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ABSTRACT 

Modern IC Technology focuses on the design of ICs considering more area optimization 

and low power techniques. Multiplication is a heavily used arithmetic operation that figures 

prominently in signal processing and scientific applications. Multiplication is a very hardware 

intensive subject and we as users are mostly concerned with getting low-power,smaller area 

and higher speed.The most important concern in classic multiplication, mostly realized by K-

cycles of shifting and adding, is to speed up underlying multi-operand addition of partial 

products. In this project we will present the design of Booth Multiplier with different adder 

architectures like Ripple Carry Adder & Carry Look Ahead Adder. The time delay, area and 

power have been analyzed for different adders. Also multipliers have been designed for both 

radix-2 and radix-4. Results will show the variation of area, speed and power for different 

designs. Also the power estimation method gives the deeper insight into power calculation and 

analysis. An approach have been suggested for peak power estimation. 
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1.1 MOTIVATION 

Day by day IC technology is getting more complex in terms of design and its 

performance analysis. A faster design with lower power consumption and smaller area is implicit 

to the modern electronic designs. Unceasing advancement in microelectronics design technology 

makes improved use of energy, encrypt data successfully, communicate information much more 

steadfastly, etc. Particularly, many of these technologies address low-power consumption to meet 

the requirements of various portable applications. In these application systems, a multiplier is a 

fundamental arithmetic unit and widely used in circuits, for which the multiplication process 

should be optimized properly. Multipliers generally have extended latency, huge area and 

consume substantial amount of power. Hence low-power multiplier design has become an 

important part in VLSI system design. Everyday new approaches are being developed to design 

low-power multipliers at technological, physical, circuit and logic levels. Since the multiplier is 

generally the slowest element in a system, the system’s performance is determined by 

performance of the multiplier. Also multipliers are the most area consuming entity in a design. 

Therefore, optimizing speed and area of a multiplier is a major design issue nowadays. However, 

area and speed are usually conflicting constraints so that improving speed results in larger areas 

and vice-versa. Also area and power consumption of a circuit are linearly correlated. So a 

compromise has to be done in speed of the circuit for a greater improvement in reduction of area 

and power. 

 For implementing a digital multiplier a large variety of computer arithmetic algorithms 

could be used. Most techniques take into consideration generating a set of partial products, and 

then adding the partial products together once they have been shifted. In a multiplier to increase 

its speed, the number of partial product to be genrated should be reduced. A higher 
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representation radix effectively indicates to fewer digits. Thus, a single-digit multiplication 

algorithm necessitates fewer cycles as we start moving to much higher radices, which 

automatically leads to a lesser number of partial products. Several algorithms have been 

developed for this purpose like Booth’s Algorithm, Wallace Tree method etc. For the summation 

process several adder architectures are available viz. Ripple Carry Addition, Carry Look-ahead 

Addition, Carry Save Addition etc. But to reduce the power consumption the summation 

architecture of the multiplier should be carefully chosen.  

 

1.2 LOW POWER MULTIPLIER DESIGN 

Multiplication can be considered to consist of three basic steps: generation of partial 

product (PPG), partial products reduction (PPR), and finally at the end addition of 

carrypropagate(CPA).In general we have combinational and sequential multiplier 

implementations. Here we are taking into consideraion the combinational case only, because the 

scale of integration now has become huge enough to start accommodating parallel multiplier 

applications in digital VLSI circuits. Different multiplication algorithms vary in the approaches 

of generation and reduction of Partial Products and the addition process. In order to diminish the 

number of PPs involved and therefore lessen the area/delay of the circuit, one operand is usually 

recoded into high-radix digit sets. One of the most used and widespread radix-2n algorithm is the 

radix-4 which has a set of digits given by {-2,-1, 0, 1, 2} for PPG. For PPR, two choices exist 

which can be implemented: reduction by rows, which can be performed by taking into 

consideration an adder array  and reduction by columns, which can be performed by taking into 

consideration a counter array .The closing process of addition necessitates a fast adder 
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arrangement because it is on the critical path. In a few cases, concluding summation is deferred if 

it is valuable to keep redundant results from PPG  to carry out further arithmetic operations. 

 

 

 

1.3 PROGRAMMING LANGUAGE AND ANALYSIS TOOLS USED 

 To write program for the implementation of any digital circuit there are various 

languages available, called as Hardware Description Language e.g. Verilog, VHDL. For our 

design we have used VHDL (Very High Specific Integrated Circuit HDL) for programming. 

VHDL is one of the common techniques used in digital system emergent process. The technique 

is implemented in program using certain software which carries out simulation and examination 

of the designed system. The designer only needs to describe the digital circuit design in textual 

form which can remove without the effort to alter the hardware. VHDL is highly preferred 

because this technique has the ability to reduce cost and time, is easy to troubleshoot, portable,  a 

lot of platforms software support the VHDL function and high references are available. We used 

XILINX 10.1 platform to write our programs. All the RTL simulations has been done using this 

software only. Also for delay report the synthesis tool embedded in Xilinx was used. 

We used for Scirocco and VirSim, which are logic simulators, for the functionality 

simulation of our design. Also we used Synopsys Design Vision tool to estimate power of all our 

arithmetic circuits. Synopsys Design Vision is a logic synthesis tool. It takes HDL designs and 

synthesizes them to gate-level net-lists. Also it supports both Verilog and VHDL.  It can 

synthesize generic gates or other design libraries. The tool exists inside a GUI and command line 
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version. The GUI version is known as design vision and the command line version is referred as 

dc_shell-xg-t. For both area and power estimation we used Design Vision. The basic steps for 

analyzing a design are: 

Analyze: This step start checking the design files for syntax.We can also save modules (Verilog) 

and entities (VHDL) in an intermediate format into a local folder. 

