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ABSTRACT 
 

In turbo-expanders, the shaft rotates at a very high speed (i.e. 100000 RPM). At this high speeds, normal 

bearings cannot be used as it results in high friction and wear of the bearings. That is the reason; we are 

going to use gas foil bearings as a recent and advanced alternative. Here, in this project we are going to 

design bearings required to support the shaft which runs at a very high speed. Current project concentrate 

to analyse the load bearing capacity of the thrust bearings. In the analysis Reynolds’ Equation is used to 

know the pressure distribution of these bearings. The Reynolds’ Equation is solved by using FINITE 

DIFFERENCE METHOD and using many assumptions to know the pressure distribution of the thrust 

bearings. Finite Difference Method is a numerical technique by the principle of discretization to find the 

approximate solutions of engineering problems. The result comes after a many number of iterations 

based on a convergence condition. We are using MATLAB (Matrix Laboratory) software to implement 

Finite Difference Method to solve Reynolds’ Equation. A MATLAB program is written which contains 

multiple loops that solves the Reynolds’ Equation and gives Pressure plots. After the pressure 

distribution is known, load carrying capacity of the bearing is calculated and their variations with 

different parametes are presented. The results of this foil thrust bearings are compared with the load 

carrying capacity of rigid bearings. The analysis was also done for different types for foil bearings by 

taking different materials of the bump foil. 
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CHAPTER 1 

1.1 INTRODUCTION 

One of the major problems of developing turbo-expander system for gas liquefaction plants is the 

instability of the rotor at high rotational speed. For stability of rotor system at high rotational speed, 

better bearings are required. 

 

Gas bearings are one of the solutions of maintain stability and prevent contamination of working fluids. 

Gas bearings are of various types can be used in miniature turbines like Aerostatic gas bearings 

(externally pressurized gas bearings) and Aerodynamic gas bearings (self-acting). 

 

Gas lubricated externally pressurized bearings consume process gas and they are suitable only up to a 

medium rotational speed due to whirl speed limitation. Various types of aerodynamic gas bearings can 

be used are tilting pad journal bearings, spiral groove thrust and journal bearings etc. The major issue 

with these aerodynamic gas bearings is inability to damp vibrations due to hard supporting surface. The 

focus of this project is to analyse thrust foil bearings with high ability to damp vibrations at high 

rotational speed. 

 

A significant volume of component level research has led to recent acceptance of gas foil bearings in 

several specialized applications like Micro-turbine generators, high speed electric motors, and 

electrically driven centrifugal blowers etc. Foil bearing supported turbomachinery can benefit from 

design simplicity and reduced weight, high speed and reduced maintenance. Foil bearings have proven 

themselves in relatively small lightly loaded applications, like aircraft air cycle machines (ACM’s). 

Recent advances in foil air bearing design, solid lubrication, and bearing and rotor system analytical 

modelling enable new applications in Oil-Free turbomachinery. 

 

In the present work compressible Reynolds equation is developed and solved based on Finite difference 

Analysis (FDA) to predict bearing performance parameters, also the result was compared with the rigid 

bearings.  
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1.2 Applications of Gas Bearings 

 

The first gas journal bearing was demonstrated by Kingsbury (1897). Gas- lubricated bearings are used 

in many industrial applications in which the hydrodynamic film of gaseous fluid is produced by 

hydrodynamic action. The gas is generally air. This avoids the need for a liquid lubrication system, 

simplifies the bearing design and reduces maintenance. Gas bearings are used in gyroscopes where 

precision and constant torques are required, machine tool spindles, turbo-machinery, dental drills, food 

and textile machinery and tape and disk drives as part of magnetic storage devices. Gas bearings are also 

called aerodynamic or self-acting gas bearings. 

 

So far the special case of liquid-lubricated bearings has been considered because the density of liquids 

can be assumed to be constant. In gas-lubricated bearings, the gas is incompressible and the change in 

density as a function of pressure and cannot be neglected in the solution of Reynolds’ Equation.  

 

Intense development of gas lubrication technology was triggered by the demands of sophisticated 

navigation systems by the prospects for gas-cooled nuclear reactors, by the proliferation of magnetic 

peripheral devices in the computer industry and by the everlasting quest for machinery and devices in 

the aerospace applications. The advantages of gas lubrication are fully established in the following areas:  

i. Machine Tools – Use of gas lubrication in grinding spindles allows attainment of high speeds 

with minimal heat generation. 

ii. Metrology – Air bearings are used for precise linear and rotational indexing without vibration 

and oil contamination. 

iii. Dental Drills – High-speed air-bearing dental drills are now a standard equipment in the 

profession. 

iv. Airborne air-cycle Turbomachines – Foil-type bearings have been successfully introduced for 

air-cycle turbomachines on passenger aircraft. Increased reliability, leading to reduced 

maintenance costs, is the benefit derived from air bearings. 

v. Computer peripheral devices – Air lubrication makes possible high-packing-density magnetic 

memory devices including tapes, discs and drums. Read-write heads now operate at sub 

micrometre separation from the magnetic film with practically no risk of damage due to wear. 
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1.3 Types of Air Bearings 

 

Gas bearings are of various types can be used in miniature turbines like: 

a. Aerostatic gas bearings (Externally pressurized gas/air bearings)  

b. Aerodynamic gas bearings (self acting gas/air bearings). 

