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ABSTRACT 

Front gate and back gate threshold voltage, potential distributions and sub threshold swing 

of recessed source/drain ultra-thin body silicon on insulator MOSFETs are simulated and 

analyzed in a vivid manner with extreme meticulousness. Analysis and comparative study 

of the electrical characteristics of Re s/d UTB SOI MOSFETs with that of conventional FD 

SOI MOSFETs has been done. Structures of conventional SOI MOSFET and Re s/d 

MOSFETs is simulated with the help of software like ATLAS. The Re S/D has several 

advantages over conventional UTB MOSFETs with elevated S/D structure. We observe 

that values of drain current comes out to be higher for recessed s/d SOI MOSFETs 
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Chapter1:INTRODUCTION  
Initial structure of MOSFET was at first proposed and patented by Lilienfeld and Heil

 
in 

the year 1930, but was not successfully demonstrated until year 1960. The main 

technological problems were the control and reduction of the surface states at the 

interface between the oxide and the semiconductor .Initially it was only possible to 

deplete an existing n-type channel by applying a negative voltage to the gate. Such 

devices have a conducting channel between source and drain even when no gate voltage 

is applied and are called "depletion-mode" devices. A reduction of the surface states 

enabled the fabrication of devices which do not have a conducting channel unless a 

positive voltage is applied. Such devices are referred to as "enhancement-

mode" devices. The electrons at the oxide-semiconductor interface are concentrated in a 

thin (~10 nm thick) "inversion" layer. By now, most MOSFETs are "enhancement-mode" 

devices. 

 

MOSFET stands for metal oxide field effect transistor. MOSFET Field effect transistor is 

a unipolar transistor, which acts as a voltage-controlled current device and is a device in 

which current at two electrodes drain and source is controlled by the action of an electric 

field at another electrode gate having in-between semiconductor and metal very a thin 

metal oxide layer .MOSFET comprises of 4 parts namely source (S), gate (G), drain (D), 

and body (B) terminals. The body (or substrate) of the MOSFET often is connected to the 

source terminal, making it a three-terminal device. Because these two terminals are 

normally connected to each other (short-circuited) internally, only three terminals appear 

in electrical diagrams. 

FIGURE 1.1.1 

Two complementary devices:- 

 

 n-channel device (n-MOSFET) on p-Si substrate(uses electron inversion layer) 

 

 p-channel device (p-MOSFET) on n-Si substrate(uses hole inversion layer) 
                                                                                                                            1                



 

 

 

FIGURE 1.1.2                                                                                FIGURE 1.1.3 

TYPES OF MODES IN A MOSFET 

   

In enhancement mode MOSFETs, a voltage drop occurs across the oxide and hence induces a 

conducting channel between the source and drain contacts via the field effect. The term 

"enhancement mode" refers to the increase of conductivity with increase in oxide field that adds 

carriers to the channel, also referred to as the inversion layer. The channel can contain electrons 

(called an nMOSFET or nMOS), or holes (called a pMOSFET or pMOS), opposite in type to the 

substrate, so nMOS is made with a p-type substrate, and pMOS with an n-type substrate. 

 

 
Fig 1.1.4 n-channel enhancement MOSFET    Fig1.1.5 p-channel enhancement MOSFET 

When VGS = 0, the n-channel is very thin and channel width enhances with +VGS There are a 

pair of small n-type regions just under the drain & source electrodes.  If apply a +ve voltage to 

gate, will push away the ‘holes’ inside the p-type substrate and attracts the moveable electrons in 

the n-type regions under the source & drain electrodes. Increasing the +ve gate voltage pushes 

the p-type holes further away and enlarges the thickness of the created channel.  As a result 

increases the amount of current which can go from source to drain this is why this kind of 

transistor is called an enhancement mode MOSFET. 
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A. Cut-off mode: 

• VGS < VT , VGD < VT with VDS > 0.whereVT –Threshold voltage of the device. According to the 

basic threshold model, the transistor is turned off, and there is no conduction between drain and 

source.so Id=0.  

 

FIGURE 1.1.6 

 B.Linear or Triode regime: 

 • VGS > VT , VGD > VT , with VDS > 0. 

  FIGURE 1.1.7 

The transistor is turned on, and a channel has been created which allows current to flow between 

the drain and the source. The MOSFET operates like a resistor, controlled by the gate voltage 

relative to both the source and drain voltages. The current from drain to source is modeled as: 

    

Where  is the charge-carrier effective mobility,  is the gate width,  is the gate length 

and  is the gate oxide capacitance per unit area. The transition from the exponential sub 

threshold region to the triode region is not as sharp as the equations suggest. 
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C. Saturation Mode: 

 
• VGS > VT , VGD < VT (VDS > 0). 

ID independent of VDS: ID = IDsat 

The drain voltage is higher than the gate voltage, the electrons spread out, and conduction is not 

through a narrow channel but through a broader, two- or three-dimensional current distribution 

extending away from the interface and deeper in the substrate. The onset of this region is also 

known as pinch-off to indicate the lack of channel region near the drain. The drain current is 

now weakly dependent upon drain voltage and controlled primarily by the gate–source voltage, 

and modeled approximately as: 

     

The additional factor involving λ, the channel-length modulation parameter, models current 

dependence on drain voltage due to the Early Effect or channel. According to this equation, a key 

design parameter, the MOSFET transconductance is: 

 
where the combination Vov = VGS – Vth is called the Overdrive voltage and where VDSsat = VGS – 

Vth accounts for a small discontinuity in  which would otherwise appear at the transition 

between the triode and saturation regions. 

 

 

FIGURE 1.1.8                                                           FIGURE 1.1.9 

Key dependencies: 

• VDS increases ----- ID increases (higher lateral electric field) 

• VGS increases ------ ID increases (higher electron concentration) 

• L increases       ----- ID decreases (lower lateral electric field) 

• W increases     ------- ID increases (wider conduction channel) 
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 DISADVANTAGES OF CONVENTIONAL MOSFETS 

As the continuous down scaling of MOSFET device is required to increase the device speed and 

packaging density, but it degrades the device performance in terms of short channel effect and 

leakage current .To continue the scaling process there is need of device structure that provide 

better performance in deep submicron regime. Due to reduction in the channel length scaling, 

threshold voltage is decreasing that increasing the leakage current and short channel effects. First 

of all was excessive heating effect produced in the circuits. Furthermore they showed a large 

number of short channel effects which badly affected the performance.  Scaling trend in CMOS 

approaching physical limits prompts the need for alternative device. With the technology scaling 

the MOSFET’s channel length is reduced .as the channel length approaches the source-body and 

drain body depletion widths ,the charge in the channel due to these parasitic diodes become 

comparable to the depletion charge due to MOSFET gate-body voltage rendering the gate and 

body terminals to be less effective. 

