
1

DESIGN AND POWER ESTIMATION OF BOOTH

MULTIPLIER USING DIFFERENT ADDER

ARCHITECTURES

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Electronics & Communication Engineering

By

BIKASH CHANDRA SAHOO (109EC0234)

SANJAY KUMAR SAMANT (109EC0240)

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

DESIGN AND POWER ESTIMATION OF BOOTH

MULTIPLIER USING DIFFERENT ADDER

ARCHITECTURES

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Electronics & Communication Engineering

By

BIKASH CHANDRA SAHOO (109EC0234)

SANJAY KUMAR SAMANT (109EC0240)

Under the guidance of

PROF. K. K. MAHAPATRA

Electronics & Communication Engineering

National Institute of Technology, Rourkela

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

2013

3

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled “DESIGN AND POWER ESTIMATION OF BOOTH

MULTIPLIER USING DIFFERENT ADDER ARCHITECTURES” submitted by Mr. Bikash Chandra

Sahoo, Roll No: 109EC0234 & Mr. Sanjay Kumar Samant, Roll No: 109EC0240, Final year

students of Electronics and communication Engineering, in partial fulfillments of the

requirements for the award of Bachelor of Technology Degree in Electronics and

Communication Engineering at National Institute of Technology, Rourkela is an authentic work

carried out by them under my supervision and guidance.

To the best of my knowledge, the matter embodied in thesis has not been submitted to any

other university/ Institute for the award of any degree or Diploma.

Date: Prof K. K. Mahapatra

 Department of E.C.E

 National Institute of Technology

 Rourkela- 769008

4

ACKNOWLEDGEMENT

We would like to articulate our profound gratitude and indebtedness to our project guide Prof.

Dr. K. K. Mahapatra who has always been a constant motivation and guiding factor throughout

the project time in and out as well. It has been a great pleasure for us to get an opportunity to

work under him and complete the project successfully.

We wish to extend our sincere thanks to Prof. Dr. S. Meher, Head of our Department,

for approving our project work with great interest.

We would like to mention Mr. Sudeendra Kumar for his cooperation and constantly

rendered assistance.

An undertaking of this nature could never have been attempted without our reference

to and inspirations from the works of others whose details are mentioned in references section.

We acknowledge our indebtedness to all of them. Last but not the least, our sincere thanks to

all our friends who have patiently extended all sorts of help for accomplishing this undertaking.

Bikash Chandra Sahoo Sanjay Kumar Samant

Roll No: 109EC0234 Roll No: 109EC0240

Electronics & Comm. Engineering Electronics & Comm. Engineering

NIT Rourkela NIT Rourkela

5

CONTENTS

1. Introduction 8

1.1 Motivation 9

1.2 Multiplier Design 10

1.3 Analysis Tools Used 10

1.4 Research Approach 12

2. Adders 14

2.1 Adders Classification 15

2.2 Ripple Carry Adder 15

2.3 Carry Look-Ahead Adder 16

2.4 Analysis of Adders 18

2.5 Discussion 19

3. The Multipliers 20

3.1 Basic Multiplication Algorithm 21

3.2 Booth’s Encoding 22

3.3 Modified Booth’s Algorithm 26

4. Switching Activity Based Power Estimation 28

4.1 Different Types of Power 29

4.2 SAIF Files 30

4.3 RTL Power Estimation Flow 31

5. Implementation & Results 36

5.1 Programs for Multipliers 37

5.2 Output Waveforms 46

5.3 Results from Power Analysis 50

6. Conclusion & Future Work 52

References 54

6

ABSTRACT

Modern IC Technology focuses on the design of ICs considering more area optimization

and low power techniques. Multiplication is a heavily used arithmetic operation that figures

prominently in signal processing and scientific applications. Multiplication is a very hardware

intensive subject and we as users are mostly concerned with getting low-power,smaller area

and higher speed.The most important concern in classic multiplication, mostly realized by K-

cycles of shifting and adding, is to speed up underlying multi-operand addition of partial

products. In this project we will present the design of Booth Multiplier with different adder

architectures like Ripple Carry Adder & Carry Look Ahead Adder. The time delay, area and

power have been analyzed for different adders. Also multipliers have been designed for both

radix-2 and radix-4. Results will show the variation of area, speed and power for different

designs. Also the power estimation method gives the deeper insight into power calculation and

analysis. An approach have been suggested for peak power estimation.

7

LIST OF FIGURES

Figure 2.1: A 4-bit Ripple Carry Adder 16

Figure 2.2: A 4-bit Carry Look-ahead Adder 17

Figure 4.1: RTL Power Estimation Flow Chart 32

Figure 4.2: Input Pattern Generation Method 34

LIST OF TABLES

Table 2.1: Power-Area Comparison for Different Adders 18

Table 3.1: Modified Booth’s Recording Table 27

Table 5.1: Average Power Analysis for Different Multipliers 49

Table 5.2: Switching Activity Based Power Estimation for Booth Multiplier 51

8

CHAPTER 1

 INTRODUCTION

 MOTIVATION

 MULTIPLIER DESIGN

 ANALYSIS TOOLS USED

 REASEARCH APPROACH

9

1.1 MOTIVATION

Day by day IC technology is getting more complex in terms of design and its

performance analysis. A faster design with lower power consumption and smaller area is implicit

to the modern electronic designs. Unceasing advancement in microelectronics design technology

makes improved use of energy, encrypt data successfully, communicate information much more

steadfastly, etc. Particularly, many of these technologies address low-power consumption to meet

the requirements of various portable applications. In these application systems, a multiplier is a

fundamental arithmetic unit and widely used in circuits, for which the multiplication process

should be optimized properly. Multipliers generally have extended latency, huge area and

consume substantial amount of power. Hence low-power multiplier design has become an

important part in VLSI system design. Everyday new approaches are being developed to design

low-power multipliers at technological, physical, circuit and logic levels. Since the multiplier is

generally the slowest element in a system, the system’s performance is determined by

performance of the multiplier. Also multipliers are the most area consuming entity in a design.

