

Design and FPGA Implementation of a

Digital Signal Processor

A Thesis submitted in partial fulfillment of the requirements for the

Degree of

Bachelor of Technology

In Electronics and Instrumentation Engineering

by

Arifa Parveen

Roll No.109EI0333

Under the supervision of

Dr. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication Engineering

 National Institute of Technology, Rourkela

Session 2012-2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design and FPGA Implementation of a

Digital Signal Processor

A Thesis submitted in partial fulfillment of the requirements for the

Degree of

Bachelor of Technology

In Electronics and Instrumentation Engineering

by

Arifa Parveen

Roll No.109EI0333

Under the supervision of

Dr. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela

Session 2012-2013

National Institute of Technology, Rourkela

C E R T I F I C A T E

This is to certify that the thesis entitled, ‘Design and FPGA Implementation of A Digital

Signal Processor’ submitted by Arifa Parveen in partial fulfillment of the requirements for the

award of Bachelor of Technology Degree in Electronics and Instrumentation Engineering at

the National Institute of Technology, Rourkela is an bonafide piece of work carried out by her

under my supervision. To the best of my knowledge the matter embodied in the Thesis has not

been submitted by her to any other University/Institute for the award of any Degree/Diploma.

Date Prof. Kamala Kanta Mahapatra

Dept. of Electronics and Communication Engg.,

National Institute of Technology, Rourkela

ACKNOWLEDGEMENT

The project in itself is an acknowledgement of the inspiration, guidance and the technical

assistance contributed to it by many people. It would not have been possible without the help

received from them.

First and foremost, I would like to convey my sincere gratitude and deepest regards to my guide

Dr. K K Mahapatra, Professor, Department of Electronics and Communication

Engineering, NIT Rourkela, who has been the continuous driving force behind this work. I

thank him wholeheartedly for giving me the opportunity to work under him by trusting my

credentials and capabilities, and helping me to explore my potential to the fullest.

I am thankful to Prof. S. Meher, Head of the Department, Electronics and Communication

Engineering, for permitting me to use the facilities available in the department to carry out the

project successfully.

I am thankful to Prof. Ayas Kant Swain for allowing me access to the VLSI lab library

whenever asked for and Mr. Jagannath Prasad Mohanty, PG student in the Department of

Electronics and Communication Engineering, NIT Rourkela, for his generous help and

continuous encouragement in various ways towards the completion of this project.

Last but not the least I would like to thank all my friends for their support. I am thankful to my

classmates for all the thoughtful and mind stimulating discussions we had, prompting me to

direct my thoughts beyond the obvious.

Arifa Parveen

ABSTRACT

The project aims at designing a Digital Signal Processor with 32-bit ISA (Instruction Set

Architecture) using Verilog HDL and the implementation of its components in FPGA (Field

Programmable Gate Array). The processor is demonstrated using uniform 32- bit length

instruction set containing instructions that are categorized into three formats, referred to as

Register, Immediate and Jump type instructions. The project gives detailed description of design

and simulation of the individual modules like the MAC, control module, arithmetic and logic

unit, memory units, register file, program counter, data registers, muxes, ALU control, sign

extender and the main module instantiating all formerly mentioned modules. For demonstration

purposes, the processor is instructed to find the convolution of two input sequences, thus making

use of all three instruction formats. After simulation, schematics generation and timing analysis

is carried out in Xilinx ISE simulator. The individual modules are implemented and tested in

Spartan 3E family XC3S500E FPGA board.

CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION ………………………………………………… 1

1.1 Motivation ………………………………………………………………………… 1

1.2 Problem Statement ………………………………………………………………... 4

1.3 Organization of the Thesis ………………………………………………………… 4

CHAPTER 2: LITERATURE REVIEW …………………………………………. 5

2.1 Signal Processors ………………………………………………………………….. 5

 2.1.1 Fourier Transform ………………………………………………………. 5

 2.1.2 Power Spectra Analysis ………………………………………………… 6

 2.1.3 Convolution and Correlation ……………………………………………. 6

 2.1.4 Digital Filters …………………………………………………………… 7

2.2 Digital Signal Processors …………………………………………………………. 7

 2.2.1 Introduction to DSP …………………………………………………….. 7

 2.2.2 DSP Current Scenery …………………………………………………… 10

 2.2.3 Assembly Language …………………………………………………….. 12

2.3 FPGA ……………………………………………………………………………… 13

2.3.1 FPGA Architecture ……………………………………………………… 14

2.3.2 FPGA Design Flow ……………………………………………………… 16

2.3.3 Behavioral Simulation …………………………………………………… 16

2.3.4 Synthesis of Design ……………………………………………………. 17

2.3.5 Design Implementation ………………………………………………… 17

2.3.6 Advantages of FPGA ………………………………………………….. 19

2.3.7 FPGA Specifications …………………………………………………... 20

CHAPTER 3: DESIGN AND ARCHITECTURE ………………………………... 21

3.1 Introduction and Specifications ………………………………………………….. 21

3.2 The Instruction Set Architecture …………………………………………………. 21

3.3 The Data Path …………………………………………………………………….. 24

3.4 Control Unit ………………………………………………………………………. 25

3.5 List of Instructions ……………………………………………………………….. 29

CHAPTER 4: RESULTS AND DISCUSSIONS ………………………………… 30

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ……………………….. 38

REFERENCES ………………………………………………………………….. …. 39

LIST OF FIGURES

LIST OF TABLES

Sl. No. Name Page

1. A short selection of DSP fields of use and specific applications 2

2. Main ADI and TI DSP families, together with their typical use and performance 10

3. main Requirements and corresponding hardware implementations for predictable

accurate real time digital signal processing
11

4. List of Instructions 29

5. Convolution result 34

Sl. No. Name Page

1. Use of Texas Instruments DSP in a MP3 player/recorder system. 3

2. Block Diagram of Signal Processing Sequence 8

3. A typical Digital Signal Processing Sequence 8

4.
Evolution of DSP features from their early days until now. The first year of

marketing is indicated at the top for some DSP families.
9

5.

(a) Von Neumann architecture, typical of traditional general-purpose

microprocessors.

b) Harvard and

(c) Super-Harvard architectures, typical of DSPs.

12

12

12

6. FPGA Architecture 14

7. FPGA Design Flow 16

8. steps in designing the processor 22

9. Instruction Set Architecture 23

10. The Data path 24

11. FSM for controller design 26

12. Combinational circuit for the controller 27

13. RTL schematic of the control unit 30

14. RTL schematic of the DSP 31

15. A magnified RTL schematic of the DSP block 32

16.
(a) Simulation result after the clock is initiated

(b) simulation result after all the output values are stored

33

34

17. Synthesis Report 36

D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e | 1

Chapter 1

INTRODUCTION

1.1 Motivation

For a long time now the field of Digital Signal Processing has been dominated by

Microprocessors. This is mainly because they furnish designers with the advantages of single

cycle multiply-accumulate instruction as well as special addressing modes.[1] Digital Signal

Processors (DSPs) are microprocessors with the following characteristics:

a) Real-time digital signal processing capabilities. Typically, DSPs have to process data in real

time, i.e., the correctness of the operation depends heavily on the time when the data processing

is completed[2].

b) High throughput. DSPs can sustain processing of high-speed streaming data, like audio and

multimedia data processing[2].

c) Deterministic operations. The execution time of DSP programs can be foreseen accurately,

therefore guaranteeing a repeatable, desired performance[2]-[4]

d) Re-programmability by software. Different system behaviours might be obtained by recoding

the algorithm executed by the DSP instead of by hardware modifications[2].

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |2

DSPs appeared on the market in the early 80s. Over the last 15 years they have been the key

enabling technology for a large number of electronics products in fields such as communication

systems, automotive, instrumentation and military[3]. Table 1 provides an overview of some of

these fields and their corresponding typical DSP applications.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |3

Figure 1 shows a real-life DSP application, namely the use of a Texas Instruments (TI) DSP in a

MP3 voice recorder–player. The DSP implements the audio and encode functions[3]. In addition,

there are tasks carried out like file management, controlling the user interface, and post-

processing algorithms such as equalization and bass management[5].

Fig. 1: Use of Texas Instruments DSP in a MP3 player/recorder system. [Courtesy of

Texas Instruments from www.ti.com.[6]]

http://www.ti.com/

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |4

FPGA provides the hardware environment in which dedicated processors can be tested for their

functionality. They perform various high-speed operations that cannot be realized by a simple

microprocessor. The primary advantage that FPGA offers is On-site programmability[7]. Thus, it

forms the ideal platform to implement and test the functionality of a dedicated processor

designed using an HDL.

1.2 Problem Statement

The primary objective of this project is to design 32-bit Digital Signal Processor Using Verilog,

implement this design on a FPGA, verify and test for its functionality, and analyze its

performance.

1.3 Organization of Thesis

The Thesis has been divided into five chapters including this one.

Chapter 1 introduces the project and the motivation behind it.

 Chapter 2 deals with literature review of the essentials of the project i.e. Signal Processing,

DSPs and Field Programmable Gate Arrays.

 The third chapter presents the different algorithms and architectures available during the design

of the processor.

Chapter 4 presents the results and related discussions.

