | 0573 | £.52 0375 | 030
00037 | 09003 [ 00008 | 00017 | 00053 | C.OR63 | 0504 | 049 | 0308 | 048 | 0300 | 050
08014 | 05726 [ 00003 | 00050 | 00074 [ 00037 | 0621 | 049 | 0619 051 | 0623 | 030
00026 | 00064 | 00046 | 0.0031 | (0082 | 0.0137 | 0363 | 024 | 0562 | 024 [ 0373 | 023
0.0843 | 00010 [ 00885 [ 00076 | 00014 | 00125 | 05303 | 026 | 0307 | 025 | 0300 | 0.23
09671 | 00841 [ 09761 | 00087 | 00024 [ 00401 | 0625 [ 026 | 0621 027 | 0623 | 0.23
00000 | 00000 [ GO011 | 00163 | 00110 [ Q0312 | 0370 [ 074 | 0381 ) 073 | 0373 | 0.73
00007 | 09007 [ 00811 | 00350 | 0.0235 [ 00264 | 0500 [ 073 | G311 ) 073 | 0300 | 073
00005 | 00047 [ 00816 [ 0.0704 | 00361 | 0.0333 | 0620 [ 073 | 0617 | 074 | 0623 | 0.73

Table 4.4 Comparison of modal parameters and damage characteristics of
composite fixed-fixed beam obtained from FEA, numerical and experimental

analysis

FEA Nurmerical Expernimental
FENF | SNF | TNF | FuD | SMD | TMD

EDs ( EDP | EDS | RDP | RDS | RDP
00040 | 00000 | 00013 [ 00043 | 00001 | 00066 | 0368 | 049 [ 0361 | 049 | 0373 | 050
00872 | 00008 | 00823 [ 0.0080 | 00123 | 00237 | 0305 | 031 | 0308 | D532 | D300 | 030
00735 | 09607 | 08676 | 00110 | 00087 | 00411 | 0628 | 031 [ 0631 | 032 | 0623 | 030
09908 | 00944 | 00857 | 01237 | 00263 [ OVeE | 0374 | 024 | 0572 023 | 0373 [ 023
0.0007 | 00883 | 0.9360 [ 03741 | 0.0463 | Q05379 | 05302 | 023 | 0302 | 021 0300 | 023
00004 | 09768 | 00751 [ 03600 | 00823 | 00531 | 0630 | 026 | D634 [ D27 | D623 | 023
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Table 4.5 Comparison of modal parameters and damage characteristics of steel
cantilever beam obtained from FEA, numerical and experimental analysis

FEA MNumencal Experimental
FNF SNF TNF | FMD | SMD | TMD

BDs | RDP | EDS | RDP | EDs | RDP

00070 | 00060 | 00004 | 00021 [ 00060 | OO0044 | 0374 | 040 0374 | 050 0373 | 050

08035 | 09866 | 00002 | 00043 | 00010 | 00045 | 0400 | D40 0403 | 040 | 0300 [ 050

0.9008 | 09676 | 00083 | 0.0081 | 00133 | 00105 | 0624 | 048 0623 | 040 0623 | 050

00021 | 09963 | 00041 | 00013 | Q0233 | 00179 | 03753 | 027 0374 | 026 0373 | 025

02833 | 000018 | 09875 | 00041 | Q0120 | 00341 | 0488 | 024 0.4%¢ | 026 0500 | 023

3

00633 | 00842 | 00744 | 00004 [ 00122 [ 00274 | 0623 | 026 0622 [ 024 G623 | 025

'

00000 | 00000 | 00005 [ 00174 | 0OB07 | Q0461 | 0577 | 078 0376 | 076 0373 | 073

00008 | 09580 | 09708 | 00000 | 00477 | 00653 | 0501 | 073 032 | 074 0300 | 073

09604 | 09013 | 09393 | 00745 | Q0419 | 00375 | 0623 | 074 G622 | 074 0623 [ 073

Table 4.6 Comparison of modal parameters and damage characteristics of steel
fixed-fixed beam obtained from FEA, numerical and experimental analysis

FEA MNurmerical Expenmental
FINF SNF TWNF | FMD | SMD | TMD

EDhs |RDP | REDS | EDP | RDS | EDP

09636 | 0.9907 | 09015 [ 01444 | 00137 | 00135 | 0376 | 040 0377 | 040 0375 | 050

00364 00002 | 00317 | 01713 [ 01265 | 01117 | 0408 | 048 0.4%0 | 043 0500 | 030

00736 | 00080 | 0.0636 | 02627 | 02137 | 02106 | 0627 | 048 G628 | 040 0623 | 030

00000 | 00041 | 09933 | 01334 | 01366 | 01201 | 0377 | 027 0376 | 026 0375 [ 023

09007 | 05873 | 09863 | 03890 | 03328 | 02203 | 0305 | 026 0502 | 027 0300 | 023

00004 | 00731 | 00736 | 04082 | 03167 | 02406 | 0623 | 026 0623 | 024 0625 | 023
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44  Summary

In the present study, an effective and compatible method for damage detection for structural
beam members has been presented. From the diagnosis of the vibration responses, it is
observed that there is deviation of mode shapes and natural frequencies for the damaged
beam in contrast to the undamaged beam. The vibration responses i.e. the natural frequencies
and mode shapes obtained from the FE analysis are found to be in good agreement with
theoretical and experimental analysis. The proposed method can be utilized to model any

practical engineering structure and on-line condition monitoring of damaged structures.
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Chapter 5

ANALYSIS OF FUZZY INFERENCE SYSTEM FOR
DAMAGE DIAGNOSIS

Most of the structural failures encountered are caused by material fatigue and presence of
damages in structures. Therefore, damages of any form are to be diagnosed as earliest as
possible to maintain the integrity of the structures. In spite of the existence so many
traditional methods, but presence of any damage can’t be ensured without diagnosing the
entire structure. In the current section, a fuzzy logic based technique has been proposed for
structural damage identification. The proposed methodology utilizes the modal characteristics
of the beam structure using reverse engineering techniques and anticipates the position and

severities of the damage present in the system.

5.1 Introduction

By definition, fuzzy logic (FL) is a multi valued logic, which allows intermediate values to be
defined between linguistic expressions like yes/no, high/low, true/false. In the last few
decades, researchers have used the FL methodology for applications such as feature
extraction, classification and detection of geometrical features in objects etc. Fuzzy system
has the capability to imitate the human behavior by following the different reasoning phases
in order to make the computer program behave like humans. In traditional computing, actions
are taken based on data with precision and certainty. In soft computing, erroneous data are
employed for decision making. The exploration of the erroneous and uncertainty influences
the remarkable human ability to understand various engineering applications. FL can specify
mapping rules in terms of words rather than numbers. Another basic concept in FL is the
fuzzy if-then rule which is mostly used in development of fuzzy rule based systems. FL can
model nonlinear functions of arbitrary complexity to a desired degree of accuracy. FL is a
convenient way to map an input space to an output space and is one of the tools used to
model a multi-input, multi-output system. Hence the fuzzy approach can be effectively
employed to develop a damage diagnostic tool using the vibration responses of structures.
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In the present chapter, a damage diagnosis algorithm using fuzzy inference system has been
formulated and the performance has been evaluated. The fuzzy system for damage diagnosis
has been designed with six inputs (first three relative natural frequencies and first three
relative mode shape differences) and two outputs (relative damage position, relative damage
severity). A number of fuzzy linguistic terms and fuzzy membership functions (triangular,
trapezoidal and Gaussian) have been used to develop the proposed damage identification
technique. The modal parameters obtained from the numerical, finite element and
experimental analyses have been used to establish the rule base for designing of the fuzzy
system. The performance of the proposed fuzzy based system for damage diagnosis have
been compared with the results obtained from FEA, numerical and experimental analysis and
it is observed that, the proposed fuzzy model can be effectively exploited for structural health

monitoring.

5.2  Fuzzy inference system

A fuzzy logic system (FLS) essentially takes a decision by nonlinear mapping of the input
data into a scalar output, using fuzzy rules. The mapping can be done through input/output
membership functions, fuzzy if-then rules, aggregation of output sets, and defuzzification.
An FLS can be considered as a collection of independent multi-input, single-output systems.
The FLS maps crisp inputs into crisp outputs. It can be seen from the figure that the FIS
contains four components: the fuzzifier, inference engine, rule base, and defuzzifier. The rule
base of the FLS system can be developed using the numeric data. Once the rules have been
established, the FLS can be viewed as a system that utilizes inputs and process them using the
fuzzy rule database and fuzzy linguistic terms to get output vector. The fuzzifier takes input
values and verifies the degree of association to each of the fuzzy sets through membership

functions.

The fuzzy system generally consists of five steps. They are as follows,

Step 1

Inputs to fuzzy system: The fuzzy system at first is fed with the input parameters and then
the system recognizes the degree of association of the data with the corresponding fuzzy set

through the membership functions.
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Step 2

Application of fuzzy operator: After the fuzzification of the inputs, the fuzzy model
measures the degree to which each of the antecedents satisfies for each rule of the fuzzy rule
data base. If the rule has a more than one part, the fuzzy operator is employed to obtain a
single value for the given rule.

Step 3

Application of method for fulfillment of rules: Method is applied to reshape the output of
the membership functions, which is represented by a fuzzy set. The reshaping of the output is
done by a function related to the antecedent.

Step 4

Aggregation of results: The results obtained from each rule are unified to get a decision
from the system. Aggregation process leads to a combined fuzzy set as output.

Step 5

Defuzzification: In this process the defuzzification layer of the fuzzy system incorporate
method like centroid, maxima etc in order to convert the fuzzy set into crisp value, which will
be easier to analyze.

5.2.1 Modeling of fuzzy membership functions

One of the most important features in designing a fuzzy inference system is to determine the
fuzzy membership functions. The membership function defines the fuzzy set and also
provides a measure of degree of imprecise dependencies or analogy of an element to a fuzzy
set. The membership function can take any shape, but some commonly used examples for real
applications are Gaussian, triangular, trapezoidal, bell shape etc. In a fuzzy set, elements with
non zero degree membership are known as support and elements with degree of one are
known as core of the fuzzy set. The membership functions are generally represented as ps(x).
Where, p is the degree of weight of the element x to the fuzzy set F. The height or magnitude
of the membership function is usually referred to zero to one. Hence, any element from the

fuzzy set belongs to the set with a degree ranging from [0, 1].

From the Fig. 5.1(a) (triangular membership function) the point ‘c’, ‘d’, ‘¢’ represents the

three vertices of the triangular membership function us(X) of the fuzzy set ‘F’. It is observed
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that the element at ‘c’ and ‘e’ is having membership degree equivalent to zero and the
element at ‘d’” is having membership degree equivalent to one. The mathematical

representation of the fuzzy triangular membership function of p«(X) can be explained as

follows. pr(x) 7
0ifx<c {
(x-¢)/(d-c)ifc<x <d
ke(X) = _
(e-x)/(e-d)ifd<x<e
Oifx=e 0 c d e X%

Fig. 5.1(a) Triangular membership function

Where ¢, w, n are the center, width and fuzzification factor respectively. The graphical

presentation of the fuzzy Gaussian membership function can be seen in Fig. 5.1(b).

ue(x) 4
S it
He (X, ¢, w,n) = Exp[-0.5{(x-c)lw}"]

0 X
Fig. 5.1(b) Gaussian membership function
The trapezoidal membership function (Fig. 5.1 (c)) has two base points (0.2, 0.5) and two

shoulder points (0.3, 0.4). A mathematical expression for the trapezoidal membership

function is presented below. A graphical representation of the trapezoidal membership

ur(x) |

/
0 when x <0.2 1
(x—0.2)/(0.3-0.2) when 0.2 <x <0.3
1 when 0.3 <x<0.0.4

function has been shown in Fig. 5.1 (c).

