
Design of CORDIC-based Digital Protective Relay 

A Thesis submitted in partial fulfillment of the requirements for the 

degree of 

Bachelor of Technology 

in 

Electronics and Communication Engineering 

By 

Manisha Swain 

Roll No. 109EC0226 

Stutee Natak 

Roll no. 109EC0226 

Under the supervision of 

Dr. Kamala Kanta Mahapatra 

Professor 

 

 

Department of Electronics and Communication Engineering, 

National Institute of Technology, Rourkela 

 

Session 2012-2013  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

National Institute of Technology, Rourkela 

 

C E R T I F I C A T E 

 

This is to certify that the Thesis entitled, „Design of CORDIC-based Digital Protective 

Relay’ submitted by Stutee Nayak and Manisha Swain in partial fulfilment of the 

requirements for the award of Bachelor of Technology Degree in Electronics and 

Communication Engineering at the National Institute of Technology, Rourkela is a   

bona fide work carried out by them under my supervision. To the best of my knowledge and 

belief, the matter embodied in the Thesis has not been submitted by them to any other 

University/Institute for the award of any Degree/Diploma. 

 

 

 

 

 

 Date Prof. Kamala Kanta Mahapatra 

   Dept. of Electronics and Communication Engineering, 

National Institute of Technology, Rourkela 

  



 

ACKNOWLEDGEMENT 

 

This project in itself is an acknowledgement to the motivation, drive and the technical 

assistance contributed to it by so many people. It would never have seen the light of day 

without the timely help and guidance that it received from them. 

Firstly, we would like to express our sincere thanks and deepest regards to our guide Dr. K K 

Mahapatra, Professor, Department of Electronics and Communication Engineering, 

NIT Rourkela, who has always been the driving force behind this work. We thank him for 

giving us the opportunity to work under him by putting a trust in our credentials and 

capabilities, and helping us in exploring our potential to the fullest. 

We are grateful to Prof. S. Meher, Head of the Department of Electronics and 

Communication Engineering, for permitting us to use the facilities available in the 

department to carry out the project successfully. 

We are thankful to Mr. Vijay Sharma, PG student in the Department of Electronics and 

Communication Engineering, NIT Rourkela, for his generous help and continuous 

encouragement in various ways towards the completion of this project. 

Last but not the least we would like to thank all our friends for their support. We are thankful 

to our classmates for all the thoughtful and mind stimulating discussions we had, prompting 

us to think beyond the obvious. 

                                    Manisha Swain 

                                 Stutee Nayak 

 

 

 



 

ABSTRACT 

 

Protective relays are used to show the current status of a given power 

system. It is used to determine whether parameters like voltage or 

current violate any trip or reset specification or condition. In this project, overcurrent time 

invariant model of protective relay is implemented using CORDIC algorithm. 

        Here we use CORDIC algorithm to implement the relay flowchart. All of the 

arithmetic calculations and relaying algorithms can be managed by a CORDIC 

processor. As CORDIC algorithm is simple to implement, it has a very low FPGA 

footprint and it negates any need of multipliers as well. 

In this project: 

1) A basic implementation of sine/cosine calculation of CORDIC using 

VHDL in Xilinx ISE 10.1 is implemented to check the accuracy 

2) Various modules needed to calculate the protective relay status of trip or 

reset condition were developed  

3) A final implementation of overcurrent relay was done and accuracy 

checked  



CONTENTS 

List of figures 

List of tables 

CHAPTER 1: INTRODUCTION 

1.1 Motivation                                                                                                    1 

1.2 Problem Statement                                                                                       1  

1.3 Organisation of Thesis                2 

CHAPTER 2: CORDIC OVERVIEW: 

2.1 Background                  3 

 2.2 CORDIC Algorithm                  4 

       2.2.1 Rotation                  4 

       2.2.2 Vectoring                 5 

2.3 CORDIC in General                 6 

2.4 CORDIC Implementation                9 

      2.4.1 Multiplication                 9 

      2.4.2 Division                  10 

      2.4.3 Exponential and Logarithmic               11 

CHAPTER 3: RELAY AND DIGITAL ALGORITHM 

3.1 Relay                  13 

3.2 Relay Tripping Theory               13 

3.3 Algorithm                 14 

3.4 Inverse Time Overcurrent Relay              15 

      3.4.1 Time Current Relation               15 

      3.4.2 Overcurrent Relay Switch and Algorithm            16 



 

