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AbstractAbstractAbstractAbstract    

 

Since the publication of Terzaghi’s theory on the ultimate bearing capacity of shallow 

foundations in 1943, results of numerous studies—both theoretical and experimental—by 

various investigators have been published. Most of the studies relate to the case of a 

vertical load applied centrally to the foundation. Meyerhof (1953) developed empirical 

procedures for estimating the ultimate bearing capacity of foundations subjected to 

eccentric and inclined loads. Based on the review of the existing literature on the bearing 

capacity of shallow foundations, it appears that limited attention has been paid to estimate 

the ultimate bearing capacity when the foundation is subjected to both eccentric and 

inclined load and the objective of present study stems from this paucity. Besides, only a 

few studies have been made to estimate the average settlement of embedded footings 

when subjected to eccentric load. 

In order to arrive at the objective and to quantify certain parameters, extensive laboratory 

model tests have been conducted to determine the ultimate bearing capacity of shallow 

strip foundation resting over sand bed and subjected to eccentric and inclined loads. The 

tests have been conducted on two types of sand i.e. dense sand and medium dense sand. 

The load inclination has been varied from 00 to 200 whereas the eccentricity varies from 0 

to 0.15B (B = width of footing). Depth of the footing is varied from 0 to B. Traditionally, 

in all analysis of such problems; the line of load application is towards the center line of 

the footing. However, in this thesis, it is investigated for the two possible ways of load 

application i.e. (i) towards and (ii) away from the center line of the footing. 

Based on the model test results, an empirical non-dimensional reduction factor has been 

developed for each mode of load application. This reduction factor will compute the 

ultimate bearing capacity of footing subjected to eccentric and inclined load by knowing 

the ultimate bearing capacity of footings under centric vertical load at the same depth of 

footing. Similarly, neural network models have been developed under each mode of load 

application and combined mode of load application to compute reduction factor as 

described above. Finally, the developed equations are compared with the existing 

theories. 
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In addition to bearing capacity, the settlement of eccentrically loaded embedded footings 

is investigated. Based on some of those laboratory test results as discussed above, an 

empirical procedure has been developed to estimate the average settlement of the 

foundation subjected to an average allowable eccentric load per unit area, where the 

applied load is vertical.  

 

 

 

 



  

   

vii 

Table of ContentsTable of ContentsTable of ContentsTable of Contents    
 

Acknowledgements iii 

Abstract v 

Contents vii 

List of Tables xi 

List of Figures xiv 

List of Abbreviations and Symbols xx 

1. INTRODUCTION 1 

2. LITERATURE REVIEW 4 

2.1 Introduction 4 

2.2 Bearing Capacity of Shallow Foundations on granular soil 4 

2.2.1 Central Vertical Loading 5 

2.2.2 Eccentric Vertical Condition 10 

2.2.3 Central Inclined Condition 16 

2.2.4 Eccentric Inclined Condition 24 

2.3 Scope of the present study 30 

3. MATERIALS USED AND EXPERIMENTAL PROCEDURE 33 

3.1 Introduction 33 

3.2 Materials Used 33 

3.2.1 Sand 33 

3.3 Experimental procedure 35 

4. ULTIMATE BEARING CAPACITY OF ECCENTRICALLY INCLINED 

LOADED STRIP FOOTING WHEN THE LINE OF LOAD APPLICATION IS 

TOWARDS THE CENTER LINE OF THE FOOTING 39 

4.1 Introduction 39 

4.2 Experimental Module 41 

4.3 Model Test Results 43 

4.3.1 Central Vertical Loading Conditions 43 

4.3.2 Eccentric Vertical Loading Conditions 50 



  

   

viii 

4.3.3 Centric Inclined Loading Condition 59 

4.3.4 Eccentric Inclined Loading Conditions 70 

4.4 Analysis of Test Results 75 

4.5 Comparison 81 

4.5.1 Comparison with Meyerhof [1963] 81 

4.5.2 Comparison with Saran and Agarwal [1991] 86 

4.5.3 Comparison with Loukidis et al. [2008] 89 

4.6 Conclusions 92 

5. ULTIMATE BEARING CAPACITY OF ECCENTRICALLY INCLINED 

LOADED STRIP FOOTING ON GRANULAR SOIL WHEN THE LINE OF 

LOAD APPLICATION IS AWAY FROM THE CENTER LINE OF THE 

FOOTING 93 

5.1 Introduction 93 

5.2 Experimental Module 95 

5.3 Model Test Results 96 

5.4 Analysis of Test Results 117 

5.5 Comparison 123 

5.5.1 Comparison with Loukidis et al. [2008] 123 

5.6 Conclusions 125 

6. PREDICTION OF ULTIMATE BEARING CAPACITY OF 

ECCENTRICALLY INCLINED LOADED STRIP FOOTING BY ANN: PART I    

                                                                                                                                         127 

6.1 Introduction 127 

6.2 Overview of Artificial Neural Network 128 

6.2.1 Biological model of a neuron 128 

6.2.2 The concept of Artificial Neural Network 129 

6.2.3 Application of ANN in Geotechnical Engineering 130 

6.3 Problem Definition 130 

6.4 Database and Preprocessing 131 

6.5 Results and Discussion 136 

6.5.1 Sensitivity Analysis 140 

6.5.2 Neural Interpretation Diagram (NID) 142 



  

   

ix 

6.5.3 ANN model equation for the Reduction Factor based on trained neural 

network 143 

6.6 Comparison 145 

6.6.1 Comparison with Developed Empirical Equation 145 

6.6.2 Comparison with Meyerhof [1963] 147 

6.6.3 Comparison with Saran and Agarwal [1991] 148 

6.6.4 Comparison with Loukidis et al. [2008] 149 

6.7 Conclusions 150 

7. PREDICTION OF ULTIMATE BEARING CAPACITY OF 

ECCENTRICALLY INCLINED LOADED STRIP FOOTING BY ANN: PART II  

                                                                                                                                         152 

7.1 Introduction 152 

7.2 Problem Definition 153 

7.3 Database and Preprocessing 154 

7.4 Results and Discussion 154 

7.4.1 Sensitivity Analysis 161 

7.4.2 Neural Interpretation Diagram (NID) 162 

7.4.3 ANN model equation for the Reduction Factor based on trained neural 

network 163 

7.5 Comparison 165 

7.5.1 Comparison with Developed Empirical Equation 165 

7.5.2 Comparison with Loukidis et al. [2008] 167 

7.6 Conclusions 168 

8. PREDICTION OF ULTIMATE BEARING CAPACITY OF 

ECCENTRICALLY INCLINED LOADED STRIP FOOTING BY ANN: PART III  

                                                                                                                                          170 

8.1 Introduction 170 

8.2 Database and Preprocessing 171 

8.3 Results and Discussion 177 

8.3.1 Sensitivity Analysis 181 

8.3.2 Neural Interpretation Diagram (NID) 183 

8.3.3 ANN model equation for the Reduction Factor based on trained neural 

network                                                                                                                    184 



  

   

x 

8.4 Comparison 187 

8.5 Conclusions 189 

9. ESTIMATION OF AVERAGE SETTLEMENT OF SHALLOW STRIP 

FOUNDATION ON GRANULAR SOIL UNDER ECCENTRIC LOADING 191 

9.1 Introduction 191 

9.2 Development of an empirical equation from DeBeer’s chart (1967) 192 

9.3 Average settlement at ultimate load 
( )






















BeBD

u

f
B

s

/,/

 193 

9.4 Average load per unit area and Average settlement relationship 197 

9.5 Ultimate load under eccentric loading 199 

9.6 Suggested procedure for estimation of average settlement at allowable load 201 

9.7 Conclusions 202 

10. CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH WORK 203 

10.1 Conclusions 203 

10.2 Future research work 205 

 

References 207 

Appendix A 216 

Published Papers  235 

 

 

 

 

 

 

    

    

    

    



  

   

xi 

 

List of TablesList of TablesList of TablesList of Tables    

 
Table 2.1: Summary of Bearing Capacity factors .............................................................7 

Table 2.2: Summary of Shape and Depth factors ..............................................................8 

Table 2.3: Values of a and k .......................................................................................... 14 

Table 3.1. Geotechnical property of sand ....................................................................... 34 

Table 4.1. Sequence of model test for Dense sand in Partially Compensated condition .. 42 

Table 4.2. Sequence of model test for Medium Dense sand in Partially Compensated 

condition ................................................................................................................ 42 

Table 4.3. Model test parameters for the case of Centric Vertical Loading condition...... 43 

Table 4.4. Calculated values of ultimate bearing capacities qu by Terzaghi (1943) and 

Meyerhof (1951) for centric vertical condition along with Present experimental 

values .................................................................................................................... 48 

Table 4.5. Calculated values of ultimate bearing capacities qu by Hansen (1970) and 

Vesic (1973) for centric vertical condition along with Present experimental values 48 

Table 4.6. Model test parameters for the case of Eccentric Vertical Loading condition .. 51 

Table 4.7. Calculated values of ultimate bearing capacities (qu) by Meyerhof (1953) for 

eccentric vertical condition along with Present experimental values ....................... 54 

Table 4.8. Calculated values of ultimate bearing capacities (qu) by Prakash and Saran 

(1971) for eccentric vertical condition along with Present experimental values for 

medium dense sand ................................................................................................ 56 

Table 4.9. Calculated values of Rk by Purkayastha and Char (1977) for eccentric vertical 

condition along with Present experimental values .................................................. 57 

Table 4.10. Calculated values of ultimate bearing capacities qu by Loukidis et al. (2008) 

for eccentric vertical condition along with Present experimental values .................. 58 

Table 4.11. Model test parameters for the case of Centric Inclined Loading condition ... 60 

Table 4.12. Calculated values of ultimate bearing capacities (qu) by using formulae of 

existing theories for centric inclined condition along with Present experimental 

values .................................................................................................................... 66 

Table 4.13. Calculated values of Muhs and Weiss (1973) ratio for centric inclined 

condition along with Present experimental values .................................................. 68 

Table 4.14. Calculated values of ultimate bearing capacities by using formula of Loukidis 

et al. (2008) for centric inclined condition along with Present experimental values. 69 

Table 4.15. Model test parameters for the case of Eccentric Inclined Loading condition 70 



  

   

xii 

 

Table 4.16. Model test results ........................................................................................ 77 

Table 4.17. Variation of a, m and n [Eq. (4.5)] along with R2 values .............................. 80 

Table 4.18 Reduction Factor Comparison of Meyerhof (1963) with Present results ........ 82 

Table 4.19. Comparison of Reduction Factors corresponding to Saran and Agarwal 

(1991) along with Present results ........................................................................... 87 

Table 4.20. Comparison of Reduction Factors Obtained from Eqs. (4.15) and (4.13) with 

Eq. (4.10) for Df /B = 0........................................................................................... 90 

Table 5.1. Sequence of Model Tests on Dense sand as per Figure 5.1(b) ........................ 95 

