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Abstract 

 

The power quality of the electric power has become an important issue for the electric 

utilities and their customers. In order to improve the quality of power, electric utilities 

continuously monitor power delivered at customer sites. Thus automatic classification of 

distribution line disturbances is highly desirable. The detection and classification of the 

power quality (PQ) disturbances in power systems are important tasks in monitoring and 

protection of power system network. Most of the disturbances are non-stationary and 

transitory in nature hence it requires advanced tools and techniques for the analysis of PQ 

disturbances. In this work a hybrid technique is used for characterizing PQ disturbances using 

wavelet transform and fuzzy logic. A no of PQ events are generated and decomposed using 

wavelet decomposition algorithm of wavelet transform for accurate detection of disturbances. 

It is also observed that when the PQ disturbances are contaminated with noise the detection 

becomes difficult and the feature vectors to be extracted will contain a high percentage of 

noise which may degrade the classification accuracy. Hence a Wavelet based de-noising 

technique is proposed in this work before feature extraction process. Two very distinct 

features common to all PQ disturbances like Energy and Total Harmonic Distortion (THD) 

are extracted using discrete wavelet transform and is fed as inputs to the fuzzy expert system 

for accurate detection and classification of various PQ disturbances. The fuzzy expert system 

not only classifies the PQ disturbances but also indicates whether the disturbance is pure or 

contains harmonics. A neural network based Power Quality Disturbance (PQD) detection 

system is also modeled implementing Multilayer Feedforward Neural Network (MFNN). 
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1.1 Introduction 

      Now-a-days the equipment used with electrical utility are far more sensitive to power 

quality (PQ) variation than in the past. The equipments used are mostly digital or 

microprocessor based containing power electronic components which are sensitive to power 

disturbances. The Poor power quality can cause some serious problems to the equipment such 

as short lifetime, malfunctioning, instabilities, interruption and reduced efficiency etc. Hence 

both electrical utilities suppliers and customers are becoming aware of the effects of power 

quality of power supply on load equipment. As a result power quality research is gaining 

interest and from the extensive research it is found that the main causes behind the poor 

power quality are power line disturbances such as Voltage Sag, Voltage Swell, Interruption, 

Oscillation and Harmonics etc. Therefore mitigation of PQ disturbances becomes prime 

concern in improving the power quality but before that it is essential to monitor and detect the 

type of disturbance that has occurred in power line so that the sources of disturbance can be 

identified and appropriate measures can be taken to mitigate the problem. Most of the 

disturbances are non-stationary in nature hence it requires advanced tools and techniques for 

the analysis of PQ disturbances. A normal Fourier transform is not a suitable tool for analysis 

of PQ disturbances as it provides only spectral information of the signal without the time 

localization information which is required to find the start time and end time as well as the 

interval of the disturbance [1].The Short Time Fourier Transform (STFT) is another signal 

processing technique but it is well suited for stationary signals where the frequency does not 

vary with time [2-4]. However for non-stationary signals STFT does not recognize the signal 

dynamics due to the limitation of fixed window width [2]. The time frequency analysis 

technique is more appropriate for analysing non-stationary signal because it provides both 

time and spectral information of the signal. The Discrete Wavelet Transform (DWT) is 

preferred because it employs a flexible window to detect the time frequency variations which 

results in a better time-frequency resolution [5]. 

1.2 Literature Survey 

      Extensive research works have been pursued in the area of application of digital signal 

processing techniques to power quality event analysis.Santoso et al.[6] used the Wavelet 

Transform (WT) in combination with Fourier transform to extract unique features from the 

voltage and current waveforms that characterize power quality events. The Fourier transform 

is used to characterize steady state phenomena and the WT is applied to transient phenomena. 
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Wright et al. [2] have applied Short time Fourier transform (STFT) which is another signal 

processing technique but it is well suited for stationary signals where the frequency does not 

vary with time. However for non-stationary signal STFT does not recognize the signal 

dynamics due to the limitation of fixed window width. The WT is an excellent tool for 

analysing non stationary signals and it overcomes the drawback of STFT. It decomposes the 

signal into time scale representation rather than time frequency representation. The DWT is a 

powerful computing and mathematical tool which has been used independently in applied 

mathematics, signal processing and others. In wavelet analysis, the use of a fully scalable 

modulated window can solve the signal cutting problem. The main idea of this method is to 

look at the signal at different scales or resolution.  Hence the WT has been explored 

extensively in various studies as an alternative to STFT [7-9].Abdelazeem et al [7] presented 

a hybrid technique for detecting and characterizing power quality disturbances using WT, 

kalman filter and fuzzy logic.L.C Saikia et al [8] have proposed a technique based on the WT 

and the artificial neural network for characterizing power quality disturbances. The Support 

Vector Machine (SVM) was introduced in several literatures [10], [11] as a tool for the 

classification. However there were still some incorrect classification cases because of the sub 

band overlapping of different power quality disturbances. In the recent past wavelet transform 

in conjunctions with artificial intelligence technique is used popularly for characterizing 

power quality. Some literatures are reported in [12-18] but there exists a difficulty in 

characterizing i.e. the sampling signals often have noisy component, the locations of start-

time and end-time are hard to get. The Wavelet is an effective tool for those non-stationary 

signal processing and has been used in this field.  Wei Bing Hu et al [20] have developed a 

technique based on the wavelet transform for de-noising of power quality event as the 

presence of noise in power quality events may degrade the classification accuracy. To 

overcome the difficulties of extraction of the feature vector of the disturbance out of the 

noises in a low SNR environment, a de-noising technique is proposed. Gu jie [22] has also 

proposed a wavelet threshold based de-noising technique for power quality 

disturbances.Chuah Heng Keow et al [21] have proposed a scheme for enhancing power 

quality problem classification based on the wavelet transform and a rule-based method. 

1.3 Motivation and Objective of the Work 

     From the literature survey it is clearly understood that the discrete wavelet transformation 

(DWT) is a powerful computing and mathematical tool which have been used independently 

in applied mathematics, signal processing and more importantly in the area of power quality 
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analysis. The main cause behind the degradation of power quality is the power line 

disturbances in order to find a corrective measure for the above problem one needs to detect 

and classify the power quality disturbances accurately for further processing and research. 

This provides sufficient motivation to work on the above area using the advanced signal 

processing technique and artificial intelligence. The main idea of this work is to look at the 

signal at different scales or resolution. In this work, the generated signals are decomposed 

into different levels through wavelet transform and any change in smoothness of the signal is 

detected. The Different level gives different resolution. This work shows that each power 

quality disturbance has unique deviation from the pure sinusoidal waveform and this is 

adopted to provide a reliable classification of different type of disturbance. The objective of 

this work is  

 To generate different power quality disturbances 

 To detect the disturbances using wavelet transform 

 To de-noise the disturbances polluted with noise  

 To model a PQ disturbances detection system using artificial neural network 

 Classification of PQ disturbances using fuzzy expert system 

 

Figure1.1 Basic block diagram of the method adopted 

Figure 1.1 shows the basic block diagram of the method adopted in this work. In the first 

stage the different power quality disturbances are generated and in the second stage they are 
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decomposed through the wavelet transform and the instant of the disturbance and the type of 

disturbance is detected. In the third stage the PQ disturbances are de-noised if noise is present 

because PQ disturbances combined with noises may degrade the classification accuracy as 

the feature vector will be contaminated with high percentage of noise. In the fourth stage the 

features like energy and total harmonic distortion (THD) are extracted from the detected 

noise free signal. In the fifth and final stage the above mentioned features are used to classify 

different PQ disturbances using fuzzy expert system and a PQD detection system is modeled 

using multilayer Feedforward neural network. 

1.4 Thesis Layout 

      Chapter 1 reviews the literature on various power quality issues and characterization of 

power quality disturbances. The Literatures are also reviewed on the wavelet transform as a 

tool for analysing different power quality events in conjunction with the artificial intelligence 

technique. The Motivation and objective along with brief description of the work is 

presented. 

      Chapter 2 describes the mechanism of wavelet transform and decomposition algorithm 

in detail and then different PQ disturbances are simulated and decomposed using wavelet 

decomposition algorithm and successful detection is carried out. Various decomposition 

parameters like choice of mother wavelet and selection of maximum decomposition levels are 

mentioned. Also the problems regarding detection in presence of noise are discussed. 

      Chapter 3 employs wavelet based de-noising technique for extraction of noise free PQ 

disturbances. The Various issues regarding de-noising like selection of thresholding function, 

thresholding rules are discussed and various performance indices for characterizing an 

effective de-noising technique are discussed and evaluated. 

      Chapter 4 deals with the feature extraction. The THD and Energy are used as the feature 

vector for preparing the database of different PQ disturbances to be used for training of the 

neural network for modeling a power quality disturbance (PQD) detection system and input 

to the fuzzy expert system. 

      Chapter 5 employs a Multilayer Feedforward Neural Network (MFNN) for modeling a 

PQD detection system. Features extracted in chapter 4 are used as input-output data for 

training purposes and mean square error and mean absolute error were obtained. 
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      Chapter 6 employs a fuzzy expert system for classifying different PQ disturbances and 

classification accuracy of each PQ disturbance was found out. 

      Chapter 7 summarizes the results obtained in each chapter and future scope of work is 

discussed in brief. 
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2.1Introduction 

     Now-a-days with the advent of the digital techniques, the PQ disturbances are monitored 

onsite and online. Recently the wavelet transform (WT) has emerged as a powerful tool for 

the detection of PQ disturbances. The Wavelet transform uses wavelet function as the basis 

function which scales itself according to the frequency under analysis. The scheme shows 

better results because the basis function used in the WT is a wavelet instead of an exponential 

function used in FT and STFT. Using the WT the signal is decomposed into different 

frequency levels and presented as wavelet coefficients. Depending on the types of signal, 

continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are employed. 

For continuous time signal, CWT based decomposition is adopted and for discrete time signal 

DWT based decomposition is employed. However in this work all the signals shown are 

discrete in nature hence DWT based decomposition is employed here.In this part of the work 

different PQ disturbances such as Sag, Swell, Interruption, Sag with harmonics and Swell 

with harmonics are generated using MATLAB and then decomposed using decomposition 

algorithm of WT and point of actual disturbance is located and type of disturbance is 

detected. 

