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Abstract

The strict requirement of the Nyquist criterion imposes acquiring large

amount of data (redundant data). These data when converted to compressed

domain can be represented by very few data points. Due to which most of the

samples are ignored. So in any signal processing system efficient use of the

sensors(if required), the memory requirements and the computational cost

are not optimum. This give rise to increase in power requirements, computa-

tional complexity and over use of memory storage, which indirectly increases

the cost of the system.

Generally the data is stored in compressed domain to reduce the memory

requirements. The calculation of the compressed coefficients requires process-

ing time, which is dependent on the number of samples acquired. In most

of the Digital systems there is only requirement of estimation of parameter

of signal. These parameters are generally computed in the spatial or time

domain, which again requires calculation of the inverse of the compressed co-

efficient. Instead if we were to calculate the parameter in compressed domain

itself then the time for inverse conversion would be avoided.

To further reduce the time and storage requirement one can make use

of compressive measurement theory. The theory states that the compressed

samples acquired can be used for certain parameter estimation. It also helps

in reducing number of computations required, with less error in estimation.

viii



One of such parameter to be estimated can be the quality of an image.

Quality estimation is required to provide an objective score to an image.

Structural Similarity Index Measurement (SSIM) is one of the quality score

under consideration of this thesis. The implementation of compressive mea-

surement with SSIM is the main objective of this thesis. This incorporation

will help in reducing the computation which will help in developing a real

time system for estimation of quality for stream of data like HD video stream-

ing. The thesis provides with statistical results in support of the developed

quality estimation metric.

Keywords: Compressive Sampling(CS), Compressive Measurement(CM),

L1-norm, sparsity, Wavelet Transform(WT), Structural Similarity Index Mea-

surement(SSIM), Compressive Measurement SSIM (CM-SSIM).
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Chapter 1

INTRODUCTION

The sampling rate required for conversion of analog to digital signal, in

a Digital Signal Processing (DSP) system, is governed by the Nyquist Sam-

pling theorem[1] which states that ‘the sampling frequency is to be twice the

maximum frequency content of the analog signal’. This sampling rate heav-

ily taxes the ADC system and hence has lead to limitation on the maximum

analog signal that can be acquired in digital format. The rate of sampling

has also taxed the computations and the storage requirement.

Due to the limits imposed by the sampling theorem, the signal has to be

assumed bandlimited. This assumption usually fails in accurate representa-

tion of the data acquired or adds error in the computation process. The error

or noise added in the signal has to be filtered out which requires an added

designing procedure and computational time of the system. There is always

need to compensate accuracy for faster speed in system, which is not always

desirable.

The samples acquired from ADC are to be coded to reduce redundance

present in the data. Most of the samples after coding are ignored and dis-

carded. The ADC convertor are highly taxed to acquire this samples, but due

to the redundancy included there is an inefficient use of the ADCs. To clarify

1



CHAPTER 1. INTRODUCTION 2

this let use consider wavelet transform of an image and let use compare the

inverse wavelet transform image with the original image. The comparison

index used for image is SSIM[2] wherein 0 indicates worst image and 1 the

best. Visually an SSIM index of 0.94 can be considered a good image in

comparison with the original image.

Figure 1.1: Wavelet coefficient ignored vs SSIM

The figure 1.1 shows a GUI output wherein an image is taken and then

with decrease in number of wavelet coefficients taken for reconstruction of

the image the SSIM is calculated for the reconstructed image with reference

to the original image. The figure shows graph of percentage of wavelet coef-

ficient ignored versus the SSIM index. The analysis of the graph shows that

with 98% of the wavelet coefficient ignored we get image with SSIM index of

0.96. This can give an understanding of how much the sample acquired are

redundant in nature.

The acquisition or sampling of any analog signal (like taking a digital

photo) requires large number of sensors (CCD). These sensors have many

constraints over the designing of the system like power requirement, acquisi-

tion time, physical dimensions, cost of acquisition etc. These criteria imposes



CHAPTER 1. INTRODUCTION 3

many restriction on the system and makes no optimum use of the system.

In recent years a theory has been developed called as Compressive Sens-

ing which tells that if a signal is compressible in a certain transform domain

then the signal can be sampled with rate far lesser than that required by

Sampling Theorem. There is criteria on the sampling method that has to

be implemented, which has to satisfy the property of incoherence with the

transform technique used. Reconstruction of the signal is possible with good

amount of accuracy following a certain minimum constraint on number of

samples taken and the sparsity of the signal. For further understanding of

Compressive Sensing refer to chapter 4.

In signal processing, reconstruction of signal may not be the motive of

the system designed. There are systems where estimation of parameters of

the signals are needed. These estimation also require samples of the signal

for estimation purposes. There is a theory based on the Compressive Sensing

which says that ’if we sample the signal with use of Compressive Sensing tech-

nique then we can estimate the signal parameter from these samples itself’,

this theory is called as Compressive Measurement. This idea was published

in 2006 [3] and is gaining grounds in many estimation problems.

To understand this idea more concretely let us consider a simple experi-

ment, a signal is simulated in MATLAB and RMS value is estimated with

use of CM theory, this estimates where compared with the exact RMS values.

The signal shown above was of 1000 samples length. The sampling method

used is random sampling to satisfy the property of incoherence. Of the 1000

samples present in the signal, with use of calculation by CS only 90 random

samples of the signal where taken. From these samples the RMS was esti-

mated, and the error was calculated in estimation of RMS. This experiment
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Figure 1.2: Calculation of RMS

was carried for 1000 times. After 1000 trials it was observed from the error

histogram that the probability of maximum error is approximately 0.05, with

max error being of only 20%. There can be improvement in the result if a

more appropriate transform and sampling method is chosen.

From the above discussion we have just got the glimpse of Compressive

Measurement Technique in estimation of parameters of the signal. This idea

has been used in this paper to estimate the quality of an image.