Table 5.2. Sequence of Model Tests on Medium Dense sand as per Figure 5.1(b) .......... 96 

Table 5.3. Ratio of ultimate bearing capacity qu in both conditions i.e. partially 

compensated and reinforced case with ultimate bearing capacity qu in central vertical 

condition .............................................................................................................. 108 

Table 5.4. Model Test Results...................................................................................... 119 

Table 5.5. Experimental Ultimate Bearing Capacity for Vertical Loading (α = 0) ........ 121 

Table 5.6. Values of a and m based on Regression Analyses (for α = 0 —Tables 5.1 and 

5.2) along with R2 value ....................................................................................... 122 

Table 5.7. Values of n Based on Regression Analyses (for α > 0 and e/B ≥ 0) along with 

R
2 value ............................................................................................................... 122 

Table 5.8. Comparison of Reduction Factors Obtained from Eq. (5.7) with Eq. (5.6) for 

Df /B = 0 .............................................................................................................. 125 

Table 6.1. Dataset used for training and testing of ANN model [Chapter 4] ................. 133 

Table 6.2. Statistical values of the parameters .............................................................. 137 

Table 6.3. Values of connection weights and biases ..................................................... 138 

Table 6.4. Cross-correlation of the input and output for the reduction factor ................ 141 

Table 6.5. Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach ................................................................................. 142 

Table 7.1. Dataset used for training and testing of ANN model [Chapter 6] ................. 156 

Table 7.2. Statistical values of the parameters .............................................................. 158 

Table 7.3. Values of connection weights and biases ..................................................... 159 

Table 7.4. Cross-correlation of the input and output for the reduction factor ................ 162 

Table 7.5. Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach ................................................................................. 162 

Table 8.1. Dataset used for training and testing of ANN model .................................... 172 

Table 8.2. Statistical values of the parameters .............................................................. 177 

Table 8.3. Values of connection weights and biases ..................................................... 180 



  

   

xiii 

 

Table 8.4.  Cross-correlation of the input and output for the reduction factor ............... 182 

Table 8.5.  Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach ................................................................................. 183 

Table 9.1. Values of a based on regression analysis along with R2 ............................... 195 

Table 9.2. Value of b based on regression analysis along with R2 ................................. 196 

Table 9.3.   Ultimate load per unit area and corresponding average settlement based on 

the eccentrically loaded embedded tests. [Note: width of foundation B = 100 mm; 

relative density Dr for dense and medium dense sands are 69% and 51% 

respectively.] ....................................................................................................... 200 

Table A.1. Comparative value of Present analysis results with other approaches .......... 216 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiv 

 

List of FiguresList of FiguresList of FiguresList of Figures    

 
Figure 2.1: Ultimate load per unit length Qu on a strip foundation for centric vertical load

 ................................................................................................................................6 

Figure 2.2: Eccentrically loaded footing (Meyerhof, 1953) ............................................ 11 

Figure 2.3: Derivation of the bearing capacity theory by Prakash and Saran (1971) ....... 12 

Figure 2.4: Solutions to bearing pressure p  on cohesive soil for different soil-footing 

interface models (no surcharge).............................................................................. 15 

Figure 2.5: Solutions to bearing pressure p  on cohesive-frictional soil for different soil-

footing interface models (weightless soil, no surcharge) ......................................... 15 

Figure 2.6: Numerical solutions to bearing pressure of eccentrically loaded footings 

(tension cut-off interface) ....................................................................................... 16 

Figure 2.7: Inclined load applied to a rough strip foundation [Meyerhof (1953)] ............ 18 

Figure 2.8: Ultimate load Q on a foundation for centric inclined load ............................ 19 

Figure 2.9: Strip footing under inclined load along (a) length and (b) breadth [Sastry and 

Meyerhof (1987)] ................................................................................................... 22 

Figure 2.10: Eccentric inclined load on foundation [Meyerhof (1963)] .......................... 25 

Figure 2.11: (a) Water table correction factor W′ (b) Settlement per unit pressure from 

standard penetration resistance ............................................................................... 29 

Figure 2.12: Eccentrically inclined load on a strip foundation: line of load application (a) 

towards the center line, and (b) away from the center line of the footing ................ 31 

Figure 3.1: Grain-size distribution curve of sand ............................................................ 34 

Figure 3.2: Three dimensional view of laboratory model experimental setup. ................ 37 

Figure 3.3: Photographic image of sand sample at the start of experiment ...................... 38 

Figure 4.1: Eccentrically inclined load on strip foundation: line of load application 

towards the center line of the footing ..................................................................... 39 

Figure 4.2: Interpretation of Ultimate bearing capacity qu by Break Point method 

(Mosallanezhad et al. 2008) ................................................................................... 44 

Figure 4.3: Variation of load-settlement curve with embedment ratio (Df /B) at e/B=0 and 

α=0 in Dense sand .................................................................................................. 45 

Figure 4.4: Variation of load-settlement curve with Relative Density (Dr) of sand at Df 

/B=1, e/B=0 and α=0 .............................................................................................. 45 



  

   

xv 

 

Figure 4.5: Variation of qu with Df /B for α = 0 and e/B = 0 using formulae of existing 

theories along with present experimental values for (a) dense (b) medium dense sand

 .............................................................................................................................. 47 

Figure 4.6: Variation of Nγ with γB (adapted after DeBeer, 1965) .................................. 49 

Figure 4.7: Comparison of Nγ obtained from tests with small footings and large footings 

of 1m² area on sand (adapted after DeBeer, 1965). ................................................. 49 

Figure 4.8: Photographic image of failure surface observed in dense sand in surface 

condition at Df /B = 0, α = 0° and e/B = 0 ............................................................... 50 

Figure 4.9: Variation of load-settlement curve with eccentricity in Dense sand in surface 

condition for α=0 ................................................................................................... 51 

Figure 4.10: Effect of embedment on eccentricity in Dense sand for α=0, e/B=0.15 ....... 52 

Figure 4.11: Variation of load settlement curve with relative density for α=0, e/B=0.05 

and Df /B=1 ............................................................................................................ 52 

Figure 4.12: Comparison of ultimate bearing capacities of Present experimental results 

with Meyerhof’s effective area method (1953) for (a) dense and (b) medium dense 

sand ....................................................................................................................... 54 

Figure 4.13: Comparison of Present experimental results with Prakash and Saran (1971) 

for medium dense sand........................................................................................... 55 

Figure 4.14: Comparison of Present experimental results with Purkayastha and Char 

(1977) .................................................................................................................... 57 

Figure 4.15: Comparison of Present experimental results with Loukidis et al. (2008) ..... 58 

Figure 4.16: Photographic image of failure surface observed in medium dense sand in 

surface condition at Df /B = 0, α = 0° and e/B = 0.15 .............................................. 59 

Figure 4.17: Variation of load settlement curve with load inclination (α) in dense sand for 

Df /B=0 and e/B=0 .................................................................................................. 60 

Figure 4.18: Variation of load-settlement curve with load inclination (α) in medium dense 

sand for Df /B=0 and e/B=0 .................................................................................... 61 

Figure 4.19: Variation of load-settlement curve with embedment ratio (Df /B) in medium 

dense sand for α=200, e/B=0 ................................................................................... 61 

Figure 4.20: Variation of load-settlement curve with relative density of sand at α=50, 

e/B=0 and Df /B=0.5, .............................................................................................. 62 

Figure 4.21: Comparison of ultimate bearing capacities of Present experimental results 

with Meyerhof (1963) for (a) dense sand and (b) medium dense sand..................... 64 

Figure 4.22: Comparison of ultimate bearing capacities of Present experimental results 

with Hansen (1970) for (a) dense sand and (b) medium dense sand ........................ 65 



  

   

xvi 

 

Figure 4.23: Comparison of ultimate bearing capacities of Present experimental results 

with Vesic (1975) for (a) dense sand and (b) medium dense sand ........................... 66 

Figure 4.24: Comparison of Present experimental results with Muhs and Weiss (1973) . 67 

Figure 4.25: Comparison of Present experimental results with Loukidis et al. (2008) ..... 69 

Figure 4.26: Photographic image of failure surface observed in medium dense sand at Df 

/B = 0, α = 20° and e/B = 0 .................................................................................... 70 

Figure 4.27: Variation of load-settlement curve with load inclination α at Df /B=0.5 and 

e/B=0.05 in medium dense sand ............................................................................. 72 

Figure 4.28: Variation of load-settlement curve with e/B at Df /B=1.0 and α =150 in dense 

sand ....................................................................................................................... 72 

Figure 4.29: Variation of load-settlement curve with embedment ratio (Df /B) at e/B =0.15 

and α =200 in medium dense sand .......................................................................... 73 

Figure 4.30: Variation of load-settlement curve with Relative Density (Dr) at e/B =0.15, α 

=100 and Df /B=0.5 ................................................................................................ 73 

Figure 4.31: Photographic image of load arrangement for the test at Df /B = 0, α = 20° 

and e/B = 0.15 ........................................................................................................ 74 

Figure 4.32: Photographic image of the failure surface observed in dense sand at Df /B = 

0, α = 15° and e/B = 0.15 ....................................................................................... 75 

Figure 4.33: Comparison of present experimental results with developed empirical 

equation ................................................................................................................. 81 

Figure 4.34: Comparison of Present results with Meyerhof (1963) ................................. 86 

Figure 4.35: Comparison: (a) Present results with Saran and Agarwal (1991), (b) Present 

predicted RF with RF corresponding to Saran and Agarwal (1991) ........................ 88 

Figure 4.36: Comparison of Present results with Loukidis et al. (2008) for dense sand. .. 91 

Figure 4.37: Comparison of Present results with Loukidis et al. (2008) for medium dense 

sand. ...................................................................................................................... 91 

Figure 5.1: Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case ........................................................................................ 94 

Figure 5.2: Photograph of load application for the test [e/B = 0.15, α = 200 and Df /B = 0] 

when the line of load application is away from the center line of the footing .......... 97 

Figure 5.3: Variation of load-settlement curve with e/B at Df /B=0.5, α=100 in medium 

dense sand.............................................................................................................. 98 

Figure 5.4: Variation of load-settlement curve with load inclination (α) at Df /B=0, e/B = 

0.15 in dense sand .................................................................................................. 98 



  

   

xvii 

 

Figure 5.5: Variation of load-settlement curve with relative density (Dr) at Df /B=1, 

α=150, e/B =0.15 ................................................................................................... 99 

Figure 5.6: Variation of load-settlement curve with Df /B at α=50, e/B =0.05 in medium 

dense sand.............................................................................................................. 99 

Figure 5.7: Plot of (qu−reinforced)/(qu−partially compensated) for cases of eccentrically 

inclined loading in dense sand .............................................................................. 101 

Figure 5.8: Plot of (qu−reinforced)/(qu−partially compensated) for cases of eccentrically 

inclined loading in medium dense sand ................................................................ 102 

