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                                               ABSTRACT  

 

                        The demand for a reliable supply of electrical energy for the exigency of 

modern world in each and every field has increased considerably requiring nearly a no-fault 

operation of power systems. The crucial objective is to mitigate the frequency and duration of 

unwanted outages related to power transformer puts a high pointed demand on power 

transformer protective relays to operate immaculately and capriciously. The high pointed 

demand includes the requirements of dependability associated with no false tripping, and 

operating speed with short fault detection and clearing time. The second harmonic restrain 

principle is widely used in industrial application for many years, which uses discrete Fourier 

transform (DFT) often encounters some problems such as long restrain time and inability to 

discriminate internal fault from magnetizing inrush condition. Hence, artificial neural 

network (ANN), a powerful tool for artificial intelligence (AI), which has the ability to mimic 

and automate the knowledge, has been proposed for detection and classification of faults 

from normal and inrush condition. The wavelet transform(WT) which has the ability to 

extract information from transient signals in both time and frequency domain simultaneously 

is used for the analysis of power transformer transient phenomena in various conditions. All 

the above mentioned conditions of power transformer to be analysed in a power system are 

modelled in MATLAB/SIMULINK environment. Secondly the WT is applied to decompose 

the different current signals of the power transformer into a series of detailed wavelet 

components. The statistical features of the wavelet components are calculated and are used to 

train a multilayer feed forward neural network designed using back propagation algorithm to 

discriminate various conditions. The ANN is tested by varying the hidden layers, number of 

nodes in the hidden layer, learning rate and momentum factor, and the best suitable 

architecture of ANN is selected having least mean square error during training. The ANN 

model is implemented in LabVIEW environment. The results obtained are accurate and 

encouraging. 
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 1.1 General 
 

                      The demand for a reliable supply of electrical energy for the exigency of 

modern world in each and every field has increased considerably requiring nearly a no-fault 

operation of power systems. Power transformers are a class of very expensive and vital 

components of electric power systems. The crucial objective to mitigate the frequency and 

duration of unwanted outages related to power transformer puts a high pointed demand on 

power transformer protective relays to operate immaculately and capriciously. The high 

pointed demand includes the requirements of dependability associated with no false tripping, 

and operating speed with short fault detection and clearing time.  

                    Protection of large power transformers is a very challenging problem in power 

system relaying. The protective system include devices that recognize the existence of a fault,  

indicates its location and class, detect some other abnormal fault like operating conditions  

and starts the inceptive steps of  opening of circuit breakers to disconnect the faulty 

equipment of the power system. 

                  Recent development in the field of digital electronics and signal processing made 

it possible to build microprocessor based relays which provide a viable alternative to the 

electromechanical and solid state relays. Microprocessor based relays use software for 

interpreting signals and implementing logic. With the advent of microprocessor various 

digital algorithms have been developed and successfully implemented for power transformer 

protection. 

               There are problems which are peculiar to transformer, which are not encountered in 

other items of power system. One of the major problem is the large magnetising inrush 
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current, whose magnitude can be as high as internal fault current and may cause false tripping 

of the breaker. A common differential relay operating on the basis of measurement and 

evaluation of currents at both sides of the transformer can’t avoid the trip signal during inrush 

condition. 

                 Since the transformer inrush current is rich in second harmonic component 

therefore to avoid the needless trip by inrush current harmonic restraint logic together with 

differential logic is used in most of the fault detection algorithm in the digital differential 

protection of power transformer. These methods utilize the fact that the ratio of the second 

harmonic to fundamental component of differential current under inrush conditions is greater 

in comparison to that under fault conditions.  

1.2 Motivation 

               Although the second harmonic restraint principle is widely used in industrial 

application for many years, it often encounters some problems such as long restrain time 

when a long line is connected to the protected transformer. In the traditional method the 

altitude of second harmonic and fundamental are computed by discrete Fourier transform 

(DFT) and the ratio is used to judge whether the current is inrush or internal fault one. But it 

is well known that DFT is not accurate if the current is contaminated by harmonics that are 

not integer multiples of the fundamental, especially when the computation window is very 

short and DFT only accounts for frequency analysis but does not give information in the time 

domain. While DFT assumes a periodic signal, inrush current and fault currents are non-

stationary signals. 

                  Mechanical forces build up under large inrush current condition within the 

transformer coils compared to those occurring at short circuit which is the reason for damage 

of large power transformer. Large inrush currents also affect the power quality by adding 

harmonics. Also the presence of large quantity of harmonics in the inrush current can cause 

damage to power factor correction capacitor by exciting resonant overvoltage. Hence steps 

are taken to mitigate the transformer inrush current by controlled switching and use of low 

loss amorphous core materials in modern power transformer that produce inrush current with 

low second and fifth harmonic contents 

                Second harmonic component can also be present during internal faults due to 

saturation of current transformers, parallel capacitances or the distributed capacitances of 
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long EHV transmission line which are connected to transformer. The second harmonic in 

these situations might be greater than second harmonic in inrush current.     

                     Hence the above shortcomings of the harmonic restraint differential protection 

scheme used for power transformer protection conventionally creates a plot for the 

development of new algorithm based on advanced digital signal processing techniques and 

artificial intelligence approaches to power system protection which can improve 

discrimination between normal, inrush, over excitation and fault conditions and facilitate 

faster, more secure and dependable protection for power transformers. 

                    Since inrush and fault currents are non-stationary signals and these fast 

electromagnetic transients are non-periodic containing both high frequency oscillations and 

localized impulses superimposed on the power frequency and its harmonics therefore wavelet 

transform is a suitable method for the feature extraction from the waveforms of power 

transformer under various situations. Neural networks on the other hand being a good 

classifier is used to classify and discriminate the various conditions. The extracted features 

acts as the input to the neural networks and output of the neural networks are fed to the digital 

relay to take decision for the breaker operation. Keeping the above idea in mind the following 

objectives have been set. 

1.3 Thesis objective: 

 Study of a power transformer in a power system in MATLAB/SIMULINK 

environment for the following cases. 

1. Normal operation  

2. Inrush condition 

3. Internal fault condition 

I. Single line to ground fault 

II. Double line to ground fault 

III. Three phase line to ground fault 

IV. Line to line fault 

V. Three phase short circuit 

4. Over excitation condition 

5. External fault condition 

 Statistical feature extraction from the waveforms of all the above cases 

using WT. 
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 Normalization of the data obtained from wavelet transform and principal 

component analysis. 

 Construction of artificial neural network (ANN) to classify all the 

situations. 

 Training and testing of modelled ANN. 

 Selection of best architecture of ANN. 

 Study of performance of ANN for a set of test data to classify all the 

conditions. 

 Implementation of the present algorithm in LabVIEW. 

1.4 Literature survey: 

                         In the literature of power transformer protection, the key issue lies in 

discriminating between transformer magnetizing inrush current and internal fault current. It is 

natural that relay should be initiated in response to internal fault but not to inrush current or 

over-excitation/external fault current [4]. 

                        Early methods were based on desensitizing or delaying the relay to overcome 

the transients [5]. These methods are unsatisfactory since the transformer may be exposed for 

a long unprotected time. Yet another method based on the second harmonic content with 

respect to the fundamental one was introduced, known as harmonic restraint differential 

protection [8], which improved security and dependability was appreciated. However, some 

researchers have reported the existence of a significant amount of the second harmonic in 

some winding faults [7, 8]. In addition, the new generations of power transformers use of 

low-loss amorphous material in their core, which can produce inrush current with lower 

harmonic contents and higher magnitudes [8]. In such cases, some authors have modified the 

ratio of second harmonic to fundamental restraining criterion by using other ratios defined at 

a higher frequency [9]. While other researchers proposed wave comparison and error 

estimation method [10], fuzzy logic based techniques [7], principal component analysis [11], 

and correlation analysis method [12] to discriminate internal fault condition from non-fault 

condition. 

                    Power flow through the transformer is also be used as an index to detect inrush 

current. Zero average power during energisation and large power consumption during internal 

fault was the identification key in [13]. However, all the preceding approaches share the same 

feature, i.e. they depend on a single index. Furthermore, to choose a proper threshold for 

discrimination is not easy. 
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                   Artificial Neural Networks (ANN) is extremely used particularly in the field of 

power system protection since 1994 as this problem is subclass of pattern recognition of 

current waveforms. It is to be noted that ANNs were primarily used in different areas such as 

pattern recognition, image processing, load forecasting, power quality analysis, and data 

compression. The main advantage of the ANN method over the conventional method is the 

non-algorithmic parallel distributed architecture for information processing and inherent 

ability to take intelligent decision. In recent years, few works which investigate the feasibility 

of using ANN for power transformer differential protection has also been reported [14–

21].However, the ANNs in these existing studies are specific to particular transformer 

systems, and would have to be retrained again for other systems. Moreover, the employed 

feature extraction techniques are based on either time or frequency domain signals, or not 

both time and frequency features of the signal; this is very important for accurately 

distinguishing between an internal fault and inrush current. 

                   The wavelet transform is a relatively new and powerful tool in the analysis of the 

power transformer transient phenomenon because of its ability to extract information from 

the transient signals simultaneously in the time and frequency domain, rather than 

conventional Fourier Transform which can only give the information in the frequency 

domain. Recently, the wavelet transforms have been applied to analyse the power system 

transients [22], power quality [23], as well as fault location and detection problems [24]. In 

reference [25], the wavelet transform for analysing the transient phenomena in a power 

transformer under conditions of faults and magnetizing inrush currents was presented, and 

simulated results have shown that it is possible to use certain wavelet components to 

discriminate between internal faults and magnetizing inrush currents. 

1.5 Organisation of the thesis: 

The thesis structure is organised as follows: 

CHAPTER 1 gives a general over-view of need of power transformer protection, detection 

and classification of fault conditions, demerits of conventional algorithm, a scope for 

application of ANN as a classifier, advantage of WT, thesis objective and literature survey. 

CHAPTER 2 covers a brief discussion on transformer magnetizing inrush current and 

differential protection scheme. 

CHAPTER 3 deals with brief review of ANN and Wavelet transform. 
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CHAPTER 4 covers the DFT analysis and finds the scope for advanced signal processing 

techniques. 

CHAPTER 5 covers the wavelet analysis of simulated transient current signals. 