Elaborate: We can build a design from the intermediate format files created in the previous 

Analyze step. 

Compile: This is the synthesizing step, where we can map the design to a gate library or cell 

library. 

Save: After compiling a design we can save the synthesized design into HDL or other formats. 

Synthesized designs are fundamental for creating ASICS or carrying out different simulations for 

timing and power. 

After compilation using commands like report_power or report_area we can get power and area 

accordingly. 

 

1.4 RESEARCH APPROACH 

 The elementary purpose of our project is to instrument the Booth’s Algorithm for the 

design of a binary multiplier using different adder architectures and carry out power analysis at 

various levels. Also the delay, area and power optimization is to be taken care of. We chose to 

implement Booth’s algorithm for our multiplier design because it reduces the number of partial 
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products generated in a multiplication process and reduction in number of partial products results 

in a faster multiplication.  

We already are familiar that the basic building block of a multiplier is the adder circuit. 

Therefore we turned our focus into The ADDERS first. We analyzed the occupied area and the 

delay in time consumed by different adders and discerned an appropriate relationship between 

time and area complexity of all the adders which we have taken under consideration. Then we 

turned our attention to the design and implementation of Multipliers. First of all we considered a 

Booth's Radix-2 multiplier and estimated its delay, area and power. Then a radix-4 multiplier 

was designed. A comparison was done between Radix-2 and Radix-4 algorithm. As radix-4 

seemed more suitable for the design we carried out further analysis on radix-4 multiplier by 

using different adder architectures like RCA and CLA. 

Then we turned our focus into the switching activity based power analysis of the Radix-4 

Booth multiplier, and its power estimation. We did power estimation at RTL level using 

Synopsys Design Compiler. 
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2.1 ADDERS CLASSIFICATION 

Addition is one of the most commonly used arithmetic operation in microprocessor, 

digital signal processor etc. It can also be used as a building block for synthesis of all other 

arithmetic operations. Therefore, as far as the efficient implementation of an arithmetic unit is 

concerned, the binary adder structure becomes a very critical hardware unit. In any book on 

computer arithmetic, we can observe that there occurs a large number of quite different circuit 

architectures pertaining to different performance characteristics. While adders can be constructed 

for a lot of numerical expressions like Binary-coded decimal or excess-3, the most frequently 

used adders operate numbers which are binary. In certain cases where two's complement is being 

used to represent negative numbers, it is trivial to convert an adder into an adder-subtractor. 

                                      Although many researches related to the binary adder structures have 

been carried out, the studies based on their comparative performance analysis are only quite few 

in number. In this project, assessments of the classified binary adder architectures are given. 

From the huge member of adders we have got, we implemented the VHDL (Hardware 

Description Language) code for Ripple-carry and Carry-look ahead adder to highlight the 

common performance properties belong to their classes. Throughout the next section, we provide 

you with a brief description of the studied adder architectures.  

 

 

2.2 RIPPLE CARRY ADDERS (RCA) 

This popular adder architecture, ripple carry adder consists of cascaded full adders as 

shown in figure.1.It is formed by cascading full adder blocks in series with one another. The 
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output carry of one stage is fed directly to the input carry of the next stage. An N-bit parallel 

adder requires N full adders.  

 

FIGURE 2.1 

 

The given adder architecture is not very efficient when large number of bits are used. The gate 

delay can easily be calculated by inspecting the full adder circuit. We know that each full adder 

requires three levels of logic. Considering a 64-bit ripple-carry adder, we know that it has 64 full 

adders, so the critical path (worst case) delay is 3 (from input to carry in case of the first adder) + 

63 * 2 (for carry propagation in the later adders) = 127 gate delays. 

2.3 CARRY LOOK AHEAD ADDERS (CLA) 

A Carry Look Ahead Adder has the ability to generate faster carries because of generation of 

carry bits in parallel by a supplementary circuit whenever inputs are changing. This technique 

extensively uses carry bypass logic to haste up the propagation of carry. In Carry look ahead logic 

the generation and propagation of carries takes place. For each bit in a binary sequence to be added, 

the Carry Look Ahead Logic determines whether that bit pair will generate a carry or propagate a 

carry. This allows the circuit to "pre-process" the two numbers being added to determine the carry 



17 
 

ahead of time. After this, when the actual addition is performed, there will be no delay from waiting 

for the ripple carry effect (or time it takes for the carry from the first Full Adder to be passed down to 

the last Full Adder). 

 

FIGURE 2.2  

 

The mechanism for carry look-ahead summation can be describes as below: 

First the Carry-generate and Carry-propagate vectors are evaluated. 

Pi = Ai ⊕ Bi 

Gi = AiBi 

Si = Ci ⊕ Pi  

Ci+1 = Gi + PiCi 

Gi is known as the carry Generate signal because a carry (C
i+1

) is generated whenever G
i 
=1, 

regardless of the input carry (C
i
). 

P
i 
is known as the carry propagate signal because whenever P

i 
=1, the input carry is propagated 

to the output carry, i.e., C
i+1

. = C
i 
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The Boolean expression for the carry outputs of various stages for a 4-bit block can be written as 

follows:  

C
1 
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+ P
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As the no of bits in the Carry Look Ahead adders increases, the complexity increases as the no. 

of gates in the expression Ci+1 increases. So practically it is not desirable to use the traditional 

CLA shown above because it increases the Space required and the power too.  

2.4 ANALYSIS OF ADDERS 

In our project we compared 2- different adders Ripple Carry Adder and the Carry Look-Ahead 

Adder. The basic purpose of our experiment was to know the time, area and power trade-offs 

between various adders which will give us a clear picture of which adder suits best in which type 

of situation during a design process. Hence below we present the practical comparisons of the 

two adders which were taken into consideration. There are a lot of adders present but we took 

into consideration only these two and our project is limited to these two adders. Limited to these 

two adders. 