 

   1.3.1 Aerostatic gas bearings:  

1. Aerostatic gas bearings are also known as Externally Pressurized gas bearings and an external 

pressurized air or process gas is used to maintain pressure between bearing sleeve and the 

journal. 

2. Aerostatic bearings utilize a thin film of high-pressure air to support a load. Since air has a very 

low viscosity, bearings gaps need to be small, on the order of 1-10 μm. 

3. There are five basic types of aerostatic bearing geometries: single pad, opposed pad, journal, 

rotary thrust, and conical journal/thrust bearings similar to hydrostatic bearings. 

  1.3.2 Aerodynamic gas bearings: 

1. Aerodynamic are also known as self-acting bearings and an air film is created by the relative 

motion of two mating surfaces separated by a small distance. From rest, as the speed increases, a 

velocity induced pressure gradient is formed across the clearance.  

2. The increased pressure between the surfaces creates the load carrying effect. The load capacity is 

dependent on the relative speed at which the surface moves and therefore at zero speed, the 

bearing supports no load. Zero loads at zero speed effect causes starting and stopping friction and 

results in some wearing of the bearing surfaces.  

3. Despite some of the disadvantages, self-acting bearings have found widespread use in industry. 

The magnetic read/write heads in disk memory storage devices are in fact aerodynamic bearings 

that float in close proximity to the disk. This bearing's principal advantage is its ability to act 

without an external pressure source and solve vibration issues. 
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1.4 ADVANTAGES OF COMPLIANT THRUST BEARINGS OVER OTHER   

       CONVENTIONAL GAS BEARINGS 

 

Compliant bearings popularly known as foil bearings have gained vey much attention in recent years 

because of their unique mode of operation and diversity and variety of applications. These types of 

bearings have various advantages compared to the conventional rigid thrust bearings as they have higher 

load carrying capacity, less power loss, more stability and greater endurance. These bearings are self-

acting and can operate with ambient air or any process gas as the lubricating fluid. The need for complex 

lubrication systems is eliminated, which results in significant weight reduction and less maintenance. 

The most common lubricant used is air which is easily available and can operate at high temperatures 

whereas conventional oil-based lubricants fail since their viscosity drops to a large extent with rise in 

temperature. These bearings are of importance in the aerospace industry with regard to reduction in 

weight as well as operating at high speeds and adverse conditions. 

 

1.5 COMPLIANT FOIL THRUST BEARINGS  

 

It is consisted of an outer bearing sleeve or outer housing which houses the series of bumps on a thin foil 

strip and over the bump foil strip a thin smooth top foil sheet is laid (Figure 1.1, 1.2 & 1.3). These foils 

are welded at one end (starting edge) and are free at the other (trailing edge). The series of bumps in the 

strip supports the top foil sheet and acts as a spring bed which makes the bearing compliant. The thrust 

pad and the foils are in contact when the shaft is stationary and remain in contact until a critical lift-off 

speed(threshold speed) is achieved at which point the thrust rides on a thin gas film developed due to the 

hydrodynamic pressure developed between thrust pad and the bearing. Due to the action of pressure, the 

top foil starts to deform. The bump foil is present below the top foil, as the top foil tends to deform, the 

top foil touches the bump foils and the bump foils act as a spring having some stiffness providing 

support to the load carried. In compliant thrust bearings, the load direction is parallel to the axis of the 

rotation of the shaft. During normal operation of the foil bearing which supports the machine, the 

rotation of the rotor generates a pressurized gas film which pushes the top foil upwards and separates the 

top foil from the surface of the rotating shaft. The pressure in the air film is proportional to the relative 
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surface velocity between the rotor and top foil. Thus, faster the rotor rotates, the higher the pressure, and 

the more is the load the bearing can support. In addition, micro-sliding between top foil and bump foil 

generates coulomb damping which can increase the dynamic stability of the rotor-bearing system. The 

dynamic behaviour of a rotating system is significantly influenced by the structural (stiffness and 

damping) characteristics of the bearings. The exact values of the stiffness and damping coefficients of 

air-foil bearings are difficult to predict. 