2.2 Discrete Wavelet Transform (DWT) 

     Basically the DWT evaluation has two stages. The first stage is the determination of 

wavelet coefficients hd(n) and gd(n).These coefficients represent the given signal X(n) in the 

wavelet domain. From these coefficients second stage is achieved with the calculation of both 

the approximated and detailed version of the original signal, these wavelet coefficients are 

called cA1 (n) and cD1 (n) as defined below. 

 
k

d
nknSn hcA )2().()(

1                                                                          (2.1)                                             

 
k

d
nknSn gcD )2().()(

1                                                                                                   (2.2)                                              

The same process is adopted to calculate cA2 (n) and cD2 (n) associated with level 2 

decomposition of the signal and the process goes on. The above algorithm is shown in Figure 

2.1.First of all the original signal X(n) is passed through a band pass filter which is the 

combination of a set of low pass and high pass filter followed by a sub-sampling of two in 

each stage in accordance with Nyquist’s rule to avoid data redundancy problem. Once all the 
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wavelet coefficients are known the DWT in time domain can be determined by reconstructing 

the corresponding wavelet coefficients at different levels. The reconstruction algorithm is 

shown in Figure 2.3 which is just the reverse process of Wavelet decomposition. The wavelet 

transform (WT) of a signal X(t) is stated as 

WTx (a, b) =∫     
 

  
Ψa, b*dt                                                                                              (2.3) 

Where Ψa, b (t) =Ψ ((t-b)/a)/√                                                                                            (2.4) 

is a scaled and shifted version of the mother wavelet Ψ(t).The parameter a corresponds to 

scale and frequency domain property of Ψ(t).The parameter b corresponds to time domain 

property of Ψ(t) .In addition 1/√   is the normalization value of Ψa,b(t) for having spectrum 

power as same as mother wavelet in every scale. The DWT is introduced by considering sub 

band decomposition using the digital filter equivalent to DWT.The filter bank structure is 

shown in Figure 2.1.The Band pass filter is implemented as a low pass and high pass filter 

pair which has mirrored charecteristics.While the low pass filter approximates the signal. The 

high pass filter provides the details lost in the approximation. The approximations are low 

frequency high scale component whereas the details are high frequency low scale component. 

 

 

Figure 2.1 Decomposition algorithm 

Where 

 hd[n] = Impulse response of Low pass filter 

gd[n] = Impulse response of High pass filter 
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X(n) = Discretized original signal 

cA1(n) =Approximate coefficient of level 1 decomposition/output of first LPF 

cD1(n) = Detail coefficient of level 1 decomposition/output of first HPF 

cA2 (n) =Approximate coefficient of level 2 decomposition/output of 2
nd

 LPF 

cD2(n) = Detail coefficient of level 2 decomposition/output of 2
nd

 HPF 

cA3 (n) =Approximate coefficient of level 3 decomposition/output of 3
rd

 LPF 

cD3(n) = Detail coefficient of level 3 decomposition/output of 3
rd

 HPF 

Figure 2.2 shows the more simplified diagram of decomposition algorithm of the signal X(n) 

which is decomposed up to level 3 for demonstrating how the original signal X(n) is related to 

the decomposed version of the same in terms of approximate and detail coefficients at each 

level. 

x(n)

cD2(n)cA2(n)

cD1(n)cA1(n)

cA3(n) cD3(n)

 

 Figure 2.2 Decomposition of a signal X(n) up to level 3  

Level 1 decomposition 

X(n) =cA1(n) +cD1(n) 

Level 2 decomposition 
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X(n) =cA2(n) +cD2(n) +cD1(n) 

Level 3 decomposition 

X(n) =cA3(n) +cD3(n) +cD2(n) + cD1(n)  

Figure 2.3 Reconstruction algorithm 

2.2.1 Choice of Mother Wavelet 

     The selection of mother wavelet is an important issue for decomposition of PQ 

disturbances as the proper selection of mother wavelet results in accurate detection of 

disturbances. The original signal to be decomposed is multiplied with the selected mother 

wavelet to obtain the scaled and translated version of the original signal at different levels. 

There are several mother wavelets such as Daubechies, Morlet, Haar, Symlet etc. exists in 

wavelet library but literatures revealed that for power quality analysis Daubechies wavelet 

gives the desired result. Again the Daubechies wavelet has several orders such as Db2, Db3, 

Db4, Db5 Db6, Db7 Db8, and Db10etc.The Daubechies wavelets with 4, 6, 8, and10 filter 

coefficients work well in most disturbance cases. Based on the detection problem, the power 

quality disturbances can be classified into two types, fast and slow transients. In the fast 

transient case the waveforms are marked with sharp edges, abrupt and rapid changes, and a 

fairly short duration in time. In this case Daub4 and Daub6 gives good result due to their 

compactness. In slow transient case Daub8 and Daub10 shows better performance as the time 

interval in integral evaluated at point n is long enough to sense the slow changes. 

2.2.2 Selection of maximum decomposition level 

     In the DWT, the maximum decomposition level of a signal is determined by Jmax= fix 

(log2 n) where n is the length of the signal; fix rounds the value in the bracket to its nearest 

integer. However in this work as the MATLAB wavelet toolbox is employed, the signal 
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length at the highest level of decomposition should not be less than the length of the wavelet 

filter being used. So the maximum decomposition level Jmax for a signal is given as 

                                           (    (
 

  
  ))                                                       (2.5) 

Where N= Length of the signal, Nw= Length of the decomposition filter associated with the 

chosen mother wavelet. However in practice maximum decomposition level for a wavelet 

based de-noising is selected according to the convenience and requirement. 

2.3 Generation of PQ disturbances 

     The various power quality disturbances such as Sag, Swell, Interruption, and Sag with 

harmonics and Swell with harmonics are generated with different magnitudes using 

MATLAB. 

2.3.1 Signal specification 

 

    Ts (time period) =0.5 sec, fs (sampling frequency) =6.4 KHz, f=50Hz, No of cycles=25, No 

of samples/cycle=128, Total Sampling points=3200.Duration of disturbance=0.2 second. The 

interval of disturbance from 0.2 to 0.4 second of time which is between 1250 to 2500 

sampling points. 

2.3.2 Parametric model of PQ disturbances 

Table 2.1 Equations and parameter variations for PQ signals 

PQ disturbance Model Parameter variations 

Voltage Sag       (   (       

        ))         

                     
                           

 

0.1 ≤ α ≤ 0.9 

T ≤ t2-t1 ≤ 10T 

 

Voltage Swell       (   (       

        ))         

                     
                            

 

0.1 ≤ α ≤ 0.9 

T ≤ t2-t1 ≤ 10T 

 

Interruption       (   (       

        ))         

 

0.01 ≤ α ≤ 0.09 

T ≤ t2-t1 ≤ 10T 

 



Chapter 2                                                            Decomposition using WT 
 

 Page 11 
 

Voltage sag with 

harmonics 
      (   (       

        ))           

                      
                        

 

α1=1.0     

0.0 ≤ α2,α3, α5 and α7 ≤ 

0.3     

0.1 ≤ α ≤ 0.9 

T ≤ t2-t1 ≤ 10T     

Voltage swell 

with harmonics 
      (   (       

        ))           

                      
                        

 

α1=1.0     

0.0 ≤ α2,α3, α5 and α7 ≤ 

0.3     

0.1 ≤ α ≤ 0.9 

T ≤ t2-t1 ≤ 10T     

Voltage 

distortion 
                           

                      
             

 

α1=1.0        

α2-α7=(0.0-0.3) 

 

 

The parameter α represents the level of sag or swell in the first two types of disturbances. The 

unit step function u(t) in the whole table provides the duration of disturbances present in 

the pure sine waveform. During the generation of the disturbance signal from the 

parametric model, the value of α and the position of u(t) has been varied suitably, so 

that a large number of signals can be obtained with varying magnitude (by changing α) 

on different points on the wave (by changing the parameters t1 and t2) and the duration 

of the disturbance (t2-t1). The point on the wave is the instant on the sinusoid when a 

disturbance begins and is controlled by the position of the unit step function u(t). As the 

real PQ disturbance signals may have any point on the wave which is beyond control, 

hence we have generated a variety of disturbances having different points on the 

wave duration of disturbance and magnitudes. The harmonic signal consists of a 

combination of second-, third-, fifth- and seventh-order harmonics. The momentary 

interruption with parameter α is taken for varying the amplitude during 

interruption. Using the above parametric model hundred no of PQ events in each class 

of the disturbance are generated.  
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Figure 2.4 (a) Voltage sag 

Figure 2.4 (b) Voltage sag 

Figure 2.5 (a) 

Figure 2.5 (b) 

Figure 2.5 (a) and (b) Swell disturbance with fs=6.4 KHz 
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Figure 2.6 (a) 

Figure 2.6 (b) 

Figure 2.6 (e) and (f) Voltage Interruption with fs=6.4 KHz 

Figure 2.7 (a) 

Figure 2.7 (b) 

Figure 2.7 (a) and (b) Voltage Sag with 3
rd

 Harmonic 
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Figure 2.8 (a) 

Figure 2.8 (b) 

Figure 2.8 (a) and (b) Voltage Swell with 3
rd

 Harmonic 

Figure 2.9 (a) 

Figure 2.9 (b) 

Figure 2.9 (a) and (b) Voltage distortion 
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2.4 Detection using WT 

The above Disturbances are decomposed into different levels through wavelet decomposition 

algorithm as shown in Figure 2.1 using equation 2.1 and equation 2.2.The signal is looked at 

different scales or resolution which is also known as multi resolution analysis(MRA) or sub 

band coding. With increase in each level time resolution decreases while frequency resolution 

increases. The unique deviation of each power quality disturbances from the original 

sinusoidal waveform is identified both in the approximate and detail coefficients. The 

different disturbances are studied with different levels. Normally, one or two scale signal 

decomposition is adequate to discriminate disturbances from their background because the 

decomposed signals at lower scales have high time localization. In other words, the high scale 

signal decomposition is not necessary since it gives poor time localization. In this case the 

different power quality disturbances are decomposed up to 4
th

 level for detection purpose. 

2.4.1 Voltage Sag 

Figure 2.10 (a) Decomposed voltage sag level 1 using WT 

Figure 2.10 (b) Approximate signal level 1 
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Figure 2.10 (c) Detail signal level 1 

Figure 2.10 (d) Detail signal level 2 

Figure 2.10 (e) Detail signal level 3 

Figure 2.10 (f) Approximate signal level 4 
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Figure 2.10 (g) Detail signal level 4 

Figure 2.10 (h) Reconstructed approximate signal 

Figure 2.10 (i) Reconstructed detail signal 

From the decomposition of the disturbance shown in Figure 2.4(a) and Figure 2.4(b) it is seen 

that disturbance occurred at 1250 to 2500 samples or 0.2 to 0.4 second interval of the signal 

which is confirmed from the result shown in Figure 2.10(h) and Figure 2.10(i).Reduction in 

nominal value of the waveform can be marked from the approximate and detail coefficient of 

level4 decomposition as shown in Figure 2.10(f) and Figure 2.10(g).The reconstructed 

approximate waveform shown in Figure 2.10(h) also perfectly resembles with input 

disturbance waveform shown in Figure 2.4(b) which confirmed the disturbance to be the 

voltage Sag and proves the accurate detection of the disturbance. 
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2.4.2 Voltage Swell 

Figure 2.11 (a) Decomposed voltage swell using WT 

Figure 2.11 (b) Approximate signal level 1 

Figure 2.11 (c) Detail signal level 1 

Figure 2.11 (d) Detail signal level 2 
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Figure 2.11 (e) Detail signal level 3 

Figure 2.11 (f) Approximate signal level 4 

Figure 2.11 (g) Detail signal level 4 

Figure 2.11 (h) Reconstructed approximate signal 
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Figure 2.11 (i) Reconstructed detail signal 

From the decomposition of the disturbance shown in Figure 2.5(a) and Figure 2.5(b) it is seen 

that disturbance occurred at 1250 to 2500 samples or 0.2 to 0.4 second interval of the signal 

which is confirmed from the result shown in Figure 2.11(h) and Figure 2.11(i).Increase in 

nominal value of the voltage at the disturbance instant can be marked from the approximate 

and detail coefficient of level4 decomposition as shown in Figure 2.11(f) and Figure 

2.11(g).The reconstructed approximate waveform shown in Figure 2.11(h) also perfectly 

resembles with input disturbance waveform shown in Figure 2.5(b) which confirms the PQ 

disturbance to be Swell and proves the accurate detection of the disturbance. 