 

TABLE 2.1: Power-Area Comparison for Different Adders 

Name Of 

Architecture 

Cell Internal 

Power (in uW) 

Net Switching 

Power (in uW) 

Total Dynamic 

Power(in uW) 

Area 

(in um
2
) 
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RCA-8 bit 13.4914 2.8803 16.3717 81.719999 

RCA-16 bit 27.953 6.1735 34.1265 162.359999 

RCA-64 bit 114.9175 25.9866 140.9041 646.199995 

CLA-8 bit 6.0445 0.98704 7.0315 46.079999 

CLA-16 bit 34.2506 10.7415 44.9921 253.799998 

CLA-64 bit 137.4008 43.3389 180.7397 950.399992 

 

2. 5 DISCUSSION 

Above we have presented the estimated power and power of different types of adders 

with different sizes using Design Compiler by Synopsys. 

For Ripple Carry Adder the time complexity is O(n) i.e. the delay of the circuit caries 

linearly with the number of bits. Theoretical delay for the addition of n-bit data using RCA and 

CLA are 2n and 4log2(n) respectively.  

By looking at the above data it can be inferred that the total dynamic power i.e. 

summation of cell internal power and net switching power increases linearly with the number of 

bits for RCA architecture. But for CLA architecture it varies in a non-linear fashion, more like in 

an exponential way. Similarly the area also increases proportionally with number of bits for an 

RCA but it increases in an exponential way for a CLA architecture. The reason for linear 

increase in area and power for an RCA is that the number gates increases proportionally as the 

number of bits increases. 
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But for a CLA the carry look ahead logic circuit becomes more complex and larger with 

increment in number of bits. Later in this thesis we will give comparison about the multipliers 

designed using these two architectures.  

 

 

 

 

 

 

 

 

 



21 
 

 

 

CHAPTER 3 

THE MULTIPLIERS 

 BASIC MULTIPLICATION ALGORITHM 

 BOOTH’S ENCODING 

 MODIFIED BOOTH’S ALGORITHM 

 

 

 

 



22 
 

3.1 BASIC ALGORITHM FOR BINARY MULTIPLICATION 

A Binary multiplier is an electronic device used in digital electronics or in a computer or other 

electronic devices to carry out multiplication of two numbers depicted in binary format. It is built 

using binary adders. The most basic technique involves generating a set of partial products, and 

then summing the partial products simultaneously. This process is similar to the method which is 

taught to lower classes’ students in school for conducting long multiplication on base-10 

integers, but has been modified here for application to a base-2 (binary) numeral system. 

The rules for binary multiplication are stated as given: 

1. If the multiplier digit is 1, the multiplicand is copied down and  it gives the 

product. 

2. If the multiplier digit is 0 then we get a  product which is also 0. 

For designing such a multiplier circuit we should have the circuitry to carry out or do the 

following four things: 

1. It should be capable of recognizing whether a bit is 0 or 1. 

2. It should be capable of shifting the left partial product. 

3. It should be capable of adding all the partial-products to give the product as a sum of 

the partial products.                

4. It should examine sign bits and if they are similar, the sign of the product will be a  

Positive representation and if the sign bits are opposite then the product will be 

negative. The sign bit of the product which has been stored with the above criteria 

should be displayed along with the product. 
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From the above discussion we can observe that it is not necessary to wait until all the 

partial products have been formed before carrying out the sum. In fact the addition of the partial 

products can be carried out as soon as a partial product is formed.  

 

3.2 BOOTH’S ENCODING 

Booth’s encoding or Booth's multiplication algorithm[1] is a multiplication algorithm 

which can multiply two signed binary numbers in a two's complement notation. Booth's 

algorithm has the ability to perform fewer additions and subtractions in comparison to normal 

multiplication algorithm. It is an encoding process which can be used to minimize the no of 

partial products in a multiplication process. It is based upon the relation 

2
n
 = 2

n+1
 – 2

n
 

Example: 

                      0       0       1       1       1        1       1       1       0        0 

                                                                              +1     -1  

                                                                     +1      -1 

                                                           +1      -1 

                                                  +1     -1 

                                         +1     -1 

                                +1     -1 

                   0         +1      0         0      0         0     0       -1      0        0 

 

Booth's algorithm examines consecutive bits of the N-bit multiplier Y in signed two's 

complement representation, which includes an implicit bit below the least significant bit, y-1 = 0. 

For each bit yi, as i runs from 0 to N-1, the bits yi and yi-1 are considered. When these two bits are 
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equal, the product accumulator P stays unchanged. Where yi = 0 and yi-1 = 1, the multiplicand 

times 2i is added to P; and where yi = 1 and yi-1 = 0, the multiplicand times 2i gets subtracted 

from P. The final value of P will be the signed product. 

The representation of the multiplicand and product are not specified; typically, these are 

also in two's complement representation, like a multiplier, but any number system that supports 

addition and subtraction will work as well. The order of the steps is not determined. Generally, it 

proceeds from LSB to MSB, starting at i = 0; the multiplication by 2i is then replaced by 

incremental shifting of the P accumulator to the right between steps; low bits will be shifted out, 

and subsequent additions or subtractions can then be done just on the highest N bits of P. There 

are many variations and optimizations on these details. 

The algorithm is often described as converting strings of 1's in the multiplier to a high-

order +1 and a low-order –1 at the ends of the string. When the string runs through the MSB, 

there is no high-order +1, and the net effect is interpretation as a negative of the appropriate 

value. 