Figure 5.9: Plot of (su/B-reinforced)/(su/B-partially compensated) for cases of 

eccentrically inclined loading in dense sand ......................................................... 104 

Figure 5.10: Plot of (su/B-reinforced)/(su/B-partially compensated) for cases of 

eccentrically inclined loading in medium dense sand............................................ 105 

Figure 5.11: Plot of (qu− partially compensated)/(qu−central vertical) for cases of 

eccentrically inclined loading in dense sand ......................................................... 106 

Figure 5.12: Plot of (qu− partially compensated)/(qu−central vertical) for cases of 

eccentrically inclined loading in medium dense sand............................................ 106 

Figure 5.13: Plot of (qu−reinforced)/(qu−central vertical) for cases of eccentrically 

inclined loading in dense sand .............................................................................. 107 

Figure 5.14: Plot of (qu−reinforced)/(qu−central vertical) for cases of eccentrically 

inclined loading in medium dense sand ................................................................ 107 

Figure 5.15: Plot of (su− partially compensated)/(su−central vertical) for cases of 

eccentrically inclined loading in dense sand ......................................................... 111 

Figure 5.16: Plot of (su− partially compensated)/(su−central vertical) for cases of 

eccentrically inclined loading in medium dense sand............................................ 111 

Figure 5.17: Plot of (su− reinforced)/(su−central vertical) for cases of eccentrically 

inclined loading in dense sand .............................................................................. 112 

Figure 5.18: Plot of (su− reinforced)/(su−central vertical) for cases of eccentrically 

inclined loading in medium dense sand ................................................................ 112 

Figure 5.19: Plot of qu with α for partially compensated case in dense sand ................. 113 

Figure 5.20: Plot of qu with α for partially compensated case in medium dense sand .... 114 

Figure 5.21: Plot of qu with α for reinforced case in dense sand ................................... 115 

Figure 5.22: Plot of qu with α for reinforced case in medium dense sand ...................... 116 

Figure 5.23: Photographic image of the failure surface observed in dense sand at Df /B = 

1, α = 20° and e/B = 0.15 in reinforced condition ................................................. 117 

Figure 5.24: Comparison of Present results with Loukidis et al. (2008) for dense sand. 124 



  

   

xviii 

 

Figure 5.25: Comparison of Present results with Loukidis et al. (2008) for medium dense 

sand. .................................................................................................................... 124 

Figure 6.1: Partially Compensated Footing (Perloff and Baron 1976)........................... 127 

Figure 6.2: Biological neuron (after Park, 2011) .......................................................... 128 

Figure 6.3: The ANN Architecture. .............................................................................. 129 

Figure 6.4: Variation of hidden layer neurons with mean square error (mse) ............. 137 

Figure 6.5: Correlation between Predicted Reduction Factor with Experimental 

Reduction Factor for training data. ....................................................................... 139 

Figure 6.6: Correlation between Predicted Reduction Factor with Experimental 

Reduction Factor for testing data. ......................................................................... 139 

Figure 6.7: Residual distribution of training data ......................................................... 140 

Figure 6.8: Neural Interpretation Diagram (NID) showing lines representing connection 

weights and effects of inputs on Reduction Factor (RF)........................................ 143 

Figure 6.9: Comparison of ANN results with Experimental RF and Eq. 6.17 for training 

data ...................................................................................................................... 146 

Figure 6.10: Comparison of ANN results with Experimental RF and Eq. 6.17 for testing 

data ...................................................................................................................... 146 

Figure 6.11: Comparison of Present results with Meyerhof (1963) ............................... 147 

Figure 6.12: Comparison of Present results with Saran and Agarwal (1991) for medium 

dense sand............................................................................................................ 148 

Figure 6.13: Comparison of ANN results with Loukidis et al. (2008) and developed 

equation [Eq. (6.17)] for dense sand. .................................................................... 149 

Figure 6.14: Comparison of ANN results with Loukidis et al. (2008) and developed 

equation [Eq. (6.17)] for medium dense sand. ...................................................... 150 

Figure 7.1: Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case ...................................................................................... 152 

Figure 7.2: The ANN Architecture ............................................................................... 155 

Figure 7.3: Variation of hidden layer neuron with mean square error (mse). ................ 155 

Figure 7.4 NID showing lines of connection weights and effects of inputs on RF ........ 156 

Figure 7.5 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for training data ......................................................................................... 160 

Figure 7.6 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for testing data .......................................................................................... 160 

Figure 7.7: Residual distribution of training data ......................................................... 161 



  

   

xix 

 

Figure 7.8: Comparison of ANN results with Experimental RF and Developed equation 

for training data.................................................................................................... 166 

Figure 7.9: Comparison of ANN results with Experimental RF and Developed equation 

for testing data ..................................................................................................... 166 

Figure 7.10: Comparison of ANN results with Loukidis et al. (2008) for dense sand .... 167 

Figure 7.11: Comparison of ANN results with Loukidis et al. (2008) for medium dense 

sand ..................................................................................................................... 168 

Figure 8.1 Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case ...................................................................................... 170 

Figure 8.2 The ANN Architecture ................................................................................ 178 

Figure 8.3 Variation of hidden layer neuron with mean square error (mse)................... 178 

Figure 8.4 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for training data ......................................................................................... 179 

Figure 8.5 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for testing data .......................................................................................... 180 

Figure 8.6. Residual distribution of training data .......................................................... 181 

Figure 8.7. Neural Interpretation Diagram (NID) showing lines representing connection 

weights and effects of inputs on Reduction Factor (RF)........................................ 184 

Figure 8.8. Comparison of Reduction Factor of Present analysis with ANN model 

equation developed in Chapter 6 and 7 for both type of load arrangement ............ 188 

Figure 8.9. Comparison of Reduction Factor of Present analysis with other approaches

 ............................................................................................................................ 189 

Figure 9.1: Comparison of curve by developed equation with DeBeer’s curve ............. 193 

Figure 9.2: Variation of (su/B)(Df /B, e/B) with Df  /B and e/B: (a) dense sand, (b) medium 

dense sand............................................................................................................ 194 

Figure 9.3: Plot of α vs. β curves obtained from laboratory tests along with Eq. (9.10) for 

(a) dense sand, (b) medium dense sand ................................................................. 199 

Figure 9.4: Eccentrically loaded embedded strip footing .............................................. 200 

    



 

xx 

 

List of List of List of List of Abbreviations and Abbreviations and Abbreviations and Abbreviations and SymbolsSymbolsSymbolsSymbols    

    

Abbreviations 

RF   Reduction Factor 

ubc   Ultimate bearing capacity 

MSE   Mean Square Error 

LA   Load Arrangement 

 

Symbols 

B   Width of foundation 

L   Length of foundation 

t   Thickness of foundation 

e   Load eccentricity 

α   Load inclination with the vertical 

Qu   Ultimate load per unit length of the foundation 

Df   Depth of embedment 

γ   Unit weight of sand 

γd   Dry unit weight of sand 

γd(max)   Maximum dry unit weight of sand 

γd(min)   Minimum dry unit weight of sand 

φ   Friction angle of sand 

φ’   Effective friction angle of sand 

qu   Ultimate bearing capacity 

q   Surface surcharge 

Nc, Nq, Nγ  Bearing capacity factors 



  

   

xxi 

 

sc, sq, sγ  Shape factors 

dc, dq, dγ  Depth factors 

s   Settlement 

su   Ultimate settlement 

B’   Effective width of foundation 

A’   Effective area of foundation 

ic, iq, iγ   Inclination factors 

wl   Liquid limit 

wp   Plastic limit 

w   Average water content 

cu   Undrained shear strength 

IL   Liquidity index 

Cu   Coefficient of uniformity 

Cc   Coefficient of curvature 

c   Cohesion 

VL   (Vertical) limit load 

G   Specific gravity 

D10   Effecive particle size 

D50   Mean particle size 

fie   Combined inclination-eccentricity factor 

Dr   Relative Density 

r   Correlation coefficient 

R
2   Coefficient of efficiency 

er   Residual 



 

1 

 

1. INTRODUCTION 

 

Every civil engineering structure, whether it is a building, bridge, highway pavement or 

railway track, will in general have a superstructure and a foundation. The function of the 

foundation is to receive the loads from the superstructure and transmit safely them to the 

soil or rock below as the case may be. The design of shallow foundation (i.e. the plan 

dimensions of the foundation) is accomplished by satisfying two requirements: (1) 

bearing capacity and (2) settlement. Bearing capacity refers to the ultimate, i.e., the 

maximum load the soil can bear or sustain under given circumstances.  

Engineers need to be able to calculate the capacity of foundations subject to; at least, 

central vertical loads. This need has led to the development of the theories of bearing 

capacity, notably Terzaghi's method. Bearing capacity predictions based on Terzaghi's 

(1943) superposition method are partly theoretical and partly empirical in which the 

contribution of different loading and soil strength parameters (cohesion, friction angle, 

surface surcharge and self-weight) expressed in the form of non-dimensional bearing 

capacity factors Nc, Nq, and Nγ are summed. Several analytical solutions have been 

proposed for computing these factors. The literature contains many theoretical 

derivations, as well as experimental results from model tests and prototype footings.  

All the bearing capacity estimation methods may be classified into the following four 

categories: (1) the limit equilibrium method; (2) the method of characteristics; (3) the 

upper-bound plastic limit analysis and (4) the numerical methods based on either the 

finite-element method or finite-difference method. The problems can be solved by two 

different approaches: experimentally, by conducting model and full-scale tests; or, by 
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using numerical methods such as finite element analyses. Full-scale tests are the ideal 

method for obtaining data, however, practical difficulties and economic considerations 

either eliminate or considerably restrict the possibility of full-scale testing. As an 

alternative model tests may be employed, but they have disadvantages. The results of 

these model tests are usually affected by the boundary conditions of the test box, the size 

of the footing, the sample disturbance, the test setup and procedure. It is advantageous to 

use the techniques of numerical methods to simulate the conditions of model tests to 

verify the theoretical models.  

Most of the studies for bearing capacity calculation are based on the foundation under 

vertical and central load. However in some cases due to bending moments and horizontal 

thrusts transferred from the superstructure, shallow foundations of structures like 

retaining walls, abutments, waterfront structures, oil/gas platforms in offshore area, 

industrial machines, and portal framed buildings are very often subjected to eccentric and 

inclined loads. This may be due to (a) moments with or without axial forces (b) the 

oblique loading (c) their location near the property line (d) wind force and (e) earth 

pressure and water pressure. They can be analyzed as eccentrically inclined loaded strip 

footings, with eccentricity of e and load inclination of α to the vertical. Due to load 

eccentricity and inclination, the overall stability of foundation decreases along with 

differential settlement and tilting of the foundation which reduces the bearing capacity.  