 

The hydrodynamic pressure developed varies with operating speed and has a significant influence on the 

deformation of the foils. Hence, the film thickness is a function of hydrodynamic pressure and the elastic 

properties of the foils. The film thickness is the gap between the top foil and the thrust pad of the shaft. 

The film thickness is varying with rotation of the shaft and also the pressure exerted on it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bearing Block 
Top Foil Bump Foil 

Fig 1.1 Compliant Foil Thrust Bearing  
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Fig.1.2   Figure depicting construction of Thrust bearings describing foils(top foil and bump foil)    

(Source :  Heshmat, HWalowit, JA., Pinkus, O,2005) 

 

 

Fig 1.3 Arrangement of top and bump foil ( Source :  Heshmat, HWalowit, JA., Pinkus, O,2005) 
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CHAPTER 2  

 LITERATURE SURVEY 

 
 

Crystal A. Heshmat, David S.Xu and Hooshang Heshmat[1] investigated analytically utilizing a 

contemporary approach which combines Finite Difference (FD) and Finite Element (FE) methods. 

Solution of the governing hydrodynamic equations dealing with compressible fluid is coupled with the 

structural resiliency of the foil bearing surfaces. FD method is used for hydrodynamic analysis while FE 

method is used to model structural resiliency. The solution of the hydrodynamic equations using 

influence coefficients was obtained by using approximations of FD and FE method. Within 2 to 3 

iterations, the convergence condition was reached. The overall logic of the program/code written proved 

to be an efficient technique to deal with the complex structural compliance of various foil bearings. 

  

Ku and Heshmat [2] presented an analytical model predicting the deformation of a bump foil. The total 

elastic bending moment within the bump foils was evaluated by treating the friction forces as 

conservative forces. The model predicted a higher stiffness if a frictional force is introduced between the 

bumps and the bearing sleeve and/or the top foil. The bumps near the fixed end have a higher stiffness 

than the bumps near the free end. In the following paper, Ku and Heshmat examined the bump 

deflection to verify their analytical model, as presented in [2]. They used an optical tracking device to 

measure the bump deflection and the recorded hysteresis loops of the bump foil indicated Coulomb 

damping between the bump foil and the contacting surfaces. In addition, they presented the bump 

stiffness versus applied loads curves in order to show the effect of bump geometry on stiffness.  

 

Peng and Carpino [3] adopted the bending moment equation given in [3] and used an energy method to 

calculate slip and equivalent viscous damping coefficients under conditions of pure sinusoidal 

excitation. Peng and Carpino [3] also predicted the stiffness and damping coefficients of foil gas 

bearings, employing a perturbation and finite element methods. In the analysis of foil bearings, stiffness 

which was predicted increases with the rotor speed and decreases with the compliance of the bump foil. 

At low speeds, the overall bearing stiffness depends on the generated hydrodynamic pressure. However, 

at high speeds, the overall bearing stiffness relies on the structural stiffness of the bump foil, because the 
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stiffness of the hydrodynamic film is very high. The effect of bearing number on the dynamic force 

coefficients is presented as well.  

 

Iordanoff [4] introduced a simple method to design foil gas thrust bearings. He used a composite profile 

consisting of a constant slope in the leading edge and a parallel surface to the bearing runner. 

 

R G Chen, Q Zhou, Y Liu and Y Hou [5] first proposed a simple type of aerodynamic foil thrust 

bearing with an elastc hemispherical convex dot support configuration. Then the experimental 

procedures were carried out on stability and its load capacity characteristics for this foil thrust bearing 

were conducted on a multi-functional thrust bearing test rig. The preliminary measurement and analysis 

are presented through the wave and spectrum of axial displacement response in the time and frequency 

domain.  

 

Joseph Robert Dickman [6] manufactured three identical open source foil gas thrust bearings and 

carried out tests from 0-40,000 RPM against two PS400 coated runners and the results are recorded. He 

found that bearing torque is proportional to speed and increases linearly with load once the bearing is 

fully lifted off.  Load capacity increases linearly with speed until thermal effects cause top foil 

distortions and thermal runaway. Beam deflection is compared to the bearing performance. 

Steve Bauman [7], NASA described in this paper a new test apparatus capable of testing thrust foil air 

bearings uo to 100 mm in diameter at speeds up to 80,000 rpm and temperatures to 650 
0
C. Bearing 

Torque, load capacity and bearing temperatures can be measured using this test rig. A number of thrust 

bearings were tested and intentionally failed with no resultant damage to the test rig. Several test 

conditions like specific speeds and loads showed about undesirable axial shaft vibrations which have 

been attributed to the magnetic bearing control system and are under observation. This test rig will be a 

valuable tool for thrust foil bearing research, parametric studies and technology development. 