RADIX-2 ALGORITHM IMPLEMENTATION 

Let x be the number of bits of the multiplicand, and y be the number of bits of the multiplier: 

 Draw a grid of three rows, each with columns for x + y + 1 bits. Label the lines 

respectively A (add), S (subtract), and P (product).  

 In two’s complement notation, fill the first x bits of each line with :  

o A: the multiplicand  

o S: negative of the multiplicand(2's complement format)  
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o P: zeroes  

 Fill the next y bits of each line with :  

o A: zeroes  

o S: zeroes  

o P: the multiplier  

 Fill the last bit of each line with a zero.  

For example consider the given two numbers: 3 and -4. 

On carrying out the above instructions we would find the following values of A, S and P. 

A = 0011 0000 0  

      S = 1101 0000 0  

P = 0000 1100 0  

 Now carry out both of these steps y times :  

 .If the last two bits in the product are...  

 00 or 11: do nothing.  

 01: P = P + A. Ignore any overflow.  

 10: P = P + S. Ignore any overflow.  

 .Arithmetically shift the product right one position.  
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 Drop the first (we count from right to left when dealing with bits) bit from the 

product for the final result.  

 Do both of these steps y times :  

 If the last two bits in the product are...  

 00 or 11: do nothing.  

 01: P = P + A. Ignore any overflow.  

 10: P = P + S. Ignore any overflow.  

 Arithmetically shift the product right one position.  

 Drop the first (we count from right to left when dealing with bits) bit from the product 

for the final result.  

For Example: Find 3 × -4, with x = 4 and y = 4: 

We get: 

A = 0011 0000 0  

S = 1101 0000 0  

P = 0000 1100 0  

Perform the loop four times:  

1 P = 0000 1100 0. The last two bits are 00.  

             P = 0000 0110 0. A right shift.  

2 P = 0000 0110 0. The last two bits are 00.  
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             P = 0000 0011 0. A right shift.  

3 P = 0000 0011 0. The last two bits are 10.  

                        P = 1101 0011 0. 

                        P = P + S.  

                        P = 1110 1001 1.  Right shift.  

4 P = 1110 1001 1. The last two bits are 11.  

                        P = 1111 0100 1.  Right shift.  

 The final product is 1111 0100, which is -12. 

3.3 MODIFIED BOOTH’S ALGORITHM 

One of the many solutions of realizing high speed multipliers is enhancing parallelism which 

helps in decreasing the number of subsequent calculation levels. The original version of Booth 

algorithm (Radix-2) had two particular drawbacks. They were:  

 The number of add-subtract operations and shift operations become variable and causes 

inconvenience in designing parallel multipliers.  

 The algorithm becomes inefficient when there are isolated 1’s.  

These problems are overwhelmed by using modified Radix4 Booth algorithm which scans 

strings of three bits using the algorithm given below: 

1) Lengthen the sign bit 1 position if necessary to ensure that n is even. 

2) Add a 0 to the right of the LSB of the multiplier. 

3) Corresponding to the value of each vector, each Partial Product will be 0, +M, -M, +2M 

or -2M. 
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The negative values of M are made by taking its 2’s complement. The multiplication of M is 

done by shifting M by one bit to the left (in case it’s multiplied with 2). Thus, in any case, in 

designing an n-bit parallel multiplier, only n/2 partial products are generated. 

TABLE 3.1: Modified Booth’s Recoding Table 

i+1 I i-1 add 

0 0 0 0*M 

0 0 1 1*M 

0 1 0 1*M 

0 1 1 2*M 

1 0 0 -2*M 

1 0 1 -1*M 

1 1 0 -1*M 

1 1 1 0*M 
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4.1 TYPES OF POWER DISSIPATION 

The indispensable figure-of-merit of a digital circuit are speed and power consumption with the 

spped being measured in terms of a (reciprocal) delay time   or a maximum clock frequency. 

Efficiency of power could be defined as the total power or also in terms of the switching energy, 

i.e., the average energy spent for one switching transition of the digital device. 

Total power dissipated in a design can be broadly divided in two categories:  static and dynamic.  

Ptot = Pstat + Pdyn = IoffVDD + αfcCLVDD
2

 

Static Power 

Static power is the power dissipated by a gate when it’s not switching. It is caused by the 

current that flows through the transistors even when they are turned off. From the system's 

function point of view, static power can be considered as wasted energy as it is not used for any 

useful purpose. Almost half of design's intake of power may be due to static power at the latest 

process nodes (65nm) and is growing. 

Pstat = IoffVDD  

Dynamic Power 

Dynamic power is the power dissipated when the circuit is active i.e. while performing 

some function. Dynamic power can be further divided into two components: Switching 

power and internal power. 

Pdyn = αfcCLVDD
2
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Switching Power 

Switching power can be defined as the power which is dissipated while charging and 

discharging the output load capacitance. The load capacitance consists of interconnect (net) 

capacitance and gate capacitances the net is connected to. 

The extent of switching power usually depends on the switching activity (which is related 

to the operating frequency) of the cell. The switching power increases with increase in logic 

transitions at the cell output 

Internal Power 

Internal power is consumed within a cell while charging and discharging internal cell 

capacitances. Short-circuit power is also included in the Internal power. Both P and N type 

transistors are on simultaneously during the logic transitions for a brief time resulting to direct 

connection from VDD rail to ground rail. 

4.2 SWITCHING ACTIVITY INTERCHANGE FORMAT (SAIF) FILES 

As noted above the dynamic power consumed by a circuit depends on the logic 

transitions which occur within the design while operating. Therefore, for power estimation and 

optimization we need to accurately specify this information (called switching activity) to the tool 

performing these tasks. Dynamic power represents the majority of total power. The SAIF (from 

Synopsys) file stores the switching activity of the design in ASCII format. The SAIF file can 

then be used to allow switching activity information between the power tools and simulators. 
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Switching Activity in SAIF file relies on static probability and toggle rate. Following is 

the definition of Static Probability and Toggle Rate. 