LA, 0.2,0.3, 0.4, 0.5)=

(0.5~ %) /(0.5 0.4) when 0.4 < x <0.5

0.2 03 04 05
Fig.5.1(c) Trapezoidal membership function
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5.2.2 Modeling of fuzzy controller using fuzzy rules

The understanding of the input data and the output data for a real application is often vague
due to the intricate dependencies of the input and output variables of the working domain.
Fuzzy inference system posses the approximation features by the help of fuzzy membership
functions and fuzzy IF-THEN rules. In the process of development of a fuzzy model, the
domain knowledge helps in selecting the appropriate membership functions and development
of fuzzy rules. This membership functions are designed by using the suitable fuzzy linguistic
terms and fuzzy rule base. The fuzzy rule base or the conditional statements are used for
fuzzification of the input parameters and defuzzification of the output parameters. The fuzzy
model can be designed with single input and multi output (SIMO), multi input and single
output (MISO), multi input and multi output (MIMO). During the design of the fuzzy model,
the fuzzy operations like fuzzy intersection, union and complement are used to develop the
membership functions. Hence, the fuzzy model takes the input parameters from the
application at a certain state of condition and using the rules it will provide a controlled action
as desired by the system. A general model of a fuzzy inference system (FIS) is shown in Fig.
5.2.

The inputs to the fuzzy model for damage identification in the current analysis comprises
Relative first natural frequency = “FNF”; Relative second natural frequency = “SNF”;
Relative third natural frequency = “TNF”; Relative first mode shape difference = “FMD”;
Relative second mode shape difference = “SMD”; Relative third mode shape difference =
“TMD”

The linguistic term used for the outputs are as follows;

Relative damage position = “RDP”

Relative damage severity = “RDS”

5.2.3 Modelling of defuzzifier

The final step in building of a fuzzy system is to convert the fuzzy output set into a crisp
output. So, the input to the defuzzifier is the aggregate output fuzzy set and output is a single
number. The crisp output represents the possible distribution of the inferred fuzzy control

action. Selection of the defuzzification strategy depends on the features of the application.
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Fig.5.2 Fuzzy controller for current analysis

The relationship between the fuzzy output set (F), defuzzifier and crisp output (Ko) can be
established in the following equation;

Ko = defuzzifier (F);

There are several defuzzification methods used for development of fuzzy system. Some of
them are listed below;

» Centroid of the area,

» Mean of maximum

» Weighted average method
»  Height method

5.3  Analysis of the fuzzy controller used for damage identification
The fuzzy models developed in the current analysis, based on triangular, Gaussian and
trapezoidal membership functions have got six input parameters and four output parameters.
The linguistic term used for the inputs are as follows;

e Relative first natural frequency = “FNF”;

e Relative second natural frequency = “SNF”’;

e Relative third natural frequency = “TNF”;

e Average relative first mode shape difference = “FMD”;

e Average relative second mode shape difference = “SMD”;

e Average relative third mode shape difference = “TMD”.
The linguistic term used for the outputs are as follows;

e Relative damage position = “RDP”
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e Relative damage severity = “RDS”

The pictorial view of the triangular membership, Gaussian membership, trapezoidal
membership fuzzy models are shown in Fig. Fig. 5.3 (a), Fig. 5.3 (b) and Fig. 5.3 (c)
respectively. Some of the fuzzy linguistic terms and fuzzy rules (Twenty numbers) used to
design and train the knowledge based fuzzy logic systems are represented in Table 5.1 and
Table 5.2 respectively. The membership functions used in developing the fuzzy inference
system for damage diagnosis are shown in Fig.5.4 to Fig.5.6. Nine membership functions
have been used for each input parameters to the fuzzy model. In designing the output
membership functions for the output parameters such as relative damage position (RDP) and
relative damage severity (RDS), twelve membership functions are considered. The
defuzzification process of the triangular, Gaussian, trapezoidal membership functions are
presented in Fig 5.7, Fig. 5.8 and Fig. 5.9 respectively by activating the rule no 5 and rule no
15 from Table 5.2.

Inputs Outputs

FNF > Fuzzy Model

SNF ———» - » RDS
TNF ——»

FMD ——»

SMD ——» ——» RDP
TMD ——»

Fig. 5.3(a) Triangular fuzzy model
Inputs Outputs
FNF g Fuzzy Model

SNF —»
NF —>
FMD ——>
SMD —>
TMD >

—— RDS

—» RDP

Fig. 5.3(b) Gaussian fuzzy model
Inputs Outputs

FNF F Model

uzzy Mode
SNF ———> - » RDS
TNF —»
FMD——» / ; ; ; : \
SMD —» ——» RDP
TMD ———»

Fig. 5.3(c) Trapezoidal fuzzy model
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5.3.1 Fuzzy mechanism for damage identification

Based on the above fuzzy subsets, the fuzzy control rules are defined in a general form as

follows:

If (FNF is FNFi and SNF is SNF i and TNF is TNFk and FMD is FMD land SMD is SMD m and
TMD is TMD n) then RDP is RDPijklmn and RDS is RDS ijklmn (41)

wherei=11t09,j=1t09,k=1t09,1=1t09,m=1t09,n=1t0 9

As “FNF”, “SNF”, “TNF”, “FMD”, “SMD”, “TMD” have ten membership functions each.

From equation (4.1), two set of rules can be written

If (FNFis FNFi and SNF is SNFj and TNF is TNFk and FMD is FMDland SMD is SMDm and
TMD is TMDn) then RDS is RDSijklmn (4 2)
If (FNF is FNF; and SNF is SNF ] and TNF is TNF) and FMD is FMDjand SMD is SMDm and .

TMDis TMDp) then RDP is RDPijklmn

According to the usual fuzzy logic control method [91,205], a factor W, 1is defined for the

ijklmn

rules as follows:

W,

ijklmn

= l’lfnfI (freqi) A Msnf| (freq_]) A p‘tnfk (freqk) A Hfmd1 (mOddlfI) A p‘smdm (mOddlfm) A l’l'tmdn (mOddlfn)

Where freq; , freq; and freqx are the first, second and third relative natural frequencies of the
cantilever beam with damage respectively ; moddif;, moddif;, and moddif, are the average
first, second and third relative mode shape differences of the cantilever beam with damage
respectively. By applying the composition rule of inference [36, 42], the membership values
of the relative damage position and relative damage severity, (position)rpp and (severity)rps

can be computed as;

osition) = W:: A osition
'URDPij klmn @ ) ijklmn 'URDPijklmn @ ) (4.3)
URDS (severity) = Wiitimn A “RDS (severity)
ijklmn J ijklmn

The overall conclusion by combining the outputs of all the fuzzy rules can be written as
follows:

uRDP(position):pRDpllllll(position) v...vuRDpijklmn(position) v...vaDplo 1010 10 10 10 (position) 4.4)
(severity)

severity)= severit severit
HRDS(severity)=URDS, |, (severity) v VHRDSijklmn( verity) V.-VERDS, 4 10 10 10 10 10
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The crisp values of relative damage position and relative damage severity are evaluated using

the centre of gravity method [42] as:
[(position - uppp (position) - d(position)
[urpp(position) - d(position)
Relativedamageseverity= RDS = [(severity) - {RDS (severity) - d(severity)
[uRDs(severity) - d(severity)

Relativedamageposition= RDP =

(4.5)

LIl 1L1f? LIF; MFl MIF MF HF HR HFE
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Fig. 5.4(a) Membership functions for relative

Fig. 5.4(b) Membership functions for relative
natural frequency for first mode of vibration.

natural frequency for second mode of vibration.
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Fig. 5.4(c) Membership functions for relative Fig. 5.4(d) Membership functions for relative
natural frequency for third mode of vibration. mode shape difference for first mode of vibration.

fINM1 SN SIMG MM MUREDD MUMG HIMI HIMD HIMG Blﬂ b3\ S3H3 hBIlﬂ IlBIlﬂ H3H3 B3]|ﬂ Ehﬂ G
1n ! At A
/f\ A N A A\
f\ \/< AVAVA A \
o0,-10 03185 Oolos O4d5 005 0080 a09s 0Ets 04445 oGlas 0285 10

Fig. 5.4(e) Membership functions for relative mode
shape difference for second mode of vibration.
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Fig. 5.4(f) Membership functions for relative mode
shape difference for first mode of vibration.
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Fig. 5.4 (g) Membership functions for relative damage severity.

SP1 5P2 SP3 OSP4 NP1 NP2 MPE NP4 HP1 HP2? HPZ HP4

00001 00FFS 01290 0178503500955 03550 04150 05005 06115 07105 08115 092
Fig. 5.4 (h) Membership functions for relative damage position.
Fig. 5.4 (a) - (h) Membership functions for triangular fuzzy model.
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Fig. 5.5(a) Membership functions for relative
natural frequency for first mode of vibration.
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Fig. 5.5(b) Membership functions for relative
natural frequency for second mode of vibration.
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Fig. 5.5(c) Membership functions for relative
natural frequency for third mode of vibration.
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Fig. 5.5(d) Membership functions for relative
mode shape difference for first mode of vibration.
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Fig. 5.5(e) Membership functions for relative mode

shape difference for second mode of vibration.
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Fig. 5.5(f) Membership functions for relative
mode shape difference for first mode of vibration.
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Fig. 5.5 (g) Membership functions for relative damage severity.
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Fig. 5.5 (h) Membership functions for relative damage position.

Fig. 5.5 (a) - (h) Membership functions for triangular fuzzy model.
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Fig. 5.6(c) Membership functions for relative Fig. 5.6(d) Membership functions for relative
natural frequency for third mode of vibration. mode shape difference for first mode of vibration.
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Fig. 5.6(e) Membership functions for relative mode Fig. 5.6(f) Membership functions for relative
shape difference for second mode of vibration. mode shape difference for first mode of vibration.
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Fig. 5.6 (g) Membership functions for relative damage severity.
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Fig. 5.6 (h) Membership functions for relative damage position.

Fig. 5.6 (a) - (h) Membership functions for trapezoidal fuzzy model.
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Table 5.1 Description of fuzzy linguistic terms.

Membership Functions | Linguistic Definition of the Linguistic terms

Name Terms

L1F1.LIF2.LIF3 FNF 3 Low ranges of relative natural frequency for first mode of
’ ’ vibration

MIFLMIF2. M1F3 FNF 46 Medium ranges of relative natural frequency for first
’ ’ mode of vibration

HIF1.HIF2.H1F3 FNF 749 Higher ranges of relative natural frequency for first mode
’ ’ of vibration

L2F1 L2F2.L2F3 SNF | 03 Low ranges of relative natural frequency for second mode
’ ’ of vibration

M2F1. M2F2.M2F3 SNF 4406 Medium ranges of relative natural frequency for second
’ ’ mode of vibration

H2F | H2F2. H2F3 SNF 749 Higher ranges of relative natural frequencies for second
’ ’ mode of vibration

L3F1.L3F2.13F3 TNF |03 Low ranges of relative natural frequencies for third mode
’ ’ of vibration

M3F1.M3F2. M3F3 TNF 4106 Medium ranges of relative natural frequencies for third
’ ’ mode of vibration

H3F1.H3F2.H3F3 TNF 749 Higher ranges of relative natural frequencies for third
’ ’ mode of vibration

S1M1,S1M2,S1M3 FMD 03 Small ranges of first relative mode shape difference

MIMI1.MIM2.MIM3 FMD 46 medium ranges of first relative mode shape difference

HIM1.HIM2.HIM3 FMD 7 10 Higher ranges of first relative mode shape difference

SOM1.S2M2.S2M3 SMD | 03 Small ranges of second relative mode shape difference

M2M1.M2M2.M2M3 SMD 416 medium ranges of second relative mode shape difference

H2M1.H2M2.H2M3 SMD 710 Higher ranges of second relative mode shape difference

S3M1.S3M2.S3M3 TMD |03 Small ranges of third relative mode shape difference

M3M1.M3M2.M3M3 TMD 446 medium ranges of third relative mode shape difference

H3M1.H3M2.H3M3 TMD ;410 | Higher ranges of third relative mode shape difference

SP1.SP2.SP3.SP4 RDP |4 Small ranges of relative damage position

MP1,MP2,MP3 MP4 RDP 53 Medium ranges of relative damage position

HP1,HP2, HP3,HP4 RDP g 12 Higher ranges of relative damage position

LS1,LS2,1.S3,L.S4 RDS ;04 Lower ranges of relative damage severity

MS1,MS2,MS3,MS4 RDS5 5 Medium ranges of relative damage severity

US1,US2,US3,US4 RDS 94 12 Upper ranges of relative damage severity
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Table 5.2 Examples of twenty fuzzy rules to be implemented in fuzzy model.