2.4.3 Voltage interruption 

Figure 2.12 (a) Decomposed voltage interruption using WT 

Figure 2.12 (b) Approximate signal level 1 
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Figure 2.12 (c) Detail signal level 1 

Figure 2.12 (d) Detail signal level 2 

Figure 2.12 (e) Detail signal level 3 

Figure 2.12 (f) Approximate signal level 4 
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Figure 2.12 (g) Detail signal level 4 

Figure 2.12 (h) Reconstructed approximate signal  

Figure 2.12 (i) Reconstructed detail signal level 4 

From the decomposition of the disturbance shown in Figure 2.6(a) and Figure 2.6(b) it is seen 

that disturbance occurred at 1250 to 2500 samples or 0.2 to 0.4 second interval of the signal 

which is confirmed from the result shown in Figure 2.12(h) and Figure 2.12(i).The 

interruption in nominal value of the voltage at the disturbance instant can be marked from the 

approximate and detail coefficient of level4 decomposition as shown in Figure 2.12(f) and 

Figure 2.12(g).The reconstructed approximate waveform shown in Figure 2.12(h) also 

perfectly resembles with input disturbance waveform shown in Figure 2.6(b) which confirms 

the PQ disturbance to be Voltage interruption and proves the accurate detection of the 

disturbance. 
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2.4.4 Voltage Sag with harmonics 

     The complex disturbances like Sag with harmonics and Swell with harmonics can also be 

detected using wavelet decomposition algorithm similar to as discussed in case of voltage sag 

and voltage swell. Figure 2.13 shows the decomposition and detection of Sag with harmonics. 

Here only third harmonic component is added to the fundamental component of voltage sag 

to obtain the voltage sag with harmonics. Similarly other harmonic components can also be 

added and can be detected using WT. 

Figure 2.13(a) Decomposed signal level 1 using WT 

Figure 2.13(b) Approximate signal level 1 

Figure 2.13(c) Detail signal level 1 
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Figure 2.13(d) Detail signal level 2 

Figure 2.13(e) Detail signal level 3 

Figure 2.13(f)  Approximate signal level 3 

Figure 2.13(g) Detail signal level 4 
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Figure 2.13(h) Reconstructed approximate signal 

Figure 2.13(i) Reconstructed detail signal 

From the Figure 2.13 (h) and Figure 2.13 (i) it is quite clear that the disturbance is Sag which 

contains harmonics. Reconstructed Approximate signal in Figure 2.13 (h) resembles with 

input disturbance shown in Figure 2.7 (b) which proves the detection is accurate and detail 

signal in Figure 2.13 (g) confirms that it contains harmonics. 

2.4.5 Voltage swell with harmonics 

Figure 2.14 (a) Decomposed signal level 1 using WT 

0 500 1000 1500 2000 2500 3000
-2

-1

0

1

2

Samples

M
a
g
n
itu

d
e

0 500 1000 1500 2000 2500 3000
-1

-0.5

0

0.5

1

Samples

M
a
g
n
itu

d
e

0 500 1000 1500 2000 2500 3000
-3

-2

-1

0

1

2

3

Samples

M
a

g
n
itu

d
e



Chapter 2                                                            Decomposition using WT 
 

 Page 26 
 

Figure 2.14 (b) Approximate signal level 1 

Figure 2.14(c) Detail signal level 1 

Figure 2.14 (d) Detail signal level 2 

Figure 2.14 (e) Detail signal level 3 
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Figure 2.14 (f) Approximate signal level 4 

Figure 2.14 (g) Detail signal level 4 

Figure 2.14 (h) Reconstructed approximate signal  

Figure 2.14 (i) Reconstructed detail signal  
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From the Figure 2.14 (h) and Figure 2.14 (i) it is quite clear that the disturbance is Swell 

which contains harmonics. Approximate signal in Figure 2.14 (h) resembles with input 

disturbance shown in Figure 2.8 (b) which proves the detection is accurate and detail signal in 

Figure 2.14 (g) confirms that it contains harmonics. 

2.5 Detection in presence of noise 

     The presence of noise in power quality disturbances creates a new challenge for detection 

as it is difficult to detect the exact location of disturbance in a high noisy environment with a 

low SNR(signal to noise ratio).The Presence of noise also affects the classification accuracy 

as the feature vectors to be extracted for classification will also contain the noise contribution 

and the exact quantity of noise present is quite uncertain and hence de-noising of the 

disturbance is necessary before feature extraction and classification. In this work the white 

Gaussian noise is added to the pure power quality disturbances as shown in Figure 2.4, Figure 

2.5 and Figure 2.6 to simulate a low SNR of 5 dB.The white Gaussian noise added to 

different PQ disturbances is shown in Figure 2.15. 

Figure 2.15 Additive white Gaussian noise  

Figure 2.16 Sag polluted with noise 
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Figure 2.17 Swell polluted with noise 

Figure 2.18 Interruption with noise 

2.5.1 Difficulty in Detection in presence of noise 

     In the presence of noise, the localisation of disturbance is quite difficult which is shown 

below in Figure 2.19 in the case of Sag disturbance corrupted with noise. From the results 

obtained it is clearly observed that even after decomposing the disturbance into several levels 

the exact location of disturbance cannot be identified in terms of the detail coefficient of the 

disturbance which was easily identified in case of the disturbance without noise. 

Figure 2.19 (a) Decomposed Sag with noise using WT 
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Figure 2.19 (b) Approximate signal level 1 

Figure 2.19 (c) Detail Signal Level 1 

Figure 2.19 (d) Detail Signal Level 2 

Figure 2.19 (e) Detail Signal Level 3 
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Figure 2.19 (f) Detail Signal Level 4 

Figure 2.19 (g) Detail Signal Level 5 

From the results shown in Figure 2.19 it is quite clear that in spite of decomposing the 

disturbance corrupted with noise into several levels accurate localisation of disturbing instant 

cannot be obtained in terms of detail coefficients as shown in Figure 2.19 (c),(d),(e),(f)and 

(g). These conditions are not ideal for the detection of the disturbances as well as for the 

feature extraction as it contains a high percentage of noise which may degrade the 

classification accuracy. 

2.6 Summary 

     From the decomposition results obtained in this work it is quite evident that the Wavelet 

transform as a tool for detecting PQ disturbances works very well and can be employed 

effectively in designing a monitoring system for power quality events. Here different PQ 

disturbances like sag, swell, interruption, and some complex disturbances like sag with 

harmonics and swell with harmonics are decomposed into several levels and correctly located 

the point of disturbance. The problem occurs when the disturbances are corrupted with noise, 

accurate localisation of disturbing instant is difficult in terms of the detail coefficients. Hence 

in presence of noise direct decomposition of the disturbances with WT is not sufficient, so 

de-noising of disturbances is necessary before feature extraction and classification otherwise 

the classification accuracy is going to decrease as the feature vector to be extracted will 
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contain a high percentage of noise. Hence de-noising is very much necessary. A de-noising 

technique is discussed in the next chapter. 
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3.1 Introduction 

     The proper detection i.e. the critical start-time and end-time of power quality (PQ) 

disturbances is an important aspect in monitoring and locating of the fault instances so as to 

extract the features and develop a classification system but the signal under investigation is 

often polluted by noises, rendering the extraction of features a difficult task, especially if the 

noises have high frequency spectrum which overlaps with the frequency of the disturbances. 

The performance of the classification system would be greatly degraded, due to the difficulty 

in distinguishing the noises and the disturbances and also the feature vector to be extracted 

will contain noise. Hence it is an important application of wavelet analysis in power system 

to de-noise power quality signals so as to detect and locate the disturbing points as the 

presence of noise in power quality events may degrade the classification accuracy.In this 

chapter a wavelet based de-noising technique is discussed based on soft thresholding so as to 

de-noise the PQ disturbances and improve the performance of classification system. 

3.2 De-nosing using WT 

3.2.1 Steps involved in De-noising 

     Basically there are 3 steps involved in de-noising process which is mentioned below. 

Decomposition: This step involves selecting a proper mother wavelet and choosing a level n 

up to which the signal S is decomposed using the selected mother wavelet. The mother 

wavelet selected in this work is “db4” as it gives good results in dealing with PQ 

disturbances. The level of decomposition n is selected as per the requirement and in this case 

it is chosen five.  

Detail coefficients Thresholding: For each level from 1 to n, a threshold is selected and soft 

thresholding is applied to the detailed coefficients. 

Reconstruction: Wavelet reconstruction is computed based on the original approximation 

coefficients of level n and the modified detail coefficients of levels from 1 to n. 

3.2.2 Thresholding based De-noising 

     In the first stage, the polluted sinusoidal signal is decomposed by selected wavelet basic 

function “Db4” to certain level, here up to 5 levels. Coefficients at each level are compared 

within this level and absolute maximum coefficient will be stored to be the threshold value at 

this level. The maximum coefficient is selected as it represents the maximum noise 

characteristic. Any coefficients higher than this value are totally noise unrelated, and are thus 

only possibly associated with power quality disturbance. After computation, five detailed 



Chapter 3                                                  De-noising of PQ Disturbances 
 

 Page 34 
 

threshold values and one approximate threshold value will be stored for future signal de-

noising. In the second stage, the power quality disturbance signals polluted by noises are 

recorded as before. The disturbance signal is decomposed by the same wavelet basic function 

to the same level to generate wavelet transform coefficients. All the coefficients at each level 

will be thresholded by the corresponding threshold value that is determined by the previous 

stage. All those threshold values represent the maximum noise characteristics. Any 

coefficients after the thresholding are the disturbance coefficients. Therefore after 

decomposition, the coefficients of the signal are greater than the coefficients of the noise, so 

we can find a suitable T as a threshold value. When the wavelet coefficient is smaller than the 

threshold, it is considered that the wavelet coefficient is mainly caused by the noise, so that 

the coefficient is set to 0,and then discarded; When  the wavelet coefficient is larger than the 

threshold, it is considered that wavelet coefficient is mainly caused by the signal, so that the 

coefficient is remained or shrinks to zero according to a fixed value, and then the signal de-

noised can be reconstructed through the new wavelet coefficients using wavelet transform. 