The increase of stress in soil layers due to the load imposed by various structures at the 

foundation level will always be accompanied by some strain, which will result in the 

settlement of the structures. The estimation of settlements of shallow foundations in 

cohesionless soils is still considered as a serious geotechnical problem, both from 
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practical and theoretical point of view. In general, settlement of a foundation consists of 

two major components - elastic settlement (Se) and consolidation settlement (Sc). For a 

foundation supported by granular soil, the elastic settlement is the only component that 

needs consideration. Different methods are available for the determination of settlement 

of shallow foundation on cohesionless soil. But, most of the available methods fail to 

achieve consistent performance in predicting accurate settlement and most of them are 

based on foundations subjected to central vertical load. 

The estimation of bearing capacity and settlement of foundations under eccentric and 

inclined loads is of considerable importance in geotechnical engineering. In order to 

study further in this area, extensive literature review is made to narrow down the 

objective of the present investigation. Detailed investigation and analyses are presented in 

the subsequent chapters for both bearing capacity and settlement aspects. A procedure for 

estimation of settlement of footing under eccentric load is proposed. 



 

4 

 

2. LITERATURE REVIEW 

2.1 Introduction 

The lowest part of a structure which transfers its load to the underlying soil or rock is 

known as foundation. Foundations can be of shallow or deep depending on the depth of 

embedment. Very often foundations of structures like earth retaining structures, 

abutments, waterfront structures, industrial machines, oil/gas platform in offshore area 

may be subjected to eccentric and/or inclined loading. This may be due to (i) moments 

with or without axial forces (ii) the oblique loading (iii) their location near the property 

line (iv) wind force and (v) earth pressure and water pressure. Due to eccentric and/or 

inclined loading, the footing tilts and the pressure below the footing does not remain 

uniform. The tilt of footing increases with an increase in the eccentricity and inclination 

and the bearing capacity reduces considerably and undergoes differential settlements.  

2.2 Bearing Capacity of Shallow Foundations on granular soil 

The stability of a structure depends upon the stability of the supporting soil. For that the 

foundation must be stable against shear failure of the supporting soil and must not settle 

beyond a tolerable limit to avoid damage to the structure. For a given foundation to 

perform its optimum capacity, one must be ensured that it does not exceed its safe 

bearing capacity. The ultimate bearing capacity (qu) is defined as the pressure at which 

shear failure occurs in the supporting soil immediately below and adjacent to the 

foundation. 
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Since the publications of Terzaghi’s theory on the bearing capacity of shallow 

foundations in 1943, numerous studies (both experimental and theoretical) have been 

made by various investigators. Most of these studies are related to footings subjected to 

vertical and central loads. Meyerhof (1953) developed empirical procedures for 

estimating the ultimate bearing capacity of foundations subjected to eccentric vertical 

loads. Researchers like Prakash and Saran (1971) and Purkayastha and Char (1977) also 

studied the behavior of eccentrically loaded footings. Similarly, the effect of inclined load 

on the foundation has been investigated by few investigators (Meyerhof 1953; Muhs and 

Weiss 1973; Hanna and Meyerhof 1981; Sastry and Meyerhof 1987). However a few 

works have been done by Meyerhof 1963, Saran and Agarwal (1991) and Loukidis et al. 

(2008) towards the bearing capacity of footings subjected to combined action of eccentric 

and inclined load which is the subject of the thesis. An extensive review of literature 

based on bearing capacity of shallow foundations under different loading conditions is 

presented below.  

2.2.1 Central Vertical Loading 

Terzaghi (1943) proposed that the ultimate bearing capacity of a strip foundation 

subjected to a vertical central load [Figure 2.1] over a homogenous soil can be expressed 

as 

 γγ NBNqcNq
qcu 2

1
++=      (2.1) 

For granular soil the above equation is reduced to the form as expressed by: 
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γγ NBNqq
qu 2

1
+=                                               (2.2) 

Similarly, Meyerhof (1951) proposed a generalized equation for centrally vertical loaded 

foundations as 

γγγγ dsNBdsNqdscNq
qqqcccu 2

1
++=                                              (2.3) 

For granular soil the above equation (2.3) can be reduced to the form as: 

γγγγ dsNBdsNqq
qqqu 2

1
+=                                              (2.4) 

where qu = ultimate bearing capacity; q = surcharge pressure at footing level = γDf ; Df  = 

depth of foundation; γ = unit weight of soil; B = width of foundation;  Nc, Nq , Nγ = 

bearing capacity factors; sc, sq, sγ = shape factors; dc, dq, dγ = depth factors. 

 

Figure 2.1: Ultimate load per unit length Qu on a strip foundation for centric vertical load 

In the past, many investigators have proposed bearing capacity factors as well as shape 

and depth factors for estimating the bearing capacity of footings in above conditions. 

These factors are summarized in Table 2.1 and Table 2.2. 
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Table 2.1: Summary of Bearing Capacity factors 

Bearing Capacity 

Factors 
Equation Investigator 

Nc ( ) φcot1−= qc NN  

Prandtl (1921), Reissner 

(1924), Terzaghi (1943), 

Meyerhof (1963) 

Nc φ

φ

−

+
=

40

3.4228
cN  Krizek (1965) 

Nq 
φπ








 φ
+= tan2

2
45tan eNq  

Prandtl (1921), Reissner 

(1924), Meyerhof (1963) 

Nq 2

tan
24

3
2

2
45cos2 








+

=









−

φ

φ
φπ

e
N q  Terzaghi (1943) 

Nq φ

φ

−

+
=

40

540
qN  Krizek (1965) 

Nγ ( ) ( )2tancot18.1 φφγ −≈ qNN  Terzaghi (1943) 

Nγ ( ) φγ tan15.1 −= qNN  
Lundgren and Mortensen 

(1953) and Hansen (1970) 

Nγ ( ) φγ tan18.1 −= qNN  Biarez et al. (1961) 

Nγ 
φ

γ
25.001.0 eN =  Feda (1961) 

Nγ ( ) ( )φγ 4.1tan1−= qNN  Meyerhof (1963) 

Nγ φ

φ
γ

−
=

40

6
N  Krizek (1965) 

Nγ ( )2tan5.1 φγ cNN =  Hansen (1970) 

Nγ ( ) φγ tan12 += qNN  Vesic (1973) 

Nγ ( ) ( )φγ 3.1tan11.1 −= qNN  Spangler and Handy (1982) 

Nγ 
( )φ

γ
173.0646.1 +−= eN  Ingra and Baecher (1983) 
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Bearing Capacity 

Factors 
Equation Investigator 

Nγ 
( ) φφ

γ tantan1.566.0 +=eN  Michalowski (1997) 

Nγ 

φ
γ

6.91045.0 eN ≈  

φ  is in radians 
Poulos et al. (2001) 

Nγ 
( )

( ) 5

2tan3
6

1

tan
2 πϕππ

γ φ
+

=eN  Hjiaj et al. (2005) 

Nγ ( ) ( )φγ 32.1tan1−= qNN  Salgado (2008) 

  

Table 2.2: Summary of Shape and Depth factors 

Factors Equation Investigator 

Shape 

For φ = 00: 







+=

L

B
sc 2.01  

            1== γssq   

For φ ≥ 100: 
2

2
45tan2.01 








+








+=

φ

L

B
sc  

            
2

2
45tan1.01 








+








+==

φ
γ

L

B
ssq  

Meyerhof (1963) 

















+=

L

B

N

N
s

c

q

c 1  

[Use Nc and Nq given by Meyerhof (1963)] 

φtan1 







+=

L

B
sq  









−=

L

B
s 4.01γ  

DeBeer (1970), 

Vesic (1975) 

( )( )
5.0

2 1.0tan8.11 







++=

L

B
sc φ  

Michalowski 

(1997) 
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Factors Equation Investigator 

( )
5.0

2tan9.11 







+=

L

B
sq φ  

( )( ) ( )02
3025.0tan6.01 ≤








−+= φφγ for

L

B
s  

( )( ) ( )0

5.1
2 305.0tan3.11 >








−+=









−

φφγ fore
B

L
s B

L

 

( )01

5.0

21 =







+







+= φfor

B

D
C

L

B
Cs

f

c  

  B/L             C1             C2 

______________________ 

Circle        0.163       0.21 

    1.0         0.125       0.219 

    0.5         0.156      0.173 

   0.33         0.159     0.137 

  0.25       0.172       0.11 

   0.2          0.19        0.09 

Salgado et al. 

(2004) 

Depth 

For φ = 00: 







+=

B

D
d

f

c 2.01  

            1== γddq   

For φ ≥ 100: 







+








+=

2
45tan2.01

φ

B

D
d

f

c  

              







+








+==

2
45tan1.01

φ
γ

B

D
dd

f

q  

Meyerhof (1963) 

For Df /B ≤ 1: ( )04.01 =







+= φfor

B

D
d

f

c  

φtan

1

q

q

qc
N

d
dd

−
−=    (for φ > 0) 

Hansen (1970), 

Vesic (1975) 



  

   

10 

 

Factors Equation Investigator 

( ) 







−+=

B

D
d

f

q

2sin1tan21 φφ  

1=γd  

For Df /B > 1: 







+= −

B

D
d

f

c

1tan4.01  

( ) 







−+= −

B

D
d

f

q

12 tansin1tan21 φφ  

where, tan-1(Df/B) is in radians 

1=γd  

5.0

27.01 







+=

B

D
d

f

c  
Salgado et al. 

(2004) 

 

The above section discusses about the bearing capacity of shallow foundations when the 

loads are applied vertically at the center. However, to account for the bearing capacity of 

the foundations when subjected to eccentric and inclined loads the extension of the above 

theory can be made in three possible ways i.e. eccentric vertical condition, centric 

inclined condition and eccentrically inclined condition. These there aspects are described 

below. 

2.2.2 Eccentric Vertical Condition 

Meyerhof (1953) proposed an effective width method for foundations subjected to an 

eccentric load. Due to an eccentric load on the foundation, the foundation tilts towards 

the side of the eccentricity and the contact pressure below the foundation does not remain 

uniform. Thus for a shallow horizontal strip foundation of width B and depth D carrying a 
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vertical load Q with an eccentricity e on the base as shown in Figure 2.2, the ultimate 

bearing capacity q can be expressed as 

qcq NBcNq γγ '

2

1
+=                                                  (2.5)          

where  Ncq, Nγq = resultant bearing capacity factors for a central load and depend on φ 

and D/B’ ; c = unit cohesion; γ = density of soil; B′ = effective width  = B – 2e        

'qAQ =                                                         (2.6) 

 

where A’ = effective area = B’ x 1 (for strip footing) 

 

 

Figure 2.2: Eccentrically loaded footing (Meyerhof, 1953) 

Prakash and Saran (1971) suggested a comprehensive mathematical formulation to 

estimate the ultimate bearing capacity of a rough strip foundation under eccentric load. 

The failure surface as assumed in a c–φ soil under a continuous foundation subjected to a 

load with eccentricity e is shown in Figure 2.3(a).  