 

The work carried out by Luis San Andres, Tae Ho Kim [8] performance of Gas Foil Bearings depends 

largely on the support elastic structure i.e. a smooth foil on top of bump foils. More complex finite 

element (FE) models couple the elastic deformations of the 2D shell or 1D beam-like top foil to the 
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bump deflections as well as to the gas film hydrodynamics. It is found that for a 2D FE model 

predictions overestimate the minimum film thickness at the bearing centreline, while underestimating at 

the bearing edges. Test data produce the experimental wavy-like film thickness profile. Experimental 

results of stiffness and damping coefficients versus excitation frequency show that the two FE models 

result in slightly lower direct stiffness and damping coefficients than those from the simple elastic 

foundation model. 

 

The work done in this paper by Robert Bruckner, Brian Dykas, Joseph Prahl [9] describes the 

methodology for the design and construction of simple foil thrust bearings for performance testing and 

low marginal costs is presented. The design of fixtures and tooling required to fabricate foil thrust 

bearings is presented, using conventional machining processes where possible. A prototype bearing is 

constructed using all the steps required for fabrication. A load-deflection curve for the bearing is 

presented to illustrate structural stiffness characteristics. The results are that performance of these 

bearings seemed to be useful when compared with data from the open literature or conventional rigid 

bearings. 

 

The authors Quan Zhou, Yu Hou, Chunzheng Chen [10] carried static and stability experiments on a 

high speed turbine test rig. This paper describes the results of a gas thrust bearing with viscoelastic 

support which is meant for high speed turbo-machinery. The gas bearing, which belongs to compliant 

foil bearings, consists of a top thin metal foil and a bottom thin rubber foil. The static results show that 

the structural stiffness of test bearing generally increases with the increase in axial load and the decrease 

in thickness of bottom foil. In the rotation tests, rotor runs stably with small vibration amplitude, which 

is dominant in waterfall plot during whole speed up procedure. The results show that the bearing has 

good stability characteristics for high speed gas turbines. 

 

The experiment carried out in this paper by Brian David Dykas[11] is about studying the operating 

characteristics of foil gas thrust bearings experimentally and analytically to know more about the 

physical mechanisms that limit the bearing performance. Variety of configurations were used to 

measure bearing power loss and load capacity which highlight several important factors that influence 
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the performance. It is found that according to the conventional hydrodynamic theory, surface condition 

of the foil and surface condition of the runner have a large influence on bearing performance. Thermal 

effects are found out to be more at higher loads where gas film heat generation and resulting 

thermoelastic distortion are larger, but smooth surfaces with lubrication are needed to achieve these 

loads. This paper in general summarises the effects of these non-ideal surface conditions on the load 

capacity of foil thrust bearings. 

 

The work done by scientists Vikas Arora, P.J.M. van der Hoogt and R.G.K.M. Aarts[12] describes 

about the experimental procedures to identify the stiffness and damping characteristics of Axial Air Foil 

Bearings. The innermost (top foil) traps a gas pressure film that supports a load while the layers below 

provide an elastic foundation. Identification of structural characteristics is important for successful 

design practice. Experiments are carried at a maximum speed of 60,000 rpm. Sub-structuring approach 

is used for identification of the structural i.e. stiffness and damping characteristics of the Air Foil 

Bearings. 

 

The paper by Robert J. Bruckner, NASA [13] illustrates the experimental results of the performance 

of simple gas foil thrust bearing in air. This experiment is carried out to provide machine designers the 

basic performance parameters and to explain the underlying physics of foil thrust bearings. The tests 

were conducted on simple bump foil supported thrust bearings. Test conditions consist of air at ambient 

pressure and temperatures up to 500
0
C and speeds to 55,000 rpm. A complete set of axial load, 

frictional torque and rpm is obtained for two different compliant sub-structures and inter-pad gaps. Data 

obtained from commercially available foil thrust bearings both with and without active cooling is 

presented for comparison. Speed-load characteristic of foil thrust bearing is found out from the test 

results.  For the journal bearing, the load capacity increases linearly with rpm but for the thrust bearing 

operates in the hydrodynamic high speed limit. 

 

In this paper, a generalized hydrodynamic analysis is carried out by Robert Jack Bruckner [14] to 

analyse individual effects included in the development of the governing equations. The governing 

equations are the conservation equations of mass, momentum and energy. The Reynolds’ equation is 
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developed from these equations. The energy equation is simplified by applying the thin film layer 

assumptions such that fluid properties do not vary through the film. The structural deformation of the 

bearing is modelled with a single partial differential equation. A linear superposition of hydrodynamic 

load and compliant foundation reaction is reached. The stiffness of the compliant foundation can be 

seen as a set of springs that support the top foil. This system of governing equations is solved by using 

numerical methods by writing a computer program in Mathematics computing environment. This work 

finds a substantial difference between bearing performance based on traditional lubricant models and 

that based on the energy equation model. 

