
A Fast and Secure Way to Prevent

SQL Injection Attacks using

Bitslice Technique and

GPU Support

Piyush Mittal

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

A Fast and Secure Way to Prevent
SQL Injection Attacks using

Bitslice Technique and
GPU Support

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering

by

Piyush Mittal

(Roll 211CS2281)

under the supervision of

Prof. S.K. Jena

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Dedicated to my mother

and

voice club members...

Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

Dr. Sanjay Kumar Jena
Professor

May, 2013

Certificate

This is to certify that the work in the thesis entitled A Fast and Secure Way to

Prevent SQL Injection Attacks using Bitslice Technique and GPU Support by Piyush

Mittal, bearing roll number 211CS2281, is a record of an original research work

carried out by him under my supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science and Engineering. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Sanjay Kumar Jena

Acknowledgment

This dissertation would not have been possible without the guidance and the

help of several individuals in way or another contributed and extended their

valuable assistance in the course of this study.

My utmost gratitude to Prof. S. K. Jena, my dissertation adviser whose

sincerity and encouragement I will never forget. Prof. Jena has been my inspiration

as I hurdle all the obstacles in the completion of this research work and has

supported me throughout my project with patience and knowledge.

I also extend my thanks to the entire faculty of Dept. of Computer Science

and Engineering, National Institute of Technology, Rourkela who have encouraged

me throughout the course of Masters Degree.

I would like to thank all my seniors, especially Ravi Sankar Barpanda, Ashish Singh

and all my classmates for their help and support during the course of work.

And finally thanks to God for his blessings with wisdom and to my parents

and Voice Club members for their faith, patience that inspired me to walk upright

in my life.

Piyush Mittal

m@piyushmittal.com

Abstract
Most of the web applications are associated with database as back-end so there
are possibilities of SQL injection attacks (SQLIA) on it. Even SQLIA is among
top ten attacks according to Open Web Application Security Project (OWASP) but
still approaches are not able to give proper solution to this problem. Numbers of
measures are also discovered to overcome this attack, but which measure is more
convenient and can also provide fast access to application without compromising the
security is also a major concern. Some existing approaches are good in security but
they are not efficient to handle large user’s requests. To overcome these two issues at
the same moment Bitslice AES encryption and parallel AES encryption using CUDA
are used to prevent this attack. Bitslice AES uses a non-standard representation,
and view the processor as a SIMD computer, i.e. as 64 parallel one-bit processors
computing the same instruction. As AES round functions are good candidate for
parallel computations, AES encryption using CUDA gives tremendous encryptions
per second and application response remains constant even if users requests increase.

Contents

Certificate iii

Acknowledgement iv

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Existed Encryption Mechanisms . 2

1.1.1 ”An Authentication Scheme using Hybrid Encryption”

(Indrani Balasundaram, E.Ramaraj)-(2011) 2

1.1.2 ”SQLrand: Preventing SQL Injection Attacks” (Stephen

W.Boyd , Angelos D.Keromytis) 3

1.1.3 ”Random4: An Application Specific Randomized Encryption

Algorithm to Prevent SQL Injection” (2012) 4

1.1.4 SQL Injection Background . 4

1.2 Motivation . 6

1.3 Organization of thesis . 6

2 Bitslice AES 8

2.1 Encryption Mechanism . 8

vi

2.2 Summary . 11

3 CUDA PROGRAMMING MODEL 13

3.1 AES on GPU . 15

3.2 Summary . 21

4 Proposed Mechanism 22

4.1 Prevention of SQLIA using Bitslice AES 24

4.1.1 Example . 26

4.2 Prevention of SQLIA using AES on CUDA 28

4.3 Summary . 31

5 Implementation and Results 32

5.1 Implementation and Results using Bitslice AES 32

5.2 Implementation and Results using CUDA 34

6 Conclusion and Future Work 35

Bibliography 36

Dissemination 36

vii

List of Figures

1.1 Login and Verification Phase . 3

1.2 SQLrand System Architecture . 4

2.1 Storage of AES input in memory for 64 bit processor 9

2.2 Rearrangement of bits in words . 10

2.3 Final state after substitute byte and shift row transformation 12

3.1 The GPU Devotes More Transistors to Data Processing 14

3.2 Grid of Thread Blocks . 16

3.3 Serial and parallel code execution on host and device respectively . . 17

3.4 Parallel AES encryption . 19

4.1 Registration Page . 23

4.2 Login Page . 24

4.3 Search Page . 25

4.4 String storage in memory from sixteen users at a time from a web

form of four fields . 27

4.5 Encryption process of N users using CUDA Architecture 30

5.1 Runtime Analysis . 33

viii

List of Tables

5.1 Machines Used for testing . 32

5.2 Encryption per Second for different machines 33

5.3 Machines Used for testing . 34

5.4 Encryption per Second for different machines 34

ix

Chapter 1

Introduction

To prevent SQL injection one of the common measure is to use client side validation

where all the strings from the submitted form are checked corresponding to data

type, length or for any other set of malicious characters [1]. Tokenization in client

side validation is also one of the approach where data from all the fields are fetched

and converted to tokens and later these tokens are used to match with original

query [2]. But only client side validation is not enough as attacks can also be possible

using cookies where modified cookie can contain malicious string. Even attacks can

be possible if header is modified and it can bypass the submitted form [9]. To

avoid such issues, encryption mechanism is proposed. This makes it possible to

overcome the attacks by cookies, headers or even by second order injection like

Trojan horse [10]. Encryption solved major security issues but if in a web form the

numbers of fields are much more and also millions of users are accessing the form at

the same moment then encryption of all fields will be a great overhead.

