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ABSTRACT 

 

As the widespread use of a batch crystallization process in many industries, finding an 

optimal operating condition and effective control strategy are significant for improving product 

quality and downstream processing. To achieve these, an accurate model is required to predict 

the process behavior and to design controller. However, due to unknown disturbances and batch-

to batch variations, the kinetic parameters obtained from experimental study may not represent 

the real process resulting in poor control and estimation performances. In this work, 

improvement of batch crystallization control under uncertain kinetic parameters has been 

proposed. Model predictive controller (MPC) is used for optimal control of distillation and batch 

crystallization process. Feedback control strategy is found out using LQR technique. A Kalman 

filter has been designed to estimate uncertain parameters and immeasurable states. A MPC 

TOOLBOX in MATLAB software is used to obtain desired crystal size distribution (CSD).  

 

Keywords: Batch Crystallization, Linear Quadratic Regulator, Model Predictive Control, 

Kalman Filter                               
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CHAPTER 1 

INTRODUCTION  

 

Batch crystallization is widely used process in chemical, food and pharmaceutical 

industries for separation and purification of product. The driving force for the process is 

supersaturation. Supersaturation can be achieved either by cooling the solution below its 

saturation temperature, evaporation of solution or salting of solute to change the solute solubility. 

Out of these, cooling technology is most commonly use due to its ease of operation and 

dependence of solute solubility on temperature. Once the supersaturation is achieved, nucleation 

and subsequent crystal growth takes place. The growth of crystal is effectively controlled by 

maintaining crystal size distribution (CSD). 

To control CSD, model predictive controller (MPC) is most widely used with crystallizer 

process. Traditional control work on principle of change in output target of system i.e. control 

action takes place after the disturbances in system whereas MPC set the control action before 

change in output target. This ability of controller helps in achieving smoother and easier control 

on process. Figure 1.1 shows the basic structure of MPC. 

 

 

Figure 1.1: Basic Structure of MPC 

 

For the batch crystallizer, all the state variables are not measurable. Only temperature and 

concentration of process can be measured. To measure un-measured state variables, Kalman 
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filter is associated with MPC to control crystallizer in term of crystal moments. The Kalman 

filter also called as a linear quadratic estimation (LQE). It is an algorithm based on two stages 

which takes series of observed measurement containing noise and other inaccuracies to estimate 

unmeasured state variables. In the first step, it estimates current state variables containing 

inaccuracies and updates takes place in second steps. It is found that estimated state variables of 

Kalman Filter are more precise than those based on a single measurement alone. In this present 

work, Kalman Filter is used to estimate unmeasured crystal moment to control desired crystal 

size distribution. 

The optimal control of a process generally refers to operating a process at minimum cost. 

The case where linear differential equations represent system dynamics and 

a quadratic functional  represents cost function then the problem of controlling system at optimal 

control is solved by linear quadratic regulator (LQR) technique. It is just finding a proper way of 

feedback control strategy which reduces a tedious work of system engineer. 

 

1.1 Objective of Thesis  

The aim of this thesis is to control the CSD of industrial batch crystallizer using nonlinear model 

based control approach. 

The scope of the present work includes 

 Modeling and dynamic simulation of batch crystallization process. 

 Design of optimal control for CSD of industrial batch crystallizer. 

 Design of model predictive controller (MPC) for CSD of industrial batch crystallizer. 

 

1.2    Organization of Thesis 

Chapter 1: Present chapter of the thesis provides the brief introduction of batch crystallization 

process, overview on Linear Quadratic Control (LQR) and MPC. The objective of the thesis with 

chapter layout is also presented in this chapter. 

http://en.wikipedia.org/wiki/Linear_differential_equation
http://en.wikipedia.org/wiki/Quadratic_polynomial
http://en.wikipedia.org/wiki/Functional_(mathematics)
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Chapter 2:  Theory of batch crystallization process, its modeling and open loop simulations are 

the traits of the present chapter. 

Chapter 3: This very chapter renders theoretical postulations about state feedback control with a 

special mention to LQR scheme and its implementation in batch crystallization process. This 

chapter also provides a brief theory on state estimator, specifically the Kalman filter. 

Chapter 4: It deals with model predictive controller, its complete algorithm and implementation of 

MPC for SISO and MIMO model. 

Chapter 5: This chapter presents the closed loop simulation of batch crystallization process using 

MPC and Kalman filter and ensures perfect CSD. 

Chapter 6: In an ending note this chapter concludes the thesis with future recommendation. 



 

 
 

 

 

 

 

 

CHAPTER 2 

BATCH CRYSTALLIZATION 
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CHAPTER 2 

BATCH CRYSTALLIZATION 

 

Crystallization is nothing but separation of solute from solvent in solid state where 

molecules are essentially arranged in regular pattern. The major advantages of crystallizer 

process are that it is a single stage separation process giving high purity, operated at relatively 

mild condition and requires low level of energy consumption. Batch crystallization is mostly 

used when frequent change in process parameter is required, volume of production is very low or 

requirement of isolated system e.g. Safety and sterility. 
[1]

 

 

2.1    Principles of Crystallization 

 

Solute can be separated from vapors, solution or melt. For removal of solute from solution, 

mostly crystallization is used. The key variable for the process is supersaturation which largely 

affects the product quality. The product quality is determined in terms of its crystal shape, CSD, 

its purity and polymorphic state. 

 In crystallization, supersaturation is defined as the difference between solubility of solute 

at normal condition to saturation state. Solubility is the equilibrium concentration of the solute in 

the solvent at the given process conditions. 

                                                                                                                                                   

 

Where is the solute concentration; T is the temperature;   is the saturation concentration of 

solute, namely the solubility. Greater the difference, higher is the degree of supersaturation. 
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Figure 2.1: The Phase Diagram 

 

A systematic representation of control mechanism of crystallizer is shown in figure 2.1. It 

is divided in three zones namely Undersaturated, Metastable supersaturated and unstable 

supersaturated zone. 

1. Undersaturated zone: - regions where solute are completely soluble making the 

crystallization process impossible. 

2. Metastable supersaturated zone: - a region of supersaturation containing growth of 

crystal in absence of spontaneous nucleation of solution. 

3. Unstable supersaturated zone: - spontaneous nucleation zone.  

 Crystallization process is operated by controlling desired supersaturation state. Process is 

governed by kinetics of crystal growth, nucleation and agglomeration. Agglomeration and 

spontaneous nucleation are undesirable conditions for crystallization. In most of the practice, a 

known amount of crystals are injected in crystallizer along with feed to startup initial kinetics of 

crystallization but done only at a starting of process. The process is then called as seeded batch 

crystallization. Supersaturation can be achieved by lowering the solubility of solute through 

evaporation of solvent, addition of antisolvent or cooling the solution. 
[1] 

 

2.2    State of  Art in Control of Batch Crystallizers 

 

Because of industrial competitions and increasing demand of high quality product, various 

interesting technologies are developed in this field. Depending on these technologies, number of 
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controlling approaches has been proposed which are broadly classified in to ‘model based 

controlled approach’ and ‘direct design approach’. 
[1]

 

 

2.2.1   The Direct Design Approach 

 

In most of the practice, the solute concentration window lies in region of metastable zone. 

This operating policy is maintained by feedback control on solute concentration. The main aim is 

to follow the concentration-temperature mechanism in between metastable zone. The principle 

idea of direct design approach is given in figure 2.2.  

 

Figure 2.2: The Direct Design Approach 

 

This approach avoids the spontaneous nucleation and processing time in crystallization. 

The solute concentration is measured by spectroscopic instruments with respect to temperature. 

The knowledge of thermodynamics is also essential to maintain desired trajectory of solute 

concentration. 

The feedback strategy of solute solubility curve is given by mathematical equation 

 

                                                                                                                                                          

 

Where    is a predefined supersaturation profile within the metastable zone is,   is the solute 

concentration;   is the temperature.  
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The temperature setpoint of process is calculated by solving above mathematical expression. 

