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Abstract 

 

This dissertation project presents a novel method for the classification of vertical and 

horizontal two-phase flow regimes through pipes. For gas-liquid vertical and horizontal two-

phase flows, the goal of the study is to predict the transition region between the flow 

regimesusing the data generated by empirical correlations. The transition region is determined 

with respect to pipe diameter, superficial gas velocity, and superficial liquid velocity. Accurate 

determination of the flow regime is critical in the design of multiphase flow systems, which are 

used in various industrial processes, including boiling and condensation, oil and gas pipelines, 

and cooling systems for nuclear reactors. 

Hydrodynamic characteristics  of a  new mode  of  liquid-solid  fluidization,  termed  as  

"inverse  fluidization"  in  which  low  density  floating particles  are  fluidized with  downward 

flow of  liquid, are investigated. During the operation, three regimes, namely, packed, semi-

fluidization and fully fluidization are encountered. With the help of proposedempirical 

correlations different flow regimes have been simulated with respect to the varying pressure drop 

across the bed with changing liquid velocity.Inverse fluidization finds main application in 

environmental engineering for waste water treatment and in biochemical engineering and 

biological reactors, and a proper specification of the fluidized bed regime is required. 

One more study is concerned about gas fluidized beds. Gas fluidization is a very 

important process as it is used in many chemical engineering plant such as nuclear power 

stations, polymer industries etc. Sometimes quality of the fluidization in gas fluidized beds is 

affected by changing the diameter and densities of the particle for a specified flow regime.  

Theflow through pipes, inverted fluidized beds and gas fluidized beds has one 

commonality; there prevail different flow regimes and the classification among them 

isbeingaccomplishedhere with the application of Chemometrics techniques.Two Chemometrics 

techniques are used for the classification of different flow regimes encountered in all of the 

aforesaid situations namely, Linear Discriminant Analysis (LDA) and Support Vector Machine 

(SVM). Using LDA both binary and multi-classification is done.  When the SVM used, the 

support vectors of the concerned hydrodynamic data are identified and used to determine the 

transition zone between the multiphase flow patterns and between fluidized bed regimes. The 

models proved to be an accurate classification tool for the identification of flow regimes.  
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1.1 Introduction 

 

This chapter introduces the project. A brief theoretical description and industrial 

significance of flow regimes pertainin two phase flow through pipes,inverted fluidized bed and 

gas fluidized bed is presented here. Later on, a small detail of the characterization and 

classification techniques Linear Discriminant Analysis (LDA) and Support Vector Machine 

(SVM)are discussed. 

 

1.2 Multiphase flow 

 

Multiphase flow is the simultaneous flow of two or more phases in a conduit. The 

simultaneous flow causes certain flow patterns to evolve depending on the pipe size, the flow 

rates, the fluid properties, and the pipe inclination angle (when appropriate). Accurate 

determination of the flow regime is critical in the design of multiphase flow systems, which are 

used in various industrial processes, including boiling and condensation, oil and gas pipelines, 

and cooling systems for nuclearreactors.The problem of identifying flow regimes is the result of 

a lack of universal delineation criteria for the transition zones from one pattern to the other. 

Considerable progress has been made in defining flow patterns [1, 2]; however, there is no exact 

theory for the characterization of these patterns. Furthermore, the subjective character of the flow 

pattern identification often causes disagreements between researchers. While there is agreement 

on the existence of several flow patterns, there is often disagreement about the delineation point 

transition boundaries for each flow pattern. Such disagreements make the selection of an 

appropriate flow correlation a complicated issue. Mechanistic models are theoretical models that 

incorporate important variables coupled with state-of-the-art laboratory facilities for 

experiments. While mechanistic models offer an improvement in the understanding of 

multiphase flow systems, they are limited by the unavailability of precise solutions for the 

identification of different flow regimes. For most of the flow patterns observed, one or more 

empirical, closed-form relationships are required, even when a mechanistic approach is used. 

Therefore, it is important to develop a flow pattern model which minimizes the rate of 

misclassification errors (i.e., errors of predicting the wrong flow regime for a given set of flow 
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data) as well as extends the applicability of any new multiphase flow correlation to different pipe 

sizes, flow rates, and fluid properties. 

 

1.3 Inverse Fluidization 

 

Inverse  fluidization  is  a  technique in  which  solid  particles  having  lower  density 

than  that  of the  liquid,  are  kept  in  suspension  by the  downward  flow of continuous liquid  

phase. An important application of liquid-solid fluidized beds has been developed recently in 

biotechnology, namely, immobilized biocatalyst bioreactors [3].  Inverse fluidization finds main 

application in environmental engineering for waste water treatment and in biochemical 

engineering and biological reactors. In inverse fluidized bed there are mainly three regimes for 

the bed while operation namely as the packed bed regime, semi-fluidized regime and fully 

fluidized regime. Here also an accurate determination of all the regimes is required. 

 

1.4 Effect of diameter and density variation on fluidization in gas fluidized 

bed 

 In chemical engineering operations gas fluidization has its own importance as it is used in 

many processes where the perfect quality of fluidization is required. In the study it is shown that 

for a particular fluidization we can use a range of different materials and required fluidization is 

achieved. Though different materials can be used for a specified fluidization regime but there is 

an appreciable effect of changing the density and diameter of the fluidization particle. This 

observation is also important to have the appropriate operation. 

On the basis of the diameter and density fluidization particles are grouped mainly in four 

groups named as Geldart on the name of Professor D. Geldart, who named it. Design methods 

for fluidized beds can be tailored based upon the particle's Geldart grouping. 

Group A For this group the particle size is between 20 and 100 µm, and the particle density is 

typically less than 1.4g/cm
3
. Prior to the initiation of a bubbling bed phase, beds from these 

particles will expand by a factor of 2 to 3 at incipient fluidization, due to a decreased bulk 

density. Most powder-catalysed beds utilize this group. 
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Group B The particle size lies between 40 and 500 µm and the particle density between 1.4-

4g/cm
3
. Bubbling typically forms directly at incipient fluidization. 

Group C This group contains extremely fine and consequently the most cohesive particles. With 

a size of 20 to 30 µm, these particles fluidize under very difficult to achieve conditions, and may 

require the application of an external force, such as mechanical agitation. 

Group D The particles in this region are above 600 µm and typically have high particle 

densities. Fluidization of this group requires very high fluid energies and is typically associated 

with high levels of abrasion. Drying grains and peas, roasting coffee beans, gasifying coals, and 

some roasting metal ores are such solids, and they are usually processed in shallow beds or in the 

spouting mode. 

We have taken the particles of Geldart B and A for the study. 

 

1.5 Chemometric Techniques 

 

Chemometrics is the science of extracting information from chemical systems by data-driven 

means. It is a highly interfacial discipline, using methods frequently employed in core data-

analytic disciplines such as multivariate statistics, applied mathematics and computer science, in 

order to address problems in chemistry, biochemistry, medicine, biology and chemical 

engineering. Some large chemometric application areas have gone on to represent new domains, 

such as molecular modeling and QSAR, cheminformatics, the ‘-omics’ fields of genomics, 

proteomics, metabonomics and metabolomics, process modeling and process analytical 

technology. The field is generally recognized to have emerged in the 1970s as computers became 

increasingly exploited for scientific investigation. The term ‘chemometrics’ was coined by 

SvanteWold in 1971, and the International Chemometrics Society was formed shortly thereafter 

by SvanteWold and Bruce Kowalski, two pioneers in the field. 

Multivariate analysis was a critical facet even in the earliest applications of chemometrics. Two 

such techniques, namely LDA and SVM are used in this study for the discrimination purpose. 

 

 

http://en.wikipedia.org/wiki/Quantitative_structure%E2%80%93activity_relationship
http://en.wikipedia.org/wiki/Cheminformatics
http://en.wikipedia.org/wiki/Genomics
http://en.wikipedia.org/wiki/Proteomics
http://en.wikipedia.org/wiki/Metabonomics
http://en.wikipedia.org/wiki/Metabolomics
http://en.wikipedia.org/wiki/Process_analytical_technology
http://en.wikipedia.org/wiki/Process_analytical_technology
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1.5.1 Linear Discriminant Analysis (LDA) 

 

This type of approach involves maximizing the ratio of between class variance to within 

class variance. The main objective is to maximize this ratio so that adequate class separability is 

obtained. The class-specific type approach involves using two optimizing criteria for 

transforming the data sets independently. LDA perform dimensionality reduction, seeks to find 

directions along which the classes are best separated and takes into consideration the scatter 

within-classesbut also the scatter between-classes. 