CHAPTER 4: RESULTS AND SIMULATION 

4.1 Basic CORDIC Processor               22 

4.2 Multiplication and Division using CORDIC             25 

4.3 Exponential using CORDIC                       28 

4.4 Logarithm using CORDIC               31 

4.5 Protective Relay Implementation              34 

CHAPTER 5: CONCLUSION AND FUTURE WORK            38 

REFERENCES                 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF FIGURES: 

FIGURE NO.            TITLE                                                                   PAGE NO. 

2.1                              Rotation                                                                     4 

2.2                              Vectoring                                                                   5 

2.3                              Iteration                                                                     6 

2.4                              Hardware Implementation of CORDIC                    8 

3.1                              Relation between current and time                           16 

3.2                              Trip state                                                                   17 

3.3                              Time dial setting                                                       18 

3.4                              Flowchart for inverse time protection                       20 

 

LIST OF TABLES: 

TABLE NO.        TITLE                                                                          PAGE NO. 

2.1                        CORDIC modes                                                               8 

3.1                        Constant and exponents for CO type relays                    21 

3.2                        IEEE constants and exponents for CO relays                  21 

 

 

 

 

        

 

 



CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

Protective relays are an integral part to maintain safety in the electrical system. 

Compared to any static or analogue relay, the digital relay usually lacks 

computing resources but, provides wider range of settings as well as other dig-

ital functions. Here we use CORDIC algorithm to implement the relay flowchart. 

As CORDIC, acronym for Coordinate Rotation Digital Computer is a simple and 

hardware-efficient method, all of the arithmetic calculations in meters and 

relaying algorithms can be managed by a CORDIC processor. Even if the relay 

used covers multi-channel sources and various relay algorithms, its processing 

speed must be appropriate for operations in real-time environment. As the given 

digital model for the time-current characteristic is neither a simple curve 

adaptation nor LUT (lookup table) based extrapolation, this model easily 

provides not only various characteristic curves for relay co-ordination, but also 

highly accurate relaying behavior because of the inherent accuracy of the 

CORDIC algorithm 

               1.2 PROBLEM STATEMENT 

The primary aim of this project is to develop a CORDIC based protective relay 

system which follows inverse time characteristics. To implement this in VHDL 

and verify its functionality and accuracy.  

1 



1.3 ORGANIZATION OF THESIS 

This thesis has been divided into five chapters. The first one give the basic aim, 

motivation as well as the work intended. In chapter 2, the various facets and 

methods in which CORDIC can be implemented is explored. And along with it, 

basic algorithm to implement functions like multiplication, division, 

exponentiation etc. Chapter 3 visits the essentials of protective relay and the 

equations used. It also provides a flowchart which is implements. The fourth 

chapter gives the simulation results and outputs of the modules created. The 

conclusion and future work has been proposed in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

2 



CHAPTER 2 

CORDIC OVERVIEW 

2.1BACKGROUND 

CORDIC (Coordinate Rotation DIgital Computation) is based on ancient principles of 2-D 

geometry. It was first implemented in 1959 when an iterative computational formula was 

given by Jack E. Volder [1] which calculated trigonometric functions like sine and cos 

values, division and multiplications. The microprocessors used in Digital Signal Processing 

are not fast and the algorithms designed for these processors do not map properly with 

hardware [2]. CORDIC uses only shifts and add functions that makes it really fast and 

hardware mapping becomes easy. For iteration, additional accuracy bit accuracy is produced 

by CORDIC [2]. Applying vector rotations all the trigonometric functions can be derived or 

calculated. Vector rotations can be used for converting polar coordinate into rectangular and 

rectangular coordinates into polar. Iterative method is implemented to get the result in 

accumulators.  

 

 

 

 

 

3 



2.2CORDIC ALGORITHM  

2 methods of computing are Rotation and Vectoring 

2.2.1 ROTATION 

In this method, coordinates of a vector and the angle for rotation are known. After 

rotation through given angle the final coordinates for original vector is calculated [3]. 

