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Abstract

Image quality index is the measure for estimating the level of degrada-

tion present in an image. Measurement of such index is challenging in the

absence of reference image. Blind image quality assessment refers to evalu-

ating the quality of an image without the need of any reference image. The

quality of an image can be considered as the contrast, sharpness, brightness

and other features extracted from that particular image. Other features like

Discrete Cosine Transform (DCT), Wavelet Transform and Gabor filtering

can also be used to extract the quality of an image.

Different algorithms are developed by researchers to solve the quality

evaluation problem. These algorithms are not tested on a common plat-

form. The algorithms that are analyzed in this thesis are Blind Image Qual-

ity Index (BIQI), Distortion Identification-based Image Verity and INtegrity

Evaluation (DIIVINE), BLind Image Integrity Notator using DCT Statistics

(BLIINDS) & Visual Codebook. Laboratory for Image & Video Engineering

(LIVE) database which is a standard database is used to analyze the men-

tioned algorithms. Spearman and Pearson correlation coefficients are used

for validating the algorithms.

Recently Visual Codebook algorithm was proposed by Peng Ye and

David Doermann. The existing Visual Codebook algorithm is optimized

with respect to the number of clusters used in K-Means clustering part of

algorithm. Effect of variation in patch size on the performance of algorithm

is studied in this thesis and an optimum value of patch size is proposed.
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Chapter 1

Introduction

1.1 Introduction

Quality of an image refers to the amount of degradation present in an

image. A high quality image is always desirable. For example, the images

taken by camera can be of varying quality. There can be presence of noise or

any other distortion in an image. Distortions can occur due to acquisition,

compression, storing and decompression of an image, movement of camera

while capturing image or addition of noise in an image. The quality of an

image cannot be decided by only few parameters like brightness, contrast or

sharpness. A sharp image can have salt and pepper noise present in it. There

need a standardize procedure to evaluate the quality of an image regardless

of the type of distortion that has affected the image.

One way to evaluate the quality of any image is to have a subjective

evaluation. In subjective evaluation, the image is shown to some observers,

for example lets us assume that the image is shown to 10 observers. Evalua-

tion by only one observer cannot be perfect as the observer’s eye sight might

not be perfect, so to remove this discrepancy, more than one observer is used

for subjective evaluation. The distance between the observer and the image,

viewing angle, lighting conditions and other affecting parameters are kept

similar for all observers. The observers are then asked to give a quality score

to the image on certain scale say 0 to 100, where 0 represents best quality

1



CHAPTER 1. INTRODUCTION 2

and 100 represents worst quality. Average of the quality scores given by 10

observers gives the final quality of that image.

This is a lengthy procedure to give quality score to an image. It is time

consuming as human observations are involved. The quality score cannot

be accurate as average of quality value of different observers is taken. So

this method of quality evaluation of an image cannot be used in real time

applications. An automated system is required to evaluate the quality of an

image in real time. This quality assessment problem can be categorized into

3 classes namely,

1) Full reference image quality assessment (FR-IQA)

2) Reduced reference image quality assessment (RR-IQA)

3) No reference image quality assessment (NR-IQA)

Full reference image quality assessment (FR-IQA) algorithms needs a

reference or undistorted image beforehand to judge a quality of distorted

image. The quality score is found out by comparing the distorted image

with the undistorted image. Depending on the extent of distortion present

in the image, the quality score is accordingly given. Example of FR-IQA

is Structural Similarity Index (SSIM) [2], Fast SSIM [3] and Peak signal to

noise ration (PSNR) [4]. The PSNR of an image is not a promising factor

for quality evaluation which can be seen in figure 1.1 [1], all the images have

same mean square error of 144 even though quality of each image is different

which can be found out by visual inspection.

The main limitation of full reference image quality assessment algo-

rithms is that they require the original, undistorted image to evaluate the

quality of distorted image. These algorithms cannot be used in applications

where reference image is not available. Also the PSNR values are not consis-

tent with the human visual system [5].

Reduced reference image quality assessment (RR-IQA) algorithms [6]

use a training approach to evaluate the quality of an image. In RR-IQA,

first the algorithm is trained for the change in quality score for the extent
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Figure 1.1: Einstein images with same MSE = 144 [1]

of distortion, a training data set is formed. When the algorithm is applied

on a test image, the parameters extracted from the test image are compared

with the training data set to get the quality score. The algorithm is trained

for specific type of distortions, so if a test image having a distortion which is

not used during training comes for quality evaluation, this algorithm fails to

give correct quality score.

No reference image quality assessment (NR-IQA) algorithms give the

quality score just by processing the test image. There is no need of the

reference image or any training images hence it is also called Blind IQA.

Different parameters can be used to evaluate the quality of an image blindly.

Anisotropy [7], Discrete Cosine transform (DCT) [8, 9], wavelet [10, 11] and

Gabor filtering [12] are some of the parameters used for NR-IQA.