 

Some short channel effects are explained below:- 

In particular five different short-channel effects can be distinguished: 

1. Drain-induced barrier lowering 

2. Surface scattering 

3. Velocity saturation 

4. Impact ionization 

5. Hot electrons 

 DIBL(Drain Induced Barrier Lowering) 

Drain induced barrier lowering  is a short channel effect in MOSFETs referring 

originally to a reduction of threshold voltage of the transistor at higher drain voltages. In 

a classic planar field-effect transistor with a long channel, the bottleneck in channel 

formation occurs far enough from the drain contact that it is electrostatically shielded 

from the drain by the combination of the substrate and gate, and so classically 

the threshold voltage was independent of drain voltage.  The combined charge in 

the depletion region of the device and that in the channel of the device is balanced by 

three electrode charges: the gate, the source and the drain. As drain voltage is increased, 

the depletion region of the p-n junction between the drain and body increases in size and 

extends under the gate, so the drain assumes a greater portion of the burden of balancing 

depletion region charge, leaving a smaller burden for the gate. As a result, the charge 

present on the gate retains charge balance by attracting more carriers into the channel, an 

effect equivalent to lowering the threshold voltage of the device. 

In effect, the channel becomes more attractive for electrons. In other words, the potential 

energy barrier for electrons in the channel is lowered. Hence the term "barrier lowering" 

is used to describe these phenomena. As channel length is reduced, the effects of DIBL in 

the subthreshold region (weak inversion) show up initially as a simple translation of the 

subthreshold current vs. gate bias curve with change in drain-voltage, which can be 

modeled as a simple change in threshold voltage with drain bias. 

                                                                                                                                              5 
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DIBL also affects the current vs. drain bias curve in the active mode, causing the current 

to increase with drain bias, lowering the MOSFET output resistance. This increase is 

additional to the normal channel length modulation effect on output resistance, and 

cannot always be modeled as a threshold adjustment. 

 Surface scattering 

As the channel length becomes smaller due to the lateral extension of the depletion layer into 

the channel region, the longitudinal electric field component increases, and the surface 

mobility becomes field-dependent. Since the carrier transport in a MOSFET is confined 

within the narrow inversion layer, and the surface scattering (that is the collisions suffered by 

the electrons that are accelerated toward the interface by Ex) causes reduction of the mobility, 

the electrons move with great difficulty parallel to the interface, so that the average surface 

mobility, even for small values of Ex, is about half as much as that of the bulk mobility. 

 Velocity saturation 

The performance short-channel devices are also affected by velocity saturation, which 

reduces the transconductance in the saturation mode. At low Ey, the electron drift velocity 

Vde in the channel varies linearly with the electric field intensity.  Note that the drain current 

is limited by velocity saturation instead of pinchoff. This occurs in short channel devices 

when the dimensions are scaled without lowering the bias voltages.  

 Impact ionization 

Another undesirable short-channel effect, especially in NMOS, occurs due to the high 

velocity of electrons in presence of high longitudinal fields that can generate electron-hole 

(e-h) pairs by impact ionization, that is, by impacting on silicon atoms and ionizing them. It 

happens as follow: normally, most of the electrons are attracted by the drain, while the holes 

enter the substrate to form part of the parasitic substrate current. Moreover, the region 

between the source and the drain can act like the base of an npn transistor, with the source 

playing the role of the emitter and the drain that of the collector. If the aforementioned holes 

are collected by the source, and the corresponding hole current creates a voltage drop in the 

substrate material of the order of 6V, the normally reversed-biased substrate-source pn 

junction will conduct appreciably. Then electrons can be injected from the source to the 

substrate, similar to the injection of electrons from the emitter to the base. They can gain 

enough energy as they travel toward the drain to create new eh pairs. The situation can 

worsen if some electrons generated due to high fields escape the drain field to travel into the 

substrate, thereby affecting other devices on a chip. 

                                                                                                                                                    6 
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 Hot electrons 

Another problem, related to high electric fields, is caused by so-called hot electrons. These high 

energy electrons can enter the oxide, where they can be trapped, giving rise to oxide charging 

that can accumulate with time and degrade the device performance by increasing VT and affect 

adversely the gate’s control on the drain current. 

Due to the above mentioned limitations in conventional MOSFETs we moved on to the next 

structure i.e. conventional SOI MOSFET. 

 1.2)SOI MOSFET 
 

(A) SOI MOSFET stands for silicon on insulator MOSFETs.In such structures a 

semiconductor layer e.g. silicon, germanium is formed above an insulator layer which 

may be a buried oxide layer formed on a semiconductor substrate. 

Types of SOI MOSFET: 

 
 Partially Depleted (PD) 

 

 Fully Depleted (FD) SOI MOSFETs 

 

 

 

FIGURE 1.2.1 SOI MOSFET STRUCTURE 
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FIGURE 1.2.2                                                          FIGURE1.2.3 

 

 

PARTIALLY DEPLETED SOI MOSFETS 

 

 
The basic device equations of PD SOI MOSFETs are the same as for bulk devices, except of 

course from the complications arising from the floating body (FBE). 

 

 

IN THIS CASE tsi<2Xd(max) 
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FULLY DEPLETED SOI MOSFETS 

 

 
 

In FDSOI case, the front and back channels are electro-statically coupled during device 

operation. This electrostatic coupling makes the front channel FD device parameters dependent 

on the back gate Voltage, including drain current, threshold voltage, sub-threshold slope etc. 

ENERGY BAND DIAGRAMS OF PD AND FD SOI MOSFETS 

 

 FIGURE 1.2.4 

(Shaded regions are depleted)                                                                                                           9 



 

 

 

FD SOI Device operation and Threshold Voltage analysis 

 

 

LIMITATIONS OF CONVENTIONAL SOI MOSFETS 

 SOI-MOSFETs comes with many device related fabrication problems .Those are- Kink effect, 

Lattice heating and Subthreshold slope etc. The kink effect is characterized by the appearance 

kink in the output characteristics of an SOI-MOSFET. The kink appears above a certain drain 

voltage. SOI-MOSFETs are thermally insulated from the substrate by the buried insulator. SOI 

MOSFET’s are thermally insulated from the substrate by the buried insulator. This arises 

because device is thermally insulated from the substrate by a buried oxide layer. Leads to 

substantial elevation in temperature which affects the output. This effect is called as Lattice 

heating. 