Angle to be rotated is initialized in the angle accumulator. Magnitude of residual angle 

inside angle accumulator diminishes by rotation after each iterations. Decision after every 

iteration based on sign of residual angle at each step. Equations for rotation mode are: 

 

 

 

 

      

      where  if  , and  otherwise;  

      , and  here, is  total number of iterations. 

       Hence, this gives the following result as  approaches  : 

 

 

   

 

 

Fig-2.1 Rotation  

mmodemode 

4 



       Where: 

.       

Rotation angle is between –π/2 to π/2 

2.2.2 VECTORING 

In this method, coordinates of a vector are given and we have to calculate the magnitude 

and angular argument of original vector [3]. In this mode the rotator (CORDIC) rotates 

input vector to angle that is required to align resultant vector with x axis. Rotated angle 

and scaled magnitude of original vector are the result of this vectoring operation. 

Direction of next rotation is determined by the sign of residual y component. If angle 

accumulator is initialized to zero, it will hold the traversed angle at the end of iterations. 

Equations for vectoring mode are: 

 

 

 

        is the angle accumulator 

       where  if  , and  otherwise; 

      , and  here, is total number of iterations. 

       As  approaches  : 

 

 

 

Fig2.2 vectoring 

5 



 

               Where: 

             . 

       N is chosen so that it is a large-enough constant. AN is computed before   calculation. 

2.3 CORDIC IN GENERAL: 

      Angular implements for rotations should be calculated in a decreasing mode. Angular 

magnitude for the first rotation can be chosen by various methods. Magnitude of angle 

chosen for the first rotation is 90°. Let coordinates after rotation of 90° be X1 and Y1.  

Y2=  ±X1 = R1sin 𝜃1 ± 90°  

X2=  ±Y1 = R1cos 𝜃1 ± 90°  

In the first step a perfect rotation is performed. For this reason first step is unique.For the 

ith step with vector magnitude of Ri and angle θi with reference to x axis let Xi and Yi are 

the coordinates: 

Yi= Ri(sinθi) 

Xi= Ri(cosθi) 

 

Fig 2.3 iterations 

6 



αi be the angle associated with each computing step [3]. 

αi= tan
-
 2

-(i-2)
 

It concludes that rotation through ±αi can be accomplished through simple shifting and 

adding process that describes the simplicity and fast application of CORDIC algorithm.  

General equations for rotated components are: 

Yi+1 = Yi ± 2
-(i-2)

Xi 

Xi+1 = Xi ± 2
-(i-2)

Y 

Right hand side equations are obtained through simple shift and add operations. 

 

For different modes of rotation different values of the constant is used. Basic CORDIC 

processor is used for calculating sin and cosine values and in this module circular rotation 

is used for calculating coordinate values. In case of multiplication and division using 

CORDIC linear rotation mode is implemented for shifting and adding to get desired 

results. Exponential function using CORDIC is calculated using hyperbolic rotation mode 

and logarithm function is implemented using exponential function. 

 

 7 



General CORDIC Equations [1]: 

Table 2.1 CORDIC modes: 

 

 

Fig 2.4 :Hardware Implementation of CORDIC[1]: 

 

 

8 



2.4 CORDIC IMPLEMENTATION  

     2.4.1 MULTIPLICATION 

   The CORDIC algorithm used for multiplication can be derived from the following 

series[5]: 

                              z =x*y 

                                 =y* 𝑎𝑖𝐵
𝑖=1 *2

-i
 

                                 = 𝑎𝑖𝐵
𝑖=1 *(y*2

-i
) 

  above equations indicate that z is made of shifted versions of y. The     coefficients ai 

are calculated by making x equal to zero bitwise. If ith bit of x is not zero then is 

shifted right by ith bit and final value is added to current value of z. Then by 

subtracting 2
i
 from x, the ith bit is removed. When x is negative, adding 2

-i
 removes 

ith bit in twos complement format. In both cases z is signed product of x and y 

corrected to B bits. It is similar to shift and add algorithm for multiplication. But here 

instead of left shifts right shifts are used that allows signed numbers for use. It is 

similar to rounding of standard multiplication algorithm result to most significant B 

bits. Algorithm is as follows[5]: 

 

 

multiply(x,y) 

 { 

   for(i=1;i<=R;i++) 

     { 

       if(x>0) 

         x=x- x*2^(-i) 

         z=z+ y*2^(-i) 

9 



        else 

          x=x+ x*2^(-i) 

          z=z- y*2^(-i)  

       } 

     return(z) 

  } 

 

Here x and y are assumed to be fractional ranging from -1 to 1. Algorithm can be 

allowed for higher ranges if decimal point is allowed to float.  