In this paper, Bitslice AES encryption technique is introduced, where if m fields

are there in a web form and n users are accessing it simultaneously then (n x m)

encryption can be done in parallel. This gives almost constant time to access the

application without compromising the security.

1

Chapter 1 Introduction

1.1 Existed Encryption Mechanisms

Over the past years, there has been plenty of research going on in the both academic

institutes as well as industries to prevent injection attacks [?]. Following are some

encryption mechanism proposed by researchers which has been seen as more effective

one.

1.1.1 ”An Authentication Scheme using Hybrid

Encryption” (Indrani Balasundaram,

E.Ramaraj)-(2011)

They proposed an algorithm which uses both Advance Encryption Standard (AES)

and Rivest-Shamir-Adleman(RSA) to prevent SQL injection attacks [12]. In this

method a unique secret key is fixed or assigned for every client or user. On the

server side server uses private key and public key combination for RSA encryption.

In this method, two level of encryption is applied on login query:

� To encrypt user name and password symmetric key encryption is used with

the help of user’s secret key.

� To encrypt the query the scheme uses asymmetric key encryption by using

public key of the server.

The disadvantages of this approach:

� It is not made for URL based SQL injection attacks.

� It is Very difficult to maintain every user secret key at server side and client

side.

� There is no security mechanism at registration phase.

� Not efficient when large numbers of user accessing the application

simultaneously.

2

Chapter 1 Introduction

Figure 1.1: Login and Verification Phase

� Vulnerable to cache timing analysis.

1.1.2 ”SQLrand: Preventing SQL Injection Attacks”

(Stephen W.Boyd , Angelos D.Keromytis)

It uses randomization to encrypt SQL keywords [19]. However the main drawbacks

of this approach are

� This needs an additional proxy.

� Computational overhead and the need to remember the keywords.

3

Chapter 1 Introduction

Figure 1.2: SQLrand System Architecture

1.1.3 ”Random4: An Application Specific Randomized

Encryption Algorithm to Prevent SQL Injection”

(2012)

Their approach is based on SQLrand [5, 19] and randomization algorithm is used to

convert the input into a cipher text incorporating the concept of cryptographic salt.

However the main flaws in this approach are

� Use of lookup table that is not an efficient way.

� Can’t handle second order SQL injection attack.

However in our approach all these drawbacks are concerned and proposed solution

is secure and efficient.

1.1.4 SQL Injection Background

Why SQL Injection is a major Threat?

The vulnerability trends indicate that significant portion of the vulnerabilities are

in applications [25]. Further Cross site scripting and SQL injection are prominent

application vulnerabilities among those reported in applications. The SQL injection

attacks pose greater risk due to the fact that they impact databases which are critical

to any organization. From response perspective also, the remedial action need to

4

Chapter 1 Introduction

be taken by the developer or programmer since the flaw need to be corrected by

code level changes. This requires comparatively longer times to take corrective

actions after SQL injection vulnerabilities are detected. The attack trends also

indicate that SQL injection vulnerabilities are exploited during recent years, in mass

scale on vulnerable web applications. Mass scale web intrusions were carried out

by ASPROX botnet during 2008 and 2010 which resulted in infection of number

of websites in a short span of time. ASPROX used specially formed malicious

SQL queries to infiltrate vulnerable databases. In a typical attack ASPROX used

Google queries to harvest vulnerable ASP pages and carried out SQL injection

and subsequently inserting iFrame links into databases. These iFrames were used

to conduct drive-by-download attacks wherein visitors of affected websites are

redirected to malicious websites which are used to propagate malware on to users

systems. Hence, SQL Injection could be very dangerous in many cases depending

on the platform where the attack is launched and it gets success in injecting rogue

users to the target system.

Impact of SQL Injection

As we already mentioned SQL injection attack is accomplished by providing data

(inclusion of SQL queries) from an external source which is further used to

dynamically construct a SQL query. The impact and consequences of SQL injection

attacks can be classified as follows:

� Confidentiality: Loss of confidentiality is a major problem with SQL Injection

attacks since SQL databases generally hold sensitive and critical information

which could be viewed by unauthorized users as a consequence of successful

SQL injection attack.

� Integrity: Successful SQL injection attack allows external source to make

unauthorized modifications such as altering or even deleting information from

target databases.

5

Chapter 1 Introduction

� Authentication: Poorly written SQL queries do not properly validate user

names and passwords, which allows unauthenticated entity or attacker to

connect to the affected database or application as an authenticated user,

without initial knowledge of the password or even user name.