 

 

The article by Yong-Bok Lee, Tae Young Kim, Chang Ho Kim and Tae Ho Kim [15] explains about 

a model of thrust bump foil bearings which predicts the deflection with variable axial load with an 

assumption that there is no tilting effect of the thrust collar. To predict the air clearance, deflection of 

the elastic foundation was used in the air film height equation. Combined Dirichlet and Neumann-type 

boundary conditions were used for static load performance predictions. To verify the theoretical data 

and conditions, experiments were carried out with three different thrust foil bearings. The rpm was 

varied for all the three bearings. It was found out that the model using nonlinear stiffness was in better 

agreement with the experimental results than the model using linear stiffness. 
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CHAPTER 3          

 MATHEMATICAL MODEL 

 

3.1 DERIVATION OF STANDARD REYNOLDS’ EQUATION FOR THRUST             

BEARINGS 

 

The most accurate way of predicting the performance parameters for any type of thrust bearings is to 

solve the lubricant flow equations obtained from Navier-Stokes relationships. The solutions become 

very complex and the costs for computation become very high when variations in viscosity and 

flexibility of outer bearing sleeves are considered. 

Hence instead of full solution, some approximate methods are used for solving the two dimensional 

Reynolds’ Equation. Reynolds’ Equation gives tremendous insight into fluid behaviour in bearing 

lubricant films, and forms the basis for birth of science of hydrodynamic lubrication. Solution of the 

traditional Reynolds’ Equation helps us to determine the pressure distribution in a bearing having a 

random film shape. After the pressure profile is evaluated the important bearing parameters such as 

load-carrying capacity, friction force, flow rates, etc. can be easily determined. 

 

The standard Reynolds’ Equation is considered by neglecting the time variant. The solution to this 

equation is obtained by considering a bearing with finite length and other dimensions. This 

approximation represents the most accurate method to predict the performance parameters for any type 

of thrust bearings. 

   

  3.2 Assumptions taken in Derivation of Reynolds Equation 

The following assumptions are made in deriving the Reynolds Equation  

 

1. Fluid is assumed Newtonian, with direct proportionality between shear stress and 

Shearing velocity 
dv

dy
   

2. Inertia and body forces are assumed to be negligible compared to the viscous terms. 

3. Variation of pressure across the film is assumed to be very small. 

4. Flow is laminar. 

5. Curvature effects are negligible. 
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3.3 Compressible Reynolds’ equation in two dimensions 

 

3.3.1 Use of Conservation of Momentum 

 

 

 
Fig. 3.1 :Schematic Of Slider Bearing(Source:Thesis By Hanumappa Reddy) 

 

 

Refering to figure 3.1 

Let h=h(x,y) be the film gap between runner and to top foil. 

 

X- Direction Momentum Equation 

( )
p u

x z z


  


  
                                  ---------------------------------------------- (3.1) 

 

Y-Direction Momentum Equation 

( )
p v

y z z


  


  
                                 ----------------------------------------------- (3.2) 

 

Z Direction Momentum Equation  

 

0
p

z





 (Because we have assumed that variation of pressure across the film is very small) 
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Integrating 3.1., we get,  

1

2

1 2

( ) ( )

( )
2

p u
z C

x z

p z
u C z C

x





 
 

 


   



 

Using Boundary condition at z=0, u=ua 

2

2

0 a

a

u C

C u





 
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Similarly at z=h, u=ub 

2

1

1

( )
2

( ) ( )
2

b a

a b

p h
u C h u

x

p h
C u u

x h

 




  




   



 

 

Now putting values of C1 and C2, we get 
2

1 2

2

2

2

( )
2

( ) ( ) ( )
2 2

1
( ) ( ) ( )

2 2 2

1
( )( ) (1 )

2

a b a

a b a

a b

p z
u C z C

x

p z p h z
u z u u u

x x h

p z p hz z
u u u u

x x h

p z z
u z zh u u

x h h




 

 




  



 
     

 

 
     

 


     



 

 

Now integrating 3.2. We get  

1

2

1 2

( ) ( )

( )
2

p v
z C

y z

p z
v C z C

y





 
 

 


   



 

At z=0, v=0 

Which gives 2 0C   

At z=h, v=0 
2

1( )
2

p h
C h

y





 

This gives 1 ( )
2

p h
C

y





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Now putting values of C1 and C2, we get 

 
2

( ) ( )
2 2

p z p hz
v

y y


 
 

   

21
( )( )

2

p
v z zh

y


 


   ----------------------------------------------- (3.3) 

With X being the direction of sliding and Y being the direction of leakage of fluid 

 

3.3.2 Use of Conservation of Mass 

Applying conservation of mass, 

0 0 0 0

( ) ( ) ( ) ( ) 0

h h h h

dz u dz v dz w dz
t x y z
   

   
   

       ---------------------- (3.4) 

 

 The final equation comes out to be: 
3 3

3 3

[ ( ) ( )] [ ( )] ( ) 0
12 2 12

1
( ( )) ( ( )) ( ( )) ( )
12 12 2 b

a b b a

a b a

h p h h p
h u u w w

t x x y y

h p h p
h h u u w w

x x y y t x

    


  

  
 

 

   
        

   

     
      

     

 

 

For a journal bearing, bearing sleeve is fixed and the journal is rotating. Hence ua=0 and wa=0. 