The NR-IQA algorithms developed so far are distortion specific, i.e.

the algorithm works fine only for specific type of distortions. The type of

distortion present in the image should be mentioned before applying the

algorithm. If the type of distortion is unknown then the algorithm wont give
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proper results. Generally the algorithm is designed for distortions like blur,

noise, fast fading, jpeg2000 and jpeg.

1.2 Literature Review

Every individual perceives images differently. As the perception is dif-

ferent, the image quality viewed by individual is different from others. An

algorithm or system which can evaluate the quality of an image can remove

the discrepancy of difference in perception.

The full reference algorithms like PSNR [4] & SSIM [2] provides a way

to estimate the quality of an image but these algorithms need an original

image with which the distorted image can compared to calculate the quality

of image. These algorithms give the amount by which the distorted image

differs from the original image. But the need of original image limits the

use of these algorithms. So research work is being carried out to develop an

algorithm which can evaluate the quality of an image without the need of

reference image.

Different transforms like Discrete Cosine Transform (DCT) & Wavelet

Transform are used by researchers to evaluate the quality of an image. Image

has the property of anisotropy i.e. its value is different in different directions.

So the transforms used is applied for various orientations. Different scales

of transforms are also used for quality evaluation purpose. Using these tech-

niques, different algorithms are developed to solve the quality evaluation

problem.

Table 1.1 shows the no-reference image quality assessment algorithms

developed so far. The algorithms are compared using Spearman Rank Cor-

relation Coefficient (SROCC) and Linear (Pearson’s) Correlation Coefficient

(LCC).

Drawbacks of algorithms mentioned in table 1.1 are

• The algorithms are not fully No-Reference, a standard data set is re-

quired to first train the algorithm for specific type of distortions.



CHAPTER 1. INTRODUCTION 5

Table 1.1: No-Reference Image Quality Assessment Algorithms

Name of Developer Features Used Correlation Reference
Algorithm Parameters Indices

BIQI [10] A.K. Moorthy Wavelet Transform in SROCC PSNR
A.C. Bovik 3 scales and 3 orientations LCC

DIIVINE [11] A.K. Moorthy Wavelet Transform to SROCC SSIM
A.C. Bovik obtain sub-band coefficients LCC PSNR

for statistical features

BLIINDS [8] M.A Saad Discrete Cosine Transform
A.C. Bovik based contrast SROCC PSNR
C. Charrier & structure features

BLLINDS-II [9] M.A Saad Model based SSIM
A.C. Bovik Discrete Cosine Transform SROCC PSNR
C. Charrier domain NSS features

Visual Peng Ye Gabor Filtering in SROCC SSIM
Codebook [12] D. Doermann 4 orientations and LCC PSNR

5 frequencies

• Computational time is more so not suitable for real time applications.

• Difference in actual Differential Mean Opinion Score (DMOS) and qual-

ity score given by present algorithms.

• Present algorithms are distortion specific, i.e. the they are trained for

limited type of distortions.

1.3 Motivations

Existing image quality assessment algorithms provide quality scores which

are close to actual quality of that image but not the exact quality. Also the

present NR-IQA are distortion specific but an algorithm should be general-

ized and should work for all type of distortions. A new no-reference image

quality assessment algorithm need to be developed which can overcome these

problem.

1.4 Applications

NR-IQA can be used in multimedia services like internet and television.

Quality score of an image can be sent along with the image so loss of image
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quality due to channel loss or any other reason can be found out. Similarly

in television, the quality score can be usefull to check the quality of tv signal.

NR-IQA can also be used in astronomical images. Consider the example

images taken by of Hubble telescope, the cost (in terms of time) of images to

be sent to earth station is high. So it would be useful to check the quality of

image taken by telescope before transmitting the image to earth station, if

quality is not ut to the mark then the same image can be recaptured without

any delay.

1.5 Objectives

The objectives of the thesis are:

i. Analysis of existing NR-IQA.

ii. Implementing Visual Codebook algorithm which is one of the existing

NR-IQA.

iii. Analysis of performance of algorithm by changing the patch size in Visual

Codebook.

1.6 Contributions of the Thesis

The following are the salient contributions of the thesis.

• The effect of increasing degradation level on the output of NR-IQA al-

gorithms is studied.

• Present NR-IQA algorithms are validated on a standard database i.e.

Laboratory for Image & Video Engineering (LIVE) [13] using Spearman

& Pearson correlation.

• An optimum patch size for Visual Codebook algorithm is proposed.
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1.7 Thesis Organization

The thesis is organized as follows.

• Chapter 1 gives an introduction to image quality assessment problem.

• In Chapter 2, comparison of different NR-IQA is presented.

• Chapter 3 presents the results on LIVE database.

• In chapter 4, description of Visual Codebook algorithm is presented.

• Chapter 5 describes the effect of changing patch size in Visual Codebook

algorithm.

• Chapter 6 concludes the thesis.