Therefore, optimizing speed and area of a multiplier is a major design issue nowadays. However,

area and speed are usually conflicting constraints so that improving speed results in larger areas

and vice-versa. Also area and power consumption of a circuit are linearly correlated. So a

compromise has to be done in speed of the circuit for a greater improvement in reduction of area

and power.

 For implementing a digital multiplier a large variety of computer arithmetic algorithms

could be used. Most techniques take into consideration generating a set of partial products, and

then adding the partial products together once they have been shifted. In a multiplier to increase

its speed, the number of partial product to be genrated should be reduced. A higher

10

representation radix effectively indicates to fewer digits. Thus, a single-digit multiplication

algorithm necessitates fewer cycles as we start moving to much higher radices, which

automatically leads to a lesser number of partial products. Several algorithms have been

developed for this purpose like Booth’s Algorithm, Wallace Tree method etc. For the summation

process several adder architectures are available viz. Ripple Carry Addition, Carry Look-ahead

Addition, Carry Save Addition etc. But to reduce the power consumption the summation

architecture of the multiplier should be carefully chosen.

1.2 LOW POWER MULTIPLIER DESIGN

Multiplication can be considered to consist of three basic steps: generation of partial

product (PPG), partial products reduction (PPR), and finally at the end addition of

carrypropagate(CPA).In general we have combinational and sequential multiplier

implementations. Here we are taking into consideraion the combinational case only, because the

scale of integration now has become huge enough to start accommodating parallel multiplier

applications in digital VLSI circuits. Different multiplication algorithms vary in the approaches

of generation and reduction of Partial Products and the addition process. In order to diminish the

number of PPs involved and therefore lessen the area/delay of the circuit, one operand is usually

recoded into high-radix digit sets. One of the most used and widespread radix-2n algorithm is the

radix-4 which has a set of digits given by {-2,-1, 0, 1, 2} for PPG. For PPR, two choices exist

which can be implemented: reduction by rows, which can be performed by taking into

consideration an adder array and reduction by columns, which can be performed by taking into

consideration a counter array .The closing process of addition necessitates a fast adder

11

arrangement because it is on the critical path. In a few cases, concluding summation is deferred if

it is valuable to keep redundant results from PPG to carry out further arithmetic operations.

1.3 PROGRAMMING LANGUAGE AND ANALYSIS TOOLS USED

 To write program for the implementation of any digital circuit there are various

languages available, called as Hardware Description Language e.g. Verilog, VHDL. For our

design we have used VHDL (Very High Specific Integrated Circuit HDL) for programming.

VHDL is one of the common techniques used in digital system emergent process. The technique

is implemented in program using certain software which carries out simulation and examination

of the designed system. The designer only needs to describe the digital circuit design in textual

form which can remove without the effort to alter the hardware. VHDL is highly preferred

because this technique has the ability to reduce cost and time, is easy to troubleshoot, portable, a

lot of platforms software support the VHDL function and high references are available. We used

XILINX 10.1 platform to write our programs. All the RTL simulations has been done using this

software only. Also for delay report the synthesis tool embedded in Xilinx was used.

We used for Scirocco and VirSim, which are logic simulators, for the functionality

simulation of our design. Also we used Synopsys Design Vision tool to estimate power of all our

arithmetic circuits. Synopsys Design Vision is a logic synthesis tool. It takes HDL designs and

synthesizes them to gate-level net-lists. Also it supports both Verilog and VHDL. It can

synthesize generic gates or other design libraries. The tool exists inside a GUI and command line

12

version. The GUI version is known as design vision and the command line version is referred as

dc_shell-xg-t. For both area and power estimation we used Design Vision. The basic steps for

analyzing a design are:

Analyze: This step start checking the design files for syntax.We can also save modules (Verilog)

and entities (VHDL) in an intermediate format into a local folder.

Elaborate: We can build a design from the intermediate format files created in the previous

Analyze step.

Compile: This is the synthesizing step, where we can map the design to a gate library or cell

library.

Save: After compiling a design we can save the synthesized design into HDL or other formats.

Synthesized designs are fundamental for creating ASICS or carrying out different simulations for

timing and power.

After compilation using commands like report_power or report_area we can get power and area

accordingly.

1.4 RESEARCH APPROACH

 The elementary purpose of our project is to instrument the Booth’s Algorithm for the

design of a binary multiplier using different adder architectures and carry out power analysis at

various levels. Also the delay, area and power optimization is to be taken care of. We chose to

implement Booth’s algorithm for our multiplier design because it reduces the number of partial

13

products generated in a multiplication process and reduction in number of partial products results

in a faster multiplication.

We already are familiar that the basic building block of a multiplier is the adder circuit.

Therefore we turned our focus into The ADDERS first. We analyzed the occupied area and the

delay in time consumed by different adders and discerned an appropriate relationship between

time and area complexity of all the adders which we have taken under consideration. Then we

turned our attention to the design and implementation of Multipliers. First of all we considered a

Booth's Radix-2 multiplier and estimated its delay, area and power. Then a radix-4 multiplier

was designed. A comparison was done between Radix-2 and Radix-4 algorithm. As radix-4

seemed more suitable for the design we carried out further analysis on radix-4 multiplier by

using different adder architectures like RCA and CLA.

Then we turned our focus into the switching activity based power analysis of the Radix-4

Booth multiplier, and its power estimation. We did power estimation at RTL level using

Synopsys Design Compiler.

14

CHAPTER 2

ADDERS

 ADDERS CLASSIFICATION

 RIPPLE CARRY ADDER

 CARRY LOOK-AHEAD ADDER

 ANALYSIS OF ADDERS

 DISCUSSION

15

2.1 ADDERS CLASSIFICATION

Addition is one of the most commonly used arithmetic operation in microprocessor,

digital signal processor etc. It can also be used as a building block for synthesis of all other

arithmetic operations. Therefore, as far as the efficient implementation of an arithmetic unit is

concerned, the binary adder structure becomes a very critical hardware unit. In any book on

computer arithmetic, we can observe that there occurs a large number of quite different circuit

architectures pertaining to different performance characteristics. While adders can be constructed

for a lot of numerical expressions like Binary-coded decimal or excess-3, the most frequently

used adders operate numbers which are binary. In certain cases where two's complement is being

used to represent negative numbers, it is trivial to convert an adder into an adder-subtractor.

