
1

Analysing the Performance of Divide-and-Conquer

Algorithms on Multicore Processors

A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology in Computer Science and Engineering

BY

Sibani Prasad Dash(109CS0137)

K Pradeep Kumar Dora(109CS0511)

Under the Guidance of

Prof. BIBHUDATTA SAHOO

Department of Computer Science and Engineering
National Institute of Technology,

Rourkela - 769008
May - 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53189214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

We wish to show our sincere gratitude to our guide Prof. Bibhudatta Sahoo, Com-

puter Science Engineering Department, for his guidance, helpfulness and continu-

ous motivation in all regards during the total duration of our final year project. We

would also like to thank all the professors of the department of Computer Science

and Engineering, National Institute of Technology, Rourkela, for their constant

support, motivation and encouragement. Last but not the least, a sincere thanks

to our batch mates for their help and cooperation.

Sibani Prasad Dash

109CS0137

K Pradeep Kumar Dora

109CS0511

B.Tech (Computer Science and Engineering)

. . .

2

3

ABSTRACT

Multicore systems are widely gaining popularity because of the significant avail-

ability and performance increase over the single core systems. Multicore systems

have a lesser power consumption and heat generation than that of the multiple

single core systems. The different compiler support provided by different vendors

also make multicore programming one of the main area of research. The multicore

programming utilises the power of multiple cores to parallelise a task. The widely

used algorithm paradigms for multicore programming are the Divide and Conquer

algorithms. The divide and conquer algorithms are candidate problem for the

multicore programming because divide and conquer algorithm divides a problem

into sub- problems which can be solved by distributing the sub-problems among

the different cores and parallel solve them. A wide range of divide and conquer al-

gorithm has been parallelized. In this paper, we have taken two of the widely used

divide and conquer algorithms, quick sort and convex hull, parallely implemented

them to analyse their performance gain in compared to the sequential version of

the algorithm. The parallel implementations distribute the load onto the multiple

cores, parallely work upon the loads and finally merge individual results of the each

core. We have also proposed a scheme for efficient merging of the parallely sorted