Chapter 2

Comparison of different NR-IQA

algorithms

2.1 Need For Comparison

Different algorithms for No-Reference Image Quality Assessment are ex-

isting today. Which algorithm is better than the other is a question to be

solved. An algorithm may produce accurate result by taking more computa-

tion time whereas another algorithm may give inaccurate result but with less

computation time. The use of algorithm is determined by need of accuracy

and execution time. The existing algorithms are not tested on a common

platform. So to access the performance, the algorithms are tested on same

database with a common index.

2.2 Correlation Coefficients

Performance of existing algorithms can be validated using different correla-

tion coefficients. In practice, Spearman & Pearson correlation coefficients are

more popular for performance measurement. The accuracy of an algorithm

is decided by the value of correlation coefficient. The No-Reference Image

Quality Assessment algorithms needs to be compared with some standard al-

gorithm. For this purpose, Structural Similarity Index Measurement (SSIM)

8
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[2] is used. SSIM is a Full-Reference Image Quality Assessment algorithm

with a high correlation value. Both correlation coefficients are explained in

the next section.

2.2.1 Pearson Correlation

Pearson correlation [14] is used to measure the dependency between two

variables. It gives the correlation between two variables. Its value lies be-

tween ‘-1’ & ‘+1’ where value close to ‘+1’ indicates that the two variables

have positive correlation and values close to ‘-1’ indicates that the two vari-

ables have negative correlation. Value close to zero implies that the two

variable are not correlated. Pearson correlation between two variables ‘X’ &

‘Y’ is shown in equation 2.1 -

ρ =
cov(X, Y )

σx · σy

(2.1)

2.2.2 Spearman Correlation

Spearman correlation [15] also gives the correlation between two variables.

The range of spearman correlation lies between ‘-1’ and ‘+1’ and values close

to zero specifies less correlation between the two variables under test and

values near ‘-1’ and ‘+1’ specifies that the two variables are highly correlated.

Spearman correlation between two variables ‘X’ & ‘Y’ is shown in equation

2.2 -

ρ = 1−
6
∑

d2

n(n2 − 1)
(2.2)

where ‘d’ is the difference in ranks of the two variables and ‘n’ is the

number of scores of variables ‘X’ & ‘Y’.

2.3 Correlation Observations

The performance evaluation of different NR-IQA is done by following

procedure. The two variable in the correlation formula are the quality scores
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of an image calculated by two algorithms under test. As SSIM is used as a

reference algorithm to compare performance of other NR-IQA, one variable in

the Pearson correlation is the SSIM values. A standard image ‘barba.bmp’

shown in figure 2.1 is used for quality evaluation. PSNR values are also

evaluated to show the performance of one FR-IQA algorithm.

Figure 2.1: Test image : Barba

The test image is degraded by increasing the variance of noise. Gaussian

noise, Speckle noise and Gaussian blur are used to degrade the test image.

Quality score by each NR-IQA is obtained at each level of degradation. So

for each algorithm, a vector is obtained which contains the quality score

given by that algorithm for increasing values of noise variance. Correlation

coefficients are calculated using these vectors. To find the correlation of each

algorithm, the quality score vector obtained by SSIM and the quality score

vector obtained by the algorithm are taken and their correlation is calculated.

The quality score given by SSIM lies between ’0’ and ’1’, where ’1’

represents best quality image and ’0’ represents worst quality image. For
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other NR-IQA algorithms, the range of quality score is from 0 to 100 where

0 represents best quality and 100 represents worst quality. As the scale for

SSIM and all other NR-IQA is opposite, the correlation values is negative as

shown in following tables.

The variations of quality score of different algorithms with increasing

Gaussian noise variance are shown in figures 2.2, 2.3 & 2.3. The variations

of quality score of different algorithms with increasing Speckle noise variance

are shown in figures 2.5, 2.6 & 2.3. The variations of quality score of different

algorithms with increasing Gaussian blur variance are shown in figures 2.8,

2.9 & 2.3.

Table 2.1 shows the Pearson correlation values of PSNR and NR-IQA

algorithms with SSIM.

Table 2.1: Pearson Correlation Values

Algorithm Gaussian Noise Speckle Noise Gaussian Blur

PSNR 0.9995 0.9935 0.9956
BIQI -0.9984 -0.9989 -0.4527

BLIINDS-II -0.9754 -0.9728 -0.8871
DIIVINE -0.9963 -0.9934 -0.8953

VC -0.9789 -0.8797 -0.5146

Table 2.2 shows the Spearman correlation values of PSNR and NR-IQA

algorithms with SSIM.