 

Hence Recessed source /drain SOI was needed to reduce above limitations. 
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1.3)RECESSED SOURCE/DRAIN UTB SOI MOSFETS 

Planar SOI MOSFETs show short channel effects that reduce or has detrimental effects on the 

electrical characteristics; hence with the advent of fully depleted utb SOI MOSFET with buried 

insulator underneath greater control has been achieved over these short channel effects. The 

major problem of short channel utb SOI MOSFETs is that they show high series resistance 

characteristics caused by ultra-thin source and drain regions .FD UTB SOI MOSFET with 

recessed s/d overcomes this problem by increasing source or drain thickness which is achieved 

by extending source/drain regions deeper into the buried oxide. 

 

In comparison with the standard SOI MOSFETs, the special property of the ReS/D SOI 

MOSFETs is the coupling of the back-side of the silicon-body to the source and drain through 

the buried insulator. Additionally, these structures still exhibit substrate coupling in the direction 

perpendicular to wafer surface. 

We derive a general expression for the front-gate surface potential distribution at the gate-oxide 

to- silicon-body interface and the back-gate surface potential distribution at the buried-oxide-to-

silicon-body interface, that are fundamental for the modeling of SOI MOS devices. These 

expressions are then used to describe the surface threshold voltage of the Re S/D UTB SOI 

MOSFETs related to the front-gate and to analyze threshold voltage dependence on various 

device parameters, such as channel length, gate-oxide thickness, silicon-body, thickness, channel 

doping, and thickness of the source/drain extensions in the buried-oxide. 

 
FIGURE 1.3.1 
 

 

The characteristics of SOI-MOSFET can be studied by varying thickness of either silicon layer 

or oxide layer and the effect of change in threshold voltage values. Different characteristics 

curve between voltage and current, capacitance and voltage and thickness in silicon layer. The 

advantages of using SOI-MOSFET device to remove high parasitic capacitance values and latch 

effect thereby improving performance. 
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Chapter 2:SIMULATION METHOD USING ATLAS 

All 3-D programs in ATLAS supports structures defined on 3D prismatic meshes. Structures 

may have arbitrary geometries in two dimensions and consist of multiple slices in the third 

dimension .There are two methods for creating a 3D structure that can be used with ATLAS. One 

way is through the command syntax of ATLAS. Another way is through an interface to 

DEVEDIT3D. 

ATLAS Syntax for 3D Structure Generation 

Mesh generation.  

Conventionally, slices are made perpendicular to the Z axis. The mesh is triangular in XY but 

rectangular in XZ or YZ planes.  

Region, Electrode, and Doping definition 

To Define a Structure” also covers the definition of 2D regions, electrodes and doping profiles. 

To extend the regions into 3D, use the Z.MIN and Z.MAX parameters. For example:  

REGION NUM=2 MATERIAL=Silicon X.MIN=0 X.MAX=1 Y.MIN=0 Y.MAX=1 Z.MIN=0 

Z.MAX=1  

ELECTRODE NAME=gate X.MIN=0 X.MAX=1 Y.MIN=0 Y.MAX=1 Z.MIN=0 Z.MAX=1  

DOPING GAUSS N.TYPE CONC=1E20 JUNC=0.2 Z.MIN=0.0 Z.MAX=1.0 

For 2D regions or electrodes defined with the command language, geometry is limited to 

rectangular shapes. Similarly, in 3D regions and electrodes are composed of rectangular 

parallelepipeds.  

DevEdit3D Interface 

DEVEDIT3D is a graphical tool that allows you to draw 3D device structures and create 3D 

meshes. It can also read 2D structures from ATHENA and extend them into 3D. These structures 

can be saved from DEVEDIT3D as structure files for ATLAS. Also, save a command file when 

using DEVEDIT3D. This file is used to recreate the 3D structure inside DEVEDIT3D, which is 

important, since DEVEDIT3Ddoesn’t read in 3D structure files. ATLAS can read structures 

generated by DEVEDIT3D using the command:  

MESH INF=<filename> 

The program is able to distinguish automatically between 2D and 3D meshes read in using this 

command. Models and material parameters are chosen in 3-D in common with other 2-D 

modules using the MODELS, IMPACT, MATERIAL, MOBILITY, INTERFACE, and 

CONTACT statements.                                                                                                             12                                                      



 

 

 

The models available in 3D device simulation programs are 

Mobility  

•Table for 300K (CONMOB)  

• Thomas (ANALYTIC)  

•Arora’s Model (ARORA)  

•Klaassen’s Model (KLAASSEN)  

•Lombardi’s Model (CVT)  

•Yamaguchi Model (YAMA)  

•Parallel Field Dependence (FLDMOB)  

•Parallel Field Dependence with negative differential mobility (FLDMOB EVSATMOD=1) 

Recombination  

•Shockley Read Hall (SRH)  

•Concentration dependent lifetime SRH (CONSRH)  

•Klaassen’s concentration dependent lifetime SRH (KLASRH)  

•Auger (AUGER)  

•Klaassen’s concentration dependent Auger recombination model (KLAAUG)  

•Optical Recombination (OPTR)  

•Bulk and interface traps (TRAP, INTTRAP)  

•Continuous defect states (DEFECT) 

Generation  

•Selberherr Impact Ionization (IMPACT SELB)  

•Crowell Impact Ionization (IMPACT CROWELL)  

•Hot Electron Injection (HEI)  

•Fowler Nordheim Tunneling (FNORD)  

•Single Event Upset (SINGLEEVENTUPSET) 

Carrier Statistics  

•Boltzmann (default)  

•Fermi (FERMI)  

•Band Gap Narrowing (BGN)                                                                                                        13 



 

 

•Incomplete Ionization (INCOMPLETE)  

•Quantum Mechanical Effects (QUANTUM) 

Chapter3:RESULTS AND DISCUSSIONS 

3.1)Simulated Structure of conventional SOI MOSFET with channel length 40nm  

 
 

 
 

ANALYSIS 
 

Region 1-silicon dioxide layer of 2nm at the top of source, drain and gate 

Region 2-gate region of length 40 nm and width 10 nm 

Region 3- buried oxide or sio2 layer of length 60nm and width 250nm 

Region 4-substrate of si below insulator of length 60nm and width 100nm 

Region 5-source region of length 10 nm and width 10nm 

Region 6-drain region of length 10nm and width 10 nm 

Hence by dividing the above structure into specific regions, we have been able to 

design the structure adequately. The box region is made up of sio2.and substrate is 

made up of silicon. 