1.1 Literature Review and Discussion

The following are the papers refereed for the literature survey. It includes

the papers name author and brief description of the paper.

The author of the paper [4][5] has provided a good introduction to this

theory in general, which can be understood by a novice easily. The paper will

give clear understanding of why CS is needed, the requirements for the signal

to be satisfied, condition on the sampling method, the performance criteria

and a brief explanation of the application is being provided. The paper being
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Table 1.1: Literature review

Motive Reference Highlights
Advantages Disadvantages

E. J. Candes, M. B.
Wakin[4] M. A. Daven-
port[5]

Introduction to
CS theory

Proofs Missing

Development
of Compressive
Sampling Theory

D. L. Donoho, P. B.
Stark [6]

Initiator of theory Undeveloped

D. L. Donoho[7] Use of L1 norm Results not
present

E. J. Candes & T.
Tao[8][9]

Noise considered White noise only
considered

M. Lustig D. L.
Donoho[10]

MRI Time complexity
unmentioned

Application of
Compressive
Sampling Theory

M. F. Duarte M. A.
Davenport[11]

Single Pixel Cam-
era

Better quality in-
dex req.

R. Robucci[12] Intelligent Sensor Comparison with
only DCT coeff.

R. Marcia[13] Super-resolution
image

Better quality in-
dex req.

Compressive M. A. Davenport Introduction of Generalisation
Measurement P. T. Boufounos[3] CM required

SSIM Z.Wang[14] A. Bovik[2] SSIM Expla-
nation with
mathematical
support

Explanation of
some constant
undefined

an introductory is not enough in understanding the whole theory but it gives

just the glance at what can be achieved by the theory.

The paper[6] wherein the first sign of lesser sampling was raised. The

paper was developed by use of uncertainty principle in signal processing to

recovery a signal which is sparse in frequency or time domain. The manipu-

lation of the signals property of being sparse was seen here and recovery of

signal was sort after. But still here the main idea of CS did not shape up.

The prime need for the efficient working of the CS theory is the need to

find a sparse solution to an under-determined system. The solution requires

combinatorial optimization, making the problem NP-hard. The solution for
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such NP-hard have not yet been possible and they are intractable. The paper

[7] give mathematical proves for the use of L1 norm instead of L0 norm used

earlier. The use of L1-norm breaks down the problem to a linear problem

making it easier to calculate. This paper only provide the mathematical part

of the said problem, experimental results are being provided here.

The next paper [8] considers the problem if noise is added to signals sample

and weather we can use L1 norm to recover the signal or not. Experimen-

tal analysis have been provided in this paper. Paper [9] also provide similar

analysis for reconstruction of the signal. The paper also discusses about the

various sampling schemes that can be applied practically.

The first application developed in this field is in MRI scan, [10] gives in-

troduction to the working of MRI, then it explains why we need CS in it.

Finally it gives idea about how we can incorporate CS into the MRI scanning

technique. This paper can be considered as one of the references to applica-

tion of CS theory. The next application developed is a single pixel camera

[11]. This give the a new camera architecture using CS theory, where only

one pixel is used to sense light intensity. This camera can be used for video

processing also. The estimation in image like the direction of motion of an

object can also be done using this camera with good accuracy. There have

been many design suggestions give before and even after this paper. The

analysis of these application can help to further increase the understanding

of the theory in concern.

1.2 Motivation:

Huge amount of data is constantly being handled by our communication

channels. The data being received is reconstructed for user understanding.

The reconstruction of data taxes the processor and if the received data is
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faulty then data must be discarded or processed upon. If it would be possi-

ble to estimate the quality of the signal in the decoded state itself then the

unnecessary use of reconstruction of data and discarding it would be saved.

If the concept of Compressive Measurement is used then the estimate will

require less processor hardware.

HD videos or Digital images are huge amount of data which are in com-

pressed state when being transmitted through data channel or when are

stored as a file in the memory. Reconstruction of these data is required

when the quality is to be determined. So the use of Compressive Measure-

ment can be possible to estimate the quality of the video or images. The idea

to estimate the SSIM index in compressible state is discussed in this paper.

1.3 Objectives

The salient objectives of the thesis are:

i. Building the background for Compressive Measurement and the SSIM qual-

ity measurement indexing parameter.

ii. Explaining the developed Compressive Measurement SSIM

iii. Analysis and statistical backing for the developed CM-SSIM

1.4 Thesis Organisation

The thesis is organized as follows.

• Chapter 1, introduction of the thesis.

• Chapter 2, short discussion on FRIQ algorithms and SSIM index.

• Chapter 3, analysis of SSIM.

• Chapter 4, brief description of the developed algorithm.

• Chapter 5, results of the developed quality measure discussed.



Chapter 2

FULL REFERENCE IMAGE QUALITY

MEASUREMENT

2.1 Introduction: Full Reference Image Quality Index

Digital images undergo various types distortion during acquisition, pro-

cessing, storage, compression and reproduction. For application where the

processed images are to be perceived by human eye there is requirement of a

subjective analysis of the processed image to provide the quality of the image.

This might not be possible always as it requires time, money and is highly

inconvenient. To replace this highly cumbersome process we can model an

algorithm that can approximately behave like a human eye. The algorithm

will give an objective quality score for the image under test and the score

will tell us how poor the quality of the image is, without the requirement of

a subjective analysis.

There are many algorithms developed to provide an index for the image

quality analysis. These algorithms have been divided into three parts namely

Full Reference Image Quality Index(FRIQ), No Reference Image Quality In-

dex(NRIQ) and Reduced Reference Image Quality Index(RRIQ). Of these

the interest of the thesis lies in FRIQ. In FRIQ index the quality of the test

image is measured by comparing the reference image or undistorted image

8



CHAPTER 2. FULL REFERENCE IMAGE QUALITY MEASUREMENT 9

with the test image. The algorithm using certain parameters of the image

estimates the quality score of the test image with reference to the undistorted

image and give the quality score of the image. The algorithm that has been

used in this project for analysis is SSIM. The explanation of the same is being

provided in the next subsection.