sub-arrays in the quick sort. We have taken the mean and standard deviation

theory for efficient merging of the sorted sub-arrays. The OpenMP programming

model has been used for the implementation of the programs. The processor ar-

chitecture used for analysing the behaviour of the algorithm is a shared memory

based processor

Contents

Acknowledgements 2

List of Figures 5

List of Tables 6

1 Introduction 1

1.1 Literature review . 2

1.2 Motivation . 3

1.3 Problem Statement . 3

1.4 Organization of the thesis . 4

2 Multicore Architecture and Multicore Programming 5

2.1 Introduction . 5

2.2 Multicore Architecture . 6

2.2.1 Symmetry . 6

2.2.2 Shared Memory Multicore 6

2.3 Multicore Programming . 9

2.3.1 Master/Slave Model . 10

2.3.2 Data Flow Model . 12

2.3.3 OpenMP Model . 14

2.4 Conclusion . 16

3 Analysing a Divide and Conquer Algorithm: Quicksort 17

3.1 Introduction . 17

3.2 Parallel Implementation of Quicksort 19

3.2.1 Proposed Enhancement . 22

3.3 Simulation Setup . 24

3.4 Performance Metric . 25

3.5 Simulation Results for parallelized Quick Sort 25

3.5.1 Simulation results for the Proposed Enhancement 27

3.6 Conclusion . 27

4 Analysing a Divide and Conquer Algorithm: Convex Hull 28

4.1 Introduction . 28

4

Contents 5

4.2 Parallel implementation of Convex Hull 32

4.3 Simulation Setup . 33

4.4 Performance Metric . 34

4.5 Simulation Results . 35

4.6 Conclusion . 36

5 Conclusion and Future Work 37

5.1 Conclusion . 37

5.2 Future Work . 37

Refernces 38

List of Figures

2.1 Multicore with shared cache . 7

2.2 Multicore without shared cache . 8

2.3 Multicore with Hyper Threading . 9

2.4 Master/Slave Model . 11

2.5 Data Flow Model . 13

2.6 OpenMP Model . 15

3.1 Quicksort of 10 elements[15] . 19

3.2 Parallel quick sort merging technique 21

3.3 Enhanced Parallel quick sort merging technique 23

3.4 Graph of Runtime analysis of sequential and parallel Quick Sort . . 26

4.1 Set of points . 29

4.2 Two subsets of for merging . 30

4.3 Upper and Lower tangents for the subsets 31

4.4 Resultant convex hull of the points 32

4.5 Graph of Runtime analysis of sequential and parallel D-n-C Convex
Hull . 35

6

List of Tables

3.1 Runtimes of sequential and parallel version of the quick sort 25

3.2 No of comparisons for parallel and enhanced parallel version of the
quick sort . 27

4.1 Runtimes of sequential and parallel convex hull 35

7

8

Chapter 1

Introduction

Today in this world, time is a major factor for everyone. Everyone needs to do

a work in as minimum time as possible. This problem led to different type of

programming paradigm to invent. Thus the parallel computing was introduced to

the world. The parallel computing is the programming paradigm which deals with

solving the problem not in the conventional sequential manner; but in a parallel

way. The conventional processors were not capable of parallel computation. This

resulted in in the invention of a new genre of processors, popularly called as mul-

ticore processors.

The multicore processors are the computing components consisting of two or more

than two computing CPUs, called cores. These cores can parallel work and ex-

ecute CPU instructions. The multicore processors have several advantages over

the single core processors such as less heat generation, less energy consumption

etc. A wide range of compilers support the multicore programming. Some of

programming models that support multicore programming are TPL (Task Pro-

cessing Library for DOT.NET), OpenMP, MPI and Clik++ etc. This wide range

of programming support also makes the multicore programming easier for the pro-

grammers.

The idea here is to efficiently implement the quick sort method on the multicore

systems. So the first question that strikes to the mind is why multicore systems

and how do they increase the speed up? The multiple independent cores can

read and execute program instructions which are ordinary CPU instructions such

as add, move data etc. The performance can be gained by distributing the load

among the various cores which can run them in parallel so as to decrease the over-

all execution time of the overall process. The next question that is coming into

1

2

mind is that by using multicore systems, do all the processes have performance

gain? The answer is simply NO! This is because the processes take advantage

of the multiple cores; but the multiple cores do not distribute the work among

themselves. The implementation of the algorithm should be done in such a way

that the process could effectively take advantage of the multiple cores. The main

candidate algorithms that can take advantage of the multicore architectures are

Divide-n-Conquer algorithms.

The quick sort and convex hull algorithms are Divide-n-Conquer algorithms. So

these become candidate problems for the multicore programming. The idea in

implementing the quick sort on multicore platform is to distribute the dataset

element among each core, sorting them using quick sort and finally merging them

into a single dataset. This quick sort is otherwise known as Hybrid Quick Sort

because it seems to be a hybrid of sequential quick sort and merge sort. The

experimental results show a performance increment of the quick sort technique.

The idea in implementing the convex hull on multicore platform is same as that of

quicksort. The convex hull internally uses the quicksort for sorting the points. So

the quicksort inside the convex hull program can be parallelized. There is a merge

process inside the convex hull which can be also done in parallel among the cores.

The experimental results of the parallel convex hull technique show a result in the

decrease of execution time.

1.1 Literature review

Divide-n-Conquer algorithm paradigm is one of the bases for the multicore pro-

gramming. In the Cormen book of Introduction to Algorithms[1], a wide variety

of sequential Divide and Conquer algorithms has been published.The multicore

programming models proposed mainly are of three types: Master/Slave, dataflow

and OpenMP model[16].Prof. B.D. Sahoo,Prof. A.K. Turuk and Ram Prasad

Mohanty[13] published a paper on the analysis of the different multicore archi-

tecture simulated under Multi2Sim simulator. The parallelization of quicksort

proposed by DeWitt, Naughton and Schneider[4] uses an approach called prob-

abilistic splitting proposed by Iyer, Ricard and Varman. Moh,Yu and Han[11]

proposed another type of quicksort based on weighted partition.Yuran Lan and

3

Magdi Mohamed[12] proposed the parallel quicksort in hypercubes. Nakagawa et

all[9] proposed the parallel convex hull based on the sorted points which was the

reason behind the parallel merging. Miller and Stout also proposed a parallel con-

vex hull algorithm which is a worst case hypercube algorithm[14].The opimized

convex hull[8] proposed by Kendre and Kulkarni uses both OpenMP and MPI for

better performance.