 Although many researches related to the binary adder structures have

been carried out, the studies based on their comparative performance analysis are only quite few

in number. In this project, assessments of the classified binary adder architectures are given.

From the huge member of adders we have got, we implemented the VHDL (Hardware

Description Language) code for Ripple-carry and Carry-look ahead adder to highlight the

common performance properties belong to their classes. Throughout the next section, we provide

you with a brief description of the studied adder architectures.

2.2 RIPPLE CARRY ADDERS (RCA)

This popular adder architecture, ripple carry adder consists of cascaded full adders as

shown in figure.1.It is formed by cascading full adder blocks in series with one another. The

16

output carry of one stage is fed directly to the input carry of the next stage. An N-bit parallel

adder requires N full adders.

FIGURE 2.1

The given adder architecture is not very efficient when large number of bits are used. The gate

delay can easily be calculated by inspecting the full adder circuit. We know that each full adder

requires three levels of logic. Considering a 64-bit ripple-carry adder, we know that it has 64 full

adders, so the critical path (worst case) delay is 3 (from input to carry in case of the first adder) +

63 * 2 (for carry propagation in the later adders) = 127 gate delays.

2.3 CARRY LOOK AHEAD ADDERS (CLA)

A Carry Look Ahead Adder has the ability to generate faster carries because of generation of

carry bits in parallel by a supplementary circuit whenever inputs are changing. This technique

extensively uses carry bypass logic to haste up the propagation of carry. In Carry look ahead logic

the generation and propagation of carries takes place. For each bit in a binary sequence to be added,

the Carry Look Ahead Logic determines whether that bit pair will generate a carry or propagate a

carry. This allows the circuit to "pre-process" the two numbers being added to determine the carry

17

ahead of time. After this, when the actual addition is performed, there will be no delay from waiting

for the ripple carry effect (or time it takes for the carry from the first Full Adder to be passed down to

the last Full Adder).

FIGURE 2.2

The mechanism for carry look-ahead summation can be describes as below:

First the Carry-generate and Carry-propagate vectors are evaluated.

Pi = Ai ⊕ Bi

Gi = AiBi

Si = Ci ⊕ Pi

Ci+1 = Gi + PiCi

Gi is known as the carry Generate signal because a carry (C
i+1

) is generated whenever G
i
=1,

regardless of the input carry (C
i
).

P
i
is known as the carry propagate signal because whenever P

i
=1, the input carry is propagated

to the output carry, i.e., C
i+1

. = C
i

18

The Boolean expression for the carry outputs of various stages for a 4-bit block can be written as

follows:

C
1

= G
0
+ P

0
C

0

C
2

= G
1
+ P

1
C

1
= G

1
+ P

1
(G

0
+ P

0
C

0
) = G

1
+ P

1
G

0
+ P

1
P

0
C

0

C
3

= G
2
+ P

2
C

2
= G

2
+ P

2
G

1
+ P

2
P

1
G

0
+ P

2
P

1
P

0
C

0

C
4

= G
3
+ P

3
C

3
= G

3
+ P

3
G

2
+ P

3
P

2
G

1
+ P

3
P

2
P

1
G

0
+ P

3
P

2
P

1
P

0
C

0

As the no of bits in the Carry Look Ahead adders increases, the complexity increases as the no.

of gates in the expression Ci+1 increases. So practically it is not desirable to use the traditional

CLA shown above because it increases the Space required and the power too.

2.4 ANALYSIS OF ADDERS

In our project we compared 2- different adders Ripple Carry Adder and the Carry Look-Ahead

Adder. The basic purpose of our experiment was to know the time, area and power trade-offs

between various adders which will give us a clear picture of which adder suits best in which type

of situation during a design process. Hence below we present the practical comparisons of the

two adders which were taken into consideration. There are a lot of adders present but we took

into consideration only these two and our project is limited to these two adders. Limited to these

two adders.

TABLE 2.1: Power-Area Comparison for Different Adders

Name Of

Architecture

Cell Internal

Power (in uW)

Net Switching

Power (in uW)

Total Dynamic

Power(in uW)

Area

(in um
2
)

19

RCA-8 bit 13.4914 2.8803 16.3717 81.719999

RCA-16 bit 27.953 6.1735 34.1265 162.359999

RCA-64 bit 114.9175 25.9866 140.9041 646.199995

CLA-8 bit 6.0445 0.98704 7.0315 46.079999

CLA-16 bit 34.2506 10.7415 44.9921 253.799998

CLA-64 bit 137.4008 43.3389 180.7397 950.399992

2. 5 DISCUSSION

Above we have presented the estimated power and power of different types of adders

with different sizes using Design Compiler by Synopsys.

For Ripple Carry Adder the time complexity is O(n) i.e. the delay of the circuit caries

linearly with the number of bits. Theoretical delay for the addition of n-bit data using RCA and

CLA are 2n and 4log2(n) respectively.

By looking at the above data it can be inferred that the total dynamic power i.e.

summation of cell internal power and net switching power increases linearly with the number of

bits for RCA architecture. But for CLA architecture it varies in a non-linear fashion, more like in

an exponential way. Similarly the area also increases proportionally with number of bits for an

RCA but it increases in an exponential way for a CLA architecture. The reason for linear

increase in area and power for an RCA is that the number gates increases proportionally as the

number of bits increases.

20

But for a CLA the carry look ahead logic circuit becomes more complex and larger with

increment in number of bits. Later in this thesis we will give comparison about the multipliers

designed using these two architectures.

21

CHAPTER 3

THE MULTIPLIERS

 BASIC MULTIPLICATION ALGORITHM

 BOOTH’S ENCODING

 MODIFIED BOOTH’S ALGORITHM

22

3.1 BASIC ALGORITHM FOR BINARY MULTIPLICATION

A Binary multiplier is an electronic device used in digital electronics or in a computer or other

electronic devices to carry out multiplication of two numbers depicted in binary format. It is built

using binary adders. The most basic technique involves generating a set of partial products, and

then summing the partial products simultaneously. This process is similar to the method which is

taught to lower classes’ students in school for conducting long multiplication on base-10

integers, but has been modified here for application to a base-2 (binary) numeral system.