2.2 Structural Similarity Index Measurement: SSIM

SSIM [2, 14] is a FRIQ indexing algorithm which is why it requires a ref-

erence image to estimate the quality of the test image. The parameter that

are considered for comparison are the luminance, contrast and structure of

the images. These three factors are estimated from the images and a relative

score is being provided to the test image. The factors mentioned are some of

the important factors used by the human eye to provide a subjective analy-

sis of the images. These physical factor are simulated with use of the basic

statistical parameters like mean, variance and covariance.

The mathematical formulation of the physical parameters being calculated

have been provided below.

2.2.1 Luminance Comparison

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
(2.1)

C1 = (K1L)
2 (2.2)

Equation 2.1 gives the statistical analysis of the luminance comparison of

two images. µ indicates the mean of the image pixel. The C1 factor is added

to provided stability to the equation in case of zero in the denominator. In
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the equation 2.2 the constant L defines the range of pixel intensity values in

an image which is generally 255, hence considered a constant for most of the

case. As L is considered constant for most of the cases, the constant C1 is

then governed totally by the constant K1. The constant K1 ≪ 1, where the

value is decided such that it should provide stability to the equation as well

as should not dominate the comparison factor.

2.2.2 Contrast Comparison

l(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2.3)

C2 = (K2L)
2 (2.4)

Equation 2.3 gives the statistical analysis of the contrast comparison of

two images. σ indicates the standard deviation of the image pixel. The C2

factor is added to provide stability to the equation in case of zero in the

denominator. In the equation 2.4 the constant L defines the range of pixel

intensity values in an image which is generally 255, hence considered a con-

stant for most of the case. As L is considered constant for most of the cases,

the constant C2 is then governed totally by the constant K2. The constant

K2 ≪ 1, where the value is decided such that it should provide stability to

the equation as well as should not dominate the comparison factor.

2.2.3 Structure Comparison

l(x, y) =
2σxy + C3

σxσy + C3
(2.5)

Equation 2.5 gives the statistical analysis of the structure comparison of

two images. σxy indicates the covariance between the image pixels of two
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images under consideration. The constant C3 is same as that in previous two

cases.

These comparison parameters are then combined together to for a unique

Index called as SSIM index. The contribution of the parameters is generally

taken as equal and so the resultant equation for SSIM calculation after some

simplifications and assumption is

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2
x + σ2

y + C2)
(2.6)

The values of the constants used, which where defined above, are as follows,

• K1 = 0.01

• K2 = 0.03

• L = 255

SSIM is calculated locally instead of globally, this approach is undertaken

to extract details from the image locally to estimate the comparison parame-

ters. The use of a window is done to calculate the SSIM locally. The window

which is considered in the project work is of size 11×11. The distribution

of the window can be rectangular or gaussian distribution. The gaussian

distribution is preferred to avoid blocking effect which is predominant in

rectangular window. The project considers gaussian distribution with pa-

rameters µ=0 and σ=1.5.

For more understanding of how SSIM is calculated one can refer to [2] and

[14].
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2.3 Chapter Summary

This chapter has given the description of the SSIM algorithm, being stud-

ied and modified for calculation in the transform domain. The chapter forms

the mathematical base for the coming chapters. The mathematical formula-

tion will be used in the development of the new algorithm for estimation of

the quality of the image.



Chapter 3

ANALYSIS OF SSIM

3.1 Introduction

The earlier chapter describes about the SSIM indexing parameter. There

are certain pointers about SSIM stated below,

• Being a FRIQ method it always requires a reference image which many

times is not possible to produce.

• The constant used in the formulation are not defined.

• For reduction in time complexity down-sampling of image has been car-

ried out.

• For calculation of the image quality index images should be in the spatial

domain. This requires conversion of the image from sparse domain to

spatial domain which will be problematic in time critical systems.

Of these the fourth point has been addressed in these thesis and will be

dealt in coming chapters. This chapter will deal with the second and third

points.

3.2 Effect of variable Constants

The calculation of SSIM as seen in the equation 2.6 includes two constants,

13
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C1 & C2, who’s use have been explained in the section 2.2. The constants

are being defined by another set of constants namely K1 & K2, which pro-

vides stability to the SSIM equation. These constants have not been defined,

meaning there is no fixed value to be considered while calculating SSIM, this

can lead to faulty interpretation of the quality of the index. Let us consider

an original image and its distorted gaussian noise (σ = 0.005 and µ = 0) as

shown below,

Figure 3.1: Original Image and Distorted Image (Gaussian Noise σ = 0.005 & µ = 0)

The SSIM value where calculated in MATLAB for which the code has been

provided in the link[15]. There where three different SSIM being calculated

with use of different K1 & K2 values. The values have been tabulated below;

Table 3.1: SSIM Variation

K1 K2 SSIM VALUE

0.01 0.03 0.4612
0.05 0.05 0.5725
0.01 0.01 0.3753

Of the values stated the K1 = 0.01 & K2 = 0.03 is considered as default in

the SSIM code. If we calculate the percentage error in calculation of SSIM,

(assuming the default values as the reference), then the percentage error for

values K1 = 0.05 & K2 = 0.05 is almost -25% and for values K1 = 0.01 & K2

= 0.01 is almost 20%. These error in estimation of the quality of the image

can lead to faulty decisions. This is a rough analysis on the problem at hand
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future explanation is being provided in the preceding sections.

3.3 Mathematical and Experimental analysis

This section will deal with the experimental and mathematical analysis

on the effect of the K1 & K2 values on the estimation of SSIM index.