The method can be modelled as shown below in (3.1). 

   )(.)()( nenXnS                                                                                                         (3.1) 

             Where n=0,1,2…k-1    

S(n) =Noisy Signal 

X(n)=Useful Power Quality disturbance without noise 

e(n)=The noise added to X(n) 

3.2.3 Selection of Thresholding function 

     The thresholding on the DWT coefficients during wavelet based de-noising methods can 

be performed using either hard or soft Thresholding. The hard threshold method is 

ineffective, and Hard threshold function is not continuous, thus it is mathematically difficult 

to deal with, and also has some discontinuity points, while de-noising. The Soft threshold 

function is continuous, thus it is better to overcome the shortcomings of the Hard 

Thresholding but the soft threshold method transforms so smooth that transition of PQ signal 

is distorted and this method reduces the absolute value of the large wavelet factor, causing a 

certain amount of high-frequency loss of information and the result leads to edge blur of the 

signal. However the soft thresholding is best suited for de-noising of PQ disturbances. 
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Soft Thresholding 
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Where   
  Detail Coefficient at level n and scale j 

  = Thresholding Value. 

3.2.4 Selection of Thresholding rule 

       The selection of threshold value is crucial in wavelet based PQ signal de-noising. The 

careful rejection of the coefficients representing noise improves the accuracy of the de-

noising results. Threshold    is decisive to de-noising effect, and the common threshold 

selection rules present in MATLAB are: sqtwolog, rigrsure, heursure and minimaxi. 

Rigrsure: 'rigrsure' uses for the soft threshold estimator, a threshold selection rule based on 

Stein’s Unbiased Estimate of Risk (quadratic loss function). One gets an estimate of the risk 

for a particular threshold value (t). Minimizing the risks in (t) gives a selection of the 

threshold value. 

Sqtwolog: 'sqtwolog' uses a fixed-form threshold yielding minimax performance multiplied 

by a small factor proportional to log (length(X)).  

Heursure: 'heursure' is a mixture of the two previous options. As a result, if the signal to 

noise ratio is very small, the SURE estimate is very noisy. If such a situation is detected, the 

fixed form threshold is used.  

Minimaxi: 'minimaxi' uses a fixed threshold chosen to yield minimax performance for mean 

sqare error against an ideal procedure. The minimax principle is used in statistics in order to 

design estimators. Since the de-noised signal can be assimilated to the estimator of the 
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unknown regression function, the minimax estimator is the one that realizes the minimum of 

the maximum mean square error obtained for the worst function in a given set. 

All the above rules employed a common thresholding formula which is also known as 

automatic thresholding rule. 

                                                     
  

      
(√     (  ))                                                        (3.4)   

Where    Threshold value at scale j 

             = Median value of Signal at scale j 

               No of Coefficient at scale j 

 

3.3 Results and discussion 

     The de-noising of Power Quality disturbances is performed using automatic Thresholding 

method as explained in 3.2.2 by selecting a threshold value for each level and Thresholding 

the detail coefficient and finally reconstructing the signal with modified detail coefficient and 

original approximate coefficient. 

3.3.1 De-noising of sag disturbance 

Figure 3.1 (a) De-noised sag disturbance 

Figure 3.1 (b) Amount of noise cleared 
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Figure 3.1 (c) Residue after de-noising 

Figure 3.1 (a) is the de-noised Sag disturbance obtained after the implementation of the de-

noising technique mentioned above in section 3.2.2. Figure 3.1(b) shows the amount of noise 

cleared which is obtained by subtracting the de-noised signal shown in Figure 3.1(a) from the 

noisy disturbance shown in Figure 2.16 in previous chapter.Figure 3.1(c) shows the residue 

after de-noising which is obtained by subtracting the de-noised signal obtained in Figure 

3.1(a) from the Sag disturbance shown in Figure 2.4(b) in previous chapter. 

3.3.2 De-noising of swell disturbance 

Figure 3.2 (a) De-noised swell disturbance 

Figure 3.2 (b) Amount of noise cleared 

0 500 1000 1500 2000 2500 3000
-0.4

-0.2

0

0.2

0.4

Samples

M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000
-2

-1

0

1

2

Samples

M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000
-4

-2

0

2

4

Samples

M
ag

ni
tu

de



Chapter 3                                                  De-noising of PQ Disturbances 
 

 Page 38 
 

Figure 3.2 (c) Residue after de-noising 

Figure 3.2 (a) is the de-noised Sag disturbance obtained after the implementation of the de-

noising technique mentioned above in section 3.2.2. Figure 3.2(b) shows the amount of noise 

cleared which is obtained by subtracting the de-noised signal shown in Figure 3.2(a) from the 

noisy disturbance shown in Figure 2.17 in previous chapter.Figure 3.2(c) shows the residue 

after de-noising which is obtained by subtracting the de-noised signal obtained in Figure 

3.2(a) from the Swell disturbance shown in Figure 2.5(b) in previous chapter. 

3.3.3 De-noising of interruption disturbance 

Figure 3.3 (a) De-noised interruption disturbance 

Figure 3.3 (b) Amount of noise cleared 
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Figure 3.3 (c) Residue after de-noising 

Figure 3.3 (a) is the de-noised Sag disturbance obtained after the implementation of the de-

noising technique mentioned above in section 3.2.2. Figure 3.3(b) shows the amount of noise 

cleared which is obtained by subtracting the de-noised signal shown in Figure 3.3(a) from the 

noisy disturbance shown in Figure 2.18 in previous chapter.Figure 3.3(c) shows the residue 

after de-noising which is obtained by subtracting the de-noised signal obtained in Figure 

3.3(a) from the Swell disturbance shown in Figure 2.6(b) in previous chapter. 

3.4 Performance indices 

       The Effectiveness of a denoising technique can be measured or quantified based on 

certain performance parameters such as MSE(mean square error) and SNR(signal to noise 

ratio).If the MSE is lower and SNR is higher after the de-noising it represents a good de-

noising technique. 

Mean Square Error: Effectiveness of a de-noising scheme is also evaluated by mean square 

error (MSE) defined as 

                                 



N

i
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N
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1

                                                        (3.5) 

Where D(i) =De-noised Signal obtained 

V(i) =Reference Power Quality Signal without Noise 

N=Length of the Signal 

Signal to Noise Ratio: The signal to noise ratio (SNR) is defined as 
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An effective de-noising method requires low mean square error (MSE) and high 

SNR.Table3.1 shows the performance indices for Sag, Swell and Interruption disturbance. 

Table3.1 Performance Indices 

Type of Disturbance MSE SNR after De-noising(dB) 

Sag 0.0033 20.3171 

Swell 0.0292 14.0962 

Interruption 0.0097 14.9200 

 

3.5 Summary 

     The results obtained in this chapter shows that the wavelet transform can be used 

effectively to de-noise different power quality disturbances. In this chapter a thresholding 

based de-noising technique is discussed which is quite efficient in de-noise different PQ 

events. The efficiency of the de-noising is evident from the performance parameters. A 

system can never be completely noise free as it is an ideal case. But with the help of the 

technique discussed above adequate amount of noise can be cleared which ensures very less 

percentage of noise in feature vector and hence improves the classification accuracy. 
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4.1 Introduction 

     The feature extraction is an important task in designing a monitoring system which will 

indicate the type of PQ disturbance occurring in the power system. A database is needed to be 

prepared based on some distinct parameters which will help in distinguishing different PQ 

disturbances with least amount of ambiguity. In this work after de-noising of PQ events, total 

harmonic distortion (THD) and Energy of the signal are used as the two distinctive 

parameters for feature extraction and preparing of the database. These databases are used as 

input to the fuzzy expert system for the classification purpose and also these databases are 

required to train the neural network so that a power quality disturbance (PQD) detection 

system can be modelled. 

4.2 Feature vector 

4.2.1 Total harmonic distortion 

     The distortion harmonics that included in each frequency ranges can be detected by using 

the approximation and the detailed coefficients which measure from sub band harmonics in 

terms of RMS value as (4.1) 

 
nj

ncD
N

jRMS )(
21

                                                                                            (4.1) 

Where Nj is the no of detail coefficients at scale j while THD is calculated by considering 

each sub-band contribution [11-12] as shown in equation (4.2).The sampling frequency 

selected is 6.4 kHz or 128f1. In this paper, the fundamental frequency is 50 hertz and used six 

level of WT thus the output should receive the sub-band as follows: 

• cD1: 32f1 ~ 64f1; 

• cD2: 16 f1 ~ 32 f1; 

• cD3: 8 f1 ~ 16 f1; 

• cD4: 4 f1 ~ 8 f1; 

• cD5: 2 f1 ~ 4 f1; 

• cD6: 1 f1 ~ 2 f1; 

• cA6: 0 f1 ~ 1 f1; 
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Where Nj is the no of detail coefficients at scale j. 

4.2.2 Energy of the signal 

      The energy of the signal is calculated using parseval’s theorem [10] which states that if 

S(t) is the voltage across the resistor or current through the resistor then the energy dissipated 

is  

    




 dtE tS )(
2

                                                                                              (4.3)                                                                                                                                                              

In wavelet domain the signal is decomposed into the approximate and detailed coefficients 

and therefore energy dissipated by the signal in terms of approximate and detail coefficients 

given by equation. (4.4)  

 



k

I

j k

kDkC jjE
1

22

)()(                                                                                  (4.4) 

Where Cj(k) is approximate coefficient at jth level and Dj(k) is detail coefficient at jth level. 

4.3 Database of different PQ disturbances 

     A database of THD and Energy of different PQ disturbances as discussed in section 4.2 

based on equation (4.2) and equation (4.4) is prepared.Diferent PQ disturbances with 

different magnitude of fault is generated and considered for feature extraction. The change in 

the time of occurrence of the short duration disturbance in the signals do not change the 

values of feature vector much the change can be found only when the duration of short 

duration disturbance changes [19].Here the duration of disturbance is kept at 0.2 second 

though the occurrence of the disturbance is varied. 
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4.3.1 Voltage Sag  

     The voltage sag is a decrease of 10-90% of the rated system voltage for duration of 0.5 

cycles to 1 min.Hence a data base of Energy and THD is prepared for 10-90% drop in system 

voltage. Table 4.1 shows the feature vector for voltage sag. 

Table.4.1 Feature vector for voltage sag 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

10 0.7411 1.4906*10
3 

20 0.7418 1.3818*10
3
 

30 0.7426 1.2858*10
3
 

40 0.7433 1.2026*10
3
 

50 0.7441 1.1322*10
3
 

60 0.7448 1.0746*10
3
 

70 0.7454 1.0928*10
3
 

80 0.7460 997.7708 

90 0.7464 978.5708 

 

From the Table 4.1 it is observed that as the magnitude of fault increases the value of THD 

also increases but the Energy goes on decreasing with the increase in the magnitude of fault. 