The contact width of the foundation with the soil is equal to Bx1 (Figure 2.3b).  
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Figure 2.3: Derivation of the bearing capacity theory by Prakash and Saran (1971) 

According to this theory, for a strip foundation on a c-φ soil the ultimate bearing capacity 

can be expressed as, 

             (2.7) 

 

where Nc(e), Nq(e), Nγ(e)  are the bearing capacity factors for an eccentrically loaded strip 

foundation. The bearing capacity factors are functions of e/B, φ and foundation contact 

factor x1. The variation of x1 with e/B is shown in Figure 2.3(c). The bearing capacity 

factors are presented in the form of figure for different e/B and φ. 

( ) )()()(
2

1

1
eeqfec

u

u BNNDcN
B

Q
q γγγ ++=

×
=
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Purkayastha and Char (1977) performed stability analysis of an eccentrically loaded 

strip foundation on sand using the method of slices as proposed by Janbu (1957). Based 

on the analysis, they proposed that 

( )

( )centricu

eccentricu

k
q

q
R −=1                                              (2.8) 

where Rk = reduction factor;  qu(eccentric) = ultimate bearing capacity of eccentrically loaded 

continuous foundations; qu(centric) = ultimate bearing capacity of centrally loaded 

continuous foundations. 

The magnitude of Rk can be expressed as 

(2.9) 

where a and k are functions of Df /B 

Combining Eqns. (2.8) and (2.9) 

( ) ( ) ( ) ( ) 




















−=−=

k

centricukcentricueccentricu
B

e
aqRqq 11                             (2.10) 

where 

( ) ( )0
2

1
=+= cdBNdqNq qqcentricu γγγ                                    (2.11) 

The values of a and k are presented in Table 2.3 for different Df /B. 

 

 

 

k

k
B

e
aR 








=
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Table 2.3: Values of a and k 

Df  /B a k 

0 1.862 0.73 

0.25 1.811 0.785 

0.5 1.754 0.8 

1.0 1.820 0.888 

 

From the analysis they found that the width of the footing and friction angle has no 

influence on the reduction factor. 

Michalowski and You (1998) presented the bearing capacity of eccentrically loaded 

footings using the kinematic approach of limit analysis. They found that the effective 

width method given by Meyerhof (1953) leads to the same bearing capacity as the limit 

analysis solution for a smooth footing, and it underestimates the bearing capacity of 

footings on cohesive soils with frictional or adhesive soil-footing interfaces as shown in 

Figure 2.4. The effective width rule significantly underestimates the bearing capacity for 

clays (φ≈0) only when the footing is bonded with the soil and the eccentricity is relatively 

large (e/B >0.25) [Figure 2.4].  

For cohesive-frictional soils this underestimation decreases with an increase in the 

internal friction angle. The rule of effective width gives very reasonable estimates of the 

bearing capacity of eccentrically loaded footings on cohesive or cohesive-frictional soils 

when the soil-footing interface is not bonded, and for any type of interface when the 

eccentricity is small (e/B< 0.1) as shown in Figure 2.5.  
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Figure 2.4: Solutions to bearing pressure p  on cohesive soil for different soil-footing 

interface models (no surcharge) 

 

Figure 2.5: Solutions to bearing pressure p  on cohesive-frictional soil for different soil-

footing interface models (weightless soil, no surcharge) 

 

The effective width rule also overestimates the bearing capacity for purely frictional soils 

when the surcharge load is relatively small. For cohesionless soils, however, the effective 
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width rule may overestimate the best upper bound and this overestimation increases with 

an increase in eccentricity [Figure 2.6]. 

 

Figure 2.6: Numerical solutions to bearing pressure of eccentrically loaded footings 

(tension cut-off interface) 

2.2.3 Central Inclined Condition 

 

Meyerhof (1953) extended his theory for ultimate bearing capacity under vertical loading 

to the case with inclined load. They have considered two types of inclination, first one 

considering foundations with a horizontal base [Figure 2.7 (a) and (b)] and second one 

considering foundations with a base normal to the load (i.e. base inclined α to the 

horizontal) as shown in Figure 2.7 (c).  

For foundations with a horizontal base, the ultimate bearing capacity, q is expressed as 

vertical component of the ultimate bearing capacity, i.e. 

qcqv BNcNqq γγα
2

1
cos)( +==                                         (2.12) 
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where, q(v) = Vertical component of the ultimate bearing capacity; Ncq, Nγq = Bearing 

capacity factors which are functions of the soil friction angle, φ, depth of the foundation, 

D and load inclination α . 

 

(a) Horizontal base with small inclination of load 

     

 

(b) Horizontal base with large inclination of load 
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(c) Inclined base with normal load 

Figure 2.7: Inclined load applied to a rough strip foundation [Meyerhof (1953)] 

Likewise, for an inclined foundation with a base normal to the load [Figure 2.7 (c)] the 

ultimate bearing capacity can be expressed as  

qcq BNcNq γγ
2

1
+=                                                 (2.13) 

He presented the bearing capacity factors Ncq, Nγq in the form of chart for different values 

of α and φ. He also found that that for a given inclination α an inclined foundation can 

have a higher bearing capacity than a horizontal base. 

Meyerhof (1963) proposed that for rough foundations the vertical component of the 

bearing capacity (q) under a load inclined at an angle of α with the vertical [Figure 2.8] 

can be expressed as  

γγγγγ idNBidNDidcNq qqqccc 2

1
++=                                         (2.14) 

where ic, iq, iγ = inclination factors 

dc, dq, dγ = depth factors [as mentioned in Table 2.2] 



  

   

19 

 

2

90
1 








−==

α
qc ii                                                      (2.15) 

2

1 







−=

φ

α
γi                                                          (2.16) 

 

Figure 2.8: Ultimate load Q on a foundation for centric inclined load 

Hansen (1970) proposed the relationships for inclination factors based on method of 

characteristics  
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where α = load inclination of foundation with the vertical;  Qu = Ultimate load on the 

foundation = quBL; B = width of the foundation; L = Length of the foundation. 

Dubrova (1973) proposed a formulation for the ultimate bearing capacity of a continuous 

foundation with centric inclined load and is given by 
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( ) ∗∗∗ ++−= γγφ NBqNNcq qqu 2cot1                                          (2.20) 

 

where, =∗∗

γNNq ,  bearing capacity factors; q = γDf 

The value of ∗∗

γNNq , are presented in the form of graph with different values of tanα and 

φ.  

Muhs and Weiss (1973) conducted field tests and found that the ratio of the vertical 

component Qu(v) of the ultimate load with the inclination α with the vertical to the 

ultimate load Qu, when the load is vertical (i.e. α = 0) and is given by 

 

                                                                                                                                      (2.21)   

or 

                                                               

 (2.22) 

 

where B = width of the foundation;  L = length of the foundation; qu(v) = vertical 

component of the ultimate bearing capacity when the load is inclined at an angle α with 

the vertical; qu(α=0) = ultimate bearing capacity of the footing for central condition (α = 0).    

Vesic (1975) proposed equation for inclination factors based on method of characteristics 
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where 
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2
, for load inclined in in the direction parallel to the width of the footing 

and 

B

L
B

L

m

+

+
=

1

2
, for load inclined in in the direction parallel to the length of the footing; ic, 

iq, and iγ are the inclination factors; c = cohesion; A = Area of the footing; H and V are 

the components of the load parallel and perpendicular to the base of the footing. 

Sastry and Meyerhof (1987) carried out model tests to evaluate corresponding 

inclination factors for a surface strip footing on purely cohesive soil subjected to a central 

load at an inclination of αL acting in the direction of the footing length [Figure 2.9 (a)]. 

Saturated clay of medium plasticity (liquid limit wl = 43 %, plastic limit wp = 21 %) was 

used with an average water content of w = 32 %. The average undrained shear strength cu 

was 21 kN/m2. The steel strip footing had a width B of 25.4 mm, length L of 127 mm 

(L/B = 5), and thickness of 9.5 mm with a rough base. The tests were carried out at load 

inclinations α of 00, 100, 150, 300, and 450.  

The vertical component quv of the bearing capacity qu of the surface strip footing 

supported by purely cohesive soil can be given by 

Buuv qq αcos=                                                   (2.27) 

m

q
cBLV

H
i 









+
−=

φcot
1

1

cot
1

+










+
−=

m

cBLV

H
i

φ
γ



  

   

22 

 

cucuv Nciq =                                                      (2.28) 

where ic = inclination factor 

The relationship between load inclination αL along the direction of footing length and 

corresponding inclination factor ic’ can be given by 

2
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                                                     (2.29) 

 

Figure 2.9: Strip footing under inclined load along (a) length and (b) breadth [Sastry and 

Meyerhof (1987)] 

Similar tests were carried out on a shallow strip footing as shown in Figure 2.9 (a) 

supported by cohesionless soil with friction angle φ of 390 by Muhs and Weiss (1972). 

They found the relationship between αL and corresponding inclination factor iγ’ as 
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where, αL = load inclination in the direction of footing length 
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 ic’, iγ’ = inclination factors for load inclination in the direction of footing length 

They found that for the same load inclination α, ic’ ≥  ic and iγ’ ≥  iγ. 

where ic, iγ = inclination factors for load inclination in the direction of footing width 

[Figure 2.9 (b)] 

Meyerhof and Koumoto (1987) studied the ultimate bearing capacity of shallow strip 

footings under central load inclined in the direction of footing length to evaluate the 

inclination factors. The theoretical values of the present inclination factors were 

compared with some experimental results of model footings on clay and sand. They 

proposed the inclination factors as: 
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where, cu and ca = The undrained shear strength of clay and the adhesion of clay  on  the  

footing base; Kp and Ks = The average earth pressure coefficient on the footing front  side  

and  the footing side respectively. 
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From the theoretical analysis they concluded that the corresponding theoretical 

inclination factors are found to be generally larger than the previous factors for a load 

inclined in the direction of the footing width. 

Hjiaj et al. (2004) investigated the ultimate bearing capacity of a rigid rough strip 

footing of width B, subjected to an inclined load Q, which was resting on a deep layer of 

homogeneous cohesive-frictional soil of unit weight γ and the centric force acting upon 

the foundation was inclined at an angle α with the vertical. The cohesive-frictional soil is 

assumed to be rigid perfectly plastic and modelled by a Mohr–Coulomb yield criterion 

with cohesion c and friction angle φ. Accurate lower and upper bounds are calculated 

rigorously using finite elements and nonlinear programming.  

They concluded that, the Meyerhof inclination factors are deficient for centric inclined 

loading and that the Vesic’s expression for Nγ slightly overestimates the influence of self-

weight on the bearing capacity.  