3.3.1 Experimental Analysis

To show the effect of K1 & K2 variations an experiment was carried out in

which an image and its fixed degraded image was taken. The image is taken

from a standardized database (LIVE Database-buildings.bmp) and its de-

graded image was also taken from the same database (fastfading-img67.bmp).

The SSIM for default values of K1 & K2 is 0.6632. The two figure are shown

in figure 3.2. For the degraded image SSIM was calculated for varying K1 &

K2 values. The range in which K1 & K2 were varied is 0 to 1 with increment

of 0.01. The result of the simulation are shown in figure 3.3.

Figure 3.2: Original Image and Distorted Image

The figure 3.3 shows plot of variations of SSIM with respect to K1 & K2.

From the plot it can be inferred that for fixed value of K1, SSIM varies with

K2 and for fixed value of K2, SSIM remains almost constant with variation

of K1.
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Figure 3.3: Surface plot of SSIM and K1 & K2

The next experimental setup indulge in analysing Pearson correlation vari-

ation with the change in the values of the constants. The setup includes

calculation of SSIM on a standardized database and calculation of Person

correlation of the SSIM value with the corresponding DMOS values of the

distorted image (more on this in chapter 5). The database used for this pur-

pose is the CSIQ database (information on this is provided in chapter 5).

Figure 3.4 shows the result of this experimental setup. The figure shows plot

of Pearson correlation values with respect to varying values of K1 & K2. The

range of values in which the constants were varied were 0 to 1, with increment

of 0.01.

From the plot it can be observed that as the value of K2 increases keeping

the value of K1 constant, the Pearson correlation decreases by almost 10%.

But this is not true for the case of variation of K1 keeping K2 constant. The

Pearson correlation is constant for variation of K1 but vary with changes in

value of K2.

From these set of results we can see that the constant K2 has a major

effect on the estimation of the SSIM index. The effect can be seen both in
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Figure 3.4: Surface plot of Pearson Correlation and K1 & K2

the changes in values of SSIM as well as changes in the Pearson Correlation

values of SSIM. This effect the accuracy in estimation of the SSIM index

which can lead to a faulty interpretation of the index, which indirectly indi-

cates the quality of the image.

3.3.2 Mathematical Analysis

This section will deal with calculation of sensitivity of SSIM with both K1

& K2. The set of equations are as follows:

From equation 2.6 we have,

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2
x + σ2

y + C2)
(3.1)

Now from the explanation provided in 2.2 C1 = (K1L)
2 and C2 = (K2L)

2,

equation 3.1 gets converted to,

SSIM(x, y) =
(2µxµy + (K1L)

2)(2σxy + (K2L)
2)

(µ2x + µ2y + (K1L)2)(σ2
x + σ2

y + (K2L)2)
(3.2)

Equation 3.2 is going to be the basis equation for calculation of sensitivity

of SSIM with respect to the constants K1 & K2.
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Sensitivity of SSIM with respect to K1 will be calculated by keeping K2

constant. The other parameters like the µx , µy, σxy, σx, σy & L are also to

be held constant(we are assuming that SSIM is being calculated on same set

of images, original and distorted image). The equation 3.2 will be brought

down to,

SSIM(x, y) = C1
(2µxµy + (K1L)

2)

(µ2x + µ2y + (K1L)2)
(3.3)

where C1 = (2σxy+(K2L)
2)

(σ2
x
+σ2

y
+(K2L)2)

.

Taking a partial derivative of equation 3.3 with respect to K1 we get,

∂SSIM

∂K1
= C1

(2K1L
2)(µx − µy)

2

(µ2x + µ2y + (K1L)2)2
= C2

K1

(1 +K2
1(

L2

µ2
x
+µ2

y

))2
(3.4)

where C2 = C1 2L
2(µx−µy)

2

(µ2
x
+µ2

y
)2

.

Similarly while calculating sensitivity of SSIM with respect to K2, K1 is

to kept constant. The other factors mentioned above are also to be assumed

constant (we are assuming the SSIM is being calculated on same set of images,

original and distorted image). The equation 3.2 will be,

SSIM(x, y) = C ′

1

(2σxy + (K2L)
2)

(σ2
x + σ2

y + (K2L)2)
(3.5)

where C ′

1 =
(2µxµy+(K1L)

2)
(µ2

x
+µ2

y
+(K1L)2)

.

Taking a partial derivative of equation 3.5 with respect to K2 we get,

∂SSIM

∂K2
= C ′

1

(2K2L
2)(σx − σy)

2

(σ2
x + σ2

y + (K2L)2)2
= C ′

2

K2

(1 +K2
2(

L2

σ2
x
+σ2

y

))2
(3.6)

where C ′

2 = C ′

1
2L2(σx−σy)

2

(σ2
x
+σ2

y
)2

.
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From the derived equations 3.4 and 3.6, we can see that the sensitivity

equations are of the form f(x) = ax/(1 + bx2) where a, b are constants and

x in our case are K1 and K2. As the range in which K1 and K2 are varied

are same then the sensitivity parameters depend upon the constants ’a’ and

’b’. These constants in case of equation 3.4 are the µ terms of image X and

Y, and in case of 3.6 are the σ terms of image X and Y. To understand the

effect of µ and σ, in case of an image, we have to consider the range of values

in which the µ & σ vary.

Let us consider the minimum and maximum for µ. The minimum can be

considered to be zero which is not possible in an image, as µ=0 implies that

either all the pixel values of image will be zero (no information content) or

that there are some pixel having a negative intensity values which is naturally

not possible to occur in an image. The max value that µ can reach is 255,

which is again highly unlikely as it would imply that all the pixel intensity

have value as 255 which would have no information content at all. For sim-

plicity let us consider the min value as 0 and max value as 255. So the range

in which the µ varies is 0 to 255.