4.3.2 Voltage swell 

     In the case of voltage swell, there is a rise of 10-90% in the voltage magnitude for 0.5 

cycles to 1 min. Hence a data base of Energy and THD is prepared for 10-90% rise in system 

voltage or 110-190% of magnitude of fault. Table 4.2 shows the feature vector for voltage 

swell. 
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Table.4.2 Feature vector for voltage swell 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

110 0.7399 1.7466*10
3
 

120 0.7394 1.8938*10
3
 

130 0.7390 2.0538*10
3
 

140 0.7386 2.2266*10
3
 

150 0.7382 2.4122*10
3
 

160 0.7379 2.6106*10
3
 

170 0.7377 2.8218*10
3
 

180 0.7375 3.0458*10
3
 

190 0.7373 3.2826*10
3
 

 

From Table 4.2 it is observed that the THD goes on decreasing with the increase in the 

magnitude of the disturbance but the Energy goes on increasing with the magnitude of 

disturbance, opposite to the characteristic of Voltage sag. 

4.3.3 Voltage interruption 

      The voltage interruption may be seen as a loss of voltage in a power system. Such 

disturbance describes a drop of 90-100% of the rated system voltage for duration of 0.5 

cycles to 1 min.Hence a database of 1-9% of magnitude of fault is prepared which is shown 

in Table 4.3. 

Table.4.3 Feature vector for voltage interruption 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

1 0.7467 972.2988 

2 0.7466 972.6828 

3 0.7463 973.3228 

4 0.7460 974.2188 

5 0.7455 975.3708 

6 0.7449 976.7788 

7 0.7442 978.4428 

8 0.7443 980.3628 

9 0.7424 982.5388 
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From Table 4.3 it is observed that while the THD goes on decreasing the Energy goes on 

increasing with the increase in the fault magnitude but the variation in Energy and THD level 

is very small. 

4.3.4 Voltage Surge 

     In Voltage surge the amplitude of the voltage is suddenly increased due to the 

disconnection of a heavy load for one quarter of a cycle. Here only 160-240% rise in the 

system voltage is considered under voltage surge. Table 4.4 shows the database of voltage 

surge which is prepared for 160-240% of magnitude of fault. From table 4.4 it is observed 

that with the increase in the magnitude of the fault the THD and the Energy also increases 

though the variation in both the THD and the Energy is very less with increase in the fault 

magnitude. 

Table 4.4 Feature vector for voltage surge 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

160 0.8011 1.6155*10
3
 

170 0.8023 1.6158*10
3
 

180 0.8036 1.6161*10
3
 

190 0.8048 1.6165*10
3
 

200 0.8061 1.6169*10
3
 

210 0.8074 1.6173*10
3
 

220 0.8087 1.6177*10
3
 

230 0.8100 1.6182*10
3
 

240 0.8113 1.6187*10
3
 

 

The complex disturbances like Voltage sag with harmonics, voltage swell with harmonics 

and voltage interruption with harmonics are also considered in this work. The magnitude of 

the fault remains the same as in the case of normal voltage sag, swell and interruption. Here 

only 3
rd

, 5
th

  and 7
th

 order of harmonics is considered in each case as these three are the most 

dominant and frequently occurring harmonics in the power system. 
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4.3.5 Voltage sag with harmonics 

     Table 4.5, 4.6 and 4.7 shows the feature vector for voltage sag with harmonics of 3
rd

 ,5
th

 

and 7
th

 order harmonics respectively. 

Table 4.5 Feature vector for voltage sag with 3
rd

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

10 1.5089 3.1721*10
3
 

20 1.5405 3.0633*10
3
 

30 1.5717 2.9673*10
3
 

40 1.6019 2.8841*10
3
 

50 1.6305 2.8173*10
3
 

60 1.6567 2.7561*10
3
 

70 1.6798 2.7113*10
3
 

80 1.6990 2.6793*10
3
 

90 1.7137 2.6601*10
3
 

 

Table 4.6 Feature vector for voltage sag with 5
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

10 1.4242 3.2069*10
3
 

20 1.4520 3.0981*10
3
 

30 1.4795 3.0021*10
3
 

40 1.5059 2.9189*10
3
 

50 1.5309 2.8485*10
3
 

60 1.5537 2.7909*10
3
 

70 1.5738 2.7461*10
3
 

80 1.5904 2.7141*10
3
 

90 1.6031 2.6949*10
3
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Table 4.7 Feature vector for voltage sag with 7
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

10 1.4394 3.2600*10
3
 

20 1.4609 3.1512*10
3
 

30 1.4815 3.0552*10
3
 

40 1.5007 2.9720*10
3
 

50 1.5180 2.9016*10
3
 

60 1.5327 2.8440*10
3
 

70 1.5445 2.7992*10
3
 

80 1.5528 2.7672*10
3
 

90 1.5572 2.7480*10
3
 

 

From the Table 4.5, 4.6 and 4.7 it is observed that THD value is quite large than the case of 

normal voltage sag without the harmonics. This is because of the presence of harmonics 

which results in increase of both THD and Energy of the disturbance considerably.  

4.3.6 Voltage swell with harmonics 

     Table 4.8, 4.9 and 4.10 shows the feature vector for voltage swell with harmonics of 3
rd

 

,5
th

 and 7
th

 order harmonics respectively. 

Table 4.8 Voltage swell with 3
rd

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

110 1.4461 3.4281*10
3
 

120 1.4156 3.5753*10
3
 

130 1.3859 3.7353*10
3
 

140 1.3573 3.9081*10
3
 

150 1.3299 4.0937*10
3
 

160 1.3036 4.2921*10
3
 

170 1.2785 4.5033*10
3
 

180 1.2546 4.7273*10
3
 

190 1.2319 4.9641*10
3
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Table 4.9 Voltage swell with 5
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

110 1.3688 3.4629*10
3
 

120 1.3419 3.6101*10
3
 

130 1.3159 3.7701*10
3
 

140 1.2907 3.9429*10
3
 

150 1.2666 4.1285*10
3
 

160 1.2436 4.3269*10
3
 

170 1.2216 4.5381*10
3
 

180 1.2008 4.7621*10
3
 

190 1.1811 4.9989*10
3
 

 

Table 4.10 Voltage swell with 7
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

110 1.3953 3.5160*10
3
 

120 1.3734 3.6632*10
3
 

130 1.3518 3.8232*10
3
 

140 1.3307 3.9960*10
3
 

150 1.3103 4.1816*10
3
 

160 1.2906 4.3800*10
3
 

170 1.2717 4.5912*10
3
 

180 1.2536 4.8152*10
3
 

190 1.2363 5.0520*10
3
 

 

Table 4.8, 4.9 and 4.10 reveals that the value of THD and Energy is quite higher than the 

value which is obtained in case of voltage swell without the harmonics due to the presence of 

harmonics only. It is also observed that value of Energy in case of voltage swell with 7
th

 

order harmonics is higher than 5
th

 and 3
rd

 order harmonics. 
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4.3.7 Interruption with harmonics 

Table 4.11, 4.12 and 4.13 shows the feature vector for voltage interruption with harmonics of 

3
rd

 ,5
th

 and 7
th

 order harmonics respectively. 

Table 4.11 Voltage interruption with 3
rd

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

1 1.7233 2.6538*10
3
 

2 1.7230 2.6542*10
3
 

3 1.7224 2.6548*10
3
 

4 1.7216 2.6557*10
3
 

5 1.7205 2.6569*10
3
 

6 1.7192 2.6583*10
3
 

7 1.7177 2.6600*10
3
 

8 1.7160 2.6619*10
3
 

9 1.7140 2.6641*10
3
 

 

Table 4.12 Voltage interruption with 5
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

1 1.6113 2.6886*10
3
 

2 1.6110 2.6890*10
3
 

3 1.6104 2.6897*10
3
 

4 1.6096 2.6906*10
3
 

5 1.6085 2.6917*10
3
 

6 1.6073 2.6931*10
3
 

7 1.6058 2.6948*10
3
 

8 1.6041 2.6967*10
3
 

9 1.6022 2.6989*10
3
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Table 4.13 Voltage interruption with 7
th

 order harmonics 

MAGNITUDE OF 

DISTURBANCE(%) 

THD ENERGY(volt
2
 –sec) 

1 1.5575 2.7417*10
3
 

2 1.5571 2.7421*10
3
 

3 1.5565 2.7427*10
3
 

4 1.5557 2.7436*10
3
 

5 1.5546 2.7448*10
3
 

6 1.5533 2.7462*10
3
 

7 1.5518 2.7479*10
3
 

8 1.5500 2.7498*10
3
 

9 1.5481 2.7520*10
3
 

 

From Table 4.11, 4.12 and 4.13 it can be concluded that value of THD in case of 3
rd

 

harmonics is more as compared to 5
th

 and 7
th

 order harmonics of voltage interruption. 

Similarly value of Energy in case of 7
th

 order harmonics is higher as compared to other two 

harmonics. Also the value of THD is the highest in case of Voltage interruption with 3
rd

 

harmonics than any other PQ disturbances. 

4.4 Summary 

     In this part of the work different PQ disturbances with different fault magnitude are 

generated and the feature vector containing Energy and THD are extracted based on the 

equation (4.2) and equation (4.4) as discussed in section 4.2 and a database is prepared. It is 

observed that the value of THD and Energy is increased considerably if the PQ disturbance 

contains harmonics. It is also observed that value of Energy in case of voltage swell with 7
th

 

order harmonics is the highest among all other PQ disturbances. Similarly the value of the 

Energy is lowest in case of voltage interruption. It is also observed that THD in case of 

voltage interruption with 7
th

 order harmonics is the highest among all. These databases will 

be used in training the neural network for modelling a PQD detection system. Also these 

databases are going to be used in designing a fuzzy expert system for the classification 

purpose. 
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5.1 Introduction 

     The work on Neural Networks (NN) was inspired from the way the human brain operates. 

Our brain is a highly non-linear, complex and parallel computer-like device. It has the ability 

to organize its structural constituents known as neurons, so as to carry out certain 

computations (e.g. perception, pattern recognition and motor control) much faster than the 

fastest digital computer in existence today. This ability of our brain has been utilized into 

processing units to further excel in the field of artificial intelligence. The theory of modern 

neural networks began by the pioneering works done by Pitts (a Mathematician) and 

McCulloh (a psychiatrist) in 1943. This Chapter details the attempt at modeling of the power 

quality disturbance (PQD) detection system using Multilayer Feedforward Neural Network 

(MFNN). 