2.2.4 Eccentric Inclined Condition 

Meyerhof (1963) extended the theory for shallow foundations subjected to centric 

vertical load (Meyerhof 1951) to incorporate load eccentricity and inclination as shown in 

Figure 2.10. He suggested that the vertical component of the bearing capacity in case of 

eccentric inclined loads can be given by 

 γγγγγγ idsNBidsNDidscNq qqqqcccc
′++=

2

1
                                   (2.34) 
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where B′ = B − 2e = effective width;  sc, sq , sγ = shape factors [mentioned in Table 2.2], 

dc, dq , dγ = depth factors [mentioned in Table 2.2], ic, iq , iγ = inclination factors 

[mentioned in Eqs. (2.15) and (2.16)]. 

   

Figure 2.10: Eccentric inclined load on foundation [Meyerhof (1963)] 

Saran and Agarwal (1991) used a similar technique to that of Prakash and Saran (1971) 

to theoretically evaluate the ultimate bearing capacity of a strip foundation subjected to 

eccentrically inclined load [Figure 2.10]. According to this analysis, the ultimate bearing 

capacity can be expressed as 

γγγ BNNDcN
B

Q
q

qc

u

u 2

1
++==                                 (2.35) 

For a foundation on granular soil, the above equation is reduced in the form as 

  γγγ BNNDq
qu 2

1
+=  (2.36) 

where 
c

N , qN  and γN are the bearing capacity factors expressed in terms of load 

eccentricity e and inclined at an angle α to the vertical. They presented the bearing 

capacity factors in tabular and graphical forms. 
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Loukidis et al. (2008) performed finite element analysis to determine the collapse load of 

a rigid strip footing placed on a purely frictional soil subjected to eccentric and inclined 

loading. The analyses were conducted on the free surface of the soil mass. Associated 

flow rule and Nonassociated flow rule were adopted for the analysis. The equations 

which are well fit to the finite element results are  
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where,  fie= combined inclination-eccentricity factor, expressed as  
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B’ = effective width of the footing; VL = (Vertical) limit load; H = Horizontal load; M = 

Moment; V = Vertical load; Vmax = Maximum vertical load; iγ = inclination factor. 
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IS 6403: (1981) covers the procedure for determining the ultimate bearing capacity and 

allowable bearing pressure of shallow foundations based on shear and allowable 

settlement criteria.  

For eccentrically loaded footing, eccentricity can be applied in two way i.e. 

(i) Single Eccentricity — If the load has an eccentricity e, with respect to the 

centroid of the foundation in only one direction, then the dimension of the 

footing in the direction of eccentricity shall be reduced by a length equal to 

2e. The modified dimension shall be used in the bearing capacity equation and 

in determining the effective area of the footing in resisting the load.  

(ii) Double Eccentricity — If the load has double eccentricity ( eL and eB ) with 

respect to the centroid of the footing then the effective dimensions of the 

footing to be used in determining the bearing capacity as well as in computing 

the effective area of the footing in resisting the load shall be determined as 

given below:  

L' = L –2eL                                                  (2.43) 

B’ = B –2eB                                                  (2.44) 

A’ = L’ × B’                                                  (2.45) 

For inclined footing, the inclination factors are expressed as follows: 
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However, the code does not give any information to compute the bearing capacity of 

eccentrically inclined loaded footing. 

Similarly, IS 8009: (1976-Part I) provides simple methods for the estimation of 

immediate and primary consolidation settlements of shallow foundations under 

symmetrical static vertical loads.  

Settlement of cohesionless soil deposits may be estimated by a semi-empirical method 

based on the results of static cone or dynamic penetration test or plate load tests. 

Based on standard cone penetration test, the settlement of each layer within the stressed 

zone due to the foundation loading, should be separately calculated using the equation 

below and the results added together to give the total settlement. 
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where Sf = settlement in each layer; Ht = Thickness of the layer; C= Compressibility 

coefficient; Ckd = static cone resistance; 0p = effective overburden pressure; p∆ = increase 

in pressure 

Based on Plate load test, the total settlement of the proposed foundation is given by 

( )
( )

)49.2(
30

30
2













+

+
=

BB

BB
SS

p

p

pf
 

where Sp = Total settlement of test plate; Bp = width of square plate; B= width of square 

foundation 

Similarly, based on dynamic penetration test, Settlement of a footing of width B under 

unit intensity of pressure resting on dry cohesionless deposit with known standard 
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penetration resistance value N, may be read from Figure 2.11 (b). The settlement under 

any other pressure may be computed by assuming that the settlement is proportional to 

the intensity of pressure. If the water table is at a shallow depth, the settlement read from 

Figure 2.11 (b) will be divided, by the correction factor W' read from Figure 2.11 (a). 

 

 
(a) 

 
(b) 

Figure 2.11: (a) Water table correction factor W′ (b) Settlement per unit pressure from 
standard penetration resistance 
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where, GL=ground level; WT=water table 

 
But the IS code does not provide any information to estimate the settlement of a footing 

on granular soil under the action of either eccentric load, inclined load or eccentrically 

inclined load. 

2.3 Scope of the present study 

Based on the review of the existing literature on the bearing capacity of shallow 

foundations, it appears that limited attention has been paid to estimate the ultimate 

bearing capacity when the foundation is subjected to an eccentrically inclined load. Most 

of these studies are based on theoretical analyses (limit equilibrium method) and 

numerical analyses (finite element method) supported by few number of model tests. So, 

the objective of the present thesis is to study the bearing capacity of eccentrically inclined 

loaded strip footing by conducting extensive laboratory model tests by varying 

eccentricity ratio (e/B), load inclination (α), depth of embedment ratio (Df  /B) and 

relative density (ID) to quantify certain parameters. The effect of load application in two 

possible modes i.e. (i) towards and (ii) away from the center line of the footing [Figure 

2.11] is investigated. Based on the laboratory model test results, empirical 

nondimensional equations have been developed by regression analysis to determine the 

ultimate bearing capacity of eccentrically inclined embedded strip footings for each mode 

of load application. Also, Neural network models are developed based on the present 

experimental results. Model equations are developed based on the trained weights and 

biases of the neural network model. The predicted equations obtained from regression 

analysis and neural network models have been compared with other available theories. 
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In addition to bearing capacity, based on the results of laboratory load tests, an empirical 

procedure is developed to estimate the average settlement of eccentrically loaded footings 

subjected to an average allowable load per unit area.  

 

    Figure 2.12: Eccentrically inclined load on a strip foundation: line of load application 

(a) towards the center line, and (b) away from the center line of the footing 

The outlines of the analysis and results on the above aspects are discussed in subsequent 

chapters as mentioned below. 

In Chapter 3, the test set up and procedure for experimentation has been discussed.  

In Chapter 4, the details of tests sequence is reported when the line of load application is 

towards the center line of the footing [Figure 2.11 (a)]. Empirical model for prediction of 

ultimate bearing capacity has been developed using regression analysis. The results are 

compared with available theories.  

In Chapter 5, the details of tests sequence for the case when the line of load application is 

away from the center line of the footing [Figure 2.11 (b)] is described. Based on the test 

results an empirical nondimensional equation for reduction factor has been developed to 

predict the ultimate bearing capacity. A comparison of the ultimate bearing capacity in 

both cases [Figure 2.11 (a) and (b)] has been discussed.  
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In Chapter 6, an artificial neural network model for estimating ultimate bearing capacity 

[Figure 2.11 (a)] is presented based on the test results as discussed in Chapter 4. The 

results from developed neural network model have been compared with developed 

empirical equation as reported in Chapter 4 and with other available theories.  

In Chapter 7 an artificial neural network model for estimating ultimate bearing capacity 

[Figure 2.11 (b)] is presented based on the test results as discussed in Chapter 5. The 

predictions from ANN are compared with the results by using developed empirical 

equation mentioned in Chapter 5.  

In Chapter 8 an ANN model has been developed by considering both mode of load 

application (i.e. towards and away from the center line of the footing) simultaneously. 

This model predicts the ultimate bearing capacity in either mode of load application on 

the footing. The obtained results are compared with the results as discussed in Chapters 4, 

5, 6, and 7.  

In Chapter 9 a relationship is developed between the average load per unit area and the 

average settlement of footing subjected to eccentric load. A step by step procedure is 

suggested to estimate the average settlement of the foundation while being subjected to 

an average allowable eccentric load per unit area.  

Chapter 10 brings all the conclusions drawn from the above chapters and suggests for 

future research work. 



 

33 

 

3. MATERIALS USED AND EXPERIMENTAL 
PROCEDURE  

3.1 Introduction 

The experimental program was designed to study the bearing capacity of strip footings 

resting on granular soils and subjected to eccentric and inclined loading. For this purpose, 

the laboratory model tests were performed on strip footings resting on soil with two 

different densities. The load eccentricity e was varied from 0 to 0.15B (B = width of strip 

footing) with an increment of 0.05B, load inclination α  was varied from 0° to 20° at an 

increment of 5° and the depth of embedment (Df /B) was varied from 0 to 1.0 at an 

increment of 0.5. The ultimate bearing capacity was interpreted from each test and 

analysed. 

3.2 Materials Used 

3.2.1 Sand 

The sand used in the experimental program was collected from the river bed of a nearby 

river. It is made free from roots, organic matters etc. by washing and cleaning. The above 

sample was then oven dried and sieved by passing through 710 micron and retained on 

300 micron IS sieve to get the required grading. Dry sand is used as soil medium for the 

test as it does not include the effect of moisture and hence the apparent cohesion 

associated with it. The geotechnical properties of the sand used are given in Table 3.1. 

The grain size distribution curve is plotted in Figure 3.1. All the tests were conducted in 

two densities (dense and medium dense) with relative densities of 69% and 51% 

respectively. The respective average unit weights are 14.36 kN/m3 and 13.97 kN/m3. The 
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friction angle at these two relative densities are 40.80 and 37.50 respectively from direct 

shear tests. The tests were conducted in the pressure range of about 6-19kN/m2. 

Table 3.1. Geotechnical property of sand 

Property Value 

Specific gravity (G) 2.61 

Effective particle size (D10) 0.325mm 

Mean particle size (D50) 0.46mm 

Uniformity Coefficient (Cu) 1.45 

Coefficient of Curvature (Cc) 1.15 

Maximum unit weight (γd(max)) 15.1 kN/m3 

Minimum unit weight (γd(min)) 12.95 kN/m3 
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 Figure 3.1: Grain-size distribution curve of sand 
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3.3 Experimental procedure 

All the model tests were carried out in the Geotechnical Engineering Laboratory of NIT 

Rourkela, India. The model tests were conducted in a mild steel tank measuring 1.0m 

(length) × 0.504m (width) × 0.655m (height). The two length sides of the tank are made 

of 12mm thick high strength fiberglass. All four sides of the tank are braced to avoid 

bulging during testing. The size of the model foundation has been kept as 100mm (width 

B) × 500mm (length L) × 30mm (thickness t) and is made from a mild steel plate. The 

bottom of the footing was made rough by applying glue and then rolling the model 

footing over sand. Since the width of the test tank and the length of the model foundation 

are approximately the same and the length: width ratio of the model footing is 5:1, the 

plane strain condition exists during the tests. 