� Authorization: Successful exploitation of SQL injection vulnerability, allows

attacker to change authorization information and gain elevated privileges if

the authorization information is stored in the affected database In real world

scenario, it is very hard to detect the SQL injection prior to its impact. In

most number of scenarios, unauthorized activity is performed by the attacker

through valid user credentials or by using inherent features of database

application such as malicious modification of existing SQL Queries of web

application that are accessing critical sections of the affected databases.

1.2 Motivation

Some existing encrytion mechanism to prevent sql injection attacks are good in

security but they are not efficient to handle large user’s requests. To overcome

these two issues at the same moment, Bitslice AES encryption and parallel AES

encryption using Compute Unified Device Architecture(CUDA) can provide a better

solution to prevent this attack. Bitslice AES uses a non-standard representation,

and view the processor as a SIMD computer, i.e. as 64 parallel one-bit processors

computing the same instruction. As AES round functions are good candidate for

parallel computations, AES encryption using CUDA gives tremendous encryptions

per second and application response remains constant even if users requests increase.

1.3 Organization of thesis

Rest of this thesis is organized as follows. Chapter II discuses Bitslice AES technique.

Chapter III introduces CUDA progamiing model and how parallel encryption is done

6

Chapter 1 Introduction

using it. Chapter IV have details about the proposed mechanism i.e prevention of

SQLIA using bitslice AES and AES on CUDA. Chapter V have implementation and

results of the proposed mechanism. Finally, Chapter VI concludes the thesis.

7

Chapter 2

Bitslice AES

One of the non conventional but efficient ways to implement AES in software is

Bit-slice. It involves converting the algorithm into a series of logical bit operations

using AND, OR, XOR and NOT logic gates. When implemented on a microprocessor

with a N-bit register width, each bit in the register acts as a 1 bit processor doing

a different encryption, therefore N encryptions are done in parallel. This result in

tremendous throughput [2, 3].

Also this implementation is free from cache timing attacks. Traditional ciphers

make use of several tables to improve performance but that led to memory access

pattern of the implementation and make it vulnerable to cryptanalysis [6, 13, 14].

However bitslice implementation is based on logical operation and free from cache

timing attack.

2.1 Encryption Mechanism

In bit-slicing we use a non-standard representation and view the processor as a SIMD

computer. In order to encrypt the input, first number of words required to store

each AES input in memory are calculated. As shown in figure 3.4, if we have N bit

microprocessor then we require 128/N words to store each AES input. So if we have

64 bit microprocessor then we need 128/64 i.e. two words to store each AES input.

8

Chapter 2 Bitslice AES

Figure 2.1: Storage of AES input in memory for 64 bit processor

9

Chapter 2 Bitslice AES

Figure 2.2: Rearrangement of bits in words

Here, 64 AES inputs are taken and therefore we need 128 words in memory to store

these inputs. In each word 64 bits can be stored and therefore 128 AES input require

2 words. Now we need to rearrange bits in these words so that first bit of each word

contains first AES input. Second bit of each word contain second AES input. Third

bit of each word contain third AES input and so on. The final arrangement is shown

in Figure 2.2. After rearrangement we can see that each bit layer of words have

particular AES input and it forms the basis of parallel processing. All the AES

operations are converted to logical operations. Now each layer of words in memory

i.e. particular AES input is passed through Round function.

The first transformation in round function is Substitute byte. In substitute

function, instead of using table look that led to the cache crypt analysis, Rijmen

gave the idea that S Boxes can be implemented using combinational logics [6]. Eli

Biham in his paper A Fast New DES Implementation in Software modified the S

Box logic circuit and gate count of logic circuit is reduced to 100 gates [4]. Matthew

Kwan’s further modify the S box generation algorithm and gate count is reduced

10

Chapter 2 Bitslice AES

to average of 53.375 gates per S Boxes for DES [5]. Currently Roman Rusakov

introduced the S box in just 44.125 gates per S-box and its implementation is used

in John the Ripper cracker [15].

For AES as there is just one S Box, the gate count for it according to reference [3]

is 132, so there is much scope to further reduce it. Source program of Bitsliced AES

Sbox in x64 assembly language can be found from reference [16]. After substitute

byte transformation, the shift rows operation is carried out by move operation where

second row of the state is shifted left by eight bits, the third row by sixteen bits and

the fourth row by twenty four bits. The final state after substitute byte and shift

row is shown in figure 2.3. In mix column transformation we multiply the column

of the state matrix with permutation of [2 3 1 1]. If multiplication leads to overflow

then constant 1B16 is added. The Add round adds each word from memory to

corresponding word of key in memory. Further equations of MixColumn, ShiftRows,

AddRoundKey, Overflow constant and RoundKey(key) can be added at one place.

