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Abstract

Orthogonal frequency division multiplexing (OFDM) is a popular method for high

data rate wireless transmission. The performance of OFDM system is very sensi-

tive to carrier frequency Offset (CFO), which introduces inter-carrier interference

(ICI). Multi-input multi-output system used for increasing diversity gain and ca-

pacity of the system. Alamouti space time block code is used for MIMO trans-

mission scheme.

The basic method is used for Carrier Frequency Offset Estimation in OFDM

system. In cyclic prefix (CP) based estimation, the CFO can be found from

the phase angle of the product of the CP and corresponding rear part of the

OFDM symbol. In CFO estimation using a training symbol, the CFO estimation

range can be increased by reducing the distance between two blocks of samples

for correlation. This was made possible by using training symbol that is repetitive

with shorter period. An analytic expression in the form of mean square error

(MSE) of frequency offset synchronization is reported, and simulation results verify

theoretical analysis.

Block-by-block CFO estimation is used in MIMO-OFDM system. In this al-

gorithm we use block delay with other block and compare with the delay block.

Analysis of the optimal size of block and minimization of the MSE of frequency

estimator. We use S observation symbols they are grouped into two consecutive

blocks with length A and S-A. The observation symbol, in each block is added

sequentially and summed results are correlated block-wise.

vii
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1.2 Introduction to OFDM

1.1 Digital Communication System

Basic digital communication system shown in Figure 1.1. A/D converter used

to convert analog signal to digital signal i.e. binary signal (1/0). The source

encoder compresses digital data and transmit. There are some basic source coding

techniques are available like Shannon-Fano coding and Hoffman coding. Source

coding provide less loss at the receiver side. The objective of source encoding is

to remove redundancy from the source signal.

The information sequences pass though channel encoder which uses some re-

dundancy in binary information than can be used at the receiver to overcome the

noise effect in system and reliable communication. The output of channel encoder

is passing through the modulator.

The digital modulator maps binary information sequence into some standard

waveform i.e. electrical form, so that it can be transmitted into the channel. For

example if 1 by cos (x) and 0 by sin (x) which is similar to BPSK modulation.

The modulated waveform is being transmitted from the transmitter to the receiver

through the channel. The signals are distorted in the channel because of channel

noise like thermal noise, atmospheric noise, man-made noise etc. these noises are

random in nature and unpredictable [2]. At the receiving side the digital demod-

ulator consists of matched filter type detector or correlator detector that converts

the received signal waveform into binary sequence, which represent the estimated

word. The output from the demodulator is passed to the channel decoder, that re-

covers the information sequence from the knowledge of the transmitted code. After

the decoder signal pass though the encoder which gives original information.

1.2 Introduction to OFDM

The total signal bandwidth, in a classical parallel data system, the signal band-

width can be divided into N non-overlapping Frequency sub-channels i.e.frequency

selective channel is converted into a group of narrow band flat-fading channel one

channel across each carriers. Each sub-channel is modulated with a separate sym-

2



1.2 Introduction to OFDM

Figure 1.1: Block diagram of basic Digital Communication system.

bol (BPSK , QAM , etc..) and then the N sub-channels are frequency multiplexed.

The general practice of avoiding spectral overlaps of sub-channels was applied to

eliminate inter-carrier interference (ICI). This is shown in Figure 1.2. This re-

sulted to insufficient utilization of the existing spectrum. An idea was proposed in

the mid-1960s to deal with this useful through the development of frequency di-

vision multiplexing (FDM) but overlapping sub-channels. The sub-channels were

arranged so that the side-bands of the individual carriers overlap without causing

ICI. This principle is displayed in Figure 1.2. To achieve this the carriers must

be mathematically orthogonal. From this constraint the idea of Orthogonal Fre-

quency Division Multiplexing (OFDM) was born. The OFDM symbol corresponds

to a composite signal of N symbols in a parallel form, which now has a duration

of Tsym. Meanwhile, Figure 1.2 illustrates a typical realization of orthogonality

among all sub-carriers. Furthermore it has been shown that this multi-carrier mod-

ulation can be implemented by IFFT and FFT in the transmitter and receiver,

respectively [3].

OFDM took time to evolve to where it is today, utilized by various standards,

such as 802.11 a/g and 802.16

3



1.2 Introduction to OFDM

Figure 1.2: FDM and OFDM spectrum [4].

1.2.1 Orthogonality

Consider the time-limited complex exponential signals {ej2πfkt}N−1k=0 which repre-

sent the different sub-carriers at fk = k
Tsym

in the OFDM signal, where0 ≤ t ≤

Tsym. These signals are defined to be orthogonal if the integral of the products for

their common (fundamental) period is zero, that is [1],

1

Tsym

∫ Tsym

0

ej2πfkte−j2πfit dt. =
1

Tsym

∫ Tsym

0

e
j2π k

Tsym
t
e
−j2π i

Tsym
t
dt. (1.1)

Orthogonality =

 1 if k = i

0 otherwise

Taking the discrete samples with the sampling instances at t = nTs = nTsym=

N, n = 0, 1, 2, .......; N-1, can be written in the discrete time domain as [1],

1

N

∑
n=0

N − 1e
j2π k

Tsym
nTse−j2π

i
T
nTs =

1

N

∑
n=0

N − 1e
j2π k

Tsym
nT
N e−j2π

i
T

nTsym
N (1.2)

Orthogonality =

 1 if k = i

0 otherwise

The above orthogonality is an essential condition for the OFDM signal to be

ICI-free.
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1.2 Introduction to OFDM

Figure 1.3: OFDM symbols with CP [1].

Figure 1.4: ISI effect of a multipath channel for each sub-carrier [1].

1.2.2 Cyclic Prefix (CP)

The OFDM guard interval can be inserted in two different ways. One is the zero

padding (ZP) that pads the guard interval with zeros. The other is the cyclic

extension of the OFDM symbol (for some continuity) with CP (cyclic prefix) or

CS (cyclic suffix). CP is to extend the OFDM symbol by copying the last samples

of the OFDM symbol into its front. Figure 1.3 shows OFDM symbols with CP

and Figure 1.4 shows ISI effect of a multipath channel for each sub carrier. Cyclic

prefix should be greater than delay spread of channel to avoid inter OFDM symbol

interference. CP is simply repeating symbols dost not constitute any information,

hence the effect of addition of long CP is loss in throughput of system.