CHAPTER 6 discusses the performance of ANN and LabVIEW implementation. 

CHAPTER 7 gives general conclusion and scope for future work followed by references and 

appendices. 
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                                                                                                                              CHAPTER – 2 

TRANSFORMER PROTECTION  

AND  

INRUSH CURRENT 

     

 

 

 

                                                                                               

2.1 General                

             Inrush current is defined as the maximum, instantaneous input current drawn 

by an electrical device during starting or turn on. During energization of power transformer a 

transient current up to 2 to 5 times flow for several cycles and is known as magnetic inrush. 

This is due to saturation of magnetic core which in turn due to an sudden change in the 

system voltage which may be caused by switching transients and out-of-phase 

synchronization of a generator or restoration after the clearance of fault. It decreases slowly 

due to the damping effect of winding resistance and takes several cycles to settle to normal 

current value. The value of inrush current depends on the core material, residual flux and 

instant of energization. Other than energization inrush current in power transformer also 

occurs during voltage recovery after the clearance of an external fault or after the 

energization of a transformer in parallel with a transformer that is already connected to power 

system. It contains dc offset, odd harmonics and even harmonics. Second harmonic content 

initially i.e. during starting is less and increases as the magnitude of inrush current decreases. 

Rate of decrease of unipolar inrush current is less in comparison to bipolar inrush current. 

The main problem associated with magnetizing inrush current is false operation of 

differential relay based on second harmonic restrain method in addition to damage of power 

transformer windings by increasing the mechanical forces like short circuit current if remain 

in a high value for longer time.                          
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2.2 Mathematical derivation of inrush current 

                  A power transformer is considered whose core is initially unmagnetized. The 

transformer primary winding is connected to a supply voltage v(t) and the secondary is made 

open. 

The supply voltage is given by 

     v(t) = Vmsin(ωt)                                                                                                             (2.1)                                                   

the applied voltage is expressed as a function of flux in the core and primary current. 

The applied voltage is given by  

     v(t) = Ri(t) + N
dϕ(t)

dt
                                                                                                      (2.2) 

By neglecting the core loss and resistance equation (2.2) now becomes  

    v(t) = N
dϕ(t)

dt
                                                                                                                    (2.3)   

    ⟹ϕ(t) =
1

N
∫ v(t)
t

−∞
dt                                                                                                  (2.4)                         

⟹ϕ(t) = ϕresidual −ϕm[cos(ωt) − cos(ωt0)]                                                               (2.5) 

 ϕm =
Vm

Nω
=

√2V

Nω
                                                                                                                  (2.6) 

⟹ϕ(t) = −ϕm[cos(ωt)] + C                                                                                             (2.7) 

The second term in the equation (2.7) is the integration constant and its value depends on the 

residual flux in the transformer core and the phase angle of the applied voltage at the   instant 

of switching during energization. The inrush current signal during the energization of a 

transformer is given in Fig 2.1. 

 

 

 

 

 

 
 

Fig. 2.1 Differential inrush current of all the three phases of a power transformer  
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If the transformer is energized when the voltage is at its peak then the flux is given by 

equation (2.8).   

⟹ϕ(t) = −ϕm[cos(ωt)]                                                                                             (2.8) 

Transformer residual flux is neglected i.e. ϕresidual = 0 

Hence it is clear from the above equation that the constant C is zero. There is no transient in 

flux and the time variation of flux is  

     ϕ(t) = ϕm𝑠𝑖𝑛 (ωt −
𝜋

2
)           (For ωt >

𝜋

2
  )                                                                (2.9)    

 

 

 

 

 

 

 

 

If the transformer is energized when the voltage is zero then the flux is given by equation 

(2.9). 

⟹ϕ(t) = −ϕm[cos(ωt)] + ϕm(2.9) 

Transformer residual flux is neglected i.e. ϕresidual = 0 

It is clear from the equation (2.9) that the constant C is equal toϕm. 

This equation shows that the flux can reach up to 2ϕm at ωt =𝜋 which is double the peak 

value of the steady state flux in the transformer core under normal operating conditions. The 

inrush current is given in Fig 2.3 for the transformer that is energized when the voltage is at 

zero. It is clear that the inrush current in this case is much higher in comparison to the inrush 

current obtained during energization at voltage angle 90
0
 given in Fig 2.2. 

 

Fig. 2.2 Inrush current when the switching angle is 90 degree  
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               The analysis of inrush current predicts that excessive flux can build up in the 

transformer core depending on the instantaneous magnitude of the applied voltage and the 

residual flux at the instant of applying the voltage to the transformer. 

2.3 Summary of discussion        

                         Transformer switching phenomenon being random makes the magnetizing 

inrush also random. During energisation large magnitudes of currents flow into the primary 

winding of a transformer while no currents flow out of the secondary winding. This is similar 

to the conditions occurring during internal faults. Hence there arises a chance of incorrect 

tripping of the circuit breaker. Therefore it is necessary to distinguish between an internal 

fault and a magnetizing inrush current condition.                                                                                                                                                                                                                               

2.4 Principle of differential relay 

                      Principle of differential protection scheme is one simple conceptual technique. 

The simple differential relay actually compares between primary current and secondary 

current of power transformer. If an unbalance between primary and secondary currents 

detected then the relay will actuate and inter trip both the primary and secondary circuit 

breaker of the transformer. In general we can say the simple differential relays operate when 

the vector difference of two or more similar electrical quantities at the two ends of a 

protection zone exceeds a predetermined level. Most simple differential relay applications are 

based on the current balance principle i.e. the currents at the two ends of the system are 

continuously compared by a suitable relay. 

                    In practice simple differential relays suffer from drawbacks due to non-linear 

phenomena such as current transformer characteristics, transformer ratio change, magnetizing 

 

Fig. 2.3 Inrush current when the switching angle is 0
0
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inrush current and transformer over excitation. These cases operate the differential relay 

during no fault condition of transformer protection zone. 

                  In order to overcome the problems associated with simple differential relay 

percentage differential relays have been developed for the protection of large power 

transformer. In order to avoid mal operation of the differential relay because of magnetizing 

inrush and transformer over excitation early practice was to delay the relays for a short time 

until the magnetizing inrush currents had decayed to an acceptable value. Now in practice it 

is provided restraint or blocking to the relays which depends on the harmonic component of 

the magnetizing inrush currents.  

2.5      Digital relays  

            Modern power systems are complex networks. The complexity of these networks 

demands the relays used for protection to be reliable, secure, accurate and short decision 

making time. With the development of very large scale integrated (VLSI) chips and 

microprocessors the demand of modern day complex power systems can be fulfilled. A subtle 

shift in the paradigm takes place when we move on to the microprocessor based relay, which 

works on numbers representing instantaneous values of the signals. With the advent of digital 

relays the emphasis has shifted from hardware to software. Digital relays are programmable 

information processors instead of torque balancing devices. In comparison to the 

conventional non numerical relays that are go-no-go devices and perform only comparison 

the digital relays has the ability to perform real time computation. 
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                                                                                                           CHAPTER- 3                                            

                                    ARTIFICIAL NEURAL NETWORKS  

AND 

WAVELET TRANSFORM  

 

 

 

 

 

 

3.1 General 

                    Neural network or artificial neural network (ANN), as the name indicates, is the 

interconnection of artificial neurons that tends to simulate the nervous system of a human 

brain. It is also defined in a literature as a neurocomputer or a connectionist system. 

Neurocomputing is a more generic form of artificial intelligence than expert system and 

fuzzy logic. In general a neural network is a massively parallel distributed processor made up 

of simple processing units, which has a natural propensity for storing experimental 

knowledge and making it available for use. It resembles the brain in two aspects 

1. Knowledge required by the network from its environment through a learning 

process. 

2. Interneuron connection strengths, known as synaptic weights, are used to 

store the acquired knowledge. 

              A biological neuron is a processing element that receives and combines signals from 

other neurons through input paths called dendrites. If the combined signal is strong enough, 

the neuron “fires”, producing an output signal along the axon that connects to dendrites of 

many other neurons. The axon of a neuron is very long and thin and is characterized by high 

electrical resistance and very large capacitance. Each signal coming into a neuron along a 
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dendrite passes through a synaptic junction. This junction is an infinitesimal gap in the 

dendrite, which is filled with neurotransmitter fluid that either accelerates or retards the flow 

of electric charges. The fundamental actions of the neuron are chemical in nature, and this 

neurotransmitter fluid produces electric signals that go to the nucleus or soma of the neurons. 

The adjustment of the impedance or conductance of the synaptic gap leads to “memory’’ or 

“learning’’ process of the brain. According to this theory we lead to believe that the brain has 

the characteristics of “associative memory’’ and does not have computers like CPU and 

central storage memory.  

                  A neural microcircuit refers to an assembly of synapses organized into patterns of 

connectivity to produce a functional operation of interest. A neural microcircuit may be 

likened to a silicon chip made up of an assembly of transistors. 

                    The model of an artificial neuron that closely matches a biological neuron is 

given by an op-amp summer-like configuration. The artificial neuron is also called a 

processing element, a neurode, a node, or a cell. The input signals are normally continuous 

variables instead of discrete pulses that occur in a natural neuron. Each of the input signals 

flows through a gain or weight, called synaptic weight or connection strength whose function 

is analogous to that of the synaptic junction in a natural neuron. The weights can be positive 

(excitory) or negative (inhibitory) corresponding to acceleration or inhibition respectively. 

The summing node accumulates all the input-weighted signals and then passes to the output 

through the transfer function, which is usually nonlinear. 

  3.2 Training of ANN 

                The process of modifying the weights in the connections with the objective of 

achieving the expected output is called training a network. The internal process carried out 

during training is called learning. 

Training is grouped into three categories. 

1. Supervise Training 

2. Unsupervised Training 

3. Reinforced Training or Neurodynamic Programming 
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3.3 Activation function 

                     The activation function can be any function that is monotonically increasing and 

differentiable. The sigmoid function is the most popular activation function because it 

resembles the behaviour of many biological neurons. 