Predefined supersaturation profile is depending on required product quality and not a function of 

time. 
[2] 

 

2.2.2   The Model Based Control Approach 

 

The initial framework of model is prepared from material and energy balance. Solid 

balance is given by probability balance equation (PBE). PBE gives an effect of crystallization 

kinetics on CSD.  Model based control is difficult to handle due to distributed nature of PBE. To 

solve this problem, PBE is approximated by considering different moments of crystal.  Crystal 

moments normally consider various physical properties of crystal growth such as number, length, 

area and volume. But moment model does not give complete knowledge of CSD. Production of 

crystal having a large mean crystal size and a narrow size distribution is the prime objective of 

model based control approach.   

Initially open loop control was used for model based control approach but it is highly 

sensitive to batch to batch variation and enables to handle process uncertainty. This is mainly due 

to uncertainty associated with crystallization kinetics. So an effective control strategy is online 

control of optimum control policy during batch run. The systematic representation of optimum 

operating policy is given in figure 2.3. An observer is combined with MPC to measure the 

unmeasured parameters of process. 
[2]

 

 

 

 

Figure 2.3: The Output Feedback Model Based Control Approach 
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2.3    Literature Review on Batch Crystallization Process 

 

Producing a crystalline product with a large mean crystal size and a narrow size distribution 

is traditionally the prime objective in model-based control of batch crystallizers (Rawlings et al. 

1993).
[3]

Matthews and Rawlings (1998) identified a model for batch cooling crystallization of an 

organic photochemical heptanes system; model parameter uncertainties were minimized by 

applying different optimal experiment design techniques.
[4]

Chung et al. (1999) performed a 

comprehensive study on dynamic optimization of the seed distribution in a batch cooling 

crystallizer.
[5]

Nowee et al. (2007) presented a model for a seeded batch cooling crystallization 

process, in which crystal dissolution took place. The nonlinear process model was utilized to 

optimize the temperature profile and the initial seed size distribution. Experimental 

implementation of the off-line optimized profiles resulted in the desired crystal mean size. 
[6]

 

 Among the numerous attempts to perform output feedback control of batch crystallizers, 

the work of Chang and Epstein (1987) can be recognized as a pioneering study.
[7]

 They 

incorporated a feedback mechanism into the optimal control scheme presented in their earlier 

work (Chang and Epstein 1982). The application of the feedback control strategy for a batch 

crystallizer was then demonstrated by simulation studies.
[8]

Eaton and Rawlings (1990) 

investigated feedback control of several constrained nonlinear multivariable chemical processes, 

including a batch cooling crystallizer, using nonlinear estimation and optimal control 

strategies.
[9]

Zhang and Rohani(2003) developed an online control strategy for optimal control of 

a seeded batch cooling crystallizer. An extended Kalman filter was employed to estimate the 

unmeasurable state variables and to account for plant model mismatch as well as process 

uncertainties. The simulation results showed notable improvements in the product CSD in 

comparison with that obtained by open-loop implementation of the optimal cooling policy.
[10]

 

 

2.4    Model Development 

 

Model-based control approach depends on dynamic relations between inputs and outputs of 

physical system. These dynamics relations of batch crystallizer depend not only on process 

variables such as concentration and temperature, but also are a function of certain physical 

properties of crystals. This makes the system distributed in nature which is dependent on crystal 
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growth, nucleation, breakage, agglomeration and dissolution. The present work depends on first-

principle modeling approach having material and energy balances with empirical equations of 

crystallization kinetics. Distributed nature of PBE is converted to ordinary set of differential 

equations by considering method of moment.
[1]

 

 

2.4.1   Population Balance 

 

 Properties of crystalline products are depending on internal crystal states, e.g. size and 

shape. To avoid the high computational effort of detailed mechanistic models, one internal 

coordinate system, namely the crystal size is used to describe the characteristics of a crystalline 

material. 

 PBE provides distributed nature of crystal formed by calculating the number of crystals 

in a crystallizer. PBE is a well developed mathematical frame work for dynamic modeling of 

particle size distribution in numerous particulate systems such as polymerization, precipitation, 

etc. 

In well-mixed batch crystallizer, PBE can be expressed in terms of the internal 

coordinates and crystallization kinetics containing nucleation and crystal growth. The one-

dimensional PBE for a crystallization process undergoing nucleation and crystal growth can be 

written as 

 

              

  
      

 (            )

  
 

           +[∑                     ∑                    
   

  
         ]                                         (2.3) 

 

where       is the number density function (1/m
4
); t is the time (s);   is the internal coordinate, 

via the crystal characteristic size (m);       is the crystal growth rate (m/s);       is the 

nucleation rate (1/m
4
s);      is the crystallizer volume (m

3
);   and   are the number of inlet and 

outlet streams, respectively;   (t) is the volumetric flow rate (m
3
/s);       is the crystal 

classification function. The initial condition of the PBE is 
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Equation (2.4) represents either a clear solution with no crystal population or the size distribution 

of seed crystals. In addition, the boundary condition of the PBE is expressed as 

 

                                                                                                                                       (2.5) 

 

Equation (2.5) implies that there exist no crystals with size  0. 

To avoid the occurrence of undesirable phenomena such as primary nucleation and 

agglomeration, mostly a seeded batch crystallizer is used. For seeded batch crystallizer, PBE is 

written in form of partial differential equation, 

 

 (           )

  
      

 (            )

  
   

[∑                     ∑                    
   

  
         ]                                                                  (2.6) 

 

With the left boundary condition, 

 

        
     

      

                                                                                                                    (2.7) 

 

Where     denotes the total nucleation rate of crystals of infinitesimal size (1/m
3
s).

[1]
 

 

2.4.2   Mass and Energy Balances 

 

PBE indicates that crystal size distribution (CSD) is depend mainly upon rates of crystal 

growth and nucleation which in turn depend upon chemical potential. The chemical potential 

difference is expressed as 

 

         
    

     
)                                                                                                                     (2.8)   
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Where  μ is the change in chemical potential;   is the solute concentration (wt.%);    is the 

saturation concentration (wt.%); T is the solution temperature (K);   is the Boltzmann constant 

(J/K). supersaturation is normally used as a chemical potential for crystallization process. It is 

defined as 

 

                                                                                                                                               (2.9)  

 

Supersaturation is depending on solute concentration and temperature, thus mass and 

energy balances must always be coupled with PBE. 
[1] 

 

2.4.2.1   Energy Balance 

 

 For energy balance, it is assumed that potential energy, kinetic energy and shaft work are 

assumed to be negligible. The energy balance in form of enthalpy balance is given as  

     

  
 ∑            

  

   

∑           

  

   

                                                                         

 

With the initial condition 

 

                                                                                                                                                        (2.11) 

 

In the energy balance,      is the enthalpy (J);      and       are the enthalpies of solution 

and vapor streams, respectively (J/s);     is the net rate of heat addition to the system (J/s). 

 

2.4.2.2   Mass Balance 

 

The component mass balance in liquid phase for the solvent is 

 

              

  
 ∑                      ∑                   

  
   

  
   (t) 

−                            ∑                                            
  
                   (2.12) 
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With the initial condition 

 

                           , 0                                                                                                                                                  (2.13) 

 

In equation (2.12),               is the mass of solvent (kg);                 and 

               are the solvent mass flow rates in liquid and vapor phases, respectively (kg/s); 

        is the solvent molecular weight (kg/mole);            is the solvent stoichiometric 

coefficients in the solid phase;   is the number of solid phases;             and             are 

the molar flows of crystal growth and nucleation (mole/s), respectively.  