Conclusions and future scopes are proposed in Chapter 5.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |5

Chapter 2

LITERATURE REVIEW

2.1 Signal Processing

Signal Processing is the art and science of modifying acquired time-series data[5] for the purposes

of analysis or enhancement. A digital signal is a piece of information in binary form. Digital

Signal Processing techniques improve signal quality or extract important information by

removing unwanted parts of the signal. The various dimensions of digital signal processing are

discussed now.

2.1.1 Fourier transforms

 it is an extremely powerful mathematical tool[8] that allows us to view our signals in a different

domain, inside which several difficult problems become very simple to analyze.

The Fourier transform can be viewed as an extension of the above Fourier series to nonperiodic

functions. For totality and for clarity, the Fourier transform is discussed here. If x(t) is a

continuous, integrable signal, its Fourier transform, X(f) is given by

X(f)=∫Rx(t)e−ȷ2πft dt,∀f∈R

and the inverse transform is given by

x(t)=∫RX(f)eȷ2πft df,∀t∈R

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |6

a Fourier transform of a signal tells you what frequencies are present in your signal and in what

proportions. The magnitude square of the Fourier transform, |X(f)|2 instantly tells us how much

power the signal x(t) has at a particular frequency f. Convolutions in the time domain are

equivalent to multiplications in the frequency domain. For discrete signals, with the development

of efficient FFT algorithms, it is faster to implement a convolution operation in the frequency

domain than in the time domain. By being able to split signals into their constituent frequencies,

one can easily reject certain frequencies selectively by nullifying their contributions.

2.1.2 Power spectra analysis

"Power Spectra" answer the question "which frequencies contain the signal´s power?"[9] It is in

the form of a distribution of power values as a function of frequency, where "power" is

considered to be the average of the signal². In frequency domain, this is the square of FFT´s

magnitude.

Power spectra can be estimated for the entire signal at once (a "periodogram") or periodograms

of segments of the time signal can be averaged together to form the "power spectral density".

2.1.3 Convolution and correlation

You can use convolution to compute the response of a linear system to an input signal. This

linear system is defined by its impulse response. The output signal response is convolution of the

input signal and the impulse response. Digital filtering is accomplished[10] by determining a

linear system´s impulse response that when convolved with the signal accomplishes the desired

result (low-pass or high-pass filter).

http://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing.htm#digitalfiltering

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |7

The correlation algorithm is very similar mathematically to convolution, although, it is used for

different purposes. It is usually used to identify the time delay at which two signals "line up", or

are "most similar"[10].

2.1.4 Digital Filters

Digital filters are a natural tool when data is already digitized. Reasons for digital filtering the

data include:

 Elimination of unwanted signal components ("noise")[11]

 Enhancing of required signal components[11]

 Detecting the presence of desired signals[11]

 Simulation of linear systems (compute the output signal given the input signal and

the system´s "transfer function")[11]

Digital filters are generally of two types: Finite Impulse Response (FIR) and Infinite Impulse

Response (IIR) filters.

2.2 Digital Signal Processors

2.2.1 Introduction to DSP

DSP is a programmable chip and is capable of carrying out millions of operations per second[12].

Typical DSP applications are audio and video signal processing, image processing and

telecommunications devices. DSP technology is the basis of many devices including mobile

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |8

phones, personal computers, recorders, CD players, hard disc controllers and modems. Given

below is a block diagram of the signal processing sequence.

Fig 2: Block Diagram of Signal Processing Sequence

The digital signal processor can be programmed to perform a variety of signal processing, such

as filtering, spectrum estimation[13], and other DSP algorithms. Depending on the speed and

computational requirements of the application, the digital signal processor may be realized by a

general purpose computer, minicomputer, special purpose DSP chip, or any other digital

hardware dedicated to performing a particular signal processing task. . A typical digital signal

processing system is shown below.

Fig 3: A typical Digital Signal Processing Sequence

DSPs appeared on the market in the early 1980s. Since then, they have undergone an intense

evolution in terms of hardware features, integration, and software development tools. DSPs are

now a mature technology. This section gives an overview of the evolution of the DSP over their

25-year life span; specialized terms such as ‘Harvard architecture’, ‘pipelining’, ‘instruction set’

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |9

or ‘JTAG’[14] are used. In the late 1970s there were many chips aimed at digital signal

processing; however, they are not considered to be digital signal processing owing to either their

limited programmability or their lack of hardware features such as hardware multipliers. The first

marketed chip to qualify as a programmable DSP was NEC’s MPD7720, in 1981: it had a

hardware multiplier and adopted the Harvard architecture. Another early DSP was the

TMS320C10, marketed by TI in 1982. From a market evolution viewpoint, we can divide the

two and a half decades of DSP life span into two phases: a development phase, which lasted until

the early 1990s, and a consolidation phase, lasting until now. Figure 4 gives an overview of the

evolution of DSP features together with the first year of marketing for some DSP families.