Some commonly used activation functions are  

1. Identity function  

2. Threshold function or Heaviside function 

3. Piecewise-Linear function 

4. Sigmoid function 

3.4 Multilayer feedforward ANN 

                                      The basic multilayer feedforward network contains three layers 

namely input, output and hidden. This type of neural network has one input layer, one output 

layer and any number of hidden layers in between the former two layers. Each network layer 

contains processing units called nodes or neurons. Each node in a network layer will send its 

output to all the nodes of the next layer. In the input layer the nodes receive signals from the 

Environment Teacher 

Learning 

system 

Error signal 

Actual 

response 

Desired 

response 

Vector describing 
state of the 

environment 

∑ 

Fig. 3.1 Block diagram of supervised learning 
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outside world. The input layer of the neural network serves as an interface that takes 

information from the outside world and transmits that to the internal processing units of the 

network, analogous to a human’s interface parts such as our eyes’ retina and our fingers’ 

sensing cells. Similarly the output layer of the neural network serves as an interface that 

sends information from the neural network’s internal processing units to the external world. 

The nodes in the hidden layer are the neural network’s processing units. The number of 

hidden layers and the numbers of neurons in each hidden layer depend on the network design 

considerations. The input layer transmits the signal to the hidden layer, and the hidden layer 

in turn transmits the signals to the output layer. There is no self, lateral or feedback 

conversion of neurons.  
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Fig. 3.2 Basic structure of a multilayer feedforward ANN 
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3.5 Model of a neuron 

 

                 A signal xj at the output of synapse j is connected to neuron k is multiplied by the 

synaptic weight𝑤𝑘𝑗
. The first subscript of the synaptic weight refers to the neuron and the 

second synaptic weight refers to the input end of the synapse to which the weight refers. The 

neuron model also includes an externally applied bias, denoted by bk. The bias bk has the 

effect of increasing or lowering the net input of the activation function, depending on whether 

it is positive or negative respectively.  

3.6 Back propagation training algorithm 

               Back Propagation (BP) learning algorithm is used to train the multi-layer feed-

forward neural network. Signals are received at the input layer, pass through the hidden layer, 

and reach to the output layer, and then fed to the input layer again for learning. The learning 

process primarily involves determination of connection weights and patterns of connections. 

The BP neural network approximates the non-linear relationship between the input and the 

output by adjusting the weight values internally instead of giving the function expression 

explicitly. Further, the BP neural network can be generalized for the input that is not included 

in the training patterns. The BP algorithm looks for minimum of error function in weight 

space using the method of gradient descent. The combination of weights that minimizes the 

error function is considered to be a solution to the learning problem. 
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The training algorithm of back propagation involves four stages, i.e. 

 

1. Initialization of weights 

2. Feed forward 

3. Back propagation of errors 

4. Updation of the weights and biases 

During first stage, i.e. the initialization of the weights, some random variables are assigned. 

During feed forward stage each input unit (Xi) receives an input signal and transmits this 

signal to each of the hidden units z1….zp. Each hidden unit then calculates the activation 

function and sends its signal zj to each of the output unit. The output unit calculates the 

activation function to form the response of the network for the given input pattern. During 

back propagation of errors, each output unit compares its compound activation function yk 

with its target value tk to determine the associated error for that pattern with that unit. Based 

on the error, the factor δk (k=1,…., m) is computed and is used to distribute the error at output 

unit yk back to all units in the previous layer. Similarly the factor δj (j= 1,…., p) is computed 

for each hidden unit zj. During final stage, the weight and biases are updated using the δ 

factor and the activation. The step by step algorithm is given below [2].  

Initialization of weights 

Step 1: Weights are initialized to small random values between 0 to1. 

Step 2: While stopping condition is false, steps 3-10 are repeated. 

Step 3: For each training pair steps 4-9 are performed. 

Feed forward 

Step 4: Each input node receives the input signal xi and transmits that to all nodes in the layer 

above, i.e. to the hidden units. 

Step 5: Each hidden unit (zj, j=1,…..,p) sums the weighted input signals. 

zinj = Voj + ∑ (xi
n
i=1 . Vij)                                                                                            (3.1) 

Applying the activation function  

       Zj = f (zinj)                                                                                                                   (3.2) 

And this signal is sent to all the units in the layer above, i.e. to output units. 
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Step 6: Each output unit (yk, k=1,….., m) sums its weighted input signals. 

yink = Wok
+ ∑ (zj

p
j=1 Wjk

)                                                                                      (3.3) 

And activation function is applied to calculate the output signals. 

Yk = f(yink)                                                                                                                        (3.4) 

Back Propagation of errors 

Step 7: Each output unit (yk, k=1,….., m) receives a target pattern corresponding to an input 

pattern. Error information term is calculated as follows 

Δk = (tk − yk)f
1(yink)                                                                                                     (3.5) 

Where f1(yink) = f(yink)(1 − f(yink))                                                                            (3.6)  

Step 8: Each hidden unit (zj, j=1,…..,p) sums its delta inputs from units in the layer above. 

δinj = ∑ (δjWjk
)m

k=1                                                                                (3.7) 

 

The error term is calculated as  

𝛿𝑗 = 𝛿𝑖𝑛𝑗𝑓
1 (𝑧𝑖𝑛𝑗)                                                                                                             (3.8) 

Where 𝑓1 (𝑧𝑖𝑛𝑗) = 𝑓(𝑧𝑖𝑛𝑗)(1 − 𝑓(𝑧𝑖𝑛𝑗))                                                                          (3.9) 

Updation of weight and biases 

Step 9: Each output unit (yk, k=1,….., m) updates its bias and weights (j=0,……..,p) 

The weight correction term is given by 

∆Wjk
= nδkzj                                                                                                                      (3.10) 

And the bias correction term is given by  

∆Wok
= nδk                                                                                                                        (3.11) 

Therefore               

   Wjk
(new) = Wjk

(old) + ∆Wjk
+m[Wjk

(old) −Wjk
(old − 1)]                                   (3.12) 

And      
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   Wok
(new) = Wok

(old) + ∆Wok
                                                                                     (3.13) 

Each hidden unit (zj, j=1,…..,p) updates its bias and weight(i=0,….,n) 

The weight correction term is 

∆Vij = nδjxi                                                                                                                        (3.14) 

And the bias correction term is 

∆Voj = nδj                                                                                                                          (3.15) 

Therefore         

     Vij(new) = Vij(old) + ∆Vij+m[Vij(old) − Vij(old − 1)]                                              (3.16) 

And    

    Voj(new) = Vo(old) + ∆Voj                                                                                           (3.17) 

Step 10: The stopping condition is checked (minimization of the errors).  

3.7 Summary of discussion of ANN           

                 ANN can be implemented for fault and inrush current classification without the 

need of exact mathematical relationship between input and output. ANN has been widely 

used because of their multi input parallel processing capability. The increase in number of 

nodes doesn’t affect the computation time of the network as it perform parallel processing. 

Increasing the number of input nodes increase the robustness of the ANN.  

3.8 Fundamental of WT 

                    The Fourier transform is a useful tool to analyse the frequency components of 

the signal. But Fourier transform is silent about the instant at which a particular frequency 

appears. Short-time Fourier transform (STFT) uses a sliding window to find spectrogram, 

which gives the information of both time and frequency. But in case of STFT the length of 

window is fixed for all frequency. The ability of wavelet transform (WT) to focus on short 

time intervals for high-frequency components and long intervals for low-frequency 

components improves the analysis of signals with localised impulses and oscillations. For this 

reason wavelet decomposition is ideal for studying transient signals and obtaining a much 

better current characterisation and a more reliable discrimination. 
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                          In wavelet analysis the signal to be analysed is multiplied with a wavelet 

function called mother wavelet just as it is multiplied with a window function in STFT. In 

WT, the width of the wavelet function changes with each spectral component. During the 

analysis less time is given for higher frequencies and more time is given for low frequencies. 

For high frequency, the WT gives good time resolution for low frequencies, the WT gives 

good frequency resolution. 

 

 

 

3.9 Need of WT 

                 Current signals during the occurrence of fault and during inrush condition of 

power transformer are associated with fast electromagnetic transients. These signals are 

typically non-periodic and contain both high-frequency oscillations and localised impulses 

superimposed on the power frequency and its harmonics. This characteristic creates a 
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Fig. 3.4 Comparison of (a) the STFT uniform frequency coverage to 

                                 (b) The logarithmic coverage of the DWT. 
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problem for traditional Fourier analysis because it assumes a periodic signal. As power 

system disturbances are subject to transient and non-periodic components, the DFT alone can 

be an inadequate technique for signal analysis. Thus WT is a powerful tool in the power 

system transient phenomena analysis. It has the ability to extract information from the 

transient signals simultaneously in both time and frequency domains and has replaced the 

Fourier analysis in many applications. A WT expands a signal not in terms of a trigonometric 

polynomial but by wavelets, generated using the translation (shift in time) and dilation 

(compression in time) of a fixed wavelet function called the mother wavelet. The wavelet 

function is localised in time and frequency yielding wavelet coefficients at different scales 

(levels). This gives the wavelet transform much greater compact support for the analysis of 

signals with localised transient components. 

3.10 Discrete wavelet transform 

Discrete Wavelet Transform (DWT) gives faster analysis in comparison to continuous 

wavelet transform as it is based on sub-band coding. In DWT, digital filtering techniques 

enable a time-scale representation of the digital signal.  The signal analysis process is nothing 

but the travel of signal through filters with different cut off frequencies at different scales.  

3.11 DWT and filter banks 

                     The signal resolution is determined by the filtering operations and is a measure 

of the amount of detail information in the signal whereas the scale is determined by up 

sampling and down sampling operations. Down sampling a signal corresponds to reducing 

the sampling and up sampling a signal corresponds to increasing the sampling rate. 

                    The DWT is computed by successive low pass and high pass filtering of the 

discrete time-domain signal in one algorithm called the Mallat algorithm or Mallat-tree 

decomposition given in Fig 3.5. Initially an original signal is divided into two halves of the 

frequency bandwidth and given to high pass (H0) and low pass (G0) filter. Then the output of 

the low pass filter is again half the frequency bandwidth and fed to second stage. This 

procedure is repeated until the filter length becomes equal to length of the signal. 