Considering σ now for its estimation of max and min. The equation

σx =
√

1
N

∑

(xi − x)2 suggests that there cannot be any negative value of

σ. So the minimum value which the σ can achieve is zero, which implies that

there is no variation in the image or no information content in the image.

This case is highly unlikely in a natural image. To consider the case of max

value we have to consider that in an image there are pixel values of 0 and

255 intensity levels only. Let the number of 0 in an image be denoted as

N0 and number of 255 be N255. For maximum value of σ, 0 < N0 ≪ N255 or

0 < N255 ≪ N0, if this occurs then the maximum value of σ is around 20. So

the range of value of σ is 0 to 20.
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A plot of sensitivity curve for both µ and σ variation, keeping K1 and

K2 constant, were plotted and shown in figure 3.5. From the plot we can

see that the variation in σ are more dominating to the sensitivity curve than

the variation in the values of µ. As σ is associated to K2, SSIM variation is

dependent on K2 and not on K1, because variation due to K2 dominates K1.

This can be again proved in the figure 3.6.
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Figure 3.5: Sensitivity plot for variation of µ and σ

To show the effect of the sensitivity equations 3.4 & 3.6, an image of

‘cameraman.tif’ was taken in which the sensitivity curves were plotted. While

plotting equation 3.4 K2 was considered as 0.01, and while plotting equation

3.6 K1 was considered as 0.01. The sensitivity plot shows the plot of the

equation on a single patch of the image. The plots are shown in figure 3.6.
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Figure 3.6: Sensitivity plots of K1 & K2

From figure 3.6 we can see that the sensitivity of SSIM or the change in
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SSIM for corresponding change in K2 is linearly increasing and is dominating

to the changes due to K2.

3.4 Down-Sampling of Image

If one observes the MATLAB code being in the link [15], one can find

that the image of certain size (size of images above 200x200 pixels) are low

pass filtered and down sampled for the calculation of the SSIM index. This

process is done to reduce the time complexity of the code. This method of

calculation of quality score index can lead to error in calculation of the SSIM

index as there is high probability that certain aspect of image which is highly

affected by noise be ignored.

For analysis purpose the SSIM algorithm was altered, where the step where

down-sampling occurs has been removed and the SSIM is estimated. This

algorithm is termed as ‘SSIM ALTERED’. This algorithm will be used in

chapter 5, which would help in justification of use of the developed algorithm

explained in chapter 4 called CM-SSIM.

This brings us to the concluding part of this chapter from which we have

understood the effect of the constant on the value of SSIM and also the down

sampling of image done in the SSIM algorithm.

3.5 Chapter Summary

In the results shown in figures 3.3, 3.4, 3.5 and 3.6 we can infer that the

value of SSIM is more dependent on K2 rather than K1. The sensitivity of

SSIM were shown with both variation of σ, µ, K1 & K2 variations. The

reasons were explained with both mathematical and experimental analysis.
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For this reason there should be a fixed value of the constants taken for the

calculation of SSIM. As seen from the graph from figure 3.6 the SSIM is less

sensitivity to K2 for lower values, so it would be better if we taken the values

in range of 0 < K2 < 0.4. For these reasons the values that have been con-

sidered for analysis purpose are, K1=0.01 and K2=0.03.

The last part just gave a rough idea of what has been discussed in chapter

5. The down sampling method can lead to erroneous estimation of the quality

of the image, which can lead to failure of any system which is going to use this

index parameter for its operation. So a revised method has to be adopted to

encounter this problem. This solution is being discussed in the next chapters.



Chapter 4

CM-SSIM

To find an alternative method to down-sampling of images for calculation

of quality score, or to calculate the quality score in the spectral domain (to

avoid the inverse transform of the transform coefficient) we have suggested

another algorithm called as Compressive Measurement-SSIM (CM-SSIM).

This metric will have the advantage of reduction in number of computation

required, as well as we can help in designing a real time embedded system

for estimation of huge stream of data like the HD video streaming.

The development of CM-SSIM required help of the Compressive Measure-

ment (CM) Theory [3] and the developed SSIM [2][14] algorithm. There was

also requirement of certain mathematical tools which have been mentioned

in this chapter. To understand the CM theory one has to understand the

Compressive Sampling (CS) Theory, explained in section 4.1.

4.1 Compressive Measurement

This section is about compressive sampling/sensing [4][5]. The following

are the general discussion on the theory with the mathematical formulation

involved in the theory.

23
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Let f be the signal of concern, let φ be the sampling operator and y is the

sampled output.

So we have,

yk = 〈f, ϕk〉 (4.1)

where k indicates the indices.

Now generally in the normal sampling system the sampling matrix is a square

matrix, meaning the number of samples y will be equal to number of equation

formed by the inner product 〈∗, ∗〉 of signal(f ) and the sampling matrix(φ).

At the receivers end(or output) we will be receiving the samples(y). We will

be knowing the sampling scheme(φ), by which information we will be able to

get the signal(f ) by solving simultaneously the set of equations.

Now consider a case that we take lesser amount of samples and we have to

reconstruct the signal. Logically the set of equations are under-determined

and there is no unique solution to it. To solve this problem we can take help

of CS theory which says that such under determined system can be solved

under the condition that the signal is sparse in nature. To make the signal

sparse we can make use of a transform domain where the signal can be sparse

in nature. Let’s say that the signal is sparse in Ψ domain and the transform

coefficients of signal be x. Then solution of the problem can be explained as

follows.

If yk = 〈f, ϕk〉 where the samples(y) will be lesser than required (m < n).

minx̃∈Rn‖x̃‖l1 (4.2)

subject to yk = 〈ϕk, ψx̃〉.
There is one more condition that the system developed has to satisfy which

is that the sampling matrix and the transform matrix that gives sparse so-

lution of the signal are to be incoherent with each other. This condition
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ensure that we get maximum information from the lesser amount of samples

available with us, which help in determining error in the reconstruction of

the system.