Fig. 4: Evolution of DSP features from their early days until now. The first year of

marketing is indicated at the top for some DSP families.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |10

2.2.2 DSP current scenery

The number of DSP vendors is currently somewhat limited: Analog Devices (ADI), Freescale

(formerly Motorola), Texas Instruments (TI), Renesas, Microchip and VeriSilicon are the basic

players. Amongst them, the biggest share of the market is taken by only three vendors, namely

ADI, TI and Freescale[15]. In the accelerator sector one can find mostly ADI and TI DSPs, hence

most of the examples in this document will be focused on them.

Table 2: Main ADI and TI DSP families, together with their typical use and performance

DSP architecture has been shaped by the requirements of predictable and accurate real-time

digital signal processing. An example is the Finite Impulse Response (FIR) filter, with the

corresponding mathematical equation (1), where y is the filter output, x is the input data and a is

a vector of filter coefficients. Depending on the application, there might be just a few filter

coefficients or many hundreds or more.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |11

As shown in, the main component of a filter algorithm is the ‘multiply and accumulate’

operation, typically referred to as MAC[16]. Coefficients data have to be retrieved from the

memory and the whole operation must be executed in a predictable and fast way, so as to sustain

a high throughput rate. Finally, high accuracy should typically be guaranteed. Table 3 shows a

selection of processing requirements together with the main DSP hardware features satisfying

them.

Table 3: main Requirements and corresponding hardware implementations for predictable

accurate real time digital signal processing

Traditional general-purpose microprocessors are based upon the Von Neumann architecture,

shown in Fig. 5(a). This consists of a single block of memory, containing both data and program

instructions, and of a single bus (called data bus) to transfer data and instructions from/to the

CPU. The disadvantage of this architecture is that only one memory access per instruction

cycle[17] is possible, thus constituting a bottleneck in the algorithm execution. DSPs are typically

based upon the Harvard architecture, shown in Fig. 5(b), or upon modified versions of it, such as

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |12

the Super-Harvard architecture shown in Fig. 5(c). In the Harvard architecture there are separate

memories for data and program instructions, and two separate buses connect them to the DSP

core. This allows fetching program instructions and data at the same time, thus providing better

performance at the price of an increased hardware complexity and cost.

Fig. 5: (a) Von Neumann architecture, typical of traditional general-purpose

microprocessors.b) Harvard and (c) Super-Harvard architectures, typical of DSPs.

2.2.3 Assembly language

The assembly language is very close to the hardware, as it explicitly works with registers and it

requires a detailed knowledge of the inner DSP architecture. To write assembly code typically

takes longer than to write high-level languages; additionally, it is often more difficult to

understand other people’s assembly programs than to understand programs written in high-level

languages. The assembly grammar/style and the available instruction set/peripherals depend not

only on the DSP manufacture, but also on the DSP family and on the targeted DSP. As a

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |13

consequence, it might be difficult or even impossible to port assembly programs from one DSP

to another. For instance, for DSPs belonging to the TI C6xxx family there is about an 85%

assembly code compatibility[18], i.e., when going from a C62x to a C64x DSP there are no issues

but if moving from a C64x to a C62x one might have to introduce some changes in the code

owing to the different instruction set.

2.3 FPGA

FPGA or Field Programmable Gate Arrays can be programmed or configured by the user or

designer after manufacturing and during implementation. Hence they are otherwise known as

On-Site programmable. Unlike a Programmable Array Logic (PAL) or other programmable

device, their structure is similar to that of a gate-array or an ASIC. Thus, they are used to rapidly

prototype ASICs, or as a substitute for places where an ASIC will eventually be used [19]. This is

done when it is important to get the design to the market first. Later on, when the ASIC is

produced in bulk to reduce the NRE cost, it can replace the FPGA. The programming of the

FPGA is done using a logic circuit diagram or a source code using a Hardware Description

Language (HDL) to specify how the chip should work. FPGAs have programmable logic

components called ‚logic blocks‛, and a hierarchy or reconfigurable interconnects which

facilitate the ‚wiring‛ of the blocks together. The programmable logic blocks are referred to as

configurable logic blocks and reconfigurable interconnects are referred to as switch boxes. CLBs

can be programmed to perform complex combinational functions, or simple logic gates. In most

FPGAs the logic blocks also include memory elements, which can be as simple as flip-flops, or

as complex as complete blocks of memory.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |14

2.3.1 FPGA Architecture

FPGA architecture depends on its vendor, but they are usually variation of that shown in the

figure. The architecture comprises Configurable Logic Blocks, Configurable Input/Output blocks

and Programmable Interconnects. It also houses a clock circuitry to drive the clock signals to

each logic block. Additional logic resources like ALUs, Decoders and memory may be available.