5



1.2 Introduction to OFDM

Figure 1.5: Inter-carrier interference (ICI) subject to CFO [1].

1.2.3 Effect of CFO and STO

The baseband transmit signal is converted up to the passband by a carrier modu-

lation and then, converted down to the baseband by using a local carrier signal of

(hopefully) the same carrier frequency at the receiver. In general, there are two

types of distortion associated with the carrier signal. One is the phase noise due

to the instability of carrier signal generators used at the transmitter and receiver,

which can be modeled as a zero-mean Wiener random process. The other is the

carrier frequency offset (CFO) caused by Doppler frequency. CFO destroys the

orthogonality between the sub-carriers which is shown in Figure 1.5. Table 1.1

shows the effect of the CFO in receiving signal in frequency domain with shifting

of ξ and time domain multiplying with the exponential term and Table 1.5 shows

the Doppler frequency and normalized CFO for some standard systems like DMB,

3GPP and mobile WiMAX [5], [6].

Table 1.1: The effect of CFO on the received signal

.

Received Effect of CFO ξ
signal on the received signal

Time-domain signal y[n] e
j2πnξ
N x[n]

Frequency-domain signal Y[K] X[k - ξ]

IFFT and FFT are the fundamental functions required for the modulation

and demodulation at the transmitter and receiver of OFDM systems, respectively.

In order to take the N-Point FFT in the receiver, we need the exact samples

6



1.2 Introduction to OFDM

Figure 1.6: Four different cases of OFDM symbol starting point subject to STO.

of the transmitted signal for the OFDM symbol duration. In other words, a

symbol-timing synchronization must be performed to detect the starting point

of each OFDM symbol (with the CP removed), which facilitates obtaining the

exact samples. Table 1.2 shows how the STO of δ samples affects the received

symbols in the time and frequency domain where the effects of channel and noise

are neglected for simplicity of exposition. Four different cases of OFDM symbol

starting point subject to STO. All these foure cases shown in Figure 1.6.

� Case I: This is the case when the estimated starting point of OFDM symbol

coincides with the exact timing, preserving the orthogonality among subcar-

rier frequency components. In this case, the OFDM symbol can be perfectly

recovered without any type of interference.

� Case II: This is the case when the estimated starting point of OFDM symbol

is before the exact point, yet after the end of the (lagged) channel response

to the previous OFDM symbol. In this case, the lth symbol is not overlapped

with the previous(l− 1)th OFDM symbol, that is, without incurring any ISI

by the previous symbol in this case.

� Case III: This is the case when the starting point of the OFDM symbol

is estimated to exist prior to the end of the (lagged) channel response to

the previous OFDM symbol, and thus, the symbol timing is too early to

avoid the ISI. In this case, the orthogonality among subcarrier components

is destroyed by the ISI (from the previous symbol) and furthermore, ICI

(Inter- Channel Interference) occurs.

7



1.2 Introduction to OFDM

Figure 1.7: BER sensitivity Vs CFO under AWGN channel noise.

� Case IV: This is the case when the estimated starting point of the OFDM

symbol is after the exact point, which means the symbol timing is a little

later than the exact one [7].

Table 1.2: The effect of symbol time offset (STO)

.

Received Effect of STO δ
signal on the received signal

Time-domain signal y[n] X[k - δ]

Frequency-domain signal Y[K] e
j2πnδ
N x[n]

Table 1.3: Doppler frequency and normalized CFO: an example..
Systems Carrier Sub-carrier Velocity Maximum Normalized

Frequencyfc spacing(∆f) Doppler frequency(fd) CFO(ξ)

DMB 375MHz 1KHz 120Km/h 41.67Hz 0.042
3GPP 2GHz 15KHz 120Km/h 222.22Hz 0.0148
Mobile WiMAX 2.3GHz 9.765KHz 120Km/h 255.55Hz 0.0263

1.2.4 Advantages of OFDM Systems

� Efficient implementation using Fast Fourier Transform (FFT).

� High spectral efficiency as compared to other double sideband modulation

schemes, spread spectrum.

� Robust against inter-symbol interference (ISI) and fading caused by multi-

path propagation.

8



1.3 Literature Survey

� Can easily adapt to severe channel conditions without complex time-domain

equalization.

� Robust against narrow-band co-channel interference.

� Low sensitivity to time synchronization errors.

1.2.5 Disadvantages of OFDM Systems

� Sensitive to Doppler shift.

� Sensitive to frequency synchronization problems.

� High peak-to-average-power ratio (PAPR), requiring linear transmitter cir-

cuitry, which suffers from poor power efficiency.

� Loss of efficiency caused by cyclic prefix/guard interval.

[8] [4] [9] [10] [11] [12] [13] [14]

1.3 Literature Survey

A number of approaches have dealt with CFO estimation in a OFDM (SIS0)

systems [10], [15], [16], [17], [18], [19]. According to whether the CFO estimators

use training sequences or not, they can be classified as-

1.3.1 Time-Domain Estimation Techniques for CFO

For CFO estimation in the time domain, cyclic prefix (CP) or training symbol is

used.

� cyclic prefix (CP) based Estimation.

� Blind CFO Estimation [15], [16].

� Training-based CFO Estimation [10], [17], [18], [19].

9



1.4 Motivation

1.3.2 Frequency-Domain Estimation Techniques for CFO

If two identical training symbols are transmitted consecutively, the corresponding

signals with CFO of ξ are related with each other. which is a well-known approach

by Moose [10].

Similar to SISO-OFDM, MIMO-OFDM is also very sensitive to CFO. More-

over, for MIMO-OFDM, there exists multi-antenna interference (MAI) in the re-

ceived antennas between the received signals from different transmit antennas.