            The doping concentration in region2---uniform, p-type 2x10
17

                14                        



 

 

            The doping concentration in region 4------uniform, p-type, 2x10
17 

            The doping concentration in region 5------uniform, n-type, 10
20 

            The doping concentration in region 6------uniform, n-type, 10
20 

 

ELECTRICAL CHARACTERISTICS OF THE ABOVE GENERATED STRUCTURE 

 

3.2)ID V/S VGS CURVES (FIGURE 5(A).2) 

 

ANALYSIS
 

The curve between drain current v/s gate voltage was plotted by taking a constant 

Vds=0.5v.different values of drain currents were obtained for different values of 

gate bias voltage. The above characteristics were obtained as shown in the above 

curve
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3.3)ID V/S VDS CURVE 

 
 

 

ANALYSIS 
 

The curve between drain current and drain voltage was obtained for a constant value of 

gate voltage i.e. vgs=0.5v different values of drain current i.e. id values were obtained for 

different values of drain source voltage. Hence the corresponding curve was plot using the 

data obtained from atlas software.
 
In recessed source/drain utb SOI MOSFET the drain 

and source regions are extended into buried oxide region as a result increasing the area of 

cross section keeping length constant .we know R=ρ.L/A, as A increases with l and ρ 

remaining constant so R value also decreases .Rseries of the aforementioned structure is 

summation of Rsource, Rdrain and Rgate . Rsource and Rdrain decreases so overall 

Rseries also decreases. From ohm’s law V=I.R.R decreases hence resulting in greater 

values of drain current for the same values of drain source voltages as in FDSOI 

MOSFETs. 
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Simulated structure of conventional SOI MOSFET with channel length 50nm 
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3.4)Simulated structure of Recessed source /drain SOI MOSFET with channel length 5nm 

 

 

ANALYSIS 

 
Region 1 refers to gate having width 35nm and length 5nm. 

Region 3 refers to source having width 35nm and length 3nm 

Region 4 refers to drain having width 35nm and length 3nm. 

Region 5 refers to a silicon channel width 5nm and length 5nm 

Region 6 and 7 refers to buried oxide layer. 

In this structure we call it as recessed source/drain as because the source and drain 

have got extended into buried oxide region by 30nm. 

 

Region 8 refers to the substrate having width 100nm and length 11nm. 

trsd=30nm      tbox=200nm         dbox=0      tgox=2nm         tsi=5nm 
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ELECTRICAL CHARACTERISTICS OF RECESSED SOURCE/DRAIN UTB SOI 

MOSFETS 

3.5)ID VS VGS CURVE. 

 
 

ANALYSIS 

 
The curve between drain current vs gate voltage was plotted by taking a constant 

vds=0.5v.Different values of drain currents were obtained for different values of gate bias 

voltage. So the above characteristics were obtained as shown in the above curve. 
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3.6)ID VS VDS CURVE 

 
 

         ANALYSIS 
The curve between drain current and drain voltage was obtained for a constant 

value of gate voltage i.e. vgs=0.5v different values of drain current i.e. id values were 

obtained for different values of drain source voltage .Hence the corresponding curve 

was plot using the data obtained from atlas software. 
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Simulated structure of Recessed source/drain SOI MOSFET with channel length 9nm 
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3.7)COMPARITATIVE STUDY OF ELECTRICAL CHARACTERISTICS OF FDSOI 

MOSFET AND RECESSED SOURCE/DRAIN UTB SOI MOSFET 

  DIFFERENCE BETWEEN ID AND VGS CURVES 

ANALYSIS 

In recessed source/drain utb SOI MOSFET the drain and source regions are extended into 

buried oxide  region as a result increasing the area of cross section keeping length constant 

.we know R=ρ.L/A, as A increases with L and ρ remaining constant  so R value also 

decreases. Rseries of the aforementioned structure is summation of Rsource, Rdrain and Rgate . 

Rsource and Rdrain decreases so overall Rseries also decreases. From ohm’s law V=I.R.R 

decreases hence resulting in greater values of current for the same values of gate voltages 

as in FDSOI MOSFETs. 
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 3.8)DIFFERENCE BETWEEN ID VS VDS CURVES  

ANALYSIS 

In recessed source/drain utb SOI MOSFET the drain and source regions are extended into 

buried oxide  region as a result increasing the area of cross section keeping length constant 

.we know R=ρ.l/A, as A increases with l and ρ remaining constant  so R value also 

decreases.Rseries of the aforementioned structure is summation of Rsource, Rdrain and Rgate . 

Rsource and Rdrain decreases so overall Rseries also decreases. From ohm’s law V=I.R.R 

decreases hence resulting in greater values of drain current for the same values of drain 

source voltages as in FDSOI MOSFETs. 
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3.9)THRESHOLD VOLTAGE OF RECESSED SOURCE/DRAIN SOI MOSFETS 

Threshold voltage is the value of the gate voltage for which the minimum surface potential 

equals the value of 2ψb, where ψb = (kT/q)ln (NA/ni) is the difference between the extrinsic 

Fermi level in the channel region and the intrinsic Fermi level .In the case of the Re S/D UTB 

SOI MOSFETs, the inversion channel can be formed at the back-interface of the channel region 

while the front interface is still depleted ,due to its coupling with the n+ source and drain regions. 

Therefore, the threshold value is defined in a more general manner as the gate voltage VG at 

which the larger of the minimum front-gate surface potential ψs1(y = ymin,s1) and the minimum of 

the back-gate surface 

Potential ψs2(y = ymin,s2) equals 2ψb. 

 

Solving this we obtain values for   threshold voltage. 