The number of CLBs and I/Os required can easily be determined from the design but the number

of routing tracks is different even within the designs employing the same amount of logic.

Fig. 6: FPGA Architecture

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |15

1. Configurable Logic Blocks

They contain the logic for the FPGA. CLBs contain RAM for creating arbitrary combinatorial

logic functions. It also has flip-flops for clocked storage elements, and multiplexers that route the

logic within the block to/from external resources.

2. Configurable I/O Blocks

Configurable I/O block is used to route signal towards and away from the chip. It comprises

input buffer, output buffer with three states and open collector output controls. Pull-up and Pull-

down resistors may also be present at the output. The output polarity is programmable for active

high or active low output.

3. Programmable Interconnects

FPGA interconnect is similar to that of a gate array ASIC and different from a CPLD. There are

long lines that interconnect critical CLBs located physically far from each other without

introducing much delay. They also serve as buses within the chip. Short lines that interconnect

CLBs present close to each other are also present. Switch matrices that connect these long and

short lines in a specific way are also present. Programmable Switches connect CLBs to

interconnect lines and interconnect lines to each other and the switch matrix. Three-state buffers

connect multiple CLBs to a long line creating a bus. Specially designed long lines called Global

Clock lines are present that provide low impedance and fast propagation times.

4. Clock circuitry

Special I/O blocks having special high-drive clock buffers, called clock drivers, are distributed

throughout the chip. The buffers are connected to clock I/P pads. They drive the clock signals

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |16

onto the Global Clock liens described above. The clock lines have been designed for fast

propagation time and less skew time.

2.3.2 FPGA Design Flow

The flow for the design using FPGA outlines the whole process of device design, and guarantees

that none of the steps is overlooked. Thus, it ensures that we have the best chance of getting back

a working prototype that will correctly function in the final system to be designed.

 Fig. 7: FPGA Design Flow

2.3.3 Behavioral Simulation[20]

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |17

After HDL designing, the code is simulated and its functionality is verified using simulation

software, e.g. Xilinx ISE or ModelSim simulator. The code is simulated and the output is tested

for the various inputs. If the output values are consistent with the expected values then we

proceed further else necessary corrections are made in the code. This is what is known as

Behavioral Simulation. Simulation is a continuous process. Small sections of the design should

be simulated and verified for functionality before assembling them into a large design. After

several iterations of design and simulation the correct functionality is achieved. Once the design

and simulation is done then another design review by some other people is done so that nothing

is missed and no improper assumption made as far as the output functionality is concerned.

2.3.4 Synthesis of Design

Post the behavioral simulation the design is synthesized. During simulation following takes

place:

(i) HDL Compilation

The Xilinx ISE tool compiles all the sub-modules of the main module. If any problem takes

place then the syntax of the code must be checked.

(ii) HDL synthesis

Hardware components like Multiplexers, Adders, Subtractors, Counters, Registers, Latches,

Comparators, XORs, Tri-State buffers, Decoders are synthesized from the HDL code.

2.3.5 Design Implementation[20]

(i) Translation

The translate process is used to merge all of the input net-lists and the design constraints. It

outputs a Xilinx NGD (Native Information and Generic Database) file. The logical design

reduced to Xilinx device primitive cells is described by this .ngd file. Here, User Constraints are

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |18

defined by assigning the ports in the design to physical elements (e.g. pins, switches, buttons,

etc) for the target device as well as specifying timing requirements. This information is stored in

a UCF file which can be created using PACE or Constraint Editor.

(ii) Mapping

After the translation process is complete the logical design described in the .ngd file to the

components or primitives (Slices/CLBs) present on the .ncd file is mapped onto the target FPGA

design. The whole circuit is divided into smaller blocks so that they can be appropriately fit into

the FPGA blocks. The mapping is done onto the CLBs and IOBs in accordance with the logic.

(iii) Placing and Routing

After the mapping process the PAR program is used to place the sub-blocks from the map

process onto the logic blocks as per the constraints and then connect these blocks. Trade-off

between all the constraints is taken into account during the placement and routing process. Place

process places the sub-blocks according to logic but does not provide them the physical routing.

On running the Route process physical connections between the sub-blocks are made using the

switch-matrices.

(iv) Bit file generation

Bit-stream is used to describe the collection of binary data used to program the reconfigurable

logic device. The ‘Generate Programming File‛ process is run after the FPGA design has been

completely routed. It runs BitGen, the Xilinx bit-stream generation program, to produce a .bit or

.isc file for Xilinx device configuration. Using this file the device is configured for the intended

design using the JTAG boundary scan method. The working is then verified for different inputs.