S1. No. Examples of some rules used in the fuzzy model

1 If FNF is H1F1, SNF is M2F2, TNF is M3F1, FMD is HIM2, SMD is H2M4, TMD is
H3M3, then RDS is LS4 and RDP is SP3.

2 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is HIM1, SMD is H2M1, TMD is
H3M2, then RDS is LS2 and RDP is SP4.

3 If FNF is L1F3, SNF is L2F4, TNF is L3F4, FMD is M1IM2, SMD is H2M2, TMD is
H3M3, then RDS is LS3 and RDP is SP2.

4 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is HIM3, SMD is H2M4, TMD is
H3M4, then RDS is MS2 and RDP is SP3.

5 If FNF is M1F1, SNF is L2F2, TNF is L3F3, FMD is HIM1, SMD is H2M1, TMD is
H3M2, then RDS is MS1 and RDP is SP2.

6 If FNF is L1F1, SNF is L2F2, TNF is L3F3, FMD is HIM3, SMD is M2M1, TMD is
H3M4, then RDS is MS2 and RDP is MP1.

7 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is M1IM2, SMD is H2M1, TMD is
H3M]1, then RDS is MS1 and RDP is SP1.

8 If FNF is H1F1, SNF is M2F2, TNF is M3F1, FMD is HIM2, SMD is H2M2, TMD is
H3M2, then RDS is MS2 and RDP is SP2.

9 If FNF is L1F1, SNF is L2F4, TNF is L3F4, FMD is M1IM1, SMD is M2M1, TMD is
M3M2, then RDS is LS1 and RDP is MP2.

10 If FNF is M1F1, SNF is L2F2, TNF is L3F1, FMD is M1M2, SMD is M2M2, TMD is
H3M1, then RDS is LS1 and RDP is SP2.

11 If FNF is M1F1, SNF is M2F1, TNF is M3F1, FMD is HIM3, SMD is H2M3, TMD is
H3M4, then RDS is MS1 and RDP is SP4.

12 If FNF is M1F1, SNF is L2F1, TNF is L3F1, FMD is HIM3, SMD is H2M2, TMD is
H3M3, then RDS is LS2 and RDP is MP1.

13 If FNF is M1F2, SNF is M2F1, TNF is M3F1, FMD is M1M1, SMD is H2M1, TMD is
H3M2, then RDS is MS2 and RDP is MP2.

14 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is HIM4, SMD is H2M1, TMD is
H3M1, then RDS is MS1 and RDP is SP4.

15 If FNF is M1F1, SNF is L2F1, TNF is L3F2, FMD is SIM1, SMD is S2M2, TMD is
H3M1, then RDS is LS2 and RDP is MP1.

16 If FNF is L1F4, SNF is L2F4, TNF is L3F4, FMD is HIM2, SMD is S2M1, TMD is
H3M2, then RDS is LS1 and RDP is MP3.

17 If FNF is M1F1, SNF is L2F3, TNF is L3F1, FMD is SIM2, SMD is M2M1, TMD is
S3Ml1, then RDS is LS2 and RDP is MP3.

18 If FNF is L1F1, SNF is L2F1, TNF is L3F1, FMD is HIM2, SMD is H2M2, TMD is
H3M2, then RDS is LS3 and RDP is MP2.

19 If FNF is H1F2, SNF is H2F1, TNF is H3F1, FMD is SIM2, SMD is H2M3, TMD is
H3M1, then RDS is LS4 and RDP is MP1.

20 If FNF is L1F3, SNF is L2F4, TNF is L3F4, FMD is SIM3, SMD is S2M2, TMD is

S3M3, then RDS is LS3 and RDP is SP3.
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Inputs
Rule no 5 of Table 5.2 is effectuated Rule no 15 of Table 5.2 is effectuated

AN

Output

0.1716  Relative damage severity

0.3641  Relative damage position

Fig. 5.7 Resultant values of relative damage severity and relative damage position from triangular
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated.
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Inputs
Rule no 5 of Table 5.2 is effectuated P Rule no 15 of Table 5.2 is effectuated
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Output

f 0.1703 Relative damage severity

ACCOR0000000

? 0.3614 Relative damage position

Fig.5.8 Resultant values of relative damage severity and relative damage position from Guassian
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated.
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Inputs
Rule no 5 of Table 5.2 is effectuated Rule no 15 of Table 52 is

OO0 DGR
RN QLN

0.1698 Relative damage severity

0.3635  Relative damage position

Fig. 5.9 Resultant values of relative damage severity and relative damage position from trapezoidal
fuzzy model when Rules 5 and 15 of Table 5.2 are effectuated.
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5.3.2 Results of fuzzy model

In the current section, the fuzzy system based damage diagnosis is realized. The fuzzy model
(Fig. 5.2) has been designed for Al cantilever beam with six inputs as first three relative
natural frequencies and first three relative mode shape differences and two outputs as relative
damage position and relative damage severity. Three types of membership functions
(triangular, Gaussian and trapezoidal) has been employed to develop the fuzzy model
(Fig.5.4, Fig.5.5, Fig.5.6). Defuzzification (Fig.5.7, Fig.5.8, Fig.5.9) of the inputs using
triangular, Gaussian and trapezoidal membership functions have been done by activating the
rule no. 5 and rule no. 15 form the Table 5.2. Similarly, fuzzy model for fixed-fixed beam can
be modeled. Moreover, different fuzzy models can be designed for composite and steel beam
structures. The results obtained for cantilever and fixed-fixed beam structures with three
different materials from numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy
trapezoidal model and experimental analysis are compared in Table 5.1 to Table 5.12. Nine
sets of data from the Table 5.1 to Table 5.6 represents the first three relative natural
frequencies and first three relative mode shape differences in the first six columns and rest of
the columns represents the corresponding values of relative damage positions and relative
damage severity obtained from numerical, finite element, fuzzy triangular, fuzzy Gaussian,

fuzzy trapezoidal model and experimental analysis.
5.4 Discussion

The fuzzy system designed in the current research has been adopted for damage diagnosis in
structural members of different materials such as Al, composite & steel. The various types of
membership functions used for development of the knowledge based system are triangular, Gaussian
trapezoidal as depicted in Fig. 5.1 (a) to Fig. 5.1 (¢). The different schemes complemented in
designing of the proposed system are presented in Fig. 5.2. The various linguistic terms and some of
the fuzzy rules used for developing the fuzzy damage diagnostic tool have been exhibited in Table
5.1 and Table 5.2 respectively. The complete architecture of different types of membership functions
with the linguistic terms have been presented in Fig. 5.4 to Fig. 5.6. The results obtained for all three
materials from fuzzy model with triangular, Gaussian and trapezoidal membership functions and
experimental analyses are compared in Table 5.1 to Table 5.6 .The results from numerical, finite
element and Gaussian fuzzy model analysis are shown in Table 5.7 to Table 5.12 and the results are

found to be in very good agreement. From the analysis of the results presented in Table 5.1 to Table
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5.6, it is observed that the percentage deviation of the results of the triangular membership function
fuzzy model for Al, composite & steel cantilever and fixed-fixed beam structures are 7.65%, 7.59%,
7.15%, 7.21%, 8.03%, 8.11%. For Gaussian membership function percentage deviation of the results
are found to be 5.10%, 5.16%, 4.95%, 5.02%, 6.19%, 6.63% and for trapezoidal membership
function, deviation of the results are 7.38%, 7.45%, 6.93%, 6.98%, 7.68%, 7.72%.

Table 5.3 Comparison of modal parameters and damage characteristics of Al cantilever beam

obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and experimental
analvsis

Fuzzy Fuzzy Fuzzy .

FNF SNF INF MD SNF INF Gaussian Trap-ezoidal Triar;gular Experimental

) ) EDS |RDP |RDS |RDP | RDS |RDP |RDS | RDP
09063 | 0.0990 | 0.0999 | 00073 | 0.0031 | 00015 | 0374 | 050 | 034 | 045 | 0372 | 048 [0375 | 030
00037 | 0.0903 | 0.0998 | 0.0017 | 0.0053 | 0.0063 | 0499 | 030 | 0498 | 048 | 0497 | 051 | 0.500 | 0.30
00014 | 00726 | 09998 | 0.0030 | 0.0074 | 00057 | 0624 | 049 | 0622 | 048 | 0622 | 048 | 0625 | 030
0.0926 | 0.0963 | 0.0946 | 0.0031 | 0.0082 | 0.0137 | 0376 | 026 | 0.377 | 027 | 0378 | 027 | 0375 | 023
09843 | 0.9910 | 0.9885 | 0.0076 | 00013 | 0.0125 | 0301 | 0.26 | 0.498 | 027 | 0.4%7 | 028 | 0300 | 025
00671 | 0.0841 | 0.0761 | 0.0087 | 0.0023 | 0.0491 | 0626 | 025 | 0.627 | 026 | 0.627 | 027 | 0.625 | 0.2
0.9950 | 0.0090 | 0.9911 | 00163 | 00110 | 00312 | 0374 | 0.6 | 0373 |03 | 0372 | 092 | 0375 | 005
09997 | 0.0907 | 0.0811 | 0.0330 | 0.0233 | 0.0264 | 0499 | 0.6 | 0.497 | 0.3 | 0.302 | 0.3 | 0.500 | 0.7
09995 | 0.9947 | 0.9616 | 0.0704 | 0.0361 | 0.0333 | 0.626 | 0.74 | 0.627 | 0.3 | 0.628 | 0.3 | 0625 | 0.5

Table 5.4 Comparison of modal parameters and damage characteristics of Al fixed-fixed beam
obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and experimental
analysis

f}:.i?r;ian ??:;jrelzcidal Ff?izi}lgula.r Experimental
ENF | 8NF | INF | EMD SNF TNF

RDs | RDP |RDS | RDP | RD3 RDP | RDS | RDP
D.8930 | 00006 | 0.0016 | 01434 | O.043 | 0.003% [ 0573 | 051 | 0374 | 048 | 0377 032 | 0373 (030
00868 | 0.0001 | 0.0823 | 01727 | 0007 | 00003 [ 0301 | 031 | 0302 | 043 | 0.303 031 | 0500 [ 030
08743 | 0.9937 | 0.9666 | 0.2679 | 0.0136 | 0.0094 | 0626 | 049 | 0424 | 03] 0.624 048 | 0623 [ 030
0.6900 | 09043 | 00036 | 0.1333 | 00333 | 0257 | 0374 | 026 | 0377 | 026 | 05379 027 | 0373 [ 023
00008 | 00870 | 09867 | 03033 | 00372 | 0.0227 [ 0400 | 027 | 0303 | 023 | 0487 027 0500 | 0.23
08904 | 09737 | 0.9742 | 04135 | 00667 | 00406 [ 0626 | 024 | 0623 | 024 | 0627 026 | 0623 | 023




Table 5.5 Comparison of modal parameters and damage characteristics of composite
cantilever beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model
and experimental analysis

Fuzzy Fuzzy Fuzzy

(faussian Trap]zzoidal Tn':arigular Experimental

RDs EDP | RDS EDP EDS EDP | RDS RDP

09979 | 09986 | 0.9992 | 0.00ZL | 00073 | .0037 | 0373 04% [ 0373 0.48 0.373 048 0373 0.34

09936 | 09883 | 09986 [ 0.0043 | 0.0011 | 0.00%6 | 0.301 040 [ 0497 0.47 0302 0.a2 0.500 0.30

09910 | 09702 | 09983 | 0.0083 | 00140 [ 0.0097 | 0623 031 0.623 049 0.623 048 0.623 0.30

09924 | 09964 | 09944 | 0.0016 | 0.0301 | 0.0161 | 0374 024 | 0378 0.2 0375 023 0.373 023

09837 | 0.901E | O.9ERD | 0.003% | 00084 [ 00373 | (490 024 [ 0302 023 0.4%6 023 0.500 025

(=)

09661 | 09841 | 09732 | 0.0089 | 00147 [ 0.0293 | D626 026 | D626 0.27 0.620 028 0.623 0.