The MAI makes CFO estimation more difficult as compare to SISO-OFDM sys-

tems, and a optimum size training sequence design is required for training-based

CFO estimation in high range of CFOs. However, unlike SISO- OFDM, only a few

CFO estimation in MIMO-OFDM system works have appeared in the literature.

In [7], a blind kurtosis-based CFO estimator for MIMO-OFDM was developed.

In that estimation they introduced a random-hopping scheme which robustifies

the CFO estimator against channel nulls. For training-based CFO estimators,

the overviews concerning the necessary changes to the training sequences and the

corresponding CFO estimators when extending SISO-OFDM to MIMO-OFDM

were provided in [20], [21]. However, with the provided training sequences in [20],

satisfactory CFO estimation performance cannot be achieved. With the training

sequences in [21], the training period grows linearly with the number of transmit

antennas, which results in an increased overhead. In [22], a white sequence based

maximum likelihood (ML) CFO estimator was addressed for MIMO, while a hop-

ping pilot based CFO estimator was proposed for MIMO-OFDM in [23]. [22], [23]

require a large point discrete Fourier transform (DFT) operation for CFO Esti-

mation. In [13] CFO estimator only applied to flat-fading MIMO channels.

1.4 Motivation

OFDM system carries the message data on orthogonal sub-carriers for parallel

transmission, combating the distortion caused by the frequency-selective channel

or equivalently, the inter-symbol-interference in the multi-path fading channel.

However, the advantage of the OFDM can be useful only when the orthogonality

10



1.6 Thesis Organization

is maintained. In case the orthogonality is not sufficiently warranted by any means,

its performance may be degraded due to inter-symbol interference (ISI) and inter-

channel interference (ICI) [1].

� The carrier frequency offset (CFO) caused by Doppler frequency shift fd and

physically inherent nature of the oscillators.

� Presence of a carrier frequency offset can introduce several distortion in a

OFDM system as it results in loss of orthogonality among-st the sub-carrier.

� Consider frequency offset ∆f such that carrier frequency offset.

–
∆f
B
N

= ξ

– ξ=normalized frequency offset.

� Normalized frequency offset ξ.

1.5 Objective of the work

The main objective of this work is to present a carrier frequency offset estimation in

OFDM systems and MIMO-OFDM systems. Various analysis and investigations

are needed in support of the above statement which includes:

� Generation of training sequence with the optimal length.

� Selection of optimal block size.

� Improving MSE performance by increasing the CFO ranges.

� Optimal length of repetitive pattern, and number of pilot tones for mini-

mization of MSE.

1.6 Thesis Organization

This thesis is organized into four chapters. The current chapter begins with the

background details of the OFDM systems.The objective for this thesis work is

framed after literature review and this chapter ends with the outline of the thesis.

11



1.6 Thesis Organization

� Chapter- 2 CFO Estimation in OFDM Systems.

This chapter discusses in more detail about SISO-OFDM systems and es-

timation of carrier frequency offset (CFO) using four different estimation

methods.

� Chapter-3 CFO Estimation in MIMO-OFDM Systems.

MIMO-OFDM systems and carrier frequency offset estimation is discussed in

this chapter. space time block coding for increasing the diversity of systems.

and finally CFO estimation in MIMO-OFDM systems.

� Chapter- 4 Concluding remarks.

The last chapter is a summary and discussion on the work presented in this

thesis where also further work is outlined.

12



2
CFO Estimation in OFDM Systems
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2.1 Introduction

2.1 Introduction

OFDM system is widely used in multi-carrier modulation schemes. In this modu-

lation all sub-carriers are orthogonal to each other, which increases the bandwidth

efficiency of the system. OFDM transmission frequency channel converts in the

group of narrow band flat fading channel, one channel across each sub-channel.

OFDM modulation and de-modulation is implemented efficiently by inverse dis-

crete Fourier transform and discrete Fourier transform at the transmitter and

receiver respectively [5]. Cyclic prefix (CP) is used for extension of OFDM sym-

bol in time domain which increases the robustness of OFDM system against inter

symbol interference (ISI). OFDM has been used in great extent application like

wireless local area network IEEE802.11a/g standard, wireless metropolitan net-

work, digital audio broadcasting and terrestrial video broadcasting standard.

OFDM is very sensitive to time and frequency synchronization. The synchro-

nization problem consists of two major parts: carrier frequency offset (CFO) and

symbol time offset (STO). This is due to Doppler shift and a mismatch between

the local oscillator at the transmitter and receiver. In STO, time domain δ sample

and phase shift offset is affected in the frequency domain. Frequency synchroniza-

tion error destroys the orthogonality among the sub carriers which causes inter

carrier interference (ICI) [9]. Therefore the CFO synchronization is essential to

OFDM system. The CFO estimation has been extensively investigated for single

input single output (SISO) and for multiple input multiple output (MIMO) OFDM

based system. The normalized CFO can be divided into two parts which are in-

tegral CFO (IFO) ξi and fractional CFO (FFO) ξf . IFO produce a cyclic shift by

ξi in receiver side to corresponding sub carrier it does not destroy orthogonality

among the sub carrier frequency component and FFO destroys the orthogonality

between the sub carriers.

For CFO estimation in time domain, cyclic prefix ( CP) and training sequence

are used. CP based estimation has analyzed assuming negligible channel effect.

CFO can be found from the phase angle of the product of CP and the correspond-

ing part of an OFDM symbol, the average has taken over the CP intervals and
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in training sequence estimation using training symbol that is repetitive with some

shorter period.

In CFO estimation using frequency domain, this technique involves the com-

parison of the phase of the each sub carrier to successive symbol, the phase shift

in symbol due to the carrier frequency offset. Two different estimation modes for

CFO estimation in pilot based estimation method is used which are acquisition

and tracking mode. In the acquisition mode large range of CFO estimation is done

and in tracking mode only the fine CFO is estimated. Initially we assume that

acquisition estimation is already performed and hence fine CFO estimation is per-

formed in this paper. All simulation results show mean square error (MSE) with

respect to different signal to noise ratio (SNR) in db and comparied for training

sequence with ratio of OFDM symbol to repetitive sequence length with respect

to different CFO value.