(v) Testing

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |19

System testing is necessary to ensure that all parts of the system correctly work together after the

prototype is mapped onto the system. If the system doesn’t work then the problem can be fixed

by making some changes in the system or the software. The problems are documented so that on

the next revision or production of the chip they are fixed. When the ICs are produced it is

necessary to have some sort of burnt-in self-test mechanism such that the system gets tested

regularly over a long period of time [22].

2.3.6 Advantages of FPGA [21]

FPGAs have become very popular in the recent years owing to the following advantages that

they offer:

Fast prototyping and turn-around time- Prototyping is the defined as the building of an actual

circuit to a theoretical design to verify for its working, and to provide a physical platform for

debugging the core if it doesn’t. Turnaround is the total time between expired between the

submission of a process and its completion. On FPGAs interconnects are already present and the

designer only needs to fuse these programmable interconnects to get the desired output logic.

This reduces the time taken as compared to ASICs or full-custom design.

NRE cost is zero- Non-Recurring Engineering refers to the one-time cost of researching,

developing, designing and testing a new product. Since FPGAs are reprogrammable and they can

be used without any loss of quality every time, the NRE cost is not present. This significantly

reduces the initial cost of manufacturing the ICs since the program can be implemented and

tested on FPGAs free of cost.

High-Speed- Since FPGA technology is primarily based on referring to the look-up tables the

time taken to execute is much less compared to ASIC technology.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |20

Low cost- FPGA is quite affordable and hence is very designer-friendly. Also the power

requirement is much less as the architecture of FPGAs is based upon LUTs.

2.3.7 FPGA Specifications

The FPGA used in this project has the following specifications:

Vendor: Xilinx

Family: Spartan 3E

Family: XC3S500E

Package: FG320

Speed grade: -5

Synthesis Tool: VHDL

Simulator: Xilinx ISE 10.1

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |21

Chapter 3

DESIGN AND ARCHITECTURE

3.1 Introduction and Specifications

The Processor design started with determining the number of bits in the instruction set. In this

case, it was decided to be 32 bit. The specifications are

 32 bit instruction set.

 32 bit registers and data memory.

 8 bit instruction memory.

 32 bit address and data bus.

 Huge number of multiplications and additions are usually required, therefore a separate

MAC (multiplier accumulator) unit is needed.

A datapath was designed and required individual functional units (Multiplier Accumulator,

Program counter, Program and Data memory, Register File etc.) were built. Depending on the

signal controlling the different units in the datapath, an FSM was made and a controller was

designed. Finally All the Modules were linked together and the Processor was simulated. All the

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |22

modules were built using Verilog HDL in Xilinx ISE Design tool. Figure 8 shows broadly the

steps in designing the processor.

Figure 8: steps in designing the processor

3.2 The Instruction Set Architecture

A a uniform length of the instruction set is always more simpler to implement. For our

convenience, in our design, all instructions are confined to 32 bits with the opcode being present

in the 31-26 bits. But the rest of the bits will vary in meaning depending on the type of

instruction.

The instruction types can be broadly categorized into three groups.

The
instruction

Set
Architecture

Creating individual
modules such as
MAC, Program

Counter, Instruction
and Data Memory,

Register File etc.

Designing
Datapath

Designing
Controller

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |23

 Register/Memory Addressing

 Arithmetic

 Jump

Figure 9: Instruction Set Architecture

In a general instruction, contents of read registers rs and rt (source registers) are added and the

sum is stored in destination write register rd.

Opcode (6) rs (5) rt (5) rd (5) Funct (6)

However, In case of immediate data the instruction format will be

Opcode (6) rs (5) rt (5) Immediate (16)

And, In case of branching Instructions, the format will look like

Opcode (6) Jump (26)

Instruction
Set

Register/memory
addressing

MOV, LOAD,
STORE.

Arithmetic

MUL, MULI, ADD,
ADDI, SUB, DIV.

Jump

JMP, BRE, BRZ.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |24

3.3 The Data Path

Figure 10: The Data path

In the data path, the execution starts with instruction fetch from the address pointed by the

program counter in the instruction memory. The instruction memory sends 32-bit instruction to

the register file, of which bits 21-25 are given to read register one, 16-20 to read register 2 and

11-15 to write register, in case of register type instructions. In case of immediate type bits 16-20

are fed to the write register as well. This selection is done with the help of a 2:1 multiplexer.