It is assumed that vapor stream is free of crystalline material and solute, and then liquid 

phase component mass balance for the solute is given as  

 

             

  
 

∑                     ∑                  
  
   

  
   (t)        ∑                            

  
   

                                                                                                                                                         (2.14) 

 

With the initial condition, 

 

                                                                                                                                              (2.15) 

 

In equation (2.14),              is the mass of solute (kg);               is the solutemass flow 

rate in the liquid phase (kg/s);          is the solute molecular weight (kg/mole);          is the 

solute stoichiometric coefficient in the solid phase.        

The component mass balances and population balance are coupled by the molar flows of 

crystal growth and nucleation, 

              
    

       
     ∫

               

  
    

 

   
                                                           (2.16) 

 

             
    

       
    ∫           

 

   
                                                                                     (2.17) 
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Where   is the volume shape factor of the crystalline material;    is the density of the crystalline 

material (kg/m
3
). Expressions for the rates of crystal growth and nucleation follow from the 

kinetic models.
 [1] 

 

2.4.3   Crystallization Kinetics 

 

 Dynamic evolution of crystals population under the condition supersaturation is given by 

Crystallization kinetics. Growth and nucleation are two important parameters for favorable 

transition of the solute to the requisite quality solid. 

 

2.4.3.1   Nucleation 

 

Process of formation of nuclei through clusters of solute molecules is called as 

nucleation. It is broadly categorized into primary nucleation and secondary nucleation. Figure 

2.4 shows the complete nucleation phenomenon.  

 

 

 

Figure 2.4: Mechanisms of Crystal Nucleation 

 

 

Primary nucleation mechanisms are again of two type’s homogeneous and heterogeneous 

nucleation. Homogeneous nucleation occurs in pure solution in absence of surface through the 

formation of clusters of solute whereas heterogeneous nucleation is the result of present 
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impurity. Primary nucleation requires high levels of supersaturation than secondary nucleation. 

There is variety of secondary nucleation mechanisms like Initial breeding, dendrite breeding, and 

fluid shear breeding and contact nucleation. Initial breeding occurs due to adherence of 

crystalline dust fragments to the surface of dry seed crystals. Breakage of growing crystal phase 

due to hydrodynamic shear forces and breakage of dendrites from the parent crystals lead to fluid 

shear breeding and dendrite breeding respectively. Mechanical forces like crystal-crystal, crystal-

impeller, and crystal-hardware collisions result in contact nucleation. Contact nucleation 

generally dominates among the various secondary nucleation mechanisms.
[2] 

 

2.4.3.2   Crystal Growth 

 

Growth of stable crystal nuclei in to visible size is called as crystal growth. Crystal growth 

comprises of mainly two steps, solute molecules diffusion towards the crystal surface and crystal 

lattice formation due to integration of these growth units. The diffusion step contains transfer of 

mass towards stagnant layer of crystal surface. This is followed by surface diffusion, spatial 

orientation, and the subsequent surface integration reaction that constitute the integration step. 

Crystal growth depend on rate of diffusive transport and surface integration as well as degree of 

supersaturation and can be diffusion controlled, surface integration-controlled or a combination 

of both.
[2]

 

 

2.5    Modeling of Batch Crystallization Process 

 

Crystallization is a heterogeneous dispersed phase having high nonlinear modeling. A 

mathematical framework for modeling a batch crystallization process consists of the population 

balance equation (PBE) describing a conservation equation for a number of crystals in a 

population, mass balance and energy balance. A typical batch crystallizer is as follows:  
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Figure 2.5: Typical Batch Crystallizer 

 

 

Few assumptions are considered to develop PBE like well mixed condition, neglecting 

the suspension volume change in the system, size independent crystal growth and the 

agglomeration and breakage of crystals.  With these assumptions, the PBE for the CSD of the 

process can be written as: 

 

       

  
     

       

  
                                                                                                            (2.18) 

 

With initial and boundary conditions for the evolution of the CSD: 

       
    

    
                                                                                                                                               

 

                                                                                                                                                       

 

The mass balance describing the change of solute concentration in continuous phase is as 

follows: 

  

  
            ∫           

 

 

                                                                                                       

 

The energy balances for the batch crystallizer and the jacket are 
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        ∫           

 

 

 
  

   
(          )                                              

 

      

  
  

  

  
(             )  

  

       

(          )                                                                     

 

Nucleation and growth rates are the kinetic phenomena influencing the formation of 

crystals. The measurement of driving force of super saturation (S) is given in Eq. (2.22): 

 

  
       

     
                                                                                                                                               

 

The rate of nucleation and growth are developed by assuming an empirical functional 

form as given in Eqs. (2.25) and (2.26): 

 

        
   
    ∫              

 

 

                                                                                                          

        
   
                                                                                                                                               

 

A set of algebraic equations are formed from PBE (Eq. (2.18))by a finite difference 

method. Then mass and energy balance equations (Eqs. (2.21) – (2.23)) with set of algebraic 

equations are solved to determine conservation of a numbers of crystals. 

In this study, the seeded batch crystallizer of potassium sulfate production is considered. 

The physical properties and initial conditions of the crystallizer are given in Table 2.1. 
[11]

 

 

Table 2.1: The Physical Parameters and Initial Conditions of the Seeded Batch Crystallizer 

 

Parameters Value Parameters Value 

  2   2 

   285.0 1/(sµm
3
)    1.44*10

8
(µms

-1
) 

     7517.0      4859.0 
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         Jµm
-2

s
-1

K
-1

   0.25 *10
12

µm
2
 

    44500 J kg
-1

    3800 J kg
-1

K
-1

 

  27.0 kg    2.66*10
-15

 g/µm
3
 

   1.5    1800 s  

   0.015*10
18

µm
3
    0.001*10

18
m

3
 s

-1
 

   10
-15

 kgµm
-3

     4184 J kg
-1

K
-1

 

     0.1743 g solute/g solvent      323K 

 

 

The initial distribution of the seeded crystals in the batch crystallizer is assumed to be a 

parabolic distribution as the function of the crystal characteristic length ranging from 250 to 300 

mm. 

 

           {
                                         

                                                                              
               (2.27) 

 

Solution concentration ( ) for the process in metastable zone indicate default region of 

process to be operated. The region is bounded by metastable limit,          between 

solubility curves. The equations given below are used to calculate saturation and metastable 

concentrations. 

 

                                                                                            (2.28) 

 

                                                                                           (2.29) 

 

 To avoid high computational time required in solving of the PBE for an optimization 

problem, its direct use in the design of a MPC controller is always avoided. So PBE is 

transformed to a set of ordinary differential equations (ODEs) by the method of moments. In 

principle, the method of moments defines the i
th

 moment in terms of the population density 

function by: 
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   ∫                          
 

 
                                                                                       (2.30) 

 

Where    is the i
th

 moments representing total number of crystals (  ), total length of crystals 

(  ), overall surface area of crystals (  ), and overall volume of crystals (  ). 

 

The rate equation of the moments is derived by determining separately the moments of 

the nuclei and seed classes for the CSD as in Eqs. (2.31-2.34), 

 

   

  
                                                                                                                                     (2.31) 

 

   
 

  
           

                                                                                                                          (2.32) 

 

  
                                                                                                                                                            (2.33) 

 

   
 

  
           

                                                                                                                (2.34) 

 

The overall i
th

 moments are defined as      
    

  . It shouldbe noted that since the 

crystal breakage and agglomeration phenomena are not considered in the proposed crystallizer 

model, a total number of crystals growing from seeds   
  is constant and determined by the initial 

seed size distribution (Eq.2.31).
[11] 

 

2.6    Dynamic Simulation of Batch Crystallization Process 

 

The following are the input and output of the system. 

Inputs: 

       = Jacket inlet Temperature  

Outputs: 

   =  zeroth
 
moment of the CSD 

   =  first moment of the CSD 

     second moment of the CSD 
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     third moment of the CSD  

   = concentration 

   = temperature of system 

   = jacket outlet temperature 

 

Dynamic simulation is obtained by using ODE 45 solver in MATLAB software. Dynamic 

responses of state variables are shown in figure 2.6. 