COMPARISION BETWEEN VOLTAGE THRESHOLDS OF FDSOI MOSFET AND 

RECESSED SOURCE OR DRAIN SOI MOSFET 
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ANALYSIS 

Dependence of the threshold voltage on device parameters such as gate-oxide thickness, 

silicon-body doping, silicon-body thickness, buried-oxide thickness, and thickness of the 

source/drain extensions in the buried-oxide .With the reduction of gate-oxide thickness 

tGOX, the threshold voltage increases and the short-channel immunity significantly 

improves. By decreasing gate-oxide thickness, CGOX is increased and the front-gate has the 

predominant control of the channel potential over the complete body thickness and the 

back-gate surface potential is also predominantly controlled by the front-gate rather than 

the back-gate (source and drain). The increase in silicon-body doping concentration NA 

induces the threshold voltage shift to more positive values and the threshold voltage roll-off 

becomes smaller due to the reduced drain-field penetration inside the channel. In the case 

of thinner silicon-body .the back-gate surface potential is again influenced more by the 

front-gate and thus, the short-channel immunity improves and the threshold voltage 

increases. As the buried-oxide thickness tBOX is reduced, Vth increases, but the short-

channel immunity is slightly decreased since relatively larger portion of the gate bias is now 

expended over the buried-oxide as can be seen from the capacitance ratios in body factors 

for the both front-side and back-side inversion .  

The change in thickness of the source/drain extensions in the buried-oxide tRSD has little 

influence on the threshold voltage allowing significant freedom in the design of the 

source/drain extensions in the buried-oxide region with respect to the threshold voltage. In 

the case of zero source/drain extensions in the buried-oxide (tRSD = 0), the device structure 

becomes the conventional UTB SOI MOSFET. The value of the recessed source/drain 

buried-oxide capacitance is now calculated from the relation with θ=π , which accounts for 

the lateral component of electric field inside the buried-oxide. The comparison of the Vth 

for two Re S/D SOI devices with different depth of their recessed regions as well as 

conventional UTB SOIMOSFET in  proves the accuracy of our model and its applicability 
to the UTB SOI MOSFETs (tRSD = 0). 
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3.10)SUBTHRESHOLD SWING 

 The sub-threshold swing  in a MOSFET may decrease significantly as gate 

length LG is reduced before increasing catastrophically when LG becomes so short that punch through 

current flows. The effect is largest in devices with lightly doped substrates, deep source/drain junctions, 

and heavy threshold adjust implants operated at high drain bias. An explanation for the effect is provided 

in terms of sharing of the depletion region charge between gate and drain. 

COMPARISION BETWEEN VOLTAGE THRESHOLDS OF FDSOI MOSFET AND 

RECESSED SOURCE OR DRAIN SOI MOSFET 

ANALYSIS 

From the above curve it is quite evident that the sub threshold swing of recessed 

source/drain in millivolts per decade will be lesser in comparison to that of FD SOI 

MOSFETs for the same changes in channel length. 
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FUTURE SCOPE  

Furthermore we can also do the physical modeling of SOI MOSFETs. To master the design 

technologies for achieving competitive systems with increasing functionality, performance and 

complexity, without compromising on reliability, energy consumption and costs of such   

systems; it is necessary to develop new design and architecture paradigms both for emerging 

device and their integration at large scale. Integration at high density is a big challenge, as 

different types of Nanotubes and materials are to be considered so that they comply with the 

planar technology which is still the basis of CMOS ICs for the future decade. The era beyond 

CMOS is yet close to start. If some efforts are being made to maintain the advanced CMOS 

technology, it cannot go beyond few decades. Hence emerging devices should be considered in 

order to comply with technology developments in the near and far future. Engineered devices 

and materials will stretch the roadmap for few decades. Lot of researches are being done to 

design and implement reliable and durable HDIC 
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APPENDIX 

1.Software modeling for FDSOI MOSFETwith channel length equals to 40nm 

 
go atlas 
mesh space.mult=1.0 
X.mesh loc=-0.01 spac=0.05 
x.mesh loc=0.00 spac=0.0005 
x.mesh loc=0.01 spac=0.0002 
x.mesh loc=0.011 spac=0.0005 
x.mesh loc=0.012 spac=0.0002 
x.mesh loc=0.015 spac=0.0002 
x.mesh loc=0.016 spac=0.0002 
x.mesh loc=0.018 spac=0.0002 
x.mesh loc=0.020 spac=0.0002 
x.mesh loc=0.022 spac=0.0002 
x.mesh loc=0.024 spac=0.0002 
x.mesh loc=0.026 spac=0.0002 
x.mesh loc=0.028 spac=0.0002 
x.mesh loc=0.032 spac=0.0002 
x.mesh loc=0.036 spac=0.0005 
x.mesh loc=0.037 spac=0.0005 
x.mesh loc=0.038 spac=0.0002 
x.mesh loc=0.04 spac=0.05 
x.mesh loc=0.042 spac=0.02 
x.mesh loc=0.043 spac=0.02 
y.mesh loc=0.045 spac=0.02 
y.mesh loc=0.047 spac=0.02 
x.mesh loc=0.048 spac=0.02 
x.mesh loc=0.049 spac=0.02 
x.mesh loc=0.05 spac=0.05 
 
y.mesh loc=-0.002 spac=0.02 
y.mesh loc=0.00 spac=0.02 
y.mesh loc=0.001 spac=0.02 
y.mesh loc=0.0012 spac=0.02 
y.mesh loc=0.0013 spac=0.02 
y.mesh loc=0.0014 spac=0.02 
y.mesh loc=0.0025 spac=0.02 
y.mesh loc=0.0026 spac=0.02 
y.mesh loc=0.0037 spac=0.02 
y.mesh loc=0.0038 spac=0.02 
y.mesh loc=0.0049 spac=0.02 
y.mesh loc=0.0055 spac=0.02 
y.mesh loc=0.0064 spac=0.02 
y.mesh loc=0.0072 spac=0.02 
y.mesh loc=0.0080 spac=0.02 
y.mesh loc=0.0088 spac=0.02 
y.mesh loc=0.0096 spac=0.02 
y.mesh loc=0.0099 spac=0.02 
y.mesh loc=0.01 spac=0.05 
y.mesh loc=0.26 spac=0.10 
y.mesh loc=0.265 spac=0.02 
y.mesh loc=0.275 spac=0.02                                                                                               28 



 