From the register file two 32 bit data are generated by accessing the address in data memory that

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |25

are fed to the ALU and the MAC and shifter through muxes as shown in the figure where the

required operations are performed and the output is stored in the data memory. In this processor,

a MAC with a carry look ahead multiplier is used for faster computations. The 8 bit program

counter is incremented by 4 address locations for the execution of the next instruction.

In case of immediate instructions, bits 0-15 are extended to 32 bits with the help of a sign

extender. The ALU selects this with the help of a 2:1 mux as shown in the figure. If the

instruction is of LW or SW type, then the address location generated by the ALU is accessed in

the memory and required operation is performed. For branching, If the inputs are equal then the

signal zero is set. This and branch signal generated from the control unit together forms the

selection bit for the mux that that decides the address location to be sent to the program counter.

The address is generated by adding the 32 bits that are generated by shifting the output of sign

extender by two bits to the current address location pointed by the program counter.

In case of Jump instruction, the bits 0-25 are passed through a sign extender before shifting left

by two, and concatenated with four bits from the PC to give the 32 bit address, that is again fed

to the PC with the help of a mux.

All the control and selection signals are generated in the control unit.

3.4 Control Unit

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |26

The control signals are generated from the instruction opcode bits 31-26. Fig 11 shows the

Control FSM designed to make the combinational circuit making the control unit.

Fig 11: FSM for controller design

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |27

Thus, For different types of instructions, we designate different states in the FSM with different

states of the control signals. This Control FSM takes multiple clock cycles to execute an FSM. It

can be simplified further into the given Combinational circuit below, that can work for

instructions that are required to be executed within single clock cycle.

Fig 12: Combinational circuit for the controller

The controller thus designed provided the datapath with different signals to operate the muxes

and various functional units. The RegDst decides the register addresses that are fed to the register

file. The ALUSrc decides whether the data goes to the ALU directly from the register or from the

accumulator, whereas Multen enables the MAC operation. The signal Mem2reg sends data from

the data memory to the register through a mux. Regwrite, MemRead and MemWrite enables

reading from and writing into the registers and memory correspondingly. Branch and Jump

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |28

operations enable Unconditional and Conditional jump respectively. ALUOp1 and ALUOp0

decides what arithmetic operations to be carried out by the ALU.

After programming all the individual modules and controller unit using Verilog HDL, final

linking was done according to the data path designed earlier and simulated using Xilinx ISE tool.

A simple case of Convolution was taken up for this purpose as explained in the next chapter and

the results were verified.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |29

3.5 List Of Instructions

Table 4: List of Instructions

MOV Moves Data From Register to Register

MOVI Moves Immediate data to register

LOAD Loads data from memory to register

STORE Stores data value from register to memory

ADD Addition

ADDI Addition with immediate data

SUB Subtraction

SUBI Subtraction with immediate data

MUL Multiplication

MULI Multiplication with immediate data

DIV Division

MACC Multiply and accumulate

JMP Jump

JMPE Jump if equal

JMPC Jump if carry

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |30

Chapter 4

RESULTS AND SIMULATIONS

Fig 13 shows the input and output signals to the control unit. The block take sin the 6-bit opcode

as input and generates the control signals as shown in the figure.

Fig 13: RTL schematic of the control unit

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |31

In Figure below, the RTL schematic of the processor is shown. The clock input is taken by the

DSP block and 25 outputs are shown in the simulation results, including the input and output

registers and all the control signals.

Fig 14: RTL schematic of the DSP

The image is magnified to give the following schematic figure. All the input and output signals

are shown explicitly here.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |32

Fig 15: A magnified RTL schematic of the DSP block

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |33

For the purpose of simulation, a case of convolution was taken up.

For the input sequences were {1,2,3} and {4,5,6} the expected output is {4,13,28,27,18}. The

first sequence of inputs was fed to registers {Rf0, Rf1, Rf2} and the second sequence was fed to

{Rf3, Rf4, Rf5}. Registers {Rf6, Rf9, Rf12, Rf15, Rf16} were designated to be the output

registers.

Fig 16 (a): Simulation result after the clock is initiated

As shown in fig 16(a), after execution of the first set of multiplication, result 4 is outputted to

Rf6. After a certain period of time, Register Rf9 is outputted 13, or 0D H (Hexadecimal).

Similarly, all the values were obtained and the final result is shown in figure 16(b).

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |34

Fig 16(b) : simulation result after all the output values are stored

The final result is shown in table 5. This is found to be consistent with calculated result of the

convolution.

Table 5: Convolution result

Rf6 04 (04H)

Rf9 13(0DH)

 Rf12 28(1CH)

 Rf15 27(1BH)

 Rf16 18(12H)

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |35

The final synthesis report for the above simulation has been provided below:

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |36

Fig 17: Synthesis Report

FPGA Implementation

For implementing the above processor in FPGA, SPARTAN 3E board was used. However, the

board has certain limitations. The Number of input ports provided is restricted to 4, each of 1 bit.

