
A Novel Heuristic

for a Class of Independent Tasks

in Computational Grids

Pratik Agrawal

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Novel Heuristic

for a Class of Independent Tasks

in Computational Grids

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering

by

Pratik Agrawal

(Roll No.: 211CS3290)

under the supervision of

Prof. Durga Prasad Mohapatra

And

Prof. Pabitra Mohan Khilar

Department of Computer Science and Engineering, NIT Rourkela

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, Odisha, India

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela - 769008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled A Novel Heuristic for a

Class of Independent Tasks in Computational Grids by Pratik Agrawal,

bearing Roll Number 211CS3290, is a record of an original research work

carried out by him under our supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science and Engineering with specialization in Software Engineering.

Neither this thesis nor any part of it has been submitted for any degree or academic

award elsewhere.

Prof. Pabitra Mohan Khilar Prof. Durga Prasad Mohapatra

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisors Prof. Durga

Prasad Mohapatra and Prof. Pabitra Mohan Khilar for the continuous support of

my M.Tech study and research, for their patience, motivation and enthusiasm. Their

guidance helped me in the time of research and writing of this thesis. I could not

have imagined having better advisors for my M.Tech study.

Besides my advisors, I extend my thanks to our HOD, Prof. A. K. Turuk for his

valuable advices and encouragement.

I do acknowledge the academic resources that I have received from NIT Rourkela.

I also thank the administrative and technical staff members of the Computer Science

Department for their intime support.

My sincere gratitude also goes to Ph.D. Scholar Subhrakanta Panda for

constantly guiding me throughout the work.

My sincere thanks also goes to Avijit, Pratik, Meghansh, Vinay, Mukesh,

Sanjaya, Dinesh and Godboley for helping me in my work. I would also like to

thank Shraddha, Sugandha, Suchitra, Swagtika, Anita, Alina and Anima didi for

motivating me time to time.

Last but not the least, I would like to thank my family: my parents Mr. Vijay

Agrawal and Mrs. Saroj devi, my sisters Mrs. Aditi Jindal and Mrs. Amita Jain,

My brother-in-laws Mr. Satya Prakash Jindal and Mr. Sudhir Jain, and finally my

brother Mr. Ankur Agrawal and sister-in-law Mrs. Sonal Agrawal for constantly

supporting me throughout my life.

Pratik Agarwal

Roll:211CS2274

Department of Computer Science

Abstract

Scheduling is an essential layer in grid environment. Now-a-days, the computational

grids are the important platform for job scheduling. The performance of the

computational grids can be improved using an efficient scheduling heuristic. A

user submits a job to grid resource broker. The broker is responsible for dividing

a job into a number of tasks. It maps the task and the resource to find a perfect

match. The main goal is to minimize the processing time and maximize the resource

utilization. Mode of scheduling plays the key role in Grid Scheduling. In Grid, mode

of scheduling is of two types: immediate and batch mode. Immediate mode takes one

after another task in a serial sequence. But, batch mode takes in a random sequence.

Task assignment is mainly based on the mode selection. Task may be assigned to

the resource in a batch or as soon as it arrives. In this thesis, we have introduced

three immediate mode heuristics such as First-DualMake, Best- DualMake and

Worst-DualMake (defined as X-DualMake) and a new mode of heuristic called as

intermediate mode (or Multi- batch mode). In our immediate mode scheduling

heuristics, jobs are scheduled based on resource idle time. Intermediate mode

considers random arrival of task in a multi-batch sequence. Alternatively, arrival

of tasks are unknown in this mode. Here, we have taken a range of task arrival

for simplicity. This mode is introduced to be a part of the real life aspects. The

eight immediate mode heuristics are simulated and the experimental results are

discussed. The two existing approaches: Min-Min and Max-Min are experimented

with intermediate mode scheduling. We have taken two performance measures:

makespan and resource utilization to evaluate the performance.

Keywords: Computational Grid, Batch Mode, Independent Task, Task Scheduling, Makespan,

Quality of Service, Skewness

Acronyms

GRB Grid Resource Broker

GRS Grid Referral Service

SSI Single System Image

TQ Task Queue

MET Minimum Execution Time

LBA Limited Best Assignment

UDA User Directed Assignment

FCFS First Come First Served

EET Expected Execution Times

MCT Minimum Completion Time

OLB Opportunistic Load Balancing

KPB K - Percent Best

SA Switching Algorithm

RASA Resource Aware Scheduling Algorithm

LBMM Load Balanced Min-Min

QoS Quality of Service

GIS Grid Information Service

DQ Difference Queue

TEQ TEmporary Queue

CPU Central Processing Unit

RAM Random Access Memory

ROM Read Only Memory

SV Sufferage Value

RU Machine (or resource) Utilisation

ARU Average Machine (or resource) Utilisation

Notations

m Total number of tasks (or meta-tasks)

n Total number of machines (or resources)