09999 | 09999 [ 09908 | 0.016% | 00682 [ 0.0433 | 0374 073 [ 0372 0.73 0371 0.71 0375 0.73
09998 | 0.9996 | 09805 | 00339 | 00429 [ 00711 | 0501 0.74 [ D408 0.6 0.303 B72 0.309 0.73
09995 | 09531 [ 09604 | 0.0724 | 00465 [ 00313 | (626 0.74 0628 0,77 0.623 076 0.625 0.75

Table 5.6 Comparison of modal parameters and damage characteristics of composite fixed-
fixed beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and
experimental analysis

Fuzzy Fuzzy Fuzzy

- - Experimental
Gaussian Trapezoidal Trangular permenta

FINF SNF TNF D SNF TNF

EDs [ ERDP (FRDs | EDP | RDS | RDP | RDS RDP

09040 | 00000 | 0.5018 | 00043 | 0.00%1 | 00066 | 0374 | 030 | 0373 | 048 0378 | 047 0.373 0.50

09372 | 0.9903 | 0.9328 | 00080 | 00123 [ 00237 | 0493 | 051 0408 | 042 0497 | 0.48 0300 0.30

0.9753 | 09907 | 0.9676 | 00118 | 00037 | 00411 | 0624 | 031 0.623 | 049 0627 | 032 0.623 0.50

005038 | 00044 | 08037 | 01237 | 00263 | 00THY | 0576 | 0.23 0373 | 0.27 0378 | 025 0.573 0.235

06507 | 00335 | 0.98360 | 0.3741 | O.0443 [ 00579 | 0301 | 026 0302 | 024 0305 | 025 0300 023

00904 | 00768 | 0.9751 | 03699 | 00823 [ 00331 | 0626 | 024 0622 | 026 0628 | 027 0623 025
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Table 5.7 Comparison of modal parameters and damage characteristics of steel cantilever
beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and
experimental analysis

.Fuzzy. Fuzzy . F@ Experimental
N SNF TNF FMD SN TNE Gaussian Trapezoidal Trangular

ED3 | RDP |EDS | EDP |RDS | EDP | RDS RDP
00970 | 00060 | DOOGS | 00021 | 00068 | COO44 | 0374 | 049 0373 | 043 0372 | 048 0.373 .50
00955 | 09366 | 090902 | 00043 | 00010 | 00043 | 0501 | 049 [ 0302 | 048 0303 | 047 0.500 050
00508 | 00676 | 0U088 | 00081 | DO138 | 00105 | 0624 | 031 0624 | 049 0622 | 031 0.623 0,50
00021 | 00063 | 00041 | 00018 | 00288 | 00172 | 0376 | 023 0377 | 024 0371 | 027 0373 023
(.0833 | 0ODIS | 09873 | 00041 | 00129 [ 00341 | 0490 | D24 0498 | 026 0303 | 027 0.300 0.23
00633 | 09842 | 09744 | 00004 | 00122 | 00274 | 0626 | 024 | 0627 | D24 0628 | 022 0.623 023
0oe0g | 00000 | 09005 | 00174 | 00607 | 00461 | ©374 | 074 [ B3T3 [ 073 0377 | 022 04.373 0.73
G.O008 | 09080 | 00703 | 00000 | Q0407 [ 00685 | D48 | 074 G302 | 076 0497 | 08 0.300 073
00004 | 0DOD15 | 05333 | 00743 | D.0410 | Q0373 | 0624 | 076 0623 | 077 621 | 032 0.623 (.73

Table 5.8 Comparison of modal parameters and damage characteristics of steel fixed-fixed
beam obtained from Fuzzy logic (Gaussian, Trapezoidal, Triangular) based model and
experimental analysis

Fuzzy Fuzzv Fuzzy .

Gaussi Trapezoidal | Triangular Expezimental
FNF | SNF | INF | FMD | SNF | INF aussian P

BRDS |RDP | RDS [RDP |RDS |RDP | RDS | RDP
00036 | 00007 | 09913 | 0.1434 | 00137 | D0I33 | 03F [ 050 | 0373 | 033 | 0371 |047 | 0375 | 050
D.0S6d | 0.0000 | 0.0817 | 0.1713 | 01263 | 0.1117 | 0302 | 051 | 0502 | 048 | 0504 | 040 | 0500 | 0.0
D.0736 | 0.0030 | 0.0656 | 02627 | 02137 | 02106 | 0624 | 0.0 | 0622 | 0351 | 0621 | 032 | 0625 | 0.30
00000 | (0031 | D.9933 | 0.1353 | 0.1366 | 0.1201 | 0.376 | 031 | 0373 | 0326 | 0377 | 028 | 0375 | 023
00007 | 0.08975 | D.0863 | 0.3800 | 03528 | D2205 | 0501 | 031 | 0502 | 026 | 0503 | 028 | 0500 | D25
00001 | 09751 | 0.0736 | 04082 | 03167 | 02406 | 0624 | 040 | 0623 | 024 | 0628 | 027 | 0625 | 025
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Table 5.9 Comparison of modal parameters and damage characteristics of Al cantilever
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental

analysis

Fuzzy FEA MNuwmenecal Expermental
FNF SNF TNF FMD SNF TNF Gaussian

EDS | RDP | EDS | RDF | RDS | EDPF | RDS EDP
OO07% | 00086 | 09902 | 00021 [ 00073 | 00037 | 0374 | 030 0375 | 4% [ D373 | 040 0,375 0.50
00036 | 00883 | 00086 | 0.0045 | 00011 | 00036 | 0400 | 040 0480 | 048 0487 | 040 0.300 0.530
08010 | DO702 | 0.9083 | D.0083 | 00140 | 00007 | 0624 | D4Q 0624 | 048 0628 | 0.48 0.623 0.50
00024 | 00064 | 09044 | 00016 | CO30L | 00161 | 0376 | 026 | 0376 | 027 037 | 026 0.375 0.23
0.9837 | 00048 | 00880 | 00030 | O00%4 | 00373 | 0301 | 026 D406 | (27 044 | 024 0.500 023
00661 | 0.0841 | 00732 | 00082 | 00147 | 00203 | D626 | 023 0624 | 026 | 0623 | 0.26 0.623 0.23
(o000 | 00000 | 09908 | 0.0160 | 00482 | 00435 | 0374 | 076 0371 | 074 0368 | 0.73 0375 0.75
00008 | 00906 | 00805 | 00330 | 00420 | 00711 | 0400 | 076 | 0497 | 072 0497 | 073 0.500 0.73
00003 | 00031 | 00604 | 0.0724 | 00463 | 00513 | 0626 | 074 0622 | 073 0618 | 0.74 0,625 0.73

Table 5.10 Comparison of modal parameters and damage characteristics of Al fixed-fixed
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental

analysis

Fuzzy FEA Numerical Experimental
FNF SNF THF FMD SNF TNF Gaussian

EDS | RDP | RDS | RDP EDs | EDP | RDS EDP
09935 | 00306 | 00006 | 01434 00045 | DOOST | 0375 | 051 0370 | 049 0368 | 049 0373 [1)
00868 | 09001 | 08823 | 01727 00073 | 00103 | 0301 | 051 {488 | 051 0480 | 051 03040 030
00743 | 00937 | 00666 | 02679 | 00136 | 00094 | 0626 | 049 626 | 049 ra2y | 031 0.623 0.30
09000 | G.9043 | 09936 | 0.1388 00333 | 0.0257 [ 0374 | 0246 0374 | 026 0375 [ 027 0375 023
0O008 | 09379 | 00867 | 030355 00572 | 0.0227 [ 0400 [ 027 G497 [ 027 (493 |02 0300 023
0.9004 | 09737 | 09742 | 04133 00667 | 0.0406 | 0.626 | D24 oE21 | 024 0620 | 024 0.623 023
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Table 5.11 Comparison of modal parameters and damage characteristics of composite
cantilever beam obtained from Fuzzy Gaussian based model, FEA, numerical and
experimental analysis

Furzy Gaussian FEA Numerical Expenmental

ENF SNF TNF FMD SNF TNF

EDS EDP | EDS EDP | EDS EDP | EDS EDP

0.9964 | 0.0000 | 0.9990 | 0.0073 00031 | 00015 | 0373 0.4g 0.574 0.31 0.5373 052 0.373 0530

0.9937 | 09903 | 00098 | 0.0017 00053 | 00063 | 0301 040 0.504 0.4% 0.308 0.48 0.500 0.50

00014 | 09726 | 0.0008 | 0.0030 00074 | 00037 | 0625 0.

(]
(=

0.621 049 0.61% 0.51 0.623 0.5%

0.e926 | 060964 | 099456 | 0.0051 00082 | 0.0137 | 0374 024 0.363 024 0.362 0.24 0.373 023

0.0843 | 09019 | 00883 | 0.0076 00014 | 001

[}
L
(=
ks
=
L=

024 0.303 026 0.307 02

i
=
§
=
[
s

08671 | 05841 | 00761 | O.0057 00024 | 00431 | 0626 0.26 0.623 0.26 0.621 027 0.623 0.23

09950 | 08000 | 09011 | 0.0163 00110 | 00312 | 0374 0.3 0379 0.74 0.381 073 0.373 0.73

06907 | $9007 | 00811 | 00330 00235 | 00264 | 0501 0.74 03009 0.73 051 0.73 0.300 0.73

08005 | Do0d4T | oslG | 00704 00361 | 00333 | 0626 0.74 0620 0.3 0617 0.74 0.623 073

Table 5.12 Comparison of modal parameters and damage characteristics of composite fixed-
fixed beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental
analysis

ENF SNF TNF FnD SNF TNF Fuzzy Gaussian | FEA MNurnerical Expemmental

EDS RDP | RDS EDP RDS EDP RDS RDP
00040 [ 00000 | 00018 | 00043 00001 [ CO0e6 | 0374 030 [ 0368 .49 0361 49 0373 30
00872 [ 09098 | 00828 | 0.0080 00123 | 00237 | 0.498 051 0503 031 0.509 0.52 0500 0.50
008735 [ 09987 | 08676 | 00119 00087 [ 00411 | 0624 031 | 628 [N 0.831 [ 0.623 .30
09908 [ 09044 | 08937 | 01237 00263 [ 00761 | 0376 023 [ 0394 024 0372 023 0373 023
09997 | 0.0883 | 09860 [ 03741 00465 | 00379 | 0301 026 [ 0302 023 0502 [ .30 023
00904 [ 00768 | 00731 | 03600 0.0823 | 0.0331 | 0.626 024 | 0630 0.26 0.634 027 0.623 0.23
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Table 5.13 Comparison of modal parameters and damage characteristics of steel cantilever
beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental
analysis

Fuzzy Gaussian FEA Murmencal Experimental

FNF SNF TNF EMD EMF TNF

RDS RDP EDS | RDP | RDS | RDPF | RDS | RDP

09979 [ 00069 | 00006 | 00021 0.0060 | 0.0044 | 0574 | 049 0374 | b4% | 0374 | 030 0573 | 030

00035 [ 09366 | 090992 | 00043 0.001% | 00045 | 0501 0.4% 0499 | 040 488 | D49 000 | D50

09908 | 09876 | 09933 | 00041 00138 | 00003 | 0624 | 031 0624 | 048 0623 | 049 6623 | 030

06921 | C.O%63 | 09041 | 00018 0.0283 | 00178 | 0376 | 023 0373 | 027 0574 | 026 0375 | 023

09835 [ 00918 | 00873 | 00041 0.0129 | 00341 | 0499 | 024 0498 | 024 | 0409 | 024 0.300 | 0.23

00633 | (0842 | 00744 | 00084 00122 | 00274 | 0626 | 024 0623 | 026 | 0622 | 024 | 0623 [ 023

00900 [ 0o000 | 00003 | 00174 0.0607 [ 40461 | 0374 | 074 0377 | 07e | 0376 | 076 | 03T [ 073