1.2 Motivation

Multicore processors are the dominant type of processors in the market as com-

pared to their counterpart single core processors. By this we mean that these are

highly available in the market. The reason behind this is the downfall of the single

core processors performance. The clock frequency cant be increased at a high rate

and the single core processors have different heating and design issues.

This readily availability of the multicore processors is one of the primary motiva-

tion of this paper. The divide-n-conquer algorithms were chosen for the parallel

computing because these algorithms have a tendency of having multiple indepen-

dent part which can be solved in parallel. A wide range of divide and conquer

algorithms are proposed. Two of the most important algorithms are quicksort and

convex hull which have large application such as ray tracing, video games and

path finding etc.

1.3 Problem Statement

The multicore computing is slowly gaining speed with its wide range of advantages.

The quicksort and convex hull have the number of applications in the technical

field. There is a good scope of research in the field for increasing the efficiency

of the algorithms. The algorithms proposed for this is implemented and the per-

formance parameters are compared with their sequential version. The sequential

version needs to have higher cost in terms of the execution time whereas the par-

allel version implementation tends to have lower execution time.

We have also proposed an enhancement to the implemented algorithms which uses

the mean and standard deviation of the population to gain some amount of speed

4

up. The parallel sorting which needs merging have not considered the sequence

of merging of the sorted subsets. The sequence of merging can play an important

role in case of inputs where these inputs vary from each other in a wide manner.

The sequence can be determined by using the mean of the distribution.

The speed can be further improved by implementing any other kind of distribution

technique.

1.4 Organization of the thesis

Organization of the thesis The thesis is organized as follows. Chapter 2 describes

the theory behind multicore programming and multicore architecture. Some of the

standard architectures and programming models are discussed. Chapter 3 gives

the implementation details of the quick sort algorithm and section 3.5 gives the

results and performance analysis with the implementation of the enhanced quick

sort. Chapter 4 describes another divide and conquer algorithm i.e. convex hull

and in the section 4.5, the results are shown. Finally with Chapter 6, we conclude

this paper with the future work to be done.

Chapter 2

Multicore Architecture and

Multicore Programming

2.1 Introduction

The multicore platforms are the primary requirement for the parallel computing.

These multicore systems are primarily of MIMD type. The different cores can

execute different threads operating on different parts of the memory i.e. Multiple

Instruction Multiple Data(MIMD). The advantage of the multicore systems led to

design a wide variety of the different architectures. These architectures vary from

each other in terms of sharing memory and symmetry between the cores.

The speed up of a particular task is given by:

SpeedUp =
1

1 − F + F
N

This is called Amdahls law where F is the parallelizable portion of the task and N

is the number of processing units. This law puts a barrier on the maximum speed

up of a parallelized profwhich depends on the serial portion of the program.

5

6

2.2 Multicore Architecture

The multicore architecture replicates multiple processing cores on a single inte-

grated circuit die known as chip multiprocessor or CMP. In this case, the operat-

ing system perceives each core as a separate processing unit. The OS scheduler

then schedules the processes into different cores. There exists different type of

multicore architecture as explained below.

2.2.1 Symmetry

The multiple cores on the single chip can have same design or different designs.

According to these , the architecture is of following two types:

Homogenous Multicore:

All the cores on the die have same properties having a shared memory architec-

ture. These cores have the same computation speed up and all the cores run the

threads in the same way. Ex: AMD and Intel dual- and quad-core processors.

Heterogeneous Multicore:

There exist different processing core types on a die. Each core is optimized for

a different role. Different cores have different computation speed up and each

core will be having a special quality to solve a particular problem. Ex: IBM Cell

Broadband Engine.

2.2.2 Shared Memory Multicore

Multicore processor is a special kind of multiprocessor in which all the processors

are placed on a single die or chip. The multicore processors are MIMD (Multiple

Instruction Multiple Data) i.e. different cores can execute different threads (Mul-

tiple Instruction) when operating on the different parts of the memory (Multiple

Data). The multicore architecture uses shared memory concept. The multicore

processor based upon cache sharing can be divided into the following types:

7

Multicore with shared cache:

Figure 2.1: Multicore with shared cache

These types of multicore systems have a cache present on the chip which is shared

among all the cores present on the die. The advantage of this is sharing of instruc-

tion/data among multiple cores so that there wont be any communication cost

in accessing the shared variable. The disadvantage is the destructive interference

among the cores when trying to access a modified shared variable.