 

 

 

Figure 2.6:Dynamic Simulation of Batch Crystallization Process 
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CHAPTER 3 

OPTIMAL CONTROL: THEORETICAL POSTULATIONS 

 

         The designing of a set of state equations describing the dynamic behavior of plant to be 

controlled is the starting point of optimal control. Optimum control of plant is made possible by 

feedback controllers. Feedback controllers require the complete measurement of state variables. 

States need to measure completely using some techniques like observer, if not measurable. Here 

Linear Quadratic Regulator (LQR) is used for optimal control of batch crystallization process. 
[1] 

 

3.1   Linear Quadratic Regulator (LQR) 

 

The system where a set of linear differential equations describes the plant and a quadratic 

function describes the cost is called LQ problem and its solution is provided by linear quadratic 

regulator (LQR), a feedback controller. LQR problem with feedback configuration is shown in 

figure 3.1.  

 

 

Figure 3.1:  Linear Quadratic Regulation (LQR) Feedback Configuration with Negative Feed 

Back and the Absence of a Reference Signal 

 

In this configuration, the state-space model of the process has two distinct outputs: 

I. The measured output is         which is available for control. It is given as   

          if C(s) is controller transfer-matrix.     and     are Laplace transforms of 

the process input     and the measured outpu      , respectively. 
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II.        Corresponds to The controlled output signal that should be as small as possible. 

To make it very small, sometimes           is used. 

 

The controlled output        corresponds to signal that one would like to make as small as 

possible in the shortest possible amount of time. One simply needs to make one of the measured 

outputs     small if output     is a vector. 
[1]

 

 

3.1.1   Optimal Regulation 

 

 The LQR problem is defined as follows: Finding the control input     , that makes the 

following criterion as small as possible 

 

     ∫          
 

 
                                                                                                                  (3.1) 

 

Where  is a positive constant. 

The term, 

∫          
 

 

 

 

Corresponds to the energy of the controlled output and the term 

∫          
 

 

 

 

to the energy of the control signal. In LQR, one seeks a controller that minimizes both energies. 

However, decreasing the energy of the controlled output will require a large control signal and a 

small control signal will lead to large controlled outputs. The role of the constant   is to establish 

a trade-off between these goals: 

I. When we chose  very large, the most effective way to decrease JLQR is to use little 

control, at the expense of a large controlled output. 
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II. When we chose   very small, the most effective way to decrease JLQR is to obtain a very 

small controlled output, even if this is achieved at the expense of a large controlled 

output. 

Often the optimal LQR problem is defined more generally and consists of finding the controller 

transfer-matrix C(s) that minimizes 

 

     ∫        
 

 
                                                                                                                        (3.2) 

 

Where Q is an     symmetric positive-definite matrix and, R an      symmetric positive 

definite matrix, and   a positive constant.
[1]

 

 

3.2   State Feedback Controller 

 

 The main objective of controller is bringing the system to zero states from none zero state 

and control system is given by      .In state feedback control, whole state x should be 

measurable so that it is easily available for control. It is state regulatory system since desired 

output is set to be zero. The LQR controller has the following form 

 

                                                                                                                                              (3.3) 

 

Where        is given by the positive (symmetric) semi definite solution of 

 

                                                                                                                            (3.4) 

 

This equation is called Ricatti equation. It is solvable if pair      is controllable and 

      is observable. A process is said to be completely controllable if it can be transferred from 

its initial state       to any other state in a limited time interval  and observable if every state 

     can be determined from the observation of     over a limited time interval. 
[1]
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3.3   LQR Design with Observers 

 

To find an observer gain with desirable characteristics using LQR techniques, simply 

replacing       by (  ,  ) and    
    

    
in the LQR design equations (3.3) and (3.4). This 

works for any number of outputs  . To find specific matrix equations for observer design, one 

may formally manipulate these into their dual forms using matrix transposition to obtain, 

       
        

   
                                                                                             (3.5) 

 

     
   

                                                                                                                                                     

 

Observer design matrices  ,  and the observer auxiliary matrix   are written with 

subscripts. The first of these equations is a matrix quadratic equation known as the observer 

Algebraic Riccati Equation (ARE). 

 

3.4   Implementation of LQR Controller for Batch Crystallization Process 

 

LQR technique is implemented on Batch Crystallization process using MATLAB 

software. State space matrices are found out using model design equations 2.18- 2.34 from 

chapter 2. State space matrices obtained are, 
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     ]
 
 
 
 
 
 

                                                                                                                                                     

 

  [
       
       
       

]                                                                                                 (3.9) 

 

  [
 
 
 
]                                                                                                                                                           

 

The gain matrix obtained is 

 

                                                                                   

 

Using algorithm of LQR controller, State variables of batch crystallization process are 

controlled to zero states shown in figure 3.2. 

 

 

 

 

Figure 3.2: Closed Loop Performance of Batch Crystallizer Using LQR Controller 
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3.5   Observer Design (Kalman Filter) 

 

Kalman filter called as linear quadratic estimation (LQE), utilizes series of measurements 

containing noise and inaccuracies and estimates the unmeasured state variables. The name of 

filter was given on the honors of Rudolf Kalman , one of the primary developers of its theory. 

Kalman filter has number of application in guidance and control of vehicles, particularly aircraft 

and spacecraft. It is also used in time series analysis like signal processing and econometrics. 

Kalman Filter algorithm initially produces current state variables along with uncertainties. 

Then, estimated state variables are again updated after observation of next measurement using 

a weighted average, with more weight being given to estimates with higher certainty. The 

algorithm is recursive in nature with real time using only the present input measurements and the 

previously. 
[1]

 

The Kalman filter estimate state variables by following steps: 

 

Initial State Estimate: The first step is assumption of initial guess of state variables      . 

Initially predicted state estimate   is equal to initial value. 

                                                                                                                           (3.12) 

Predicted Measurement Estimate: Calculating the predicted measurement estimate using the 

predicted state estimate at any instant of time  , 

 

       [     ]                                                                                                                                  

 

Innovation Variable: This step deals with calculation of error from difference between the 

measurement     and the predicted measurement      : 

                                                                                                                                            

 

Corrected State Estimate: Calculation of corrected state estimate        is done by adding the 

corrective term      to the predicted state estimate      . is a Kalman Filter gain. 

 

                                                                                                               (3.15) 

http://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Weighted_mean
http://en.wikipedia.org/wiki/Real-time_Control_System
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Predicted State Estimate: Calculation of predicted state estimate for next time step       

from known input     of process and present state estimate       [1]
 

 

                                                                                                             (3.16) 

 

The above steps are represented in figure 3.3.  

 

 

Fig 3.3: Real System Process with Observer 

 

The estimation        is done by integrating in real time the following ODE, 

 

  ̇                 ̂                                                                                               (3.17) 

 

With the following matrices calculated  

 

                                                                                                                                                       (3.18) 

 

                                                                                                                   (3.19) 
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                                                                                                                                      (3.20) 

 

The Riccati equation above has its origin in the minimization of the cost function 

 

 [     ]  ∫   
 

  
                                                                                                               (3.21) 

 

Output feedback controller can be obtained by using the estimated state  ̂ leads to the following 

output-feedback controller. 