Ti Task ID of task i

Mj Machine ID of machine i

S A scheduling strategy

Ei,j Execution time for task i on machine j

M(S) Makespan of scheduling strategy S

M(SMj
) Makespan of Mj using scheduling strategy S

R(S) Machine (or resource) utilisation of scheduling strategy S

F (S) Flow time of scheduling strategy S

E(S) Total execution time of scheduling strategy S

E(STi
) Execution time of Ti using scheduling strategy S

Ti→Mj Ti is scheduled to Mj

Ti 6→Mj Ti is not scheduled to Mj

C Completion Time

Ci,j Completion Time for task i on machine j

Rj Ready time of machine j

Contents

Certificate ii

Acknowledgement iii

Abstract iv

Acronyms v

Notations vi

List of Figures ix

List of Tables xi

1 Introduction 1

2 Basic Concepts 5

2.1 Task . 5

2.1.1 Independent Task . 6

2.1.2 Dependent Task . 6

2.2 Machine . 6

2.3 Types of Matrices . 7

2.3.1 Consistent Matrix . 7

2.3.2 Inconsistent Matrix . 7

2.3.3 Semi-consistent Matrix . 8

3 Related Work 9

3.1 Related Work on different Mode of Scheduling Heuristics 11

vii

3.1.1 Minimum Execution Time . 11

3.1.2 Minimum Completion Time 11

3.1.3 Min-min . 12

3.1.4 Max-min . 12

3.1.5 Sufferage . 12

3.1.6 Opportunistic Load Balancing 19

3.1.7 K - Percent Best . 19

3.1.8 Switching Algorithm . 20

3.1.9 QoS Guided Min-Min . 20

3.1.10 QoS Sufferage Heuristic . 20

4 Efficient Scheduling Heuristics in Computational Grids 22

4.1 An Efficient Skewness Based Heuristic for Task Scheduling in

Computational Grid . 22

4.1.1 Heuristic Description . 22

4.2 Intermediate Mode . 23

4.3 Implementation and results . 24

4.3.1 Skewness Based Heuristic . 24

4.3.2 Intermediate mode heuristics 26

5 X-DualMake Heuristics for Independent Tasks in Computational

Grids 31

5.1 F-DM Heuristic . 31

5.2 B-DM Heuristic . 32

5.3 W-DM Heuristic . 33

5.4 Implementation and results . 35

6 Conclusion 41

Dissemination 42

Bibliography 43

viii

List of Figures

2.1 Hierarchy of task . 5

3.1 Gantt chart for MET . 14

3.2 Gantt chart for MCT . 15

3.3 Gantt chart for Min-min . 16

3.4 Gantt chart for Max-min . 17

3.5 Gantt chart for Sufferage . 18

4.1 Min-min graphical representation of makespan value for u t hihi,

u t hilo, u t lohi and u t lolo instances 29

4.2 Max-min graphical representation of makespan value for u t hihi,

u t hilo, u t lohi and u t lolo instances 29

4.3 Min-min graphical representation of RU for u t hihi, u t hilo, u t lohi

and u t lolo instances) . 29

4.4 Max-min graphical representation of RU for u t hihi, u t hilo, u t lohi

and u t lolo instances . 30

5.1 Makespan comparisons for u c bbcc instances (512 tasks and 16

resources) . 38

5.2 Makespan comparisons for u i bbcc instances (512 tasks and 16

resources) . 38

5.3 Makespan comparisons for u s bbcc instances (512 tasks and 16

resources) . 39

ix

5.4 Average Resource Utilisation comparisons for u a bbcc instances (512

tasks and 16 resources) . 39

5.5 Makespan comparisons for u a bbcc instances (1024 tasks and 32

resources) . 40

5.6 Average Resource Utilisation comparisons for u a bbcc instances

(1024 tasks and 32 resources) . 40

x

List of Tables

3.1 Execution Time of Tasks . 13

4.1 Makespan Values for Min-Min, Max-Min and Skewness heuristic . . . 25

4.2 Resource Utilisation Values for Min-Min, Max-Min and Skewness

Heuristic . 25

4.3 Makespan Values for Min-Min Heuristic in Intermediate Mode 27

4.4 Resource Utilisation Values for Min-Min Heuristic in Intermediate Mode 27

4.5 Makespan Values for Max-Min Heuristic in Intermediate Mode 28

4.6 Resource Utilisation Values for Max-Min Heuristic in Intermediate

Mode . 28

5.1 Makespan Values for MET, MCT, OLB, KPB, SA, F-DM, B-DM

AND W-DM Heuristics using 512 tasks and 16 resources 36

5.2 Resource Utilisation Values for MET, MCT, OLB, KPB, SA, F-DM,

B-DM AND W-DM Heuristics using 512 tasks and 16 resources . . . 36

5.3 Makespan Values for MET, MCT, OLB, KPB, SA, F-DM, B-DM

AND W-DM Heuristics using 1024 tasks and 32 resources 37

5.4 Resource Utilisation Values for MET, MCT, OLB, KPB, SA, F-DM,

B-DM AND W-DM Heuristics using 1024 tasks and 32 resources . . . 37

xi

Chapter 1

Introduction

Grid computing is a potential technology mainly used for distributed environment.

The major issues related with Grid are resource discovery, heterogeneity, fault

tolerance and task scheduling. Grid task scheduling is an integrated component

of computing which effectively utilizes the idle time of resources [1]. Efficient

scheduling algorithm is needed to utilize the resources effectively and reduce the

overall completion time. It analyzes the performance of scheduling algorithms

from different point of view such as Makespan, execution time, completion time

and load balancing. It examines the performance of four scheduling algorithms

such as Min-Min, Max-Min, Minimum Completion Time (MCT) and Minimum

Execution Time (MET). The conventional Max-Min grid task scheduling algorithm

effectively utilizes the resources and minimizes the Makespan than other scheduling

algorithms [2] [3]. Scheduling is a NP-Complete problem [2] [4] [1] [5]. One of

the goals of Grid task scheduling is to achieve high system throughput (resource

utilization) while matching application needs with the available computing resources

and balance the load (load balancing).

Grid computing is an innovative extension to parallel and distributed computing

technology. It enables sharing, selection and aggregation of geographically

distributed resources. This technology is achieving computing resource sharing

1

Introduction

among participants in a collection of virtual organizations. It provides a virtualized

view of the underlying grid resources. Such virtualization also encompasses

the security requirements. Therefore, there is a need for virtualization of

security semantics to use standardized ways of segmenting security components

like authentication, access control, confidentiality etc [5]. In grid technology,

security tools are concerned with establishing the identity of users or services

(authentication), protecting communications, and determining who is allowed to

perform what actions (authorization), as well as with supporting functions such as

managing user credentials and maintaining group membership information. The

primary motivations behind privacy for grid computing are the need for secure

communication (authenticated and confidential) between elements and also the need

to support security across organizational boundaries.

Resource Management System (RMS) or Grid Resource Broker (GRB) acts as

the central nervous system for a distributed computing grid. It is responsible

for resource discovery and reservation, executing consumers tasks, and enforcing

the owners security policies for the resource. Heterogeneous Computing refers the

interconnection between different high performance machines and high-speed links

in a distributed environment. The physical location of Owner, System, Consumer,

Application layers are determining the level of security mechanisms that should

be put in place. If all layers are physically located behind a secure network, the

threat of certain attacks may be mitigated. As such, the level of security and

safety mechanisms in place should increase so that imposter parties can be identified

and disallowed from secure network in grid. The most prevalent mechanisms of

authentication in a Grid Security Infrastructure (GSI) based grid is the certificate

based authentication mechanism [6].

We must consider a dynamic environment in which jobs arrive over the time and

remove from the task queue at their completion time [4]. Grid task scheduling

is not limited to resource utilization but can be extended to the security, central

2

Introduction

control in administrative domains, real time scheduling and quality of service [3] [5]

[7] [8]. Real time has a time limit on computation [11]. Grid resource broker is

responsible for allocation of a task to a particular resource which takes less time.

It is also responsible for splitting the job into various tasks. Grid applications are

divided into number of interdependent subtasks in real applications. Subtask can

be processed concurrently to reduce the task execution time [9]. Grid environment

consists of many clusters. So, the processors are not only heterogeneous but also

the communication is larger. We cannot guarantee the optimum solution but always

find solution which is close to optimum [10].

Round Robin algorithm is considered as optimal in time shared environment. RR

is a pre-emptive scheduling algorithm. It means the processor released the tasks in

the middle of the execution. The tasks which do not have interdependency among

them are called Meta tasks. As there is no interdependency, we can execute two

tasks in parallel. In other words, if there are two processors in the grid environment

then two tasks can be scheduled simultaneously.

Scheduling in grid is not limited to resource utilization but can be stretch out to

the quality of service, the security, central control in administrative domains and

real time scheduling [8]. Single system Image (SSI) is an illusion to the user. It is

designed in such a way that appears as a single resource. When the user submits

a job, it is the responsibility of grid resource broker to divide the job into various

tasks and assigns to several resources. Further, task can be divided into subtasks

and it can be scheduled in parallel. Our end objective is to increase the overall

throughput and resource utilization [5]. Also, it is required to break resource idle

time and balance the load [10] [7].

List scheduling is of two types: static scheduling and dynamic scheduling.

Example of static scheduling is Highest Level First with Estimated Times (HLFET)

[5]. It is based on static b-level. It does not guarantee optimal solution [5]. There are

3

Introduction

two approaches used in scheduling: insertion and non-insertion approach. Because

of task interdependency, there is some hole between ordered tasks. If a task is

assigned to the first hole, then the approach is called as Insertion approach. If

the task is assigned without looking the scheduling hole, then the approach is

called as Non-insertion approach [11]. Finally, insertion approach is preferable then

non-insertion approach. Insertion Scheduling Heuristic (ISH) and Earliest Time

First (ETF) [12] are using non-insertion approach. But, Modified Critical Path

(MCP) [8] uses insertion approach

ISH is based on static b-level. It does not guarantee optimal solution because it

considers only static b-level. ETF is also based on static b-level. But, it calculates

the earliest start-time of a task on each processing elements. Like ISH, it does

not guarantee optimal solution MCP is assigning the priority based on As Late As

Possible (ALAP). Dynamic Level Scheduling (DLS) is a dynamic scheduling which

uses dynamic level to assign a task into processing element. Dynamic level is the

difference between static b-level and t-level. In each step, dynamic level is updated.

The node with largest dynamic level with respect to processing element is scheduled

first. In scheduling, it is very difficult to assign tasks to the processing elements.

In this thesis, we proposed efficient scheduling heuristics for skew data set and a

new mode of heuristic i.e. immediate mode to solve the problems mentioned above.