 

1.5.2 Support Vector Machine (SVM) 

 

Support Vector Machines, are supervised learning machines based on statistical learning 

theorythat can be used for pattern recognition and regression. In this work SVM is used to make 

clear cut decision boundaries among different flow regimes. Statistical learning theory can  

identify rather  precisely the factors that need to be taken into account to learn successfully  

certain simple types  of algorithms, however, real-world applications usually need more  

complex models and algorithms  (such as neural networks), that makes them much harder to  

analyze theoretically. SVM can be seen as a linear algorithm in a high-dimensional space. 

 

1.6 Objective of the Thesis 

 

Following are the objectives of the present dissertation. 

 To classify the flow regimes in two phase flow through pipes 

 Classification amongflow regimes in invertedfluidized beds 

 Classification among flow regimes in gas fluidized beds using the Geldart B and 

A fluidization particles 

 The aforesaid classification among the prevailing flow regimes to be 

accomplished using two machine learning algorithms, namely, LDA and SVM. 
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1.7 Organization of the Thesis 

Chapter 1 presents the brief account of the present dissertation with the objective and the 

thesis outline. 

Chapter 2 renders theoretical postulations of the chemometric techniques which are used 

for classification. 

Chapter 3 deals with the literature of Two Phase Flow through Pipe, correlations used 

for the generation of hydrodynamic dataand development of LDA and SVM classifiers for the 

same. 

Chapter 4describes about the inverse fluidization and also has details about the 

correlation for data generation followed by the development of LDA and SVM classifiers for the 

same. 

Chapter 5 describes about the gas fluidized bed details and the development of LDA and 

SVM classifiers for the same. 

 

Chapter 6 deals with the conclusion and the recommendations of the project. 

 

All the references, appendices are attached in the last of the thesis. 
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This chapter deals with the theoretical and mathematical postulation of both the 

techniques, LDA and SVM. 

 

2.1 LDA 

 

There are many possible techniques for classification of data. Linear Discriminant 

Analysis (LDA) is commonly used technique for data classification and dimensionality 

reduction. Attempt to express one dependent variable as a linear combination of other features or 

measurements and the dependent variable for LDA is a categorical variable (i.e. the class label). 

Linear Discriminant Analysis easily handles the case where the within-class frequencies are 

unequal and their performances have been examined on randomly generated test data. This 

method maximizes the ratio of between-class variance to the within-class variance in any 

particular data set thereby guaranteeing maximal separability. The use of Linear Discriminant 

Analysis for data classification is applied to classification problem in patternrecognition. We 

decided to implement an algorithm for LDA in hopes of providing better classification compared 

to Principal components Analysis. LDA explicitly attempts to model the difference between the 

classes of data. PCA on the other hand does not take into account any difference in class. LDA 

doesn’t change the location but only tries to provide more class separability and draw a decision 

region between the given classes. This method also helps to better understand the distribution of 

the feature data[4].  

 

2.1.1 Different approaches to LDA 

 

Data sets can be transformed and test vectors can be classified in the transformed space 

by twodifferent approaches. 

 

2.1.1.1  Class-dependent transformation: 

 

This type of approach involves maximizing the ratio of 

betweenclass variance to within class variance. The main objective is to 

maximize this ratio so that adequateclass separability is obtained. The 

http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Categorical_variable
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class-specific type approach involves using two optimizing criteriafor 

transforming the data sets independently. 

 

 

2.1.1.2  Class-independent transformation:  

 

This approach involves maximizing the ratio of overall varianceto 

within class variance. This approach uses only one optimizing criterion to 

transform the data setsand hence all data points irrespective of their class 

identity are transformed using this transform. Inthis type of LDA, each 

class is considered as a separate class against all other classes. 

 

 

2.1.2 Mathematical Operation of LDA 

 

In this section, the mathematical operations involved in using LDA will be analyzed. 

 

1:  Formulate the data sets and the test sets, which are to be classified in the 

original space. For ease of understanding let us represent the data sets as a 

matrix consisting of features in the form given below: 

 

                                     

 

                                        2.1 

2:  Compute the mean of each data set and mean of entire data set. Let µ1 and 

µ2be the mean of set 1 and set 2 respectively and µ3 be mean of entire 

data, which is obtained by merging set 1 and set 2, is given by Equation 1.  

 

                           2.2 
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Where p1and p2 are the apriori probabilities of the classes. In the case of 

this simple two class problem, the probability factor is assumed to be 0.5. 

 

3:  In LDA, within-class and between-class scatter are used to formulate 

criteria for classseparability. Within-class scatter is the expected 

covariance of each of the classes. The scatter measures are computed 

using Equations 3 and 4. 

 

                           2.3 

 

Therefore for two class problem 

                                 2.4 

All the covariance matrices are symmetric. Let cov1 and cov2 be the 

covariance of set 1 and set 2 respectively. Covariance matrix is computed 

using the following equation. 

 

                             
      

2.5 

 

The between-class scatter computes using the following equation. 

 

                                 
     

2.6 

 

As defined earlier, the optimizing criterion in LDA is the ratio of 

between-class scatter to the within-class scatter. The solution obtained by 

maximizing this criterion defines the axes of the transformed space. 

However for the class-dependent transform the optimizing criterion is 

computed using equations 2.5 and 2.6. It should be noted that if theLDA is 

a class dependent type, forL-class separate optimizing criterion are 

required for each class. The optimizing factors in case of class dependent 

type are computed as 
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                                  2.7 

 

For the class independent transform, the optimizing criterion is computed 

as 

                                2.8 

 

4:  By definition, an Eigen vector of a transformation represents a 1-D 

invariant subspace of the vector space in which the transformation is 

applied. A set of these Eigen vectors whose corresponding Eigen values 

are non-zero are all linearly independent and are invariant under the 

transformation. Thus any vector space can be represented in terms of 

linear combinations of the Eigen vectors. A linear dependency between 

features is indicated by azero Eigen value. To obtain a non-redundant set 

of features all Eigen vectors corresponding to non-zero Eigen values only 

are considered and the ones corresponding to zero Eigenvalues are 

neglected. In the case of LDA, the transformations are found as the Eigen 

vector matrix of the different criteria defined in Equations 2.7 and 2.8. 

 

5:  For anyL-class problem we would always haveL-1non-zero Eigen values. 

This is attributed to the constraints on the mean vectors of the classes in 

eq. 2.2. The Eigen vectors corresponding to non-zero Eigen values for the 

definition of the transformation. For our 2-class example,having obtained 

the transformation matrices, we transform the data sets using the single 

LDA transform or the class specific transforms whichever the case may 

be. From the figures it can be observed that, transforming the entire data 

set to one axis provides definite boundaries to classify the data. The 

decision region in the transformed space is a solid line separating the 

transformed data sets thus for the class dependent LDA, 

 

                                          
2.9

 

For the class independent LDA 
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2.10 

 

Similarly the test vectors are transformed and are classified using 

the Euclidean distance of the test vectors from each class mean. The 

original data sets are shown and the same data sets after transformation are 

also illustrated. It is quite clear from these figures that transformation 

provides a boundary for proper classification. In this example the classes 

were properly defined but cases where there is overlap between classes, 

obtaining a decision region in original space will be very difficult and in 

such cases transformation proves to be very essential. Transformation 

along largest Eigenvector axis is the best transformation. 

 

Mat Lab instructions for LDA is explained in Appendix A 

 

2.2 SVM 

 

The Support Vector Machine (SVM) is a technique for classification and regression. 

Originally the SVM was devised for binary classification or classifying data into two types and 

extended for multi-classification. 

 

2.2.1: Binary and multi Classification 

 

Binary classification, as the name suggests, means classifying data into two categories. 