CORDIC equations for multiplication: 

 

2.4.2 DIVISION  

Division algorithm cab be derived from the equation: z=x/y 

Writing z in expanded series form we get x - z*y=0  [5] 

  x- y* 𝑎𝑖𝐵
𝑖=1 *2

-i  
= 0 

  x-
   𝑎𝑖𝐵

𝑖=1 *(y*2
-i
) = 0 

 Quotient z can be calculated bitwise by making x is equal to zero through right 

shifted versions of y. ith bit of z is set if current residual is non-negative. ith bit of z is 

cleared if current residual is negative. Algorithm is as follows[5]: 

 

 

      divide(x,y) 

    { 

       for(i=1;i<=R;i++) 

     { 

10 



       if(x>0) 

         x=x- y*2^(-i) 

         z=z+ z*2^(-i) 

        else 

          x=x+ y*2^(-i) 

          z=z- z*2^(-i)  

       } 

     return(z) 

  } 

 

2.4.3 EXPONENTIAL AND LOGARITHMIC 

  

      2.4.3.1 THEORY 

sinh and cosh (hyperbolic functions) and exponential functions can be 

calculated in rotation mode. Exponential value is[6]: 

      e
x
 = cosh(x) + sinh(x) 

Logarithmic functions can be calculated using vectoring mode(Z0=0): 

        Zn=tanh
-1

(y/x)  

 If x=w+1 and y=w-1 then 

        Zn=1/2 ln w 

 

 

 

 

11 



2.4.3.2 EXPONENTIAL FUNCTION IMPLEMENTATION 

               Outputs Xn and Yn gives the hyperbolic function values cosh(z) and sinh(z). It   

affects the scale factor value K at input (X) and zero at the input (Y)[6]. 

                        z=z1 + pln2 

Here p is an integer (z/ln2) 

To implement exponential, we use[6]: 

e
z
= e

zl+pln2
 =e

zl
 e

pln2
 =2

p 
e

zl 

2
p
 corresponds to p number of left shifts. 

        2.4.3.3 LOGARITHMIC FUNCTION IMPLEMENTATION 

w+1 affects the input (X) and w-1 affects input (Y) resulting ½ ln(w) 

at output (Zn)[6]. For hyperbolic rotation mode: 

            xi+1 = xi + yi*di*2
-i
 

            yi+1 = yi + xi*di*2
-i
 

            zi+1 = zi - di*tanh
-1

(2
-i
) 

           where di= -1 if zi<0, +1 else 

 

 

 

 

 

 

 

 

 

12 



CHAPTER 3 

RELAY AND DIGITAL ALGORITHM 

           3.1 RELAY: 

Relay is defined as an switch operated electrically. When it is necessary to 

control a circuit by low-power signal or where one signal controls several 

circuits. Protective relays are digital instruments used in modern power 

systems. They have calibrated operating characteristics and are used for 

protecting circuits from faults or overloads.  

3.2 RELAY TRIPPING THEORY: 

Calculating the rms value of the fundamental frequency (current) and deciding 

if   that calculated current exceeded a threshold (already given) is one of the 

major functions of the cordic algorithm [9]. If the calculated current is more 

than threshold value, relay algorithm issues a command that trips the circuit 

breaker after a time delay. As the current changes during any fault, the instant 

when trip command is to be issued is determined by the following equation [9] 

⨜𝑦 𝑡 𝑑𝑡 > 𝐾 

Where y(t)=0 if current is less compared to pick up current value and y(t) = 

K/tr(t) if current if greater than or equal to pick up current value. Here K is the 

target number, tr(t) is operating time of relay for the current observed at time 

t[9]. 