 

  ̇                                                                                                    (3.22) 

 

                                                                                                                                                        (3.23) 

 

 With negative feedback transfer matrix given by 

 

                                                                                                                              (3.24) 

 

This is usually known as an LQG output-feedback controller and the resulting closed loop is 

shown in fig. 3.4. 
[1]

 

 

Figure 3.4:  LQR Output Feedback 

 

3.6   Implementation of Kalman Filter for State Space Model 

 

Considering general example of state space matrixes having 2 input and 7 state variables, 
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                                                                            (3.25) 
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                                                                                                                                (3.26) 

 

  [
       
       

]                                                                                                      (3.27) 

 

Since all the state variables are not measurable, so Kalman filter is designed to find unmeasured 

output using above algorithm (eq. 3.10-3.17). The Kalman gain matrix obtain is  
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                                     (3.28) 

 

 By using MATLAB simulation, the state variables obtain from Kalman filter is given below: 
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Figure 3.5: Output 1 Vs Time 

 

Figure 3.6: Output 2 Vs Time 

 

 

Figure 3.7: Output 3 Vs Time 
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Figure 3.8: Output 4 Vs Time 

 

Figure 3.9: Output 5 Vs Time 

 

Figure 3.10: Output 6 Vs Time 
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Figure 3.11:  Output 7 Vs Time 
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CHAPTER 4 

MODEL PREDICTIVE CONTROL 

 

4.1   Introduction 

Model predictive control (MPC) is often used to control multiple input output processes with 

satisfying inequality constraints on the input output variables. It predict the future output if 

reasonably accurate dynamic model of process is available and then depending on predicted and 

measured output, appropriate change in measured input can be calculated. Output variables are 

called as controlled variables (CV) while input variables are manipulated variables (MV). 

Measured disturbances are also called as feed forward variables. Major advantages of Model 

predictive control are: 

1) Provides dynamic and static interaction between input, output, and disturbance variables. 

2) Systematic control on constraints on input and outputs. 

3) Controlled calculations are synchronized with set points provided. 

4) Prediction of future output gives early warning of possible problems. 
[1]

 

Basic block diagram model predictive control is given by  

 

Figure 4.1: Block Diagram Model Predictive Control 

Basic structure of MPC is given above. Current values of the output variables are 

calculated using a process model and then difference between predicted and actual outputs are 

used as a feedback signal to a prediction block. The predicted outputs are used in controlled 
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calculation and setpoint calculation after considering constraints on the input and output variable. 

MPC configuration is analogues to both internal model control configuration and smith predictor 

configuration because model and process are parallel acted and difference act as feedback 

control signal. But coordination of the control and set point calculations makes MPC superior 

than others. Moreover, MPC is largely used in MIMO control problems than IMC or Smith 

predictor.  

Traditionally economic optimization setpoint for the control calculation, called as target, 

is calculated from a steady-state model of the process. Economic optimization is depending on 

maximizing a cost function, or maximizing a production rate. The optimum values of set points 

are distorted continuously which in turn functions of variations in process conditions, equipment, 

and instrumentation, as well as economic data such as prices and costs. In MPC, Set points are 

calculated in each sampling time. Control action is determined based on current measurements 

and predictions of the future output. For linear model prediction, a multivariable version of the 

step response or differential equations model are used while nonlinear process uses nonlinear 

dynamic models and empirical models, such as neural networks. 
[2] 

 

 

 

 

 

 

 

Figure 4.2: Basic Concept of MPC 

 

    ̂and    shown in figure above are actual output, predictive output and manipulated input 

respectively. The main objective of the MPC is to determine the set of control moves so that 

predicted reaches the desired set point. At any sampling time, MPC decides a set of M input 
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values containing a present input      and future     inputs { Miiku ....3,2,1),1(  }. Set of 

inputs are calculated in such a way that a set of     predicted output   ̂                 should 

reach the optimum setpoint. Objective function is optimized to find out control moves. Number of 

control moves M is called the control horizon while number of prediction p is referred to as the 

prediction horizon.  

Receding horizon approach makes MPC a unique control approach. Although for each sampling 

time, MPC gives sequence of M control moves, only first moves is actually implanted. Then 

again for next sampling instant, a new set of control moves are determined and only the first input 

move is implemented and process is repeated for each sampling instant. 
[3]

 

4.1.1   Limitation of MPC
 

Traditional MPC has many of performance limitations which are summarized below: 

Model Structure 

Applications of MPC are limited by finite step and impulse response models and need 

numerous model coefficients to explain the response of system. Integrating systems are handled 

after taking derivative of an integrating output as controlled output. 

Disturbance Assumption 

 Output disturbances are generally assumed to be constant which may give some 

misleading performance if real disturbance occurs at the plant input. 

Finite Horizons 

MPC gives deteriorating performance if prediction or control horizons are not calculated 

correctly, even if the model is perfect. 

4.2   Control Objective Function of MPC 

Various objective functions are available but mostly standard least-squares or quadratic 

programming (QP) objective function which provides smoother control action to MPC and MPC 

will have more sensitive tuning parameters. The QP formulation based MPC is used in this 

thesis.The objective function is nothing but sum of square of the predicted errors and control 
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moves. Predicted error is difference between the set points and the model-predicted outputs 

whereas changes in the control action from step to step are called control moves. 
[1] 

A quadratic objective function for a control horizon of 2 and a predictive horizon of 3 is given as  

          ̂    
          ̂    

          ̂    
      

      
               (4.1) 

Where  ̂ denotes the model predicted outputs,   is the set point,    is the change in manipulated 

input from one sample time to the next,  and   is a weight for the change in the output and 

manipulated input respectively. 

The least square objective function for a prediction horizon of   and a control horizon  is 

written as. 

   ∑        ̂    
   ∑    

   
   
   

 
                                                                                (4.2) 

The optimization problem deals with a minimization of the objective function by manipulating   

control moves. 
[1]

 

4.2.1   Dynamic Matrix Control (DMC) 

 

DMC is a step response model developed by shell Oil Company in 1960s and 1970s.the 

silent features of DMC control are 

1. A finite prediction horizon for quadratic performance objective. 

2. Linear step response model for the plant. 

3. Predicted future responses are calculated after considering set point so that it should 

follow setpoint as closely as possible.  

Predicted output is given as  

 ̂                                                                                (4.3) 

Its generalized form written as  

 ̂  ∑   
   
                                                                                                                  (4.4) 
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Where  ̂ the model prediction at time is step , and      is the manipulated input of   steps in 

the past                          .The predicted output should be equal to the 

actual measured output at any time instant.  

The model-predicted output is unlikely to be equal to the actual measured output at time 

step. The difference between the measured output       and model prediction ̂  is called the 

additive disturbance given as 

       ̂                                                                                                                               (4.5) 

Consider corrected prediction is then equal to the actual measured output at step   

 ̂ 
 

  ̂                                                                                                                                (4.6) 

Similarly, the corrected predicted output at the first time step in the future can be found from 

 ̂ 
   

  ̂     ̂ (4.7) 

From equation (4.4) and (4.7), we can write 

 ̂ 
   

 ∑   
   
                     ̂                                                                             (4.8) 

 ̂ 
   

       ∑   
   
                     ̂                                                                    (4.9a) 

 ̂ 
   

               ∑   
   
                     ̂                                         (4.9b)                                                                              

So corrected future output for j 
th

 step is 

 ̂ 
   

 ∑   
 
           ∑   

   
                       ̂                                               (4.10) 

∑   
 
                {Effect of current and future moves} 

∑   
   
                        {Effect of past moves} 

 ̂                  {Correction term} 

Correction term is always considered as constant in future 
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 ̂     ̂                ̂                                                                                    (4.11) 

Change in control action is recorded till control horizon of   steps, after that control moves are 

constant.  

                                                                                                      (4.12) 

The corrected predicted future output matrix of   steps and a control horizon of   

stepsare 
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Equation (4.13) can be written in matrix-vector notation 

 ̂                          ̂                                                                                    (4.14) 

Equation (4.14) is composed from a free response (the output changes that are predicted 

if there is no future control moves) and forced response (contribution of the current and future 

control moves). The difference between the set point trajectory, r, and the future prediction is 

   ̂    [                  ̂]                                                                                                                     (4.15) 

   ̂    Is corrected predicted error 
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  [                  ̂]     is unforced error (if no current and future control moves) 

Above equation (4.15) can be given as 

                                                                                                                                                                                                            (4.16)     

Where the future predicted errors are composed of free response (E) and forced response 

         contributions. 