We are provided with some data points, or training patterns. We know for each of them, whether 

the pattern belongs to the first category or the second. Next, we are presented with some more 

data points but we do not know their respective classes. These new data points are called test 

patterns.The optimal separating hyperplaneseparates the two classes and maximize the distance 

to the closest point from either class. This provides a unique solution to the separating 

hyperplane problem. By maximizing the margin between the classes, it leads to better 

classification. 
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2.2.2: Linear and nonlinear classification 

 

In binary and multi-classification it can be a linear or nonlinear classification depending 

upon the type of data. For the classification of the data classifiers are formulated for 

classification. There are kernel function which helps in the classification of the data. Kernel 

function transforms the data from lower dimensional space to higher dimensional space making 

the data more visible and predictable. We have different type of kernel functions which can be 

used accordingly. Figure 2.1 shows the linear and nonlinear situations for classifications. 

Separate kernels are used for classifying both the cases[5]. 

 

(A)                                                                                 (B) 

 

 

Figure 2.1 :  (A) Nonlinear Classification using radial basis Kernel function, (B) Classification 

using Linear Kernel. 

 

2.2.3: Kernel Machine 

The original optimal hyper plane algorithm proposed by Vapnik in 1963 was 

a linearclassifier. However, in 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. 

Vapnik[6] suggested a way to create nonlinear classifiers by applying the kernel trick(originally 

proposed by Aizerman et al. to maximum-margin hyper planes. The resulting algorithm is 

formally similar, except that every dot product is replaced by a nonlinear kernel function. This 

allows the algorithm to fit the maximum-margin hyper plane in a transformed feature space. The 

transformation may be nonlinear and the transformed space high dimensional; thus though the 

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/w/index.php?title=Bernhard_E._Boser&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Isabelle_M._Guyon&action=edit&redlink=1
http://en.wikipedia.org/wiki/Vladimir_N._Vapnik
http://en.wikipedia.org/wiki/Vladimir_N._Vapnik
http://en.wikipedia.org/wiki/Kernel_trick
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Kernel_(integral_operator)
http://en.wikipedia.org/wiki/Feature_space
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classifier is a hyper plane in the high-dimensional feature space, it may be nonlinear in the 

original input space. 

Some common kernels include: 

 Polynomial (homogeneous):                          
  

 Polynomial (inhomogeneous):                                

 Gaussian radial basis function:                                         for √> 0. 

Sometimes parameterized using           

 Hyperbolic tangent:                                      for some ( not every) 

k> 0and c < 0, 

The kernel is related to the transform Ψ ( xi ) by the equation               

              

 

2.2.4: Formulation of the Quadratic Programme for the SVM 

 

We will derive the solution for the optimal canonical separating hyperplane when the 

data are linearly separable. We note that this hyperplane is a canonical separating hyperplane 

with the maximal margin.  

 

The margin        (   –   )   

 

Here the subscript w denotes the projection of the vectors x1 and x2 onto the weights 

vector direction. Taking projections along w, we get 

                      

                  

      –    

 

Where αand βare the angles between w and x1 and wand x2respectively. We know that 

 

              
                       

http://en.wikipedia.org/wiki/Homogeneous_polynomial
http://en.wikipedia.org/wiki/Radial_basis_function
http://en.wikipedia.org/wiki/Hyperbolic_function
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Substituting, this leads to 

 

       
 –   

             

 

And x1, x2 are the support vectors satisfying 

 

                             

 

We have 

                           

 

And finally we get  

                    2.11 

 

We could also get this result using the fact that the distance D between a support vector  

x1 and a canonical separating line is equal to half the margin M and therefore 

 

                                                ,  

from where 

                

as before.  

Therefore to maximize the margin M, we need to minimize  

 

              
      

         
         

2.12 

 

The optimal canonical separating hyperplane with the maximal margin will specify 

support vectors that are the training points closest to the Optimal Canonical Separating 

Hyperplane (OCSH) by where NSVdenotes the total number of support vectors.  At the same 

time, all training points must satisfy the following inequalities. 
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                    , j = 1…l    2.13 

 

Thus to find the optimal separating hyperplane with the maximal margin, we need to 

minimize || w||, which is the same as minimizing || w ||
2
. You will recognize that this is a standard 

non-linear optimization problem with inequality constraints, which can be solved by the method 

of Lagrange multipliers. 

 

Let  

                            {  [ 
        ]–   }(for i = 1 to l )  

           2.14 

where the αi's are the Lagrange multipliers. The Lagrangian L is to be minimized with 

respect to wand band maximized with respect to the non-negative αi's. Instead of solving the 

problem in the primal space (the space of w and b) it is more insightful to solve the problem in 

the dual space (the space of the αi's). Applying the Karush-Kuhn-Tucker conditions, at the 

optimal solution (w0, b0 , α0 ) the derivatives of the Lagrangianwith respect to the primal 

variables will vanish, so that 

 

                                (for i = 1 to l)   2.15 

                               (for i = 1 to l)   2.16 

 

Applying the complementary conditions we have  

 

         
          –             i = 1…l    2.17 

 

Using equations further 

 

                             
       2.18 

 

We need to maximize the dual LagrangianLd(α) with respect to the non-negative αi's 

 

       i= 1…l 
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The dual LagrangianLd(α) is expressed only in terms of the training data, and it depends 

on the scalar product of the input training patterns – xixj . This is very important because we will 

see that instead of using xixj we will be able to use other types of inner products. 

 

Our formulation is a standard Quadratic Programming problem. We can put this in matrix 

notation. 

 

Maximize                                 2.19 

 

Subject to 

         

       

 

where H denotes the Hessian matrix                        
   and f = 1 is a unit vector. 

 

After we find out the solution α0of the QP, we can find the parameters w0and b, as follows  

 

             ,i = 1…l     2.20 

                                 –                     

 

when using a kernel function K, we will replace xi
T
xj by K ( xixj ) = Φ

T
( xi ) Φ( xj )and 

subsequently. 
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Two Phase Flow through Pipe 
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In this chapter two phase flow through a pipe is explained, and information about all the 

flow regimes with their characteristics is provided. All the correlations, which are used for the 

generation of data,along with the development of LDA and SVM classifiers are presented here. 

 

3.1 Flow Patterns in Two-Phase Flow 

 

Simultaneous flow of several fluids with different fluid flow properties is more complex 

than single-phase flow[6]. The influence of one phase over the other permits a flow regime (i.e., 

a specific distribution of each phase in the pipe relative to the other phase) to develop. Such 

apattern may become unstable when the flow conditions change, consequently transitioning to 

another pattern,which at some point can also become unstable. Bychanging the flow rates of the 

gas and the liquid, thistransition from one pattern to another can go on untilall possible flow 

regimes can be observed. Some of theconventionally identified flow regimes are as 

followsannular flows, bubble flows, churn flows, stratifiedsmooth flows, stratified wavy flows, 

and dispersedbubble flows. 

 

3.1.1: Vertical Flow.The vertical upward flow has four primary flow patterns, as 

accepted by most researchers[7].Their characteristics are described below. 

 

3.1.1.1: Bubble Flow: In the bubble flow regime, the uniformly distributed gas 

phase flows as discrete bubbles in a continuous liquid phase. Bubble flow can be further 

divided into two types of flow, bubbly and dispersed bubble (DB) flow. In bubbly flow, 

the presence of slippage in the bubble flow allows relatively fewer and larger bubbles to 

move faster than the liquid phase, while in DB, numerous small bubbles are transported 

by the liquid phase due to the absence of slippage in the bubble flow, causing no relative 

motion between the two phases. 

 

3.1.1.2: Slug Flow: In slug flow (which appears upon increasing the gas flow rate 

in bubble flow), the bubble concentration becomes high, coalescence occurs, and the 

largest bubbles are of the same cross-section as that of the pipe. Slug flow is 

characterized by a series of slug units composed of bullet-shaped gas pockets called gas 
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plugs or Taylor bubbles, plugs of liquid called slugs, and a film of liquid around the 

Taylor bubble flowing vertically downward (there are also some gas bubbles distributed 

throughout the liquid). The liquid slugs carrying the gas bubbles bridge the pipe and 

separate two consecutive Taylor bubbles. 