Table 2.2: Spearman Correlation Values

Algorithm Gaussian Noise Speckle Noise Gaussian Blur

PSNR 1 1 1
BIQI -0.9879 -0.9972 -0.3188

BLIINDS-II -0.9515 -0.9265 -0.8203
DIIVINE -1 -0.9964 -0.9168

VC -0.9879 -0.9635 -0.4958

2.4 GUI for Different Quality Assessment Algorithms

A Graphical User Interface (GUI) is created in MATLAB to show the

output of different image quality assessment algorithms. The GUI provides



CHAPTER 2. COMPARISON OF DIFFERENT NR-IQA ALGORITHMS 12

Figure 2.2: SSIM Quality score versus Variance of Gaussian Noise

quality scores of different algorithms and also the Pearson correlation values.

Figure 2.11 shows the GUI. The GUI is provided with two ‘Browse’ buttons

to browse for reference image and the distorted image. The ‘Quality’ button

calculates the quality score given by each algorithm. SSIM & PSNR uses

both, reference image and test image to calculate the quality score whereas

other NR-IQA algorithms use only the test image. For the calculation of cor-

relation values, the reference image is degraded using Gaussian noise, Speckle

noise & Gaussian blur and the output of algorithms is correlated with SSIM.

2.5 Spearman versus Pearson Correlation

Spearman correlation takes into account only the ranks of two variables.

Consecutive values are given consecutive ranks. So the two function one of

which is linearly increasing and the other increasing with variable slope will

have Spearman correlation value as ‘+1’.

Pearson correlation considers the covariance and standard deviation
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Figure 2.3: PSNR & BIQI Quality score versus Variance of Gaussian Noise

of the two variables under test. Figure 2.12 shows the comparison between

Spearman and Pearson correlation, two increasing functions are used and

correlation values are calculated.

From figure 2.12, it can be observed that Pearson correlation coefficient

value gives a better information about correlation of two variables. Spearman

correlation value gives extent of association between two ranked variables

whereas Pearson correlation value indicates the measure of linearity between

two variables.

2.6 Summary

The effect of increasing level of degradation of an image on the output of

Image Quality Assessment algorithms is described in this chapter. Spearman

and Pearson correlation coefficients are explained and are used to measure the

performance of different NR-IQA algorithms. Also the comparison between

Spearman and Pearson correlation coefficients is discussed. A graphical user
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Figure 2.4: BLIINDS-II, DIIVINE & Visual Codebook Quality score versus
Variance of Gaussian Noise

interface is created to analyze the existing NR-IQA algorithms.
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Figure 2.5: SSIM Quality score versus Variance of Speckle Noise
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Figure 2.6: PSNR & BIQI Quality score versus Variance of Speckle Noise
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Figure 2.7: BLIINDS-II, DIIVINE & Visual Codebook Quality score versus
Variance of Speckle Noise

Figure 2.8: SSIM Quality score versus Variance of Gaussian blur
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Figure 2.9: PSNR & BIQI Quality score versus Variance of Gaussian blur
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Figure 2.10: BLIINDS-II, DIIVINE & Visual Codebook Quality score versus
Variance of Gaussian blur
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Figure 2.11: Image Quality Assessment Algorithms GUI

Figure 2.12: Spearman versus Pearson Correlation



Chapter 3

Analysis of Existing NR-IQA Algorithms

The existing No-Reference Image Quality Assessment algorithms needs

to be validated using a common platform. A common platform helps in

comparing the existing NR-IQA algorithms with respect to the accuracy of

output of the algorithm. The algorithms need to be tested on a set of standard

images which incorporate all major types of distortions.

3.1 LIVE Database

Laboratory for Image & Video Engineering (LIVE) [13] is a standard

database which contains a set of images which can be used for validation of

image quality assessment algorithms. The database contains both types of

images, reference and its distorted versions. There are 29 reference images

which are distorted by 5 type of distortions with different degradation levels.

The types of distortions are -

• JPEG compression distortion (169 images)

• JPEG2000 compression distortion (175 images)

• Gaussian blur distortion (145 images)

• White noise distortion (145 images)

• Fast fading distortion (145 images)

19
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The database is provided with a MATLAB file which contains the Dif-

ferential Mean Opinion Score (DMOS) of each image present in the database.

DMOS is the mean of quality scores given by different human observers. This

score is considered as a standard quality score with which output of different

NR-IQA algorithms is to be compared.

3.2 Correlation Observations

As shown in chapter 2, the performance evaluation of different NR-IQA

can be done using correlation coefficients. In this chapter, LIVE database is

used to get output of an algorithm and then the output is compared with

DMOS. The two variable in the correlation formula are the quality scores of

images in LIVE database calculated by NR-IQA algorithm under test and

the DMOS. Spearman and Pearson correlation coefficients are used to com-

pare the performance of different NR-IQA algorithms. Spearman correlation

values are shown in Table 3.1 and Pearson correlation values are shown in

Table 3.2.