The rules for binary multiplication are stated as given:

1. If the multiplier digit is 1, the multiplicand is copied down and it gives the

product.

2. If the multiplier digit is 0 then we get a product which is also 0.

For designing such a multiplier circuit we should have the circuitry to carry out or do the

following four things:

1. It should be capable of recognizing whether a bit is 0 or 1.

2. It should be capable of shifting the left partial product.

3. It should be capable of adding all the partial-products to give the product as a sum of

the partial products.

4. It should examine sign bits and if they are similar, the sign of the product will be a

Positive representation and if the sign bits are opposite then the product will be

negative. The sign bit of the product which has been stored with the above criteria

should be displayed along with the product.

23

From the above discussion we can observe that it is not necessary to wait until all the

partial products have been formed before carrying out the sum. In fact the addition of the partial

products can be carried out as soon as a partial product is formed.

3.2 BOOTH’S ENCODING

Booth’s encoding or Booth's multiplication algorithm[1] is a multiplication algorithm

which can multiply two signed binary numbers in a two's complement notation. Booth's

algorithm has the ability to perform fewer additions and subtractions in comparison to normal

multiplication algorithm. It is an encoding process which can be used to minimize the no of

partial products in a multiplication process. It is based upon the relation

2
n
 = 2

n+1
 – 2

n

Example:

 0 0 1 1 1 1 1 1 0 0

 +1 -1

 +1 -1

 +1 -1

 +1 -1

 +1 -1

 +1 -1

 0 +1 0 0 0 0 0 -1 0 0

Booth's algorithm examines consecutive bits of the N-bit multiplier Y in signed two's

complement representation, which includes an implicit bit below the least significant bit, y-1 = 0.

For each bit yi, as i runs from 0 to N-1, the bits yi and yi-1 are considered. When these two bits are

24

equal, the product accumulator P stays unchanged. Where yi = 0 and yi-1 = 1, the multiplicand

times 2i is added to P; and where yi = 1 and yi-1 = 0, the multiplicand times 2i gets subtracted

from P. The final value of P will be the signed product.

The representation of the multiplicand and product are not specified; typically, these are

also in two's complement representation, like a multiplier, but any number system that supports

addition and subtraction will work as well. The order of the steps is not determined. Generally, it

proceeds from LSB to MSB, starting at i = 0; the multiplication by 2i is then replaced by

incremental shifting of the P accumulator to the right between steps; low bits will be shifted out,

and subsequent additions or subtractions can then be done just on the highest N bits of P. There

are many variations and optimizations on these details.

The algorithm is often described as converting strings of 1's in the multiplier to a high-

order +1 and a low-order –1 at the ends of the string. When the string runs through the MSB,

there is no high-order +1, and the net effect is interpretation as a negative of the appropriate

value.

RADIX-2 ALGORITHM IMPLEMENTATION

Let x be the number of bits of the multiplicand, and y be the number of bits of the multiplier:

 Draw a grid of three rows, each with columns for x + y + 1 bits. Label the lines

respectively A (add), S (subtract), and P (product).

 In two’s complement notation, fill the first x bits of each line with :

o A: the multiplicand

o S: negative of the multiplicand(2's complement format)

25

o P: zeroes

 Fill the next y bits of each line with :

o A: zeroes

o S: zeroes

o P: the multiplier

 Fill the last bit of each line with a zero.

For example consider the given two numbers: 3 and -4.

On carrying out the above instructions we would find the following values of A, S and P.

A = 0011 0000 0

 S = 1101 0000 0

P = 0000 1100 0

 Now carry out both of these steps y times :

 .If the last two bits in the product are...

 00 or 11: do nothing.

 01: P = P + A. Ignore any overflow.

 10: P = P + S. Ignore any overflow.

 .Arithmetically shift the product right one position.

26

 Drop the first (we count from right to left when dealing with bits) bit from the

product for the final result.

 Do both of these steps y times :

 If the last two bits in the product are...

 00 or 11: do nothing.

 01: P = P + A. Ignore any overflow.

 10: P = P + S. Ignore any overflow.

 Arithmetically shift the product right one position.

 Drop the first (we count from right to left when dealing with bits) bit from the product

for the final result.

For Example: Find 3 × -4, with x = 4 and y = 4:

We get:

A = 0011 0000 0

S = 1101 0000 0

P = 0000 1100 0

Perform the loop four times:

1 P = 0000 1100 0. The last two bits are 00.

 P = 0000 0110 0. A right shift.

2 P = 0000 0110 0. The last two bits are 00.

27

 P = 0000 0011 0. A right shift.

3 P = 0000 0011 0. The last two bits are 10.

 P = 1101 0011 0.

 P = P + S.

 P = 1110 1001 1. Right shift.

4 P = 1110 1001 1. The last two bits are 11.

 P = 1111 0100 1. Right shift.

 The final product is 1111 0100, which is -12.

3.3 MODIFIED BOOTH’S ALGORITHM

One of the many solutions of realizing high speed multipliers is enhancing parallelism which

helps in decreasing the number of subsequent calculation levels. The original version of Booth

algorithm (Radix-2) had two particular drawbacks. They were:

 The number of add-subtract operations and shift operations become variable and causes

inconvenience in designing parallel multipliers.

 The algorithm becomes inefficient when there are isolated 1’s.

These problems are overwhelmed by using modified Radix4 Booth algorithm which scans

strings of three bits using the algorithm given below:

1) Lengthen the sign bit 1 position if necessary to ensure that n is even.

2) Add a 0 to the right of the LSB of the multiplier.

3) Corresponding to the value of each vector, each Partial Product will be 0, +M, -M, +2M

or -2M.

28

The negative values of M are made by taking its 2’s complement. The multiplication of M is

done by shifting M by one bit to the left (in case it’s multiplied with 2). Thus, in any case, in

designing an n-bit parallel multiplier, only n/2 partial products are generated.