Also ub=u is not 0 and wb=w is not 0. Also neglecting the time variant and considering the above 

equation in Two dimensions: 

 
3 3 1

( ( )) ( ( )) ( (0 ))
12 12 2

h p h p
h u

x x y y x

 


 

    
  

      

3 3 1
( ( )) ( ( )) ( )
12 12 2

h p h p
u h

x x y y x

 


 

    
 

    
----------------------------------- (3.5) 
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3.3.3 Reynolds Equation in Polar Coordinates 

 
For thrust bearing expression for Reynolds Equation in Polar Coordinates is required,  

x R x R

u R

 



    

  

3 3 1
( ( )) ( ( )) ( )
12 12 2

h p h p
R h

R R y y R

 
 

    

    
  

    
----------------------------- (3.6) 

Considering ideal gas with Rg as gas constant i.e. 

 

3 3

2

1
( ( )) ( ( )) ( )
12 12 2

g

g g g

p

R T

ph p ph p
ph

R R T y R T y R T





    



    
  

    

 

 

Multiplying by (R
2
Rg), we get 

3 3 2
2( ( )) ( ( )) ( )

12 12 2

ph p ph p R ph
R

T y T y T



    

    
 

    
 

 

Normalizing the above equation with: 

0 0

; ; ; ;

2
a

y p h T
y p h T

L p C T





    

 

3 3 3 3 2
2

0 0 0 0 0

( ( ( ))) ( ( ( ))) ( )
12 12 2

2 2

a a a
a a

pp h C pp h C pp hCR
pp R pp

L LTT TT TT
y y



    

    
 

  
 

2 3 2 33 2 3 2

2

0 0 0 0 0

[ ] ( ( ( ))) [ ] ( ( )) ( ) ( )
12 12 2

2

a a ap C p C p Cph R ph R ph
p p

T T T y T T TyL



      

    
 

    
 
 

                                                                                                          

2
3 2 3 0 0

2 3

0

ASSUMPTION: Using Isothermal and Isoviscous case

1 and 1

122
( ) ( ) ( ) *( )* ( )

2

a

a

T

p C Tp R p R
ph ph ph

L y y T p C





  

  

    
  

    
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Taking Compressibility or Bearing Number as:

6
( )

a

R

p C


 

 

We get the standard compressible Reynolds Equation in 2D as: 

3 2 3( ) ( ) ( ) ( )
p D p

ph ph ph
L y y  

    
  

    
 ------------------(3.7) 

 

3.4 Single Pad of Thrust Bearings  

 

 
Fig. 3.2 :Schematic of Single Pad of Thrust Bearing(Source:Crystal A. heshmat, David 

Xu(2000),Journal of tribology,Vol.122) 

 

Using Dimensionless parameters: 

1
1

2 2 2 2

, , ,
hh r g

h r g h
h R h h

     

 

And using the Bearing Compression factor (Bearing Number):  
2

2

a 2

6
= *

p

R

h

  
  

 
 

 
The Dimensionless Reynolds Equation becomes:  

 3 3

2

.1 1
. . . . .

p hp p
r h p h p

r rr r   

      
     

       
 

 

 

 

 



18 

 

The film thickness is s function of wedge shape geometry and pressure at each point and expressed as : 
 

   1 , 1h g r p      

Where 

 1 1 1  when 0

   = 0                          when 

g h b
b

b


 



  

 
     

 

 

 

 
3

2

              

where b is the extent of the top foil

2
= 1

 is the compliance coefficient.

ap s l

cE t
 



 
 

 
 

 

 

 
 

Fig 3.3 Variation of film thickness and Boundary Conditions (Source: Heshmat, Xu (2000),Vol.122  ) 

 

1 2 at  and 

 at =0 and 

a

a

p p r R R

p p  

 


 

These are the boundary conditions which is to be used to find out the solution of Reynolds’ Equation
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CHAPTER 4  
NUMERICAL METHODS 
 

 

Some approximate numerical methods must be adopted to solve the Reynolds’ Equation. In order to 

find the pressure profile, we are using FINITE DIFFERENCE METHOD. This chapter consists of a 

detailed description of the Finite Difference Method which is used for discretisation of the Reynolds’ 

Equation. The Reynolds’ Equations was written in Finite Difference form and solved by means of an 

iterative procedure. The domain i.e. radius(R) and theta is divided into segments of small size and a 

mesh was generated. The pressure at each node is obtained by iterative procedure. 