8

Multicore without shared cache:

Figure 2.2: Multicore without shared cache

These types of multicore systems have different caches for each core on the die.

The advantage is being that each core will have its own working area that is

not affected by the other cores. The disadvantage is the cache coherency. This

happens when a shared variable is updated is one cache; but not modified in the

other caches accordingly.

9

Multicore with Hyper Threading:

Figure 2.3: Multicore with Hyper Threading

Hyper-threading is Intels SMT (Simultaneous Multithreading) implementation

used to improve the parallel computing capabilities of the processing cores. It

uses shared memory architecture. When this technology is implemented, each

processing core will run two threads simultaneously on the cores. So each core will

appear as two logical cores to the OS. So the OS can schedule two different pro-

cesses on the same physical cores. The two processes can use the same resources.

The advantage is improved support for the multithreaded code and allowing mul-

tiple threads to run simultaneously. The disadvantage, as claimed by AMD, is

higher power consumption and increased cache thrashing.

2.3 Multicore Programming

There are different types of multicore parallel programming model. Task paral-

lelism achieved by concurrent execution of the independent tasks in a software or

process. On a single core system, the tasks must share the same processing unit;

but in the multicore system, each task can independently run on the multiple

cores.

To maximize the speed up, we need to select one of the processing models that

best suits for the problem under consideration. The three types of the parallel

programming models[16] are:

10

• Master/SlaveModel

• DataF lowModel

• OpenMPModel

2.3.1 Master/Slave Model

The Master/Slave model represents a centralized control with distributed execu-

tion. There exists one master core which schedules various threads that can be

executed on any of the available slave cores. It is also responsible for supplying

data required by each thread. Processes that can be executed using this model

have different smaller parts that can be run by a single thread. The software has

a lot of control codes and the memory access is random. Each memory access has

a little computation and the code base is usually very high.

The real-time load balancing is one of the significant challenges faced by this

model. Each thread has different throughput requirements. So the master core

has to maintain a list of free cores and should able to optimize the loads among

each processing cores so that maximal parallelism could be achieved.

One or more execution threads are mapped to each core. The task assignment

is done by message passing between cores. The message provides the control in-

formation between cores and contains a pointer to the data that is going to be

used by the core. Each core has at least one task whose job is to receive messages

containing job assignments. The task is suspended until a message arrives trigger-

ing the thread of execution. The data is accessed in a uniform manner unlike the

Master/Slave model where data was accessed randomly. The below figure depicts

the Master/Slave parallel processing model.

11

Master/Slave Model

Figure 2.4: Master/Slave Model

12

2.3.2 Data Flow Model

The data flow model represents a distributed control with distributed execution.

Each individual core processes some blocks of that using some algorithms and then

it passes the processed data to the next core. The application which generally uses

this kind of processing model usually has large and computationally complex com-

ponents which are dependent upon each other and a single processing unit is not

enough for the execution.

The challenge faced by the processes or applications using this model is the par-

titioning of the components across the cores and the high data flow-rate of the

system. The components must be mapped to the multiple cores in order to have

the pipeline flow regular.

The processing is required to be mapped in such a way that each core executes

one or more task. The synchronization between the cores is achieved by having a

message passing mechanism. The data flow is done usually having a shared mem-

ory or by the DMA controller. The below figure depicts the Data Flow parallel

processing model.

13

Data Flow Model

Figure 2.5: Data Flow Model

14

2.3.3 OpenMP Model

OpenMP is API (Application Programming Interface) for developing multi thread

applications on multicore architecture. The programming languages that can be

used are C, C++ and Fortran. The API is programmer-friendly, easy to use and

quick in implementation. The main task for the programmer is to find the parallel

task regions in the program. Then insert an relevant OpenMP construct. After

this the compiler and the run time system will have the burden to distribute the

task among the different threads spread across different cores.

The OpenMP API consists of compiler directives, different library routines and a

set of environmental variables associated with the run time.