We also proposed three new heuristics for immediate mode scheduling.

4

Chapter 2

Basic Concepts

In this chapter, we discuss a few basic concepts based on which our approach has

been developed.

2.1 Task

A task is a set of instructions or data. Instruction is measured in millions

instruction unit and data is measured in megabytes or megabits. The task may

have low or high heterogeneity. In grid, task is of two types: independent and

dependent. The complete hierarchy of task is shown in 2.1.

Figure 2.1: Hierarchy of task

5

Chapter 2 Basic Concepts

2.1.1 Independent Task

Independent task has no relationships between each others. Let us consider the

task Ti and the task Tj that has independent of each others. So, the scheduling

sequence does not effect the computations. Alternatively, the tasks are scheduled in

two ways: Ti followed by Tj and Tj followed by Ti. Independent tasks are represented

in matrix form. The tasks that do not have any dependency among each others are

referred as Meta tasks.

Independent tasks are scheduled in two ways: immediate and batch mode. In

immediate mode, tasks are scheduled as soon as it arrives. In batch mode, tasks are

scheduled in a batch.

2.1.2 Dependent Task

Dependent task has a relationships between each others. Let us consider the task

Ti and the task Tj that has dependent of each others i.e. the task Tj is dependent on

the task Ti. So, the scheduling sequence will effect the computations. Alternatively,

the tasks are scheduled in only one ways: Ti followed by Tj. Dependent tasks are

represented in directed acyclic graph form or task graph form.

2.2 Machine

Machine is the producer or service in grid. It is distributed geographically and it is

under different organisations or institutions or domains. It may participate or leave

at any point of time from grid. Each machine may have different security policies or

guidelines. It provides different functionality like reliability, availability, scalability,

performance and fault tolerance. According to user functional requirements, the

scheduler assigns the tasks to the machines.

6

Chapter 2 Basic Concepts

2.3 Types of Matrices

There are three types of matrices: consistent, inconsistent and semi-consistent [7].

2.3.1 Consistent Matrix

A matrix is said to be consistent if and only if a machineMi takes earliest execution

time to execute a task Ti than machine Mj, then the machine Mi always takes earliest

execution time to execute any task Ti than machine Mj. It can be mathematically

expressed as follows: Let us consider the EET matrix shown in Equation (2.1).
E1,1 E1,2 ... E1,n−1 E1,n

...

Em,1 Em,2 ... Em,n−1 Em,n

 (2.1)

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then ∀i(Ei,1 < Ei,2 < ... < Ei,n−1 < Ei,n) are true.

where i = any task Ti ranges from 1 to m

2.3.2 Inconsistent Matrix

A matrix is said to be inconsistent if and only if a machine Mi takes earliest

execution time to execute a task Ti than machine Mj, then the machine Mi may or

may not takes earliest execution time to execute any task Ti than machine Mj.

The machine Mi may be faster for some tasks and slower for rest. It can be

mathematically expressed as follows: Let us consider the EET matrix shown in

Equation (2.1).

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then it is not necessary that ∀i(Ei,1 < Ei,2 < ... < Ei,n−1 < Ei,n) are true.

where i = any task Ti ranges from 1 to m

7

Chapter 2 Basic Concepts

2.3.3 Semi-consistent Matrix

A matrix is said to be semi-consistent if and only if a sub matrix is consistent. It

can be mathematically expressed as follows: Let us consider the EET matrix shown

in Equation (2.1).

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then ∀i(Ei,j < Ei,j+k < ... < Ei,j+k1 < Ei,j+kx) are true.

where 1 ≤ j ≤ m, i = any task Ti ranges from 1 to m,

j < j + k < j + k1 < j + k2 < ... < j + kx,

k < k1 < k2 < ... < kx

8

Chapter 3

Related Work

In recent years, many algorithms have been designed to schedule the task efficiently

in grid environment. As we know, task scheduling is a NP problem; it is difficult

to find an optimal solution. Etminani et al., Liu et al. and Parsa et al. proposed

a new algorithm based on two existing algorithm Min-Min and Max-Min [2] [7].

It chooses the two existing algorithm based on standard deviation of the expected

CT [2]. Rasooli et al. introduced a rule based scheduling which contains two rules

for resource selection and three rules for job queue [4]. Parsa et al. designed a task

scheduling algorithm called RASA which selects Min-Min strategy to execute small

task first and selects Max-Min strategy to execute large task first [7]. It seems to

no starvation to the tasks.

Xiaoshan et al. proposed a Min-Min Heuristic. It is based on adaptive scheduling

heuristics which includes Quality of Service guidance [1]. Sun et al. developed a

priority based task scheduling (P-TSA). Tasks are sorted based on the priority and

assign to processor by comparing P-TSA with existing grid scheduling algorithms.

Zhang et al. introduces a new measurement called effective aggregated computing

power (EACP) that strongly improves the performance of schedulers. Navimipour

et al. used genetic algorithm (mutation and new approach of crossover) in linear

genetic representation to overcome demerits of previous methods. Mansouri et al.,

9

Related Work

Tang et al. and Abdi et al. proposed combine scheduling strategy in which several

replication strategies and their performance is evaluated [13]. In order to improve

data access efficiencies, the replica manager is used. For replica selection or deletion,

this strategy considered bandwidth between the regions [13].

In recent years, many grid task scheduling have been designed to schedule task

in parallel fashion. It is very difficult to find the solution which is applicable to all

situations in grid environment. Senthilkumar et al. and Mehta et al. proposed a

robust task scheduling for heterogeneous computing system. In this algorithm, each

task arrival times and order of the task are not decided previously [11].

Many researchers have been proposed several algorithms on the parallel task

scheduling. Each of them produces an optimal or semi-optimal schedule under

various criteria. Ahmad et al. proposed a new algorithm for parallel task scheduling

based on task duplication [14]. Due to duplication of tasks, it reduces the scheduling

length. Liang et al. introduced a task scheduling using Breath First Search. It uses

two queues: ready task queue (RTQ) and not ready task queue (NRTQ). By using

these queues, it schedules the task in homogeneous environment. Jin et al. solves two

problems in multiprocessor task scheduling: LU decomposition and Gauss-Jordan

elimination. Dataflow in these problems are more frequent.

Real time has a time limit on computation. Yaashuwanth et al. and Liang et

al. proposed a new scheduling algorithm based on real time system. Grid resource

broker is responsible for allocation of a task to a particular resource which takes less

time. It is also responsible for splitting the job into various tasks [3]. QoS Sufferage

heuristic was proposed by Munir et al. [15]. Sufferage value is the difference between

two best processors. It was proposed by Maheswaran et al. [16]. Maheswaran et

al. also introduced one batch mode heuristic and two immediate mode heuristic.

Sufferage heuristic is a batch mode heuristic. It schedules the tasks based on

sufferage value. Two immediate mode heuristics are Swithing Algorithm (SA) and

10

Chapter 3 Related Work

K-Percent Best (KPB). SA uses MET and MCT in a cyclic manner to balance the

load. KPB uses only a subset of machines.

3.1 Related Work on different Mode of

Scheduling Heuristics

3.1.1 Minimum Execution Time

It assigns the task to the resource in First Come First Served (FCFS) basis. The

resource which takes less Execution Time (ET) for a given task is scheduled first.

Due to the above two reason, it leads to load imbalance. It may happen that a

resource is completely idle. Let r indicates the number of resources and t indicates

the number of tasks in a scenario. Then, O (r) time is required to assign a task to

the resource [2]. Figure 3.1 shows the Gantt chart for MET (Table 3.1 data set). It

gives a Makespan of 63 seconds.