 

3.1.1.3: Churn Flow: Churn flow is a highly disorganized flow of a gas-liquid 

mixture, in which the vertical motion of the liquid is oscillatory and alternating. There are 

similarities with slug flow in that both phases do not exhibit any dominance over the 

other, i.e., neither phase appears to be continuous. The difference from slug flow is that 

the gas plugs become narrowerand more irregular; the continuity of the liquid in the slugs 

is repeatedly destroyed by regions of high gas concentration, and the thin film of liquid 

surrounding the gas plugs is absent. Both slug and churn flow can be considered 

intermittent flow. Some researchers also define a sub region of the churn flow as froth 

flow, 15 which occur at higher gas velocities and exhibit a frothy mixture consisting of 

large bubbles. 

 

3.1.1.4: Annular Flow: In annular flow, gas flowsalong the center of the pipe. 

The liquid flows upward, both as film and as dispersed droplets in the gas core. At high 

gas velocities, liquid becomes dispersed in the gas core, leaving a very thin film of liquid 

flowing along the pipe wall. Vertical flow pattern maps are used to predict the flow 

pattern in a vertical upward pipe that will occur for a given set of parameters, namely, 

flow rates, fluidproperties, and pipe diameter. Taitel et al. [8] developed a theoretical 

model for gas-liquid flows in vertical tubes. They identified the four distinct flow patterns 

mentioned above: bubble, slug, churn, and annular flow. They studied the physical 

mechanisms, taking into account the influence of fluid properties, pipe size, and flow 

rates by which regime transitions occur, and developed models for transition criteria. 

Weisman and Kangusing experimental data, pro-posed a theoretical model for vertical 

and upwardly inclined lines, with the exception of the vertical bubble-intermittent 

transition, which the authors contended can be described as the relationship between the 

gas phase and the total Froude number. The model also incorporated the effect of fluid 

properties and pipe diameters. They concluded that the behavior pattern is consistent with 
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that seen in horizontal lines for the 2.5 cm and above pipes, both for the dispersed and 

annular transitions. McQuillan and Whalley [9] developed a theoretical approach for flow 

patterns in vertical two-phase flow. A correlation was developed for the plug flow-churn 

flow transition based on the assumption that the gas flow rate in the plugs increases until 

it causes the flooding of the falling liquid film around the plug. Modifications were also 

made on the analysis for determining the stability of bubble flow and annular flow, 

respectively. Miet al. [10]developed a neural network (NN) model for vertical flow 

regime identification from the impedance signal of laboratory instruments during a two-

phase flow experiment. The NN model was based on two-phase flow models, such as the 

drift-flux model and a slug-flow model, and a two-phase flow experimental database to 

obtain the impedance used as the input data for training and testing of the NN model. It 

have beenchosen the impedance as input to the NN model. Impedance signals were 

measured by an impedance void meter. In our work, we adopted the superficial phase 

velocities and the pipe diameter as inputs for the MSVM model, instead of using the 

impedance as a model input, to develop a generally useful tool that can be used when a 

database already exists. 

 

3.1.2: Horizontal Flow: Horizontal flow patterns are more complex than vertical flows 

due to gravitational forces. Gravity causes an asymmetric distribution of the phases by forcing 

the liquid phase to progress toward the bottom of the pipe. Described briefly below are the main 

patterns of horizontal flow that are widely accepted. 

 

3.1.2.1: Stratified Smooth Flow (SS): For the SS flow, the gravitational 

separation of the liquid and gas phase is complete. Liquid flows at the bottom of the pipe, 

and gas flows at the top. 

 

3.1.2.2: Stratified Wavy Flow (SW): At increasing gas velocity in the SS flow, 

large waves start to develop on the liquid stratum giving the Stratified Wavy flow regime. 

Both SS and SW can be considered stratified flows. 
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3.1.2.3: Slug Flow: At increasing gas velocity in the SW flows, the waves of the 

liquid phase become largeenough to reach the upper surface of the pipe. The liquidwets 

the whole pipe surface, allowing liquid film to cover the surface between the bridging 

waves or slugs. 

 

3.1.2.4: Plug Flow: This is similar to the verticalupward slug flow, with bullet-

shaped bubbles that tend to move along in a position closer to the top of the pipe. The 

liquid layer separating the gas bubble from the wall also tends to be thicker at the bottom 

of the pipe than at the top. Both slug and plug flows can be considered as intermittent 

flows. Also part of intermittent flows is the elongated bubble flow, which is considered a 

limiting case of slug flow free of entrained gas bubbles. 

 

3.1.2.5: Dispersed Bubble Flow (DB): Such flow occurs at high liquid rates and 

low gas rates. The gas phase is distributed as discrete bubbles within a continuous liquid 

phase. It can be characterized as a pipefull with a liquid that has small bubbles dispersed 

uniformly throughout. 

 

3.1.2.6: Annular Flow: This is similar to the vertical annular flow, which occurs 

at higher gas velocities, except that the liquid is much thicker at the bottom of the pipe 

than at the top. Horizontal flow pattern maps are used to predict the flow pattern in a 

horizontal pipe that will occur for a given set of parameters, namely, flow rates, fluid 

properties, and pipe diameter. A theoretical approach is proposed, perhaps the most 

significant contribution to the prediction of flow patterns in horizontal and near-

horizontal gas-liquid flow. The regimes identified were: dispersed bubble, intermittent, 

stratified smooth and wavy, and annular flow. They showed that transitions between flow 

regimes were controlled by the fluid properties and the pipe size and can be represented 

by a set of two dimensionless groups. The test cases for flow pattern covered a wide 

range of fluid properties in pipes varying in diameter from 1.2 to 5 cm. Comparisons 

were made with available literature data, and a revised dimensionless correlation was 

presented. Osman and Ternyik et al. [9] developed a NN model for horizontal flows using 

the gas and liquid fluid properties and flow rates, the liquid holdup, the pressure, the pipe 
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diameter, and the temperature as inputs into the NN model. The output was a horizontal 

flow regime map. The NN models were successful, reporting better predictions and 

higher accuracy than the empirical correlations for the group of data used. 

 

3.2 Correlations for Flow regimes 

 

3.2.1 Vertical Flow:The transition equations for the data generation used for the 

prediction of the vertical flow regimes map were based on the work of McQuillan and Whalley 

[9] and are as follows. 

 

Bubble-intermittent flow transition  

 

               
                –         

         
3.1 

 

Bubble-dispersed bubble flow transition 

 

                
                    –                      

      
3.2 

  

Transition to annular flow 

 

                                        
3.3 

 

 

3.2.2 Horizontal Flow:Horizontal flow patterns aremore complex than vertical flows due 

to gravitationalforces. Gravity causes an asymmetric distribution of thephases by forcing the 

liquid phase to progress towardthe bottom of the pipe. 

The transition equations for the data generation used for the prediction of the horizontal 

flow map were based on the work of Weiseman[8]. 
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Stratified-intermittent transition 

 

                                         
       

3.4 

 

Stratified wavy-stratified smooth transition 

 

                                                            
     

3.5 

            
 

 

Transition to annular flow 

 

                 
                    

                     –                         
                

      3.6 
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3.3 Result and discussion 

 
3.3.1: Classification using LDA Technique 

Figure 3.1 shows the classification of the flow regimes using Linear Discriminant 

Analysis 

 

 

 
Figure 3.1: (A) Multi-Classification [all three regimes are separated together] (B) Binary 

Classification Intermittent and Annular Flow Regimes (C) Binary Classification Intermittent and 

C D 

A B 
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Bubble Dispersed Flow Regimes (D) Binary Classification Bubble Dispersed and Annular Flow 

Regimes. 

 

3.3.2:  Classification using SVM Technique 

Figure 3.2 shows the classification of the flow regimes using Support Vector 

Machine. 

 

 

 
 

Figure 3.2: (A) Multi-Classification [all three regimes are separated together] (B) Binary 

Classification Intermittent and Bubble Dispersed Flow Regimes (C) Binary Classification 

A B 

C D 
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Intermittent and Annular Flow Regimes (D) Binary Classification Bubble Dispersed and 

Annular Flow Regimes. 