2.2 System Model

In OFDM transmission scheme a wide-band channel divided into N orthogonal

narrow-band sub-channels. N Point IFFT and FFT are used to implement OFDM

Modulation and Demodulation. The transmitter maps the message bits Xm into

a sequence of BPSK or QAM symbols which are subsequently converted into an N

parallel bit stream. Each of N symbols from the serial-to-parallel (S/P) conversion

is modulated on the different sub-carriers.

Let Xl[k] denote the lth transmit symbol at kth sub-carrier l = 0, 2, . . . . .

∞ . k = 0, 1, 2, . . . . . N-1, Tsym = NTs OFDM symbol length [1].

OFDM signal at the kth sub-carrier,

ψlk(t) =

 e2πjfk(t−lT sym) 0 < t ≤ Tsym

0 eleswhere
(2.1)

The passband and baseband OFDM in the continuous time domain.

xl(t) = Re

{
1

Tsym

∞∑
l=0

{
∞∑
k=0

xl[k]ψlk(t)

}}
(2.2)
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Figure 2.1: OFDM Modulation and Demodulation [1].

The continuous time baseband OFDM signal is sampled at t = lTsym+nTs with

Ts = Tsym/N and fk = k/Tsym to corresponding discrete time OFDM signal.

xl[n] =
N−1∑
k=0

Xl[k]e2πjkn/N (2.3)

for n = 0, 1, . . . . . N-1 the received baseband symbol with considering

the effect of channel and noise at the receiver {yl[n]}N−1n=0 the sample value of the

received ODFM symbol yl(t) at t = lTsym+nTs is

yl[k] =
N−1∑
n=0

Hl[n]yl[n]e−2πjkn/N +Wl[n] (2.4)

The received baseband symbols under the presence of CFO ξ and STO δ

yl[n] =
1

N

N−1∑
k=0

Hl[k]Xl[k]e2πj(k+ξ)(n+δ)/N +Wl[k] (2.5)

Where ξ is the normalized frequency offset (the ratio of actual frequency offset

to the inter carrier spacing ∆f) and wl[n] is the complex envelope of additive

white Gaussian noise (AWGN).

the kth element of DFT sequence consist of three component [10].

yk = (XkHk)

{
sinπξ

Nsin(πξ/N)

}
eπj(N−1)/N + Ik +Wk (2.6)
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Figure 2.2: OFDM Transmitter block.

Here the first component is modulation and second component is ICI caused

by the frequency offset.

Ik =
N−1∑

l=0,l 6=k

(XlHl)

{
sinπξ

Nsin(πξ(l − k + ξ)/N)

}
.ejφ (2.7)

ejφ = eπjξ(N−1)/Ne
−πj(l−k)/N

(2.8)

In order to evaluate the statistical properties for estimation of the ICI, some fur-

ther assumptions are necessary. Specifically, it will be assumed that E [Ik] = 0 and

E [XkX
∗
l ] = |x|2δlk the modulation values have zero mean and are uncorrelated.

With this provision E[Ik] = 0.

2.3 Proposed Method

2.3.1 CP Based:

With perfect symbol synchronization, a CFO of ξ results in a phase rotation of

2πnξ/N in the received signal. Under the assumption of negligible channel effect,

the phase difference between CP and the corresponding rear part of an OFDM

symbol (spaced N samples apart) is 2πNξ/N = 2πξ. Then, the CFO can be found

from the phase angle of the product of CP and the corresponding rear part of an

OFDM symbol,
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Figure 2.3: OFDM Receiver block.

CFO estimation using CP based.

ξ̃ = (1/2π)arg {y∗l [n]yl[n+N ]} (2.9)

n = -1, -2, . . . . . . -Ng. In order to reduce the noise effect, its average can be

taken over the samples in a CP interval.

ξ̃ = (1/2π)arg


−1∑

n=−Ng

y∗l [n]yl[n+N ]

 (2.10)

Arg() performed tan−1(), the range of the CFO estimation is [-0.5+0.5] and mean

square error performed by ξ̃ − ξ.

2.3.2 Symbol Based:

Two identical training symbols are transmitted consecutively and the correspond-

ing signals with CFO of ξ are related with each other. For an OFDM transmission

symbol at one receiver with an assumption of the absence of noise the 2N Point

sequence is [10]

rn =
1

N

N−1∑
k=0

HkXke
2πj(k+ξ)/N (2.11)

n = 0, 1, . . . . . . 2N-1,
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The kth element of the N Point DFT of the first N Points (2.11) is

R1k =
N−1∑
n=0

rne
−2πjkn/N (2.12)

k = 0, 1, 2, . . . . . . N-1,

The second half of the sequence is-

R2k =
N−1∑
n=0

rn +Ne−2πjkn/N (2.13)

rn +N = rne
2πjξ, R2k = R1ke

2πjξ, including the AWGN noise Y1k = R1k +W1k

Y2k = R1ke
2πjξ +W2k ; k = 0, 1, 2, . . . . . N-1.

Observe that between the first and second DFT symbols, both ICI and signal

are altered in exactly the same way, by a phase shift proportional to frequency

offset. Therefore, if frequency offset ξ is estimated using above observations, it

is possible to obtain accurate estimation even when the offset is too large for

satisfactory data demodulation [10].

ξ̃ = (
1

2π
)tan−1


N−1∑
k=0

Im[Y2kY
∗
1k]

N−1∑
k=0

Re[Y2kY ∗1k]

 (2.14)

The limit for accurate estimation by Equation (2.14) is |ξ|≤ 0.5.

2.3.3 Training Sequence Based:

CFO only within the range|ξ|≤ 0.5, Since CFO can be large at initial synchroniza-

tion stage, we may need estimation techniques that can cover wider CFO range.

The range of CFO estimation can be increased by reducing the distance between

two blocks of samples for correlation. This is made possible by using training sym-

bols that are repetitive with some shorter period. Let D represents the ratio of the

OFDM symbol length to the length of a repetitive pattern. Let the transmitter

sends the training symbols with D repetitive patterns in the time domain, which
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generated combo-type signal in the frequency domain after taking IFFT.