             Detail coefficients are the outputs of high pass filter and the approximate information 

are from the low pass filter. Frequency band of each detail is directly related to the sampling 

rate of original signal. At each detail level the frequency become halved of the previous stage 

as per Nyquist’s theorem. 
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3.12 Comparison of DWT with other transforms 
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3.13 Implementation of WT 

                                          Out of a large list of mother wavelets available, the choice of a 

particular mother wavelet plays an important role in detecting and classifying different types 

of fault and inrush transients of power transformer. Since the transformer transient study 

deals with analysing short duration, fast decaying current signals therefore Daubichies’s 

mother wavelet of level 6 (D6) is used in this thesis.  

           The wavelet analysis of various transient current signals obtained from SIMULINK 

result in different conditions like: normal, inrush, internal and external fault and over 

excitation are carried out. The starting sampling frequency is 20 kHz. All the current signals 

considered in wavelet analysis are taken from a star-star and a delta-star transformer 

connected in a power system (system specification given in appendix-1). 
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                                                                                                                     CHAPTER- 4 

                                                                                        DFT ANALYSIS  

AND  

SIMULATED TRANSIENT SIGNALS 

 

 

 

 

 

 

 

 

 

4.1 General method 

                    The DFT of the simulated transient current signals obtained for various 

conditions of a power transformer (star-star) connected to a power system are obtained using 

fast Fourier transform (FFT) algorithm. The objective of this analysis is to show the harmonic 

content during the transient period. The conventional differential protection scheme that are 

based upon second harmonic restrain assume that only inrush current is reach in second 

harmonic component. This is only valid if our relay operation time will be more than one 

cycle or 20 m sec. But if we are interested to detect the fault in a period less than one cycle, 

which is the major concern of current and future smart power transmission system then the 

harmonic content of all the transient signals differs from the traditional values. My findings 

predict that if very less transient time is considered i.e. if the window for FFT analysis is 

taken to be 20 m second i.e. one cycle taking the fundamental frequency of power 

transmission as 50 Hz, starting just before the occurrence of transient event then the second 

harmonic content of the various current signals during fault are either nearer to that of inrush 

current or higher than that. As I considered the FFT window of length 20 m sec starting just 

before the event, therefore it accounts any transient event that lasts for less than a cycle after 

its occurrence. 
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4.2 Normal operating condition  

 

 

 

 

 

 

 

 

    

       The above FFT plots shows that during normal case the percentage of second harmonic 

current is very less in comparison to fundamental and in this case there is no problem with 

the conventional relay. Those relays will remain dormant in this case as the ratio of inrush to 

fundamental is negligible and that matches with their algorithm. The relays can only issue a 

trip command to the circuit breaker if the ratio exceeds a predefined limit which is formed by 

taking the inrush current case as the base or reference. 

4.3 Inrush condition  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 A phase differential current                                     
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Fig. 4.2 A phase differential current                                
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Fig. 4.3 B phase differential current                                
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                During the FFT analysis of inrush case transient currents for one cycle it is seen 

that the percentage of second harmonic content is different for the three phases. The 

percentage second harmonic content is of significant amount. The conventional relay will 

work in this case but the detection and algorithm will fail if the relay operating time will be 

taken less than a cycle and also if the transient phenomena lasts for less than a cycle. The 

conventional algorithm starts the FFT window from the starting of the event resulting less 

percentage of second harmonic content. But the analysis of the transient current signal for 

less than a cycle also predicts a large mismatch among the three phase contents as far as 

second harmonic factor is considered. 

4.4 L-L-L-G fault case  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 C phase differential current                                
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Fig. 4.5 A phase differential current                                
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Fig. 4.6 B phase differential current                                
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 The FFT analysis of different internal faults (fault inside the protection zone of transformer) 

like single line to ground fault (L-G), double line to ground fault (L-L-G) and three phase line 

to ground fault (L-L-L-G) situations are analysed. It is clear that the percentage of second 

harmonic component in the transient current of power transformer is more or less equal to 

that of inrush current for phase A during L-G fault. And the percentage of second harmonic 

component is negligible for phase B and phase C currents for L-G fault case (less than normal 

case). For L-L-G fault the percentage of second harmonic component is far higher than the 

inrush case for phase A and phase B but negligible for phase C. In case of L-L-L-G fault the 

percentage of second harmonic component is higher than that of inrush case for phase B and 

almost equal to that of inrush case for phase A and phase B differential transient currents. 

Only the L-L-L-G fault case analysis is shown in Fig 4.5 to 4.7. Analysis results of other 

cases are given in Table 4.1. 

4.5 L-L-L fault case  

 

 

 

 

 

 

 

              

 

Fig. 4.7 C phase differential current                                
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Fig. 4.8 A phase differential current                                

 

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Frequency (Hz)

Fundamental (50Hz) = 3.177 , THD= 115.33%

M
ag

 (%
 o

f F
un

da
m

en
ta

l)



28 
 

           Two cases of internal faults like line to line fault (L-L) and three phase short circuit 

(L-L-L fault) are also analysed using FFT. It is observed that the percentage of second 

harmonic current is equal to that of inrush case for phase A and more for phase B during L-L 

fault. During L-L fault the phase C current has negligible amount of second harmonic 

component like normal operating condition.  

            For three phase short circuit situation the percentage of second harmonic component 

is higher than that of inrush case for all the three phases and are almost equal. Only the 

analysis of phase A current in case of L-L-L fault is given in Fig 4.8. Analysis of all other 

phases during line to line fault and three phase short circuit are given in Table 4.1. 

4.6 External fault and over excitation case.       

   The FFT analysis of transient differential current during the external (fault occurring 

outside the protection zone of transformer) L-L-L-G fault gives the result that the percentage 

of second harmonic component is less in all the three phases in comparison to inrush 

condition. The analysis of all the three phase currents during external fault and over 

excitation case is given in table 4.1.  

                The relay based on second harmonic restrain will show correct result for external 

case. But my objective deals with correct performance of differential relay during internal 

fault and inrush case. So this case is not so much important as the objective of this research is 

concerned. The FFT analysis is not sufficient for the relay based on DFT to discriminate 

external fault from normal and internal fault situation as the ratio of percentage of second 

harmonic component to fundamental is also less than that of inrush for normal case.  

                 During over excitation (sudden change in load more than rated capacity) leads to 

flow of large current in the transformer winding. But the differential relay based on second 

harmonic restrain principle or DFT as a background will not be able to detect that because the 

percentage of second harmonic component is almost equal to that of normal operating 

condition for all the three phases in case of over excitation. 

              The percentage of second harmonic for all the possible simulated cases in all the 

three phases are given in a tabular manner in Table 4.1 for star-star transformer and in Table 

4.2 for delta-star transformer. The primary of the delta-star transformer is connected in D11 

and the secondary is connected in Y fashion. In case of star-star both the windings are 

connected in Yg manner. 
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Table 4.1 Percentage of second harmonic content in the differential current in various 

conditions in case of star-star transformer 

 

Type of condition  Phase A Phase B Phase C 

Normal 15.23 4.76 17.86 

Inrush 57.69 82.47 83.47 

L-G fault 71.16 0.76 1.12 

L-L-G fault 80.66 93.39 0.86 

L-L-L-G fault 72.14 92.58 76.23 

L-L fault 61.31 78.46 0.64 

L-L-L fault 82.16 91.36 82.75 

External fault 25.14 24.26 42.14 

Over excitation 17.16 12.26 18.14 

 

             The red marked values denotes the percentage of second harmonic component  in the 

differential current  of  magnetizing inrush current and the values marked in blue indicates the 

percentage of second harmonic component in the differential current of various faulty 

situations associated with the power transformer secondary terminal. 

Table 4.2 Percentage of second harmonic content in the differential current in various 

conditions in case of delta-star transformer 

 

Type of condition  Phase A Phase B Phase C 

Normal 15.9 13.13 3.7 

Inrush 35.77 64.51 64.53 

L-G fault 52.78 15.53 0.21 

L-L-G fault 49.15 55.09 19.41 

L-L-L-G fault 46.24 58.08 73.51 

L-L fault 42.23 72.54 20.37 

L-L-L fault 48.64 65.76 84.73 

External fault 42.68 26.77 25.83 

Over excitation 15.7 14.64 10.81 

 

4.7 Summary of discussion          

         The percentage of second harmonic component is not same for the three phases in a 

particular case. As conventional relays are not provided with artificial intelligence (AI) 

therefore they are not efficient in fuzzy situations like how much less or how much more. 

Secondly due to different methods adopted to mitigate the inrush current in power 

transformer itself decrease the second harmonic component in the magnetizing inrush 
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currents in modern day power system by the use of advanced core materials. Thirdly as the 

frequency content of the transient current signals is different in comparison to steady portion 

so the transient current is aperiodic and non-stationary during transient period. Hence the 

traditional DFT based algorithm is not a strong protective measure for smart power system if 

the interest is efficient performance of the protective relay within a cycle i.e. 20 m sec. This 

opens window for different advanced signal processing techniques and AI based classifier to 

meet the requisite demand.         

                        WT being capable of extracting information in both time and frequency 

domain assuming the signal to be finite and not infinite duration as in case of DFT suits better 

for non-stationary and aperiodic signals like transient fault and inrush current of power 

transformer and has the ability to replace the traditional DFT based signal processing 

technique as a modern signal processing method. Similarly the ANN is a suitable classifier 

after proper training. Hence this research deals with WT and ANN for the discrimination of 

various transient situations in power transformer. 

4.8 Simulated transient current signals                                                                                                                                      

                The power system model with both star-star and delta-star transformer are 

simulated in MATLAB/SIMULINK environment. The SIMULINK models are given in 

appendix 2. The specification of the different system parameters are given in appendix 1.All 

the analysis are performed in discrete domain with sampling frequency of 20 kHz.  

                        For normal operating condition the switching circuit connecting the three 

phase source that acts as the alternator is switched on at 0.1 sec for all the readings of normal 

case. For different readings the voltage angle of the source voltage are varied. The load is 

fixed for all situations except over excitation case and is taken as 450 MW and 530 MVAR. 

Transformer primary and secondary terminals are connected in star with grounded terminal. 