 
Figure 3.3: Multi-classification of all regimes together using LDA 

 

We used literature based data for the analysis. Correlations provided in research papers of 

various scientists and researchers are used for generating the data for the study. The data sets for 

different flow regimes which are provided in the appendix C. For different flow regimes of flow 

through a pipe, classification is done. Binary and multi classification of the data is done by using 

both the techniques Linear Discriminant Analysis and Support Vector Machine. The data is 

classified and visible and predictable by using these techniques. 

In Figure 3.1 LDA classification is done and stem plot is drawn. Figure 3.1 - A shows the 

classification of all the flow regimes together and each class is represented with different color 

circle. Similarly Figure 3.1 - B, C, D represents the binary classification by taking two classes 

together only. In Figure 3.2– Aplot is made forthe classification of all the regimes together but 

by using different technique SVM.And Figure 3.2 B, C, D shows the plots for binary 

classification of flow regimes.  

We used two functions for plotting the data namely as plot and stem function. For 

understanding plot(y) plots the values in vector y versus their index. plot(x,y) plots the values in 

vector y versus x. plot produces a piecewise linear graph between its data values. With enough 

data points it looks continuous. Using stem(y) the data sequence y is plotted as stems from the x 

axis terminated with circles for the data values. stem is the natural way of plotting sequences. 
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stem(x,y) plots the data sequence y at the values specified in x.stem(Y) plots the data 

sequence, Y, as stems that extend from a baseline along the x-axis. 

In figure 3.3 classification of all the regimes together is done using LDA and on the basis 

of the axial parameters regimes are drawn.  

 Mat Lab Instructions are provided for this formulation in Appendix B. We used 

polynomial classifiers for multi-classification of data. Classifiers are also provided in Appendix 

B. 

Data was generated using appropriate correlations provided. Complete data sets are 

provided in the Appendix C, a sample calculation for generation of data is also mentioned in the 

appendix.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mathworks.in/help/matlab/ref/stem.html#inputarg_Y


37 
 

 

 

 

 

 

 

Chapter 4 

Flow through Two Phase 

Inverse Fluidized Bed 
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4.1: Flowthrough Inverse fluidized bed 

 

Inverse  fluidization  is  a  technique  in  which  solid  particles  having  lower  density 

than  that  of the  liquid,  are  kept  in  suspension  by the  downward  flow of continuous liquid  

phase.  In  three  phase  system,  gas  is  introduced  countercurrently  to  the  liquid  flow [9]. 

This chapter provides the literature about different fluidized bed regimes in two-phase Inverse 

fluidized bed. All the correlation corresponding to each fluidized bed regime is provided.Finally 

the development of LDA and SVM based classifier designs are provided. 

 

4.2: Literature and Correlations for Fluidized Bed regimes 

Liquid-Solid Circulating Fluidized Beds (LSCFBs) are gaining in popularity for their 

wide range of potential applications because of their many advantages including significantly 

high mass and heat transfer rates, improved liquid-solid contact efficiency, easy control of large 

quantity of particles etc. The design, scale up and operation of such liquid-solid continuous 

systems require information of phase holdup and flow patterns referred to as the hydrodynamic 

characteristics. 

Fluidised bed reactors have proved their versatility for carrying out aerobic fermentation 

process, catalytic reaction and biological treatment of waste water. Fluidisationwhere the liquid 

is a continuous phase is commonly conducted with an upward flow of liquid in liquid-solid 

systems or with an upward co-current flow of gas and liquid in a gas-liquid-solid system. Under 

these fluidising conditions the solid particles has a density greater than that of liquid. When the 

density of solid particles are less than the continuous liquid phase then fluidisation can be 

achieved by a downward flow of liquid to counter net buoyancy force of the particles. Such type 

of fluidisation is termed as inverse fluidisation. The inverse fluidised bed reactor (IFBR) is a 

very efficient system for the biological treatment of waste watersystem when compared to an up-

flow fluidised bed reactor because in an inverse fluidised bed reactor, the control of biofilm 

thickness is achieved within a very narrow range.The inverse fluidised bed reactor is also used in 

ferrous iron oxidation by Thiobacillus ferro-oxidants and for the hydrolysis of milk protein. 
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Furthermore, an object with a higher density than the bed will sink, whereas an object 

with a lower density than the bed will float, thus the bed can be considered to exhibit the fluid 

behaviour expected of Archimedes' principle. As the "density", (actually the solid volume 

fraction of the suspension), of the bed can be altered by changing the fluid fraction, objects with 

different densities comparative to the bed can, by altering either the fluid or solid fraction, be 

caused to sink or float. 

In fluidized beds, the contact of the solid particles with the fluidization medium (a gas or 

a liquid) is greatly enhanced when compared to packed beds. This behaviour in fluidized 

combustion beds enables good thermal transport inside the system and good heat transfer 

between the bed and its container. Similarly to the good heat transfer, which enables thermal 

uniformity analogous to that of a well-mixed gas, the bed can have a significant heat-capacity 

whilst maintaining a homogeneous temperature field. 

In the reference of the study a lot of work has been done in this research area. R.J. 

FeminBendict, G. Kumaresan, M. Velan [11] did the study regarding the bed expansion and 

pressure drop by varying the flow rate. A perfect situation was determined in the study for a 

specified operation which really corresponds to a specific fluidized bed situation. And simply it 

can be understand that considering the aspect of best heat transfer and mass transfer the 

specification for fluidized bed is required. In one more doctorate thesis by Long Sang [12] 

importance of this specification and classification can be seen. 

In the same aspect we have classified the fluidized bed situation, and obviously as clear 

from the referred studies that for a specified fluidized bed situation pressure drop and velocities 

are considerable and they have a specified range as well. On the basis of these parameters we 

have classified the fluidized bed regimes. In our study we have taken the particles having the 

density lower than that of the liquid. 

Correlations  are  proposed for pressure  drop  in  the  packed bed regime, for bed  

expansion  in  the  semi fluidized bed  regime  and  in  the  fully  fluidized  bed  regime,  for  

onset  ofsemi fluidization and  for the  minimum  fluidization  of the  complete bed  of solids.  

All  these  correlations are  used  to  predict  the  overall bed  pressure  drop  in  the  whole  range  

of operation [10]. 

 

http://en.wikipedia.org/wiki/Archimedes%27_principle
http://en.wikipedia.org/wiki/Packed_bed
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4.2.1: Packed bed regime 

 

The friction factor correlation obtained is as follows: 

 

          
       , 325 <Rem< 5760     4.1 

 

Where the friction factor is defined as 

 

              
           

                 4.2 

 

 

4.2.2: Semi fluidization regime 
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Height for the correlations 
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4.2.3: Fully fluidized bed regime 

 

                                            
4.6 

 

10
6 

<Ar< 7*10
7
 , 0.4< (ρ-ρs/ρ) <0.9 
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The pressure drop due to fluidized solids can be estimated from the equation 

 

                                  4.7 

 

Where 

 

            –                   4.8 

 

We generated the data by using these correlations. Data sets with sample calculation for fluidized 

bed regimes are provided in Appendix D. 

 

4.3: Result and discussion 

 
4.3.1: Classification using LDA Technique 

Figure 4.1 shows the classification of Fluidized Bed regimes using Linear 

Discriminant Analysis. 

 

 

 
A B 
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Figure 4.1: (A) Multi-classification [classification of all fluidized bed regimes together], (B) 

classification of Semi Fluidized and Packed Bed regime, (C) classification of Semi Fluidized and 

Fully Fluidized regimes, (D) classification of Fully Fluidized and Packed Bed regime. 

 

4.4.2:  Classification using SVM Technique 

 Figure 4.2 shows the classification of the fluidized Bed regimes using Support 

Vector Machine Technique. 

 

 

 

C D 

A 
B 
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Figure 4.2: (A) Multi-classification [classification of all the fluidized bed regimes together], (B) 

classification of Semi Fluidized and fully fluidized Bed regime, (C) classification of Semi 

Fluidized and Packed Bed regime, (D) classification of Fully Fluidized and Packed Bed regime. 