05008 | 00080 | 00708 | 00090 0.0477 | 00653 | 0400 | 074 0308 | 073 0302 | 074 0300 | 0.73

05904 [ 09813 | L0303 | 00745 00419 | D037 | D824 | 076 0623 | 074 | 0622 | G4 | 0825 [ 073

Table 5.14 Comparison of modal parameters and damage characteristics of steel fixed-
fixed beam obtained from Fuzzy Gaussian based model, FEA, numerical and experimental
analysis

Fuzry FEA Mumerical Expernmental
FNF SNF TNF FMD SNF TNF Gaussian

EDS EDPF | ED3 | BDP | RDS | RDP | RDS | EDP

00036 | 0.0007 | 009915 | 01444 0.0037 | 0 0374 0.30 45376 | 040 035377 | 049 0373 | 030

[T}
Lad

(0864 | 00002 | 09817 | 017I5 01265 | 01117 | G302 051 0498 | 049 0.49% | (.48 0.300 [ 030

08736 | 0.0080 | 00636 | 02627 02157 | 02108 | 0624 042 0.627 | 048 0628 | 049 0.623 | 0.30

09003 | 0041 | 09933 | 0.1354 01366 | 01291 | 0376 051 0377 ) 027 03576 | 026 0373 [ 025
D909y | 09875 | 09863 | 03899 (3528 | ©2203 | G301 .51 0503 | 026 0502 | 027 0500 | 023

08004 | 00731 | 09736 | 04082 053167 | 02496 | (624 (.49 0625 | 026 0623 | 024 0623 |02

L
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5.5 Summary

The fuzzy modeling implemented in the current section has been analyzed to get the
following conclusions. The presence of damages in structural member has remarkable impact
on the modal parameters of the dynamic structure. The first three relative natural frequencies
and first three relative mode shape differences are engaged as inputs to the fuzzy model and
relative damage positions and relative damage severity are the output parameters. The
reliability of the proposed model has been established by comparing the results from the
fuzzy models (Gaussian, trapezoidal, triangular) with that of the numerical, finite element and
experimental analysis. The results are found to be well in agreement. Moreover, Guassian
membership function is found to deliver better results compared to the other membership
function and numerical & finite element analysis. Hence, the proposed Gaussian fuzzy model

can be effectively used as damage identification tools in vibrating structures.
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Chapter 6

ARTIFICIAL NEURAL NETWORK BASED DAMAGE
DIAGNOSIS FOR VIBRATING STRUCTURES

Though damage diagnosis is not a phenomena, the evolution of various techniques over the
time has made a point that the smooth functioning of all structural members is only possible
when the development of damage of any form is prohibited. Therefore estimating the
potential of the damage is to be thoroughly diagnosed for maintaining the life span of the
various structures. The change in dynamic characteristics of vibrating structures lay down the
main platform for most of the damage diagnosis mechanism. In this section, artificial neural
network based model is developed with requisite amount of trained data generated from back
propagation technique. Finally, the results from the model have been compared with the

experimental results to establish the robustness of the proposed neural method.

6.1 Introduction

This section of the thesis provides an introduction to basic neural network architectures and

learning rules.

The complex biological neural network in a human body has highly interconnected set of
neurons, facilitates for various kind of output such as thinking, breathing, driving etc.
Generally the neurons are believed to store the biological neural functions and memory and
learning of the neural system facilitates for establishment of new connections between the
neurons. The most interesting feature of this artificial neural network (ANN) is the novel
structure of the information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in parallel to solve specific
applications, such as pattern recognition or data classification, through a learning process.
Learning in biological systems involves adjustments to the synaptic weights that exist
between the neurons. Neural networks, with their remarkable ability to derive meaning from

complicated or imprecise data, can be used to recognize patterns and detect trends that are too
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complex to be noticed by either humans or other computer techniques. Some of the

advantages of the ANN are depicted below.

Adaptive learning: The ability of the neural system lies in the capacity to adapt to the
changing environment by adjusting the synaptic weights and perform according to the
situation. This feature makes the neural network a methodology to address industrial
applications in dynamic environment.

Self-Organization: An artificial neural network can produce results for inputs that are not
used during training by creating its own representation of the information it receives during
learning time. This capability helps in solving problem of higher complexities.

Real Time Operation: The neural network is composed of a large number interconnected
neurons working in parallel to solve a specific problem. Neural networks learn by example.
For this special hardware devices are being designed and manufactured which take advantage
of this capability.

Fault Tolerance: In case of failure of a neuron in neural network system there will be a
partial destruction of a network which leads to only deterioration of quality of output rather

than collapsing the system as a whole.

This section introduces a feed forward multilayer neural network trained with back
propagation technique for online multiple damage detection in structural beam members. The
proposed neural network system has been designed with six input parameters (first three
relative natural frequencies, first three relative mode shape differences) and two output
parameters (relative damage position, relative damage severity). A comparison of results
obtained from fuzzy, numerical, FEA, neural and experimental analysis have been conducted
and it is observed that the developed neural network provides more accurate results as
compared to other mentioned methods. Subsequently, the outputs from neural network are

validated by the experimentation.

6.2 Neural network technique

Given this the description of neural network, it has been successfully implemented in many

industrial applications such as industrial process control, sales forecasting, electronic noses,
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modeling, diagnosing the Cardiovascular System and etc. The parallel computing capability
and the ability to perform under changing environment make the neural network a potential

tool to address applications, which are hard to solve using analytical or numerical methods.

6.2.1 Model of a neural network

Py | W,
P, o
L Wa | Neuron Actlyatlon
function

Fig. 6.1 Neuron Model

A neuron which can be used in a dynamic environment is shown in Fig. 6.1. An artificial
neuron is a device with many inputs and one output. The neuron has two modes of operation;
the training mode and the using mode. In the training mode, the neuron can be trained to fire
(or not), for particular input patterns. In the using mode, when a taught input pattern is
detected at the input, its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is used to determine whether

to fire or not.

The main features of the neural model are as follows,

¢ The inputs to the neuron are assigned with synaptic weights, which in turn affect the
decision making ability of the neural network. The inputs to the neuron are called
weighted inputs.

% These weighted inputs are then summed together in an adder and if they exceed a pre-
set threshold value, the neuron fires. In any other case the neuron does not fire.

% An activation function for limiting the amplitude of the output of a neuron. Generally
the normalized amplitude range of the output of a neuron is given as the closed unit

interval [0,1] or alternatively [-1,1].
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Learning process of ANN:

The learning for a neural network means following a methodology for modifying the weights
to make the network adaptive in nature to changing environment. The learning rules may be

broadly divided into three categories,

1. Supervised learning: The supervised learning rule is provided with set of training data for
proper network behavior. When the inputs are applied to the network, the outputs from the
network are compared with the targets. Through the learning process the network will adjust
the weights of the network in order to bring the outputs closer to the targets.

2. Unsupervised learning: In this type of learning the network modifies the weights in
response to the inputs to the network. This is suitable for applications requiring vector
quantization.

3. Reinforcement learning: In the reinforcement learning instead of being provided with the
correct output, for each network input, the algorithm is only given a score. The score is the

measure of network performance over some sequence of inputs.

In mathematical terms, we can describe a neuron k by writing the following pair of equations:

p
u = Wy, (6.1)
j=1
6.2
Y= f(uk) ©.2)
Where X1, Xo,.....,Xp are the input signals; wii, Wio,.....,Wi, are the synaptic weights of neuron

k; uy is the linear combined output; £ () is the activation function; and yy is the output signal

of the neuron.

6.2.2 Use of back propagation neural network

The back propagation technique (Fig. 6.2) can be used to train the multilayer networks. This
technique is an approximate steepest gradient algorithm in which the performance of the
network is based on mean square error. In order to train the neural network, the weights for

each input to the neural system should be so adjusted that the error between the actual output
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and desired output is minimum. The multilayer neural system would calculate the change in
error due to increase or decrease in the weights. The algorithm first computes each error
weight by computing the rate of the error changes with the change in synaptic weights. The
error in each hidden layer just before the output layer in a direction opposite to the way
activities propagate through the network have to be computed and fed to the network by back
propagation algorithm to minimize the error in the actual output and desired output by

adjusting the parameters of the network.

Fig. 6.2 Back propagation technique

6.3 Analysis of neural network model used for damage detection

A back propagation neural model [66] has been proposed for identification of damage (i.e.
relative damage positions, relative damage severity) of structural beam members
(Fig.6.3).The neural model has been designed with six input parameters and two output

parameters.
The inputs to the neural network model are FNF, SNF, TNF, FMD, SMD and TMD.
The outputs from the neural model are as follows;

Relative damage position = “RDP”
70



Relative damage severity = “RDS”

The back propagation neural network has been made with one input layer, one output layer
and eight hidden layers. The input layer contains six neurons, where as the output layer
contains two neurons. The number of neurons in each hidden layers are different in order to
give the neural network a diamond shape and for better convergence of results (Fig.6.4). The
neurons associated with the input layer of the network represent the first three relative natural
frequencies and first three average relative mode shape difference. The relative damage
position, relative damage severityare represented by the two neurons of the output layer of the

neural network.

Input layer

Output layer

!
%/
V-

OSSOSO
FMD A“Y‘?

TR T TN
. 'A ‘b —> RDS
TMD

Neurons

Fig. 6.3 Neural network model

6.3.1 Neural controller mechanism for damage detection

The neural network used in the current investigation is a five-layered feed forward neural
network model trained with back propagation technique [66]. The training of neural data is
realized using the number of chosen layers. The input layer of the neural network consists of
six neurons for first three relative natural frequencies and first three relative mode shape
difference and the output layer consists of two neurons for relative damage positions and
relative damage severities. The hidden layers i.e. 27 3 and 4" layer of the network

comprises 9 neurons, 11 neurons and 9 neurons respectively. The number of neurons in each
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hidden layer has been decided using the empirical relation. Fig. 6.4 illustrates the neural
network with its input and output signals for Al cantilever beam. Similarly, for composite and
steel cantilever beam structures, neural network model can be designed. Moreover for fixed-

fixed beam of each material can also be integrated with the neural network model.

Ohatput Laver
[2 Meurons]

Input Layer

[f Neurons] Third Hidden Layer

First Hidden Layer
¥ [ Neurons]

[% Meurons] Second Hidden Layer
[11 Neurons]

Fig. 6.4 Multi layered feed forward back propagation neural controller for damage identification

The proposed neural network model for damage identification has been trained with 600
patterns of data for each Al, composite & steel cantilever and fixed-fixed beam featuring
various states of the beam members. Out of the several hundred testing data, some of them
are presented for each material in Table 6.1 to Table 6.6. During the training, the models are
fed with six input parameters i.e. first three relative natural frequencies and first three mode

shape differences. The outputs are relative damage positions and relative damage severities.