TABLE 3.1: Modified Booth’s Recoding Table

i+1 I i-1 add

0 0 0 0*M

0 0 1 1*M

0 1 0 1*M

0 1 1 2*M

1 0 0 -2*M

1 0 1 -1*M

1 1 0 -1*M

1 1 1 0*M

29

CHAPTER 4

SWITCHING ACTIVITY BASED

POWER ESTIMATION

 DIFFERENT TYPES OF POWER

 SAIF FILES

 RTL POWER ESTIMATION FLOW

30

4.1 TYPES OF POWER DISSIPATION

The indispensable figure-of-merit of a digital circuit are speed and power consumption with the

spped being measured in terms of a (reciprocal) delay time or a maximum clock frequency.

Efficiency of power could be defined as the total power or also in terms of the switching energy,

i.e., the average energy spent for one switching transition of the digital device.

Total power dissipated in a design can be broadly divided in two categories: static and dynamic.

Ptot = Pstat + Pdyn = IoffVDD + αfcCLVDD
2

Static Power

Static power is the power dissipated by a gate when it’s not switching. It is caused by the

current that flows through the transistors even when they are turned off. From the system's

function point of view, static power can be considered as wasted energy as it is not used for any

useful purpose. Almost half of design's intake of power may be due to static power at the latest

process nodes (65nm) and is growing.

Pstat = IoffVDD

Dynamic Power

Dynamic power is the power dissipated when the circuit is active i.e. while performing

some function. Dynamic power can be further divided into two components: Switching

power and internal power.

Pdyn = αfcCLVDD
2

31

Switching Power

Switching power can be defined as the power which is dissipated while charging and

discharging the output load capacitance. The load capacitance consists of interconnect (net)

capacitance and gate capacitances the net is connected to.

The extent of switching power usually depends on the switching activity (which is related

to the operating frequency) of the cell. The switching power increases with increase in logic

transitions at the cell output

Internal Power

Internal power is consumed within a cell while charging and discharging internal cell

capacitances. Short-circuit power is also included in the Internal power. Both P and N type

transistors are on simultaneously during the logic transitions for a brief time resulting to direct

connection from VDD rail to ground rail.

4.2 SWITCHING ACTIVITY INTERCHANGE FORMAT (SAIF) FILES

As noted above the dynamic power consumed by a circuit depends on the logic

transitions which occur within the design while operating. Therefore, for power estimation and

optimization we need to accurately specify this information (called switching activity) to the tool

performing these tasks. Dynamic power represents the majority of total power. The SAIF (from

Synopsys) file stores the switching activity of the design in ASCII format. The SAIF file can

then be used to allow switching activity information between the power tools and simulators.

32

Switching Activity in SAIF file relies on static probability and toggle rate. Following is

the definition of Static Probability and Toggle Rate.

Static Probability

Static probability is the likelihood that a signal is at a specific logic state; it is expressed

as a number between 0 and 1 where SP1 is the static probability that a signal is at logic-1 and

SP0 is the static probability that the signal is at logic-0.

You can calculate the static probability as a ratio of the time period for which the signal

is at a certain logic state relative to the total simulation time. For example, if SP1 = 0.70, the

signal is at logic 1 state 70% of the time. Synopsys power compiler tools use SP1 when modeling

switching activity.

Toggle Rate

The toggle rate of a design object is defined as the number of logic-0-to-logic-1 and

logic-1-to- logic-0 transitions of the design object, such as a pin, net or port, per unit of time. The

toggle rate is written as TR.

4.3 RTL POWER ESTIMATION FLOW

This section introduces the RTL Power Estimation Flow i.e. a flow which one can

implement to estimate the power consumption of one’s design at RTL level using Synopsys

Design Compiler and Mentor Graphics Modelsim. Power estimated which is based on the RTL

design cannot be said as accurate but it can be used as example to explore different architectures

33

and to evaluate their power consumption. The figure given below illustrates the RTL power

estimation flow.

Figure 4.1: RTL Power Estimation Flow

34

35

For RTL power estimation one needs:

 Synthesizable HDL description of your design (.vhdl file)

 Testbench of the design

 Testbench should generate stimulus for simulation that corresponds to the normal

operation of the design

 SAIF forward annotation file (generated by Design Compiler)

 : - the file provides information to the simulator about the objects in RTL

design that should be monitored for switching activity during simulation.

 SAIF do macro file

 :-the macro file contains ModelSim commands that are needed to record

switching activity during simulation

 SAIF backward annotation file (generated by ModelSim simulator)

 :-the switching activity recorded during simulation

There are specific commands for the generation of both forward and backward SAIF files.

For A Better Power Estimation

The problem of maximum/peak power estimation in CMOS circuits is quite essential for

analyzing the performance and reliability of circuits at extreme conditions. Here we have tried to

find out input vectors that can cause maximum dynamic power dissipation (maximum toggles) in

circuits, in other words maximum toggling. A gate level description of the circuit and an initial

input vector I0 is given. Let S0 be the initial state of the circuit after assigning I0 to the primary

inputs. Now, it is required to find an input vector I1 such that the pairs I0 and I1 applied in

sequence lead to high switching activity in the circuit. Most of the approaches in this literature

36

approach the problem of finding input vectors causing maximum switching activity by looking at

the gate level description of the circuit. These approaches use some properties of the gate like

fan-out, level of the gate in the circuit etc. to decide the order in which the gates need to be

processed. In our approach, we have tried to group gates together and look at one group at a time

rather than individual gates. This grouping has helped us to obtain better quality solutions. The

grouping strategy we decided was to form FFRs (Fanout free regions) in the circuit[3]. The main

idea behind this was that for any given FFR, the difficulty of finding an input vector pair which

would cause maximum switching among all possible input vector pairs is directly proportional

with respect to the number of gates in the FFR. Moreover, this particular input vector pair will

cause every line in the circuit to switch state.

Figure 4.2: For Pattern Generation

a1, b1

a2, b2

For our pattern generation we used a calculator named as KBDD, which has been

developed by a research group at Carnegie Mellon University. This is a BDD (Binary Decision

Diagram) generator along with the functionality of generating SOPs (Sum of Products). Here we

MULTIPLIER 1

MULTIPLIER 2

XOR 1

XOR 2

XOR N

AND

O/P

37

took two multipliers of the same architecture. Looking at its RTL schematic we found out the

potential gates for switching activities and XORed the corresponding gates. After this all the

XOR gates were ANDed together to find out the pattern common to the switching of all the logic

blocks inside the multiplier. For switching activity analysis the initial logic levels of the design

are to be given more importance as they control the activities in the later stages. So for our

design we considered the Partial product generation stage only. Also it has been seen that

maximum switching occurs in an Adder when firstly the numbers are added and then subtracted

i.e. the two’s complement to be added with the other input.