Output for first byte can be summarized as follows:

Bit'0= Bit40+Bit80+Bit120+ Key0+ overflow

Bit'1= Bit0+ Bit40+ Bit41+ Bit81+ Bit121+ Key1+ overflow

Bit'2= Bit1+ Bit41+ Bit42+ Bit82+ Bit122+ Key2

Bit'3= Bit2+ Bit42+ Bit43+ Bit83+ Bit123+ Key3+ overflow

Bit'4= Bit3+ Bit43+ Bit44+ Bit84+ Bit124+ Key4+ overflow

Bit'5= Bit4+ Bit44+ Bit45+ Bit85+ Bit125+ Key5

Bit'6= Bit5+ Bit45+ Bit46+ Key86+ Bit126+ Key6

Bit'7= Bit6+ Bit46+ Bit47+ Bit87+ Bit127+ Key7

where, overflow=Bit7+ Bit47

2.2 Summary

In this chapter, we have seen how AES encryption can be implemented using

bitslicing technique. This implementation is also free from cache timing attack.In

11

Chapter 2 Bitslice AES

Figure 2.3: Final state after substitute byte and shift row transformation

bit-slicing we use a non-standard representation and view the processor as a SIMD

computer.It involves converting the algorithm into a series of logical bit operations

using AND, OR, XOR and NOT logic gates. When implemented on a microprocessor

with a N-bit register width, each bit in the register acts as a 1 bit processor doing

a different encryption, therefore N encryptions are done in parallel. In the next

chapter, we will see how AES encryption can be done using CUDA on GPU.

12

Chapter 3

CUDA PROGRAMMING

MODEL

CUDA stands for (compute unified device architecture) and provide parallel

computing platform and programming model that increases computing performance

by harnessing the power of the graphics processing unit (GPU). It is best to solve

the problems that are intensive to data parallel computations i.e. the same program

is executed on many data elements in parallel with high arithmetic intensity, the

ratio of arithmetic operations to memory operations.

At CUDA core, the following key abstractions are there a hierarchy of thread

groups, shared memories, and barrier synchronizatio. All these for a programmer

are just as minimal set of extensions to C.This helps to provide data parallelism and

thread parallelism, along with coarse-grained data parallelism and task parallelism.

Programmer can now partition the problem into coarse sub-problems which can

be solved independently in parallel, and later into finer pieces which can be solved

cooperatively in parallel. This decomposition allows threads to perform correctly

while solving sub-problems, and also enables transparent scalability because every

sub-problem can be solved on any of the available processor cores: Therefore we can

execute compiled CUDA program on any number of processor cores, and physical

13

CUDA PROGRAMMING MODEL

Figure 3.1: The GPU Devotes More Transistors to Data Processing

processor count is required by only the runtime system.

CUDA features a parallel data cache or on-chip shared memory with very fast

general read and writes access, that threads use to share data each other. As opposed

to regular C functions, CUDA has the capability to define C functions, also called

kernels, that can execute N times in parallel by N different CUDA threads. The

threads that executes the kernel is given a unique thread ID that can be accessed

through in built-in threadIdx variable. threadIDx is a 3-component vector and

it involves one-dimensional, two-dimensional or three dimensional index forming a

one-dimensional, two-dimensional or three dimensional thread block. However the

relation between thread and its ID is same for one dimensional block but different

for two-dimensional and three dimensional block. For a two-dimensional block of

size (Dx, Dy), the thread ID of a thread of thread of index (x, y) is (x+yDx) and for

a three dimensional block of size (Dx, Dy, Dz) the thread ID of a thread of index (x,

y, z) is (x+yDx+zDxDy). Threads in a block synchronize themselves using shared

memory. We can also execute kernel by using multiple equally shaped threads blocks.

Such blocks can be arranged in a one-dimensional or two-dimensional grid of thread

blocks.

The CUDA threads shown in 3.2 are structured hierarchically, i.e. a maximum

of 512 threads forming a thread block which can be 1-, 2- or 3-dimensional, and

thread blocks forming a 1- or 2-dimensional grid. Another important concept is

14

Chapter 3 CUDA PROGRAMMING MODEL

thread scheduling. When a kernel is launched, every stream multiprocessor (SM)

is assigned a thread block. A warp, which consists of 32 threads, is executed

simultaneously on a SM at any time [22]. Though the warp is not a concept of CUDA

specification, good understanding to it can assist achieving high performance. One

principle in optimizing a CUDA program is to keep all the threads in a warp working

efficiently and none of them is doing useless work. Five types of memory are exposed

to developers through CUDA, namely global memory, constant memory, texture

memory, shared memory and registers. Shared memory and register are high speed

on-chip memory; global memory, constant memory and texture memory all reside

in the DRAM on board. Global memory is not cached while constant memory and

texture memory are cached and therefore the later two can also be accessed very fast

when there is no cache miss match. However, constant memory and texture memory

are read-only. CUDA uses C programming language with a minimal extension which

can greatly facilitate the learning. More information about the extension can be

found in [21, 23, 24]. In order to run CUDA threads we need a separate device that

behaves as a coprocessor to the actual host running the actual c program. Host

can accommodate serial code but to execute parallel kernel we need to make use of

device. We can also call parallel kernels in between the serial code.

3.1 AES on GPU

We need an efficient encryption kernel to fully utilize the parallel computing power

of GPU. All the AES transformations are good candidate to run parallel on GPU.

The first step before beginning the encryption process is to make cudaMalloc API

calls to GPU device for allocating memory to plaintext, ciphertext, expanded key

and AES tables [20].