 

Static Probability 

Static probability is the likelihood that a signal is at a specific logic state; it is expressed 

as a number between 0 and 1 where SP1 is the static probability that a signal is at logic-1 and 

SP0 is the static probability that the signal is at logic-0. 

You can calculate the static probability as a ratio of the time period for which the signal 

is at a certain logic state relative to the total simulation time. For example, if SP1 = 0.70, the 

signal is at logic 1 state 70% of the time. Synopsys power compiler tools use SP1 when modeling 

switching activity. 

Toggle Rate 

The toggle rate of a design object is defined as the number of logic-0-to-logic-1 and 

logic-1-to- logic-0 transitions of the design object, such as a pin, net or port, per unit of time. The 

toggle rate is written as TR. 

4.3 RTL POWER ESTIMATION FLOW 

This section introduces the RTL Power Estimation Flow i.e. a flow which one can 

implement to estimate the power consumption of one’s design at RTL level using Synopsys 

Design Compiler and Mentor Graphics Modelsim. Power estimated which is based on the RTL 

design cannot be said as accurate but it can be used as example to explore different architectures 
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and to evaluate their power consumption. The figure given below illustrates the RTL power 

estimation flow. 

 

Figure 4.1: RTL Power Estimation Flow 
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For RTL power estimation one needs: 

 Synthesizable HDL description of your design (.vhdl file) 

 Testbench of the design  

 Testbench should generate stimulus for simulation that corresponds to the normal 

operation of the design 

 SAIF forward annotation file (generated by Design Compiler) 

 : - the file provides information to the simulator about the objects in RTL 

design that should be monitored for switching activity during simulation. 

 SAIF do macro file 

 :-the macro file contains ModelSim commands that are needed to record 

switching activity   during simulation 

 SAIF backward annotation file (generated by ModelSim simulator) 

 :-the switching activity recorded during simulation 

There are specific commands for the generation of both forward and backward SAIF files. 

For A Better Power Estimation 

The problem of maximum/peak power estimation in CMOS circuits is quite essential for 

analyzing the performance and reliability of circuits at extreme conditions. Here we have tried to 

find out input vectors that can cause maximum dynamic power dissipation (maximum toggles) in 

circuits, in other words maximum toggling. A gate level description of the circuit and an initial 

input vector I0 is given. Let S0 be the initial state of the circuit after assigning I0 to the primary 

inputs. Now, it is required to find an input vector I1 such that the pairs I0 and I1 applied in 

sequence lead to high switching activity in the circuit. Most of the approaches in this literature 
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approach the problem of finding input vectors causing maximum switching activity by looking at 

the gate level description of the circuit. These approaches use some properties of the gate like 

fan-out, level of the gate in the circuit etc. to decide the order in which the gates need to be 

processed. In our approach, we have tried to group gates together and look at one group at a time 

rather than individual gates. This grouping has helped us to obtain better quality solutions. The 

grouping strategy we decided was to form FFRs (Fanout free regions) in the circuit[3]. The main 

idea behind this was that for any given FFR, the difficulty of finding an input vector pair which 

would cause maximum switching among all possible input vector pairs is directly proportional 

with respect to the number of gates in the FFR. Moreover, this particular input vector pair will 

cause every line in the circuit to switch state. 

Figure 4.2: For Pattern Generation 

 

a1, b1 

        

 

a2, b2 

 

 

For our pattern generation we used a calculator named as KBDD, which has been 

developed by a research group at Carnegie Mellon University. This is a BDD (Binary Decision 

Diagram) generator along with the functionality of generating SOPs (Sum of Products). Here we 

MULTIPLIER 1 

MULTIPLIER 2 

XOR 1 

XOR 2 

XOR N 

AND 

O/P 
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took two multipliers of the same architecture. Looking at its RTL schematic we found out the 

potential gates for switching activities and XORed the corresponding gates. After this all the 

XOR gates were ANDed together to find out the pattern common to the switching of all the logic 

blocks inside the multiplier. For switching activity analysis the initial logic levels of the design 

are to be given more importance as they control the activities in the later stages. So for our 

design we considered the Partial product generation stage only. Also it has been seen that 

maximum switching occurs in an Adder when firstly the numbers are added and then subtracted 

i.e. the two’s complement to be added with the other input.  

1. First write the logic equations of the circuit for all the possible outputs at different 

logic levels. 

2. Rewrite the logic equations using another set of variables. 

3. Analyze the RTL schematic for logic blocks having a high potential for switching 

activity. 

4. XOR the corresponding outputs of those logic blocks for the two sets of equation.  

5. AND all the XORed outputs to get simultaneous switching activity in the circuit. 

6. Generate the SOP of the final equation. Find out the input combinations for which the 

SOP is satisfied. 
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5.1 PROGRAM FOR RADIX-4 MULTIPLIER 

Using Ripple Carry Adder 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity R4MUL_RCA is 

    Port (a, b : in STD_LOGIC_VECTOR (31 downto 0); 

           mul: inout std_logic_vector(63 downto 0); 

    overflow: out std_logic); 

end R4MUL_RCA; 

 

architecture Behavioral of R4MUL_RCA is 

component RADIX4_ENCODER is 

    Port ( x : in  STD_LOGIC_VECTOR (31 downto 0); 

           arg : in STD_LOGIC_VECTOR (2 downto 0); 

     pp : inout  STD_LOGIC_VECTOR (63 downto 0)); 

end component; 

component fulladder 

    Port (a, b, cin: in STD_LOGIC; 

           sum, cout: out STD_LOGIC); 

end component; 

component RCA64 is 

    Port (a, b: in STD_LOGIC_VECTOR (63 downto 0) ; 

           add: out STD_LOGIC_VECTOR (63 downto 0); 

           cout: out  STD_LOGIC); 

end component; 