Xl[k] =

 Am if, k = D.i, i = 0, 1, .....(N/D − 1)

0 eleswhere
(2.15)

where Am represents an M-ary symbol and N/D is an integer and xl[n] and

Xl[n + N/D] are identical. After receiving repetitive length data sequence, re-

ceiver can make CFO estimation as [12].

ξ̃ = (D/2π)arg


N/D∑
n=0

y∗l [n]yl[n+N/D]

 (2.16)

The estimation range in this technique is |ξ|≤ D/2, which becomes wider as

D increases and number of samples for the computation of correlation is reduced

by 1/D, which degrade the MSE performance of OFDM system. In other words,

the increase in estimation range is obtained at the sacrifice of MSE (mean square

error) performance. Figure 2.7 shows the estimation range of MSE vs. CFO

performance for D = 2 and 4. simulation generates the plot which shows that the

range of CFO is increased when the value of D is increasing.

(2.17)ξ̃ = (D/2π)arg


D−2∑
m=0

N/D−1∑
n=0

y∗l [n+mN/D]yl[n+ (m+ 1)N/D]


The MSE performance can be improved without reducing the estimation range

of CFO by taking the average of the estimates with the repetitive patterns of the

shorter period.

2.3.4 Pilot Based:

Pilot tones inserted in the frequency domain and transmit every OFDM symbol for

CFO tracking. The signals are transformed into Yl[k]N−1k=0 and Yl+D[k]N−1k=0 though

FFT, from which pilot tones are extracted. After estimating CFO from pilot tones

in the frequency domain, the signal is compensated with the estimated CFO in the

time domain. In this process, two different estimation modes for CFO estimation

are Implemented: acquisition and tracking modes. In the acquisition mode, a
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large range of CFO including an integer CFO is estimated and in the tracking

mode, only fine CFO is estimated. The integer CFO is estimated by [11].

(2.18)ξ̃ = (
1

2πTsub
)max(ξ)

{
|
L−1∑
j=0

Yl+D[p[j], ξ]Y ∗l [p[j], ξ]X∗l+D[p[j]]Xl[p[j]]|

}

where L, p[j], and Xl[p[j]] denote the number of pilot tones, location of the jth

pilot tone, and the pilot tone located at p[j] in the frequency domain at the lth

symbol period [1].

2.4 Results & Comparison

CFO estimation is done by using four different techniques, first one by using Equa-

tion (2.10), the phase difference between CP and the corresponding rear part of

an OFDM symbol. Second by using Equation (2.14), the phase difference between

two repetitive preambles. Third by using Equation (2.16), training sequence with

D integer i.e. ratio of the OFDM symbol length to the length of a repetitive

pattern, taking D = 1, 2 and 4, in this estimation range of CFO increases but

MSE performance decreases with increasing the value of D. Simulation Figure 2.6

shown for D = 1, 2 and 4, for MSE vs CFO performance shows in Figure 2.7, in

this figure D = 2 and D = 4, the range of CFO is increasing for D = 4 comparisons

with D = 2, taking signal to noise ratio 6 dB. Fourth one by using Equation (2.18)

estimation between pilot tones in two consecutive OFDM symbols. Figure 2.4 and

Figure 2.5 show MSE performance for three different techniques with taking CFO

= 0.15 and 0.30. Pilot tone based estimation is better then CP and Preamble

based estimation. Performances of estimation techniques vary depending on the

number of samples in CP, the number of samples in preamble, and the number

of pilot tones, used for CFO estimation. Simulations are performed to verify the

accuracy of MSE analysis.

The OFDM system parameters are CFO = 0.15 and CFO = 0.30, N = 128,

Ng = 16,Nps = 4 (Pilot spacing), Number of pilots Np = 32, signal to noise ratio

(SNR) 0 to 30 db, D = 1, 2 and 4. For OFDM mapping QAM modulation used

and taking signal energy Es = 1.
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Figure 2.4: Simulation With CFO = 0.15.

Figure 2.5: Simulation With CFO = 0.30.

2.5 Conclusion

In this section frequency synchronization in an OFDM system is studied. The sim-

ulation results show the superior performance of our proposed scheme in AWGN

channel. Pilot based mean square estimation (MSE) performance is superior then

compare to CP based and symbol based.By using repeated sequences with different

value of D, CFO has been estimated.
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Figure 2.6: Training Sequence Based.

Figure 2.7: MSE vs CFO.

Further intensive research is needed in MIMO-OFDM system considering the

generalized system model. Where the CFO and propagation delay between each

transmit antenna and receive antenna are possibly different.
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CFO Estimation in MIMO-OFDM

Systems
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3.1 Introduction

The key challenge faced by future wireless communication systems is to provide

high-data-rate wireless access at high quality of service (QoS). Combined with the

facts that spectrum is a scarce resource and propagation conditions are hostile

due to fading (caused by destructive addition of multipath components) and in-

terference from other users, this requirement calls for means to radically increase

spectral efficiency and to improve link reliability. Multiple-input multiple-output

(MIMO) wireless technology [1] seems to meet these demands by offering increased

spectral efficiency through spatial multiplexing gain, and improved link reliability

due to antenna diversity gain. Even though there is still a large number of open re-

search problems in the area of MIMO wireless, both from a theoretical perspective

and a hardware implementation perspective, the technology has reached a stage

where it can be considered ready for use in practical systems. In fact, the first

products based on MIMO technology have become available, for example, the pre-

IEEE 802.11n wireless local area network (WLAN) systems by Airgo Networks,

Inc., Atheros Communications, Inc., Broadcom Corporation, Marvell Semicon-

ductor, Inc., and Metalink Technologies, Inc. Current industry trends suggest

that large-scale deployment of MIMO wireless systems will initially be seen in

WLANs and in wireless metropolitan area networks (WMANs). Corresponding

standards currently. The existing applications of WLANs consist of unlicensed

operating at industrial, and medical (ISM) frequency around 2.45 and 5.8 GHz

and licensed cellular system operating at 18.19 GHz which can support data rate

up to 54Mb/s by using orthogonal frequency division multiplexing (OFDM) tech-

nique. Recently, there has been an IEEE 802.11n technical proposal supporting

high data rate based on multiple input and multiple output (MIMO) with OFDM.