 

 

 

Figure 4.3: Multi-classification of all fluidized bed regimes using LDA 

 

For different fluidized bed regimes while Two Phase Inverse Fluidization, classification 

is done. Binary and multi classification of the data is done by using both the techniques Linear 

C D 
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Discriminant Analysis and Support Vector Machine. The data is classified and visible and 

predictable by using these techniques. 

 

In Figure 4.1 LDA classification is done and stem plot is drawn. Figure 4.1 - A shows the 

classification of all the packed regimes together and each class is represented with different color 

circle(supportvectors ). Similarly Figure 4 - B, C, D represents the binary classification by taking 

two classes together only. In Figure 4.2 - A plot is made for the classification of all the packed 

bed regimes together but by using different technique SVM.  And Figure 4.2 B, C, D shows the 

plots for binary classification of flow regimes using SVM. In Figure 4.3 classification of all the 

regimes is done using LDA. Scattered data in Figure 4.3 can be seen in the result plot in their 

respective regimes. Regimes are drawn by taking the axial parameters in the consideration. 
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Chapter 5 

Effect of diameter and density 

variation on fluidization in gas 

fluidized bed 
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5.1: Effect of variation in the diameter and density of fluidization particles 

in Geldart B Fluidization regime 

 

In chemical engineering operations gas fluidization has its own importance as it is used in 

many processes where the perfect quality of fluidization is required. In the study it is shown that 

for a particular fluidization we can use a range of different materials and required fluidization is 

achieved. We showed in the study that though different materials can be used for a specified 

fluidization regime but there is an appreciable effect of changing the density and diameter of the 

fluidization particle.George D. Cody, JayatiJohri, David Goldfarb[13] did a study showing the 

effect of diameter and desity variation of particles. They concludes that a great effect in the 

characteristic velocities of fluidization can be seen.So this observation is also important to have 

the appropriate operation. We have taken the particles of Geldart B and A fluidization for the 

study. The materials which we have used are Glass, Nickel, ASN Polymer. 

 

The data table for the particles is 

Table 1: data for different Geldart B and A fluidization particles. 

 

Measurement                    D      
        

           n 

ASN Glass 

R87 

2.45 210 149 128 1.6 0.613 4.718 

ASN Glass 

R63 

2.45 210 210 121 3.7 0.597 4.765 

ASN 

Polymer 1 

1.04 210 320 174 3.5 0.601 4.735 

ASN 

Polymer 2 

1.04 210 650 178 10.0 0.640 4.639 

ASN Nickel 8.9 181 76 44.8 4.27 0.511 5.025 

 

 

Five different types of particles having different densities and diameters are used. All the 

properties of the particles are mentioned in the table 1 (appendix E). 
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 For the generation of the data, the following correlations are used from literature [13]. 

 

The semi-empirical Ergun Equation, defines the minimum fluidization velocity, for low 

Reynolds numbers, as the superficial gas velocity at which the viscous pressure drop across the 

fixed bed is equal to the weight of the bed, 

   
   

(     )
 

       
  

     

  
  

 

for later convenience, we have introduced the Stokes velocity, 

    
     

    
  

The sphere concentration     , at    
  is the only free parameter. 

 

The correlation used for the calculation of superficial gas velocity is widely used 

Richardson Zaki equation. 

 

            
  

The data generated is mentioned in the Appendix E. 

 

 

5.2:  Classification Using LDA (Diameter and Density Variation) 

 

Furthermore the classification of the data is done when it was having the distinction 

because of the density and diameter variation. Figure 5.1 shows the results of the study which 

clearly shows the classification for particles having diameter and density variation. 
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Figure 5.1: Figure 5.1 A,B shows the classification of the data generated for the particles 

of different diameter and density. 

B 

A 
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Figure 5.1 shows the fluctuation velocity variations in the onset fluidization velocity and 

gas superficial velocity by using particles of different diameter and density. Basically study tells 

that all the particles used in this study are appropriate for the operation in Geldart B regime ( 

which has its own fluidization properties), but still they can affect the quality of the fluidization. 

In the figure we can see that how the velocity relation variations are taking place thought all the 

particles fall in Geldart B and A fluidization. In figure B also variation is classified using another 

fluidization parameter. So we really need to select the appropriate particles for desired 

fluidization and requirements, and by this study it can be analyzed with a ease. For figure 5.1 A 

dataset 1,2,3,4,5 are used and for 5.1 B dataset 11,12,13,14,15 are used provided in Appendix E 

with sample calculation. 
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Chapter 6 

Conclusion and 

Recommendations 
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Identification and separation of different regimes encountered in many chemical 

engineering processes such as, flow regimes in two phase flow through a pipe, fluidized bed 

regimes in inverse fluidized bed, is the main objective of the project. One more study is added to 

work which shows the classification of the fluidization process if we vary the diameter and the 

density of the particles. A data set for both flow regimes through pipe fluidized bed regimes and 

for density and diameter variation situation was generated using appropriate correlations. Though 

the data was not predictable by seeing and it was too large as well, so classification was difficult 

but by using data driven methodology SVM and LDA it was done. By using both the techniques 

binary (two class) and multiclass separation is done. 

Firstly classification is done for the flow regimes for two phase flow in a pipe. By taking 

any two regimes data classification (binary) is done and by taking all the class together multi 

classification is done. Similar work is done by using the same techniques for fluidized bed 

regimes named as packed bed regime, Semi fluidized bed regime and fully fluidized bed regime 

for an inverse fluidized bed. 

For Gas fluidization one more aspect of density and diameter variation is studied and by 

using LDA classification of the data is done. The classification shows that within the range of a 

specified fluidization regime the quality of the fluidization can change still we have used already 

specified particles for the regime. The technique is appropriate for the classification of the data 

of particles having different density and diameter. By using this appropriate particles can be 

selected for the operation. 

As both the techniques LDA and SVM seems easy to handle for this type of robust and 

too large data associated with many chemical engineering plant operations. We used it for the 

characterization of flow regimes for two phase flow in pipes and fluidized bed regimes in inverse 

fluidization. But as we see it is a useful chemometrictechnique which can be used for binary or 

multi classification of data in many processes where data handling is really an issue for 

identification and characterization of the data. 
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Appendix A 

Mat Lab Code for Linear Discriminant Analysis For Binary and Multi-

Classification 

clc 
clearall 
% loading the data files 

 
loaddataset1.txt 
loaddataset2.txt 
loaddataset3.txt 
loaddataset4.txt 
loaddataset5.txt 
% load dataset4.txt 
% load dataset5.txt 

 
savedataset1 
savedataset2 
savedataset3 
savedataset4 
savedataset5 
% calculation of mean of each class  

 
m1=mean(dataset1); 
m2=mean(dataset2); 
m3=mean(dataset3); 
m4=mean(dataset4); 
m5=mean(dataset5); 
% overall mean 

 
m=(m1+m2+m3+m4+m5)/5; 

 
% class varience matrices 

 
s1=cov(dataset1); 
s2=cov(dataset2); 
s3=cov(dataset3); 
s4=cov(dataset4); 
s5=cov(dataset5); 

 
% within class matrix 

 
Sw=s1+s2+s3+s4+s5; 

 
% number of samples of each class 

 
N2=size(dataset1,2); 
N1=size(dataset2,2); 
N3=size(dataset3,2); 
N4=size(dataset4,2); 
N5=size(dataset5,2); 
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% beween class matrix 

 
SB1 = N1*(m1-m)*(m1-m)'; 
SB2 = N2*(m2-m)*(m2-m)'; 
SB3 = N3*(m3-m)*(m3-m)'; 
SB4 = N4*(m4-m)*(m4-m)'; 
SB5 = N5*(m5-m)*(m5-m)'; 

 
SB = SB1+SB2+SB3+SB4+SB5; 

 
% computing the LDA projections 

 
inSw=inv(Sw); 
inSw_by_SB=inSw*SB; 

 
% getting the projection vectors 

 
[V,D]=eig(inSw_by_SB); 
W1=V(:,1); 
W2=V(:,2); 

 
% plotting of the scatter plot for visualisation 

 
hfig=figure; 
axes1=axes('Parent',hfig,'FontWeight','bold','FontSize',12); 
hold ('all'); 
f1='the first feature'; 
f2='the second feature'; 