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0); 

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0); 
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signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0); 

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0); 

signal tt: std_logic_vector(32 downto 0); 

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15: 

std_logic_vector(63 downto 0);  

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63 

downto 0); 

signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63 

downto 0); 

signal y: std_logic_vector(15 downto 0); 

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63 

downto 0); 

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR 

(63 downto 0); 

begin 

tt<= a(31 downto 0)&'0'; 

arg1<=tt(2 downto 0); 

arg2<=tt(4 downto 2); 

arg3<=tt(6 downto 4); 

arg4<=tt(8 downto 6); 

arg5<=tt(10 downto 8); 

arg6<=tt(12 downto 10); 

arg7<=tt(14 downto 12); 

arg8<=tt(16 downto 14); 

arg9<=tt(18 downto 16); 

arg10<=tt(20 downto 18); 

arg11<=tt(22 downto 20); 

arg12<=tt(24 downto 22); 

arg13<=tt(26 downto 24); 

arg14<=tt(28 downto 26); 

arg15<=tt(30 downto 28); 

arg16<=tt(32 downto 30); 

 

u1: RADIX4_ENCODER port map(b(31 downto 0), arg1, pp1); 
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u2: RADIX4_ENCODER port map(b(31 downto 0), arg2, pp2); 

u3: RADIX4_ENCODER port map(b(31 downto 0), arg3, pp3); 

u4: RADIX4_ENCODER port map(b(31 downto 0), arg4, pp4); 

u5: RADIX4_ENCODER port map(b(31 downto 0), arg5, pp5); 

u6: RADIX4_ENCODER port map(b(31 downto 0), arg6, pp6); 

u7: RADIX4_ENCODER port map(b(31 downto 0), arg7, pp7); 

u8: RADIX4_ENCODER port map(b(31 downto 0), arg8, pp8); 

u9: RADIX4_ENCODER port map(b(31 downto 0), arg9, pp9); 

u10: RADIX4_ENCODER port map(b(31 downto 0), arg10, pp10); 

u11: RADIX4_ENCODER port map(b(31 downto 0), arg11, pp11); 

u12: RADIX4_ENCODER port map(b(31 downto 0), arg12, pp12); 

u13: RADIX4_ENCODER port map(b(31 downto 0), arg13, pp13); 

u14: RADIX4_ENCODER port map(b(31 downto 0), arg14, pp14); 

u15: RADIX4_ENCODER port map(b(31 downto 0), arg15, pp15); 

u16: RADIX4_ENCODER port map(b(31 downto 0), arg16, pp16); 

 

s1<= pp2(61 downto 0)&"00"; 

s2<= pp3(59 downto 0)&"0000"; 

s3<= pp4(57 downto 0)&"000000"; 

s4<= pp5(55 downto 0)&"00000000"; 

s5<= pp6(53 downto 0)&"0000000000"; 

s6<= pp7(51 downto 0)&"000000000000"; 

s7<= pp8(49 downto 0)&"00000000000000"; 

s8<= pp9(47 downto 0)&"0000000000000000"; 

s9<= pp10(45 downto 0)&"000000000000000000"; 

s10<= pp11(43 downto 0)&"00000000000000000000"; 

s11<= pp12(41 downto 0)&"0000000000000000000000"; 

s12<= pp13(39 downto 0)&"000000000000000000000000"; 

s13<= pp14(37 downto 0)&"00000000000000000000000000"; 

s14<= pp15(35 downto 0)&"0000000000000000000000000000"; 

s15<= pp16(33 downto 0)&"000000000000000000000000000000"; 
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h1: RCA64 port map(pp1, s1, sum1, y(0)); 

h2: RCA64 port map(sum1, s2, sum2, y(1)); 

h3: RCA64 port map(sum2, s3, sum3, y(2)); 

h4: RCA64 port map(sum3, s4, sum4, y(3)); 

h5: RCA64 port map(sum4, s5, sum5, y(4)); 

h6: RCA64 port map(sum5, s6, sum6, y(5)); 

h7: RCA64 port map(sum6, s7, sum7, y(6)); 

h8: RCA64 port map(sum7, s8, sum8, y(7)); 

h9: RCA64 port map(sum8, s9, sum9, y(8)); 

h10: RCA64 port map(sum9, s10, sum10, y(9)); 

h11: RCA64 port map(sum10, s11, sum11, y(10)); 

h12: RCA64 port map(sum11, s12, sum12, y(11)); 

h13: RCA64 port map(sum12, s13, sum13, y(12)); 

h14: RCA64 port map(sum13, s14, sum14, y(13)); 

h15: RCA64 port map(sum14, s15, mul, overflow); 

end Behavioral; 

Using Carry Look-Ahead Adders 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity r4mulcla is 

    Port ( a, b : in  STD_LOGIC_VECTOR (31 downto 0); 

           mul: inout std_logic_vector(63 downto 0); 

     overflow: out std_logic); 

end r4mulcla; 