The source is star with ground terminal. The three phase current signals coming from the 

differential relay during normal operating condition is given in Fig 4.9. 
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           During inrush case the transformer secondary side is kept open. The various readings 

are simulated by varying the switching at different angles of the source voltage. It is found 

that the inrush current is least if the phase is switched at 0
0
 and is highest if the switching 

takes place at 90
0
.The switching circuit connecting the source to power transformer at 0.1 

sec. The three phase current signals coming from the differential relay during inrush 

condition is given in Fig 2.1 

                  During the simulation of L-G fault the switching circuit connecting the source and 

the transformer is activated at 0.05 sec. and when the source voltage is at 0
0
. The switching 

conditions are kept constant for various readings of the L-G fault simulation. The fault 

transient occurs in between 0.1 to 0.12 sec i.e. for 1 cycle. The fault resistance is varied for 

different readings in this situation. Other conditions are same that of normal operating 

condition. The L-G fault occurs in between phase A and ground on the secondary side of 

transformer. The fault occurs inside the protection zone of transformer. In similar situations 

the L-L-G and L-L-L-G cases are also simulated and transient current signals are obtained 

and are used in wavelet analysis. The three phase current signals coming from the differential 

relay during L-L-L-G fault is given in Fig 4.10.   

 

 

 

 

 

 

 

 

 

Fig. 4.9 Normal operating condition 
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Fig. 4.10 L-L-L-G fault 
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      For L-L fault and three phase short circuit case all the conditions are same as that of L-G 

fault. The L-L fault occurs between phase A and phase B and in case of L-L-L fault all the 

three phases A, B and C are shorted. The three phase current signals coming from the 

differential relay during L-L-L fault is given in Fig 4.11. 

 

 

 

 

 

 

 

 

 

 

 For external fault case all the conditions are same as that of L-G fault. The external L-L-L-G 

fault occurs outside the protection zone of transformer among phase A, phase B, phase C and 

ground on the secondary side of transformer. The three phase current signals coming from the 

differential relay during external fault is given in Fig 4.12. 

 

 

 

 

 

 

 

 

      In over excitation case instead of fault, at the same time an additional load is connected to 

the existing system. The switching circuit that connects the additional load is triggered at 0.1 

sec. The transient duration is from 0.1 to 0.12 sec. The additional load is of 450 MW and 530 

 

Fig. 4.11 L-L-L fault 
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Fig. 4.12 External fault 
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MVAR. Other conditions are same as that of L-G fault. The three phase current signals 

coming from the differential relay during over excitation is given in Fig 4.13. 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 Over excitation case 
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                                                                                                                      CHAPTER- 5 

                             WAVELET ANALYSIS OF THE TRANSIENT   

CURRENT SIGNALS 

 

 

 

 

 

 

5.1 General method 

               Since the transient current signals during fault, inrush and over excitation 

conditions are fast decaying and oscillating type of high frequency signals therefore 

Daubichies’s wavelet of level 6 (db6) best suits for the analysis purpose. The sampling 

frequency is 20 kHz i.e. the original signal is sampled at 20 kHz. The highest frequency that 

the signal could content will be 10 kHz as per Nyquist’s theorem. This frequency is observed 

at the output of high frequency filter which gives the first detail. Thus the band frequencies 

between 10 kHz to 5 kHz are captured in detail 1. Similarly the band frequencies between 5 

kHz to 2.5 kHz are captured in detail 2 and so on. The wavelet analysis using db6 as the 

mother wavelet is performed up to detail 5 level for the differential current signals of all the 

cases to extract the detail coefficients. The analysis is carried out for 20 msec.   

5.2 Wavelet analysis in normal case  

    Wavelet analysis for normal operating case at the instant when switching takes place at 0
0
 

angle of the source voltage is shown in Fig 5.1 and 5.2. The Fig 5.1(a) represents the original 

signal. In this chapter only phase A differential current is selected for the analysis. Analyses 

of other phases are not represented graphically. The analysis of all the three phases is 

performed and the data obtained from the detail coefficients in different levels are used for 

training of ANN. As the detail level increases the frequency of the signal content in that 

decreases and the time for which that is analysed increases. The frequency decrease by a 

factor of two and the time increase by a factor of two. The Fig 5.1 (b)-(c) and Fig 5.2 (a)-(c) 

represent the decomposed detail coefficient signals in different levels 
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                           (a)  

 

                          (b)  

 

                               (c)  

Fig. 5.1 Wavelet analysis of phase A differential current for normal case. 
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                           (c)                              

Fig. 5.2 Wavelet analysis of phase A differential current for normal case. 
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5.3 Wavelet analysis in inrush case  

       Wavelet analysis for inrush case at the instant when switching takes place at 0
0
 angle of 

the source voltage is shown in Fig 5.3 and 5.4. The Fig 5.3(a) represents the original current 

signal of phase A. It is seen that the current waveform is distorted in shape. Gaps appear over 

the times of inrush current. It is seen that the magnitude of inrush current changed from 

nearly zero value to a significant value at the edges of the gaps. This sudden change from one 

state to other should produce small ripples. But these ripples are not visible in the time 

domain representation. This phenomenon is clearly discriminated in the wavelet plots. The 

Fig 5.3 (b)-(c) and Fig 5.4 (a)-(c) represent the decomposed detail coefficient signals in 

different levels. From the figures of details it is clear that there are a number of sharp spikes 

during the period of the inrush current transient. High frequency component is located better 

in time domain and low frequency component is located better in frequency domain. Details 

1 to 3 are located better in time domain as they contains high frequency components and 

detail 4 to 5 are located better in frequency domain as they contains low frequency 

components. The frequency bands of details 1 to 5 are given in Table 5.1. 

 

Table 5.1: Frequency band of different detail coefficients 

 

Level of detail coefficient Frequency band 

d1 5 kHz-2.5 kHz 

d2 2.5 kHz-1.25 kHz 

d3 1.25 kHz-0.625 kHz 

d4 0.625 kHz - 0.3125 kHz 

d5 0.3125 kHz-0.15625 kHz 
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    (c)  

Fig. 5.3 Wavelet analysis of phase A differential current for inrush case. 
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                                                         (c) Detail 2 
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    (c) 

Fig. 5.4 Wavelet analysis of phase A differential current for inrush case. 
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5.4 Wavelet analysis in internal fault case 

                               Wavelet analysis for internal fault case at the instant when switching takes 

place at 0
0
 angle of the source voltage and 100Ω fault resistance for the time 0.1 to 0.12 

seconds are shown in Fig 5.5 and 5.6. The Fig 5.5(a) represents the original current signal of 

phase A during L-G fault. The fault occurs on the high voltage side of power transformer. A 

high frequency distortion is observed in the fault current waveforms as shown in Fig 5.5 (a). 

This distortion is the consequence of the effects of distributed inductance and capacitance of 

the transmission line. This distributed inductance and capacitance lead to significant second 

harmonic in the internal fault during the transient period. Hence the distributed inductance 

and capacitance poses difficulty in an accurate discrimination between magnetizing inrush 

current and internal fault currents by the conventional protection method based on DFT. In 

the details 1-3 shown in Fig 5.5(b)-(c), and Fig 5.6 (a), it is observed that there are several 

spikes immediately after fault inception time in L-G fault. But these sharp spikes rapidly 

decay to zero within a cycle. But in inrush case these sharp spikes lasts in the entire inrush 

transient period. Details 1 to 3 are located better in time domain as they contains high 

frequency components and detail 4 to 5 are located better in frequency domain as they 

contains low frequency components. The figure 5.6 (b)-(c) represent the decomposed detail 

coefficient signals in different levels in L-G. Similar results are obtained for L-L-G fault, L-

L-L-G fault, L-L and L-L-L-L fault cases. The frequency bands of details 1 to 5 are same as 

that of inrush case given in Table 5.1.  
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(c)                                       Time (s) 

 Fig. 5.5 Wavelet analysis of phase A differential current for L-G fault case. 

                                                         (a) Original signal 

                                                         (b) Detail 1 

                                                         (c) Detail 2 
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Fig. 5.6 Wavelet analysis of phase A differential current for L-G fault case. 
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    (b) Detail 4 

    (c) Detail 5 
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                                                                                                                     CHAPTER - 6 

                      PERFORMANCE OF ANN  

AND  

IT’S IMPLEMENTATION IN LabVIEW 

 

 

 

 

 

 

 

6.1 General method 

                                The statistical data obtained from the decomposed signals of wavelet 

analysis at level 1 to 5 are used to train and test the ANN. Back propagation algorithm 

is used to train the ANN. The activation function used in the ANN is of sigmoid type. 

Similarly another one set of training data obtained for delta-star transformer 

(D11Y).The MATLAB code to extract the features from the transient signals is given 

in Appendix 3. During the formation of training data set the transformer is switched 

on at 0.1 sec for normal and inrush case, whereas at 0.05 sec for other cases. For 

normal and inrush cases the different pattern of data are generated by varying the 

phase angle of voltage. For fault cases the fault resistance is varied to generate 

different data. For over excitation case the value of the additional load is varied for 

generating different pattern of data.  

                                       The training and testing data are statistical features like mean, 

standard deviation and norm (root mean square value) of the decomposed detail 

coefficients in various levels. The data obtained after statistical analysis are 

normalized before training or testing by dividing the maximum value of data of a row 

with other data. The three type of statistical feature of each phase and similarly for 

three phases as a whole gives a row vector containing 9 data in each pattern during 

training and testing and are fed to the 9 input nodes of the ANN. 
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                             The ANN is trained and tested for each level decompose detail coefficients 

i.e. for high frequency and low frequency constituents and the detail comparison is 

given in Table 6.8 and Table 6.10 for star-star and delta-star transformer respectively. 

The architecture of the ANN having one hidden layer, 16 nodes in hidden layer, 9 

nodes in input layer and 9 nodes in output layer is the best out of all the tested 

architecture as the mean square error in this type is least during training. The learning 

rate suitable for that network having least error is 0.2 and the momentum factor 0.9 in 

the same network gives the least error. The performance of ANN by varying the 

hidden layer nodes, learning rate and momentum factor  are given in terms of mean 

square error in Table 6.1, Table 6.2 and table 6.3 respectively. The weights of the 

ANN after training using each level detail coefficient data are given for each level. 

The test results of the ANN using different detail levels are given in Table 6.9 and 

Table 6.11 for star-star and delta-star transformer respectively. 

6.2 Performance of ANN using d1 level data for star-star transformer 

 

 

 

 

 

 

 

 

 

 

 

The learning rate (n) and the momentum factor (m) are kept constant when the performance 

of ANN is checked for different hidden nodes (HL) in the hidden layer at 0.2 and 0.9 

respectively. The least error is for HL=16. 