As digital relays are nothing but quantized value of sample of currents taken at 

an interval of ∆Ts, numerical integration is performed: 

13 



  𝑋 𝑚 > 𝐾

𝑁

𝑚=1

 

Here (X)m=0 if current is less than the pick-up current value. (X)m = 

K∆T/(tr)m if current is greater than or equal to pick-up value. m represents m
th

 

sample after current exceeds the pick-up value for first time. tr(m) represents 

relay operating time which corresponds to rms current that is estimated while 

receiving the m
th

 sample. N∆T is the required time for tripping. N is not 

known but ∆T is. Therefore calculating values of (X)m is required after each 

sample. 

               3.3 ALGORITHM: 

Voltage proportional to current in the protected circuit is the input to relay 

logic. Sampling of the voltage is done at a given rate. The quantized data 

are processed so that rms value of the fundamental frequency component 

of current can be determined [9]. 

 Variable “SUM” is set to zero. 

 New sample that represents the relay current is obtained. 

 RMS value of the fundamental frequency component of the current is 

determined. 

 Calculated rms value is compared with the pick-up current value. 

 If calculated value is greater than or equal to pick-up current value, then next 

step is followed or else last step is followed. 

 (X)m value corresponding to the already computed values is obtained. 

 This number is available for few values of currents and for rest values, 

interpolation is restored. 

14 



 Numbers starting from 6
th

 step to the variable “SUM” are added. 

 “SUM” is larger than or equal to the target K is checked. If it satisfies, then a 

command to trip is issued or else next step is followed. 

 We wait until intersampling time has elapsed and then algorithm reverts back 

to 2
nd

 step. 

 Again the relay resetting process is started. 

 

The overcurrent relay is reset as soon as current inside protected circuit 

becomes less than pick-up current value. Each time rms current value is less 

than the pick-up value resetting is done by diving “SUM” with 2[9]. 

     3.4 INVERSE TIME OVERCURRENT RELAYS: 

         3.4.1 TIME-CURRENT RELATION: 

CO and IAC are the most frequently used electrochemical overcurrent relays. 

With time dials ranging from ½ to 11, they have moderately inverse time 

current relay. Overcurrent relays are used for protection of lines connected in 

series and different time dial settings are selected for this. 300-400 ms of time 

interval is required between operating curves of the two relays adjacent to 

each other. This setting is required so that correct operation of the devices can 

be done in a sequence and unnecessary trips are avoided. Most frequently used 

static analog relay is GEC MOGG type. It uses equations and curves of time-

current as follows [7]: 

ttrip(I)= TD(A/M
p
-1) 

treset(I)= TD(tr/1-M
q
) 

            where    TD= time dial options 

15 



ttrip= operating time to trip in seconds 

treset= result time in seconds 

M= multiplier of pick-up current 

P= exponent constant 

q= exponent constant 

A= constant 

 

Fig 3.1:Relation between current and time at different Time Dial Setting: 

 

 

 

3.4.2 OVERCURRENT RELAY SWITCH AND ALGORITHM: 

Protective relays are used to show the current status of a given power 

system. It is used to determine whether parameters like voltage or 

current violate any trip or reset specification or condition. 

Over-current relay is a measuring relay that operates when the value 

of the current exceeds the setting (operating value) of the relay. Fig(3.2) shows 

the abnormal behaviour in the over-current system.  

16 



Fig 3.2 Trip State 

 

 

                                                                                                                  

       A time over-current relay is a relay system with an inverse time 

characteristics (inverse means that relay operates faster as the current value 

increases). The predetermined value of current is called pick-up current. We 

refer to the time curves which are families of curves that are scaled in time 

dials. The higher the value of time dial is, the longer the delay becomes at 

each current level. In case of digital relays, the data acquisition and 

computation is to be done discretely.  

The most commonly used overcurrent relay usually incorporates both, the 

instantaneous unit as well as the time overcurrent unit. The instantaneous 

response is mostly provided by a moving armature unit. Its basic purpose is to 

operate on large currents. The inverse time response is mainly provided by an 

induction disk unit of the system and is set to operate for lower fault currents. 

The induction disk unit operates on similar principle as an induction motor. 