 

architecture Behavioral of r4mulcla is 

component r4encoder is 

    Port ( x : in  STD_LOGIC_VECTOR (31 downto 0); 
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           arg : in STD_LOGIC_VECTOR (2 downto 0); 

     pp : inout  STD_LOGIC_VECTOR (63 downto 0)); 

end component; 

component cla is 

    Port ( p,g : in  STD_LOGIC_VECTOR (7 downto 0);            

           cin: in std_logic; 

     sum : out  STD_LOGIC_VECTOR (7 downto 0)); 

end component; 

component PG_gen is 

    Port ( p, g : in  STD_LOGIC_VECTOR (7 downto 0); 

           iP, iG : out  STD_LOGIC); 

end component; 

component carrygen is 

    Port ( p, g : in  STD_LOGIC_VECTOR (7 downto 0); 

           c1 : in  STD_LOGIC; 

           c0 : out  STD_LOGIC_VECTOR (7 downto 0)); 

end component; 

component cla_64bit is 

    Port ( a, b : in  STD_LOGIC_VECTOR (63 downto 0); 

     cin: in STD_LOGIC; 

           sum : out  STD_LOGIC_VECTOR (63 downto 0); 

           cout : out  STD_LOGIC); 

end component; 

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0); 

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0); 

signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0); 

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0); 

signal tt: std_logic_vector(32 downto 0); 

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15: 

std_logic_vector(63 downto 0);  

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63 

downto 0); 
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signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63 

downto 0); 

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63 

downto 0); 

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR 

(63 downto 0); 

signal y: std_logic_vector(15 downto 0); 

signal c1:std_logic; 

begin 

c1<='0'; 

tt<= a(31 downto 0)&'0'; 

arg1<=tt(2 downto 0); 

arg2<=tt(4 downto 2); 

arg3<=tt(6 downto 4); 

arg4<=tt(8 downto 6); 

arg5<=tt(10 downto 8); 

arg6<=tt(12 downto 10); 

arg7<=tt(14 downto 12); 

arg8<=tt(16 downto 14); 

arg9<=tt(18 downto 16); 

arg10<=tt(20 downto 18); 

arg11<=tt(22 downto 20); 

arg12<=tt(24 downto 22); 

arg13<=tt(26 downto 24); 

arg14<=tt(28 downto 26); 

arg15<=tt(30 downto 28); 

arg16<=tt(32 downto 30); 

 

u1: r4encoder port map(b(31 downto 0), arg1, pp1); 

u2: r4encoder port map(b(31 downto 0), arg2, pp2); 

u3: r4encoder port map(b(31 downto 0), arg3, pp3); 

u4: r4encoder port map(b(31 downto 0), arg4, pp4); 

u5: r4encoder port map(b(31 downto 0), arg5, pp5); 
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u6: r4encoder port map(b(31 downto 0), arg6, pp6); 

u7: r4encoder port map(b(31 downto 0), arg7, pp7); 

u8: r4encoder port map(b(31 downto 0), arg8, pp8); 

u9: r4encoder port map(b(31 downto 0), arg9, pp9); 

u10: r4encoder port map(b(31 downto 0), arg10, pp10); 

u11: r4encoder port map(b(31 downto 0), arg11, pp11); 

u12: r4encoder port map(b(31 downto 0), arg12, pp12); 

u13: r4encoder port map(b(31 downto 0), arg13, pp13); 

u14: r4encoder port map(b(31 downto 0), arg14, pp14); 

u15: r4encoder port map(b(31 downto 0), arg15, pp15); 

u16: r4encoder port map(b(31 downto 0), arg16, pp16); 

 

s1<= pp2(61 downto 0)&"00"; 

s2<= pp3(59 downto 0)&"0000"; 

s3<= pp4(57 downto 0)&"000000"; 

s4<= pp5(55 downto 0)&"00000000"; 

s5<= pp6(53 downto 0)&"0000000000"; 

s6<= pp7(51 downto 0)&"000000000000"; 

s7<= pp8(49 downto 0)&"00000000000000"; 

s8<= pp9(47 downto 0)&"0000000000000000"; 

s9<= pp10(45 downto 0)&"000000000000000000"; 

s10<= pp11(43 downto 0)&"00000000000000000000"; 

s11<= pp12(41 downto 0)&"0000000000000000000000"; 

s12<= pp13(39 downto 0)&"000000000000000000000000"; 

s13<= pp14(37 downto 0)&"00000000000000000000000000"; 

s14<= pp15(35 downto 0)&"0000000000000000000000000000"; 

s15<= pp16(33 downto 0)&"000000000000000000000000000000"; 

 

h1: cla_64bit port map(pp1, s1, c1, sum1, y(0)); 

h2: cla_64bit port map(sum1, s2, c1, sum2, y(1)); 

h3: cla_64bit port map(sum2, s3, c1, sum3, y(2)); 

h4: cla_64bit port map(sum3, s4, c1, sum4, y(3)); 



46 
 

h5: cla_64bit port map(sum4, s5, c1, sum5, y(4)); 

h6: cla_64bit port map(sum5, s6, c1, sum6, y(5)); 

h7: cla_64bit port map(sum6, s7, c1, sum7, y(6)); 

h8: cla_64bit port map(sum7, s8, c1, sum8, y(7)); 

h9: cla_64bit port map(sum8, s9, c1, sum9, y(8)); 

h10: cla_64bit port map(sum9, s10, c1, sum10, y(9)); 

h11: cla_64bit port map(sum10, s11, c1, sum11, y(10)); 

h12: cla_64bit port map(sum11, s12, c1, sum12, y(11)); 

h13: cla_64bit port map(sum12, s13, c1, sum13, y(12)); 

h14: cla_64bit port map(sum13, s14, c1, sum14, y(13)); 

h15: cla_64bit port map(sum14, s15, c1, mul, overflow); 

end Behavioral; 

Modified Booth Encoder 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity RADIX4_ENCODER is 

generic(N: integer:= 32); 

    Port ( x : in  STD_LOGIC_VECTOR (N-1 downto 0); 

           arg : in STD_LOGIC_VECTOR (2 downto 0); 

     pp : inout  STD_LOGIC_VECTOR (2*N-1 downto 0)); 

end RADIX4_ENCODER; 