The implementation of the OpenMP is based upon the Fork-Join Parallelism. This

parallelism tells that a larger task can be divided into smaller tasks whose solutions

can then be combined; as long as the smaller tasks are independent, they can be

executed in parallel. The initial program contains a single thread known as master

thread starting in a sequential region. When the parallel region is encountered, the

scheduler invokes a group of threads that execute the parallel region concurrently.

After the execution of the parallel region, all the threads terminate and a single

thread of execution is again started in the sequential region. The below figure

depicts the OpenMP parallel processing model.

15

OpenMP Model

Figure 2.6: OpenMP Model

16

2.4 Conclusion

With this chapter we discussed the different architecture of multicore processors

and the different types of programming model. The programming model gives

us a hint about which types of algorithms can be a candidate problem for par-

allelization. The most common computing paradigm that comes into picture is

the divide and conquer algorithm paradigm. Because the divide and conquer tell

that to divide the work and solve them and finally merge the solution. So when

implementing the parallel version, the divided works are solved by the different

computing cores and later they are merged. With these result, we take two widely

used divide and conquer algorithm to analyse the performance: quicksort and

convex hull. We have used the OpenMP programming for the implementation of

the programs. Because this model also divides the loads among the independent

working threads, solves the problem and finally merges them.

Chapter 3

Analysing a Divide and Conquer

Algorithm: Quicksort

3.1 Introduction

Quicksort is one of the most used sorting algorithms. The performance quicksort

variedly depends upon the nature of the input. The worst case happens when the

input are reversely sorted. The applications where quicksort is used are the rout-

ing algorithm, the scheduling processes etc. It uses a partitioning method which

places the pivot values at its correct position in each iteration.. The quicksort can

be parallelized by parallel sorting the array and then merging the sorted array

parallel.

Quicksort (A, p, r)

if p < r

q = Partition(A, p, r);

Quicksort(A, p, q);

Quicksort(A, q+1, r;)

17

18

Partition(A, p, r)

x = A[p] ;

i = p 1;

j = r + 1;

while(1)

j = j 1;

while A[j] <= x

j = j 1;

i = i + 1;

while A[i] >= x

j = j 1;

if i < j

swap (A[i], A[j]);

else

return j;

19

Quicksort of 10 elements

Figure 3.1: Quicksort of 10 elements[15]

3.2 Parallel Implementation of Quicksort

For the parallel implementation of quicksort, the algorithm is to divide the array

among the different cores, parallel sort them and finally merge the sorted array

into one. The algorithm for the parallel quicksort is as follows:

20

Partition(A, p, r)

k=getparallelthreads();

while k>=0

#doparallel

Quicksort(A,p,size%k);

k--;

k=getparallelthreads();

while k>=1

#doparallel

Merge(A,p,size%k);

Here the merge function is similar to that of the merge function in merge sort.

The parallel sorting and merging reduces the time complexity which is O(n log

n) in case of the sequential quicksort; but it is O(n/k log n/k) in case of parallel

quicksort.

21

Parallel quick sort merging technique

Figure 3.2: Parallel quick sort merging technique

22

3.2.1 Proposed Enhancement

The parallelization of quick sort here takes help of the merging method. The

merging method is the same as that of the merge sort. So we propose a theory

that will make the merging technique more efficient.

The merging in parallel quicksort is done on the sequential ordering of the indices.

But this can lead to some performance loosing because we dont care about the

elements behaviour when merging two arrays. To efficiently merge the arrays, we

use two theories: mean and standard deviation of the distribution.

Mean of a distribution is defined as the average of the values inside a distribution

where as standard deviation of a distribution gives how much each value differs

from the mean in a distribution.

When merging two arrays, the mean of the sub-arrays are taken into consideration.

The sub arrays are merged in the order from lowest to the highest mean. If there

is a tie, then the standard deviation of the population is taken into account.

The arrays with lowest standard deviation are merged first than highest standard

deviation. The reason behind this is that when comparing the elements in the

merging process, the tow arrays having nearer means will make lesser comparison

than two arrays having mean more means. The process is illustrated as below.