 

 

 

 

Fig. 6.1 Performance of ANN for different hidden layers.       
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Table: 6.1 Comparison of errors during training of ANN for different hidden layers 

 

No. of HL Mean square error during training after   

20000 iterations 

15 0.1677 

16 0.0288 

17 0.0522 

18 0.0795 

 

 

 

 

 

 

 

 

 

 

 

The number of nodes in the hidden layer (HL) and the momentum factor (m) are kept 

constant when the performance of ANN is checked for different learning rates at 16 and 0.9 

respectively. The least error is for n=0.2. 

 

Table: 6.2 Comparison of errors during training of ANN for different learning rates 

 

Learning rate (n) Mean square error during training after   

20000 iterations 

0.1 0.1304 

0.2 0.0288 

0.4 0.1669 

0.6 0.1668 

0.8 0.1667 

 

 

 

 

Fig. 6.2 Performance of ANN for different learning rates 
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The number of nodes in the hidden layer (HL) and the learning rate (n) are kept constant 

when the performance of ANN is checked for different momentum factor at 16 and 0.2 

respectively. The least error is for m=0.9. 

 

Table: 6.3 Comparison of errors during training of ANN for different momentum factor 

 

Momentum factor (m) Mean square error during training after   

20000 iterations 

0.7 0.1671 

0.8 0.0377 

0.9 0.0288 

 

Best suitable architecture of ANN  

The ANN having 9 input nodes, 16 nodes in the hidden layer and 9 output nodes trained with 

learning rate equals to 0.2 and momentum factor equals to 0.9 is the best suitable one as it 

gives least mean square error during training. 

        

 

 

 

 

Fig. 6.3 Performance of ANN for different momentum factor 
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Table- 6.4 Weights between input and hidden layer after training (Wa) Column 1 to 8 

 

 

Table- 6.5 Weights between input and hidden layer after training (Wa) Column 9 to 16 

 

 

Table- 6.6 Weights between hidden and output layer after training (Wb)  

 

 

-4.4191 4.81626 1.47197 -0.0158 0.79443 1.3898 0.78116 -1.4926

1.09089 2.69956 0.41148 0.64326 0.98286 1.18898 -0.4468 -0.7386

9.4811 7.68751 -3.0176 -2.5147 9.86806 2.13751 -8.8081 -2.2395

14.7875 -30.141 0.49193 1.30116 -5.4159 2.22767 1.37414 16.5815

-2.6679 4.68341 1.81909 2.12887 -0.2267 0.85418 1.47997 -2.4525

0.43962 -6.3413 0.36504 5.79322 -17.72 2.63952 3.28631 -9.4502

-9.3934 27.4844 1.73863 1.45742 6.06712 -0.0889 0.15127 -11.651

-1.7439 5.16241 0.84197 1.32948 0.88546 -0.7326 0.70477 0.84743

-3.3464 4.01812 6.62588 4.64912 14.212 -10.684 2.15043 13.0464

-2.2931 1.93121 0.5456 4.79095 2.05573 0.58412 1.70806 0.6143

0.79163 1.20983 1.70675 0.85903 1.11584 1.47794 1.59035 0.54692

-9.3422 -2.2498 9.12997 -2.4525 13.3731 18.876 0.51139 4.17639

10.7996 0.55699 2.37083 -15.726 -0.7939 -1.1624 -0.9381 1.94663

-3.1444 1.62985 -0.3429 5.95478 3.98855 6.76827 1.99057 1.20948

10.5048 1.42855 1.39299 -10.143 -14.818 -19.023 -2.515 4.20533

-5.1991 1.27706 0.62405 12.0287 2.65842 3.28515 1.0315 1.09173

-3.8511 0.41977 -0.9615 5.01609 4.4651 8.69261 1.68791 1.17475

-9.8472 6.42763 -12.61 11.5283 12.8714 16.1605 11.6916 1.62457

-3.4312 -6.7524 0.18222 -3.293 -2.3979 1.19887 9.84708 -12.371 -1.1568

-2.1795 3.34862 1.12641 -1.7521 -20.322 0.39101 -21.732 13.9553 3.1549

0.56824 0.01419 -3.6086 -0.8468 -1.5322 -7.3313 2.17645 5.60559 1.72124

5.65037 -3.0843 -5.3623 0.86124 -3.8442 2.88033 -2.0495 1.02119 -2.233

2.07625 12.0365 2.44057 -6.8753 -14.114 2.00965 -10.216 -5.2946 -1.2285

-10.262 -5.065 -0.0197 0.24312 -3.5211 1.48463 -7.404 -3.0107 -5.7406

-8.8103 -3.8349 -1.032 3.49096 3.03122 -7.2106 -1.3142 4.80172 -7.3833

-15.286 1.60997 0.56085 -3.0204 3.80601 -2.0863 12.1505 -13.581 -3.8394

-7.8615 -11.777 -2.0746 2.03273 -8.6701 1.58737 6.84125 0.3774 1.8403

3.08936 -2.6637 -4.0528 2.34265 -4.2187 -3.4242 -0.3452 3.27995 0.99771

-0.9213 -11.208 1.55717 0.09589 -3.7918 3.70035 -9.108 -8.8431 10.894

-7.6421 5.52669 1.07521 -2.3521 8.96134 -2.6221 -16.725 7.92746 -2.4494

4.13038 6.72747 2.81986 -4.1789 5.71471 -5.5134 -8.0204 -10.088 -9.4337

7.98779 8.0395 0.56585 -5.5737 13.7031 -2.1941 -5.4052 -13.363 -9.9948

6.35174 -5.6023 -1.0597 -3.259 -3.0732 -5.4576 6.24367 4.37069 8.03665

-5.7974 -9.037 -1.6488 -0.2295 -4.078 -1.2669 -2.9179 0.31194 -4.0435
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Table- 6.7 Test results using d1 level data for star-star transformer 

 

 

 The red marked cases are correct identification and the green marked cases are incorrect 

identification in the Table 6.7. 

 

 

Normal Inrush L-G L-L-G L-L-L-G L-L L-L-L EF OE

0.011383 1.96E-08 1.01E-06 8.20E-05 4.10E-06 6.10E-12 0.000199 0.0704344 1.06E-07

0.80022 5.86E-11 6.32E-07 0.000271 1.68E-09 4.72E-10 0.000607 0.2980568 2.81E-05

0.792538 2.67E-13 0.000293 2.48E-06 1.28E-12 0.000182 4.67E-15 8.68E-10 0.001931

0.999995 0.00016 0.008793 1.17E-10 1.10E-16 1.15E-05 7.37E-20 6.52E-12 0.001714

0.008096 0.999221 0.002112 6.23E-13 2.04E-10 2.83E-10 8.23E-18 7.23E-10 2.35E-08

0.000746 0.834766 0.058545 4.96E-13 1.11E-10 7.90E-09 4.44E-20 7.28E-13 1.40E-05

0.002465 0.999958 0.000774 1.81E-12 1.37E-09 1.30E-11 2.28E-17 1.27E-07 2.97E-10

7.51E-05 0.999993 0.000236 5.20E-10 3.24E-06 2.08E-14 1.78E-19 0.009171 1.89E-12

0.011588 0.007819 0.99577 3.92E-11 9.01E-14 0.007338 8.57E-23 5.30E-16 5.09E-06

0.012215 0.007658 0.9958 4.08E-11 8.33E-14 0.008114 1.11E-22 4.31E-16 4.97E-06

0.012683 0.00755 0.995755 4.12E-11 8.11E-14 0.008204 1.16E-22 4.25E-16 5.00E-06

0.014792 0.007018 0.995504 4.19E-11 7.38E-14 0.008119 1.23E-22 4.48E-16 5.27E-06

3.33E-12 1.23E-22 9.07E-07 0.990523 2.02E-12 0.004978 0.008566 0.0001759 0.003457

4.54E-12 1.53E-22 1.03E-06 0.991229 2.01E-12 0.006286 0.004356 0.0002523 0.005065

4.72E-12 1.58E-22 1.05E-06 0.991283 2.00E-12 0.006556 0.00399 0.0002618 0.005308

4.78E-12 1.56E-22 1.07E-06 0.99119 1.97E-12 0.006764 0.003934 0.0002536 0.00548

1.64E-06 0.000205 3.17E-06 5.53E-06 0.996526 4.85E-14 0.000103 7.11E-05 4.98E-11

3.40E-06 0.040758 8.33E-06 1.18E-06 0.932659 2.35E-14 1.57E-09 0.0066855 2.83E-11

3.24E-06 0.059852 9.07E-06 1.06E-06 0.840454 2.34E-14 3.83E-10 0.0160617 3.30E-11

3.72E-06 0.093609 1.01E-05 8.32E-07 0.782042 2.23E-14 1.64E-10 0.0169277 2.87E-11

1.78E-07 1.25E-17 0.000838 0.00556 4.48E-13 0.991299 8.58E-10 1.27E-10 0.006388

3.81E-07 1.49E-16 0.001393 0.001778 4.47E-15 0.985134 4.65E-13 3.39E-09 0.007241

4.19E-07 1.88E-16 0.001459 0.00162 3.29E-15 0.984326 2.60E-13 4.34E-09 0.007298

4.48E-07 2.05E-16 0.001472 0.001553 3.12E-15 0.983681 2.19E-13 4.54E-09 0.00719

3.09E-08 9.62E-14 9.75E-08 0.004295 1.41E-05 3.26E-11 1 4.73E-05 3.39E-06

1.16E-05 1.22E-10 2.92E-07 0.001128 5.49E-05 9.50E-12 0.980221 0.018569 6.82E-07

3.74E-05 1.44E-10 2.98E-07 0.001524 6.92E-06 1.32E-11 0.720706 0.2627186 1.72E-06

3.07E-05 3.37E-13 8.93E-08 0.042976 9.22E-09 1.53E-10 0.988252 0.9971715 0.000384

7.11E-06 9.16E-10 3.50E-07 0.002024 4.99E-06 7.64E-12 0.022665 0.9674923 2.64E-06

3.96E-05 2.24E-10 2.96E-07 0.002702 8.00E-07 1.56E-11 0.057998 0.9660648 5.81E-06

0.011006 3.43E-11 2.99E-07 0.001789 2.17E-08 7.67E-11 0.043967 0.8848975 1.48E-05

0.758565 2.02E-15 4.06E-06 0.000133 2.50E-13 2.66E-06 7.12E-08 9.56E-05 0.575438

0.013342 2.76E-18 1.78E-06 0.002577 1.81E-15 3.38E-05 4.96E-06 0.003239 0.988715

0.011309 2.25E-18 1.97E-06 0.002465 1.44E-15 4.62E-05 3.16E-06 0.0023189 0.989743

0.019571 5.00E-18 1.40E-06 0.002851 3.35E-15 1.55E-05 1.49E-05 0.007458 0.983775

0.066952 2.12E-16 5.67E-07 0.003873 7.70E-14 5.46E-07 0.001225 0.2327961 0.699722
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Table: 6.8 Comparison of training error for different wavelet decomposition level 