The goal of this chapter is to provide a high level review of the basics of MIMO-

OFDM wireless systems with a focus on transceiver design, multiuser systems, and

hardware implementation aspects.MIMO-OFDM is a combination of MIMO(multi

iput multi output) communication with OFDM. MIMO-OFDM converts a fre-

quency selective MIMO channel into multiple paraller flat fading MIMO channels.
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In MIMO frequency selective channel ISI occurs between current and previous

transmitted vector, so MIMO-OFDM system one need to perform the IDFT or

IFFT opreration at each transmitted antenna. MMSE (minimum mean squared

error) or ZF (zero forcing) receiver are uesd for the receiving MIMO-OFDM sym-

bols.

OFDM system is quite sensitive to frequency synchronization error, which may

lead to several degradation in system performance [4]. We consider, after coarse

synchronization residual carrier frequency offset estimation in MIMO-OFDM sys-

tem. A number of algorithm in literature [5 - 9] to estimate a phase error using

pilots. In this chapter we suggest an improved residual CFO tracking algorithm

via block-by-block in MIMO-OFDM system. In this algorithm we use block delay

with other next block and compare with the delay block. To demonstrate the

efficiency of proposed CFO estimator, we compare it with the other existing algo-

rithm in terms of Mean Square error (MSE), estimation range, complexity, based

on the simulation and theoretical analysis.

3.2 MIMO System

Doppler spread are the most important factors to consider in characterizing the

SISO system. In the MIMO system which employs multiple antennas in the trans-

mitter and/or receiver, the correlation between transmit and receive antenna is

an important aspect of the MIMO channel. MIMO can increases the data rate by

transmitting several information streams in parallel (same frequency at same time)

same transmit power. It depends on the angle-of-arrival (AoA) of each multi-path

component. Figure.3.1 shows NR ×NT MIMO system model x1 x2 . . . . . . xNT

are transmitted symbols corresponding y1 y2. . . . . . . yNR received antenna and

h11 . . . . hNRNT are the channel impulse response of the systems. MIMO system

model with the Rth received antenna and T th transmit antenna, x transmit vector,

y received vector, hij is channel coefficient between the ith received antenna and
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Figure 3.1: NR ×NT MIMO system.

jth transmit antenna. So MIMO channel matrix is

Hr,t =


h1,1 h1,2 · · · h1,t

h2,1 h2,2 · · · h2,t
...

...
. . .

...

hr,1 hr,2 · · · hr,t


Hence MIMO system model can be write with ỹ in r dimensional received vector,

H in r× t channel matrix, x̃ in t dimensional transmit vector and ñ in r dimension

noise.

ỹ = Hx̃+ ñ (3.1)

We can write MIMO system in matrix form as follows :


y1

y2
...

yr

 =


h1,1 h1,2 · · · h1,t

h2,1 h2,2 · · · h2,t
...

...
. . .

...

hr,1 hr,2 · · · hr,t




x1

x2
...

xt

+


n1

n2

...

nr


3.2.1 Spatial Multiplexing

Spatial multiplexing yields a linear (in the minimum of the number of transmit and

receive antennas) capacity increase, compared to systems with a single antenna at
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one or both sides of the link, at no additional power or bandwidth expenditure [24] ,

[25]. The corresponding gain is available if the propagation channel exhibits rich

scattering and can be realized by the simultaneous transmission of independent

data streams in the same frequency band. The receiver exploits differences in

the spatial signatures induced by the MIMO channel onto the multiplexed data

streams to separate the different signals, thereby realizing a capacity gain.

3.2.2 Diversity

Diversity can be employed to improve performance of wireless system through

controlling or combating fading. Diversity leads to improved link reliability by

rendering the channel less fading and by increasing the robustness to co-channel

interference. Diversity gain is obtained by transmitting the data signal over mul-

tiple (ideally) independently fading dimensions in time, frequency, and space and

by performing proper combining in the receiver. Spatial (i.e., antenna) diversity

is particularly attractive when compared to time or frequency diversity, as it does

not incur an expenditure in transmission time or bandwidth, respectively. Space-

time coding [26] realizes spatial diversity gain in systems with multiple transmit

antennas without requiring channel knowledge at the transmitter. In one trans-

mitter one receiver system if channel is in under deep fade in this condition we can

not receive any signal. Avoid this problem increase number of links. Figure 3.2

shows transmitter link is under deep fading in this condition we can not receive

desired signal at receiver. Avoid deep fade condition MIMO system is used which

shows in Figure 3.3.

3.2.3 Array Gain

Array gain can be realized both at the transmitter and the receiver. It requires

channel knowledge for coherent combining and results in an increase in average

receive signal-to-noise ratio (SNR) and hence improved coverage.

Multiple antennas at one or both sides of the wireless link can be used to cancel

or reduce co-channel interference, and hence improve cellular system capacity.
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Figure 3.2: Link is in under Deep fading for one Transmitter and one Receiver.

Figure 3.3: Multiple Links are using to avoid Deep fade condition.

29



3.3 Space Time Block Coding

3.3 Space Time Block Coding

Space time block code is a technique used in wireless communication to transmit

multiple copies of data stream across a number of antenna and exploits the various

received version of data to improve the reliability. Few data stream corrupted by

the thermal noise. Corrupted by the thermal noise in the receiver means that

some of copies of the data will be better then others.

Space time coding combines all the copies received signal in an optimal way to

extract as much information from each of them as possible. An STBC is usually

represents by a matrix each row represents a time slot and each column represents

antenna’s transmission over time. The code rate of an STBC measures how many

symbols per time slots transmits an average over the one block. Only one standard

STBC can achieve full rate (rate 1) that is the Alamouti sapce time coding [27].

3.3.1 Alamouti Code

Alamouti STBC for two transmitter antenna and two receiver antenna. At a given

symbol period, two signal are simultaneously transmitted from the two antenna.the

signal transmitted from antenna zero is denoted by s0 and from antenna one by

s1. For next symbol period signal −s∗1 is transmitted from zero, and signal s∗0

is transmitted from antenna one where * is the complex conjugate operation.