The next consideration that we have to go through is the sampling rate

suggested by the CS theory. The factor that affect the sampling rate for CS

are as follows.

• Firstly we have to consider the saparsity (S ) of the signal. It is the

count of the least amount of non-zero coefficient required to represent

the signal. In general let Ψ be the domain in which the signal of concern

is sparse.

• Second we consider the incoherence measure between the sampling ma-

trix and the transform matrix. Let the equation denote the incoherence,

µ (φ, ψ) =
√
n ·max1≤k,j≤n |〈ϕk, ψj〉|

where n is the Nyquist sampling rate.

The sampling rate in CS is defined as

m ≥ C · µ2 (φ, ψ) · S · logn (4.3)

where C is some positive constant.

In many of the literature [11][12] the use of random sampling has been

suggested. These random sampling are not exactly always incoherent with

the transform domain but they are independent of the transform used. The

incoherence measure is also significant and these noiselet transform[12] can

be a good sampling matrix for most of the cases. In our thesis we have made
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use of random sampling to calculate the Compressive Samples which are to

be used to calculate the quality index.

As we have got a glimpse of the Compressive Sampling theory we can

now move towards compressive measurement[3]. The theory states that is we

have obtained the compressive samples then with the use of these samples

itself we can estimate the parameter of the signal. These samples can help in

other signal processing tools also but we are concerned about the estimation

of parameter of the signal.

4.2 Mathematical Tools

We have understood the basics of CM and SSIM. To assimilate these

theories certain basic algorithm were being used. The principles and how

are they were being applied in the algorithm have been shown below. The

principles being used are as follows:

• Parseval’s Theorem.

• Image in frequency domain.

• Convolution in Frequency Domain

4.2.1 Parseval’s Theorem

Parseval’s theorem[16] is the basic building block in the estimation of

quality of the image in the spectral domain. The theorem help in conversion

of the parameters, mentioned in the chapter 2, where the parameters where

in the spatial domain to be formulated in the spectral domain.

The theorem gives the energy conversion equality between two different

domains. The constraint on the domains are that they should be represented

by basis. Basis are those set of equations which are either orthogonal or
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ortho-normal to each other[17]. As Parseval’s theorem hold only for bases we

are going to consider one such type of bases called as the fourier transform

matrix. The set of equation below shows the Parseval’s equality:

∑

n∈N
f (n) g (n) =

1

N

∑

k∈N
F (k)G∗ (k) (4.4)

∑

n∈N
f 2 (n) =

1

N

∑

k∈N
|F (k)|2 (4.5)

The theorem states that sum of square of function is equal to sum of

square of function’s transform coefficients. In other words the energy content

of function in spatial domain is same as that in its spectral domain.

The formula for calculation of mean, variance and covariance is given below

• Mean: The DC value of signal is the present in the zero frequency at the

spectral domain i.e. at the zeroth position. In case of 2D signal the DC

of the image is center pixel in spectral domain.

∑

i∈N

∑

j∈M
f (xi, yj) = Fu,v (0, 0) (4.6)

µ =

∑

i∈N

∑

j∈M
f (xi, yj)

NM
=
Fu,v (0, 0)

NM
(4.7)

• Variance: The use of Parseval identity can be used in calculation of vari-

ance. The definition of variance is given by σ2
x = E

[

(X − x)2
]

.

E
[

(X − x̄)2
]

= E
[

X2 − 2xX + (x)2
]

= E
[

X2
]

− 2x̄E [X] + x̄2

= E
[

X2
]

− x̄2
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These equation tells that variance of signal is equal to difference between

mean square of signal and square of mean of signal.

The mean square of signal can be calculated using the parseval theorem

as shown in equation(4.5).

MS =

∑

i∈N

∑

j∈M
f 2 (xi, yj)

NM
=

∑

i∈N

∑

j∈M
|F (ui, vj)|2

(NM)2
(4.8)

σ2
x =MS − µ2x (4.9)

• Covariance: The definition of covariance between two signal is given by

σxy = E [(X − x)(Y − y)].

E [(X − x̄)(Y − y)] = E [XY −Xy − Y y + (x)(y)]

= E [XY ]− ȳE [X]− x̄E [Y ] + x̄ȳ

= E [XY ]− x̄ȳ

The mean square of signal can be calculated using the parseval theorem

as shown in equation(4.4).

σxy =

∑

i∈N

∑

j∈M
f (xi, yj)g (xi, yj)

NM
− µxµy (4.10)

σxy =

∣

∣

∣

∣

∣

∑

i∈N

∑

j∈M
F (ui, vj)G

∗ (ui, vj)

∣

∣

∣

∣

∣

(NM)2
− µxµy (4.11)
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4.2.2 Image in Frequency Domain

When fourier transform of an image, which is a 2D signal, is taken we get

2D fourier transform coefficient[18]. When observed the transform coefficient

that contribute the most to the image are concentrated around the center of

2D fourier image. The required information of the image can be obtained

from this region. The parameter that where discussed earlier namely mean,

covariance and variance can be obtained with good accuracy if we concen-

trate around the central region of the 2D fourier image. This will reduce the

computation requirement for estimation of such parameters.

The SSIM calculates the index with use of a Gaussian window(default)

which is convoluted over the image in spatial domain. The fourier equivalent

of convolution is multiplication. So while we are developing to incorporate

the SSIM in frequency domain to get the required effect as in spatial domain

we have to multiply the fourier transform of image with the fourier transform

of the gaussian window[19].

f(x) = X, f(y) = Y (4.12)

f(x ∗ y) = XY (4.13)

In Compressive Measurement as explained earlier the estimation of the

signal is done in its compressed domain with only few samples, so if we were

to concentrate our samples in the center of the 2D fourier domain then the

accuracy in estimation of SSIM will increase. This will help in achieving two

of our goals which are less computation time requirement with good accuracy.
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4.3 Compressive Measurement SSIM

Understanding the basic concept explained in the above section a MAT-

LAB function was developed.