3.1.2 Minimum Completion Time

Like MET, it assigns the task to the resource in FCFS basis. The resource which

takes less Completion Time (CT) for a given task is scheduled first. Sometimes,

the resource is busy while assigning the task. So, we must consider ready time

of the resource. CT can be calculated using Equation 1. It may leads to load

imbalance problem because of FCFS nature. Time complexity remains same as

previous algorithm. Figure 3.2 shows the Gantt chart for MCT. It gives a Makespan

of 55 seconds.

CT = ET +Ready time (3.1)

11

Chapter 3 Related Work

3.1.3 Min-min

This algorithm does not follow FCFS sequence. It contains two criteria: MET and

MCT. Minimum ET tasks are preferred before the maximum ET tasks. It is useful

when few number of maximum ET tasks are present in Grid environment. The

concept is choosing the task which holds minimum ET and assigns it to the resource

which gives minimum CT. It may cause load imbalance problem if more number

of larger tasks are present. It also causes starvation to maximum ET tasks. This

algorithm takes O (t2r) time [2]. Figure 3.3 shows the Gantt chart for Min-Min. It

gives a Makespan of 53 seconds.

3.1.4 Max-min

Like Min-Min, it does not follow FCFS sequence. It is also combining MET and

MCT concept. But, instead of MET, it takes maximum execution time. So, it prefers

the maximum ET tasks before the minimum ET tasks. It gives a better schedule if

few numbers of minimum ET tasks are present. Max-Min goal is to choose the task

which has maximum ET and assigns it to the resource which gives minimum CT.

It causes starvation to minimum ET tasks. It requires O (t2r) time [2]. Figure 3.4

shows the Gantt chart for Max-Min. It gives a Makespan of 58 seconds.

3.1.5 Sufferage

In sufferage algorithm for each task, we have to find two best earliest completion

time resources. The difference between the second and first resource completion

time is called Sufferage Value (SV) [16]. For each task, SV is calculated. The task

which suffers more or more SV value is assigned first. Time complexity is O(t2r) [2].

Figure 3.5 shows the Gantt chart for Sufferage algorithm. It gives a Makespan of 40

seconds. In comparison to all scheduling algorithm, Sufferage gives better Makespan

in Table 3.1 data set.

12

Chapter 3 Related Work

Table 3.1: Execution Time of Tasks

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

T1 58 40 35 82 51 85 74 55 12 74

T2 54 45 15 43 89 56 59 63 49 16

T3 87 36 59 89 59 93 24 13 86 87

T4 26 77 26 39 15 70 67 62 88 94

T5 32 63 14 77 20 58 28 36 27 99

T6 12 77 76 40 41 82 63 25 21 86

T7 94 92 24 81 75 88 66 49 57 79

T8 65 98 44 76 83 99 73 19 64 51

T9 48 19 69 38 79 20 89 12 42 17

T10 64 14 36 21 32 87 98 20 30 40

T11 55 70 74 79 53 61 77 14 95 13

T12 65 49 39 95 29 94 58 19 78 23

T13 54 53 69 33 11 53 93 24 10 94

T14 72 53 71 67 13 48 58 64 14 30

T15 52 86 44 44 68 80 31 28 16 29

T16 90 48 41 84 50 23 12 54 62 33

T17 22 86 33 19 50 87 70 57 65 94

T18 10 67 42 16 49 63 50 25 65 65

T19 11 74 27 14 58 85 54 94 32 42

T20 26 52 19 18 99 25 85 21 44 73

13

Chapter 3 Related Work

Figure 3.1: Gantt chart for MET

14

Chapter 3 Related Work

Figure 3.2: Gantt chart for MCT

15

Chapter 3 Related Work

Figure 3.3: Gantt chart for Min-min

16

Chapter 3 Related Work

Figure 3.4: Gantt chart for Max-min

17

Chapter 3 Related Work

Figure 3.5: Gantt chart for Sufferage

18

Chapter 3 Related Work

3.1.6 Opportunistic Load Balancing

It assigns a task to the machine that becomes idle next. It is not taking execution

time of the task and completion time of the task in to consideration. This heuristic

requires O(n) time to assign each task to the machine [2] [4].

Merits: It is very simple and inexpensive.

Demerits: Execution time of the task is not considered.

It can be mathematically expressed as follows: Let us consider the RTM matrix

shown in Equation (3.2). The task T1 is assigned to the least ready time machine

as shown in Equation (3.3). The EET of task T1 can be calculated as shown in

Equation (3.4).

(R1 R2 R3 ... Rn) (3.2)

T1 −→ min(R1, R2, R3, ..., Rn) (3.3)

T1 −→ E1,1 +R1, E1,2 +R2, E1,3 +R3, ..., E1,n +Rn (3.4)

where Ri =
{
1 T1−→Mi
0 Otherwise

}
3.1.7 K - Percent Best

It assigns each task to the machine based on the value of K. It chooses a subset

of machines (n′) from the available machines. The (n′) depends on the value of n

and K. The (n′) can be calculated as shown in Equation (3.5). At last, it assigns

each task to the machine that gives earliest completion time from the K machines.

KPB heuristic acts like MCT heuristic when K = 100 and it acts like MET

heuristic when K = 100/n. The heuristic selection is shown in Equation (3.6). If

K = 100, then the (n′) is same as n. If K = 100/n, then (n′) is a proper subset

of n. KPB heuristic requires O(n log n) time to assign each task to the machine [2].

(n′) = n× (K/100) (3.5)

19

Chapter 3 Related Work

where (n′) ⊆ n

Heuristic =

MET ifK = 100/n

MCT ifK = 100

KPB Otherwise

 (3.6)

3.1.8 Switching Algorithm

It is a hybrid heuristic based on MET and MCT . Let rmax is the maximum ready

time of all available machines; rmin is the minimum ready time of all available

machines and π is the load balance index. The value of π can be calculated as

shown in Equation (3.7). The value of π is in between 0 to 1. The initial value of

π is 0. This heuristic uses two threshold values: πl (low load balance index) and πh

(high load balance index). Note that 0 < πl < πh < 1. It starts with MCT heuristic

and continue task mapping. When the value of π is reached to πh or above, it uses

MET heuristic to decrease the load balance factor. If the value of π is reached to

πl or below then it uses MCT heuristic to increase the load balance factor. This

heuristic gives optimum makespan value when πl = 0.6 and πh = 0.9. It requires

O(n) time to assign each task to the machine.

π = rmin/rmax (3.7)

3.1.9 QoS Guided Min-Min

Min-Min do not have QoS concept. It is possible that a task is not able to execute

on a processor. This new concept was implemented in QoS guided Min-Min [1]. It

divided the set of tasks into high QoS and low QoS tasks. High QoS task assignment

is done first. It has a better makespan in comparison to Min-Min.

3.1.10 QoS Sufferage Heuristic

Like QoS Guided Min-Min, it divides the tasks into high QoS and low QoS tasks. It

uses sufferage value to assign tasks to a processor. It also checks the sufferage value

20

Chapter 3 Related Work

of assigned task with unassigned task. If the assigned task value is less than the

unassigned one then assigned task is removed from the processor. The unassigned

task is inserted to that processor.

21

Chapter 4

Efficient Scheduling Heuristics in

Computational Grids

4.1 An Efficient Skewness Based Heuristic for

Task Scheduling in Computational Grid

4.1.1 Heuristic Description

In this section, we present a skewness based task scheduling heuristic. At the first

step to last step, all the steps are repeated until no meta-tasks are present in the

TQ. In the second and third step, the meta-tasks are assigned to all the resources to

calculate the completion time of each task in each individual processor. Completion

time can be calculated using the Equation 3.1. It is shown in the fourth step.

In the step seven and eight, MCT of each meta-tasks are determined. This step

gives a one dimensional array. Skewness are calculated in step eleven, using a formula

shown in Equation 4.1.