 

Wavelet 

decomposition 

level 

Training error for different output nodes with HL=16, n=0.2 and m=0.9 after 

30000 iterations 

Node  

1 

Node 

2 

Node 

3 

Node 

4 

Node 

5 

Node 

6 

Node 

7 

Node 

8 

Node 

9 

d1 .1668 .0112 .0037 .0024 .0219 .0040 .0185 .0153 .0087 

d2 .0215 .0086 .0026 .0036 .1713 .0037 .2445 .0130 .0075 

d3 .1685 .0045 .0036 .0035 .1855 .0069 .1943 .0141 .0087 

d4 .1724 .1684 .0047 .0531 .0480 .0317 .1164 .0083 .0120 

d5 .1668 .2357 .0045 .0133 .0247 .0071 .0424 .0165 .0098 

 

Table: 6.9 Comparison of test results of ANN for different wavelet decomposition level 

 

Name of the 

event 

% of correct discrimination using different wavelet decomposition level data 

for training after 30000 iterations and for HL=16,n=0.2,m=0.9 

d1 d2 d3 d4 d5 

Normal 

operating 

condition 

75 100 25 0 50 

Inrush 

condition 

100 50 100 75 25 

Internal  

L-G fault 

100 100 100 100 100 

Internal 

L-L-G fault 

100 100 100 100 100 

Internal  

L-L-L-G 

fault 

100 100 100 50 100 

Internal 

L-L fault 

100 100 100 50 75 

Internal 

L-L-L fault 

75 25 25 75 75 

External 

L-L-L-G 

fault 

75 75 100 100 75 

Over 

excitation 

condition 

100 100 100 100 100 
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6.3 Performance of ANN with d1 level data for delta- star transformer 

 

Table: 6.10 Comparison of training error for different wavelet decomposition level 

Wavelet 

decomposition 

level 

Training error for different output nodes with HL=16, n=0.2 and m=0.9 after 

20000 iterations 

Node  

1 

Node 

2 

Node 

3 

Node 

4 

Node 

5 

Node 

6 

Node 

7 

Node 

8 

Node 

9 

d1 .1673 .0097 .0051 .0036 .2240 .0046 .2265 .0079 .0144 

d2 .1677 .0094 .0065 .0082 .2195 .0056 .2186 .0124 .0441 

d3 .0738 .0153 .0048 .0088 .2184 .0103 .2104 .0101 .0179 

d4 .0612 .0416 .0023 .0015 .0926 .0402 .1903 .0245 .0136 

d5 .1103 .0617 .0231 .0026 .1328 .0824 .1304 .0340 .0127 

 

Table: 6.11 Comparison of test results of ANN for different wavelet decomposition level 

Name of the 

event 

% of correct discrimination using different wavelet decomposition level data 

for training after 20000 iterations and for HL=16,n=0.2,m=0.9 

d1 d2 d3 d4 d5 

Normal 

operating 

condition 

75 75 75 25 75 

Inrush 

condition 

100 75 100 75 100 

Internal  

L-G fault 

100 100 100 100 100 

Internal 

L-L-G fault 

100 100 50 100 100 

Internal  

L-L-L-G 

fault 

0 50 100 75 100 

Internal 

L-L fault 

100 100 100 75 50 

Internal 

L-L-L fault 

100 75 25 75 75 

External 

L-L-L-G 

fault 

75 75 100 100 75 

Over 

excitation 

condition 

100 100 100 100 100 
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6.4 LabVIEW implementation of the ANN 

       After the proper training of ANN the weights obtained are used in the testing of ANN in 

LabVIEW environment. The results obtained using the d1 level analysis for star-star 

transformer using the weights given in Table 6.4- 6.6 are given in Fig 6.4 and Fig 6.5. The 

structure of the implementation is given in Appendix 4. 

 

 

                                                                                                                        

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (a) 

 

    (b) 

Fig 6.4 Detection of normal and inrush case 

      (a) Normal 

      (b) Inrush 
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     (a) 

 

     (b) 

Fig 6.5 Detection of L-L-L and L-L-L-G fault 

     (a) L-L-L fault 

     (b) L-L-L-G fault 
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                                                                                             CHAPTER – 7 

GENERAL CONCLUSIONS 

 AND 

 SCOPE FOR FUTURE WORK 

 

 

 

 

 

 

 

 

7.1 Conclusion 

                                The current signals for different cases for a power transformer are 

obtained using MATLAB/SIMULINK. These waveforms are analysed using wavelet 

transform for extraction of feature vector (containing statistical data) to train the ANN. The 

performance of trained ANN is tested successfully for the classification of various cases. 
ANN is implemented in the LabVIEW environment for real time application. 

                    From the study and analysis carried out in this dissertation, the performance of 

neural networks has been found to surpass the performance of conventional methods, which 

need accurate sensing devices, costly equipment and an expert operator or engineer. 

               The classification ability of the ANN in combination with advanced signal 

processing technique opens the door for smart relays for power transformer protection with 

very less operating time and with desirable accuracy. 
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7.2 Future scope 

 Prototype modelling based on ANN and WT for protection of power 

transformer. 

 Online testing of the algorithm. 

 Comparison of ANN with other classifier like support vector machine 

(SVM). 

 Analysis of performance of WT in noisy environment. 

  Application of S transform in combination with ANN  for transformer 

protection 
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                                   APPENDIX-1 

          POWER SYSTEM SPECIFICATION 

 

Source 

               Three phase, star connected (Yg), 230 kV, 50 Hz 

                  Source resistance (Rs=0.8929Ω) 

                  Source inductance (Ls = 16.58e-3H) 

Transformer 

                 450 MVA, 50Hz, star-star 

                 LV winding: 

                                    230kV, resistance=0.02p.u, inductance= 0.08 p.u 

                HV winding: 

                                   500kV, resistance=0.02p.u, inductance= 0.08 p.u 

Transmission line 

              Length= 100 km 

                Resistance/km=0.01273Ω 

                Inductance/km=0.9337e-3H 

               Capacitance/km=12.04e-9 F 

Load 

            450MW, 530MVAR 

Primary CT ratio 

                3000/5 

Secondary CT ratio 

                800/5 
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                                 APPENDIX – 2 

                    SIMULINK DIAGRAMS 

 

Inrush condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A 2.1 Inrush condition 
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Internal fault condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A 2.2 Internal fault condition 
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External fault condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A 2.3 External fault 
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Over excitation condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A 2.4 Over excitation condition 
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                                        APPENDIX - 3 

                                 MATLAB CODES 

 

Program to train ANN  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%A PROGRAM TO TRAIN NEURAL NETWORK 
clear;clc; 
IL=9;HL=16;OL=9; 
n=0.2;m=0.9; 
load q.mat 
for i=1:36 
    mx(i,:)=max(q(i,:)); 
     g(i,:)=q(i,:)/mx(i,:); 
end 
A=g; 
Idata=A; 
ts=zeros(36,9); 
ts(1:4,1)=ones(4,1);      %normal 
ts(5:8,2)=ones(4,1);     %inrush 
ts(9:12,3)=ones(4,1);     %lg fault 
ts(13:16,4)=ones(4,1);     %llg fault 
ts(17:20,5)=ones(4,1);     % lllg fault 
ts(21:24,6)=ones(4,1);      %ll fault 
ts(25:28,7)=ones(4,1);      % lll fault 
ts(29:32,8)=ones(4,1);      % external lllg fault 
ts(33:36,9)=ones(4,1);        % over excitation 
Wa=rand(IL,HL); 
Wb=rand(HL,OL); 
Wa0=zeros(size(Wa)); 
Wb0=zeros(size(Wb)); 
for j=1:20000 
    for i=1:36 
        IPattern=Idata(i,:); 
         OPattern=ts(i,:); 
        S1=IPattern*Wa; 
       AF1=1./(1+exp(-S1)); 
        S2=AF1*Wb; 
        AF2=1./(1+exp(-S2)); 
        Odata=AF2; 
        Edata2=OPattern-Odata; 
        e(i,:)=Edata2; 
        % Back propagation of error 
        delta2=Edata2.*(AF2.*(ones(size(AF2))-AF2)); 
        Edata1=delta2*Wb'; 
        Wb=Wb+n*(AF1'*delta2)+m*(Wb-Wb0); 
        delta1=Edata1.*(AF1.*(ones(size(AF1))-AF1)); 
        Wa=Wa+n*(IPattern'*delta1)+m*(Wa-Wa0); 
        Wb0=Wb;Wa0=Wa; 
    end 
    err(j,:)=sqrt(mean(e.*e)); 
    plot(err); 
    dbt=err(:,5); 
end 
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Wavelet analysis 

 