15

Chapter 3 CUDA PROGRAMMING MODEL

Figure 3.2: Grid of Thread Blocks

16

Chapter 3 CUDA PROGRAMMING MODEL

Figure 3.3: Serial and parallel code execution on host and device respectively17

Chapter 3 CUDA PROGRAMMING MODEL

These buffers are created in the global memory or D-RAM of the GPU.

Inputdata, expanded key, and the AES tables are then copied from the host to the

device using the cudaMemcpy API call.

Now in order to frequently access the expanded key and plaintext both of them

are loaded to shared memory by using the variable as follows :

Where, share-plaintext and shared-roundkey are the variables of plaintext and

expanded key respectively, which reside in the shared memory space of a thread

block. thread-id refers to the thread ID.

To allow fast implementation of AES on processor we can make use of table

lookups that can combine all the round transformations in a single set.

Fo the key addition and the MixColumn transformation, we have

18

Chapter 3 CUDA PROGRAMMING MODEL

Figure 3.4: Parallel AES encryption

19

Chapter 3 CUDA PROGRAMMING MODEL

For the ShiftRow and the ByteSub transformations, we have:

We define tables T0 to T3 :

These are 4 tables with 256 4-byte word entries and make up for 4KByte of

total space. Using these tables, the round transformation can be expressed as:

20

Chapter 3 CUDA PROGRAMMING MODEL

3.2 Summary

In this chapter, we have seen how AES encryption can be done on GPU using CUDA.

CUDA is best to solve the problems that are intensive to data parallel computations

i.e. the same program is executed on many data elements in parallel with high

arithmetic intensity, the ratio of arithmetic operations to memory operations. All

the AES transformations are good candidate to run parallel on GPU. In the next

chapter, we will see how Bitslice AES and AES encryption using CUDA can be used

to defend SQL injection attack.

21

Chapter 4

Proposed Mechanism

To defend the SQLIA we need to concern all phases of an application (i.e.

Registration, Login and Search phase).

Registration Phase

In registration phase a user fills the form by relevant details like username, password,

date of birth, address, and other data related to application. Now in order to avoid

SQLIA we need to encrypt only those fields that we will use in conditional clause

of Sql query because with these fields only there will be a chance of SQLIA. For

encryption, we will use Bitslice AES. The 128 bit binary key which is equivalent to

16 ASCII character can be formed by appending first eight character of username

and first eight character of password. If username or password is less than eight

characters then binary bit 0 is appended to make it 128 bit long. Now using this

key all the relevant fields are encrypted and stored in database.

As an example, we can see registration page from Figure 4.1 that only [userid,

password] are used in Login page of Figure 4.2 and [degree, department, email id

and mobile number] are used in search page of Figure 4.3, so we need to encrypt only

these fields. After encryption these encrypted fields have to be stored in database.

22

Proposed Mechanism

Figure 4.1: Registration Page

23

Chapter 4 Proposed Mechanism

Figure 4.2: Login Page

Login Phase

In login phase a user need to enter username and password. Now we need to match

these user credentials from the database but the username and password in database

are encrypted because of registration phase. So before matching username and

password with database encryption of both the fields with Bitslice AES is required.

The key can be formed in the same way as in registration phase. Here there is no

need to store secret key in database as done by Indrani et al. [12].

Search Phase

In search phase the user interacts more with database and can fetch any stored data

based on some specific fields given in search form. As we know these specific fields

are stored in encrypted form in the database so we need to encrypt these fields before

firing SQL query.

4.1 Prevention of SQLIA using Bitslice AES

Most web application include login page with two basic fields ”user id” and

”password” that form a single SQL query as follow :

24

Chapter 4 Proposed Mechanism

Figure 4.3: Search Page

SELECT ”user” from ”tablename” where userid= ‘ ’ and password= ‘ ’;

Here we need just two encryption one for user id and other for password but

suppose after login in our web application we need more interaction with database

and more number of field are present in other web pages.

Let us consider the search form in Figure 4.3, it has four fields. Some of the

corresponding SOL queries to fetch relevant data from the table are as follow :

SELECT * from ”tablename” where id = ‘ ’;

SELECT * from ”tablename” where degree = ‘ ’ and dept = ‘ ’;

SELECT * from ”tablename” where eid =‘ ’;

So we need to do four encryption before appending the fields in these sql queries.

Now suppose if millions of users are accessing the search page at the same moment

then in total it require (Four x Million) encryptions and hence we need a better

solution to handle this situation.