Skewness =
Q3 +Q1 − 2Q2

Q3 −Q1

(4.1)

where Q1 = First Quartile, Q2 = Second Quartile, Q3 = Third Quartile

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

To calculate skewness, we need to find the median. Then, we divide the one

dimensional array in to two halves using median. First quartile value is the median

of the lower half of the array. Similarly, third quartile is the median of the upper

half of the array. In step twelve, it checks whether skewness is less then 0 or not. If

it’s value is is greater than or equal to 0 then it selects max-min strategy in the first

iteration. Otherwise, it selects min-min strategy. It is shown in the step thirteen

and fourteen. Finally, it deletes the executed meta-task from TQ and updates the

TQ in step sixteen. Then, second iteration starts to schedule another task. After all

iterations are over, we calculate makespan and AMU . It is shown in the last step.

Algorithm 1 - Skewness Based Heuristic

1: while TQ ! = NULL

2: for all meta-tasks Ti in TQ

3: for all machines Mj

4: Ci,j = Ei,j +Rj

5: end for

6: end for

7: for all meta-tasks Ti in TQ

8: Find minimum Ci,j and machine Mj that holds it.

9: end for

10: Sort the meta-tasks in ascending order of Ci,j

11: Calculate Skewness.

Skewness = Q3+Q1−2Q2
Q3−Q1

12: If Skewness ≥ 0

13: then assign meta-task Ti to machine Mk that holds maximum Ci,k.

14: else assign meta-task Ti to machine Mk that holds minimum Ci,k.

15: end if

16: Delete the meta-task Ti and update TQ.

17: end while

18: Calculate Makespan and AMU .

4.2 Intermediate Mode

By considering the merits and demerits of immediate mode and batch mode, we have

proposed intermediate mode heuristic. Intermediate mode heuristic is a variation of

23

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

batch mode heuristic. The value of ζ (number of tasks arrival) varies from 2 to α-1.

If ζ = 1, intermediate mode heuristic acts like immediate mode heuristic. If ζ = α,

it acts like batch mode heuristic. Note that, α is unknown in intermediate mode.

In this mode, we have taken a random function to determine the ζ value. In each

iteration, ζ value is determined. Based on ζ value, numbers of tasks are computed.

For 512 × 16 instances, the values of ζ are 58, 46, 62, 38, 40, 36, 36, 60, 51, 50 and

35. It means 58 tasks are executed in first iteration, 46 tasks are executed in second

iteration and so on.

we have taken τ value as 32 to 64 for simplicity. In real life situation, it may vary.

All the instances e.g. 512 × 16, 1024 × 32, 2048 × 64 has τ value as 32 to 64.

4.3 Implementation and results

4.3.1 Skewness Based Heuristic

24

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Table 4.1: Makespan Values for Min-Min, Max-Min and Skewness heuristic

Instance Min-Min Max-Min Skewness

50 × 5 1.2023E+04 9.8310E+03 9.8240E+03

50 × 10 1.0510E+04 9.3010E+03 9.3010E+03

50 × 15 1.0201E+04 9.3000E+03 9.3000E+03

100 × 5 1.9045E+04 1.4085E+04 1.4081E+04

100 × 10 1.2021E+04 9.3030E+03 9.3030E+03

100 × 15 1.0331E+04 9.1900E+03 9.1900E+03

1000 × 5 7.8848E+04 8.1964E+04 8.0117E+04

1000 × 10 4.1502E+04 4.0530E+04 3.9305E+04

1000 × 15 2.9294E+04 2.6468E+04 2.5612E+04

10000 × 5 7.1516E+05 7.0218E+05 6.8232E+05

10000 × 10 4.0632E+05 3.6500E+05 3.5322E+05

10000 × 15 7.5693E+05 5.5530E+05 5.5530E+05

Table 4.2: Resource Utilisation Values for Min-Min, Max-Min and Skewness

Heuristic
Instance Min-Min Max-Min Skewness

50 × 5 0.7999 0.9838 0.9813

50 × 10 0.4382 0.4977 0.4970

50 × 15 0.2355 0.2593 0.2593

100 × 5 0.7263 0.9910 0.9907

100 × 10 0.4916 0.6416 0.6410

100 × 15 0.1809 0.2068 0.2067

1000 × 5 0.9596 0.9983 0.9993

1000 × 10 0.8826 0.9976 0.9949

1000 × 15 0.8121 0.9953 0.9954

10000 × 5 0.8891 0.9998 0.9999

10000 × 10 0.7993 0.9996 0.9994

10000 × 15 0.3310 0.5014 0.4873

25

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

4.3.2 Intermediate mode heuristics

Makespan and RU of min-min heuristic in intermediate mode are shown in Table 4.3

and Table 4.4 respectively. Makespan and RU of max-min heuristic in intermediate

mode are shown in Table 4.5 and Table 4.6 respectively. Each instances are

computed under 512 × 16 (Case 1), 1024 × 32 (Case 2) and 2048 × 64 (Case 3).

Min-min graphical representation of makespan value and RU value for u t hihi,

u t hilo, u t lohi and u t lolo are shown in Figure 4.1 and Figure 4.3 respectively.

Max-min graphical representation of makespan value and RU value for u t hihi,

u t hilo, u t lohi and u t lolo are shown in Figure 4.2 and Figure 4.4 respectively.

Here, t indicates type of consistency e.g. consistent, inconsistent and semi-consistent.

26

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Table 4.3: Makespan Values for Min-Min Heuristic in Intermediate Mode

Instance Case 1 Case 2 Case 3

u c hihi 1.0166E+07 2.8030E+07 2.5465E+07

u c hilo 1.7060E+05 2.8572E+06 2.4457E+06

u c lohi 3.2393E+05 2.7269E+03 2.5476E+03

u c lolo 5.8218E+03 2.8531E+02 2.4985E+02

u i hihi 3.9365E+06 7.0648E+06 3.5620E+06

u i hilo 8.5327E+04 6.6892E+05 3.9054E+05

u i lohi 1.3295E+05 7.2203E+02 3.6930E+02

u i lolo 2.9201E+03 6.9890E+01 4.0690E+01

u s hihi 5.5299E+06 1.7980E+07 1.5191E+07

u s hilo 1.1047E+05 1.6746E+06 1.3569E+06

u s lohi 1.7105E+05 1.7268E+03 1.4208E+03

u s lolo 4.0299E+03 1.7670E+02 1.5070E+02

Table 4.4: Resource Utilisation Values for Min-Min Heuristic in Intermediate Mode
Instance Case 1 Case 2 Case 3

u c hihi 0.9256 0.9105 0.9150

u c hilo 0.9541 0.9200 0.9274

u c lohi 0.9324 0.9007 0.9155

u c lolo 0.9384 0.9130 0.9334

u i hihi 0.9114 0.9041 0.8763

u i hilo 0.9645 0.8993 0.8659

u i lohi 0.9222 0.8878 0.9203

u i lolo 0.9617 0.8914 0.8260

u s hihi 0.9309 0.8910 0.8634

u s hilo 0.9453 0.9003 0.8907

u s lohi 0.8860 0.8641 0.8707

u s lolo 0.9438 0.8492 0.8588

27

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Table 4.5: Makespan Values for Max-Min Heuristic in Intermediate Mode