 

17 



Fig 3.3 Time Dial Setting 

 

 The metal disk gets mounted on a shaft which can freely rotate. The 

current coils are kept fixed. These create magnetic field which induces eddy 

currents in the metal disk. Then, the magnetic field of the eddy currents 

interact with the magnetic field of the stationary coils and this produces torque 

on the disk. Here, the disk and its shaft rotate and thus bringing the moving 

contact towards the fixed contact, getting into a closed position. Now, the 

motion of the shaft is opposed by a spring which then returns the disk and the 

moving contact into an open position when the current drops below a 

particular value. The time to close the contact depends on the contact travel 

distance which is set with the help of a time dial. The pick-up current is 

adjusted by selecting the current taps on the current coil. The relays are 

usually available with three ranges of current taps of value: 0.5 to 2.0 A, 1.5 to 

6.0 A, and 4 to 16 A. The time dial has normally positions marked as 0 to 10, 

where for 0 setting, the contact is permanently closed.                                                                                                                

.  

18 



Since in this case, we use non-definite time protection 

groups, the following characteristic equations are utilized[10]: 

                        Ir=IRMS/Ipu 

                        t(Ir)= 
  

𝐴

𝐼𝑝𝑟−1
 + 𝐵 𝑇𝐷𝑆,    𝐼𝑟 > 1

       
𝑡𝑟

𝐼𝑞𝑟
 𝑇𝐷𝑆,                        0 < 𝐼𝑟 < 1            

  

 

 

           Here   A, B, p, q, tr and TDS (time dial setting) are relay-specific    

parameters. 

Ipu denotes the pre-determined pickup current. In our work, inverse relaying 

algorithms related to voltage and frequencies other than current are also based 

on above equations. 

The inverse relay generates a trip signal when, 

To≤ (Ir)     

where To is the tripping time delay. Then we can rewrite above equation when 

Ir>1 as: 

 ∆𝑡/𝑡(𝐼𝑟, 𝑖)𝑁
𝑖=1   

Dt denotes sampling period every relay input. Finally, in digital circuits, we 

can determine the trip condition by testing the following inequality: 

 

 𝐼𝑝, 𝑟, 𝑗 − 1/(𝐴 + 𝐵 𝐼𝑝, 𝑟, 𝑗 − 1 ) ≥ 𝑇𝐷𝑆/∆𝑇

𝑁

𝑖=1

 

Where Ip,r,j= I
p
r,j 

Here, delta t refers to the sampling period per relay input. From [10], 

19 



the flowchart of the algorithm is given in below figure. If Ir is greater 

than unity, the relay behaviour is affected by the given 

characteristics. Or else, it follows the reset decaying method that 

follows equation mentioned above. The CORDIC algorithm is used in the 

following 

section to implement the above equations efficiently. 

Fig 3.4: Flow chart for inverse-time protection: 

 

 

[7] Software model for inverse time overcurrent relays incorporating IEC and IEEE standard 

curves. 

20 



In this project, we attempt to simulate a CO type relay, using the above mentioned equations 

to model the basic time current curves. Table 3.1 shows the basic values for the required 

parameters for a custom approach depending on which CO type model we choose [7]. 

Table 3.1: Constants and exponents for CO type relays 

 

         A      B        K      p      q       tr 

CO-2 0.2663 0.03395 0.028 1.2969 2.0 0.5 

CO-5 5.6143 2.18592 0.028 1.0 2.0 15.75 

CO-6 0.4797 0.21359 0.028 1.5625 2.0 0.875 

CO-7 0.3022 0.1284 0.028 0.5 2.0 1.75 

CO-8 8.9341 0.17966 0.028 2.0938 2.0 9.00 

CO-9 5.4678 0.10814 0.028 2.0469 2.0 5.5 

CO-11 7.7634 0.02758 0.028 2.0938 2.0 7.75 

 

If for all cases K is assumed as zero and q as 2.0, then the equations and parameters are 

modified to take the form given by IEEE Std-C37.122-1996. The constants are: 

Table 3.2: IEEE constants and exponents for CO relays 

         A       B       P          q          tr 

CO-7 0.0094 0.0366 0.02 2.00 1.08 

CO-9 3.784 0.0984 2.00 2.00 4.2 

CO-11 5.616 0.026 2.00 2.00 5.3 

  

21 



CHAPTER 4 

RESULTS AND SIMULATIONS 

4.1 BASIC CORDIC PROCESSOR 

4.1.1 BLOCK DIAGRAM: 

 