Table 3.1: LIVE Database: Spearman Correlation

NR-IQA JP2K JPEG White Noise Gaussian Blur Fast Fading

BIQI 0.9023 0.9121 0.9600 0.9632 0.8217
BLIINDS-II 0.9420 0.9076 0.9702 0.9345 0.8957
DIIVINE 0.8491 0.8107 0.9796 0.9697 0.8462

Visual Codebook 0.9380 0.9423 0.9401 0.9024 0.8943

Table 3.2: LIVE Database: Pearson Correlation

NR-IQA JP2K JPEG White Noise Gaussian Blur Fast Fading

BIQI 0.8726 0.8301 0.9277 0.9296 0.7764
BLIINDS-II 0.9423 0.9004 0.9437 0.9269 0.8829
DIIVINE 0.8277 0.7384 0.9598 0.9561 0.8390

Visual Codebook 0.9335 0.9461 0.9268 0.8998 0.9018

In LIVE[13] database, each folder contains degraded images along with

reference images. The quality score alloted to reference images is 0. But the

NR-IQA algorithms need distorted images to evaluate their performance. So

the Spearman and Pearson correlation values are again evaluated by taking
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only the distorted images in LIVE database. Spearman correlation values are

shown in Table 3.3 and Pearson correlation values are shown in Table 3.4

Table 3.3: LIVE Database (excluding reference images): Spearman Correlation

NR-IQA JP2K JPEG White Noise Gaussian Blur Fast Fading

BIQI 0.9187 0.8886 0.9903 0.9543 0.8205
BLIINDS-II 0.9163 0.8868 0.9596 0.9102 0.8349
DIIVINE 0.9025 0.7511 0.9878 0.9584 0.8592

Visual Codebook 0.8711 0.8829 0.9008 0.8357 0.8218

Table 3.4: LIVE Database (excluding reference images): Pearson Correlation

NR-IQA JP2K JPEG White Noise Gaussian Blur Fast Fading

BIQI 0.9124 0.8242 0.9928 0.9598 0.8072
BLIINDS-II 0.9019 0.8977 0.9653 0.8993 0.8445
DIIVINE 0.8939 0.7020 0.9806 0.9589 0.8506

Visual Codebook 0.8630 0.8450 0.9038 0.8249 0.8181

It can be seen from tables 3.3 & 3.4 that the correlation values ranges

from 0.7 to 0.99. A high correlation value is desirable. The performance of

algorithms varies with the type of distortion which can be seen by difference in

correlation values for different types of distortions. An ideal algorithm should

perform equally for all type of distortions. The difference in correlation values

for different types of distortions suggests that the algorithm is distortion

specific.

3.3 Algorithm output Versus DMOS

The output of algorithm and the Differential Mean Opinion Score (DMOS)

can be plotted on same graph using scatter plot. Scatter plots are obtained

for quality score given by different NR-IQA and the actual quality score of

an image. Figures 3.1, 3.2, 3.3, 3.4 & 3.5 shows the scatter plot for different

types of distortions in LIVE database excluding reference images. X-axis

is the Differential Mean Opinion Score (DMOS) and Y-axis is the quality

score given by NR-IQA algorithm. A dispersed scatter plot indicates that

the correlation between output of NR-IQA algorithm and the DMOS is less
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and vice versa. If the scatter plot forms only a line then the correlation value

is one.

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

Actual DMOS

B
IQ

I 
S

co
re

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Actual DMOS

B
L

II
N

D
S

 S
co

re

10 20 30 40 50 60 70 80
−20

0

20

40

60

80

100

Actual DMOS

D
II
V

IN
E

 S
co

re

10 20 30 40 50 60 70 80
25

30

35

40

45

50

Actual DMOS

V
is

u
a

l C
o

d
e

b
o

o
k 

S
co

re

Figure 3.1: Scatter plot : JPEG2000 Distortion

3.4 NR-IQA Algorithms Performance Database

A database of output of existing NR-IQA algorithms is made which con-

tains the output of each algorithm and the time taken by the algorithm

to calculate the quality score. LIVE database images are used to make the

database of algorithms’ output. For each image present in the LIVE database,

the image is subjected to Gaussian noise of variance values equal to 0.015 and

0.080, the noisy image thus obtained is resized to a factor of 0.75 and 0.5 and

then the quality score and computation time for each NR-IQA algorithm is

recorded. The observations are saved in an excel file. LIVE database contains

images with 5 types of distortions, so for each type of distortion, an excel file

is obtained.

The database in excel files shows the behavior of each NR-IQA algo-
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Figure 3.2: Scatter plot : JPEG Distortion

rithm for changing the size and noise strength present in an image. This

database can be used for reviewing performance of each NR-IQA algorithm

efficiently. The quality score and time taken by each NR-IQA algorithm are

saved in the excel files so the need to execute the algorithm is eliminated. The

excel file can be directly referred to get the quality score and computation

time taken by all NR-IQA for LIVE database. Snapshot of one such excel

file is shown in figure 3.6, it shows the data obtained from first and second

image of JPEG type of distortion of LIVE database.