 

y.mesh loc=0.29 spac=0.02 
y.mesh loc=0.32 spac=0.02 
y.mesh loc=0.34 spac=0.02 
y.mesh loc=0.36 spac=0.10 
 
region number=1 x.min=-0.01 x.max=0.05  y.min=-0.002 y.max=0.00 SiO2  
region number=2 x.min=0.00 x.max=0.04  y.min=0.00 y.max=0.01    silicon  
region number=3 x.min=-0.01 x.max=0.05  y.min=0.01 y.max=0.26     SiO2 
region number=4 x.min=-0.01 x.max=0.05  y.min=0.26 y.max=0.36    silicon 
region number=5 x.min=-0.01 x.max=0.00  y.min=0.00 y.max=0.01    silicon 
region number=6 x.min=0.04 x.max=0.05  y.min=0.00 y.max=0.01   silicon  
 
electrode name=source number=5 x.min=-0.01 x.max=0.00 y.min=0.00 y.max=0.01 neutral 
electrode name=drain  number=6 x.min=0.04 x.max=0.05 y.min=0.00 y.max=0.01 neutral 
electrode name=gate   number=1 x.min=0.00 x.max=0.04 y.min=-0.002 y.max=-0.002 neutral 
 
doping uniform conc=1e17 p.type reg=2 
doping uniform conc=1e17 p.type reg=4 
doping uniform conc=1e20 n.type reg=5 
doping uniform conc=1e20 n.type reg=6 
 
save outf = so1_0.str 
 
tonyplot so1_0.str -set so1_0.set 
 
contact name=drain  
contact name=source  
contact name=gate workfunction=4.7 
contact name=substrate  
 
  
models       conmob srh auger bgn fldmob print  
 
solve init 
 
method       newton    trap  
log         outf=so1_1.log 
solve        prev  
solve        vgate=-0.02  
solve        vdrain=0.5 
solve        vdrain=0.01 
  
solve       vgate=0.1 vstep=0.1 name=gate vfinal=1.5 
tonyplot    so1_1.log -set so1_1.set 
 
 
quit 
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 2. SOFTWARE CODING TO GENERATE FDSOI MOSFET WITH CHANNEL 

LENGTH EQUALS TO 50nm 

 
go atlas 
mesh space.mult=1.0 
X.mesh loc=-0.0 spac=0.05 
x.mesh loc=0.00 spac=0.0005 
x.mesh loc=0.01 spac=0.0002 
x.mesh loc=0.011 spac=0.0005 
x.mesh loc=0.012 spac=0.0002 
x.mesh loc=0.015 spac=0.000205 
x.mesh loc=0.016 spac=0.0002 
x.mesh loc=0.018 spac=0.0002 
x.mesh loc=0.020 spac=0.0002 
x.mesh loc=0.022 spac=0.0002 
x.mesh loc=0.024 spac=0.0002 
x.mesh loc=0.026 spac=0.0002 
x.mesh loc=0.028 spac=0.0002 
x.mesh loc=0.032 spac=0.0002 
x.mesh loc=0.036 spac=0.0005 
x.mesh loc=0.037 spac=0.0005 
x.mesh loc=0.038 spac=0.0002 
x.mesh loc=0.042 spac=0.0002 
x.mesh loc=0.043 spac=0.0002 
y.mesh loc=0.045 spac=0.0002 
y.mesh loc=0.047 spac=0.0002 
x.mesh loc=0.048 spac=0.0002 
x.mesh loc=0.049 spac=0.0002 
x.mesh loc=0.05 spac=0.05 
x.mesh loc=0.055 spac=0.05 
 
y.mesh loc=-0.002 spac=0.02 
y.mesh loc=0.00 spac=0.02 
y.mesh loc=0.001 spac=0.02 
y.mesh loc=0.0012 spac=0.02 
y.mesh loc=0.0013 spac=0.02 
y.mesh loc=0.0014 spac=0.02 
y.mesh loc=0.0025 spac=0.02 
y.mesh loc=0.0026 spac=0.02 
y.mesh loc=0.0037 spac=0.02 
y.mesh loc=0.0038 spac=0.02 
y.mesh loc=0.0049 spac=0.02 
y.mesh loc=0.0055 spac=0.02 
y.mesh loc=0.0064 spac=0.02 
y.mesh loc=0.0072 spac=0.02 
y.mesh loc=0.0080 spac=0.02 
y.mesh loc=0.0088 spac=0.02 
y.mesh loc=0.0096 spac=0.02 
y.mesh loc=0.0099 spac=0.02 
y.mesh loc=0.01 spac=0.05 
y.mesh loc=0.26 spac=0.10 
y.mesh loc=0.265 spac=0.02 
y.mesh loc=0.275 spac=0.02 
y.mesh loc=0.29 spac=0.02                                                                                                                        30 



 

 

y.mesh loc=0.32 spac=0.02 
y.mesh loc=0.34 spac=0.02 
y.mesh loc=0.36 spac=0.10 
 
region number=1 x.min=-0.005 x.max=0.055  y.min=-0.002 y.max=0.00 SiO2  
region number=2 x.min=0.00 x.max=0.05  y.min=0.00 y.max=0.01    silicon  
region number=3 x.min=-0.005 x.max=0.055  y.min=0.01 y.max=0.26     SiO2 
region number=4 x.min=-0.005 x.max=0.055  y.min=0.26 y.max=0.36    silicon 
region number=5 x.min=-0.005 x.max=0.00  y.min=0.00 y.max=0.01    silicon 
region number=6 x.min=0.05 x.max=0.055  y.min=0.00 y.max=0.01   silicon  
 
electrode name=source number=5 x.min=-0.005 x.max=0.00 y.min=0.00 y.max=0.01 neutral 
electrode name=drain  number=6 x.min=0.05 x.max=0.055 y.min=0.00 y.max=0.01 neutral 
electrode name=gate   number=2 x.min=0.00 x.max=0.05 y.min=-0.002 y.max=-0.002 neutral 
 
doping uniform conc=1e17 p.type reg=2 
doping uniform conc=1e17 p.type reg=4 
doping uniform conc=1e20 n.type reg=5 
doping uniform conc=1e20 n.type reg=6 
 
save outf = so1_0.str 
 
tonyplot so1_0.str -set so1_0.set 
 
contact name=drain  
contact name=source  
contact name=gate workfunction=4.7 
contact name=substrate  
 
  
models       conmob srh auger bgn fldmob print  
 
solve init 
 
method       newton    trap  
log         outf=so1_1.log 
solve        prev  
solve        vgate=-0.02  
solve        vdrain=0.5 
solve        vdrain=0.01 
  