During training and during normal operation, the input patterns fed to the neural network
comprise the following components:

yP} = relativedeviation of first natural frequency (6.3())
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yg} = relativedeviation of second natural frequency (6.3(b))

yg} = relativedeviation of third natural frequency (6.3(c))
yg} = relativedeviation of first mode shape difference (6.3(d))
yg} = relativedeviation of second mode shape difference (6.3(e))
yg} = relativedeviation of third mode shape difference (6.3(9))

The outputs generated due to the distribution of the input to the hidden neurons are given by

[66]:

£(v,)) =yl (64)
Where,

{la } {la —l} _ {la }
Wiy = v (6.5)

layer number (2 or 4) = lay
label for j" neuron in hidden layer ‘lay’= j
label for i™ neuron in hidden layer ‘lay-1"=1

Weight of the connection from neuron 1 in layer ‘lay-1’ to neuron j in layer ‘lay’=W j{i'ay}

Activation function, chosen in this work as the hyperbolic tangent function = f (.), where,

eX _ e—X
=T 6.6
e’ +e” (X) (6.6)

In the process of training, the network output Oacwal, n (i=1 to 2) may differ from the desired
output Ogesiredn (N=1 to 2) as specified in the training pattern presented to the network. The
measure of performance of the network is the instantaneous sum-squared difference between

Odesired, n and O,crual, n fOr the set of presented training patterns:
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1
Err = E > (edesired,n - gactual,n )
all training
patterns

? (6.7)
Where Oyl n (n=1) represents relative damage position (“RDP”)
Oactual, n (n=2) represents relative damage severity (“RDS”)

During the development of the neural model, the error back propagation method is employed
to train the network [66]. This method requires the computation of local error gradients in

order to determine appropriate weight corrections to reduce error. For the output layer, the

error gradient & bl is:
5{5}21[ TVF}J[edesired,n _eactual,n] (6.8)
Hence, the local gradient for neurons in hidden layer {lay} is given by:

Sjlay ( {lay} {26 lay+1 lay+l ] (69)

Synaptic weights are updated according to the following expressions:

W, (t+1)= W, (t)+ AW, (t+1) (6.10)
and AW, (t+1)=aAW, (t)+nd!™iy~ (6.11)
Where

Momentum coefficient (chosen statistically as 0.2 in this work)= o
Learning rate (chosen statistically as 0.35 in this work) =n

Iteration number, each iteration consisting of the presentation of a training
pattern and correction of the weights =t

Following expression shows, the final output from the neural network as;

Oactual,n = [VS:S ] (6.12)

where V,{,S} =y W,{Z}yl{é‘} (6.13)
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1 = learning rate (chosen empirically as 0.35 in this work)

t = iteration number, each iteration consisting of the presentation of a training

pattern and correction of the weights.

Table 6.1 Comparison of modal parameters and damage

characteristics of Al cantilever beam obtained from Neural
Network based model
Input to the Neural Wetwork Model Output from the Neural
Metwork hModel
FNF SHFE TNF FnID ShiD ThID EDS RIDP
00076 | G008 | GOoG02 | 00021 | 00073 0057 374 .50
0.90954 | 00883 | 00086 | 00043 | 00011 (0036 {400 (4G
QEC0 [ 08762 | 00085 | G.0085 | 00140 (. (007 {626 .51
00024 | 000664 | 00044 | 00006 | 00301 (0161 0375 .26
00837 | 00018 | 0OS30 | 00038 | 00004 #0573 0501 126
Go661 | 00841 | 08732 | 00089 | 00147 (0203 0624 024
(o000 [ 0o0dd [ 00008 [ 0160 [ 004682 (435 0,373 076
00008 | 00006 | 00803 | 005338 | 00428 EEEER B (490 076
04005 | Go631 | Goodd | 00724 | 00463 (0313 (626 0.73

Table 6.2 Comparison of modal parameters and damage
characteristics of Al fixed-fixed beam obtained from Neural

Network based model
Input to the Meural Metwork Model Cutput from the Neural
Network Model

FNF SMNF TNF MO | SMD | TMD EDS RDP
(O30 | 00006 | 00006 | 01434 | 0.0045 | 0.0059 0374 030
003638 | 00001 | 09323 | 01727 | 00078 | 00103 (.301 (49
00745 | 00087 | 00666 | 02670 | 0.0136 | 00004 0.623 049
00000 | 00043 | 00036 | 01388 | 003535 | 00237 0374 050
o008 | 00878 | 00367 | 03835 | 00372 | 00227 0302 049
00004 | 00737 | 09742 | 041535 | 0.0667 | 0.0495 0.626 051




Table 6.3 Comparison of modal

Network based model

parameters
characteristics of composite cantilever beam obtained from Neural

and damage

Input to the Neural Wetwork hModel Crutput from the Neural
Network Model

FNF SME TNF D | SMD ™D ED3 EDP
(0064 | 00000 | (0000 00073 | 00051 00013 {£.373 (.49
00037 | 0005 [ 00003 00017 | 0.0033 00063 0,498 040
00014 | 09726 | 00008 B0030 | 00074 00037 0624 0.31
00026 | 00064 | 00046 | 00051 | 00082 00157 0376 023
(9343 | (0919 | $9353 000Te | 00014 00123 (400 023
0.0671 | 0.0341 [ 08761 00037 | 00024 00401 0625 023
00000 | 000090 | 00011 p0165 | 00110 00312 0.374 0,75
00097 | 00097 | 00511 00330 | 00233 00264 0408 0.73
(9903 | 00047 | 00616 00704 | 00561 00333 0.626 076

Table 6.4 Comparison of modal parameters and damage characteristics
of composite fixed-fixed beam obtained from Neural Network based

model

Input to the Weural Network hModel Cutput from the Neural
MNetwork: Model

ENF SNF TWF FMBD SMD THD RDS RDP

00040 ) 00000 | 0018 | 00043 [ 00001 | 00066 0.376 031

00872 | 0.0008 09828 | 00080 | 00123 0.0237 G501 0.30

0.8733 Gooo7 | 49876 | 00119 | O.0097 (.0411 0627 048

0.0003 foodd | o037 | 01237 0.0263 0.0761 0.373 0.50

00007 (.0883 | 09860 | 03741 00463 | 00370 0.301 050

goood | 9763 | 09731 [ 03680 | 00523 | 00331 0.623 6.31
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Table 6.5 Comparison of modal parameters and damage characteristics
of steel cantilever beam obtained from Neural Network based model

Input to the Neural Network Model Catput from the Neural
Metwork hodel

ENF SMNF TNF FMD MDD ™D RDE RDP
00975 | 09069 0.9506 0021 {0065 00044 0377 043
00053 | 00866 (0002 0.0043 0.0010 0.0043 ELY 051
0O008 | 00878 00088 0.0081 0.0138 0.01035 G623 631
pO921 | 00063 00043 00018 00258 Goive 374 023
(0833 | 05518 09873 {0041 f012e 00541 0.300 023
(0633 | (0842 (0744 0.0004 0.0122 0.0274 0624 025
00040 | 0000 00003 00174 0.0607 0461 037 074
00008 | (0030 00798 0.0000 00477 (0603 D400 076
L0004 | (8513 (9303 0.0743 0.041% 00573 0623 0.74

Table 6.6 Comparison of modal parameters and damage
characteristics of steel fixed-fixed beam obtained from Neural
Network based model

Input to the Weural Network hMadel Cutput from the Neural
Networl hModel

FNF SNF TNF EnD SMD THD EDS EDP
00036 | 00007 | 00013 0.1444 00157 0.0133 0373 0.30
G.0864 | Qo002 | LOSIT 0.1713 0.1263 41117 0400 0.4%
00736 | 00030 | 00636 02627 (2137 02106 0624 .30
00000 | 00041 | 00033 01334 (1366 £.1201 0.376 0.51
00007 | 00875 | 0.0863 0.3300 03323 0.2205 0.501 0.30
00004 | 00731 | 00736 0.4032 03167 0.2406 0.623 0.4%




Table 6.7 Comparison of modal parameters and damage characteristics of Al cantilever beam
obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and
Experimental analysis

Neural Wetwork | Fuzzy Gaussian | FEA Experimental

FNF | SWF | INF | FMD | SNF | INF  "ppg [ RDP | RDS | RDP | RDS | EDP | RDS | RDP

0.997% | 00036 | 08002 | 00021 0.0073 | 00037 | 0374 0.50 0.374 0.50 0373 0.48 0373 [ 050

0.9036 | 0.0333 | 00036 | 00045 | 0.0011 | 00036 | 0409 049 0409 0.49 0.430 (.43 G300 | 050

09980 | 09702 | 09983 [ 00083 | 00140 | 00087 | 0626 0.5 0.624 0.4¢ 624 0.48 0623 | 0.30

0.6024 | 00084 | 00044 | Q0016 | 0.0301 | 000161 | 0373 026 0.376 026 0576 027 0573 | 023

0.9837 | 00918 | 00830 | 00050 | 0.0004 | 006373 | 0301 026 0.501 026 0.406 027 0500 [0

(=]
[}

0.8661 | 0.0341 | 09752 | 00080 | 0.0147 | 0.0203 | 0624 0.24 0.626 0.25 0.624 (26 0623 | 02

wn

0.8000 | 00000 | 0000 | 00160 | 0.0682 | 00435 | 0373 0.78 0.374 0.76 0.5371 0.74 0.373

=
-l
[

09008 | 00006 | 00803 [ 00339 | 0.0420 | 00711 | 0409 0.76 0.49¢ 0.76 0.497 0.2 0500 [ 0.3

08003 | 00031 | 00604 | 00724 | 0.0465 | 00315 | 0626 0.7 0.626 0.74 0.622 0.3 0623 | 073

in

Table 6.8 Comparison of modal parameters and damage characteristics of Al fixed-fixed
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and
Experimental analysis

Weural Network | Fuzzy Gaussian | FEA Experimental

FNF | SNF | TNF | FMD | SNF | TNF  [gpg | RDP | RDS REDP | RDS | RDP | RDS RDP

09030 | 00006 | 09916 | 0.1434 00043 | 00039 [ 0374 0.530 0370 045 0.368 | (.49 0373 0.30

09563 | 09591 | 09323 | 01727 (0078 | 0.0103 | 0301 0.4% 0.433 0.31 0.489 [ 031 0.500 0.30

09743 [ 00037 | 00666 | 02670 00136 [ 0.0004 | 0.623 0.4% (626 0.4% 0.627 | 251 (623 030

0.e0ee | 09043 | 09036 | 0.1383 00333 [ 0.0237 [ 0374 0.30 0.374 026 0373 | 027 0373 0.23

090938 [ 0.087% | 09867 | 0.3933 00372 [ 00227 [ 0302 049 (.497 027 0493 | 026 0300 02

(=)

(o904 | 09757 | 09742 | 04133 0667 | 0.0486 | D626 051 0.621 0.24 0.620 | 0.24 0623 0.2

L
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Table 6.9 Comparison of modal parameters and damage characteristics of composite cantilever
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and
Experimental analysis

Neural Network | Fuzzy Gaussian | FEA Expernmental

FNF [ SNF | TNF | FMD SNF INF |(mDs | RDP RDS RDP | EDS RDP RDS RDP

00064 | 0.OGGD | 00900 | 0.0073 0.0051 | 00013 | 0373 0.49 0.373 0.4% 0374 051 0.373 .50

0.9%57 | 09903 [ 00003 | 00017 0.0033 | 0.0063 | 0301 0.49 0.301 0.49 0,504 0.49 0500 050

08014 | 00726 | 09003 | 0.0030 | 0.0074 | 00037 | 0623 [ 031 0.623 0.31 0621 4e 0.623 0.50

06926 | 0.9%64 [ 00046 | 00051 0.0082 | 00157 | 0574 | 024 0.374 024 0.563 024 0373 023

09843 | 00010 | 00883 [ 00076 | 00014 | D025 | D400 [ 024 0400 0.24 .303 .26 0500 023

09671 | 0.9841 | 09761 | 0.0087 | 0.0024 | 00401 | 0626 | 026 0.626 0.26 0625 .26 0.623 0.23

05000 | 00000 | 00911 | 0.0163 0.0110 | 00512 | 0374 [ 073 0.374 073 370 074 0373 073

06967 | 0.9997 [ 00811 | 00350 | 0.0235 | 00264 | 0501 0.74 0501 0.74 0309 0.73 0300 0.73

00005 | 00047 | 09616 | 0.07T04 | 00361 | 00533 | 0626 | 074 0.626 074 620 073 0.623 0.73

Table 6.10 Comparison of modal parameters and damage characteristics of composite
fixed-fixed beam obtained from Neural Network based model, Fuzzy Gaussian based
model, FEA and Experimental

Neural Network Furzy Gaussian FEA Expenmental
FNF | SNF [ TNF | FMD | SNF | INF [Rps RDP | RDS REDP DS RDP RDS RDP
00030 | 09000 | 00018 | 0.0043 | 0.0001 | 0.0066 | 0374 0.30 0363 049 0.361 048 0373 0.30
00372 | 00008 | 00828 | D.008C | 00123 | 0.0237 | 0408 051 0503 051 03500 | 032 0500 | 050
056733 | 0.0007 | 00676 | 0.0110 | 0.0087 | 0.0411 | 0.624 0.31 0.628 031 0.631 032 0.623 0.30
00008 | 00044 | 0.0037 | 0.1237 | 0.0263 | D.076L | 0376 023 0314 | 024 0372 023 0375 023
00007 | 00383 | 00860 | 03741 | 0.0463 | 0.03/% | 0.301 026 0302 013 0.502 021 0300 | 023
00004 | 00763 | 00751 | 03600 | 0.0825 | 0.0331 | 0.626 024 0.630 0.26 0634 027 0623 033
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Table 6.11 Comparison of modal parameters and damage characteristics of steel cantilever
beam obtained from Neural Network based model, Fuzzy Gaussian based model, FEA and