3.5 Summary

This chapter examines the performance of existing NR-IQA algorithms

using LIVE database. Spearman and Pearson correlation values are used to

validate the algorithms. The performance of algorithms is demonstrated by

scatter plots for different types of distortions in images.
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Figure 3.3: Scatter plot : White Noise Distortion
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Figure 3.4: Scatter plot : Gaussian Blur Distortion
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Figure 3.5: Scatter plot : Fast Fading Distortion

Figure 3.6: NR-IQA Algorithms Output Database



Chapter 4

Visual Codebook Algorithm for NR-IQA

4.1 Visual Codebook

Codebook is a set of codes which represents some object. In image pro-

cessing, codebook can be used to represent an image by some codewords or

codes. For example, an image of car can be summarized by the qualities of

car like four wheels and four door. These parameters are sufficient to give

the information that the image is of a car. So instead of storing the complete

image, the descriptors can be stored which represent that image.

The basic block diagram of Visual Codebook algorithm is shown in

figure 4.1. As shown in block diagram, the image whose quality is to be

evaluated is first divided into patches, then Gabor filtering is applied to the

patches to obtain a Gabor Feature Vector, K-Means clustering is done on

obtained Gabor Feature Vectors to get cluster centroids which are then used

to calculate the quality score of image.

4.2 Gabor Filter

Gabor filter is obtained by modulating a sine wave with a Gaussian func-

tion. The frequency and orientation of Gabor filter is dependent on properties

of sine wave and Gaussian function. Since image is a two dimensional func-

tion, a 2-D Gabor filter is required to extract features from an image.

26
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Figure 4.1: Visual Codebook Flowchart

In [12], it is shown that Gabor Filter based features are used to describe

the content of an image. The image is divided into patches which are Gabor

filtered in different frequencies and orientations. The equation for Gabor

filter function [16] in two dimension is shown in equation 4.1 -

Ψ(x, y, f, θ) =
f 2

πγη
exp[−

f 2

γ2
x′2 −

f 2

η2
y′2 + j2πfx′] (4.1)

where,

x′ = xcos(θ) + ysin(θ)

y′ = −xsin(θ) + ycos(θ)

f - frequency of sinusoidal plane wave

θ - rotation of Gaussian envelop

γ, η - spatial widths of Gabor filter along major & minor axes

Figure 4.2 shows that a 2D Gabor filter function [17] is basically a

Gaussian kernel modulated by a sinusoid.

Let the image be represented by ξ(x, y) and gabor filter function by

Ψ(x, y, f, θ), the response of gabor filter to the image is convolution of ξ and

Ψ and is given by g(x, y, f, θ).
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Figure 4.2: (a) 2D sinusoid oriented at 30o with the x-axis (b) Gaussian kernel (c) Gabor filter [17]

g(x, y : f, θ) = Ψ(x, y, f, θ) ∗ ξ(x, y) (4.2)

The output of filtering action is of same size as that of the input image.

If filtering is performed on a patch then the output is also a patch of same

size as shown in figure 4.3.

Gabor filtering is performed at five frequencies (1, 1/
√
2, 1/2, 1/2

√
2 &

1/4) and four orientations (0◦, 45◦, 90◦ & 135◦). Given an image patch, Gabor

filtering is done for all possible combinations of frequency and orientation.

For 5 frequencies and 4 orientations, there are total 20 combinations. So for

each patch, there exist 20 outputs which are of same size as that of patch.

Figure 4.4 shows the 20 outputs obtained for all combinations of frequencies

& orientations. Mean of these 20 outputs is taken which gives 20 values

which are arranged in a vector, similarly variance of 20 outputs is taken

which again gives 20 values. Appending the 20 mean values and 20 variance
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Figure 4.3: Gabor filtering for frequency ‘f’ & orientation ‘θ’

values produces a 40*1 vector which is called Gabor feature vector. Each

non-constant patch of an image is associated with a 40*1 vector.

4.3 Codebook Construction

Codebook is constructed by the Gabor feature vectors obtained by image

patches. The image is divided into patches of size 11*11, constant patches are

removed. Gabor feature vector of these patches is calculated. Each Gabor

feature vector can be treated as a point in a 40 dimensional space. A set

of Gabor feature vectors is obtained for each image and 200 clusters are

formed from this set using K-means [18, 19] clustering algorithm. These 200

cluster centroids are labeled by the quality score of the training image from

which the cluster centroids are obtained. Set of training images are used to

construct the codebook. Laboratory for Image & Video Engineering (LIVE)

[13] database containing 982 images is used to form the codebook.
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Figure 4.4: Gabor filter output for 5 frequencies & 4 orientations

4.4 Quality Score Evaluation

The test image is divided into patches of size 11*11 and Gabor filtering is

performed on these patches. Gabor feature vectors are obtained from these

patches. K-means clustering algorithm is used to form 200 clusters of these

Gabor feature vectors. Cluster centroids are obtained from these 200 clusters.