The least square objective function equation (4.2) can be written as 

   ∑    
    

   ∑       
   
   

 
                                                                                                  (4.17) 

The quadratic terms are written in matrix-vector as 

 ∑   
     

    
      

    
 
       

    

[
 
 
 
 
  

   

  
   

 
 
  

   ]
 
 
 
 

                                                                      (4.18) 

 ∑   
     

    
                                                                                                              (4.19)                                                                                               

 ∑       
   
                         

[
 
 
 
 

   

     

 
 

       ]
 
 
 
 

                                 (4.20)            

 ∑       
   
         

                                                                                                       (4.21) 

Therefore objective function can be written with equation (4.19) and (4.21)  

              
                                                                                                                                                                       (4.22) 

From equation (4.16) and (4.22) one can write  

            
               

                                                                                        (4.23) 

Optimization problem deals with minimization of objective function differentiate equation (4.23) 

with respect to control move and are written as 
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                                                                                         (4.24) 

   from equation (4.24) is  

       
           

 
                                                                                                                   (4.25) 

      
           

 
                                                                                                        (4.26) 

   is called controller gain matrix having dimension       where r and m are number of 

output and input respectively. 

The current and future control move vector       is proportional to the unforced error vector   . 

That is, a controller gain matrix,   multiplies the unforced error vector (the future errors that 

would occur if there were no control move changes implemented) 

Since only current control move is actually implemented, only first row of the    matrix is useful 

                                                                                                                                                       (4.27) 

    Having dimension      

In case of SISO dimension of    matrix is     and Kc1 matrix is     [1] 

4.2.2   MPC with Inequality Constraints 

 

          Inequality constraints were a primary motivation for MPC design in early development of 

MPC. Inequality constraints on input and output variables on MPC make the MPC unique in 

nature. Physical limitations on plant equipments such as the pump, control valve, and piping 

characteristics are responsible for input constraints.  

          Plant operating strategy is mainly depending on constraints on output variables. For 

instance, production rate with satisfaction of constraints on product quality and avoiding 

undesirable operating condition like conning is prime objective of distillation column control.  
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Inequality constraints help in easy distinction between hard constraints and soft constraints 

which are also included in control calculations in many ways. Key features of the QDMC 

algorithm is 

1. A finite prediction horizon for quadratic performance. 

2. Linear step response for the plant. 

3. Predicted response is trying to follow set point as closely as possible.  

4. Optimal inputs computed as the solution to a quadratic program.  

The input constraints can be of the following form 

                                                                                                                               (4.28) 

Similarly velocity constraints limits for the control moves at each sample time is in form 

                                                                                                                                         (4.29) 

Where              . In order to use a standard quadratic program (QP), the constraints in 

(4.27) should be written in terms of the control moves,      since the previously implemented 

control action      is known. So we can write,  

            

                                                                                                                      (4.30) 

The manipulated input constraints are enforced over the control horizon of  steps, (4.27) and 

(4.29) yield 
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                                          (4.31) 

Most standard QP codes use a “one-sided” form 
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                                                              (4.32a) 

And 
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                                                      (4.32b) 

This has the form        

The velocity constraints are implemented as bounds on the control moves 
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                                                                                            (4.33) 

Most of the time, only input constraints are considered to solve MPC. For wholeness sometimes 

process outputs constraints are also used. The predicted output should be in the range of 

minimum and maximum limits. 

      ̂ 
   

                                                                                                                                    (4.34) 

Above equation (4.34) can be written in the following form 

 ̂                                                                                                                                   (4.35) 

Where , the free response of the corrected-predicted output (if no current and future control 

moves are made) is 

                      ̂                                                                                                                (4.36) 
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So that equation (4.33) can be written as 

        ̂ 
   

                                                                                                                        (4.37) 

In term of one side inequalities 

             

                                                                                                                                             (4.38) 

Expanding equation (4.38) we get objective function 

       
  

 
       

   
 

          (4.39) 

Equation (4.39) writes in this form 

  
 

 
   

                                                                                                                                                                                    (4.40) 

Where  

    
        And       

  
 

           

                                                                                                                                        (4.41) 

Inequality matrices   and   in equation (4.41) incorporate the matrices in equation (4.31) and 

(4.35). 
[2]

 

4.2.3   Extensions of the Basic MPC Model Formulation 

Extensions of the basic MPC problem formulation are required for convenient application. 

Integrating Process 

Step response model generated above is not suitable for an integrating process due to its bounded 

response. Since the output rate                    is bounded, simple alteration removes 

this problem. ̂  of equation   ̂   ̂   ̂ is replaced for integrating process. 

  ̂  ∑   
   
                                                                                                              (4.42) 
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Or equivalently, 

 ̂   ̂ ∑   
   
                                                                                                            (4.43) 

Known Disturbance 

If the disturbances can be calculated, it is also added in step-response model. Let   
  and   

denote step-response coefficients of known disturbance and a measured disturbance respectively.  

 Then the standard step-response model can be written by adding a disturbance term, 

 ̂  ∑   
   
                ∑   

       
    
     

      
                                              (4.44) 

Where    is the number of step-response coefficient for the disturbance variables. 

Impulse Response Model 

MPC model is based either on step response or impulse-response since these two inputs are 

closely associated. The derived model for step response is analogous to impulse response.
[2] 

4.2.4   Predictions for MIMO Models 

Principle of superposition is used to convert SISO model to MIMO model. For simplicity, a 

process with two outputs, 1y and 2y , and two inputs, 1u and    is considered. Four individual step 

responses will be formed one for each input-output pairs. 

 ̂   ∑      
   
                     ∑      

   
                                                   (4.45)  

 ̂   ∑      
   
                     ∑      

   
                                                   (4.46)  

Where 
iS ,12
 denotes the ith  step-response coefficient for the model that relates 1y  and 2u . Other 

step responses are written in same manner. Vector-matrix notations are convenient to express 

MIMO step-response models. Let the output transpose vector be T

myyyy ],,.........,[ 21 and the 

input transpose vector is                
 . Then dynamic matrix form of MIMO model is 

)]()([)1()()1(
0

kykykYkUSky


                                                                       (4.47) 
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Where )1( 


ky  is the dimensional vector of corrected predictions over the prediction horizon P . 

)](.....,),........2(),1([)1( pkykykycolky 


                                                                  (4.48) 

)1( 


ky
o

is the dimensional vector of the predicted unforced responses, 

)](.....,),........2(),1([)1( pkykykycolky
oooo




                                                                (4.49) 

And )(kU  is the dimensional vector of the next M control moves, 

)]1(,),........1(),([)(  


MkukukucolkU                                                                 (4.50) 

The mmP  matrix  in equation (4.46) is defined as 

pIII T

mmm ].............[


 Times                                                                                                (4.51) 

Where mI  denotes the mm identity matrix. 

The dynamic matrix S is defined as 
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 Equation (4.52) represents dynamic matrix for MIMO systems which has same structure 

as for SISO system. 
[1]

 

4.3   Design Parameters 

 Straight way of reaching an optimum performance is Tuning a controller before 

application. An MPC controller has certain parameters setting to achieve its optimum 

performance. Those parameters are sampling time ( t ), prediction horizon ( P ), control 

horizon    , model horizon ( N ), controlled variable weights. 
[1]

 

4.3.1   Default Setting 

 

I. Sampling time period and model horizon:  

Selection of sampling period t  and mode horizon N  should be in such a way that it should 

satisfy        where   denotes settling time for the open-loop response.Typically,30<N<120. 

II. Control   and prediction   horizons:  

Typically 205  M and 2/3/ NMN  . A different value of M is selected for each input. 

The prediction horizon P is calculated from MNP  . 