%%%%%%%%%%%%%%%%%%  WAVELET ANALYSIS   %%%%%%%%%%%%%%%%%%%%%%%% 
clc;clear all; 
% WAVELET DECOMPOSITION 
%file 1 
%phase A 
load ina1.mat 
re1=(ina1(:,2));w1=re1(2000:2400);X1=w1;N1=5; 
[c1,l1]=wavedec(X1,N1,'db6'); 
d1=detcoef(c1,l1,1);d2=detcoef(c1,l1,2);d3=detcoef(c1,l1,3); 
d4=detcoef(c1,l1,4);d5=detcoef(c1,l1,5); 
m1=mean(d1);s1=std(d1);n1=norm(d1);m2=mean(d2);s2=std(d2); 
n2=norm(d2);m3=mean(d2);s3=std(d2); 
n3=norm(d2);m4=mean(d2);s4=std(d2);n4=norm(d2);m5=mean(d2);s5=std(d2); 
n5=norm(d2); 
%file 2 
%phase B 
load inb1.mat 
re2=(inb1(:,2));w2=re2(2000:2400); 
X2=w2;N2=5; 
[c2,l2]=wavedec(X2,N2,'db6'); 
d6=detcoef(c2,l2,1);d7=detcoef(c2,l2,2);d8=detcoef(c2,l2,3); 
d9=detcoef(c2,l2,4);d10=detcoef(c2,l2,5); 
m6=mean(d6);s6=std(d6);n6=norm(d6);m7=mean(d7);s7=std(d7);n7=norm(d7); 
m8=mean(d8);s8=std(d8);n8=norm(d8);m9=mean(d9);s9=std(d9);n9=norm(d9); 
m10=mean(d10);s10=std(d10);n10=norm(d10); 
%file 3 
%phase C 
load inc1.mat 
re3=(inc1(:,2));w3=re3(2000:2400); 
X3=w3;N3=5; 
[c3,l3]=wavedec(X3,N3,'db6'); 
d11=detcoef(c3,l3,1);d12=detcoef(c3,l3,2);d13=detcoef(c3,l3,3); 
d14=detcoef(c3,l3,4);d15=detcoef(c3,l3,5); 
m11=mean(d11);s11=std(d11);n11=norm(d11);m12=mean(d12);s12=std(d12); 
n12=norm(d12);m13=mean(d13);s13=std(d13);n13=norm(d13);m14=mean(d14); 
s14=std(d14);n14=norm(d14);m15=mean(d15);s15=std(d15);n15=norm(d15); 
%file 4 
%phase A 
load ina2.mat 
re4=(ina2(:,2));w4=re4(2000:2400); 
X4=w4;N4=5; 
[c4,l4]=wavedec(X4,N4,'db6'); 
d16=detcoef(c4,l4,1);d17=detcoef(c4,l4,2);d18=detcoef(c4,l4,3); 
d19=detcoef(c4,l4,4);d20=detcoef(c4,l4,5); 
m16=mean(d16);s16=std(d16);n16=norm(d16);m17=mean(d17);s17=std(d17); 
n17=norm(d17);m18=mean(d18);s18=std(d18);n18=norm(d18);m19=mean(d19); 
s19=std(d19);n19=norm(d19);m20=mean(d20);s20=std(d20);n20=norm(d20); 
%file 5 
%phase B 
load inb2.mat 
re5=(inb2(:,2));w5=re5(2000:2400); 
X5=w5;N5=5; 
[c5,l5]=wavedec(X5,N5,'db6'); 
d21=detcoef(c5,l5,1);d22=detcoef(c5,l5,2);d23=detcoef(c5,l5,3); 
d24=detcoef(c5,l5,4);d25=detcoef(c5,l5,5); 
m21=mean(d21);s21=std(d21);n21=norm(d21);m22=mean(d22);s22=std(d22); 
n22=norm(d22);m23=mean(d23);s23=std(d23);n23=norm(d23);m24=mean(d24); 
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s24=std(d24);n24=norm(d24);m25=mean(d25);s25=std(d25);n25=norm(d25); 
%file 6 
%phase C 
load inc2.mat 
re6=(inc2(:,2));w6=re6(2000:2400); 
X6=w6;N6=5; 
[c6,l6]=wavedec(X6,N6,'db6'); 
d26=detcoef(c6,l6,1);d27=detcoef(c6,l6,2);d28=detcoef(c6,l6,3); 
d29=detcoef(c6,l6,4);d30=detcoef(c6,l6,5); 
m26=mean(d26);s26=std(d26);n26=norm(d26);m27=mean(d27);s27=std(d27); 
n27=norm(d27);m28=mean(d28);s28=std(d28);n28=norm(d28);m29=mean(d29); 
s29=std(d29);n29=norm(d29);m30=mean(d30);s30=std(d30);n30=norm(d30); 
%file 7 
%phase A 
load ina3.mat 
re7=(ina3(:,2));w7=re7(2000:2400); 
X7=w7;N7=5; 
[c7,l7]=wavedec(X7,N7,'db6'); 
d31=detcoef(c7,l7,1);d32=detcoef(c7,l7,2);d33=detcoef(c7,l7,3); 
d34=detcoef(c7,l7,4);d35=detcoef(c7,l7,5); 
m31=mean(d31);s31=std(d31);n31=norm(d31);m32=mean(d32);s32=std(d32); 
n32=norm(d32);m33=mean(d33);s33=std(d33);n33=norm(d33);m34=mean(d34); 
s34=std(d34);n34=norm(d34);m35=mean(d35);s35=std(d35);n35=norm(d35); 
%file 8 
%phase B 
load inb3.mat 
re8=(inb3(:,2));w8=re8(2000:2400); 
X8=w8;N8=5; 
[c8,l8]=wavedec(X8,N8,'db6'); 
d36=detcoef(c8,l8,1);d37=detcoef(c8,l8,2);d38=detcoef(c8,l8,3); 
d39=detcoef(c8,l8,4);d40=detcoef(c8,l8,5); 
m36=mean(d36);s36=std(d36);n36=norm(d36);m37=mean(d37);s37=std(d37); 
n37=norm(d37);m38=mean(d38);s38=std(d38);n38=norm(d38);m39=mean(d39); 
s39=std(d39);n39=norm(d39);m40=mean(d40);s40=std(d40);n40=norm(d40); 
%file 9 
%phase C 
load inc3.mat 
re9=(inc3(:,2));w9=re9(2000:2400); 
X9=w9;N9=5; 
[c9,l9]=wavedec(X9,N9,'db6'); 
d41=detcoef(c9,l9,1);d42=detcoef(c9,l9,2);d43=detcoef(c9,l9,3); 
d44=detcoef(c9,l9,4);d45=detcoef(c9,l9,5); 
m41=mean(d41);s41=std(d41);n41=norm(d41);m42=mean(d42);s42=std(d42); 
n42=norm(d42);m43=mean(d43);s43=std(d43);n43=norm(d43);m44=mean(d44); 
s44=std(d44);n44=norm(d44);m45=mean(d45);s45=std(d45);n45=norm(d45); 
%file 10 
%phase A 
load ina4.mat 
re10=(ina4(:,2));w10=re10(2000:2400); 
X10=w10;N10=5; 
[c10,l10]=wavedec(X10,N10,'db6'); 
d46=detcoef(c10,l10,1);d47=detcoef(c10,l10,2);d48=detcoef(c10,l10,3); 
d49=detcoef(c10,l10,4);d50=detcoef(c10,l10,5); 
m46=mean(d46);s46=std(d46);n46=norm(d46);m47=mean(d47);s47=std(d47); 
n47=norm(d47);m48=mean(d48);s48=std(d48);n48=norm(d48);m49=mean(d49); 
s49=std(d49);n49=norm(d49);m50=mean(d50);s50=std(d50);n50=norm(d50); 
%file 11 
%phase B 
load inb4.mat 
re11=(inb4(:,2)); 
w11=re11(2000:2400); 
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X11=w11;N11=5; 
[c11,l11]=wavedec(X11,N11,'db6'); 
d51=detcoef(c11,l11,1);d52=detcoef(c11,l11,2);d53=detcoef(c11,l11,3); 
d54=detcoef(c11,l11,4);d55=detcoef(c11,l11,5); 
m51=mean(d51);s51=std(d51);n51=norm(d51);m52=mean(d52);s52=std(d52); 
n52=norm(d52);m53=mean(d53);s53=std(d53);n53=norm(d53);m54=mean(d54); 
s54=std(d54);n54=norm(d54);m55=mean(d55);s55=std(d55);n55=norm(d55); 
%file 12 
%phase C 
load inc4.mat 
re12=(inc4(:,2));w12=re12(2000:2400); 
X12=w12;N12=5; 
[c12,l12]=wavedec(X12,N12,'db6'); 
d56=detcoef(c12,l12,1);d57=detcoef(c12,l12,2);d58=detcoef(c12,l12,3); 
d59=detcoef(c12,l12,4);d60=detcoef(c12,l12,5); 
m56=mean(d56);s56=std(d56);n56=norm(d56);m57=mean(d57);s57=std(d57); 
n57=norm(d57);m58=mean(d58);s58=std(d58);n58=norm(d58);m59=mean(d59); 
s59=std(d59);n59=norm(d59);m60=mean(d60);s60=std(d60);n60=norm(d60); 
% for detail 1 level 
A=[m1 s1 n1 m6 s6 n6 m11 s11 n11; 
 m16 s16 n16 m21 s21 n21 m26 s26 n26; 
 m31 s31 n31 m36 s36 n36 m41 s41 n41; 
 m46 s46 n46 m51 s51 n51 m56 s56 n56]; 
% for detail 2 level 
B=[m2 s2 n2 m7 s7 n7 m12 s12 n12; 
 m17 s17 n17 m22 s22 n22 m27 s27 n27; 
 m32 s32 n32 m37 s37 n37 m42 s42 n42; 
 m47 s47 n47 m52 s52 n52 m57 s57 n57]; 
% for detail 3 level 
C=[m3 s3 n3 m8 s8 n8 m13 s13 n13; 
 m18 s18 n18 m23 s23 n23 m28 s28 n28; 
 m33 s33 n33 m38 s38 n38 m43 s43 n43; 
 m48 s48 n48 m53 s53 n53 m58 s58 n58]; 
% for detail 4 level 
D=[m4 s4 n4 m9 s9 n9 m14 s14 n14; 
 m19 s19 n19 m24 s24 n24 m29 s29 n29; 
 m34 s34 n34 m39 s39 n39 m44 s44 n44; 
 m49 s49 n49 m54 s54 n54 m59 s59 n59]; 
% for detail 5 level 
E=[m5 s5 n5 m10 s10 n10 m15 s15 n15; 
 m20 s20 n20 m25 s25 n25 m30 s30 n30; 
 m35 s35 n35 m40 s40 n40 m45 s45 n45; 
 m50 s50 n50 m55 s55 n55 m60 s60 n60]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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                             APPENDIX- 4 

 

LabVIEW implementation of ANN 

 
Fig A 4 LabVIEW implementation of ANN. 

 

 