1. First write the logic equations of the circuit for all the possible outputs at different

logic levels.

2. Rewrite the logic equations using another set of variables.

3. Analyze the RTL schematic for logic blocks having a high potential for switching

activity.

4. XOR the corresponding outputs of those logic blocks for the two sets of equation.

5. AND all the XORed outputs to get simultaneous switching activity in the circuit.

6. Generate the SOP of the final equation. Find out the input combinations for which the

SOP is satisfied.

38

CHAPTER 5

IMPLEMENTATION AND RESULTS

 PROGRAMS FOR MULTIPLIERS

 OUTPUT WAVEFORMS

 RESULTS FROM POWER ANALYSIS

39

5.1 PROGRAM FOR RADIX-4 MULTIPLIER

Using Ripple Carry Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity R4MUL_RCA is

 Port (a, b : in STD_LOGIC_VECTOR (31 downto 0);

 mul: inout std_logic_vector(63 downto 0);

 overflow: out std_logic);

end R4MUL_RCA;

architecture Behavioral of R4MUL_RCA is

component RADIX4_ENCODER is

 Port (x : in STD_LOGIC_VECTOR (31 downto 0);

 arg : in STD_LOGIC_VECTOR (2 downto 0);

 pp : inout STD_LOGIC_VECTOR (63 downto 0));

end component;

component fulladder

 Port (a, b, cin: in STD_LOGIC;

 sum, cout: out STD_LOGIC);

end component;

component RCA64 is

 Port (a, b: in STD_LOGIC_VECTOR (63 downto 0) ;

 add: out STD_LOGIC_VECTOR (63 downto 0);

 cout: out STD_LOGIC);

end component;

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0);

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0);

40

signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0);

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0);

signal tt: std_logic_vector(32 downto 0);

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15:

std_logic_vector(63 downto 0);

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63

downto 0);

signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63

downto 0);

signal y: std_logic_vector(15 downto 0);

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63

downto 0);

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR

(63 downto 0);

begin

tt<= a(31 downto 0)&'0';

arg1<=tt(2 downto 0);

arg2<=tt(4 downto 2);

arg3<=tt(6 downto 4);

arg4<=tt(8 downto 6);

arg5<=tt(10 downto 8);

arg6<=tt(12 downto 10);

arg7<=tt(14 downto 12);

arg8<=tt(16 downto 14);

arg9<=tt(18 downto 16);

arg10<=tt(20 downto 18);

arg11<=tt(22 downto 20);

arg12<=tt(24 downto 22);

arg13<=tt(26 downto 24);

arg14<=tt(28 downto 26);

arg15<=tt(30 downto 28);

arg16<=tt(32 downto 30);

u1: RADIX4_ENCODER port map(b(31 downto 0), arg1, pp1);

41

u2: RADIX4_ENCODER port map(b(31 downto 0), arg2, pp2);

u3: RADIX4_ENCODER port map(b(31 downto 0), arg3, pp3);

u4: RADIX4_ENCODER port map(b(31 downto 0), arg4, pp4);

u5: RADIX4_ENCODER port map(b(31 downto 0), arg5, pp5);

u6: RADIX4_ENCODER port map(b(31 downto 0), arg6, pp6);

u7: RADIX4_ENCODER port map(b(31 downto 0), arg7, pp7);

u8: RADIX4_ENCODER port map(b(31 downto 0), arg8, pp8);

u9: RADIX4_ENCODER port map(b(31 downto 0), arg9, pp9);

u10: RADIX4_ENCODER port map(b(31 downto 0), arg10, pp10);

u11: RADIX4_ENCODER port map(b(31 downto 0), arg11, pp11);

u12: RADIX4_ENCODER port map(b(31 downto 0), arg12, pp12);

u13: RADIX4_ENCODER port map(b(31 downto 0), arg13, pp13);

u14: RADIX4_ENCODER port map(b(31 downto 0), arg14, pp14);

u15: RADIX4_ENCODER port map(b(31 downto 0), arg15, pp15);

u16: RADIX4_ENCODER port map(b(31 downto 0), arg16, pp16);

s1<= pp2(61 downto 0)&"00";

s2<= pp3(59 downto 0)&"0000";

s3<= pp4(57 downto 0)&"000000";

s4<= pp5(55 downto 0)&"00000000";

s5<= pp6(53 downto 0)&"0000000000";

s6<= pp7(51 downto 0)&"000000000000";

s7<= pp8(49 downto 0)&"00000000000000";

s8<= pp9(47 downto 0)&"0000000000000000";

s9<= pp10(45 downto 0)&"000000000000000000";

s10<= pp11(43 downto 0)&"00000000000000000000";

s11<= pp12(41 downto 0)&"0000000000000000000000";

s12<= pp13(39 downto 0)&"000000000000000000000000";

s13<= pp14(37 downto 0)&"00000000000000000000000000";

s14<= pp15(35 downto 0)&"0000000000000000000000000000";

s15<= pp16(33 downto 0)&"000000000000000000000000000000";

42

h1: RCA64 port map(pp1, s1, sum1, y(0));

h2: RCA64 port map(sum1, s2, sum2, y(1));

h3: RCA64 port map(sum2, s3, sum3, y(2));

h4: RCA64 port map(sum3, s4, sum4, y(3));

h5: RCA64 port map(sum4, s5, sum5, y(4));

h6: RCA64 port map(sum5, s6, sum6, y(5));

h7: RCA64 port map(sum6, s7, sum7, y(6));

h8: RCA64 port map(sum7, s8, sum8, y(7));

h9: RCA64 port map(sum8, s9, sum9, y(8));

h10: RCA64 port map(sum9, s10, sum10, y(9));

h11: RCA64 port map(sum10, s11, sum11, y(10));

h12: RCA64 port map(sum11, s12, sum12, y(11));

h13: RCA64 port map(sum12, s13, sum13, y(12));

h14: RCA64 port map(sum13, s14, sum14, y(13));

h15: RCA64 port map(sum14, s15, mul, overflow);

end Behavioral;