 

4.1.2 SUMMARY: 

 

22 



4.1.3 RTL SCHEMATICS: 

 

 

 

 

Input: 

Zo(16:0) 

Outut: 

Xo(16:0) 

Yo(16:0) 

 

 

23 



4.1.4 TEST BENCH: 

 

 

 

4.1.5 RESULTS: 

         Input: 

         Zi(angle)= pi/6  

                       =0.5235 =00100001111110001 

 

         Output: 

         Xi = cos(Zi) = 00110111001100100 

              = 0.8624 

         Yi = sin(Zi) = 00100000011001001 

              = 0.5061 

 

24 



4.2 MULTIPLICATION AND DIVISION USING CORDIC: 

4.2.1 BLOCK DIAGRAM: 

 

 

4.2.2 SUMMARY: 

 

 

25 



 

           4.2.3 TEST BENCH FOR MULTIPLICATION: 

 

 

4.2.4 RESULTS: 

                      Multiplication (load=1) 

                      Input:  

                      xi=00100000000000000 =0.5  

                      yi=00100000000000000 =0.5 

                     Output:  

                      zo= 0.25 =00010000000000000 

                      mult_done=1 

                      div_done=0 

26 



              4.2.5 TEST BENCH FOR DIVISION: 

              

 

            

               4.2.6 RESULTS: 

                        Division (load=0) 

                        Input: 

                        Xi= 00010000000000000 =0.25 

                        Yi= 00100000000000000 =0.5 

                        Output: 

                        Z0= 00010000000000000 =0.25 (Xi/Yi) 

                        mult_done=0 

                        div_done=1 

27 



      4.3 EXPONENTIAL USING CORDIC: 

           4.3.1 BLOCK DIAGRAM: 

             

 

          4.3.2 SUMMARY: 

            

28 



      4.3.3 RTL SCHEMATICS: 

 

            

            

            Input: 

             Zi(16:0) 

             Output: 

             Zo(16:0) 

29 



            4.3.4 TEST BENCH:  

 

 

                      

            4.3.5 RESULTS: 

                     Input:  

                     e
0.5

 

                     Output: 

                     Z0=1.6519 

                     Actual answer: 

                     1.6487 

 

 30 



      4.4 LOGARITHM USING CORDIC: 

           4.4.1 BLOCK DIAGRAM: 

            

            

          4.4.2 SUMMARY: 

            

            

31 



           4.4.3 RTL SCHEMATICS: 

             

 

              Input: 

              I(16:0) 

              P(16:0) 

              Output: 

              V(16:0) 

32 



         4.4.4 TEST BENCH: 

         

 

          

         

           4.4.5 RESULTS: 

                    Input: 

                    I=0.5 ; P=1 

                    Output: 

                     (I
p
) 

                    V=0.48  

33 



    4.5 PROTECTIVE RELAY IMPLEMENTATION: 

          4.5.1 BLOCK DIAGRAM: 

           

 

         From table 3.1 we get the following values: 

         P=1.56 

         A=0.47 

         B=0.23 

         Q=2 

         Value of TDS/∆t =0.75 

Above values are used to calculate trip condition using different Time Dial Setting  

and  Current values.     

34 



        4.5.2 RTL SCHEMATICS: 

           

 

  

35 



      4.5.3 SUMMARY: 

      

 

 

 

       4.5.4 RESULTS: 

                I1=0.5029 A,       TRIP=0 

                I2=1.9 A,             TRIP=1 

                I3=0.875 A          TRIP=1 

                I4=0.492187 A    TRIP=0 

            

At I1=0.5029 A, there is no tripping. When current is increased to I2=1.9 A, relay      

tripping occurs and continues for I3=0.875 A. Further decreasing current to 

I4=0.4921875 A deactivates relay. 

 

 

 

36 



       4.5.5 TEST BENCH: 

 

       

 

 

 

37 



                   CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

CORDIC is a powerful tool to implement any complex equation using simple adders and 

shifters. As in this project, we have implemented various basic functions needed like 

exponentiation, logarithm, division and also multiplication. These modules were tested and 

found to be quite accurate. Implementation of overcurrent relay was also tested and results 

verified. The device utilization summary was found to be very minimal because of efficient 

use IN CORDIC. 