Nearest neighbour of these 200 clusters in the codebook are found and the

average of quality score labels of nearest neighbors gives the quality score of

test image.
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4.5 Validation on LIVE Database

For validation purpose, correlation between Visual Codebook algorithm

output and the DMOS of an image is calculated. LIVE database containing

982 images is used to find correlation. Spearman and Pearson correlation val-

ues are calculated to show the performance of Visual Codebook algorithm.

Table 4.1 shows the observations on LIVE database excluding reference im-

ages.

Table 4.1: LIVE Database: Spearman & Pearson Correlation

Correlation JP2K JPEG White Noise Gaussian Blur Fast Fading

Spearman 0.8711 0.8829 0.9008 0.8357 0.8218
Pearson 0.8630 0.8450 0.9038 0.8249 0.8181

4.6 Summary

This chapter explains the working of Visual Codebook algorithm. Two

dimensional Gabor filter and how Gabor filtering can be used for Visual

Codebook algorithm is discussed. Performance of Visual Codebook algorithm

is validated using LIVE database and results are shown.



Chapter 5

Modified Visual Codebook Algorithm

5.1 Need for Modification

In Visual Codebook algorithm [12], the test image is divided into patches of

size 11*11. Gabor feature vectors corresponding to each non-constant patch

is obtained and the Gabor feature vectors are clustered in 200 clusters using

K-Means clustering. While experimenting on Visual Codebook algorithm it

is found that the algorithm fails if the test image size is not sufficient enough

to produce 200 non-constant patches i.e. if the image does not have 200

non-constant patches then there wont be 200 Gabor feature vectors, which

will result in error at K-Means clustering as number of points to be clustered

should always be more or equal to the number of clusters in which the points

needs to be divided.

This problem can be overcome by either reducing the number of clusters

or by reducing the patch size. As mentioned in the reference paper [12], the

optimum number of clusters used in K-Means for Visual Codebook algorithm

is 200 but nothing is mentioned about the optimum value of patch size.

5.2 Effect of Varying Patch Size

To make Visual Codebook algorithm work for images which does not have

200 non-constant patches of size 11*11, a reduced value of patch size is taken

32
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and codebook is constructed using the same procedure as that of original

Visual Codebook algorithm.

A reduced patch size is needed but what should be the new patch size is

an important question. Also the algorithm constructed using new patch size

should perform at par with the original Visual Codebook algorithm. For this

purpose, performance of Visual Codebook algorithm is evaluated for patch

size of 3*3, 5*5, 7*7 & 9*9. All steps in Visual Codebook algorithm are

followed and separate codebook is constructed for each patch size. The mod-

ified versions of Visual Codebook algorithm are tested on LIVE database

excluding reference images and the correlation values are calculated. Spear-

man correlation values are shown in table 5.1 & Pearson correlation values

are shown in table 5.2.

Table 5.1: LIVE Database : Spearman Correlation for Visual Codebook

Patch Size JP2K JPEG White Noise Gaussian Blur Fast Fading Overall

3*3 0.9454 0.9027 0.9825 0.8759 0.9225 0.9258
5*5 0.9194 0.9200 0.9816 0.9331 0.9178 0.9344
7*7 0.8376 0.8736 0.9578 0.8744 0.8394 0.8766
9*9 0.8118 0.8412 0.9199 0.7362 0.7869 0.8192
11*11 (Original) 0.8711 0.8829 0.9008 0.8357 0.8218 0.8625

Table 5.2: LIVE Database : Pearson Correlation for Visual Codebook

Patch Size JP2K JPEG White Noise Gaussian Blur Fast Fading Overall

3*3 0.9455 0.9057 0.9784 0.8882 0.9163 0.9268
5*5 0.9152 0.9134 0.9768 0.9315 0.9186 0.9311
7*7 0.8330 0.8438 0.9682 0.8118 0.8200 0.8554
9*9 0.8027 0.8061 0.9363 0.7565 0.7806 0.8164
11*11 (Original) 0.8630 0.8450 0.9038 0.8249 0.8181 0.8510

It can be observed from table 5.1 & 5.2 that the correlation value is

highest for Visual Codebook algorithm using 5*5 as patch size. Pearson

correlation bar plot is shown in figure 5.1 and Spearman correlation bar plot

is shown in figure 5.2.



CHAPTER 5. MODIFIED VISUAL CODEBOOK ALGORITHM 34

3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Patch Size

P
e

a
rs

o
n

n
 C

o
rr

e
la

ti
o

n
 v

a
lu

e

Visual Codebook Pearson correlation for different patch size

(0.926800) (0.931100)

(0.855400)

(0.816400)

(0.851000)

Figure 5.1: Pearson Correlation Barplot

5.3 Variations in Performance of Visual Codebook Algorithm

Errorbar is used to shows the variation of data. The center of errorbar

represents the mean value and the length of errorbar represents twice of stan-

dard deviation of data. More length of errorbar means that the deviation in

data is more. In case of Visual Codebook algorithm, the variation is the

difference in correlation value for different type of distortions. In errorbar

shown in figure 5.3 & 5.4, X-axis represents the patch size and Y-axis repre-

sents the correlation value. For each version of Visual Codebook, correlation

values are calculated. The correlation values for each type of distortion are

shown in table 5.1 & 5.2. An ideal algorithm should perform equally well for

all types of distortions, so that the correlation value for each distortion type

is same. In Visual Codebook, as the algorithm is trained only for specific

types of distortions, the performance varies depending on type of distortion.