Sand was poured into the test tank in layers of 25mm from a fixed height by raining 

technique to achieve the desired average unit weight. The height of fall was fixed by 

making several trials in the test tank to relate the height of fall and the density achieved. 

The model foundation was placed at a desired Df /B ratio at the middle of the box. Load 

to the model foundation was applied by a loading assembly (shown in Figure 3.2). It 

consists of three units: (a) the electrical control panel, (b) hydraulic power pack and (c) 

loading device. The loading device is a combination of a beam, four cylinders, four 

supporting columns and a base. The hydraulic cylinder is the device that converts fluid 

power into linear mechanical force and motion. It converts fluid energy to an output force 

in a linear direction for executing different jobs. The capacity of the hydraulic cylinder in 

universal static loading setup is 100kN. The load can be applied to the model foundation 
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in the range of 0 to 100kN with an accuracy of 1N. The inclination of the load can be 

changed by forward and backward movement of the cylinder. The inclination of the load 

remains constant throughout the testing period by the provision of the check valve. The 

load applied to the model foundation is measured by proving ring. Settlement of the 

model foundation is measured by dial gauges placed on two edges along the width side of 

the model foundation. All the tests were conducted in stress controlled manner. Number 

of trials was made prior to the test to maintain uniform rate of load application. The rate 

of load application was 150N/min. For each sequence of test, approximate calculations 

for ultimate load were made and then this load is divided into about 12 equal increments 

to get well defined load-settlement curve. The loads are applied in increments and 

settlement is recorded through dial gauges placed on two edges along the width side of 

the model foundation. The next load of increment is applied when the rate of settlement 

dropped to less than 0.02mm/minute [IS 1888: 1982]. The above procedure is continued 

till the failure of footing. The accuracy of dial gauge is 0.01mm and the total range is 

50mm. The load applied to the model foundation is measured by proving ring.   Five 

numbers of proving ring were used with capacity of 50kN, 20kN, 10kN, 5kN, and 2.5kN 

and the respective least counts were 66.27N, 24.24N, 12.12N, 6.68N and 3.83N. 

Figure 3.3 shows the photographic image of prepared sand sample for the test where the 

lines of colour sands are placed at a distance of 0.5B (B=width of the model footing) from 

the bottom of model footing up to a distance of 2B to observe the developed failure 

surface inside the soil mass. However, for the first 0.5B distance from the bottom of the 

footing, four lines of colour sand were drawn to observe the failure surface minutely. 
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Legend 

1. Inclination Indicator 
2. Hydraulic Cylinder 
3. Proving Ring 
4. Dial Gauge 
5. Model Footing (100mm × 500mm × 30mm)  

6. Test Tank (1.0m × 0.504m × 0.655m) 
7. Pressure Adjustable Knob 
8. Hydraulic Power Pack 
9. Electrical Control Panel 
 

 

Figure 3.2: Three dimensional view of laboratory model experimental setup. 
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Figure 3.3: Photographic image of sand sample at the start of experiment 

0.5B 

B 

Model Footing (100mm x 500mm x 30mm) 
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4. ULTIMATE BEARING CAPACITY OF 
ECCENTRICALLY INCLINED LOADED STRIP 

FOOTING WHEN THE LINE OF LOAD APPLICATION IS 
TOWARDS THE CENTER LINE OF THE FOOTING 

4.1 Introduction 

Eccentrically inclined load can be applied on the foundation in two ways. It can be 

referred to as partially compensated (Perloff and Baron, 1976) when the line of load 

application on the foundation is inclined towards the center line of the foundation [Figure 

4.1]. In order to investigate the effect of load eccentricity and inclination, extensive 

laboratory model tests have been conducted on a strip footing supported by dry sand. The 

test results have been used to develop a nondimensional reduction factor which will be 

used for estimating the ultimate bearing capacity. The developed empirical equation is 

compared with the available theoretical and numerical approaches. 

 

Figure 4.1: Eccentrically inclined load on strip foundation: line of load application 

towards the center line of the footing 
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Based on a review of published theoretical and experimental studies related to the 

estimation of ultimate bearing capacity of shallow strip foundation subjected to eccentric 

and inclined load, it is evident that further efforts are needed to quantify certain 

parameters.  

Purkayastha and Char (1977) proposed the reduction factor for eccentricity for ultimate 

bearing capacity as follows: 

( )

( )centricu

eccentricu

k
q

q
R −=1                                                     (4.1) 

where Rk = reduction factor;  qu(eccentric) = ultimate bearing capacity of eccentrically loaded 

continuous foundations; qu(centric) = ultimate bearing capacity of centrally loaded 

continuous foundations. 

Meyerhof (1963) proposed load inclination factors as follows: 

2

90
1 





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
−==

α
qc ii                                                       (4.2) 

2

1 







−=

φ

α
γi                                                           (4.3) 

where ic, iq, iγ = inclination factors 

Therefore, it appears that, for a given value of Df /B, a reduction factor RF can be 

developed based on the concept advanced in Eq. (4.1) for load eccentricity and the 

inclination factors similar to those given in Eqs. (4.2) and (4.3). Or, 
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where )/ ,/ ,/( φαBeBDu f
q = ultimate bearing capacity with eccentricity ratio e/B and 

inclination ratio α/φ at an embedment ratio Df /B and )0/ ,0/ ,/( =φα=BeBDu f
q = ultimate 

bearing capacity with central vertical loading (e/B = 0 and α/φ = 0)  at the same 

embedment ratio Df  /B. 

Thus it can initially be assumed that 

  

nm

B

e
aRF 









φ

α
−




















−= 11  (4.5) 

where a, m, n = factors which are functions of Df  /B. 

The purpose of this chapter is to discuss the results from several laboratory model tests 

on strip foundations with varying Df /B, e/B and α and evaluate the coefficients a, m, and 

n as given in Eq. (4.5). 

4.2 Experimental Module 

One hundred and twenty numbers of laboratory model tests were conducted under the 

condition when the line of load application is towards the center line of the footing. The 

detail sequence of model tests in this condition are shown in Table 4.1 and Table 4.2 for 

dense sand and medium dense sand respectively. 
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Table 4.1. Sequence of model test for Dense sand in Partially Compensated condition 

     __________________________________________________________________ 

         Test No.            e/B             α         Df /B  

     __________________________________________________________________ 

           1-5   0  00, 50, 100, 150, 200  0 

          6-10   0.05  00, 50, 100, 150, 200  0 

        11-15   0.1  00, 50, 100, 150, 200  0 

        16-20   0.15  00, 50, 100, 150, 200  0 

        21-25   0  00, 50, 100, 150, 200  0.5 

       26-30   0.05  00, 50, 100, 150, 200  0.5 

       31-35   0.1  00, 50, 100, 150, 200  0.5 

       36-40   0.15  00, 50, 100, 150, 200  0.5 

       41-45   0  00, 50, 100, 150, 200  1.0 

       46-50   0.05  00, 50, 100, 150, 200  1.0 

       51-55   0.1  00, 50, 100, 150, 200  1.0 

       56-60   0.15  00, 50, 100, 150, 200  1.0 
  ____________________________________________________________________ 
 

Table 4.2. Sequence of model test for Medium Dense sand in Partially Compensated 

condition 

       __________________________________________________________________ 

             Test No.             e/B               α          Df /B  

       __________________________________________________________________ 

              61-65   0  00, 50, 100, 150, 200  0 

              66-70   0.05  00, 50, 100, 150, 200  0 

              71-75   0.1  00, 50, 100, 150, 200  0 

              76-80   0.15  00, 50, 100, 150, 200  0 

              81-85   0  00, 50, 100, 150, 200  0.5 

              86-90   0.05  00, 50, 100, 150, 200  0.5 

              91-95   0.1  00, 50, 100, 150, 200  0.5 
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             96-100  0.15  00, 50, 100, 150, 200  0.5 

           101-105  0  00, 50, 100, 150, 200  1.0 

           106-110  0.05  00, 50, 100, 150, 200  1.0 

           111-115  0.1  00, 50, 100, 150, 200  1.0 

           116-120  0.15  00, 50, 100, 150, 200  1.0 
       __________________________________________________________________ 

4.3 Model Test Results 

4.3.1 Central Vertical Loading Conditions 

Six number of model tests were performed (i.e. e/B = 0, α = 00) in central vertical 

condition. The details of the test parameters are shown in Table 4.3. Basically there are 

five different methods to interpret the ultimate bearing capacity from the load-settlement 

curve namely Log-Log method (DeBeer 1970), Tangent Intersection method (Trautmann 

and Kulhawy 1988), 0.1B method (Briaud and Jeanjean 1994), Hyperbolic method 

(Cerato 2005), and Break Point method (Mosallanezhad et al. 2008). For the present test 

results, the ultimate bearing capacity is determined by Break Point method [Figure 4.2] as 

after the point of “failure load” with small increase in load significant increase in 

settlement occurs.  

Table 4.3. Model test parameters for the case of Centric Vertical Loading condition 

Sand 
type 

 

Unit weight of 
compaction 

(kN/m³) 

Relative 
density of sand 

(%) 

Friction angle φ − 
direct shear test  

(degree) 
B

D f  

 
B

e
 

 

Load 
Inclination, 

α 
(degree)

 Dense 14.36   69 40.8 0 
 0.5 
1.0 

0 
 
 

0 

Medium 
dense 

13.97 51 37.5 0 
 0.5 
1.0 

0 
 

0 
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Figure 4.2: Interpretation of Ultimate bearing capacity qu by Break Point method 

(Mosallanezhad et al. 2008) 

Few number of load-settlement curves are shown in Figures 4.3 and 4.4 to realize the 

effect of depth of embedment and relative density of sand on ultimate bearing capacity. 