solve       vgate=0.1 vstep=0.1 name=gate vfinal=1.5 
tonyplot    so1_1.log -set so1_1.set 
 
 
quit 
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3.SOFTWARE CODE FOR RECESSED S/D SOI MOSFET with channel length 5nm 

go atlas 
mesh space.mult=1.0 
 
x.mesh loc=-0.003   spac=0.05 
x.mesh loc=-0.0025   spac=0.05 
x.mesh loc=-0.0020   spac=0.02 
x.mesh loc=-0.0010  spac=0.02 
x.mesh loc=-0.0008   spac=0.02 
x.mesh loc=-0.0006   spac=0.02 
x.mesh loc=-0.0005   spac=0.02 
x.mesh loc=-0.0003   spac=0.02 
x.mesh loc=-0.0001   spac=0.02 
x.mesh loc=0.00     spac=0.05 
x.mesh loc=0.0001    spac=0.02 
x.mesh loc=0.0004    spac=0.02 
x.mesh loc=0.0006    spac=0.02 
x.mesh loc= 0.0008   spac=0.02 
x.mesh loc=0.001    spac=0.02 
x.mesh loc=0.0015    spac=0.02 
x.mesh loc=0.002    spac=0.02 
x.mesh loc=0.003   spac=0.02 
x.mesh loc=0.004   spac=0.02 
x.mesh loc=0.0043    spac=0.02 
x.mesh loc=0.0045    spac=0.02 
x.mesh loc=0.0047    spac=0.02 
x.mesh loc=0.0049    spac=0.02 
x.mesh loc=0.005    spac=0.02 
x.mesh loc=0.0052    spac=0.02 
x.mesh loc=0.0054    spac=0.02 
x.mesh loc=0.0056    spac=0.02 
x.mesh loc=0.006    spac=0.02 
x.mesh loc=0.0067    spac=0.02 
x.mesh loc=0.0073    spac=0.02 
x.mesh loc=0.008     
 
 
 
y.mesh loc=-0.037    spac=0.02 
y.mesh loc=-0.032    spac=0.02 
y.mesh loc= -0.027   spac=0.02 
y.mesh loc=-0.022    spac=0.02 
y.mesh loc=-0.017    spac=0.02 
y.mesh loc=-0.013    spac=0.02 
y.mesh loc=-0.010   spac=0.02 
y.mesh loc=-0.007   spac=0.02 
y.mesh loc=-0.005    spac=0.02 
y.mesh loc=-0.004   spac=0.02 
y.mesh loc=-0.002    spac=0.02 
y.mesh loc=0.00    spac=0.05 
y.mesh loc=0.001   spac=0.05 
y.mesh loc=0.002    spac=0.02 
y.mesh loc=0.003    spac=0.02 
y.mesh loc=0.004    spac=0.02 
y.mesh loc=0.005    spac=0.02                                                                                         32 



 

 

 
y.mesh loc=0.010    spac=0.05 
y.mesh loc=0.015    spac=0.05 
y.mesh loc=0.020    spac=0.05 
y.mesh loc=0.025    spac=0.05 
y.mesh loc=0.030    spac=0.05 
y.mesh loc=0.033    spac=0.02 
y.mesh loc=0.035    spac=0.02 
y.mesh loc=0.205    spac=0.05 
y.mesh loc=0.25    spac=0.05 
y.mesh loc=0.27    spac=0.5 
y.mesh loc=0.305    spac=0.5 
 
 
region number=1 x.min=0.00   x.max=0.005    y.min=-0.037    y.max=-0.002 silicon 
 
region number=2 x.min=0.00   x.max=0.005    y.min=-0.002    y.max=0.00   SiO2 
 
region number=3 x.min=-0.003   x.max=0.00    y.min= 0.00   y.max= 0.035  silicon 
  
region number=4 x.min=0.005   x.max=0.008    y.min=0.00    y.max=0.035   silicon 
 
region number=5 x.min=0.00   x.max=0.005    y.min=0.00    y.max=0.005   silicon 
 
region number=6 x.min=0.00   x.max=0.005    y.min=0.005    y.max= 0.035  SiO2 
  
region number=7 x.min=-0.003   x.max=0.008    y.min=0.035    y.max=0.205  SiO2 
 
region number=8 x.min=-0.003   x.max=0.008    y.min=0.205    y.max= 0.305   silicon 
 
region number=9 x.min=-0.003   x.max=0.00    y.min=0.00    y.max=0.002   SiO2 
 
region number=10 x.min=0.00   x.max=0.005    y.min=-0.037    y.max=-0.038  SiO2 
 
region number=11 x.min=0.005   x.max=0.008    y.min=0.00    y.max= 0.002   SiO2 
 
 
 
 
electrode name=gate number=1 x.min=0.00  x.max=0.005  y.min=-0.037  y.max=-0.02      neutral 
 
electrode name=source number=3 x.min=-0.003  x.max=0.00  y.min=0.00  y.max=0.035      
neutral 
 
electrode name=drain number=4 x.min=0.005  x.max=0.008  y.min=0.00  y.max=0.035      neutral 
 
 
 
 
doping uniform conc=10e20    n-type reg=1 
 
doping uniform conc=10e20    p-type reg=3 
 
doping uniform conc=10e20    p-type reg=4 
 
doping uniform conc=10e15    p-type reg=5                                                                                33 



 

 

 
doping uniform conc=10e15    n-type reg=8 
 
 
 
 
 
save outf=so2_0.str 
tonyplot so2_0.str - set so2_0.set 
 
contact name=drain 
contact name=source  
contact name=gate workfunction=4.7 
contact name=substrate  
 
 
models       conmob srh auger bgn fldmob print  
 
solve init 
 
method       newton    trap  
 
log         outf=so2_1.log master 
 
solve        prev  
solve        vgate=0.02 
solve        vdrain=0.01 
solve        vsource=0.01 
 
solve       vgate=0.1 vstep=0.1 name=gate vfinal=1.5 
 
tonyplot    so2_1.log -set so2_1.set 
quit 
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4.SOFTWARE CODING FOR RECESSED SOURCE/DRAIN UTB SOI MOSFET WITH 