 
% xlable(f1) 
% % ,'FontWeight','bold','FontSize',12); 
% ylable(f2) 
% ,'FontWeight','bold','FontSize',12); 

 
% scatter of data and projection of mean of first class 

 
scatter(dataset1(:,1),dataset1(:,2),'r','LineWidth',2,'Parent',axes1); 
holdon 

 
plot(m1(1),m1(2),'co','MarkerSize',8,'MarkerEdgeColor','c','Color','c','LineW

idth',2,'MarkerFaceColor','c','Parent',axes1); 
holdon 

 
% scatter of data and projection of mean of second class 

 
scatter(dataset2(:,1),dataset2(:,2),'y','LineWidth',2,'Parent',axes1); 
holdon 

 
plot(m2(1),m2(2),'mo','MarkerSize',8,'MarkerEdgeColor','m','Color','m','LineW

idth',2,'MarkerFaceColor','m','Parent',axes1); 
holdon 
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% scatter of data and projection of mean of third class 

 
scatter(dataset3(:,1),dataset3(:,2),'b','LineWidth',2,'Parent',axes1); 
holdon 

 
plot(m3(1),m3(2),'yo','LineWidth',2,'MarkerSize',8,'MarkerEdgeColor','y','Col

or','y','LineWidth',2,'MarkerFaceColor','y','Parent',axes1); 
holdon 

 
% scatter of data and projection of mean of fourth class 

 
scatter(dataset4(:,1),dataset4(:,2),'g','LineWidth',2,'Parent',axes1); 
holdon 

 
plot(m4(1),m4(2),'ro','LineWidth',2,'MarkerSize',8,'MarkerEdgeColor','r','Col

or','r','LineWidth',2,'MarkerFaceColor','r','Parent',axes1); 
holdon 

 
% scatter of data and projection of mean of fifth class 

 
scatter(dataset5(:,1),dataset5(:,2),'v','LineWidth',2,'Parent',axes1); 
holdon 

 
plot(m5(1),m5(2),'go','LineWidth',2,'MarkerSize',8,'MarkerEdgeColor','g','Col

or','g','LineWidth',2,'MarkerFaceColor','g','Parent',axes1); 
holdon 
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Appendix B 

The MATLAB swSVMSoftware 

We have a programmed a simple SVM implementation in MATLAB. The example and 

the figures in the preceding pages where obtained using this software. There are only two choices 

for the kernel function that have been implemented, namely, Gaussian RBF and Linear.  

Description of the Functions 

There are five MATLAB functions, and by their function we have broken them into three 

categories.  

Functions for SVM Training and Classification 

There are three functions that implement the SVM- swSVM, swquadandswSVMclassify. 

The function that solves the QP for obtaining the SVM solution is swquad.  The function 

swSVMclassifyclassifies test patterns, using the solution obtained previously by swquad. The 

functionswSVMis like a main function that accepts as inputs the training patterns and their 

labels; the test patterns, the choice of the kernel and the sigma parameter (only needed for the 

RBF kernel). It calls swquadfor solving the Quadratic Program to perform SVM separation and 

then calls swSVMclassify, which classifies the test patterns. If the data are two dimensional, 

swSVM also plots the training patterns, the margin and the decision boundary by calling swPlot. 

Plotting Related Functions  

The function swScatterdoes a scatter plot of the training patterns; and it outputs the 

patterns of category 1 as blue plus markers and the patterns of category 2 as red asterisk. (We 

assign y=1 to the patterns of category 1 and y= -1 to the patterns of category 2, but this can be 

reversed with no loss of generalization). The function swPlotis used to plot the training patterns 

and the decision boundary as well as the margin of the SVM. This function uses the outputs of 

the swquad function. The function swPlot calls the function swScatter. 
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Helper functions  

There is one helper function swScale, which is called by other functions for scaling the 

training patterns before plotting the margin and decision boundaries.A Sample Session of the 

swSVM MATLAB software.  

Mat Lab Code for Binary Classification 

 

clc; 
clearall; 
closeall; 

 

% loading the data files 

 
load('fully.txt');  
load('semi.txt'); 

 

% making data files from source files 

 
data1=[fully(:,1),fully(:,2)]; 
data2=[semi(:,1),semi(:,2)]; 
data=[data1;data2]; 
x=data(:,1); 
y=data(:,2); 

 
% loop for the classification 

 

fori=1:40 
if(i<=20)     
c(i)={'fully'}; 
else 
c(i)={'semi'}; 
end 
end 
c=c'; 

 
% defining parameters (SVM algorithm) 

 

kerneltype='rbf';  
groups = ismember(c,'fully'); 

[train, test] = crossvalind('holdOut',groups); 

 

cp = classperf(groups); 
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); 
sigma=1;  
 

alpha=svmStruct.Alpha; 
 

Xs=svmStruct.SupportVectors(:,1); 
Ys=svmStruct.SupportVectors(:,2); 
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[W0,b0,alpha]=swquad(x,y,Xs,Ys,kerneltype,sigma);  
figure; 
 

swPlot(x,y,'rbf',alpha, W0,b0 ,sigma);  
class=swSVMclassify(alpha, b0, x,y,test,kerneltype,sigma) 

 

 

This part of appendix contains the Multi-classification SVM flow pattern transition 

classifiers for vertical and horizontal flow regime maps. The flow pattern class is in parentheses 

(+1or-1). 

 

MSVM, P=1, C=1 Classifiers for Vertical Flow Regimes 

 

Bubble (+1)-intermittent (-1) flow transition 

f(x) = sign(-1.6546 ln( vSG ) + 1.3053 ln( vSL) - 0.4277 

Intermittent (+1)-annular (-1) flow transition 

f(x) = sign(-1.8081 ln(vSG ) +0.0798 ln(vSL)+ 4.1069 

 

MSVM, P=2, C=0.1 Classifiers for Vertical Flow Regimes. 

 

Bubble (+1)-intermittent (-1) flow transition 

f(x) = sign(-0.8382 ln(vSG)+0.8919 ln(vSL)-0.0596 ln(vSG) ln(vSL )   

 +0.0516 ln(vSG )
2
 + 0.1725 ln(vSL )

2
- 0.8166 

 Intermittent (+1)-annular (-1) flow transition 

f(x) = sign(-0.0673 ln(vSG)-0.0701 ln(vSL)+0.0933 ln(vSG) ln(vSL) 

-0.3962 ln(vSG )
2
 + 0.0475 ln(vSL )

2
+ 2.1867 
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Appendix C 

Data table 

Parameter Value  

Density liquid 996 

Density gas 1.17 

Surface tension 0.0728 

g 9.8 

Diameter 0.0254 

Viscosity liquid 0.001 

Viscosity gas 0.00016 

 

Sample calculation for one data set 

In this operation all flow regimes appears with specific gas and liquid velocities which can be 

taken in consideration as Reynolds number. When the gas flows as laminar the flow regime is 

generally the bubble dispersed flow, with transition gas flow the flow regime is intermittent flow 

and with turbulent flow of gas, the regime is annular. 