The function takes 2D fourier coefficients of the two images for estimation of

the SSIM. This function takes in two images one being the reference image

and other being the image for which the index is to be calculated.

The samples are taken in random format. After the samples are chosen then

the calculation of the statistical parameters required for CM-SSIM estimation

are calculated. For each randomly selected sample the index is calculated and

then the mean of these index gives us the required CM-SSIM value.

4.4 Chapter Summary

The developed algorithm has been explained with all mathematical ex-

planations. The development required use of many signal processing tools.

There formulation and definition have been incorporated in the chapter.

The next chapter will include all the result that have been helpful in

validating the developed algorithm. The results conclusion have been also

provided in the same.



Chapter 5

RESULTS AND DISCUSSIONS

This chapter will be dealing with the results of the developed CM-SSIM.

The results are acquired with the help of MATLAB platform. Use of some of

the toolbox in MATLAB like, image processing toolbox, statistical toolbox,

signal processing toolbox etc where used. The description of the statistical

comparison parameters have been discussed.

5.1 Image Database

For the verification of authenticity of the developed algorithm there are

image database developed which have been made open source by there devel-

oper. These database consists of certain number of images of who’s distorted

images have been provided. The distortion of the original image vary in type

and distortion level. The database provides both the original images and

there distorted images in separate folder according to the type of distortion

and with different levels.

From these database one can make use of original image to find the qual-

ity score of the distorted images for a FRIQ algorithms. For each dis-

torted image there has been a quality score being provided namely called

as DMOS(Differential Mean Opinion Score). This score is a subjective score

31
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being provided by group of user who had observed these images. Each image

had been provided to the group of people to rate the distorted image and

provide a quantitative score to the image. From the various score available

for an image the DMOS was calculated. These score have been provided

for each images in the database these score and the score available from the

testing algorithm will help in verification of the algorithms authenticity.

The set of database used for the authenticity of the developed algorithm

are given as follows with the description of the database along with it.

LIVE Database[20] There are 29 original images in this data-base[21]. These

images have five different set of distortion types. The distortion types

are:

• JPEG2000 compression

• JPEG compression

• Gaussian Blur

• White Noise

• Fast Fading

5.2 Comparison Parameters

The DMOS score obtained is used for assessment of the developed quality

score indexing algorithm. The DMOS values are compared with the score

made available from the algorithm under test. The score and the DMOS

values are compared using various statistical parameters. These parameter

have been explained below:
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5.2.1 Pearson Correlation

Equation 5.1 defines the Pearson correlation[22] of two set of variables X and

Y.

ρ =
cov(X, Y )

σxσy
(5.1)

where -1 ≤ ρ ≤ 1.

ρ > 0 There is a positive association between two variables.

ρ < 0 There is a negative association between two variables.

ρ = 0 There is no association between two variable.

For values of |ρ| = 1 the two functions are in perfect relationship with each

other. This geometrically means that a linear equation describes the values

of X and Y, for perfect value of 1 all the points of (X,Y) lie on this line.

These are the ideal values we require for testing of the developed algorithm.

While testing we calculate the correlation between the DMOS values and

the acquired quality index from the developed algorithm. Values close to 1 or -

1 suggests that the developed algorithm is closely related to the DMOS values.

This values gives the prediction accuracy of the developed algorithm[23][2].

5.2.2 Spearman Correlation

Equation 5.2 defines the Spearman correlation[22] of two set of variables X

and Y. This is a rank based correlation i.e. instead of taking the actual value

of the variables we consider the rank of the variable in its set to calculate the

correlation.
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rs =

∑n
i=1((rank(xi)− rank(xi)))((rank(yi)− rank(yi)))

√

∑n
i=1((rank(xi)− rank(xi)))2

∑n
i=1((rank(yi)− rank(yi)))2

(5.2)

where -1 ≤ ρ ≤ 1.

rs > 0 There is a positive monotonic association between two variables.

rs < 0 There is a negative monotonic association between two variables.

rs = 0 There is no association between two variable.

For values of |rs| = 1 the two functions are in perfect monotonic relation-

ship with each other. These are the ideal values we require for testing of the

developed algorithm.

While testing we calculate the correlation between the DMOS values and

the acquired quality index from the developed algorithm. Values close to 1

or -1 suggests that the developed algorithm is closely related to the DMOS

values. This values gives the monotonic accuracy of the developed algo-

rithm[23][2].

5.2.3 Kendall tau Correlation

Equation 5.3 defines the Kendall tau correlation[22] of two set of variables X

and Y.

τ =

∑n
i=1

∑n
j=1 sgn(xi − xj)sgn(yi − yj)

n(n− 1)
(5.3)

sgn(xi − xj) = +1 (xi − xj) > 0

= 0 (xi − xj) = 0

= −1 (xi − xj) < 0
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where -1 ≤ ρ ≤ 1.

τ > 0 There is a positive association between two variables.

τ < 0 There is a negative association between two variables.

τ = 0 There is no association between two variable.

This correlation is calculated irrespective of any assumption of the distri-

bution of variables under consideration. For values of |τ | = 1 the two func-

tions are in perfect relationship with each other. These are the ideal values

we require for testing of the developed algorithm.

While testing we calculate the correlation between the DMOS values and

the acquired quality index from the developed algorithm. Values close to 1

or -1 suggests that the developed algorithm is closely related to the DMOS

values[23][2].