CHANNEL LENGTH=9nm 

 
go atlas 
mesh space.mult=1.0 
 
x.mesh loc=-0.001   spac=0.05 
x.mesh loc=0.00     spac=0.05 
x.mesh loc=0.0001    spac=0.02 
x.mesh loc=0.0004    spac=0.02 
x.mesh loc=0.0006    spac=0.02 
x.mesh loc= 0.0008   spac=0.02 
x.mesh loc=0.001    spac=0.02 
x.mesh loc=0.0015    spac=0.02 
x.mesh loc=0.002    spac=0.02 
x.mesh loc=0.003   spac=0.02 
x.mesh loc=0.004   spac=0.02 
x.mesh loc=0.0043    spac=0.02 
x.mesh loc=0.0045    spac=0.02 
x.mesh loc=0.0047    spac=0.02 
x.mesh loc=0.0049    spac=0.02 
x.mesh loc=0.005    spac=0.02 
x.mesh loc=0.0052    spac=0.02 
x.mesh loc=0.0054    spac=0.02 
x.mesh loc=0.0056    spac=0.02 
x.mesh loc=0.006    spac=0.02 
x.mesh loc=0.0067    spac=0.02 
x.mesh loc=0.0073    spac=0.02 
x.mesh loc=0.008    spac=0.02 
x.mesh loc=0.0085     spac=0.05 
x.mesh loc=0.09     
 
y.mesh loc=-0.037    spac=0.02 
y.mesh loc=-0.032    spac=0.02 
y.mesh loc= -0.027   spac=0.02 
y.mesh loc=-0.022    spac=0.02 
y.mesh loc=-0.017    spac=0.02 
y.mesh loc=-0.013    spac=0.02 
y.mesh loc=-0.010   spac=0.02 
y.mesh loc=-0.007   spac=0.02 
y.mesh loc=-0.005    spac=0.02 
y.mesh loc=-0.004   spac=0.02 
y.mesh loc=-0.002    spac=0.02 
y.mesh loc=0.00    spac=0.05 
y.mesh loc=0.001   spac=0.05 
y.mesh loc=0.002    spac=0.02 
y.mesh loc=0.003    spac=0.02 
y.mesh loc=0.004    spac=0.02 
y.mesh loc=0.005    spac=0.02 
y.mesh loc=0.010    spac=0.05 
y.mesh loc=0.015    spac=0.05 
y.mesh loc=0.020    spac=0.05 
y.mesh loc=0.025    spac=0.05 
y.mesh loc=0.030    spac=0.05 
y.mesh loc=0.033    spac=0.02                                                                                                 35 



 

 

y.mesh loc=0.035    spac=0.02 
y.mesh loc=0.205    spac=0.05 
y.mesh loc=0.25    spac=0.05 
y.mesh loc=0.27    spac=0.5 
y.mesh loc=0.305    spac=0.5 
 
 
region number=1 x.min=0.00   x.max=0.009    y.min=-0.037    y.max=-0.002 silicon 
 
region number=2 x.min=0.00   x.max=0.009    y.min=-0.002    y.max=0.00   SiO2 
 
region number=3 x.min=-0.001   x.max=0.00    y.min= 0.00   y.max= 0.035  silicon 
  
region number=4 x.min=0.009   x.max=0.010    y.min=0.00    y.max=0.035   silicon 
 
region number=5 x.min=0.00   x.max=0.009    y.min=0.00    y.max=0.005   silicon 
 
region number=6 x.min=0.00   x.max=0.009    y.min=0.005    y.max= 0.035  SiO2 
  
region number=7 x.min=-0.001   x.max=0.010    y.min=0.035    y.max=0.205  SiO2 
 
region number=8 x.min=-0.001   x.max=0.010    y.min=0.205    y.max= 0.305   silicon 
 
region number=9 x.min=-0.001   x.max=0.00    y.min=0.00    y.max=0.002   SiO2 
 
region number=10 x.min=0.00   x.max=0.009    y.min=-0.037    y.max=-0.038  SiO2 
 
region number=11 x.min=0.009   x.max=0.010    y.min=0.00    y.max= 0.002   SiO2 
 
 
 
 
electrode name=gate number=1 x.min=0.00  x.max=0.009  y.min=-0.037  y.max=-0.02      neutral 
 
electrode name=source number=3 x.min=-0.001  x.max=0.00  y.min=0.00  y.max=0.035      
neutral 
 
electrode name=drain number=4 x.min=0.009  x.max=0.010  y.min=0.00  y.max=0.035      neutral 
 
 
 
 
doping uniform conc=10e20    n-type reg=1 
 
doping uniform conc=10e20    p-type reg=3 
 
doping uniform conc=10e20    p-type reg=4 
 
doping uniform conc=10e15    p-type reg=5 
 
doping uniform conc=10e15    n-type reg=8 
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save outf=so2_0.str 
tonyplot so2_0.str - set so2_0.set 
 
contact name=drain 
contact name=source  
contact name=gate workfunction=4.7 
contact name=substrate  
 
 
models       conmob srh auger bgn fldmob print  
 
solve init 
 
method       newton    trap  
 
log         outf=so2_1.log master 
 
solve        prev  
solve        vgate=0.02 
solve        vdrain=0.01 
solve        vsource=0.01 
 
solve       vgate=0.1 vstep=0.1 name=gate vfinal=1.5 
 
tonyplot    so2_1.log -set so2_1.set 
quit 
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CONCLUSION 
In the above analysis we found that the electrical characteristics and performance of a 

general MOSFET is hugely affected by short channel effects like DIBL(Drain Induced Barrier 

Lowering) . The main design parameter of the ReS/D structure is the depth of the ReS/D region 

and S/D underlap dimension between the deep S/D and the thin silicon channel. It is desirable to 

place the deep source drain closer together around the gate edge to reduce the series resistance 

due to the thin body. The drawback for placing the deep S/D closer together is the increased 

susceptibility to SCE as the electric field from the deep source drain is more easily coupled to the 

center of the channel. On the other hand, there is no limitation imposed by the spacer on the side 

of the poly silicon gate as in the raised S/D structure, therefore a reduction of 25.6% miller 

capacitance is achieved with careful simulation.  

Through experimental measurement, the ReS/D has several advantages over conventional 

UTB MOSFETs with elevated S/D structure, including lower series resistance and reduced 

Miller capacitor. A minor draw back in the ReS/D structure is the slightly worse DIBL effect, 

which can be minimized by careful design. Furthermore we observe that values of drain current 

comes out to be higher for recessed s/d SOI MOSFETs so we can conclude that the electrical 

characteristics of Re S/D is definitely better in comparison to that of conventional UTB SOI 

MOSFETs. 
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