23

Enhanced Parallel quick sort merging technique

Figure 3.3: Enhanced Parallel quick sort merging technique

24

3.3 Simulation Setup

The total number of elements used for sorting were generated randomly and the

number of elements varied from 1000 to 50000000.The simulation is done under

the given processor architecture specification:

Processor

• Manufacturer : Intel

• Model : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

• Speed : 3.09GHz

• Cores per Processor : 2 Unit(s)

• Threads per Core : 2 Unit(s)

L1D (1st Level) Data Cache

• Size : 2x 32kB, 8-Way, 64bytes Line Size, 2 Thread(s)

• TLB - Translation Lookaside Buffer : 4kB : 64 4-Way (256kB); 2MB : 32

4-Way (64MB)

L1I (1st Level) Code Cache

• Size : 2x 32kB, 8-Way, 64bytes Line Size, 2 Thread(s)

• TLB - Translation Lookaside Buffer : 4kB : 64 4-Way (256kB); 2MB : 8

255-Way (16MB)

L2 (2nd Level) Data/Unified Cache

• Size : 2x 256kB, ECC, 8-Way, 64bytes Line Size, 2 Thread(s)

• TLB - Translation Lookaside Buffer : 4kB : 512 4-Way (2MB)

L3 (3rd Level) Data/Unified Cache

• Size : 3MB, ECC, 12-Way, Fully Inclusive, 64bytes Line Size, 16 Thread(s)

25

3.4 Performance Metric

The performance metric for this program is the total running time of the pro-

gram. The run time of the program is defined as total time required to complete

the process. This is taken as a performance metric because most of the divide and

conquer algorithm are analysed on the basis of their run time complexities.

3.5 Simulation Results for parallelized Quick Sort

The run time of both sequential and parallel version of the quicksort are listed in

a table as follows:

Table 3.1: Runtimes of sequential and parallel version of the quick sort

Total no. of elements Runtime of sequential Runtime of parallel (in seconds)
quicksort(in seconds) quicksort(in seconds)

1000 0.000107596 0.00219961
10000 0.00133652 0.00912619
100000 0.0137406 0.009544
1000000 0.163225 0.0966222
10000000 1.85102 0.839037
20000000 3.86831 1.74822
50000000 10.1471 4.50473

26

Graph of Runtime analysis of sequential and parallel Quick Sort:

Figure 3.4: Graph of Runtime analysis of sequential and parallel Quick Sort

27

3.5.1 Simulation results for the Proposed Enhancement

The simulations were carried out under same processor architecture as given in

the section 3.3. The performance metric for the simulation is taken as the no

of comparisons in the merging phase. The following results were obtained in the

process.

Table 3.2: No of comparisons for parallel and enhanced parallel version of the
quick sort

Total no. of elements No.of comparisons in No.of comparisons in (in seconds)
quicksort(in seconds) enhanced quicksort(in seconds)

1000 0.000107596 0.00219961
1000 1995 1995
10000 19988 19988
100000 199985 199486
1000000 1999996 19999886
10000000 19999994 19998563
20000000 39999995 39984562
50000000 99999997 99925866

3.6 Conclusion

The results from the above simulations tell the runtime of a parallel quick sort is

dependent upon the total no of elements. The sequential version of the quicksort

runs faster for less number of elements because the thread creation time is higher

than the sorting of the elements in this case. The graphical results were drawn

with the help of MATLAB.As the no of elements increases, the parallel version

takes the advantage of multicore and the running time decreases. At 50 million

elements the run time is reduced to as much as less than the half that of the

sequential quicksort. In the case of the enhanced parallel quicksort, the total

no of comparisons remain same for the lower no of inputs; but as the number

of elements increases , the no of comparison decreases for the enhanced parallel

quicksort. At 50 million elements , 0.07percent lesser comparisons required for the

sorting method. The performance can be increased by increasing the no of core

up to a certain limit after which the performance will remain constant.

Chapter 4

Analysing a Divide and Conquer

Algorithm: Convex Hull

4.1 Introduction

Convex Hull is one of the most popular and widely used divide and conquer algo-

rithm in the field of computing. The algorithm is mainly used for number plate

detection, path routing and face recognition. As this is a divide and conquer al-

gorithm, it becomes a candidate problem for the multicore programming.

ConvexHull(A,n)

1. Sort the n points according to x coordinate.

2. Divide the n points into two halves.

3. Find convex hull of each subset

4. Combine the two hulls into overall convex hull.

The sorting of the n points is done with the process of quicksort. So when imple-

menting the parallel version of the quicksort, the parallel quick sort is used in this

case. This divide and conquer convex hull algorithm have a limitation upon the

input point set which tells that no three points in the point set can be collinear.