Instance Case 1 Case 2 Case 3

u c hihi 1.2800E+07 3.5985E+07 3.1587E+07

u c hilo 2.0339E+05 3.6091E+06 3.0689E+06

u c lohi 4.1913E+05 3.5161E+03 3.2692E+03

u c lolo 6.8891E+03 3.7003E+02 3.0880E+02

u i hihi 5.5328E+06 8.8184E+06 4.0519E+06

u i hilo 1.1861E+05 8.1415E+05 4.3581E+05

u i lohi 1.8903E+05 8.5709E+02 4.1651E+02

u i lolo 3.9876E+03 8.3320E+01 4.4050E+01

u s hihi 8.1120E+06 2.1557E+07 1.7156E+07

u s hilo 1.4574E+05 1.9977E+06 1.5633E+06

u s lohi 2.3635E+05 2.0091E+03 1.6200E+03

u s lolo 5.3405E+03 2.2031E+02 1.7633E+02

Table 4.6: Resource Utilisation Values for Max-Min Heuristic in Intermediate Mode
Instance Case 1 Case 2 Case 3

u c hihi 0.9962 0.9736 0.9619

u c hilo 0.9941 0.9763 0.9630

u c lohi 0.9905 0.9560 0.9696

u c lolo 0.9900 0.9820 0.9772

u i hihi 0.9747 0.9523 0.8540

u i hilo 0.9956 0.9193 0.8977

u i lohi 0.9682 0.9551 0.9062

u i lolo 0.9788 0.9429 0.8610

u s hihi 0.9397 0.9684 0.9265

u s hilo 0.9848 0.9591 0.9403

u s lohi 0.9863 0.9598 0.9393

u s lolo 0.9799 0.9349 0.9141

28

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Figure 4.1: Min-min graphical representation of makespan value for u t hihi,

u t hilo, u t lohi and u t lolo instances

Figure 4.2: Max-min graphical representation of makespan value for u t hihi,

u t hilo, u t lohi and u t lolo instances

Figure 4.3: Min-min graphical representation of RU for u t hihi, u t hilo, u t lohi

and u t lolo instances)

29

Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Figure 4.4: Max-min graphical representation of RU for u t hihi, u t hilo, u t lohi

and u t lolo instances

30

Chapter 5

X-DualMake Heuristics for

Independent Tasks in

Computational Grids

We propose three immediate mode heuristics: First-DualMake (F-DM) heuristic,

Best-DualMake (BDM) heuristic, and Worst-DualMake (WDM) heuristic. It is

based on the idle time of the resource. The goal of these heuristic is to reduce the idle

time of each resource instead of task completion time. For this, we need to calculate

the resource ready time. It is called as Pre-Makespan. It is the maximum ready

time of all available resources. After each task has been executed, the Makespan is

recalculated. It is called as Post-Makespan. In each heuristic, the name DualMake

stands for Pre-Makespan and Post-Makespan.

5.1 F-DM Heuristic

In this heuristic, the first indicates the first available resource for the upcoming

task. If no resource is available, then the first task is assigned to most probable

idle time resource. It searches for first available resources which has the enough idle

31

time. It stops when it finds an available resource. Makespan is calculated after each

assignment of task.

Algorithm 2 - F-DM

1: for all resource Rj // Rj = Resource j

2: Read RTj // RTj = Ready Time of Resource j

3: end for

4: Calculate the Mpr // Mpr = Pre-Makespan

5: for all resource Rj

6: TI [Rj] = Mpr[Rj] - RT [Rj] // TI [Rj] = Idle Time of Resource j, Mpr[Rj] = Pre-Makespan of Resource j,

RT [Rj] = Ready Time of Resource j

7: end for

8: Sort the resource Rj with respect to TI [Rj] in ascending order

9: do task Ti

10: for all resource Rj

11: Tij = TI [Rj]− ETij // ETij = Execution Time of task Ti on Resource Rj

12: Rc = Rj // Rc = Current Resource

13: if Tij ≥ 0 // Tij = Remaining Idle Time of Resource j if Ti assigns to Rj

14: Go to Step 18

15: end if

16: end for

17: end do

18: Assign Ti to resource Rc

19: Calculate the Mpo // Mpo = Post-Makespan

5.2 B-DM Heuristic

In this heuristic, the best indicates the best available resource for the upcoming

task. If no resource is available to map, then the task is assigned to most probable

idle time resource. It searches the entire available resources and chooses a resource

which is the smallest idle time. Unlike the F-DM, this heuristic is an alternative to

choose one resource. It works like the F-DM if no resource has sufficient idle time.

Algorithm 3 - B-DM

1: for all resource Rj // Rj = Resource j

2: Read RTj // RTj = Ready Time of Resource j

3: end for

4: Calculate the Mpr // Mpr = Pre-Makespan

5: for all resource Rj

6: TI [Rj] = Mpr[Rj] - RT [Rj] // TI [Rj] = Idle Time of Resource j, Mpr[Rj] = Pre-Makespan of Resource j,

RT [Rj] = Ready Time of Resource j

7: end for

8: do task Ti

9: for all resource Rj

10: Tij = TI [Rj] - ETij // ETij = Execution Time of task Ti on Resource Rj

11: end for

12: Sort Tij and its corresponding Rj in ascending order

13: do until Tij ≤ 0 && j ≤ Y

14: j = j + 1

15: end do

16: end do

17: Assign Ti to resource in index j

18: Calculate the Mpo // Mpo = Post-Makespan

5.3 W-DM Heuristic

upcoming task. It is similar to B-DM. But, it selects the worst resource instead of

best resource. Sometimes, W-DM outperforms than F-DM and B-DM. It searches

the entire available resources and chooses a resource which is the largest idle time.

It assigns the task to the resource which holds the largest idle time. It is same as

MCT heuristic. The idle time of a task in W-DM same as the earliest completion

time of a task. As a part of the complete idle time scenario, we have shown it.

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Algorithm 4 - W-DM

1: for all resource Rj // Rj = Resource j

2: Read RTj // RTj = Ready Time of Resource j

3: end for

4: Calculate the Mpr // Mpr = Pre-Makespan

5: for all resource Rj

6: TI [Rj] = Mpr[Rj] - RT [Rj] // TI [Rj] = Idle Time of Resource j, Mpr[Rj] = Pre-Makespan of Resource j,

RT [Rj] = Ready Time of Resource j

7: end for

8: do task Ti

9: for all resource Rj

10: Tij = TI [Rj] - ETij // ETij = Execution Time of task Ti on Resource Rj

11: end for

12: Find max(Tij)

13: end do

14: Assign Ti to resource Rj

15: Calculate the Mpo // Mpo = Post-Makespan

34

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

5.4 Implementation and results

The proposed heuristics are implemented and compared using the instances by Braun

et al. [10]. We have taken different sizes of ETC matrices such as 512 tasks and 16

resources and 1024 tasks and 32 resources. In each size, 12 different types of matrices

are compared. The instances are consisting of three parameters: distribution, the

nature of the matrix and task-resource heterogeneity. The general representations

of these instances are u a bbcc.0. Here, u indicate the distribution is uniform

Followed by, a indicates the nature of the matrix i.e. c-consistent, i-inconsistent

and s-semi-consistent. Next, bb indicates the task heterogeneity i.e. either hi-high

or lo-low, and cc indicates the resource heterogeneity i.e. either hi-high or lo-low.

In each nature of a matrix, we have four combinations (hihi, hilo, lohi, and lolo).

We have taken k = 20% in KPB heuristic and l = 0.6 and h = 0.9 in SA heuristic

for all types of instance. First, we simulate for 512 tasks and 16 resources. The

Makespan comparisons of consistent, inconsistent and semi-consistent metrics are

shown in Figure 5.1, Figure 5.2, and Figure 5.3 respectively. The resource utilization

comparison of consistent, inconsistent and semi-consistent metrics are shown in

Figure 5.4.