We can solve this problem using Bit slice AES in a much efficient way, Suppose

if M users are present and there are N fields in the webpage then N X M encryption

can be done in parallel. To handle such requests we need to maintain a queue, where

all the requests keeps on adding and later for encryption same as the number of bits

of microprocessor string are fetched from queue. Each character string from the

25

Chapter 4 Proposed Mechanism

fields of web page is converted to corresponding 128 bit binary string that form the

AES input. As each character takes 8 binary bits so there can be a maximum of 16

characters that can accommodate in 128 bit AES input. If number of characters are

less than 16 then we can append 0 to make complete 128 bit binary string and if

characters are more than 16 then we can do encryption using modern block ciphers

like Electronic Code Book (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher

Feedback Mode etc. Now for encryption, according to Figure 3.4, the first bit of first

string will go to first bit of first word, the second bit of first string will go to second

bit of first word and in similar way one hundred twenty eighth bit of string will go

to one hundred twenty eighth bit of second word. Now the first bit of second string

will go to first bit of third word, the second bit of second string will go to second bit

of third word and in similar way one hundred twenty eighth bit of second string will

go to one hundred twenty eighth bit of fourth word and so on. So in this way we can

feed input to the bit slice AES and other operations can be carried out in similar way

as mention in section II. After encryption SQL query is fired and the corresponding

attribute is matched from database table. If match is appropriate then user can

access the data from the table otherwise it is an injection attack. Again a new set

of 64 strings are fetched from the queue and sent to encryption process.

4.1.1 Example

Let us consider the Figure 4.5, here N users are accessing the web form at the same

time having four fields. As in 64 bit machine we can do 64 encryption in parallel

so there can be maximum of sixteen user’s data that can be processed at the same

moment (16 users X 4 fields=64 encryption). First of all the requests from users

are stored in queue then consecutive 64 strings are fetched from the queue. Then

each string is converted to 128 bit binary string. As we can see from the figure that

all the bits of string 0 are set to the first bits of all words. Second strings have all

the bits on second bits of all the words and similarly for all other strings. After

encryption a new set of 16 users data is taken and this process continues till all the

26

Chapter 4 Proposed Mechanism

Figure 4.4: String storage in memory from sixteen users at a time from a web form

of four fields

27

Chapter 4 Proposed Mechanism

request has not finished.

4.2 Prevention of SQLIA using AES on CUDA

Most web application include login page with two basic fields ”user id” and

”password” that form a single SQL query as

Here we need just two encryption one for user id and other for password but

suppose after login in our web application we need more interaction with database

and more number of field are present in other web pages.

Let us consider the search form in Figure 4.3, it has four fields. Some of the

corresponding SOL queries to fetch relevant data from the table are as follow :

So we need to do four encryption before appending the fields in these sql queries.

Now suppose if millions of users are accessing the search page at the same moment

then in total it require (Four x Million) encryptions and hence we need a better

solution to handle this situation.

We can solve this issue using AES encryption on GPU in a much efficient way,

Suppose if M users are present and there are N fields in the webpage then N X M

encryption can be done in parallel. To handle such requests we need to maintain

a queue, where all the requests keeps on adding and later for encryption same as

the maximum number of GPU thread of CUDA block are fetched from queue. Each

character string from the fields of web page is converted to corresponding 128 bit

binary string that form the AES input. As each character takes 8 binary bits so there

can be a maximum of 16 characters that can accommodate in 128 bit AES input.

28

Chapter 4 Proposed Mechanism

If number of characters are less than 16 then we can append 0 to make complete

128 bit binary string and if characters are more than 16 then we can do encryption

using modern block ciphers like Electronic Code Book (ECB) mode, Cipher Block

Chaining (CBC) mode, Cipher Feedback Mode etc. After encryption SQL query is

fired and the corresponding attribute is matched from database table. If match is

appropriate then user can access the data from the table otherwise it is an injection

attack. Again a new set of strings are fetched from the queue and sent to encryption

process.

In the table-lookup, Each T table contains 256 4-byte word entries and these 4

T tables make up for 4KByte of total space. In CUDA-enabled GPU, it includes

the global memory, shared memory, texture memory and constant memory. Among

them, the global memory can be configured up to 4 GBytes. Given the flexibility of

the memory model, it is possible to efficiently use the four T-lookup tables. Besides,

the core of CUDA-enabled GPU is a scalar processor. Therefore, there is no need to

combine instructions in vector operations in order to get the full processing power.

Furthermore, the 32 bit logical exclusiveor operation can be executed natively on

CUDA-enabled GPU. The pseudo-code of kernel function of our parallelized AES

algorithm implemented on GPU.

From figure , we can see that every GPU thread of CUDA block performs 4 table

lookups and 4 32-bit exclusive-or operations in each AES round on a state.

29

Chapter 4 Proposed Mechanism

Figure 4.5: Encryption process of N users using CUDA Architecture

30

Chapter 4 Proposed Mechanism

Besides, two arrays of 1KB shared memory are used for the input, reading data

from the first and saving results of each AES round to the second one. Then the

arrays are swapped for the successive round. This strategy allows to complete the

encryption of the input block without exiting the kernel. So it is done without using

the CPU to manage an external for loop to launch sequentially all the AES rounds.

At the end of the computation, the resulted output data is written again in the

global memory and then returned to the CPU.

4.3 Summary

In this chapter, we have seen how Bitslice AES and AES encryption using CUDA

can be used to prevent SQL injection attack. The prevention process considered all

the phases of the application i.e Registeration, Login and Search phase.

31

Chapter 5

Implementation and Results

5.1 Implementation and Results using Bitslice

AES

In this section, we have considered three different systems as listed in table 5.1.

In order to get the benchmark of the performance of Bitslice AES the maximum

encryption per second on three machines is as shown in table 5.2.