28

29

The merging process requires to find two tangents which are known as upper and

lower tangents. These tangents are repetitively found and all the point occurring

between these two tangents are discarded.

Set of points

Figure 4.1: Set of points

30

Two subsets of for merging

Figure 4.2: Two subsets of for merging

31

Upper and Lower tangents for the subsets

Figure 4.3: Upper and Lower tangents for the subsets

32

Resultant convex hull of the points

Figure 4.4: Resultant convex hull of the points

4.2 Parallel implementation of Convex Hull

For the parallel implementation of the convex hull, the points are sorted in the

ascending order of the x- coordinate. This sorting is parallelized using the parallel

quicksort as given in the chapter 3.Then the merging of the convex hulls are also

done in parallel. The parallel version of convex hull algorithm is as follows:

ParallelConvexHull(A,n)

1. Sort the n points parallel according to x coordinate.

2. Distribute the divided sets among the cores.

33

3. Repeat steps 4 to 6 while all the cores have not found their convex hulls.

4. Divide the subsets into two halves.

5. Find convex hull of each subset

6. Combine the two hulls into overall convex hull.

7. Parallel merge the found convex hull by all the cores.

4.3 Simulation Setup

The total number of points used for convex hull were generated using a random

generator from 1000 to 50 million and collinearity of ppoints were taken proper

care.The simulation is done under the given processor architecture specification:

Processor

• Manufacturer : Intel

• Model : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

• Speed : 3.09GHz

• Cores per Processor : 2 Unit(s)

• Threads per Core : 2 Unit(s)

L1D (1st Level) Data Cache

• Size : 2x 32kB, 8-Way, 64bytes Line Size, 2 Thread(s)

• TLB - Translation Lookaside Buffer : 4kB : 64 4-Way (256kB); 2MB : 32

4-Way (64MB)

L1I (1st Level) Code Cache

• Size : 2x 32kB, 8-Way, 64bytes Line Size, 2 Thread(s)

34

• TLB - Translation Lookaside Buffer : 4kB : 64 4-Way (256kB); 2MB : 8

255-Way (16MB)

L2 (2nd Level) Data/Unified Cache

• Size : 2x 256kB, ECC, 8-Way, 64bytes Line Size, 2 Thread(s)

• TLB - Translation Lookaside Buffer : 4kB : 512 4-Way (2MB)

L3 (3rd Level) Data/Unified Cache

• Size : 3MB, ECC, 12-Way, Fully Inclusive, 64bytes Line Size, 16 Thread(s)

4.4 Performance Metric

The performance metric for this program is the total running time of the program.

The run time of the program is defined as total time required to complete the

process. This is taken as a performance metric because most of the divide and

conquer algorithm are analysed on the basis of their run time complexities.

35

4.5 Simulation Results

The run time of both sequential and parallel version of the convex hull are listed

in a table as follows:

Table 4.1: Runtimes of sequential and parallel convex hull

Total no. of points Runtime of sequential Runtime of parallel (in seconds)
convex hull(in seconds) convex hull(in seconds)

1000 0.0007257 0.0032488
10000 0.0018876 0.0091677
100000 0.0157423 0.0125
1000000 0.36325986 0.1566432
10000000 2.05102432 1.0390328
20000000 4.1631765 1.9463653
50000000 11.7471532 4.9653865

Graph of Runtime analysis of sequential and parallel D-n-C Convex

Hull:

Figure 4.5: Graph of Runtime analysis of sequential and parallel D-n-C Con-
vex Hull

36

4.6 Conclusion

The simulation results were carried out and found that the lower no of points

have a better sequential run. Here 50 million points have nearly half execution

time.The graphical results were drawn with the help of MATLAB.Here also the

execution time for less number points is less for the sequential version because of

the thread creation overhead. The performance can be increased by increasing the

no of core upto a certain limit after which the performance will remain constant.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Two of the most commonly used divide and conquer algorithms, quick sort and

convex hull, are implemented sequentially and parallel and both were analysed

based upon their run time characteristic. An enhancement to the quick sort

method is proposed which takes into consideration the total number of compar-

isons in the merging process. Both the programs showed a better run time for the

sequential method for a lower number of inputs where as for the higher number

of inputs, the parallel version seemed to be superior. So it is beneficial to use

sequential version of the algorithms for a lower number of inputs and for higher

number of inputs, the parallel version should be used.The scalability of the mul-

ticore platforms have also a significant contribution to the run time characteristic

of the programs.