5.2 Multilayer Feedforward Neural Network 

5.2.1 MFNN Structure 

     Artificial Neural Networks (ANNs) have become the subject of widespread interest, 

largely because of their wide range of applicability and the ease with which they handle 

complex and non-linear problems. They are massively parallel-interconnected networks of 

simple elements intended to interact with the real world in the same way as the biological 

nervous system. They offer an unusual scheme based programming standpoint and exhibit 

higher computing speeds compared to other conventional methods.  ANNs are characterized 

by their topology, that is, the number of interconnections, the node characteristics that are 

classified by the type of nonlinear elements used and the kind of learning rules employed. 

The ANN is composed of an organized topology of Processing Elements (PEs) called 

neurons. In Multilayer Feedforward Neural Network (MFNN) the PEs are arranged in layers 

and only PEs in adjacent layers are connected.  The MFNN structure used in this thesis 

consists of three layers, namely, the input layer, the hidden layer and the output layer as 

shown in Figure 5.1. 
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Figure 5.1 Multilayer Feedforward Neural Network 

The input layer consists of Ni neurons corresponding to the Ni inputs. The number of output 

neurons is decided by the number of predicted parameters. The Back Propagation Algorithm 

(BPA) is used to train the network. The sigmoidal function represented by equation (5.1) is 

used as the activation function for all the neurons except for those in the input layer. 

                                                S(x) =1 / (1+e
-x

)                                                                    (5.1) 

5.2.2 Back Propagation Algorithm  

         Backpropagation is a well-known method for teaching artificial neural networks so as 

how to do a given task. It was first explained by Arthur E. Bryson and Yu-Chi Ho in 1969, 

but it was not until 1974, and later, through the work of Paul Werbos, David E.  Rumelhart, 

Geoffrey E. Hinton and Ronald J. Williams, that it became popular. 

         It is a method of supervised learning that can be visualized as a generalization of the 

delta rule. It demands a teacher that knows, or can find out, the desired output for any input in 

training set. It is extremely effective for feedforward networks. The term is an abbreviation 

for "backward propagation of errors". Back propagation demands that the activation function 

which is used by the artificial neurons has to be differentiable. For understanding, the back 

iNInput 

),( jiWa

),( kjWb
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propagation learning algorithm can be divided into two phases.phase: 1.propagation and 

phase: 2.weight update. 

Phase 1: Propagation 

Each propagation module comprises the following steps: 

1. Forward propagation of a training data pattern's input through neural network in order to 

produce the propagation's output activations. 

2. Backward propagation of the propagation's output activations through the neural   

network by using training pattern's target to generate the deltas of all output and hidden 

neurons. 

Phase 2: Weight update 

For every weight-synapse: 

1. The output delta and input activation is to be multiplied to find gradient of the weight. 

2. Bring the weight in the opposite direction of the gradient by subtracting a ratio of it from 

the weight. 

This ratio has impact on the speed and quality of learning; it is therefore called the learning 

rate. The sign of the gradient of a weight signifies that where error is increasing, because of 

this the weight has to be updated in the opposite direction. Perform repetition of the phases 1 

and 2 until the performance of the network is satisfactory. 

5.2.3 Choice of Hidden Neurons 

           The choice of optimal number of hidden neurons, Nh is the most interesting and 

challenging aspect in designing the MFNN. There are various schools on thought in deciding 

the value of Nh. Simon Haykin  has specified that Nh should lie between 2 and ∞. Hecht-

Nielsen  uses ANN interpretation of Kolmogorov’s theorem to arrive at the upper bound on 

the Nh for a single hidden layer network as 2(Ni+1), where Ni is the number of input neurons. 

However, this value should be decided very judiciously depending on the requirement of a 

problem. A large value of Nh may reduce the training error associated with the MFNN, but at 

the cost of increasing the computational complexity and time. For example, if one gets a 
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tolerably low value of training error with certain value of Nh, there is no point in further 

increasing the value of Nh to enhance the performance of the MFNN.  

5.2.4 Normalization of Input-Output data 

             The input and the output data are normalized before being processed in the network. 

In this scheme of normalization, the maximum values of the input and output vector 

components are determined as follows: 

                           ))(max(max, pnn ii   p = 1,……., Np,  i = 1,……, Ni                                  (5.2) 

Where Np is the number of patterns in the training set           

                          ))(max(max, pokkO   p = 1,…….Np,  i = 1,……Nk                                    (5.3)   

Where Nk is the number of neurons in the output layer, that is, the number of predicted 

parameters. 

Normalized by these maximum values, the input and output variables are obtained as follows: 

                         
max,

,

)(
)(

i

i
nori

n

pn
pn       p = 1,……., Np,  i = 1,……, Ni                                    (5.4) 

and 

                        
max,

,

)(
)(

k

k
nork

o

po
po       p = 1,…….Np,  i = 1,……Nk                                       (5.5) 

After normalization, the input and output variables lie in the range of 0 to 1.  

5.2.5 Choice of ANN parameters 

           The learning rate, η1 and the momentum factor, α1 have a very significant effect on the 

learning speed of the BPA. The BPA provides an approximation to the trajectory in the 

weight space computed by the method of steepest descent method. If the value of   η1 is 

considered very small, this results in slow rate of learning, while if the value of η1 is too large 

in order to speed up the rate of learning, the MFNN may become unstable (oscillatory). A 

simple method of increasing the rate of learning without making the MFNN unstable is by 

adding the momentum factor α1. Preferably, the values of η1 and α1 should lie between 0 and 

1. 
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5.2.6 Weight Update Equations 

           The weights between the hidden layer and the output layer are updated based on the 

equation (5.6) as follows: 

wb(j,k,m+1) = wb(j,k,m)+η1*δk(m) *Sb(j) + α1 [wb(j, k, m) - wb(j, k, m-1)]                         (5.6)  

Where m is the number of iterations, j varies from 1 to Nh and k varies from 1 to Nk. δk(m) is 

the error for the k
th

 output at the m
th

 iteration. Sb(j) is the output from the hidden layer. 

Similarly, the weights between the hidden layer and the input layer are updated as follows: 

wa(i,j,m+1)=wa(i,j,m)+η1*δj(m)*Sa(i) + α1 [(wa(i, j, m) - wa(i, j, m-1)]                               (5.7) 

Where i varies from 1 to Ni as there are Ni inputs to the network, δj(m) is the error for the j
th

 

output after the m
th

 iteration and Sa(i) is the output from the first layer. The δk(m) in equation  

(5.6) and δj(m) in equation ( 5.7) are related as 

δj(m)=


K

k 1

δk(m)*wb(j,k,m)                                                                                                  (5.8)  

5.2.7 Evaluation Criterion 

         The Mean Square Error  Etr for the training patterns after the m
th

 iteration is defined as 

Etr(m)=(1/Np)*[


Np

p 1

{PD1p–PD2p(m)}
2
]                                                                               (5.9)  

Where PD1p is the exact value of the percentage of disturbance in voltage. PD2p(m) is the 

estimated value of the percentage of disturbance in voltage after m
th

 iteration. The training is 

stopped when the least value of Etr has been obtained and this value does not change much 

with the number of iterations.   

             The Mean Absolute Error Ets is a good performance measure for judging the accuracy 

of the MFNN System. The Etr tells how well the network has adopted to fit the training data 

only, even if the data are contaminated. On the other hand, the Ets indicates how well a 

trained network behaves on a new data set not included in the training set. The value of Ets is 

calculated based on the least value of Etr. The Ets for the test data expressed in percentage is 

given by 
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Ets =(1/NS)*[


Ns

s 1

|(PD4s–PD3s)|/PD3s]*100                                                                          (5.10) 

  Where PD3s is the exact value of percentage of disturbance in voltage taken for testing 

purpose, PD4s is the estimated value of the percentage of disturbance in voltage after the test 

input data is passed through the trained network and Ns is the number of test patterns.  

5.3 Modeling of PQD Detection System Using MFNN 

    This section details the attempt at modeling a detection system for power quality 

disturbances using MFNN. This model predicts the percentage of disturbance in various 

power quality events as a function of Energy and THD of different power quality events. The 

network is provided with both input data and desired response and is trained in a supervised 

manner using the back propagation algorithm. The back propagation algorithm performs the 

input to output mapping by making weight connection adjustment following the discrepancy 

between the computed output value and the desired output response.  The training phase is 

completed after a series of iterations. In each iteration, output is compared with the desired 

response and a match is obtained. Figure 5.2 is derived from Figure 1.1 which shows the 

different steps involved in modeling of PQD detection system. Figure5.3 shows the flowchart 

for the MFNN. 

             In order to predict the percentage of disturbance a software program has been 

developed in MATLAB 7.10 to solve equations (5.1) to (5.10).  

 

Figure 5.2 Processes involved in Modeling of PQD Detection system 
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 Figure 5.3 Flow chart of MFNN 

             In this model, the number of input parameters is two, that is, the energy and THD of 

different power quality disturbances. The energy of the PQ disturbances is e and THD is d 

and percentage of disturbance is to be predicted. Since, the input parameters are two, the 

value of Ni is two for this model. In addition, since the output parameter is only one, the 

value of Nk is one.  

             The total number of PQ disturbances considered for the purpose of modeling is five 

such as voltage sag, voltage swell, interruption, sag with harmonics and swell with 

harmonics. There are 25 sets of PQ events are generated for each of the five different PQ 

disturbances using MATLAB 7.10 and input-output data sets were found out for each case 

using the feature extraction process as discussed in previous section. Hence a total of 125 

input-output data sets are generated as given in Table 5.1 and out of which 110 data sets are 

used for training the MFNN model and finding the mean square error. The rest 15 sets of 

input-output data are used for testing purpose which is also used for calculating mean 

absolute error. 
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Table 5.1 Input-Output data sets 

Serial number Type of disturbance Energy THD Percentage of 

disturbance estimated 

1 Sag 1490.6 0.7411 10 

2 1467.8 0.7413 12 

3 1434.6 0.7415 15 

4 1402.5 0.7417 18 

5 1381.8 0.7418 20 

6 1361.5 0.7420 22 

7 1332.2 0.7422 25 

8 1285.8 0.7426 30 

9 1268.1 0.7427 32 

10 1251 0.7429 34 

11 1234.3 0.7430 36 

12 1202.6 0.7433 40 

13 1172.9 0.7436 44 

14 1158.8 0.7438 46 

15 1138.6 0.7440 49 

16 1119.6 0.7442 52 

17 1101.8 0.7445 55 

18 1074.6 0.7448 60 

19 1064.6 0.7449 62 

20 1050.6 0.7451 65 

21 1037.7 0.7453 68 

22 1029.8 0.7454 70 

23 1012.2 0.7457 75 

24 1003.1 0.7459 78 

25 997.7 0.7460 80 

 