Table 5.1: Machines Used for testing

Types Microprocessor CoreSpeed Memory O.S Compiler

1 Core i7-2600K 3.40 GHz 4GBytes Linux gcc 4.6.1-9ubuntu3

2 Celeron E3200 oc 4.00 GHz 2GBytes Linux gcc 4.6.2 SUSE

3 Core 2 Duo 3.15 GHz 2GBytes Linux gcc 4.6.2

For type 1 machine, we can see that maximum of 5802K encryptions can be

done in parallel and for Type 2 and Type 3, 4463K and 3500K encryptions .

32

Chapter 5 Implementation and Results

Table 5.2: Encryption per Second for different machines

Machine Encryptions per second

Type 1 5802K

Type 2 4463K

Type 3 3500K

Figure 5.1: Runtime Analysis

Therefore, Bitslice AES encryption reduces much overhead of encryption process

while preventing SQLIA.

Also to analyze Bitslice AES encryption, we have compared our proposed scheme

with two of the existing schemes. The first scheme PSQLIA [17] is based on

hash functions and the second scheme PSQLIA-HBE [18] is based on Elgamal

cryptosystem. From the graph 5.1, we can see that with the increase in number

of users the time for encryption also increases for both PSQLIA and PSQLIA-HBE

scheme. But in proposed scheme the time to encrypt is much less then compared

scheme and also it is approximately constant.

33

Chapter 5 Implementation and Results

5.2 Implementation and Results using CUDA

In this section, we have considered three different systems as listed in table 5.3. In

order to get the benchmark of the performance of AES on GPU using CUDA the

maximum encryption per second on three machines is as shown in table 5.4.

Table 5.3: Machines Used for testing

Types Microprocessor Memory GPU O.S

1 i3 4GB 1333MHz GeForce 9800GT Linux

2 Core 2 Duo 2GB 2GHz GeForce 9600m Linux

3 i5 1 GB GTX 460 1024M Linux

Table 5.4: Encryption per Second for different machines

Machine Encryptions per second

Type 1 5745K

Type 2 1795K

Type 3 10527K

For type 1 machine, we can see that maximum of 5745K encryptions can be

done in parallel and for Type 2 and Type 3, 1795K and 10527K encryptions. This

achieves a great performance and SQLIA attack can be handled very efficiently.

34

Chapter 6

Conclusion and Future Work

In this thesis, how Bitslice AES and AES encryption using Cuda can be used to

prevent SQL injection attack is presented. This makes it possible to handle large

users request in a much efficient manner without compromising the security. Bitslice

AES technique is also free from cache timing attack and second order injections as

well. Here we have also compared the performance of our proposed system with two

of other techniques and found that even if number of users increases for accessing

the web form but time to execute the requests always approximately constant. Still

there is much possibility to enhance this work by making bitslice AES to work on

GPU and other parallelization techniques.

35

Dissemination

Conference

� Piyush Mittal, Sanjay Kumar Jena, A Fast and Secure Way to Prevent SQL Injection

Attacks, Proceedings of 2013 IEEE International Conference on Information and

Communication Technologies (ICT 2013), Tamil Nadu, India.

Bibliography

[1] Rahul Johari, Pankaj Sharma. A Survey On Web Application Vulnerabilities(SQLIA,

XSS)Exploitation and Security Engine for SQL Injection, 2012 International Conference on

Communication Systems and Network Technologies, pp 453-458.

[2] NTAGW ABIRA Lambert, KANG Song Lin, Use of Query Tokenization to detect and prevent

SQL Injection Attacks, 2010 3rd IEEE International Conference on Computer Science and

Information Technology (ICCSIT), pp 438-440.

[3] Chester Rebeiro, David Selvakumar, A.S.L Devi, Bitslice Implementation of AES, International

Conference, CANS 2006, Suzhou, China, December 8-10, 2006; Proceedings, LNCS, Springer,

Vol 4301, pp 203-212.

[4] Eli Biham, A Fast New DES Implementation in Software, Fast Software Encryption 4th

International Workshop, FSE97, 1997; Proceedings, LNCS, Springer, Vol 1267, pp 260-271.

[5] M. Kwan, Bitslice implementation of DES, http://www.darkside.com.au/bitslice

[6] V. Rijmen, Efficient Implementation of the Rijnadael Sbox,

http://citeseer.ist.psu.edu/rijmen00efficient.html

[7] Srinivas Avireddy,Varalakshmi Perumal, Narayan Gowraj, Ram Srivatsa Kannan, Prashanth

Thinakaran, Sundaravadanam Ganapathi, Jashwant Raj Gunasekaran, Sruthi Prabhu,

Random4: An Application Specific Randomized Encryption Algorithm to prevent SQL injection,

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), pp 1327-1333.

[8] J. Daemen, V. Rijman, AES Proposal: Rijndael, Version 2, AES submission, 1999,

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf.

[9] Chad Dougherty, Practical Identification of SQL Injection Vulnerabilities, 2012 Carnegie Mellon

University. Produced for US-CERT

[10] Lori Mac Vittie, SQL Injection Evasion Detection, 2007 white paper, F5 Networks, Inc.