III. Weighting matrices,  and  :  

A mPmP  diagonal   matrix allows to the output variableto weight according to their relative 

importance. Similarly, an        input weighting matrix allows input variables to be 

weighted according to their relative importance.
[1]

 

4.3.2   Non Adaptive DMC Tuning Strategy
 [4][5]

 

Table 4.1: Non Adaptive DMC Tuning 

S.N. SISO model MIMO model 

1. 
FOPDT model 

    

    
 

       

     
 

FOPDT model 

    

    
 

    
     

      
(r=1,2…R;s=1,2..S) 
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2.  =max(T       and T      )  =Min(Max(0.1           )(r=1,2..R,s=1,2..S) 

3.  = =(5
  

 
 

  

 
  )  = =     

   

 
 

   

 
  )( r=1,2..R,s=1,2..S) 

4.  =(
  

 
 

  

 
  )  =Max(

   

 
 

   

 
  ) ( r=1,2..R,s=1,2..S) 

5. R=             
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)              s=123,…S 

 

4.3.3   DMC Tuning Strategy Review 

 

A table for DMC tuning, different- authors gave different-2 approach to find tuning 

parameter which is shown below table 4.2, 4.3 and 4.4.   

Prediction Horizon
 [6]

 

Table 4.2: Prediction Horizon 

PREDICTION HORIZON AUTHOR 

                   MaurathP.R.;laub 

          MaurathP.R.,Mellichamp 

      CutlerC.R. 

  
   

  
 

   

  
   

Georgiou A.; Georgakis C.;Lubyen W.L. 

              HindeR.F.;Cooper 

       
    

  
      

    
   

  
   

ShridharR.;Cooper 
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Control Horizon
[6]

 

Table 4.3: Control Horizon 

CONTROL HORIZON AUTHOR 

         Georgiou A.; Georgakis C.;LubyenW.L. 

        HindeR.F.;Cooper 

     (
   

  
    ) 

    
   

  
   

ShridharR.;Cooper 

 

Model Horizon and Sample Time
[6]

 

 

Table 4.4: Model Horizon 

MODEL HORIZON AUTHOR 

                  Georgiou A.;Georgakis C.;LubyenW.L. 

     (
    

  
    ) 

    
   

  
   

ShridharR.;Cooper 

 

Sample Time
[6]

 

Table 4.5: Sample Time 

SAMPLE TIME AUTHOR 

                             ShridharR.;Cooper 

 

 

Where 

   =FOPDT Model gain for R  outputs and S inputs 
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   =Control horizon 

   = Model horizon 

 =Prediction horizon. 

  =sampling time 

   =FOPDT Process time constant 

    =FOPDT Process time constant (s) for R  outputs and S Inputs 

                =Rise time for 80%, 90%, 60% and 95% respectively 

   =Process delay time 

   =FOPDT Process delay time constant(s) for R  outputs and S inputs  

4.3.4   Conversion of (SOPDT) to (FOPDT)
[7] 

 

 All design parameter given for first order plus dead time (FOPDT), if process has second 

order plus dead time (SOPDT) then that time we have to change (SOPDT) to (FOPDT) blow 

given the procedure. 

First- order plus dead-time (FOPDT) Model 

     
       

    
                                                                                                                                           (4.54)                                                                                                    

Second order plus dead-time (SOPDT) Model 

                                                                                                                   (4.55) 

   The process steady-state gain 

      The effective process dead time 

         The effective process time 

For                            
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For                  

4.4   Implementation 

MPC is implemented on SISO and MIMO model to find out the effect of tuning 

parameters. By trial and error method I have selected some tuning parameters called as default 

values. 

4.4.1   Single Input Single Output System (SISO) 

Considering the Van De Vusse reactor problem, the continuous state space model is given by 

 

A= [ -2.4048 0; 0.833 2.2381] 

B= [7;-1.117] 

C= [0 1] 

D= [ 0 ] 

Where the measured state (output) is the concentration of the second component and the 

manipulated input is the dilution rate
.[1] 

 

 

Figure 4.3: Response of Van De Vusse reactor by Using PID Controller 
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Figure 4.4: Response of Van De Vusse reactor by Using MPC Controller 

 

 

4.4.2 Multiple Input Multiple Output System (MIMO) 

 

              Distillation Process 

Wood and Berry     process 

[
     
     

]  [

       

       

         

       

       

       

         

       

] [
    
    

]  [

         

       

         

       

]                                                               (4.56) 

Above equation is the model of distillation column it is used to separate methanol and 

water. Where       represents the mole fraction of methanol in distillate,       the mole 

fraction of methanol in bottom are the control variable, manipulated variables      and      are 

reflux flow rate and steam flow rate respectively and feed flow rate. 
[7]
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Response of PID Controller: 

 

Figure 4.5: Response of Distillate Composition by Using PID Controller 

 

Figure 4.6: Response of Bottom Composition by Using PID Controller 

Response of MPC 

Design parameters from table 2.1 found out  =17,  =73,  =1.5 setting other parameters 

defaults. 
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Figure 4.7a: Response of Wood and Berry without Default 

 

Figure 4.7b: Manipulated Variables Plot Without Default 

 But in above case, manipulated variables are ringing, so now tried to reduce ringing with 

the change in design parameters. For reduce ringing, taking design parameter  =5,  =10, and 

 =1.5. 
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Figure 4.8a: Response of Wood and Berry with Default 

 

Figure 4.8b: Manipulated Variables Plot with Default 
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Disturbance Rejection 

 

Figure 4.9: Disturbance Rejection Plot of Wood and Berry Process 

In above figure 4.8a and 4.8b manipulated variables ringing less than figure 4.5a and 

4.5b. It indicates that with the change of design parameter, ringing of manipulated variable can 

be reduced.   

 

4.3.2.2     Distillation Process 
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]  
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[

  

  

  

]                                                                                (4.57) 

 

Above equation given by (Ogunnaike and ray) to separate ethanol and water, where Y1 is 

overhead ethanol mole fraction, Y2 side stream ethanol mole fraction and Y3 is 19 tray 
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temperature (
0
C) (corresponding to bottoms composition). The inputs are u1 reflux flow rate 

(m
3
/s), u2 side stream product flow rate (m

3
/s), u3 reboiler stream (kPa). The disturbance is d1 

feed flow rate (m
3
/s) and d2 feed temperature, (

 0
C)

.[8] 

When used DMC tuning strategy from table 2.1 then  =30,  =90,  = 0.71 

 

Figure 4.10a: Manipulated Variables Plot without Default 

 

Figure 4.10b: Response of     Process without Default 
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But in both of case manipulated variable ringing so now try to reduce ringing with the 

change of parameter  to  =1.5,  =5,  =10,  =60. 

 

Figure 4.11a: Manipulated Variables Plot with Default 

 

Figure 4.11b: Response of     Processes with Default 
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Disturbance Rejection 

 

Figure 4.12: Disturbance Rejection Plot for 3 3 Process 

In above figure 4.11a and 4.11b manipulated variables ringing less than figure 4.10a and 

4.10b. It indicates that with the change of design parameters, ringing of manipulated variable can 

be reduced. It rejects the disturbance early compare to without default. 

4.3.2.3       Distillation Process: 
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[

  

  
  

  

]                  (4.58) 

 

The above     process is presented by Doukas and Luyben. They studied the dynamic 

of a distillation column producing a liquid side stream product. The controlled and manipulated 

variables are   (toluene impurity in the bottom),   (toluene impurity in the distillate),  (benzene 
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impurity in the side stream), and    (xylene impurity in the side stream);   (side stream flow 

rate),   (reflux ration ),   (reboil duty), and   (side draw location).
[9]

 

Above process has eight FOPDTs, six SOPDTs, and two dead times. The six SOPDT 

models are changed to FOPDTs model in order to apply DMC tuning, DMC tuning find out from 

table (4.1) is  =1087,  =0.5 and  =4370. The huge DMC parameters are caused by the transfer 

function g24. MPC controller gives an error statement using DMC tuning from table (4.1). 
 