Continued 
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Serial number Type of 

disturbance 

Energy THD Percentage of 

disturbance 

estimated 

26 Swell 1746.6 0.7399 110 

27 1775 0.7398 112 

28 1818.6 0.7397 115 

29 1863.3 0.7395 118 

30 1893.8 0.7394 120 

31 1924.7 0.7393 122 

32 1972.2 0.7392 125 

33 2053.8 0.7390 130 

34 2087.3 0.7389 132 

35 2121.4 0.7388 134 

36 2191 0.7386 138 

37 2226.6 0.7386 140 

38 2317.8 0.7384 145 

39 2374 0.7383 148 

40 2412.2 0.7382 150 

41 2490 0.7381 154 

42 2569.9 0.7380 158 

43 2610.6 0.7379 162 

44 2714.6 0.7378 165 

45 2821.8 0.7377 170 

46 2865.5 0.7376 172 

47 2909.8 0.7376 174 

48 2999.9 0.7375 178 

49 3045.8 0.7375 180 

50 3162.6 0.7374 185 

 

Continued 
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Serial number Type of 

disturbance 

Energy THD Percentage of 

disturbance 

estimated 

51 Interruption 972.2988 0.7467 1 

52 972.3551 0.7467 1.2 

53 972.4217 0.7466 1.4 

54 972.4985 0.7466 1.6 

55 972.5855 0.7466 1.8 

56 972.6828 0.7466 2 

57 972.7903 0.7465 2.2 

58 972.9081 0.7465 2.4 

59 972.9708 0.7465 2.5 

60 973.1039 0.7464 2.7 

61 973.2473 0.7464 2.9 

62 973.4815 0.7463 3.2 

63 973.7388 0.7462 3.5 

64 974.2188 0.7460 4 

65 974.4827 0.7459 4.2 

66 974.6489 0.7458 4.4 

67 974.8793 0.7457 4.6 

68 975.1199 0.7456 4.8 

69 975.3708 0.7455 5 

70 975.9033 0.7453 5.4 

71 976.1849 0.7452 5.6 

72 976.4767 0.7450 5.8 

73 977.0911 0.7448 6.2 

74 977.5788 0.7446 6.5 

75 978.4428 0.7442 7 

 

Continued 
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Continued 

 

Serial number Type of 

disturbance 

Energy THD Percentage of 

disturbance 

estimated 

76 Sag with  

harmonics 

3172.1 1.5089 10 

77 3149.3 1.5152 12 

78 3116.1 1.5247 15 

79 3084 1.5342 18 

80 3063.3 1.5405 20 

81 3023.4 1.5531 24 

82 2985.5 1.5655 28 

83 2967.3 1.5717 30 

84 2949.6 1.5779 32 

85 2924.1 1.5870 35 

86 2899.7 1.5960 38 

87 2884.1 1.6019 40 

88 2869 1.6078 42 

89 2840.3 1.6193 46 

90 2826.7 1.6249 48 

91 2813.7 1.6305 50 

92 2801.1 1.6359 52 

93 2777.6 1.6445 56 

94 2756.1 1.6567 60 

95 2746.1 1.6616 62 

95 2732.1 1.6687 65 

96 2719.2 1.6754 68 

97 2711.3 1.6798 70 

98 2697 1.6880 74 

99 2679.3 1.6990 80 

100 2678 1.7140 84 
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Serial number Type of 

disturbance 

Energy THD Percentage of 

disturbance 

estimated 

101 Swell with 

harmonics 

3428.1 1.4461 110 

102 3456.5 1.4399 112 

103 3485.4 1.4338 114 

104 3544.8 1.4216 118 

105 3575.3 1.4156 120 

106 3637.8 1.4036 124 

107 3702.3 1.3918 128 

108 3735.3 1.3859 130 

109 3768.8 1.3801 132 

110 3802.9 1.3744 134 

111 3872.5 1.3630 138 

112 3908.1 1.3573 140 

113 3980.8 1.3462 144 

114 4055.5 1.3353 148 

115 4093.7 1.3299 150 

116 4171.5 1.3192 154 

117 4251.4 1.3088 158 

118 4292.1 1.3036 160 

119 4396.1 1.2909 165 

120 4460 1.2834 168 

121 4503.3 1.2785 170 

122 4591.4 1.2688 174 

123 4681.5 1.2593 178 

124 4727.3 1.2546 180 

125 4773.6 1.2500 182 
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5.4 Results and Discussions 

              In this study, the optimum values of network parameters are obtained based on Mean 

Square Error Etr for the training patterns. The network is trained in a sequential mode. In 

applying the BPA for the proposed prediction work the following key issues are addressed 

1. Network parameters 

2. Number of hidden neurons 

3. Number of iterations  

              For BPA with fixed values of learning rate η and momentum factor α, the optimum 

values are obtained by simulation with different values of η and α. So, to start with a value of 

η =0.3and α = 0.1 are chosen and then varied to get an optimum value. It may be noted that 

the range of values of η and α should be between 0 and 1. Finally, a best combination is seem 

to yield with a value of η= 0.99 and α=0.85.  For the above combination and with six hidden 

neurons the value Etr is decreasing to a lowest value of 1.3202*10
-9

. The network structure is 

thus as shown in Figure 5.4. The variation of Etr of the training data with the number of 

iterations with η= 0.99, α=0.85, Nh=6.0 is shown in Figure 5.5.Tables 5.2-5.5 shows the 

variation of Etr as a function of η, α and Nh respectively.  

 

 Figure 5.4 Proposed MFNN Model  

),( jiW a

),( kjW b
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Figure 5.5  Etr of the training data as a function of Number of iterations 

Table 5.2: Variation of Etr with   η (Nh = 2, α = 0.1, Number of iterations = 600)  

 

 

 

 

 

 

Table 5.3: Variation of Etr with α (Nh = 2, η = 0.99, Number of iterations = 600)  

α Etr 

0.1 2.7393*10
-07

 

0.2 2.1015*10
-07

 

0.3 1.5616*10
-07

 

0.4 1.1144*10
-07

 

0.5 7.5436*10
-08

 

0.6 4.7389*10
-08

 

0.7 2.6161*10
-08

 

0.8 1.0979*10
-08

 

0.82 8.5030*10
-09

 

0.84 6.1788*10
-09

 

0.85 5.1313*10
-09

 

0.86 1.3430*10
-08

 

0.87 1.0390*10
-06

 

0 100 200 300 400 500 600
0

2

4

6

8
x 10

-3

Number of iteration

M
e
a
n
 s

q
u
a
re

 e
rr

o
r 

(E
tr

)

ƞ Etr 

0.3 6.4938*10
-06 

0.4 2.9849*10
-06

 

0.5 1.6490*10
-06

 

0.6 1.0195*10
-06

 

0.7 6.7998*10
-07

 

0.8 4.7907*10
-07

 

0.9 3.5178*10
-07

 

0.99 2.7393*10
-07
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Table 5.4: Variation of Etr  with  Nh (η = 0.99, α1 = 0.85, Number of iterations = 600)  

Nh Etr 

2 5.1313*10
-09

 

3 2.5686*10
-09

 

4 1.3498*10
-09

 

5 1.3320*10
-09

 

6 1.3202*10
-09

 

 

              Finally, the percentage of disturbance PD = f (e, d) for the test data are calculated by 

simply passing the input data in the forward path of the network and using the updated 

weights of the network. Table 5.5 shows a comparison of the exact and the estimated value of 

percentage of disturbance using this model after 600 iterations. 

Table 5.5: Comparison of the exact and estimated value of percentage of disturbance in 

voltage   

Type of 

disturbance 

Energy 

(e) 

THD 

(d) 

Percentage 

of 

disturbance 

(%) 

Percentage of 

disturbance(Modeled) 

MAE of 

the test 

data (%) 

Sag 1381.8 0.7418 20 20  

 

 

 

 

 

 

1.7115 

1251 0.7429 34 34 

1158.8 0.7438 46 46 

Swell 1863.3 0.7395 118 118 

2191 0.7386 138 138 

2412.2 0.7382 150 149.6276 

Interruption 972.5855 0.7466 1.8 2.1369 

972.9708 0.7465 2.5 2.6298 

974.2188 0.7460 4 3.9850 

Sag with 

harmonics 

3116.1 1.5247 15 15 

2949.6 1.5779 32 32 

2840.3 1.6193 46 46 

Swell with 

harmonics 

3575.3 1.4156 120 120 

3768.8 1.3801 132 132 

4055.5 1.3353 148 149.6885 
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5.5 Summary 

     In this chapter a PQD detection system is modeled based on the Multilayer Feedforward 

Neural Network for five different power quality disturbances like sag, swell, interruption, sag 

with harmonics and swell with harmonics. The features extracted in chapter4 was used as the 

input-output data for training purposes and percentage of voltage disturbance is estimated and 

based on this percentage of disturbance the type of disturbance can be easily found out. The 

results obtained are quite satisfactory which is evident from the low value of mean absolute 

error obtained in testing of the PQD detection system but it is little slower  and takes more 

time for training if the no of data are more as it is an iterative procedure. The complexity of 

the system increases as the no of input increases. 
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6.1 Introduction 

     The Fuzzy logic (FL) refers to a logic system which represents knowledge and reasons in 

an imprecise or fuzzy manner for reasoning under uncertainity[7].Unlike the classical logic 

systems, it aims at modeling the imprecise modes of reasoning that play an essential role in 

human ability to infer an approximate answer to a question based on a store of knowledge 

that is inexact, incomplete or not totally reliable.it is usually appropriate to use fuzzy logic 

when a mathematical model does not exist or does exist but is too difficult to encode and too 

complex to be evaluated fast enough for real time operation. The accuracy of fuzzy logic 

systems is based on the knowledge of human experts hence, it is only as good as the validity 

of rules. In this chapter a fuzzy expert system based on certain rules is implemented for 

classifying different PQ disturbances, before that a brief description of a generalized fuzzy 

logic system is mentioned in Section 6.2. 

6.2 Fuzzy logic system 

     A FL system describes the control action of a process in terms of simple If-Then rules. It 

describes the algorithm for process control as a fuzzy relation between information on the 

process conditions to be controlled and the control action. Hence it gives a linguistic or fuzzy 

model that is developed based on human experience and expertise rather than a mathematical 

model.in a FL system, the control action is determined from the evaluation of a set of simple 

linguistic rules. The development of rules requires a thorough understanding of the process to 

be controlled, but it does not require mathematical model of the system. The model can be 

single input single output or multi-input multi-output type. The internal structure of a FL 

system is shown in Figure 6.1. 

Figure 6.1 Internal structure of Fuzzy logic system 
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The main components of the FL system are: 

1. Fuzzification: The FL uses the linguistic variables instead of numerical variables. In 

the real world, measured quantities are real numbers (crisp).The process of converting 

a numerical variable into a linguistic variable is called fuzzification.It is classification 

of input data into suitable linguistic values or sets. 

2. Rule Base or Decision Making: This is inferring fuzzy control action from the 

knowledge of the control rules and the linguistic variable definition. It has 3 different 

subcomponents. 

 IF (predecessor or antecedent) part of the rule – use of fuzzy operators in it. 