There are 8 output LEDs provided, each representing a bit. Therefore to implement the

processor, a compromise was made in the number of input and their bit size. For the purpose of

convolution, two arrays of size two were taken with the data size being 1 bit. The program was

dumped into the board after implementing the design and Routing.

In the first case, The arrays were {1,0} and {1,0}. The output was found to be {1,0,0} which is

consistent with expected values.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |37

Fig 18(a): FPGA result for sequence {1,0};{1,0}

Fig 18(b): FPGA result for sequence {1,0};{0,1}

In the second case, The arrays were {1,0} and {0,1}. The output was found to be {0,1,0} which

is consistent with expected values. Thus, The DSP was found to work successfully with the sets

of input data provided.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |38

Chapter 5

CONCLUSIONS AND FUTURE WORK

The DSP was designed using Xilinx ISE tool in Verilog HDL and it was found to work

successfully with given inputs. From the synthesis report it was seen that the maximum output

required time after clock is 4.310ns. The clock frequency was 196.618MHz.

In this design, a total of 32 registers are provided which can be modified to use as temporary

registers, accumulators etc. All the jump operations were found to perform correctly, as were the

arithmetic operations. Implementing this processor on a platform like FPGA gives us a powerful

mechanism of implementing complex computations on a platform that provides a lot of resources

and flexibility at a relatively lesser cost.

Finally the DSP was implemented on a Spartan 3E FPGA kit. The output values were found to

be consistent with the actual values. The device utilization summary showed that minimum

resources were consumed.

Future Scope

Although this project primarily deals with the design of a fixed-point processor The 32 bit

Instruction Set allows enough flexibility to build a floating point DSP based on the current one.

Also more instructions can be added in the existing structure itself, to customize it according to

user requirements. The processor uses a typical carry look ahead multiplier but the speed can be

improved by using any fast MAC or ALU that occupies lesser space.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |39

References

[1] B Venkataramani M bhaskar, “Digital Signal Processors architecture programming

and application”

[2] Digital control applications with TI TMS 320 processors, Texas Instruments

[3] Subra Ganesan,“Digital Signal Processing Design Using TMS 320C5X Processor”

[4] M.E. Angoletta, “Digital signal processor fundamentals and system design,” CERN,

Geneva, Switzerland

[5] Steven W. Smith, “The Scientist and Engineer's Guide to Digital Signal Processing”

[6] J. G. Proakis and D. G. Manolakis , “Digital Signal Processing: Principles,

Algorithms, and Applications”

[7] E.A. Lee, Programmable DSP Architectures: Part II, IEEE ASSP Mag., January

1989, pp. 4-14.

[8] TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide, Texas

Instruments Literature Number SPRU609A, November 2003.

[9] TMS320C620x/C670x DSP Program and Data Memory Controller/Direct Memory

Access

[10] (DMA) Controller - Reference Guide, Texas Instruments Literature Number

SPRU234, July 2003.

[11] Extended-Precision Fixed-Point Arithmetic On The Blackfin Processor Platform,

Analog Devices Engineer-to-Engineer Note EE-186, May 2003.

[12] TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module – Reference Guide,

Texas Instruments Literature Number SPRU581A, October 2003.

 D e s i g n o f a D i g i t a l S i g n a l P r o c e s s o r P a g e |40

[13] TMS320C6000 Peripherals – Reference Guide, Texas Instruments Literature

Number SPRU109D, February 2001.

[14] D. Dahnoun, Bootloader, Texas Instruments University Program, Chapter 9,

2004.

[15] D. Dart, DSP/BIOS Technical Overview, Texas Instruments Application Report

SPRA780, August 2001.

[16] TMS320C6000 Optimizing Compiler – User’s Guide, Texas Instruments

Literature Number SPRU187L, May 2004.

[17] TMS320C6000 Assembly Language Tools – User’s Guide, Texas Instruments

Literature Number SPRU186N, April 2004.

[18] Rewind User’s Guide, Texas Instruments Literature Number SPRU713A, April

2005.

[19] TMS320C6000 Instruction Set Simulator – Technical Reference, Texas

Instruments Literature Number SPRU600F, April 2005.

[20] C. Brokish, Emulation Fundamentals for TIs DSP Solutions, Texas Instruments

Application Report SPRA439C, October 2005.

[21] HUTCHINGS, B. L. AND NELSON, B. E., 2001. Gigaop DSP on FPGA.

 International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

[22] Chapman K. 1996. Constant Coefficient Multipliers for the XC4000E. Xilinx

 Application Note, www.xilinx.com.