5.2.4 Deviation measure

Box-plot is a graphical representation of the data points of a variable, in

which we get to visually see the extent of the variation of the data-points

about its median. The box plot is in the form of a rectangular figure with a

vertical line passing through it. The horizontal edges of this box represent

the 25th and 75th percentiles of the data set. The line passing through the

box is called as whiskers, the end points of the whiskers represent the extreme

points of data-set excluding any outliers if present. The outliers are the val-

ues which are about twice the standard deviation from the mean of the data

set. The box-plot also indicates the median of the set, which is indicated by

a horizontal line which is indicated inside the box.
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5.3 Results

This section will display all the results obtained using all the comparison pa-

rameters discussed in section 5.2 for the image data-set discussed in section

5.1.

The following set of results will deal with the correlation values obtained.

The correlation values, as discussed in 5.2.1, 5.2.2 & 5.2.3, will be calculated

between SSIM and DMOS and another set of values between CMSSIM and

DMOS. Coming to the discussion done in section 3.4 we are going to calculate

the correlation values for SSIM ALTERED also. These values will help in

understanding how accuracy of method of down-sampling which is adopted

for SSIM. Table 5.1, 5.2 & 5.3 shows the correlation values for the LIVE

image data set, for individual degradations type as well as the total LIVE

data-set taken together.

Table 5.1: Pearson Correlation of SSIM, CM-SSIM & SSIM ALTERED with DMOS for LIVE
data-base

Distortion SSIM CM-SSIM SSIM ALTERED

JP2K -0.8263 -0.9104 -0.8892

JPEG -0.7978 -0.8846 -0.8748

White Noise -0.9662 -0.9656 -0.9471

Gaussian Blur -0.8632 -0.9402 -0.8553

Fast Fading -0.8512 -0.9348 -0.9045

Total -0.6932 -0.8707 -0.7319

Table 5.2: Spearman Correlation of SSIM, CM-SSIM & SSIM ALTERED with DMOS for LIVE
data-base

Distortion SSIM CM-SSIM SSIM ALTERED

JP2K -0.9633 -0.9623 -0.9581

JPEG -0.9411 -0.9406 -0.9399

White Noise -0.9641 -0.9615 -0.9609

Gaussian Blur -0.9246 -0.9595 -0.8995

Fast Fading -0.9396 -0.9652 -0.9397

Total -0.9115 -0.9208 -0.8775
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Table 5.3: Kendall tau Correlation of SSIM, CM-SSIM & SSIM ALTERED with DMOS for LIVE
data-base

Distortion SSIM CM-SSIM SSIM ALTERED

JP2K -0.8376 -0.8371 -0.8256

JPEG -0.7963 -0.8039 -0.7918

White Noise -0.8345 -0.8307 -0.8308

Gaussian Blur -0.7536 -0.8256 -0.7211

Fast Fading -0.7856 -0.8356 -0.7812

Total -0.7457 -0.7646 -0.7060

The above tables 5.1 5.2 5.3 give the correlation values of SSIM, SSIM

altered and CM-SSIM for LIVE data-base.

From the correlation values it can be observed that the values of correlation

for CM-SSIM with DMOS are almost nearing one and are comparable to those

obtained from SSIM. For some of the cases the correlation values are better

than that of SSIM. If we observe the values of Pearson correlation for SSIM

ALTERED, then we can see that the value for the total LIVE database is

more than that of SSIM. This brings use to the point that the prediction

accuracy of SSIM is less than that of SSIM ALTERED. This justifies the

claim that the SSIM calculated by down-sampling can lead to to an erroneous

decision. So CM-SSIM can be used as an alternate method for calculation of

SSIM in spectral domain.

The next set of result will show the visual representation of the perfor-

mance of the algorithms. These were mentioned in 5.2.4. First set of images

for the box-plot representation.

The data base as we know has set of original image of which the degraded

version of images with both type and level have been stored. A set of degraded

images, of same degradation type and related to a single original image, are

taken and the SSIM, CM-SSIM & SSIM ALTERED are calculated. After

these calculations the values are correlated with the corresponding DMOS

values and stored. This procedure is carried out for all the set of original

images in the data-set. After this procedure the box-plot is plotted for SSIM,
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CM-SSIM & SSIM ALTERED. For convenience of observation absolute value

of the correlations are taken for plotting purpose. The results are as shown

below,
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Figure 5.1: Box-Plot for Pearson Correlation Values(LIVE)
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Figure 5.2: Box-Plot for Spearman Correlation Values(LIVE)

From figure 5.1 we can see that the variation in the Pearson correlation

values is very much less in comparison to that obtained by SSIM and these

values are almost closer to what the SSIM ALTERED shows. This helps in

concluding that the CM-SSIM can be an alternative method for calculation of

SSIM, rather than going for the down-sampling method used in SSIM. This

also helps to conclude in stating that CM-SSIM can be a good alternative

method to calculate the quality index in the spectral domain. It can also be

observed that the number of outlier for CM-SSIM are lesser than compared

to other two algorithm. The median shown for CM-SSIM is much closer to

1 than others.
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Figure 5.3: Box-Plot for Kendall’s tau Correlation Values(LIVE)

5.4 Chapter Summary

The chapter describes the results carried out for performance measurement

of the developed algorithm. The results obtained were discussed and studied

upon.



Chapter 6

Conclusion

6.1 Conclusion

From the set of result which were presented in section 5.3 we can conclude

that the developed algorithm can be helpful in estimation of quality of an im-

age in spectral domain using just the fourier coefficients. This was achieved

with help of CM theory. The results have also helped in concluding that

the developed algorithm can be replacement to the down-sampling method

mentioned in section 3.4.

6.2 Future Scope

This algorithm has helped us to understand the implementation of CM with
the quality measurement. The algorithm can be further developed for im-
plementing with more better compressed domain for images like the wavelet
or curvelet domain. This can be the future scope of research from this the-
sis. The real-time implementation of the image quality metric is another
reasearch area that can be worked upon.
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