Using Carry Look-Ahead Adders

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity r4mulcla is

 Port (a, b : in STD_LOGIC_VECTOR (31 downto 0);

 mul: inout std_logic_vector(63 downto 0);

 overflow: out std_logic);

end r4mulcla;

architecture Behavioral of r4mulcla is

component r4encoder is

 Port (x : in STD_LOGIC_VECTOR (31 downto 0);

43

 arg : in STD_LOGIC_VECTOR (2 downto 0);

 pp : inout STD_LOGIC_VECTOR (63 downto 0));

end component;

component cla is

 Port (p,g : in STD_LOGIC_VECTOR (7 downto 0);

 cin: in std_logic;

 sum : out STD_LOGIC_VECTOR (7 downto 0));

end component;

component PG_gen is

 Port (p, g : in STD_LOGIC_VECTOR (7 downto 0);

 iP, iG : out STD_LOGIC);

end component;

component carrygen is

 Port (p, g : in STD_LOGIC_VECTOR (7 downto 0);

 c1 : in STD_LOGIC;

 c0 : out STD_LOGIC_VECTOR (7 downto 0));

end component;

component cla_64bit is

 Port (a, b : in STD_LOGIC_VECTOR (63 downto 0);

 cin: in STD_LOGIC;

 sum : out STD_LOGIC_VECTOR (63 downto 0);

 cout : out STD_LOGIC);

end component;

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0);

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0);

signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0);

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0);

signal tt: std_logic_vector(32 downto 0);

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15:

std_logic_vector(63 downto 0);

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63

downto 0);

44

signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63

downto 0);

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63

downto 0);

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR

(63 downto 0);

signal y: std_logic_vector(15 downto 0);

signal c1:std_logic;

begin

c1<='0';

tt<= a(31 downto 0)&'0';

arg1<=tt(2 downto 0);

arg2<=tt(4 downto 2);

arg3<=tt(6 downto 4);

arg4<=tt(8 downto 6);

arg5<=tt(10 downto 8);

arg6<=tt(12 downto 10);

arg7<=tt(14 downto 12);

arg8<=tt(16 downto 14);

arg9<=tt(18 downto 16);

arg10<=tt(20 downto 18);

arg11<=tt(22 downto 20);

arg12<=tt(24 downto 22);

arg13<=tt(26 downto 24);

arg14<=tt(28 downto 26);

arg15<=tt(30 downto 28);

arg16<=tt(32 downto 30);

u1: r4encoder port map(b(31 downto 0), arg1, pp1);

u2: r4encoder port map(b(31 downto 0), arg2, pp2);

u3: r4encoder port map(b(31 downto 0), arg3, pp3);

u4: r4encoder port map(b(31 downto 0), arg4, pp4);

u5: r4encoder port map(b(31 downto 0), arg5, pp5);

45

u6: r4encoder port map(b(31 downto 0), arg6, pp6);

u7: r4encoder port map(b(31 downto 0), arg7, pp7);

u8: r4encoder port map(b(31 downto 0), arg8, pp8);

u9: r4encoder port map(b(31 downto 0), arg9, pp9);

u10: r4encoder port map(b(31 downto 0), arg10, pp10);

u11: r4encoder port map(b(31 downto 0), arg11, pp11);

u12: r4encoder port map(b(31 downto 0), arg12, pp12);

u13: r4encoder port map(b(31 downto 0), arg13, pp13);

u14: r4encoder port map(b(31 downto 0), arg14, pp14);

u15: r4encoder port map(b(31 downto 0), arg15, pp15);

u16: r4encoder port map(b(31 downto 0), arg16, pp16);

s1<= pp2(61 downto 0)&"00";

s2<= pp3(59 downto 0)&"0000";

s3<= pp4(57 downto 0)&"000000";

s4<= pp5(55 downto 0)&"00000000";

s5<= pp6(53 downto 0)&"0000000000";

s6<= pp7(51 downto 0)&"000000000000";

s7<= pp8(49 downto 0)&"00000000000000";

s8<= pp9(47 downto 0)&"0000000000000000";

s9<= pp10(45 downto 0)&"000000000000000000";

s10<= pp11(43 downto 0)&"00000000000000000000";

s11<= pp12(41 downto 0)&"0000000000000000000000";

s12<= pp13(39 downto 0)&"000000000000000000000000";

s13<= pp14(37 downto 0)&"00000000000000000000000000";

s14<= pp15(35 downto 0)&"0000000000000000000000000000";

s15<= pp16(33 downto 0)&"000000000000000000000000000000";

h1: cla_64bit port map(pp1, s1, c1, sum1, y(0));

h2: cla_64bit port map(sum1, s2, c1, sum2, y(1));

h3: cla_64bit port map(sum2, s3, c1, sum3, y(2));

h4: cla_64bit port map(sum3, s4, c1, sum4, y(3));

46

h5: cla_64bit port map(sum4, s5, c1, sum5, y(4));

h6: cla_64bit port map(sum5, s6, c1, sum6, y(5));

h7: cla_64bit port map(sum6, s7, c1, sum7, y(6));

h8: cla_64bit port map(sum7, s8, c1, sum8, y(7));

h9: cla_64bit port map(sum8, s9, c1, sum9, y(8));

h10: cla_64bit port map(sum9, s10, c1, sum10, y(9));

h11: cla_64bit port map(sum10, s11, c1, sum11, y(10));

h12: cla_64bit port map(sum11, s12, c1, sum12, y(11));

h13: cla_64bit port map(sum12, s13, c1, sum13, y(12));

h14: cla_64bit port map(sum13, s14, c1, sum14, y(13));

h15: cla_64bit port map(sum14, s15, c1, mul, overflow);

end Behavioral;

Modified Booth Encoder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RADIX4_ENCODER is

generic(N: integer:= 32);