Consider at the receiver end y(0) received signal at first time instant and y(1)

received signal at the second time instant. n(0) and n(1) is additive white Gaussian

noise. Received signal at first time instant.

y(0) =
[
h0 h1

]s0
s1

+ n(0)

Received signal at second time instant.

y(1) =
[
h0 h1

]−s∗1
s∗0

+ n(1)

Above both the received signal we can be write in equivalent to MIMO system as
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Figure 3.4: Two-branch transmit diversity scheme with one receiver and two trans-
mitter [28].

below y(0)

y(1)

 =

h0 h1

h∗1 −h∗0

s0
s1

+

n(0)

n(1)



column(c1) =

h0
h∗1

 column(c2) =

 h1

−h∗0


cH1 c2 = h∗0h1+ h1(−h∗0) = 0 i.e two column orthogonal to each other. Hence

Alamouti belongs to a spacial class of coding termed as orthogonal space time

block coding (OSTBC) and c1
‖c1‖ can be employed as a receive beam former to

detect s0.

Table 3.1: The encoding and transmission sequence for the two-branch transmit
diversity scheme.

Time Antenna 0 Antenna 1

Time t s0 s1

Time t+T −s∗1 s∗0

Where T is symbol duration.
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Figure 3.5: Two-branch transmit diversity scheme with two receivers and two
transmitter [28].

signal to noise ratio (SNR) of alamouti is given below.

SNR =
‖h‖2p1
σ2
n

(3.2)

p1 is power allocated to s0, total power transmitted is p which is fixed. If trans-

mitted power for s0 and s1 is fixed which is half of the total power transmitted

then SNR can write-

SNR =
p

2

‖h‖2

σ2
n

(3.3)

From Equation (3.3) Alamouti space time block coding achieve second order di-

versity but performance of SNR will degrade with 3 dB loss.

3.4 System Model

We consider a MIMO-OFDM system employing Nt transmit antenna and Nr re-

ceive antennas. Figure 3.6 shows schematic block diagram of Transmitter and

Figure 3.7 Receiver. Data stream splits in to N-subcarrier according to number

of transmitter antenna. Each subcarrier are orthogonal to each other and taking
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Figure 3.6: Schematic diagram of MIMO-OFDM Transmitter block.

the inverse Fourier transform (IFFT) for modulation of the data stream. We as-

sume that mth transmit antenna, Xl,m(k) during lth period of symbol. Here Np is

number of pilot symbol, so N-Np is a data symbol which going to transmit.

Xl,m(k) =

 Dl,m(k) k ∈ sd
Pl,m(k) k ∈ sp

(3.4)

Where sd andsp are indicates data stream and pilot subcarriers. Initially we

assume that coarse synchronization has been successfully completed at the be-

ginning of the data frame, only a small amount of CFO has remained for the

estimation. In indoor application we assume that very strong line of side and very

less amount of Doppler Effect at the receiver side. A single common CFO for the

whole MIMO-OFDM system is considered. At receiver side, rth receive antenna

detected on the kth subcarriers on the lth transmitted OFDM symbol in frequency

domain. Receive signal with effect of CFO is given below [29],

Rl,m(k) =
Nt∑
m=1

Ĥl,r,m(k)Xl,m(k)ej2πξl(N+Ng)/N + Il,r(k) +Wl,r(k) (3.5)

Where r = 1, 2, . . . . , Nt
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Figure 3.7: Schematic diagram of MIMO-OFDM Receiver block.

With

Ĥl,r,m(k) = Hl,r,m(k)
sin(πξ)

Nsin(πξ/N)
ejπξ(N−1)/N (3.6)

and

(3.7)Il,r(k)

=
Nt∑
m=1

N−1∑
n6=1

Hl,r,m(k)Xl,m(k).ej2πξl(N+Ng)/N
sin(π(ξ +N − k))

Nsin(π(ξ +N − k)/N)
ejπ(ξ+N−k)(N−1)/N

Ng is number of guard interval (GI) ξ is normalized carrier frequency offset

(CFO), m is number of transmit antenna, r number of receive antenna, Hl,m(k) is

channel frequency response from transmit antenna to receive antenna, Il,r(k) inter-

carrier interference (ICI) generated by frequency error and Wl,r(k) is zero-mean

complex Gaussian noise.

3.5 Proposed Methods

3.5.1 Conventional Estimation Scheme

The aim of frequency tracking is to estimate small CFO which remains in tracking

mode for WLAN system. One simple way to increase the estimation range and
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3.5 Proposed Methods

estimation accuracy using two different OFDM symbols with S delay and compare

these symbols. Two OFDM symbol Rl,r(k) and Rl+s−1,r(k) is delay with the S-

1 [30]. We assume the channel is a time invariant channel for several OFDM symbol

period in WLAN application. The CFO can be estimated without knowledge of

the channel information by minimizing the mean square error (MSE) between the

two identical transmissions [6]. This approach can be implemented in MIMO-

OFDM systems [6]. Pilot symbol Pl,m(k) is identical for Nt transmit antenna in

MIMO configuration. Then a symbol by symbol correlation at the receiver is

Ωr(k) = R∗l,r(k)Rl+s−1,r(k) (3.8)

We assume that fading remains constant over a block of S consecutive OFDM

periods. After using multiple antenna we obtain CFO estimation [29].

ξ̂ =
N

2π(S − 1)Nu

arg

∑
k∈sp

Nr∑
r=1

Ωr(k)

 (3.9)

Where Nu = N+Ng, from above equation range of estimation is |ξ|< N/(2(S −

1)Nu)

3.5.2 Proposed Estimation Scheme

In this section we proposed CFO tracking for MIMO-OFDM system by employing

block-by-block estimation. Analysis of the optimal size of block and minimization

of the MSE of frequency estimator. We use S observation symbols they are grouped

into two consecutive blocks with length A and S-A. The observation symbol, in

each block are added sequentially and summed results are correlated block-wise

as follows.