The advantages of using CORDIC for this protective relay are: 

 As only shift registers, adders and look-up tables are used, the cost and hardware 

requirement is very less if we implement CORDIC. 

 As we reduce the hardware complexity, the FPGA footprint is considerably reduced 

 It is quite simple to design and also to implement 

 As we use no multiplication, but only shifting and addition, VLSI implementation is 

much simpler 

 The delay is also quite less 

 Hence, if there are no multipliers or there is necessity to economize on the number of 

gates used, this is a viable option. 

However there are some disadvantages such as: 

 To get the accurate results, large number of iterations required 

 Power consumption can rise in some architecture types 

38 



FUTURE SCOPE: 

The proper functionality of the relay developed can be tested using FPGA and further 

analysing the waveforms using ChipScopePro. Further it can be used to develop relays with 

more time current curves setting for better use. The accuracy for different time dial settings 

can be improved using more iteration and better time inverse characteristics can be tried 

upon. Other types of protective relays can also be developed using CORDIC algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39 



REFERENCES: 

[1]. Meher, Pramod, Valls, Javier, Juang, Tso-Bing, Sridharan, K and Maharatna, 

Koushik (2009) 50 Years of CORDIC Algorithms, Architectures, and Applications. IEEE 

Transactions on Circuits and Systems - I, 56, (9), 1893-1907 

[2]. Ray and Andraka, " A Survey of CORDIC Algorithms for FPGA based Computers", 

Andraka Consulting Group, Inc, North Kingstown, RI02852, 2011. 

[3]. JACK E. VOLDERt. The CORDIC Trigonometric Computing Technique. IRE 

TRANSACTIONS ON ELECTRONIC COMPUTERS. September 1959. 

[4]. Anis BOUDABOUS, Fahmi GHOZZI, M. Wajdi KHARRAT, Nouri MASMOUDI 

Laboratory of Electronics and Information Technology National Engineers School of Sfax    

(E.N.I.S.), BP W 3038 SFAX – TUNISIA. Implementation of Hyperbolic Functions Using 

CORDIC Algorithm. 0-7803-8656-6/04 ©2004 IEEE.  

[5]. Using CORDIC methods for computation in micro-controllers 

[6]. Daniel R. Llamocca-Obregón, Carla P. Agurto-Ríos. Grupo de Procesamiento Digital de 

Señales e Imágenes - Pontificia Universidad Católica del Perú  Av. Universitaria s/n Cuadra 

18 - Lima 32, Perú. A FIXED-POINT IMPLEMENTATION OF THE EXPANDED 

HYPERBOLIC  CORDIC ALGORITHM 

[7]  J C Tan, University of Manitoba, Canada; P G McLaren, Florida State University, USA; 

R P Jayasinghe‟ P L Wilson, Manitoba HVDC Research Centre, Canada. SOFTWARE 

MODEL FOR INVERSE TIME OVERCURRENT RELAYS INCORPORATING IEC 

AND IEEE STANDARD CURVES. Proceedings of the 2002 IEEE Canadian Conference 

on Electrical & Computer Engineering. 

 

40 



[8]. Jong-wan Seo, School of Information and Communication Engineering. Sungkyunkwan 

university Suwon, Republic of Korea. Myong-Chul Shin, School of Information and 

Communication Engineering, Sungkyunkwan university Suwon, Republic of Korea. A Study 

on an ASIC Design Technique for Digital Protective Relays. 

[9]. Tarlochan S. Sidhu, Member, IEEE, Mohindar S. Sachdev, Fellow, IEEE,  and Hugh C. 

Wood, Member, IEEE. A Computer-Aided Design Tool for Developing Digital 

Controllers and Relays. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 

28, NO. 6, NOVEMBER / DECEMBER 1992. 

[10]. Jong Kang Park, Jong Tae Kim *, Myong-Chul Shin. A CORDIC-based digital 

protective relay and its architecture. School of Information and Communication Eng., 

Sungkyunkwan Univ., 300 Cheoncheon-dong Jangan-gu, Suwon, Gyeonggi-do 440-746, 

South Korea. 

 

 

 

 

  

 

 

 

 

 

41 



             