 THEN part of the rule – implication from antecedent part to the subsequent 

part. 

 Aggregation (accumulation) of the subsequent of all rules. The output of each 

rule is aggregated to obtain the final output. Some commonly used aggregation 

methods are Mamdani type implication (Min-Max implication), Lusing Larson 

type implication and Sugeno type implication. The Mamdani type implication 

is used for the purpose of classification. 

3. Defuzzification: This is the conversion of the inferred fuzzy control action to a crisp 

or non-fuzzy control action. The choice of defuzzification strategy is a compromise 

between accuracy and computational intensity. Some of the commonly used methods 

are Centre of Area method, Height method, Centre of gravity of largest area method 

and Mean of Maxima method. In this work Centre of Area defuzzification method is 

used. 

6.3 Implementation of fuzzy expert system for classification purpose 

     In this fuzzy expert system the extracted features THD and Energy of different PQ 

disturbances are used as the input to the fuzzy expert system for classification purpose as 

shown in Figure 6.2.This Figure is based on the Figure 1.1. The output of the fuzzy expert 

system will not only classify the type of disturbance, but also it indicates whether the 

disturbance is pure or contains harmonics. 



Chapter 6                              Classification using Fuzzy Expert system 
 

 Page 69 
 

 

Figure 6.2 Implementation of fuzzy expert system 

A no of power quality disturbances of various magnitudes have been simulated and 

corresponding waveforms are obtained. Then two very distinctive features like THD and 

ENERGY which is inherent to each disturbance is calculated using equation (4.2) and 

equation (4.4) as discussed in feature extraction. A database of THD and ENERGY of each 

disturbance at various degree/intensity is prepared. Now based on this database a fuzzy logic 

system is implemented to classify different power quality disturbances.  

6.3.1 Membership functions 

     The Membership functions can have different shapes such as triangular, trapezoidal, 

Gaussian, bell-shaped, etc. It can be symmetrical or assymetrical.MATLAB facilitates the use 

of different membership functions with the help of certain syntax. Triangular membership 

function is the simplest and most commonly used membership function. It can be described 

by three points forming a triangle. In this work the triangular membership function is used. 

The fuzzy classification system implemented here has two input variables and two output 

variables. Input variables are Energy and THD whereas the implications are “Type of 

disturbance” and “Pure or harmonics” which are the two output variables. Input variable 

Energy has seven membership functions corresponding to the energy level of different 

disturbances. Whereas the input variable THD has five membership functions. Output 

variable1 which indicates type of disturbance has four membership functions and output2 

indicates whether the disturbance is pure or contains harmonics has two input variables. 
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Figure 6.3 Input membership function of Energy 

Figure 6.4 Input membership function for THD 

Figure 6.3 and Figure 6.4 represents the input membership function for Energy and THD 

respectively. The input1 (Energy) has seven membership functions which in terms of 

linguistic variables represented as E1, E2, E3, E4, E5, E6 and E7. The input2 (THD) has five 

membership functions named as thd1, thd2, thd3, thd4 and thd5. 

Table 6.1Relationship between linguistic and actual values for input membership 

functions 

Type of 

disturbance 

Energy Membership 

function 

THD Membership 

function 

Interruption(1% 

to 9% of fault) 

972.2988 to 

982.5388 

E1 

 

0.7424 to 0.7467 

 

thd3 

Sag(10% to 90% 

of fault) 

978.5708 to 

1490.6  

E2 0.7411 to 0.7464 

 

thd2 

Surge(160% to 

240% of fault) 

1615.5 to 1618.7  

 

E3 0.8011 to 0.8113 

 

thd4 

Swell(110% to 

190% of fault) 

1746.6 to 3282.6 

 

E4 0.7373 to 0.7399 

 

thd1 
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Interruption 

with harmonics 

 

2653.8 to 2752 

 

 

E5 

 

0.9 to 1.73 

 

 

thd5 

Sag with 

harmonics 

2660.1 to 3260  

 

E6 0.9 to 1.73 

 

thd5 

Swell with 

harmonics 

3428.1 to 5052 E7 0.9 to 1.73 

 

thd5 

 

Table 6.1 shows the relationship between the input variables and membership functions in 

terms of linguistic variables. Figure 6.5 shows the type of disturbance which has four 

membership functions representing the type of disturbance such as interruption, sag, swell 

and surge. Figure 6.6 shows the membership functions for second output which has two 

membership functions that shows whether the disturbance is pure or contains harmonics. 

Figure 6.5 Output membership function 1 

Figure 6.6 Output membership function 2 

 

 

 

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

type of disturbance

D
eg

re
e 

of
 m

em
be

rs
hi

p

interuption sag swell surge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

pure or harmonics

D
eg

re
e 

of
 m

em
be

rs
hi

p

pure harmonics



Chapter 6                              Classification using Fuzzy Expert system 
 

 Page 72 
 

Table 6.2 Relationship between the linguistic and actual values of output membership 

function 1 for Type of disturbance. 

 

 

Table 6.3 Relationship between the linguistic and actual values for output membership 

function 2 

Membership function for 

output variable 2 

Values 

Pure 0.0- 0.5 

Harmonics 0.5- 1.0 

 

6.3.2 Rule base 

From the above database following rules are formed for classification purpose. 

Rule1: If Energy is E1 and THD is thd3, then disturbance is Interruption. 

Rule2: If Energy is E2 and THD is thd2, then disturbance is Sag. 

Rule3: If Energy is E3 and THD is thd4, then disturbance is Surge. 

Rule4: If Energy is E4 and THD is thd1, then disturbance is Swell. 

Rule5: If Energy is E5 and THD is thd5, then disturbance is Interruption with harmonics. 

Rule6: If Energy is E6 and THD is thd5, then disturbance is Sag with harmonics. 

Membership functions for 

output variable 1 

Percentage of disturbance 

Interruption 0.0- 0.09 

Sag 0.1- 0.9 

Swell 1.1- 1.9 

Momentary surge 1.6- 2.4 
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Rule7: If Energy is E7 and THD is thd5, then disturbance is Swell with harmonics. 

6.4 Classification Accuracy 

     As many as hundred samples of disturbances in each class of power quality with various 

magnitudes has been simulated and tested with the above mentioned fuzzy classification 

system. The overall accuracy obtained is 97%.It shows very little in-accuracy in boundary 

values of different disturbance band otherwise it gives very accurate results in classifying 

different disturbances. This system also indicates whether the disturbance contains harmonics 

or not.Table.6.4 shows the statistical data for the number of samples tested. Equation (6.1) is 

used for calculating classification accuracy. 

100(%) 
Y

X
AccuracytionClassifica                                                                                 (6.1) 

Where X= Number of samples correctly detected   Y= Total number of samples considered 

Table.6.4 Classification Accuracy 

Type of disturbance No of samples 

considered(Y) 

No of Samples 

correctly 

detected(X) 

Interruption 100 98 

Sag 100 97 

Swell 100 93 

Surge 100 98 

Sag with harmonics 100 98 

Swell with 

harmonics 

100 98 
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6.5 Summary 

     In this chapter a hybrid technique based on the discrete wavelet transform and the Fuzzy 

Expert system has been proposed for accurate characterization of the power quality 

disturbances. The main advantage of this proposed technique is to classify the complicated 

power quality disturbances such as Sag with Harmonics and Swell with Harmonics. The 

features extracted in Chapter 4 are used as inputs for implementation of the fuzzy expert 

system based on certain rules. Some difficulties are encountered in classifying the extreme 

values in each disturbance range correctly. The classification accuracy is the lowest in case of 

swell disturbance which is about 93% whereas in all other cases it is around 98%. The overall 

accuracy obtained in classification is found to be 97% which confirms the effectiveness of the 

system in characterizing different PQ disturbances. 
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7.1 Conclusions 

       The Detection and classification of PQ disturbances is an important issue in the power 

quality analysis as before any mitigation action, the type of disturbance and the point of 

disturbance are needed to take the corrective measure. In this work six different PQ 

disturbances are considered that includes complex disturbances like sag with harmonics and 

swell with harmonics for the characterization purpose. First of all these disturbances are 

decomposed into various levels using wavelet decomposition algorithm of wavelet transform 

and detected the point of disturbance along with the type of disturbance. This shows that the 

wavelet transform as a signal processing tool is quite efficient in analysing the PQ 

disturbances that may be stationary or non-stationary in nature. The WT is a frequency 

domain approach where the signals are analysed at different frequency resolution levels. The 

Problem is encountered in detection when the signal is contaminated with a high density of 

noise or low signal to noise ratio. Also the feature vector to be extracted for the classification 

purpose will contain high percentage of noise which may degrade the classification accuracy. 

Hence need arises to de-noise the PQ disturbances before further processing. A wavelet based 

de-noising technique implementing automatic thresholding rule and soft thresholding 

function has been proposed. The PQ disturbances are de-noised and the various performance 

parameters like SNR and MSE were found out to check the efficiency of the method adapted. 

Then the feature vector is extracted. The two distinct features like THD and Energy are 

considered for extracting the features. A data base based on the above two features for 

different PQ disturbances with various magnitude of intensity is prepared. A PQD detection 

system based on the MFNN is modeled. The features extracted are used as the training 

patterns and percentage of disturbance is found out and based on this percentage of 

disturbance the class of disturbance can be easily found out. The mean square error and the 

mean absolute error are obtained in the training and the testing process respectively. These 

are found to be satisfactory. Then a fuzzy expert system based on Mamdani Fuzzy interface is 

designed for the classification of different PQ disturbances. As many as hundred number of 

PQ events with varying magnitude of fault intensity is generated in each of the PQ 

disturbance. They are tested with the designed fuzzy expert system to obtain the classification 

accuracy. The overall classification accuracy obtained with Mamdani Fuzzy Logic is 97% 

whereas in case of MFNN, mean absolute error obtained is 1.7115% which shows the 

artificial neural network based system is more efficient. But MFNN is little slower and takes 

more time for training if the no of data are more as it is an iterative procedure. The Fuzzy 
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interface system on the other hand faces difficulty in classifying the extreme values in each 

disturbance range correctly. 

7.2 Future scope of work 

     1. In this work only two features like THD and Energy are considered for modeling the 

PQD detection system using MFNN and fuzzy expert system is used for classification. More 

features associated with PQ signals like Entropy, standard deviation etc. can be included for 

modeling as well as classification purpose. 

     2. Moreover the shape of the membership functions used in fuzzy classification system is 

triangular in nature more shapes in membership function can be included and the 

corresponding analysis can be carried out.  

     3. One more aspect is that in this work the PQ signals are needed to be de-noised first for 

further processing like detection and feature extraction as wavelet transform as a signal 

processing tool is quite sensitive to the noise although wavelet based de-noising technique 

works very well in de-noising but the time elapsed in de-noising cannot be ignored hence 

research must be carried out to find some other suitable signal processing tool which can 

overcome this de-noising problem. 
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