 

The Reynolds’ Equation is as follows 

 

 3 3

2

.1 1
. . . . .

C
A B

p hp p
r h p h p

r rr r   

      
     

       
---------------------- (4.1) 

 

4.1 FINITE DIFFERENCE FORMS 

 

From central finite difference form we get 
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i j i jp pp
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 



 

 

 

2
1, , 1,

2 2

2i j i j i jp p pp

r r

  


 
 

, 1 , 1

2

i j i jp pp

 

 


 
 

 

2
, 1 , , 1

22

2
i j i j i j

p p pp

 

 
 


 
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Let Equation 4.1 is written in terms of A+ B = C 

Then,   
23 2

3 2 3

2

.
A 3

p h p p h p
h p h h

r r r r r

         
         

         

 

         

23 2
3 3

2

.
 

p h p p p
h ph

r r r r

       
       

       
 

 

So writing this differential equation in finite difference form we get 

 

 

23

3 3., 1, 1, 1, 1, 1, , 1,
, ,, 2

,

. 2
A

2 2
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p h p p p p p p p
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r r r r

     

             
            

 

 

 

Similarly 

 

3 3

2 2

1
B

p p p
h h

r r  

      
             

 

 

             

2
2

3 3

2 2 2

1 3p ph h p
h h

r r  

       
       

       
 

Writing these differential terms in finite difference form we get 

 

2
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, ,2 2 2
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3 21
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
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 

     
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      

 

Writing these differential terms in finite difference form we get 
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Substituting these values in the Reynolds’ Equation and arranging the equation to form a quadratic 

equation in ,i jp  of the form we get: 

 

   
2

, ,
0

i j i j
D p E p F    

 

The solution of the quadratic equation can be given as 

 
2

,

4

2
i j

E E DF
p

D

  
  

 

Here the nodes along the theta direction are denoted as “i” and the nodes along radial direction are 

denoted as “j”. 

 

The whole domain can be made as a mesh of ‘i’ and ‘j’ i.e. theta and radius respectively. 

 

To know the pressure at each node, the value of pressure at previous and next of the node both in i
th

 

and j
th

 direction must be known. So, the process is an iterative process. MATLAB (MATRIX 

LABORATORY) software is used in which the program is written. The program contains loops for ‘i’ 

and ‘j’ and within the loops the pressure is calculated.  

 

Similarly, the film thickness is also calculated. As film thickness is a function of radius and theta and 

also pressure at the node, the film thickness is also calculated within the loops. To know the value of 

film thickness at each node, the value previous and next node must be known. One thing is different 

here that is the film thickness varies only in theta direction and remains the same along radial direction.  

We use approximation method to solve this iterative process. At the beginning of the program we 

assign a certain value of pressure at each and every node. This value assigned is just an arbitrary value. 

Final values of pressure are calculated at the end of the program when the values of pressure obey a 

certain convergence condition. Here the convergence condition is values must be same up to 3 decimal 

places 

Initially at the beginning of the program, we calculate the values of compliance coefficient and bearing 

number. We also give other dimensions of the thrust bearing at the beginning. 
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Start 

Stop 

4.2 FLOWCHART 

 

 
 
 

   , ,old newp i j p i j  

Plot pressure profile, film thickness and load carrying 

capacity 

       Update pressure at all nodes and check for convergence 

Solve Reynolds Equation to find pressure at all nodes 

61 10old

new

p

p
 

  
 


  

Calculate the film thickness at every grid point 

Generation of mesh and calculation of texture size in mesh 

Input Parameters    
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CHAPTER 5  

RESULTS AND DISCUSSIONS 

The analysis was done for two different types of bump materials keeping the bump geometry same. 

The bump foil material chosen are Inconel X 750 and Aluminium bronze. Inconel X-750 is a Nickel-

Chromium alloy made precipitation harden able by additions of Aluminium and Titanium, 

having creep-rupture strength at high temperatures to about 700°C  and they are used in high 

temperature application like gas turbines, rocket engines etc. Whereas Aluminium bronze is applied 

where high temp is not an issue and it is within 40°C of operating temperature. 

The details of input parameters of foil geometry and properties are given in table 5.1. 