 Port (x : in STD_LOGIC_VECTOR (N-1 downto 0);

 arg : in STD_LOGIC_VECTOR (2 downto 0);

 pp : inout STD_LOGIC_VECTOR (2*N-1 downto 0));

end RADIX4_ENCODER;

architecture Behavioral of RADIX4_ENCODER is

begin

process(arg, x)

variable temp, temp1, temp2: std_logic_vector(N downto 0);

begin

47

if x(N-1)='1' then

temp:= '1'&x(N-1 downto 0);

else

temp:= '0'&x(N-1 downto 0);

end if;

if(arg="001"or arg="010") then

temp1:= temp;

elsif(arg="101" or arg="110") then

temp1:= not(temp) + "000000001";

elsif(arg="011") then

temp1:= temp(N-1 downto 0)&'0';

elsif(arg="100") then

temp2:= not(temp) + "000000001";

temp1:= temp2(N-1 downto 0)&'0';

else

temp1:= (others=>'0');

end if;

pp<= sxt(temp1, 2*N);

end process;

end Behavioral;

48

5.2 OUTPUT WAVEFORMS

Testbench Waveform generation using XIlinx

Scirocco & VirSim Logic Simulation

The commands executed in the Terminal window for the simulation of the Radix-4 multiplier

using RCA:

// VHDL analysis of different components and the multiplier program

vhdlan fulladder.vhd

vhdlan RCA64.vhd

49

vhdlan RADIX4_ENCODER.vhd

vhdlan R4_MUL_RCA.vhd

// Verilog analysis of the test bench

vlogan test_r4rca.v

// Analysis of the Configuration statement

scs CFG

scirocco &

50

Analysis & Elaboration of the design using Design Vision

51

5.3 RESULTS FROM POWER ANALYSIS

Estimation of average power (P1) consumed by the Booth multiplier using RCA & CLA

architecture

TABLE 5.1: Average Power Estimation for Different Multipliers

Name of design Cell Internal

Power (in mW)

Net Switching

Power (in mW)

Total dynamic

Power (P1) (in

mW)

Cell Leakage

Power (in uW)

Area

(in um
2
)

Radix-4 RCA

multiplier

4.5215

(71%)

1.8224

(29%)

6.3439

(100%)

93.0186 19850.040021

Radix-4 CLA

multiplier

4.9955

(68%)

2.3702

 (32%)

7.3658

(100%)

108.5598 24413.039974

After the estimation of above data we carried out further power analysis on the design using

RCA architecture since it consumes less power and less area.

Commands Used For SAIF File Generation

For Forward Saif File:

set power_preserve_rtl_hier_names true

Analyze the design

analyze -format vhdl -library WORK R4_MUL_RCA.vhd

52

Elaboration

elaborate R4_MUL_RCA –architecture behavioral -library WORK

Generates forward saif file

rtl2saif -output r4mul_rca_fw.saif -design R4_MUL_RCA

write -hierarchy -format ddc -output r4mul_rca_elaborated.ddc

For Backward Saif File:

Analyze the multiplier

vhdlan R4_MUL_RCA.vhd

Analyze full adder

vhdlan fulladder.vhd

Analyze Booth encoder

vhdlan RADIX4_ENCODER.vhd

Analyze RCA 64-bit adder

vhdlan RCA64.vhd

Analyze the testbench

vlogan test_r4rca.v

vcs –debug_all –mhdl test_r4rca.v

Generate backward saif file

53

./simv

Creating Power Report:

Read the elaborated design (or re-elaborate the design)

read_file -format ddc {r4mul_rca_elaborated.ddc}

Compile the design

Compile

Read backward annotation SAIF file

read_saif -input r4mul_rca_bw.saif -instance_name R4_MUL_RCA

Run power reporting command

report_power

TABLE 5.2: Power Estimation from SAIF files

Power For input combination-1 For input combination-2

Cell Internal Power 306.8672 uW (73%) 89.5134 uW (78%)

Net Switching Power 116.2471 uW (27%) 25.5467 uW (22%)

Total Dynamic Power 423.1143 uW (100%) 115.0601 uW (100%)

Cell Leakage Power 92.7883 uW 90.9827 uW

54

CHAPTER 6

CONCLUSION & FUTURE WORK

REFERENCES

55

CONCLUSION AND FUTURE WORK

After going through all the hard work and after facing a lot of problems, we managed to

complete the objectives of the project that are to implement Booth’s Algorithm for the design of

a binary multiplier using different adder architectures and carry out power analysis at various

levels.. We analyzed the area occupied and the time delay consumed by different adders and

found out an appropriate relationship among the time and area complexity the adders which we

have taken into consideration. After comparing all we came to a conclusion that Ripple Carry

Adders are best suited for Low Power Applications. Then we turned our focus into the design of

Multipliers. First of all we designed a Booth's Radix-2 multiplier and estimated its delay, area

and power. Then a radix-4 multiplier was designed. A comparison was done between Radix-2

and Radix-4 algorithm. Comparing data between Radix-2 and Radix-4 booth multipliers we

found out that radix-4 consumes less power than radix-2, because radix-4 uses almost a half

number of iterations than radix-2 As radix-4 seemed more suitable for the design we carried out

further analysis on radix-4 multiplier by using different adder architectures like RCA and CLA.

Then we turned our focus into the switching activity based power analysis of the Radix-4 Booth

multiplier, and its power estimation. We did power estimation at RTL level using Synopsys

Design Compiler.

Further work can be carried out on this project in the power estimation section. Power

can be estimated at the gate-level by generating gate-level netlist and also the post layout

analysis can be done for this design. Another possible direction can be pursued for higher radix

encoding.

56

REFERENCES

[1] A. D. Booth “A signed binary multiplication technique,” Quart. J. Mech. Appl. Math.,

vol.4

[2] “Design, Analysis and Switching Activity based Power Estimation of Booth Multiplier

using Different adder techniques” by Arun Kumar P.S, J K Das, Sudeendra Kumar, K

K Mahapatra.

[3] “Controllability-driven power virus generation for digital circuits” by K.Najeeb, Karthik

Gururaj, V.Kamakoti.

[4] Power Compiler Manuals, www.synopsys.com