Below MPC controller output at come at default setting where  =0.1,  =5  =10,  =60

 

Figure 4.13: Response and Manipulated Variables Plot with Default for     Process 

After studying the response of PID and MPC on SISO and MIMO system, it is seen that 

MPC gives good performance especially in multivariable process than PID controller. For SISO 

system, the conventional PID controller is used because SISO system can easily be controlled 

using PID controller than MPC. So PID is preferred over MPC for SISO system since MPC 

parameters are difficult in tuning.  
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CHAPTER 5 

CLOSED LOOP SIMULATION OF BATCH CRYSTALLIZATION 

PROCESS USING MPC 

 

I have considered a batch crystallization process to control its crystal kinetics by 

controlling crystal size distribution (CSD) using MPC controller. A model equation 2.18-2.34 

developed in chapter are used to convert its state space matrices. Since these equations are 

interrelated to each other in very complicated manner, it is necessary to convert these state space 

matrices in simplified form for mathematical simplicity. For this, certain canonical forms are 

used shown in equations 5.2-5.12. 

 

5.1   State Space Representation of Transfer Function System 

 Transfer function of a process can be converted to state space (SS). The state space 

representation of a transfer function  

    

    
 

   
     

             
    

      
                

                                                                                       

can be written in diagonal, controllable, observable and controllable canonical forms.  

5.1.1   Controllable Canonical Form 

Conversion of transfer function to SS in controllable Canonical form is essential in 

designing the process trough pole placement method. SS representation in a controllable 

canonical form is given as: 
[1]
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                                                    (5.2)                                                        
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[
 
 
 
 
 
  

  

 
 
 

  ]
 
 
 
 
 

                                                           (5.3) 

5.1.2   Observable Canonical Form.  

Equations 5.4 and 5.5 represent a controllable canonical form. 
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                                                        (5.4)                                                                
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5.1.3   Diagonal Canonical Form. 

Here it is considered than denominator of transfer function represented in equation 

5.1consists of distinct roots. So equation (5.1) is given as 

 

    

    
 

   
     

             
    

                    
 

                  
  

    
     

  

    
                                                                                                      

Then representation of SS in diagonal canonical form is  
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                                                                        (5.7) 
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                                                                                                         (5.8) 

 

5.1.4   Jordan Canonical Form 

Diagonal form should be modified into Jordan Canonical Form when roots of 

denominator of equation 5.1 are multiple. All the roots are different from one another except first 

three are         . Then equation 5.1 became  

    

    
 

   
     

                 

                           
                                                                                 

The partial fraction representation of above equation is 

    

    
    

  

       
 

  

      
      

  

      
                                                                

 

A SS representation of Jordan canonical form is given as   
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                                                              (5.11) 
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The state-space representation of transfer function in above canonical forms is necessary in 

designing and controlling of process since modern control system has many inputs and outputs 

and are interrelated to each other in very complex manner. Canonical forms helps in reducing 

complexity of mathematical form and helps in restoring this simple form in computers for 

tedious computations. 
[1] 

5.2   Analysis of Control System in State Space 

5.2.1   Controllability 

If a process can be transferred from its initial state       to any other state in a limited 

time interval, then process is said to be completely controllable at time    
[1]

 

Conditions of controllability and observability determine the existence of a complete 

solution of problem while designing a system. It also plays an important role in representing a 

system in state space. The concept was introduced by a scientist Kalman. The solution of control 

problem will not exist if a system is not controllable. Then to obtained a control on system, it is 

essential to find the conditions where system can be controllable and observable. Considering a 

system having state space representation: 

 ̇                                                                                                             (5.13) 

 

                                                                                                                                                    (5.14) 

 

Where, x and y is state and output vector of rank of n and m respectively.   is the control signal 

(scalar).A, B, C, D are the coefficient matrix of rank     ,    ,     ,      .
[1] 

 

State Controllability 

 

 If a system represented in equations (5.13) and (5.14) can be transferred from an initial 

state to any final state in a limited time interval        by constructing an unconstrained 

control signal, then system said to be state controllable at time       System is called as 
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completely controllable if all states of a system are controllable. Condition is fulfilled if a 

     represented by               is having a rank  . 
[1] 

 

Output Controllability 

 

Output controllability of a system is also important since complete state controllability 

doesn’t mean that outputs can also be controlled. A system is called a Output controllable if its 

initial output       can be transferred to any final output        in a finite time interval      

   by constructing an unconstrained control vector     . For a system to be a output controllable, 

its                 matrix should have rank  . 
[1]

 

 

5.2.2   Observability 

If every state      can be determined from the observation of     over a limited time 

interval,        , then a system said to be completely observable. Observability of a system 

is checked by finding a rank of     matrix                    , for a process to be 

completely observable, its rank should be  . 
[6] 

The concept of observability is important when all the states of a system are not 

completely measurable. The system is not observable is all states are not measurable. 
[1] 

 

5.3   Closed Loop Simulation on Batch Crystallization Process 

 

State space matrices of batch crystallization process are found out using model equations 

2.18-2.34 from chapter 2. For mathematical simplicity, matrices are converted to Controllable 

Canonical Form discussed in equation 5.2 and 5.3. Controllable Canonical Form of obtained 

matrices is: 
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]                                                                                               (5.17) 

 

  [
 
 
 
]                                                                                                                                                           

 

State-space model was used to implement the MPC. The controllability and observability 

of the processes was checked before the design of the controllers. Closed looped response of 

MPC on batch crystallizer is obtained using MPC simulation toolbox in MATLAB software.  

 

 

Figure 5.1: MPC Toolbox 

 

The MPC Controller block requires current measured output, reference signal, and 

measured disturbance signal and optimal manipulated variables after solving a quadratic 

program. After opening MPC toolbox, a window comes demanding import of plant and 

controller as shown in figure 5.2.  
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Figure 5.2: Control and Estimation Tools Manager 

Plant can be imported either by specifying it in workspace or by uploading a mat file as shown in 

figure 5.3. 

 

 

Figure 5.3: Plant Model Importer 
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Once a plant gets imported, Control and Estimation Tools Manager represents its 

complete description. Since our model of batch crystallization process has seven output and one 

input, it is shown in figure 5.4. 

 

 

Figure 5.4: Control and Estimation Tools Manager Representing Plant Description 

 Controller is imported in the same manners as a plant shown in figure 5.5. 

 

Figure 5.5: MPC Controller Importer 
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Control and Estimation Tools Manager after importing controller describes controller 

with sampling time, number of prediction and control horizon shown in figure 5.6. 

 

Figure 5.6: Control and Estimation Tools Manager Representing Plant Description 

 

After a succsessful importing of plant and controller, we have to specify the type in 

which we want output response. In our model, step type is given to state variables in between 0 

to1 shown in figure 5.7. 

 

Figure 5.7: Control and Estimation Tools Manager Representing Output Scenario 
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By designing a MPC controller with prediction horizon as 18 and control horizon as 6 

with sampling time of 0.4 second for 10 minutes, controlled state variables of batch 

crystallization process obtained are given in figure 5.8.  

 

Figure 5.8: Close Loop Response for Batch Crystallizer Using MPC Controller for  =18,  =6 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RECOMMENDATION 

 

Conclusions 
 

The primary research objective of this thesis is to evaluate the opportunities for real-time 

model-based control to improve product quality and process productivity of industrial batch 

crystallizers. The model-based control of batch crystallizers is used. The problem of distributed 

characteristics of PBE is solved by considering moment of crystals. It has been shown that model 

imperfections and process uncertainties are largely detrimental by the performance of nonlinear 

model-based controller. But the validation of process models and performance monitoring was 

cumbersome due to limitations in measurement of process variables. So model predictive 

controller approach is combined with Kalman filter to measure an unmeasured state variable. 

Then finally MPC toolbox of MATLAB simulation block is used to obtain desired CSD. 

 

Future Recommendation 

 

Deploying MPC controller for mixed suspension mixed product removal crystallizer 

(MSMPR) and semi batch crystallization process. 

 

 

 

 

 

 

 

 

 

 