5.2 Future Work

However, the results obtained here can still be improved by efficient distribution of

the loads among the multiple cores. The parallel merging can have a performance

increment by consider other types of distribution which are better than mean and

standard deviation methods. The convex hull algorithm which uses the concept

of upper and lower tangent, can be parallelized for finding the upper and lower

tangents in parallel.

37

38

Refernces

1. Introduction to Algorithms, T. Cormen, C. Leiserson and R. Rivest

2. Improving of Quicksort Algorithm Performance by Sequential Thread or

Parallel Algorithms, Abdulrahman, Hamed Almutairi, Abdulrahman Helal

Alruwaili,King Saud University,2012

3. A Simple Fast Parallel Implementation of Quicksort and its Performance

Evaluation on SUN Enterprise 10000, P. Tsigas, Y. Zhang, 2003

4. Parallel Sorting on a Shared-Nothing Architecture using Probabilistic Split-

ting, David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider,1991

5. Efficient Operating System Scheduling for Performance-Asymmetric Multi-

Core Architectures ,Tong Li, Dan Baumberger, David A. Koufaty, and Scott

Hahn,2007

6. Software behavior oriented parallelization. In Conference on Programming

Language Design and Implementation, C. Ding, X. Shen, K. Kelsey, C. Tice,

R. Huang, and C. Zhang,2007.

7. Sequential and parallel approximate Convex Hull algorithms, Chul E. Kim

and Ivan Stojmenovic,1995.

8. Optimized Convex Hull With Mixed (MPI and OpenMP) Programming On

HPC, Sandip V. Kendre and Dr. D.B. Kulkarni,2010

9. A Simple Parallel Convex Hulls algorithm for Sorted Points and the Per-

formance Evaluation on the Multicore Processors,Masaya Nakagawa,Duhu

Man, Yasuaki Ito, Koji Nakano,2009.

10. Computing the convex hull of a sorted set of points on reconfigurable mesh,

Parallel Algorithms and Applications, K. Nakano, pp. 243-250,1996.

11. Design and Experiment of a Communication-Aware Parallel Quicksort with

Weighted Partition of Processors,Sangman Moh,Chansu Yu and Dongsoo

Han,2004.

12. Parallel Quicksort in Hypercube,Youran Lan and Magdi A. Mohammed,1992.

39

13. Analysing the performance of Multicore Architecture,Prof. B.D. Sahoo,Prof.

A.K. Turuk and Ram Prasad Mohanty,2012

14. Efficient Parallel Convex Hull Algorithms,R. Miller and Q.F. Stout,1988.

15. http://lcm.csa.iisc.ernet.in/dsa/node201.html

16. Multicore Programming Guide, Multicore Programming and Application-

s/DSP Systems, Texas Instruments,2012

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Literature review
	1.2 Motivation
	1.3 Problem Statement
	1.4 Organization of the thesis

	2 Multicore Architecture and Multicore Programming
	2.1 Introduction
	2.2 Multicore Architecture
	2.2.1 Symmetry
	2.2.2 Shared Memory Multicore

	2.3 Multicore Programming
	2.3.1 Master/Slave Model
	2.3.2 Data Flow Model
	2.3.3 OpenMP Model

	2.4 Conclusion

	3 Analysing a Divide and Conquer Algorithm: Quicksort
	3.1 Introduction
	3.2 Parallel Implementation of Quicksort
	3.2.1 Proposed Enhancement

	3.3 Simulation Setup
	3.4 Performance Metric
	3.5 Simulation Results for parallelized Quick Sort
	3.5.1 Simulation results for the Proposed Enhancement

	3.6 Conclusion

	4 Analysing a Divide and Conquer Algorithm: Convex Hull
	4.1 Introduction
	4.2 Parallel implementation of Convex Hull
	4.3 Simulation Setup
	4.4 Performance Metric
	4.5 Simulation Results
	4.6 Conclusion

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Refernces