INPUT PARAMETERS 

 

VALUES 

No of grid points in theta direction 

 

50 

No of grid points along  radial direction 

 

50 

Inner radius 

 

10 mm 

Outer radius 

 

24 mm 

Radial Clearance(=h2) 0.03mm 

Inlet Film Thickness(=h1) 0.2mm 

Length of Bearing 23.5mm 

Bump pitch 3.17mm 

Ambient Pressure 0.1 N/mm
2 

Half bump length 1.125mm 

Thickness of Bump Foil 0.1 mm 

Poisson’s Ratio 0.29 

Coefficient of Viscosity 17.8 x 10
-12

 Ns/mm
2 

Angular Speed of the Shaft 1,00,000 RPM 

Modulus of Elasticity 160,000 N/mm
2 

No of iterations 300 

No of Pads 6 

Table 5.1: Geometry and properties of Bearings parts. 
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5.1Analysis with Inconel X-750 foils. 

 

The Modulus of Elasticity used for Inconel X 750 is 212.4 GPa and poison’s ratio is 0.29. 

Solving the modified Reynolds equation for compliant foil thrust bearings, with the given 

properties and dimensions from table 1, following analysis are done. 

a. Pressure profile over single pad. 

b. Film thickness variation over a single pad 

c. Comparison of film thickness with rigid bearings. 

d. Variations of load carrying capacity with variation of speed of runner. 

e. Variations of load carrying capacity with variations of foil thickness. 

 

Figure 5.1 Shows variation of pressure profile over a single pad of 60
0
. The maximum 

dimensionless pressure is about 2.45 and corresponding load carrying capacity at 30000 RPM 

of runner is 107 N, which is sufficient to carry the axial load of small turbines and 

turbochargers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1: Dimensionless pressure profile over one pad at 30,000 RPM 
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Figure 5.2 shows the dimensionless film thickness over one pad. The film thickness maintained is about 

200 microns, and this is much above the surface roughness of the bearing surface, which shows a 

positive sign for aerodynamic bearings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2: Dimensionless Film thickness over one pad at 30,000 RPM 

 
Figure 5.3 shows comparison of film thickness between compliant foil bearings and rigid bearings. The 

performance of foil bearings seems to be better than rigid bearings. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5.3: Comparison of Film thickness between foil and rigid bearings over one pad  

at 30,000 RPM 
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Figure 5.4 shows the variation of load carrying capacity with increase of rotational speed of runner, the 

load carrying capacity is found to increase with the speed up to a certain speed for specified parameters 

in table 5.1. This may be due to the assumption taken and at higher speed the viscous force of air plays 

an important role. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4: Variation of Load Carrying Capacity with Speed of the Runner 

Figure 5.5 shows the variation of load carrying capacity with variation of thickness of bump foil from 

100 microns to 800 microns. The load carrying capacity is found to be increased with the increase of 

thickness, however damping of the rotor may be affected at higher thickness of bump foils.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.5: Variation of Load Carrying Capacity with thickness of bump foil 
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5.1Analysis with Aluminium bronze 

Similar analysis was done by changing only material of the bump foil. The elastic modulus of 

Aluminium bronze was taken as 120 GPa and poison’s ratio is 0.34. The result of analysis is shown 

from figure 5.5 to 5.10. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.6: Dimensionless pressure profile over one pad at 30,000 RPM 

 

 

Fig 5.7: Dimensionless Film thickness over one pad at 30,000 RPM 
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Fig 5.8: Variation of Load Carrying Capacity with thickness of bump foil 

 

 

Fig 5.9: Variation of Load Carrying Capacity with Speed of the Runner. 
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Fig 5.10: Comparison of Film thickness between foil and rigid bearings over one pad at 

30,000 RPM 

 

 

Fig 5.9: Variation of Load Carrying Capacity with Speed of the Runner 
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CHAPTER 6  

CONCLUSIONS 

The aerodynamic analysis of compliant foil thrust bearings helps to calculate the performance 

parameters. The compliant foil thrust bearings are function of fluid equation as well structural 

equating. So calculating actual performance parameters are difficult and consume lots of 

efforts. In the current project an attempt was made to find the performance parameters like 

pressure profile, film thickness load carrying capacity etc with several assumptions to simplify 

modified Reynolds equation. The analysis was done on two types of foils Inconel X 750 and 

Aluminium bronze. The Load carrying capacity of both types foils are found to satisfactory for 

use in small turbines and turbo generator. Due to protected technology of gas foil thrust 

bearings, very less no of work is found in open literatures. The result of current project may be 

help full to the researchers to work more on compliant foil thrust bearings. 
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CHAPTER 7  

FUTURE SCOPES 

 Experimental work can be carried out by designing the thrust bearings and testing it for 

results and comparing it with theoretical results. 

 Stiffness and damping characteristics can be analytically found out which also 

influences load carrying capacity. 

 Investigations can be carried out to find the optimum thickness of the foil and other 

geometry of bearings. 

 Thermodynamic analysis of the foil bearings can be done to improve performance of 

bearing. 
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