For Gas laminar flow, taking Reynolds no  as 700 

            

on putting all the values in the equation 

VG = 3.76 m/sec 

Now using this gas velocity value in the bubble dispersed flow correlation  

             
                –         

       

VL=  1.39 m/sec 

Similarly all the datasets can be generated. 
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Data sets for Two Phase Flow through pipes 

Bubble Dispersed Flow 

VL (m/s)                VG (m/s)             

1.336843 2.827056 

1.337107 2.827847 

1.337371 2.828637 

1.337634 2.829428 

1.337898 2.830219 

1.338161 2.831009 

1.338425 2.8318 

1.338688 2.83259 

1.338952 2.833381 

1.339215 2.834171 

1.339479 2.834962 

1.339742 2.835752 

1.340006 2.836543 

1.340269 2.837334 

1.340533 2.838124 

1.340796 2.838915 

1.34106  2.839705 

1.341323 2.840496 

1.341587 2.841286 

Intermittent flow 

VL (m/s)                VG (m/s)             

1.536843 7.97641 

1.57107  7.9772 

1.537371 7.977991 

1.537634 7.978781 

1.537898 7.979572 
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1.538161 7.980362 

1.538425 7.981153 

1.538688 7.981944 

1.538952 7.982734 

1.539215 7.983525 

1.539479 7.984315 

1.539742 7.985106 

1.540006 7.985896 

1.540269 7.986687 

1.540533 7.987477 

1.540796 7.988268 

1.54106  7.989059 

1.541323 7.989849 

1.541587 7.99064 

Annular flow 

VG(m/s)                VL (m/s)             

14.58207147 1.97641 

14.66308298 1.9772 

14.74409449 1.977991 

14.825106 1.978781 

14.9061175 1.979572 

14.98712901 1.980362 

15.06814052 1.981153 

15.14915203 1.981944 

15.23016354 1.982734 

15.31117505 1.983525 

15.39218655 1.984315 

15.47319806 1.985106 

15.55420957 1.985896 
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15.63522108 1.986687 

15.71623259 1.987477 

14.71169 1.988268 

14.72249 1.989059 

14.73329 1.989849 

14.74409 1.99064 
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Appendix D 

Data Table 

Property Range 

Particle diameter (mm) 12.5, 12.9, 20 

Particle density (kg/m
3
) 126, 216, 380, 534 

Initial bed height (m) 0.23-0.79 

Superficial gas velocity (m/sec) 0.02-0.15 

Voidage of packed bed 0.52, 0.524, 0.545 

 

Data sets for Fluidized Bed regimes 

Sample calculation for one dataset 

 

For packed bed fluidized bed  

For packed bed situation there is a specific range of Reynolds number i.e.;  325< Re < 2100 

Let’s take Re = 500 

Using relation               

On putting all values U = 0.28 m/sec 

Using friction factor relation 

        
       

f= 3.35 

Now using pressure drop correlation 

           
  

 

   
    (    )  

On putting all the values in the correlation             
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Packed bed Fluidized bed regime 

U (m/s)              Pressure Drop (N/m
2
) 

0.025  2.2 

0.026  2.4 

0.027  2.6 

0.028  2.8 

0.029  3 

0.03  3.2 

0.031  3.4 

0.032  3.6 

0.033  3.8 

0.034  4 

0.035  4.2 

0.036  4.4 

0.037  4.6 

0.038  4.8 

0.039  5 

0.04  5.2 

0.041  5.4 

0.042  5.6 

0.043  5.8 

0.044  6 

Semi Fluidized bed regime 

U (m/s)              Pressure Drop (N/m
2
) 

0.071  8.2 

0.072  8.4 

0.073  8.6 

0.074  8.8 

0.075  9 



65 
 

0.076  9.2 

0.077  9.4 

0.078  9.6 

0.079  9.8 

0.08  10 

0.081  10.2 

0.0815  10.4 

0.082  10.6 

0.083  10.8 

0.084  11 

0.085  11.2 

0.086  11.4 

0.087  11.6 

0.088  11.8 

0.09  12 

Fully Fluidized bed regime 

U (m/s)              Pressure Drop (N/m
2
) 

0.12  17.1 

0.1205  17.2 

0.121  17.3 

0.1215  17.4 

0.122  17.5 

0.1225  17.6 

0.123  17.7 

0.1235  17.8 

0.124  17.9 

0.1245  18 

0.125  18.1 

0.1255  18.2 
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0.126  18.3 

0.1265  18.4 

0.127  18.5 

0.1275  18.6 

0.128  18.7 

0.1285  18.8 

0.129  18.9 

0.13  19 
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Appendix E 

Data Table for different particles 

 

Measurement     

     

          D      
        

    

   

    n 

ASN Glass 

R87 

2.45 210 149 128 1.6 0.613 4.718 

ASN Glass 

R63 

2.45 210 210 121 3.7 0.597 4.765 

ASN 

Polymer 1 

1.04 210 320 174 3.5 0.601 4.735 

ASN 

Polymer 2 

1.04 210 650 178 10.0 0.640 4.639 

ASN Nickel 8.9 181 76 44.8 4.27 0.511 5.025 

 

Sample calculation for one data set 

 

   
   

(     )
 

       
  

     

  
)    1 

    
     

    
      2 

                C 

By using first two equations, 

   
  [

(     )
 

   
]  

 

  
       D 

 

putting all the values in equation C and D in SI unit values can be calculated. 

Calculation for Ut 
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Using this Utvalue, corresponding Umfand Us values can be calculated. Umf = 0.00159 , Us = 

0.0015 m/s. 

 

Dataset1(ASN Glass R87) 

US(m/s)  Umf(m/sec) 

0.0015  0.00159 

0.00155  0.0016 

0.0016  0.00161 

0.00165  0.00162 

0.0017  0.00163 

0.00175  0.00164 

0.0018  0.00165 

0.00185  0.00167 

0.0019  0.00168 

0.00195  0.00169 

Dataset2 (ASN Glass R63) 

US(m/s)  Umf(m/sec) 

0.00368  0.0036 

0.00367  0.00361 

0.00369  0.00362 

0.0037  0.00363 

0.00371  0.00364 

0.00372  0.00365 

0.00373  0.00366 

0.00374  0.00367 

0.00375  0.00368 

0.00376  0.00369 
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Dataset3 (ASN Polymer 1) 

US(m/s)  Umf(m/sec) 

0.0035  0.00356 

0.00351  0.00357 

0.00352  0.00358 

0.00353  0.00359 

0.00354  0.0036 

0.00355  0.00361 

0.00356  0.00362 

0.00357  0.00363 

0.00358  0.00364 

0.00359  0.00365 

Datase4 (ASN Polymer 2) 

US(m/s)  Umf(m/sec) 

0.0035  0.00356 

0.00351  0.00357 

0.00352  0.00358 

0.00353  0.00359 

0.00354  0.0036 

0.00355  0.00361 

0.00356  0.00362 

0.00357  0.00363 

0.00358  0.00364 

0.00359  0.00365 

Dataset5 (ASN Nickel) 

US(m/s)  Umf(m/sec) 

0.0042  0.00422 

0.00421  0.00423 

0.00422  0.00424 
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0.00423  0.00425 

0.00424  0.00426 

0.00425  0.00427 

0.00426  0.00428 

0.00427  0.00429 

0.00428  0.0043 

0.00429  0.00431 

Dataset11 

US(m/s)  Umf(m/sec) 

1.06  0.0015 

1.032258065 0.00155 

1.00625  0.0016 

0.981818182 0.00165 

0.958823529 0.0017 

0.937142857 0.00175 

0.916666667 0.0018 

0.902702703 0.00185 

0.884210526 0.0019 

0.866666667 0.00195 

Dataset12 

US(m/s)  Umf(m/sec) 

0.97826087 0.00368 

0.983651226 0.00367 

0.98102981 0.00369 

0.981081081 0.0037 

0.981132075 0.00371 

0.981182796 0.00372 

0.981233244 0.00373 

0.981283422 0.00374 
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0.981333333 0.00375 

0.981382979 0.00376 

Dataset13 

US(m/s)  Umf(m/sec) 

1.017142857 0.0035 

1.017094017 0.00351 

1.017045455 0.00352 

1.016997167 0.00353 

1.016949153 0.00354 

1.016901408 0.00355 

1.016853933 0.00356 

1.016806723 0.00357 

1.016759777 0.00358 

1.016713092 0.00359 

Dataset14 

US(m/s)  Umf(m/sec) 

1.1  0.009 

1.10989011 0.0091 

1.108695652 0.0092 

1.107526882 0.0093 

1.106382979 0.0094 

1.105263158 0.0095 

1.104166667 0.0096 

1.103092784 0.0097 

1.102040816 0.0098 

1.101010101 0.0099 

Dataset15 

US(m/s)  Umf(m/sec) 

1.179775281 0.0042 
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1.179271709 0.00421 

1.17877095 0.00422 

1.178272981 0.00423 

1.177777778 0.00424 

1.177285319 0.00425 

1.17679558 0.00426 

1.17630854 0.00427 

1.175824176 0.00428 

1.175342466 0.00429 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