35

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Table 5.1: Makespan Values for MET, MCT, OLB, KPB, SA, F-DM, B-DM AND

W-DM Heuristics using 512 tasks and 16 resources

Instance MET MCT OLB KPB SA F-DM B-DM W-DM

u c hihi 4.7472E+07 1.1423E+07 1.4377E+07 2.2972E+07 1.2613E+07 1.3359E+07 1.1980E+07 1.1423E+07

u c hilo 1.1851E+06 1.8589E+05 2.2105E+05 4.8110E+05 1.9455E+05 1.9837E+05 1.9480E+05 1.8589E+05

u c lohi 1.4531E+06 3.7830E+05 4.7736E+05 7.1483E+05 4.2627E+05 4.4870E+05 3.9477E+05 3.7830E+05

u c lolo 3.9582E+04 6.3601E+03 7.3066E+03 1.6120E+04 8.1671E+03 6.7718E+03 6.4801E+03 6.3601E+03

u i hihi 4.5085E+06 4.4136E+06 2.6102E+07 4.2098E+06 4.6922E+06 1.0856E+07 7.6376E+06 4.4136E+06

u i hilo 9.6610E+04 9.4856E+04 2.7279E+05 8.9698E+04 1.0298E+05 1.8464E+05 1.3080E+05 9.4856E+04

u i lohi 1.8569E+05 1.4382E+05 8.3361E+05 1.3682E+05 1.4391E+05 3.3721E+05 2.5974E+05 1.4382E+05

u i lolo 3.3993E+03 3.1374E+03 8.9380E+03 3.0111E+03 3.4853E+03 5.4797E+03 4.4006E+03 3.1374E+03

u s hihi 2.5162E+07 6.6939E+06 1.9465E+07 6.9423E+06 7.1277E+06 1.2331E+07 9.3984E+06 6.6939E+06

u s hilo 6.0536E+05 1.2659E+05 2.5036E+05 1.4034E+05 1.4905E+05 1.6985E+05 1.5567E+05 1.2659E+05

u s lohi 6.7469E+05 1.8615E+05 6.0323E+05 1.9995E+05 1.9432E+05 3.6149E+05 2.8610E+05 1.8615E+05

u s lolo 2.1042E+04 4.4361E+03 8.9384E+03 5.0071E+03 5.8370E+03 6.2136E+03 5.5996E+03 4.4361E+03

Table 5.2: Resource Utilisation Values for MET, MCT, OLB, KPB, SA, F-DM,

B-DM AND W-DM Heuristics using 512 tasks and 16 resources
Instance MET MCT OLB KPB SA F-DM B-DM W-DM

u c hihi 1 0.9539 0.9467 0.9948 0.8905 0.9173 0.9740 0.9539

u c hilo 1 0.9707 0.9203 0.9992 0.9209 0.9681 0.9736 0.9707

u c lohi 1 0.9690 0.9285 0.9956 0.8326 0.9206 0.9762 0.9690

u c lolo 1 0.9515 0.9232 0.9984 0.7279 0.9566 0.9733 0.9515

u i hihi 0.6286 0.9329 0.9512 0.9438 0.8469 0.9546 0.9801 0.9329

u i hilo 0.7506 0.9598 0.9559 0.9412 0.8167 0.9196 0.9840 0.9598

u i lohi 0.5366 0.9496 0.9340 0.9464 0.9481 0.9547 0.9604 0.9496

u i lolo 0.7404 0.9657 0.9796 0.9688 0.7977 0.9674 0.9782 0.9657

u s hihi 0.1971 0.9283 0.9671 0.9326 0.8631 0.9863 0.9670 0.9283

u s hilo 0.2142 0.9383 0.9246 0.9507 0.7813 0.9802 0.9923 0.9383

u s lohi 0.2167 0.9539 0.9620 0.9656 0.8911 0.9831 0.9813 0.9539

u s lolo 0.2212 0.9519 0.9510 0.9628 0.7086 0.9514 0.9758 0.9519

36

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Table 5.3: Makespan Values for MET, MCT, OLB, KPB, SA, F-DM, B-DM AND

W-DM Heuristics using 1024 tasks and 32 resources

Instance MET MCT OLB KPB SA F-DM B-DM W-DM

u c hihi 1.5447E+08 3.2833E+07 4.2817E+07 5.3605E+07 3.7301E+07 3.5554E+07 3.3651E+07 3.2833E+07

u c hilo 1.5504E+07 3.2458E+06 4.4054E+06 5.4320E+06 3.2458E+06 3.9253E+06 3.9253E+06 3.2458E+06

u c lohi 1.4151E+04 3.0587E+03 4.4132E+03 4.8931E+03 3.0587E+03 3.7370E+03 3.2375E+03 3.0587E+03

u c lolo 1.5675E+03 3.2628E+02 4.4475E+02 5.4268E+02 4.1438E+02 4.0760E+02 3.3570E+02 3.2628E+02

u i hihi 7.4620E+06 7.5671E+06 8.4914E+07 7.4932E+06 7.5671E+06 2.3937E+07 1.6626E+07 7.5671E+06

u i hilo 7.6598E+05 7.1313E+05 7.8322E+06 6.9501E+05 7.1313E+05 2.7569E+06 1.5649E+06 7.1313E+05

u i lohi 8.5439E+02 7.5410E+02 8.6143E+03 7.2986E+02 7.5410E+02 2.2689E+03 1.7735E+03 7.5410E+02

u i lolo 9.1120E+01 7.2390E+01 9.0081E+02 7.1610E+01 7.2390E+01 2.8137E+02 1.5366E+02 7.2390E+01

u s hihi 8.4821E+07 1.9008E+07 7.7562E+07 2.8102E+07 1.9008E+07 3.5030E+07 2.6025E+07 1.9008E+07

u s hilo 8.0988E+06 1.8255E+06 8.1962E+06 2.6997E+06 1.8255E+06 3.7373E+06 2.4675E+06 1.8255E+06

u s lohi 8.3377E+03 1.8220E+03 7.9978E+03 2.6423E+03 1.8220E+03 4.3091E+03 2.4676E+03 1.8220E+03

u s lolo 8.0161E+02 1.9423E+02 8.2890E+02 2.7351E+02 1.9423E+02 3.6628E+02 2.6774E+02 1.9423E+02

Table 5.4: Resource Utilisation Values for MET, MCT, OLB, KPB, SA, F-DM,

B-DM AND W-DM Heuristics using 1024 tasks and 32 resources
Instance MET MCT OLB KPB SA F-DM B-DM W-DM

u c hihi 1 0.9355 0.8980 0.9957 0.8058 0.9702 0.9698 0.9355

u c hilo 1 0.9461 0.8886 0.9896 0.9461 0.8625 0.9562 0.9461

u c lohi 1 0.9226 0.8625 0.9832 0.9226 0.8623 0.9424 0.9226

u c lolo 1 0.9501 0.8646 0.9936 0.7075 0.8666 0.9713 0.9501

u i hihi 0.6605 0.9122 0.9410 0.9255 0.9122 0.9549 0.9665 0.9122

u i hilo 0.6058 0.9126 0.9621 0.9181 0.9126 0.9726 0.9607 0.9126

u i lohi 0.5799 0.9167 0.9613 0.9319 0.9167 0.9741 0.9733 0.9167

u i lolo 0.5264 0.9178 0.9302 0.9113 0.9178 0.9885 0.9768 0.9178

u s hihi 0.0577 0.9134 0.9290 0.3252 0.9134 0.9594 0.9711 0.9134

u s hilo 0.0602 0.9326 0.9510 0.3334 0.9326 0.9771 0.9746 0.9326

u s lohi 0.0604 0.8980 0.9430 0.3326 0.8980 0.8548 0.9705 0.8980

u s lolo 0.0614 0.9037 0.9489 0.3409 0.9037 0.8977 0.9711 0.9037

37

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Figure 5.1: Makespan comparisons for u c bbcc instances (512 tasks and 16

resources)

Figure 5.2: Makespan comparisons for u i bbcc instances (512 tasks and 16

resources)

38

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Figure 5.3: Makespan comparisons for u s bbcc instances (512 tasks and 16

resources)

Figure 5.4: Average Resource Utilisation comparisons for u a bbcc instances (512

tasks and 16 resources)

39

Chapter 5X-DualMake Heuristics for Independent Tasks in Computational Grids

Figure 5.5: Makespan comparisons for u a bbcc instances (1024 tasks and 32

resources)

Figure 5.6: Average Resource Utilisation comparisons for u a bbcc instances (1024

tasks and 32 resources)

40

Chapter 6

Conclusion

In this thesis, eight immediate mode heuristics are discussed and implemented. No

heuristic is giving better result in all instances. So, scheduling in heterogeneous

grid environment is a NP-Complete problem. MCT heuristic is giving better results

in consistent matrices and semiconsistent metrics. KPB is giving better results in

an inconsistent scenario [9]. Among the three proposed heuristic, W-DM is similar

to MCT. After MET, B-DM gives better results in consistent and semi-consistent

scenario. We have taken two performance measures to compare each heuristic:

Makespan and resource utilization. The proposed heuristics can be implemented

in a real heterogeneous grid environment. The work can be extended by using

decentralized task assignment, deadline for task assignment and fault-tolerance in

grid resource broker. The grid resource broker is a centralized module. If the broker

fails then it leads to failure of the grid environment. So, we need a fault-tolerance

based broker. The work can also be extended using preemptive tasks assignment.