 

architecture Behavioral of RADIX4_ENCODER is 

begin 

process(arg, x) 

variable temp, temp1, temp2: std_logic_vector(N downto 0); 

begin 
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if x(N-1)='1' then 

temp:= '1'&x(N-1 downto 0); 

else 

temp:= '0'&x(N-1 downto 0); 

end if; 

if(arg="001"or arg="010") then 

temp1:= temp; 

elsif(arg="101" or arg="110") then 

temp1:= not(temp) + "000000001"; 

elsif(arg="011") then 

temp1:= temp(N-1 downto 0)&'0'; 

elsif(arg="100") then 

temp2:= not(temp) + "000000001"; 

temp1:= temp2(N-1 downto 0)&'0'; 

else 

temp1:= (others=>'0'); 

end if; 

pp<= sxt(temp1, 2*N); 

end process; 

end Behavioral; 
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5.2 OUTPUT WAVEFORMS 

Testbench Waveform generation using XIlinx 

 

Scirocco & VirSim Logic Simulation 

The commands executed in the Terminal window for the simulation of the Radix-4 multiplier 

using RCA: 

// VHDL analysis of different components and the multiplier program 

vhdlan fulladder.vhd   

vhdlan RCA64.vhd 
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vhdlan RADIX4_ENCODER.vhd 

vhdlan R4_MUL_RCA.vhd 

// Verilog analysis of the test bench 

vlogan test_r4rca.v 

// Analysis of the Configuration statement 

scs CFG 

scirocco & 
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Analysis & Elaboration of the design using Design Vision 
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5.3 RESULTS FROM POWER ANALYSIS 

Estimation of average power (P1) consumed by the Booth multiplier using RCA & CLA 

architecture 

TABLE 5.1: Average Power Estimation for Different Multipliers 

Name of design Cell Internal 

Power (in mW) 

Net Switching 

Power (in mW) 

Total dynamic 

Power (P1) (in 

mW) 

Cell Leakage 

Power (in uW) 

Area  

(in um
2
) 

Radix-4 RCA 

multiplier 

4.5215 

(71%) 

1.8224   

(29%) 

6.3439 

(100%) 

93.0186 19850.040021 

Radix-4 CLA 

multiplier 

4.9955 

(68%) 

2.3702 

 (32%) 

7.3658 

(100%) 

 

108.5598 24413.039974 

 

After the estimation of above data we carried out further power analysis on the design using 

RCA architecture since it consumes less power and less area. 

Commands Used For SAIF File Generation 

For Forward Saif File: 

set power_preserve_rtl_hier_names true 

# Analyze the design 

analyze -format vhdl -library WORK R4_MUL_RCA.vhd 
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# Elaboration  

elaborate R4_MUL_RCA –architecture behavioral -library WORK  

# Generates forward saif file 

rtl2saif -output r4mul_rca_fw.saif -design R4_MUL_RCA  

write -hierarchy -format ddc -output r4mul_rca_elaborated.ddc 

For Backward Saif File: 

# Analyze the multiplier 

vhdlan R4_MUL_RCA.vhd 

# Analyze full adder 

vhdlan fulladder.vhd  

# Analyze Booth encoder 

vhdlan RADIX4_ENCODER.vhd  

# Analyze RCA 64-bit adder 

vhdlan RCA64.vhd  

# Analyze the testbench 

vlogan test_r4rca.v  

vcs –debug_all –mhdl test_r4rca.v  

# Generate backward saif file 
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./simv 

Creating Power Report: 

# Read the elaborated design (or re-elaborate the design) 

read_file -format ddc {r4mul_rca_elaborated.ddc} 

# Compile the design 

Compile 

# Read backward annotation SAIF file 

read_saif -input r4mul_rca_bw.saif -instance_name R4_MUL_RCA 

# Run power reporting command 

report_power 

TABLE 5.2: Power Estimation from SAIF files 

Power For input combination-1 For input combination-2 

Cell Internal Power 306.8672 uW (73%) 89.5134 uW (78%) 

Net Switching Power 116.2471 uW (27%) 25.5467 uW (22%) 

Total Dynamic Power 423.1143 uW (100%) 115.0601 uW (100%) 

Cell Leakage Power 92.7883 uW 90.9827 uW 
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CONCLUSION AND FUTURE WORK 

After going through all the hard work and after facing a lot of problems, we managed to 

complete the objectives of the project that are to implement Booth’s Algorithm for the design of 

a binary multiplier using different adder architectures and carry out power analysis at various 

levels.. We analyzed the area occupied and the time delay consumed by different adders and 

found out an appropriate relationship among the time and area complexity the adders which we 

have taken into consideration. After comparing all we came to a conclusion that Ripple Carry 

Adders are best suited for Low Power Applications. Then we turned our focus into the design of 

Multipliers. First of all we designed a Booth's Radix-2 multiplier and estimated its delay, area 

and power. Then a radix-4 multiplier was designed. A comparison was done between Radix-2 

and Radix-4 algorithm. Comparing data between Radix-2 and Radix-4 booth multipliers we 

found out that radix-4 consumes less power than radix-2, because radix-4 uses almost a half 

number of iterations than radix-2 As radix-4 seemed more suitable for the design we carried out 

further analysis on radix-4 multiplier by using different adder architectures like RCA and CLA. 

Then we turned our focus into the switching activity based power analysis of the Radix-4 Booth 

multiplier, and its  power estimation. We did power estimation at RTL level using Synopsys 

Design Compiler. 

Further work can be carried out on this project in the power estimation section. Power 

can be estimated at the gate-level by generating gate-level netlist and also the post layout 

analysis can be done for this design. Another possible direction can be pursued for higher radix 

encoding. 
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