Ωr(k) =

{
A−1∑
i=0

Ri,r(k)

}∗ S−1∑
n=A

Rn,r(k), k ∈ Sp (3.10)

For averaging operation of two block can be use FIR filter. In indoor WLAN

environment assuming slow-fading condition then we can write above equation as

Ωr(k) =

∣∣∣∣∣
Nt∑
m=1

Ĥl,r,m(k)

∣∣∣∣∣
2

Ep

S−1∑
n=A

A−1∑
i=0

ejθ(n−i) (3.11)
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3.6 Simulation Results

E[x] is mean of x from Equation (3.8) Estimation of ξ is derived by finding the

argument of summation of Ωr(k) over all possible r’s and k’s in MIMO-OFDM

systems i.e

ξ̂ =
N

πSNu

arg

∑
k∈sp

Nr∑
r=1

Ωr(k)

 (3.12)

3.5.3 Selection of Optimal Size Block

To choose the optimal size for block size A, we derive MSE of the proposed esti-

mator. For the sake of simplicity we assume that the antenna are placed such that

their channel transfer function can be considered as uncorrelated Re(x) and Im(x)

are denote real and imaginary part of x, respectively ρ=ejθS/2 and ξ is small. Then

the argument term can be expressed as

arg

∑
k∈sp

Nr∑
r=1

Ωr(k)ρ

 =

Re

{∑
k∈sp

Nr∑
r=1

Ωr(k)ρ

}

Im

{∑
k∈sp

Nr∑
r=1

Ωr(k)ρ

} (3.13)

since ĥl,r,m(k) are highly uncorrelated for different l’s , r’s and m’s or k ∈ Sp.

Based on the fact E[Ŵr(k)] = 0 and some straight forward calculation the variance

of the fine frequency estimator can easily derived.

E[|ξ̂ − ξ|2] =
N2

2π2S2N2
uN

2
pNtNr(S − A)A

.

{
S

SNR
+

1

Nt.SNR2

}
(3.14)

Where SNR =
σ2
H

σ2
W

. By differentiating with respect to A and solving for zero. For

necessary condition equal to zero with the minimum MSE.

(S −A)−2A−2(2A− S) = 0, Since 0 <A <S, a unique solution is A = S/2. which

is valid for estimation.

3.6 Simulation Results

The OFDM parameter chosen in the simulation which are based on the IEEE802.11n

WLAN draft as follows: N = 64, Ng = 16, Np = 4 and maximum Doppler frequency

was assumed to 20Hz. Alamouti space time block coding is used for diversity gain.
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Figure 3.8: BER, after using Alamouti space time block coding for MIMO-OFDM
transmission scheme and zero forcing (ZF) Receiver.

Figure 3.8 shows BER analysis of the MIMO-OFDM system with space time block

coding (Alamouti coding), when Nt = 2, Nr = 2 and comparison between the con-

ventional method of one transmitter and one receiver with zero forcing receiving

methods is used.

Figure 3.9, 3.10 shows the MSE of the proposed fine frequency estimator versus

the length of the first block A in sample unit, when transmitter and receiver

antenna is two. Both the figure wide range of SNR taken, which is 8dB to 28dB

for determining the optimal value of block A. From both figures ,there exists one

specific value of A that give minimum MSE with respect to different value of SNR.

i.e A = S/2 which is exactly coincides with the value derived.

Figure 3.11 compares the MSE performance of conventional method and pro-

posed frequency estimation method with small value of the CFO. Here we have

taking Nt = 2 and Nr = 2.

3.7 Conclusion

The OFDM parameters chosen the simulation is based on IEEE802.11n N = 64, Ng

= 16 and Np = 4. To show the independence of the optimal value of block size A to

SNRs, a wide range of SNR 8 dB to 28 dB are selected. This estimation presented

an improved frequency offset tracking scheme in the OFDM based MIMO-WLAN

system. This can increase the estimation range of existing methods and achieves
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3.7 Conclusion

Figure 3.9: Estimation performance of the proposed frequency estimator versus A
in SNR = 8dB.

Figure 3.10: Estimation performance of the proposed frequency estimator versus
A in SNR = 28dB.
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3.7 Conclusion

Figure 3.11: Estimation performance of the proposed frequency estimator when
Nt = 2, Nr = 2.

better estimation performance. The design of our algorithm is such that it can

be very easily applied to any pilot based OFDM system in the indoor wireless

system.
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Concluding remarks
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4.2 Future work

4.1 Conclusion

These estimates presented an improved frequency offset tracking in OFDM and

MIMO-OFDM system. Space time block coding is used for increasing the diversity

gain in the MIMO system. Where Alamouti space time block coding is used which

code rate and accuracy is high.

� Chapter 2 explains the carrier frequency offset estimation in OFDM systems.

CFO estimation has been performed by using four basic estimation method

and compression between them. CP based estimation, symbol-by symbol

estimation, a pilot based estimation and training sequence based estimation

are used for OFDM estimation. The simulation results show the superior

performance of our proposed scheme in AWGN channel. A pilot based mean

square estimation (MSE) performance is superior then compare to CP based

and symbol based. By using repeated sequences with different value of D,

the CFO has been estimated.

� MIMO-OFDM system design and carrier frequency offset estimation is ex-

plained in chapter 3. These estimates presented an improved frequency

offset tracking scheme in the OFDM based MIMO-WLAN system. This can

increase the estimation range of existing methods and achieves better esti-

mation performance. Here block by block estimation method is used. In this

method comparisons between two blocks with some specific delay and mini-

mize the mean square error (MSE). For this minimum MSE, we optimize the

optimal block size. Space time block coding is used for the diversity gain in

MIMO transmission. For STBC, Alamouti coding is used. Design method

is easily applied for any pilot based OFDM systems.

4.2 Future work

� Further intensive research is needed in MIMO-OFDM system considering the

generalized system model. Where the CFO and propagation delay between

each transmit antenna and receive antenna are possibly different.
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4.2 Future work

� For high Doppler shift in an indoor and outdoor application for coarse and

fine CFO estimation in MIMO-OFDM systems.

� Time offset (STO) and frequency offset estimation combinable in OFDM

and MIMO-OFDM systems.
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