More the variation in correlation values, more is the length of errorbar.
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Figure 5.2: Spearman Correlation Barplot

Boxplot also shows the variation of data. The center line in box rep-

resents the mean value of data points, the edges of the box represents 25th

& 75th percentiles of data points. The extended whiskers represents the ex-

treme data points. Boxplot for Pearson correlation values is shown in figure

5.5 & boxplot for Spearman correlation values is shown in figure 5.6 in which

X-axis represents patch size and Y-axis represents the correlation value. A

stretched boxplot represents that the spread of data is more and vice versa.

5.4 Algorithm output Versus DMOS

The output of Visual Codebook algorithm and the Differential Mean Opin-

ion Score (DMOS) can be plotted on same graph using scatter plot. Scatter

plots are plotted for Visual Codebook algorithm constructed using different

patch sizes. The compactness of scatter plot signify a high correlation be-

tween output of algorithm and the Differential Mean Opinion Score (DMOS)
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Figure 5.3: Pearson Correlation Errorbar

and vice versa. In the scatter plot, X-axis is DMOS and Y-axis is output of

algorithm. Laboratory for Image & Video Engineering (LIVE) database is

used to evaluate the performance of Visual Codebook algorithm constructed

for different patch sizes. LIVE database contains images with five types of

distortions. Scatter plots for distortions namely JPEG2000, JPEG, white

noise, Gaussian blur & fast fading are shown in figures 5.7, 5.8, 5.9, 5.10 &

5.11 respectively. It can be observed that the scatter plot for Visual Code-

book algorithm constructed using 5*5 as patch size gives a compact scatter

plot as compared to others.

5.5 Optimum Patch Size for Visual Codebook Algorithm

It can be observed from table 5.1 & 5.2 that the correlation value is

highest for Visual Codebook algorithm constructed using patch size as 5*5.

Also the boxplot, errorbar & scatter plots shows that the performance of
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Figure 5.4: Spearman Correlation Errorbar

Visual Codebook algorithm constructed using patch size as 5*5 is consistent

for different types of distortions. So it can be concluded that the optimum

patch size for Visual Codebook algorithm is 5*5.

5.6 GUI for Visual Codebook

A Graphical User Interface (GUI) is created in MATLAB to show the

output of Visual Codebook algorithm constructed using different patch sizes.

Figure 5.12 shows the GUI, a ‘Browse’ button is provided to browse for the

test image, ‘Evaluate’ button calculates the quality scores given by different

versions of Visual Codebook algorithm. The test image used is from LIVE

database and have a DMOS of 28.0038. The output of Visual Codebook

algorithm constructed using different patch sizes is shown in figure 5.12.
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Figure 5.5: Pearson Correlation Boxplot

5.7 Summary

This chapter explains the need for modification in Visual Codebook algo-

rithm and the effect of changing patch size in algorithm on performance of

algorithm. Errorbar and boxplot are used to graphically represent the effect

of varying patch size. An optimum value of patch size is found to be 5*5. A

graphical user interface is created to check the output of Visual Codebook

algorithm constructed using different patch sizes.
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Figure 5.6: Spearman Correlation Boxplot
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Figure 5.7: Scatter plot : JPEG2000 Distortion
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Figure 5.8: Scatter plot : JPEG Distortion
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Figure 5.9: Scatter plot : White Noise Distortion
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Figure 5.10: Scatter plot : Gaussian Blur Distortion
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Figure 5.11: Scatter plot : Fast Fading Distortion
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Figure 5.12: Visual Codebook: Graphical User Interface



Chapter 6

Conclusion

Existing No-Reference Image Quality Assessment (NR-IQA) algorithms

do not provide exact quality score of an image as no NR-IQA algorithm have

correlation value equal to 1 and also the computation time is more which

limits its application in real time systems. Another limitation of present

NR-IQA is that the algorithms are distortion specific i.e. the algorithm give

proper results only if the algorithm is trained for the distortion present in

the test image. This can be seen from difference in the correlation values for

different types of distortions. A new NR-IQA needs to be developed which

can overcome these drawbacks.

The performance of Visual Codebook algorithm can be improved by

changing the patch size. A higher correlation value is obtained when the patch

size is changed from original 11*11 to 5*5 which also makes the algorithm

work on small size images.

6.1 Future Scope of Work

Only accuracy of output of algorithms is discussed here, time complexity

calculation and study of theoretical and practical value of time complexity is

the future scope of work.
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