Experimental analysis

Neural Network Fuzzy Gaussian FEA Expenmental
ENF | SNF TNF D SNF THF DS RDP RDS EDP DS REDP RDS RDP
00070 | 0996% | 05906 | 00021 | O0LOGF | DODH | 0577 043 0374 04% 0374 04% 0373 030
00053 | 09366 | 09992 | 00043 | 0.0019 | 0.0043 | 0399 0.51 0.301 0.49 0459 | 040 0300 | Q.30
00008 | 00676 | 00038 | O0OS1 | 00138 | DOIOS | 0623 031 0624 031 0624 | 048 0625 .30
09021 | 09965 | 09941 | 0001 | 00288 | 0017¢ | 0374 | 0325 0376 023 0373 027 0373 023
00333 | 09918 | 09873 | 00041 | 0.012% | 00341 | 0300 | 023 0.499 0.24 0.40% 0.24 0300 | 023
00653 | 00842 | 00733 | 00093 | 00122 | 00274 | 0626 026 0.626 024 0.623 026 0623 023
00090 | 00990 | 00905 | 00174 | 00607 | DOD461 | 0376 0,74 0374 074 0377 076 0373 073
00003 | 00080 | 00798 | D00S9 | 00477 | 00693 | 0488 | 0.6 0450 074 0301 073 0300 073
00004 | 09913 | 09303 | 0.0743 | 00410 | DOZ73 | 0.623 0.74 0.624 076 0.623 0.74 0.623 0.73

Table 6.12 Comparison of modal parameters and damage characteristics of steel fixed-
fixed beam obtained from Neural Network based model, Fuzzy Gaussian based model,

FEA and Experimental analysis

Neural Network | Fuzzy Gaussian | FEA Expenmental
FNE | SNF | INF | FMD | SNF | INF "ppe™TRpp | RDS | RDP | RDS | RDP | RDS | RDP
08056 | 00997 [ 09913 | 01444 [ 001537 | 00135 [ 0373 | 030 0374 050 0376 | 040 0,373 | 030
0.0864 | 09092 | 00317 | 01713 | 01263 | 01117 | 049 | 042 0502 031 L4083 | 040 0500 | 0.30
08736 | ¢.008% | 00656 | 02627 | 02137 | 02106 | 0624 | 030 0624 040 0627 | 048 0623 | 0.30
00000 | 00041 | 00033 | 015354 [ 1366 | 01281 | 037 [ 031 0.376 0.31 0377 | 027 0373 | 025
0.9%97 | 00873 | 0.0363 | 05800 | 03328 | 02203 | 0301 | 030 0.301 0.31 0503 | 026 0500 | 023
0.9004 | 00751 | 0.0736 | 0.4082 | 03167 | 02405 | 0.623 | 049 0624 0.49 0623 | 026 0623 | 023
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6.3.2 Neural network contollerl for diagnosis of damage

The feed forward network has been trained with 600 different patterns of parameters to obtain
the objective. Some of the test patterns are depicted in Table 6.1 to Table 6.6. The intelligent
neural system has six numbers of input parameters in the input layer i.e. first three relative
natural frequencies and first three average mode shape difference. The output layer has two

outputs and they relative damage position and relative damage severity.

6.4 Results and discussion of neural controller

The five layer feed forward neural network model with back propagation technique for
damage identification is shown with the complete architecture in Fig.6.4. This has been
designed to predict the relative damage position and relative damage severity. The first three
relative natural frequencies and first three average relative mode shape differences have been
used as inputs to the input layer of the proposed network. These inputs are processed in the
three hidden layers and finally the output layer provides the results for relative crack position
and relative damage severity. The block diagram of the neural model with the input and
output parameters is depicted in Fig.6.3. Out of several hundred training patterns that have
been used to train the neural model, some of them along with the outputs from the model are
shown in Table 6.1 to Table 6.6. Experiments have been carried out to validate the results
obtained from different analyses performed on the damaged cantilever beam and fixed-fixed
beam of Al, composite & steel. The results obtained from neural model, fuzzy Gaussian
model, finite element analysis and experimental analysis are presented in Table 6.7 to Table
6.12 and are found to be in close agreement. The different parameters presented in various
columns of the Table 6.7 to Table 6.12 are expressed as, relative first natural frequency
(FNF), relative second natural frequency (SNF), relative of 3" natural frequency (TNF),
relative first mode shape difference (FMD), relative second mode shape difference (SMD),
relative third mode shape difference (TMD) as inputs and the rest columns represents the
outputs as relative damage position and relative damage severity obtained from

corresponding investigation. The percentage of deviations of the results from neural model
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with respect to experimental results observed for Al, composite & steel cantilever and fixed-
fixed beams as given in Table 6.2 (a) to Table 6.2 (f) are about 4.35%, 4.43%, 4.12%, 4.23%,

4.79% and 4.97% respectively which is better than the performance of fuzzy Gaussian model.
6.5 Summary

This section expresses the final conclusions drawn from the analysis carried out in the present
chapter. The neural network model has been designed on the basis of change of modal
parameters such as natural frequencies and modes shapes due to presence of damages in
structural members. The input parameters to the diamond shaped feed forward neural network
model is the first three natural frequencies and first three average mode shapes. The outputs
from the model are relative damage position and relative damage severity. Hundreds of
training patterns have been developed to train the neural model for damage detection. The
neural system has different numbers of neurons in all the five layers for processing the inputs
to the model. By adopting the back propagation algorithm, it is observed that the difference
between the actual output and desired output has been successfully reduced. The results
derived from the proposed neural network have been compared with the results obtained from
numerical, FEA, fuzzy Gaussian model and experimental analysis to check the reliability of

the model and the comparison results are found to be very encouraging.
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Chapter 7

DESCRIPTION AND INSTALLATION OF
EXPERIMENTAL SETUP

The experimental analysis has been carried out to measure the natural frequencies and mode
shapes of the damaged beam structures. The experimental set up has been shown in Fig.7.1.
Experiments have been performed on the damaged beam structures with different damage
positions and damage severities to validate the results obtained from theoretical, finite
element and other artificial intelligent techniques used for damage diagnosis as discussed in
the previous chapters of the thesis. This chapter briefly describes the systematic procedures
adopted for experimental investigation and the required instrumentation for measuring the
vibration parameters of the cantilever beam and fixed-fixed beam of different materials such

as Al, composite & steel.

7.1 Detail specifications of the vibration measuring instruments

Experiments have been performed using the developed experimental set up (Fig. 7.1) for
measuring the vibration responses (natural frequencies and amplitude of vibration) of the
cantilever beams and fixed-fixed beam specimens made from Aluminum, composite and steel
with dimension 1000mm x 50mm x 8mm. During the experiment, the damaged and
undamaged beams have been subjected to vibration at their 1%, 2™ and 3™ mode of vibration
by using an exciter and a function generator. The vibrations characteristics of the beams
correspond to 1%, 2" and 3" mode of vibration have been recorded by placing the
accelerometer along the length of the beams. The signals from the accelerometer which
contains the vibration parameters such as natural frequencies and mode shapes are analyzed
and shown on the vibration indicator. The Table 7.1 shown below gives the detail

specifications of the instruments used in the current experimental analysis.
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Fig. 7.1 Experimental setup for current investigation

1.Vibration exciter 2. Delta Tron accelerometer 3. Composite cantilever beam platform
4. Vibration Analyzer 5. Vibration Monitor 6. Function Generator

7. Power amplifier 8. Power supply

7.2 Experimental procedure and its architecture

The authenticity of the results obtained from theoretical, finite element and Al based
techniques for damage diagnosis have been validated by measuring the dynamic responses of
the undamaged and damage Aluminum, composite & steel beam specimens through
experimentation. The damages at various positions with different severities in the beam
elements were introduced by wire EDM & Hack saw [32 teeth per inch] perpendicular in the
transverse direction of the beam. The test specimens made from all three materials are of

1000 mm length and have cross section of 50 mm x 8 mm. The composite cantilever beam
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test sample was clamped at its one end by clamping device as shown in the Fig. 7.1. The free
end of the beam specimen was excited by an appropriate signal from the function generator,
which was amplified by the amplifier. The cantilever was excited at first three modes of
vibration, and the corresponding natural frequencies and mode shapes were recorded by the
accelerometer by suitable positioning, data acquisition system and adjusting the vibration
generator at the corresponding resonant frequencies. Similar procedure is adopted by all types
of beam of different materials embedded with or without damage of different severities at
different positions. The responses generated by the accelerometers are analyzed by PULSE
Lab shop Software integrated with a personal computer. The snap shots of the various
instruments used in the current experimental analysis are shown in Fig. 7.2(a) to Fig. 7.2(h).
The PCMCIA card is used to connect the vibration analyzer with the PULSE Labshop

Software.

1. Vibration Exciter

Type : 4808 [Permanent Magnetic Vibration
Exciter]

Force rating : 112N sine peak (187 N with cooling)
Frequency Range : 5Hzto 10 kHz

1* Resonance Freq. : 10 kHz

Acceleration 2 700 m/s2 (71 g)

Max. Displacement : 12.7 mm

Manufacturer : Bruel & kjaer

2. Accelerometer

Type : 4513-001

Make : Bruel & kjaer

Sensitivity : 10mv/g-500mv/g

Frequency Range : 1Hz-10KHz

Supply voltage : 24volts

Operating temperature

Range - -50°C to +100°cconnectors g .;' o
Manufacturer : Bruel & kjaer — =

7.2 (b) Accelerometer
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3. Composite cantilever beam platform

Damaged (severity 4 mm at middle) cantilever beams
made from composite with dimension 1000 mm x 50
mm x 8 mm is used in the set up shown. Apart from
this fixed-fixed beam & cantilever of all three
materials (Al, composite, steel) of damage severities 3
mm, 4 mm, Smm at middle, one fourth and three
fourth of total length of beam is engaged for
experimentation.

4. Vibration Analyzer

Type : 3560L

Product Name : Pocket front end
Manufacturer : Bruel & kjaer
Frequency Range : 7 Hz to 20 Khz

ADC Bits ;16

Channels : 2 Inputs, 2 Tachometer
Input Type : Direct/CCLD

5. Vibration Monitor

PULSE Lab Shop Software Version 12
Manufacturer : Bruel & kjaer

7.2 (e) Vibration Monitor
6. Function Generator

Model : FG200K
Frequency
Range : 0.2Hz to 200 KHz

Output Level : 15Vp-p into 600 ohms
Rise/Fall Time : <300 n Sec
Manufacturer : Aplab

7.2 (f) Function generator
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7. Power Amplifier

Model : FG200K
Frequency
Range : 0.2Hz to 200 KHz

Output Level : 15Vp-p into 600 ohms
Rise/Fall Time : <300 n Sec
Manufacturer : Aplab

7.2 (g) Power amplifier

8. Power Supply: 220V power supply, S0Hz

7.3 Results and discussion of experimental analysis

This section presents the analysis of the results obtained from the developed experimental set
up.

The damaged beam with different damage severities and damage positions have been tested
to obtain the mode shape and natural frequency to validate the results from the various
techniques mentioned above. Table 3.1 to Table 3.6 has been presented in chapter 3 compare
the results from experimental and numerical analysis for damaged cantilever and fixed-fixed
beam structures of Al, composite and steel and the results are found to be in close agreement.
Nine sets of results for relative damage position and relative damage severities have been
presented in Table 4.1 to Table 4.6 in chapter 4 to show the comparison between the
experimental and finite element analysis. The results are found to be well in agreement. In
chapter five, the results for relative damage position and relative damage severities from
experimental analysis is compared with that of the fuzzy Gaussian, fuzzy triangular and fuzzy
trapezoidal model in Table 5.3 and they are observed to be well in agreement. The results for
relative damage position and relative damage severities from the neural model as discussed in
chapter six are compared with that of the experimental set up and presented in Table 6.2 (a) to

Table 6.2 (a). The results are found to be in close proximity.