41

Dissemination

1 P. Agrawal, P. M. Khilar and D. P. Mohapatra, ”Intermediate Mode Scheduling in

Computational Grid”, 3rd International Conference on Advances in Computing and

Communications (ACC), IEEE, 2013. (Accepted)

2 P. Agrawal, P. M. Khilar and D. P. Mohapatra, ”X-DualMake: A Novel Immediate Mode

Heuristics in Grid”, International Journal of Grid and Utility Computing, Inderscience,

2013. (Communicated)

Bibliography

[1] XiaoShan He, XianHe Sun, and Gregor von Laszewski. Qos guided min-min heuristic for grid

task scheduling. J. Comput. Sci. Technol., 18(4):442–451, July 2003.

[2] K. Etminani and M. Naghibzadeh. A min-min max-min selective algorihtm for grid task

scheduling. In Internet, 2007. ICI 2007. 3rd IEEE/IFIP International Conference in Central

Asia on, pages 1–7, 2007.

[3] M. Hemamalini. Article: Review on grid task scheduling in distributed heterogeneous

environment. International Journal of Computer Applications, 40(2):24–30, February 2012.

Published by Foundation of Computer Science, New York, USA.

[4] A. Rasooli, M. Mirza-Aghatabar, and S. Khorsandi. Introduction of novel rule based

algorithms for scheduling in grid computing systems. In Modeling Simulation, 2008. AICMS

08. Second Asia International Conference on, pages 138–143, 2008.

[5] A. Chakrabarti. Grid Computing Security. Springer-Verlag Berlin Heidelberg.

[6] Dingju Zhu and Jianping Fan. Aggregation grid. In Integration Technology, 2007. ICIT ’07.

IEEE International Conference on, pages 357–364, 2007.

[7] Saeed Parsa and Reza Entezari-Maleki. Rasa: A new task scheduling algorithm in grid

environment. World Applied sciences journal, 7:152–160, 2009.

[8] R. Buyya. High Performance Cluster Computing. Pearson Education.

[9] Fang Dong, Junzhou Luo, Lisha Gao, and Liang Ge. A grid task scheduling algorithm

based on qos priority grouping. In Grid and Cooperative Computing, 2006. GCC 2006. Fifth

International Conference, pages 58–61, 2006.

43

Bibliography

[10] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Blni, Muthucumaru Maheswaran,

Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, and

Richard F Freund. A comparison of eleven static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed

Computing, 61(6):810 – 837, 2001.

[11] B. SenthilKumar, P. Chitra, and G. Prakash. Robust task scheduling on heterogeneous

computing systems using segmented maxr-minct. 1(2):63–65.

[12] T Kokilavani and DI George Amalarethinam. Load balanced min-min algorithm for static

meta-task scheduling in grid computing. International Journal of Computer Applications,

20(2):43–49, 2011.

[13] N. Mansouri, G. Dastghaibyfard, and A. Horri. A novel job scheduling algorithm for improving

data grid’s performance. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2011 International Conference on, pages 142–147, 2011.

[14] R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of various mapping

algorithms is independent of sizable variances in run-time predictions. In Heterogeneous

Computing Workshop, 1998. (HCW 98) Proceedings. 1998 Seventh, pages 79–87, 1998.

[15] Ehsan Ullah Munir, Jianzhong Li, and Shengfei Shi. Qos sufferage heuristic for independent

task scheduling in grid. Information Technology Journal, 6(8):1166–1170, 2007.

[16] M. Maheswaran, S. Ali, H.J. Siegal, D. Hensgen, and R.F. Freund. Dynamic matching

and scheduling of a class of independent tasks onto heterogeneous computing systems. In

Heterogeneous Computing Workshop, 1999. (HCW ’99) Proceedings. Eighth, pages 30–44,

1999.

[17] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann.

[18] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for scheduling parameter

sweep applications in grid environments. In Heterogeneous Computing Workshop, 2000. (HCW

2000) Proceedings. 9th, pages 349–363, 2000.

[19] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali. Task execution time modeling

for heterogeneous computing systems. In Heterogeneous Computing Workshop, 2000. (HCW

2000) Proceedings. 9th, pages 185–199, 2000.

44

Bibliography

[20] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable

virtual organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222, August 2001.

[21] Manzur Murshed, Rajkumar Buyya, and David Abramson. Gridsim: A toolkit for the

modeling and simulation of global grids. Technical report, 2001.

[22] F. Azzedin and M. Maheswaran. Towards trust-aware resource management in grid computing

systems. In Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International Symposium

on, pages 452–452, 2002.

[23] F. Azzedin and M. Maheswaran. Evolving and managing trust in grid computing systems. In

Electrical and Computer Engineering, 2002. IEEE CCECE 2002. Canadian Conference on,

volume 3, pages 1424–1429 vol.3, 2002.

[24] B. Nazir and T. Khan. Fault tolerant job scheduling in computational grid. In Emerging

Technologies, 2006. ICET ’06. International Conference on, pages 708–713, 2006.

[25] Fatos Xhafa, Leonard Barolli, and Arjan Durresi. Batch mode scheduling in grid systems.

Int. J. Web Grid Serv., 3(1):19–37, March 2007.

[26] Zhan Gao, Siwei Luo, and Ding Ding. A scheduling mechanism considering simultaneous

running of grid tasks and local tasks in the computational grid. In Multimedia and Ubiquitous

Engineering, 2007. MUE ’07. International Conference on, pages 1100–1105, 2007.

[27] Y. Demchenko, C. de Laat, O. Koeroo, and D. Groep. Re-thinking grid security architecture.

In eScience, 2008. eScience ’08. IEEE Fourth International Conference on, pages 79–86, 2008.

[28] Xiu mei Wen, Wei Zhao, and Fan xing Meng. Research of grid scheduling algorithm based

on p2p grid model. In Electronic Commerce and Business Intelligence, 2009. ECBI 2009.

International Conference on, pages 41–44, 2009.

[29] J. Bagherzadeh and M. MadadyarAdeh. An improved ant algorithm for grid scheduling

problem. In Computer Conference, 2009. CSICC 2009. 14th International CSI, pages 323–328,

2009.

[30] I. Rodero, F. Guim, and J. Corbalan. Evaluation of coordinated grid scheduling strategies.

In High Performance Computing and Communications, 2009. HPCC ’09. 11th IEEE

International Conference on, pages 1–10, 2009.

45

Bibliography

[31] Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for grid

scheduling problems. Future Gener. Comput. Syst., 26(4):608–621, April 2010.

[32] H. Decai, Y. Yuan, Z. L. Jun, and Z. K. Qin. Research on tasks scheduling algorithms

for dynamic and uncertain computing grid based on a + bi connection number of spa.

4(10):1102–1109.

46