37

Vitae

[11] A S Yeole, B B Meshram, Analysis of Different Technique for Detection of SQL Injection,

International conference and Workshop on Emerging Trends in Technology, ACM New York,

pp 963-966.

[12] Indrani Balasundaram, E.Ramaraj, An Authentication Mechanism to prevent SQL Injection

Attacks, 2011 International Journal of Computer Applications, Volume 19 No.1

[13] D.A.Osvik, A. Shamir, E. Tromer, Cache attacks and Countermeasures: the case of AES,

2005, http://eprint.iacr.org/2005/271.pdf.

[14] D.J. Bernstein, Cache timing attacks on AES, 2005,

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[15] http://www.openwall.com/lists/john-users/2011/06/22/1

[16] http://www.networkdls.com/articles/sbox.pdf

[17] Shaukat Ali, Azhar Rauf, and Huma Javed, SQLIPA: An Authentication Mechanism Against

SQL Injection, 2009, European Journal of Scientific Research, ISSN 1450-216X Vol.38 No.4,

pp 604-611.

[18] Indrani Balasundaram, E.Ramaraj, An Authentication Scheme for Preventing SQL Injection

Attack Using Hybrid Encryption (PSQLIA-HBE), 2011 European Journal of Scientific

Research,ISSN 1450-216X Vol.53 No.3 (2011), pp.359-368

[19] Stephen W.Boyd , Angelos D.Keromytis ”SQLrand: Preventing SQL injection Attacks

[20] Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang, Conglan Lu, Password Recovery for

RAR Files Using CUDA, 2010 2nd International Conference on Computer Engineering and

Technology

[21] Guang Hu, Jianhua Ma, Benxiong Huang, Password Recovery for RAR Files Using CUDA,

2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing

[22] NVIDIA Corporation, NVIDIA CUDA Programming Guide Version 2.1, 2008.

[23] NVIDIA Corporation, NVIDIA CUDA Reference Manual Version 2.0, 2008.

[24] NVIDIA Corporation, The CUDA Compiler Driver NVCC Version 2.1, 2008.

[25] Rahul Johari, Pankaj Sharma, A Survey On Web Application

Vulnerabilities(SQLIA,XSS)Exploitation and Security Engine for SQL Injection, 2012

International Conference on Communication Systems and Network Technologies

38

Vitae

[26] Ke Wei, M. Muthuprasanna, Suraj Kothari ,Preventing SQL Injection Attacks in Stored

Procedures, Proceedings of the 2006 Australian Software Engineering Conference (ASWEC06).

[27] Mehdi Kiani, Andrew Clark and George Mohay,Evaluation of Anomaly Based Character

Distribution Models in the Detection of SQL Injection Attacks, The Third International

Conference on Availability, Reliability and Security

[28] A S Yeole, B B MeshramAnalysis of Different Technique for Detection of SQL Injection,

International Conference and Workshop on Emerging Trends in Technology (ICWET 2011)

TCET, Mumbai, India

[29] Qian XUE, Peng HE,On Defense and Detection of SQL SERVER Injection Attack, The

Fund for Optional Scientific Research of Shannxi College of Communication Technology (NO.

YJ10002)

[30] Daniel J. Bernstein1, Peter Schwabe2,New AES software speed records,

[31] Prasant Singh Yadav, Dr pankaj Yadav, Dr. K.P.Yadav,A Modern Mechanism to Avoid SQL

Injection Attacks in Web Applications, IJRREST: International Journal of Research Review in

Engineering Science and Technology, Volume-1 Issue-1, June 2012

[32] Chad Dougherty,Practical Identification of SQL Injection Vulnerabilities, 2012 Carnegie

Mellon University. Produced for US-CERT, a government organization.

[33] Lori Mac Vittie,SQL Injection Evasion Detection, White Paper, Technical Marketing Manager

[34] Deevi Radha Rani, B.Siva Kumar, L.Taraka Rama Rao, V.T.Sai Jagadish, M.Pradeep,Web

Security by Preventing SQL Injection Using Encryption in Stored Procedures, Deevi Radha Rani

et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol.

3 (2) , 2012,3689-3692

[35] Nikita Patel, Fahim Mohammed, Santosh Soni, SQL Injection Attacks: Techniques and

Protection Mechanisms, International Journal on Computer Science and Engineering (IJCSE)

[36] Dr K.V.N.Sunitha, Mrs.M. Sridevi Automated Detection System for SQL Injection Attack,

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (4)

[37] Perumalsamy Ramasamy,Sql Injection Attack Detection AND PREVENTION, International

Journal of Engineering Science and Technology (IJEST).

[38] Philipp Grabher, Johann Groschadl, and Dan Page,Light-Weight Instruction Set Extensions

for Bit-Sliced Cryptography

39

Vitae

[39] Tomoiag Radu Daniel, Stratulat Mircea, AES Algorithm Adapted on GPU Using CUDA for

Small Data and Large Data Volume Encryption, International Journal of Applied Mathematics

And Informatics.

[40] Peter M. Maurer, William J. Schilp, Software Bit-Slicing: A Technique for Improving

Simulation Performance, National Science Foundation under grant number MIP-9403414.

40