87



Chapter 8
RESULTS AND DISCUSSION

8.1 Introduction

In the current chapter, investigation of the viability of the methods as mentioned in the thesis
have been carried out, by systematically studying and presenting the performance of each
methodology used for identification of damage in a cantilever and fixed-fixed beam
structures of different materials such as Al, composite and steel. The vibration characteristics
of the damaged beam members have been engaged to develop the damage diagnostic
applications. The various techniques applied in the current research for characterization of
damage in damaged structures are theoretical analysis (Chapter-3), finite element analysis
(Chapter-4), Fuzzy Inference System (Chapter-5), Artificial neural network (Chapter-6),
Experimental technique (Chapter-7).

8.2  Analysis of results

In the present investigation, for development of damage diagnosis methodologies in structural
systems, five different techniques (Chapter 3 to chapter 7) have been employed as cited in the
introduction section of the current chapter. Besides the five chapters, the thesis comprises of
two other introductory chapters including the Literature review. This section depicts the

analysis of the results from different chapters of the current research.

Chapter one the introduction section of the thesis presents the motivation factors to carry out
the present research along with the aim and objective of the present diagnosis.

In chapter two various methodologies applied by researchers since last few decades for
damage identification in engineering systems have been discussed. Applications of Al
techniques for damage and fault diagnosis in different mechanical and electrical systems have
also been discussed. This section in particular, provides the knowledge for finalizing the

motivation of research.
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The analytical model used to compute the vibration parameters of damaged and undamaged
cantilever beam structure (Fig. 3.1) and detailed discussion of the theoretical model have
been made in chapter three of the thesis. During the vibration analysis of the damaged
cantilever and fixed-fixed beam structures of different materials such as Al, composite and
steel, the first three relative natural frequencies and first three relative mode shape differences
of the damaged and undamaged beam have been arbitrated. The experimental validation of
the results from the theoretical model has been carried out in this chapter by using the
developed experimental set up as shown in Fig. 3.5. A comparison of relative damage
position and relative damage severities from the numerical and experimental analysis have
been presented in Table 3.1 to Table 3.6, which shows the robustness of the analytical model
developed for damage identification.

In chapter four finite element analysis has been conducted to measure the vibration responses
(natural frequencies, mode shapes) of the damaged cantilever and fixed-fixed beam structures
of Al, composite and steel. Different damaged beam elements have been considered to
perform the finite element analysis to estimate the first three natural frequencies and first
three mode shapes. A comparison of results for relative damage position and relative damage
severities from FEA, numerical analysis and experimental analysis have been shown in Table
4.1 to Table 4.6 and they are found to be in close agreement.

Chapter five describes the steps used to design and develop fuzzy inference system to
diagnose the damage parameters (position, severity) present in beam like structures in section
5.2. The fuzzy models have been designed with the help of triangular membership function
(Fig.5.1 (a)), Gaussian membership function (Fig.5.1 (b)) and trapezoidal membership
functions (Fig.5.1(c)). Detail architecture of the fuzzy inference system with the input and
output parameters are shown in Fig. 5.2. The fuzzy models used in the current research for
detection of damage position and their severity are fuzzy triangular (Fig. 5.3 (a)), fuzzy
Gaussian (Fig. 5.3 (b)) and fuzzy trapezoidal (Fig. 5.3 (c¢)) models. The fuzzification
mechanism using the triangular, Gaussian, triangular and trapezoidal membership functions
with fuzzy linguistic terms in details are graphically presented in Fig. 5.4, Fig. 5.5 and Fig.
5.6 respectively. The fuzzy linguistic terms used for formulation of the fuzzy inference
system is expressed in Table 5.1. Out of several hundred fuzzy rules used for fabrication of

the fuzzy system for damage identification, twenty numbers are presented in Table 5.2. The
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defuzzification process adopted to estimate the relative damage position and relative damage
severity by effectuating the rule no 5 and rule no 15 from Table 5.2 for triangular, Gaussian
and trapezoidal fuzzy model are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 respectively. Center
of gravity procedure has been followed to get the crisp value of the relative damage position
and damage severity. The results for the damage attributes such as relative damage position
and relative damage severity from the developed fuzzy models (triangular, Gaussian,
triangular) are compared with that of the numerical, finite element and experimental analysis
for validation in Table 5.3 (a) and Table 5.3 (1). From the analysis of results in Table 5.3 (a)
to Table 5.3 (f), it is evident that the fuzzy Gaussian model provides the best results in
comparison to other two fuzzy models, theoretical analysis and finite element analysis.
Chapter six analyses the development of an artificial neural network model trained with back
propagation technique for damage diagnosis in beam structures. The working principles with
the main features of the neuron model (Fig. 6.1) and the back propagation technique (Fig.
6.2) have been discussed in section 6.2.1. A schematic diagram representing the proposed
neural network model with input and output parameters is shown in Fig. 6.3. The working
model of the 5 layer neural network used in the current research for damage identification in
beam members with the detail architecture has been exhibited in Fig. 6.4. Table 6.1 (a) to
Table 6.1 (f) presents the test patterns required to train the neural model to estimate the
relative damage position and relative damage severity. The results obtained from the neural
model for diagnosing the damage characteristics are compared with the results obtained from
the fuzzy models described in the above chapter, FEA and experimental analysis in Table 6.2
(a) and Table 6.2 (f). By analyzing the results provided in Table 6.2 (a, f), it can be concluded
that the proposed neural network gives better results in comparison to the fuzzy techniques
mentioned in the Table 6.2 (a, f).

The developed experimental set up comprises of the following instruments; 1- Vibration
analyzer, 2- Accelerometer, 3- Composite cantilever platform, 4- Function Generator, 5-
Power Amplifier, 6- Vibration Exciter, 7- Vibration monitor (embedded with PULSE
Labshop software. Section 12.2 presents the procedures adopted to carry out the experiments
to evaluate the natural frequencies and mode shapes of damaged and undamaged beam
structures. Efforts have been made to reduce the effect of external parameter such as noise on

the vibration signatures of the damaged beam during experimentation.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

In the current investigation, identification and assessment of damages present in structural
beam members from the measured vibration responses has been emphasized. In the research,
to design and develop a damage diagnostic tool a vibrating structural member with damage in
the transverse direction has been studied. During the diagnosis procedure, analytical method,
finite element method and experimental method have been embraced to realize the actual
working condition. The measured natural frequencies and mode shapes at different modes of
vibration, which are known as modal parameters, have been used to develop inverse
methodologies based Al techniques such as fuzzy logic, neural network techniques for

identification of relative damage position and relative damage severity.

From the analysis and discussion of the results from the various techniques cited in the above
chapters, the following contributions and conclusions have been presented in section 14.1,

14.2 and section 14.3 respectively.

9.1 Contributions

It is a fact that, the damages present in structural systems introduces a local flexibility, which
is a function of damage characteristics such as position and severity. The change in flexibility
changes the dynamic responses like frequency response and amplitude of vibration. In
previous works done by various researchers, damage diagnosis of structures has been studied
to explore the effect of damage on the natural frequencies and mode shapes. In the current
research, effort has been made to design artificial intelligent inverse models to detect the
damage positions and their severities present in structural systems using the natural

frequencies and mode shapes.

In the current research work, damage identification tool has been modeled using the stress

intensity factors and strain energy release rate to estimate the deviations in the vibration
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parameters due to the damage present in the damaged structures. Finite element analysis and
experimental analysis have also been engaged on the damaged beam members of different
materials with different boundary conditions to determine the impact of damages on the
dynamic characteristics of the beams. Moreover, Al models have been composed for damage

diagnosis using fuzzy inference system, artificial neural network.

9.2 Conclusions

The conclusions are drawn on the basis of results obtained from various analyses as discussed

above.

v Theoretical and finite element analyses have been presented to identify characteristics
(natural frequencies, mode shapes) of the structural response that is associated with
the presence of transverse damage.

v During the analysis it is observed that, the alteration in frequency response due to the
presence of damages is very less significant for small value of damage depth ratio.
But the effect of damage severities is very prominent on the mode shapes. So, any
change in frequency and mode shape allow characterizing the damage efficiently.

v Experimentations on the damage cantilever & fixed-fixed beams of Al, composite and
steel with different configuration of damage positions and damage severities have
been performed to compare the modal parameters obtained from the analytical and
finite element model and the results are found to be in very good agreement.

v The vibration signatures from the first three modes of the cantilever & fixed-fixed
beams of Al, composite and steel and the corresponding relative damage severities
and damage positions have been used to design the fuzzy inference system for damage
detection in structural beam members.

v' The fuzzy system has six inputs and two outputs. The fuzzy models are based on
fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal membership functions. From
the analysis of results, it has been found that, the proposed fuzzy inverse technique

estimates the relative damage positions and their severities more accurately than the
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9.3

theoretical and finite element analysis. Experimental data have also been used to
validate the results from the fuzzy models.

From the analysis of the results of the three fuzzy models for relative damage
severities and relative damage positions, it is observed that the fuzzy model with
Gaussian membership function produces better results than the fuzzy model with
triangular membership function, fuzzy model with trapezoidal membership function.
Hence, the fuzzy Gaussian model was found to be most desirable to identify the
damage in vibrating engineering systems.

A multi layer artificial neural network model with six inputs and two outputs has been
devised for damage diagnosis in beam structures. The training patterns for the
proposed neural network model have been derived from theoretical, finite element and
experimental analysis. The results estimated by the neural network for relative
damage severities and relative damage positions are very closer to the experimental
results, thereby justify the engagement of neural model in damage diagnosis beam
structures.

From the comparison of results (relative damage severities and relative damage
positions) among the fuzzy models and neural model, it is clear that the results
obtained from neural system are converging towards actual results in contrast to the
fuzzy models.

The developed damage diagnosis tool can be utilized for online condition monitoring
of turbine shafts, various engineering structures such as bridges, cranes, towers,
industries, mechanical structures, beam like structures, marine structures, engineering

applications, etc.

Future work

e The artificial intelligent techniques can be used in hybrid form such as neuro-
fuzzy, GA-fuzzy, neuro-fuzzy-GA etc. to diagnose faults in complex
engineering structures.

e The composite material used can be varied with different orientations for test
specimen. Moreover, structural beam members of non-uniform cross section

can also be considered for analysis.
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e Apart from the mega structures, micro leveled structures can also be subjected
to damage diagnosis techniques, which subsequently assist to ensure the

functioning of small robots.
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APPENDIX

i
ELEMENTS

Fig. A. 1 Meshed composite cantilever beam model
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HNODAL S0LUTION

Fig. A. 2 Deformed shape for 1* mode of vibration of composite cantilever
beam without damage 101



1
NODAL S0LUTION

Fig. A. 3 Deformed shape for 2™ mode of vibration of composite cantilever
beam without damage
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Fig. A. 4 Deformed shape for 3™ mode of vibration of composite cantilever
beam without damage
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Fig. A. 5 Meshed composite cantilever beam model with damage 4mm

SOLUTION

Fig. A. 6 Deformed shape for 1% mode of vibration of composite cantilever
beam with damage 4mm
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Fig. A. 7 Deformed shape for 2™ mode of vibration of composite cantilever
beam with damage 4mm

Fig. A. 8 Deformed shape for 3™ mode of vibration of composite cantilever beam
with damage 4mm
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Fig. A. 9 Meshed composite fixed-fixed beam model with damage of 4 mm

Fig. A. 10 Deformed shape for 1* mode of vibration of composite
fixed-fixed beam with damage of 4 mm
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Fig. A. 11 Deformed shape for 2™ mode of vibration of composite
fixed-fixed beam with damage of 4 mm

SOLUTION

Fig. A. 12 Deformed shape for 3" mode of vibration of composite
fixed-fixed beam with damage of 4 mm
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