As seen in Figures 4.3 and 4.4, the bearing capacity of footing increases with the increase 

in depth of embedment as well as relative density of sand.  
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Figure 4.3: Variation of load-settlement curve with embedment ratio (Df /B) at e/B=0 and 

α=0 in Dense sand 
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       Figure 4.4: Variation of load-settlement curve with Relative Density (Dr) of sand at 

Df /B=1, e/B=0 and α=0 
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The ultimate bearing capacities for centric vertical loading (e/B = 0, α = 0) at Df /B = 0, 

0.5 and 1.0 for dense and medium dense sand obtained using the expressions mentioned 

in section 2.2.1. The values are plotted in Figure 4.5 and also presented in Table 4.4 and 

4.5. It can be seen that experimental bearing capacities for a given Df /B are significantly 

higher than those predicted by theory. Investigators like Balla 1962, Bolt 1982, Cichy et 

al. 1978, Ingra and Baecher 1983, Hartikainen and Zadroga 1994, Milovic 1965, Saran 

and Agarwal 1991, Shiraishi 1990, and Zadroga 1975 revealed that bearing-capacity 

model test results which are being carried out in various geotechnical laboratories of 

shallow footings and strip foundations are, in general, much higher than those calculated 

by traditional methods. There are several reasons for this, the most important of which is 

the unpredictability of Nγ and the scale effect associated with the model tests. DeBeer 

(1965) and Vesic (1973) have discussed this phenomenon at length. DeBeer (1965) 

compiled several bearing capacity test results which are shown in Figure 4.6 as a plot of 

Nγ vs. γB. The value of Nγ rapidly decreases with the increase in γB. In addition, DeBeer 

(1965) compared the variation of Nγ obtained from small scale laboratory and large scale 

field test results, and these are given in Figure 4.7. For loose sand, the Nγ value in the 

field is larger than it is in the laboratory. However, for medium dense and dense sands, it 

is the opposite. These results indicate that it is very difficult to isolate the discrepancies 

between laboratory test results and theory. In any case, it is reasonable to assume that the 

reduction factor RF as given in Eq. (4.4) is a ratio of two bearing capacities. Hence the 

scale effect and other unforeseen factors in laboratory model tests will cancel out or will 

be substantially minimized.  
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Figure 4.5: Variation of qu with Df /B for α = 0 and e/B = 0 using formulae of existing 

theories along with present experimental values for (a) dense (b) medium dense sand 
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Table 4.4. Calculated values of ultimate bearing capacities qu by Terzaghi (1943) and 

Meyerhof (1951) for centric vertical condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment; 

qu (kN/m2) 

Terzaghi (1943); qu 

(kN/m2) 

Meyerhof (1951); qu 

(kN/m2) 

φ =37.50
 φ =40.80

 φ =37.50
 φ =40.80

 φ =37.50
 φ =40.80

 

0 0 0 101.043 166.77 50.25 97.28 40.98 78.94 

0 0 0.5 143.226 264.87 90.53 162.87 80.45 144.86 

0 0 1 208.953 353.16 130.82 228.45 126.42 222.04 

 

Table 4.5. Calculated values of ultimate bearing capacities qu by Hansen (1970) and 

Vesic (1973) for centric vertical condition along with Present experimental values 

Inclination 

(α) 
e/B Df /B 

Present Experiment; 

qu (kN/m2) 

Hansen (1970); qu 

(kN/m2) 

Vesic (1973); qu 

(kN/m2) 

φ =37.50 φ =40.80 φ =37.50 φ =40.80 φ =37.50 φ =40.80 

0 0 0 101.043 166.77 36.16 66.03 50.37 90.52 

0 0 0.5 143.226 264.87 75.78 128.43 86.21 147.56 

0 0 1 208.953 353.16 115.40 190.82 129.60 215.32 
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Figure 4.6: Variation of Nγ with γB (adapted after DeBeer, 1965) 

 

Figure 4.7: Comparison of Nγ obtained from tests with small footings and large footings 

of 1m² area on sand (adapted after DeBeer, 1965). 



  

   

50 

 

The observed failure surface for footing resting on dense sand in centric vertical 

condition (i.e. Df /B=0, α=0, e/B=0) is shown in Figure 4.8. Up to a depth of B the effect 

of applied load is prominent beyond that it gradually decreases and at a depth of 2B it 

almost diminishes.  

 

Figure 4.8: Photographic image of failure surface observed in dense sand in surface 

condition at Df /B = 0, α = 0° and e/B = 0 

4.3.2 Eccentric Vertical Loading Conditions 

Twenty four numbers of model tests are conducted in eccentric vertical condition. The 

details of the test parameters are shown in Table 4.6. The load settlement curves of strip 

foundations (α = 0 and e/B = 0, 0.05, 0.1 and 0.15) on dense sand in surface condition are 

plotted in Figure 4.9. The load carrying capacity decreases with increase in e/B ratio. 

Similarly, Figures 4.10 and 4.11 show the variation of load-settlement curve with depth 

of embedment (Df /B) and relative density of sand respectively.  

2B 

Initial position of Footing 
Qu 

B 
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Table 4.6. Model test parameters for the case of Eccentric Vertical Loading condition 

Sand 
type 

 

Unit weight of 
compaction 

(kN/m³) 

Relative 
density of sand 

(%) 

Friction angle φ − 
direct shear test  

(degree) 
B

D f  

 
B

e
 

 

Load 
Inclination, 

α 
(degree)

 Dense 14.36   69 40.8 0 
 0.5 
1.0 

0 
0.05 
0.1 

0.15 
 

0 

Medium 
dense 

13.97 51 37.5 0 
 0.5 
1.0 

0 
0.05 
0.1 

0.15 
 

0 
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Figure 4.9: Variation of load-settlement curve with eccentricity in Dense sand in surface 

condition for α=0  
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Figure 4.10: Effect of embedment on eccentricity in Dense sand for α=0, e/B=0.15 
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Figure 4.11: Variation of load settlement curve with relative density for α=0, e/B=0.05 

and Df /B=1  
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The experimental ultimate bearing capacities for eccentrically loaded foundations (e/B = 

0, 0.05, 0.1 and 0.15, Df /B = 0, 0.5 and 1, and Dr = 69%, 51%) are plotted along with the 

bearing capacities obtained by using Meyerhof’s effective area method (Eq. 2.5). This is 

shown in Figure 4.12 and Table 4.7. The nature of decrease of bearing capacity with the 

increase in eccentricity as observed from experimental results are in good agreement with 

those using Meyerhof’s method (1953).  
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Figure 4.12: Comparison of ultimate bearing capacities of Present experimental results 

with Meyerhof’s effective area method (1953) for (a) dense and (b) medium dense sand 

 

Table 4.7. Calculated values of ultimate bearing capacities (qu) by Meyerhof (1953) for 

eccentric vertical condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment; qu 

(kN/m2) 

Meyerhof (1953);  

qu (kN/m2) 

Variation (%) 

φ =37.50 φ =40.80 φ =37.50 φ =40.80 
φ 

=37.50 

φ 

=40.80 

0 0 0 101.043 166.77 40.98 78.94 -146.6 -111.3 

0 0.05 0 84.366 133.416 36.88 71.05 -128.8 -87.8 

0 0.1 0 68.67 109.872 32.78 63.15 -109.5 -74.0 

0 0.15 0 54.936 86.328 28.69 55.26 -91.5 -56.2 

0 0 0.5 143.226 264.87 80.45 144.86 -78.0 -82.8 

0 0.05 0.5 123.606 226.611 75.94 136.10 -62.8 -66.5 

0 0.1 0.5 103.986 195.219 71.43 127.35 -45.6 -53.3 

0 0.15 0.5 87.309 164.808 66.91 118.59 -30.5 -39.0 
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Inclination 

(α) e/B Df /B 

Present Experiment; qu 

(kN/m2) 

Meyerhof (1953);  

qu (kN/m2) 

Variation (%) 

0 0 1 208.953 353.16 126.42 222.04 -65.3 -59.1 

0 0.05 1 193.257 313.92 121.50 212.43 -59.1 -47.8 

0 0.1 1 175.599 278.604 116.57 202.81 -50.6 -37.4 

0 0.15 1 156.96 245.25 111.64 193.20 -40.6 -26.9 

 

The ultimate bearing capacities (ubc) are obtained by using digitized values of Nq(e) and 

Nγ(e) for φ = 37.50 as given by Prakash and Saran (1971). These ubc values have been 

compared with those obtained experimentally (Figure 4.13). The comparison is also 

shown in Table 4.8. From the figure it is found that the nature of variation of ubc with 

eccentricity is same as observed in experiment. 
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Figure 4.13: Comparison of Present experimental results with Prakash and Saran (1971) 

for medium dense sand 
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Table 4.8. Calculated values of ultimate bearing capacities (qu) by Prakash and Saran 

(1971) for eccentric vertical condition along with Present experimental values for 

medium dense sand 

Inclination 
(α) 

e/B Df /B 

Present Experiment; 
qu (kN/m2) 

Prakash and Saran (1971); qu 
(kN/m2) 

% 
Variation 

φ=37.50
 φ=37.50

 

0 0 0 101.043 39.88 60.5 

0 0.05 0 84.366 31.29 62.9 

0 0.1 0 68.67 23.26 66.1 

0 0.15 0 54.936 18.44 66.4 

0 0 0.5 143.226 76.69 46.5 

0 0.05 0.5 123.606 63.63 48.5 

0 0.1 0.5 103.986 52.32 49.7 

0 0.15 0.5 87.309 43.44 50.2 

0 0 1 208.953 113.50 45.7 

0 0.05 1 193.257 95.97 50.3 

0 0.1 1 175.599 81.37 53.7 

0 0.15 1 156.96 68.45 56.4 

 

Using Eqs. (2.8) and (2.9) and Table 2.3, the experimental reduction factor (RF) and 

theoretical reduction factor (RF) given by Purkayastha and Char (1977) are presented in 

Figure 4.14 and Table 4.9. The comparisons of reduction factor obtained from two 

approaches are reasonably good.  
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Figure 4.14: Comparison of Present experimental results with Purkayastha and Char (1977) 

 

Table 4.9. Calculated values of Rk by Purkayastha and Char (1977) for eccentric vertical 

condition along with Present experimental values 

Inclination 
(α) 

e/B Df /B 
Present Experiment; Rk Purkayastha and Char (1977); Rk 

φ =37.50
 φ =40.80

  
0 0 0 1.00 1.00 1.00 
0 0.05 0 0.83 0.80 0.79 
0 0.1 0 0.68 0.66 0.65 

0 0.15 0 0.54 0.52 0.53 

0 0 0.5 1.00 1.00 1.00 

0 0.05 0.5 0.86 0.86 0.84 

0 0.1 0.5 0.73 0.74 0.72 

0 0.15 0.5 0.61 0.62 0.62 

0 0 1 1.00 1.00 1.00 

0 0.05 1 0.92 0.89 0.87 

0 0.1 1 0.84 0.79 0.76 

0 0.15 1 0.75 0.69 0.66 
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Similarly, Loukidis et al. (2008) proposed an equation based on finite element method. 

The ultimate bearing capacities are calculated using Eq. 2.37 and plotted in Figure 4.15 

along with present experimental values for surface condition. The comparisons have also 

been shown in Table 4.10.  
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 Figure 4.15: Comparison of Present experimental results with Loukidis et al. (2008) 

Table 4.10. Calculated values of ultimate bearing capacities qu by Loukidis et al. (2008) 

for eccentric vertical condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment; qu 

(kN/m2) 

Loukidis et al. (2008); qu 

(kN/m2) 

φ =37.50
 φ =40.80

 φ =37.50
 φ =40.80

 

0 0 0 101.043 166.77 50.37 90.52 

0 0.05 0 84.366 133.416 45.73 82.19 

0 0.1 0 68.67 109.872 40.98 73.65 

0 0.15 0 54.936 86.328 36.08 64.85 
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Figure 4.16 shows the observed failure surface for eccentrically loaded footing (i.e. Df 

/B=0, α=0, e/B=0.15) where the tilting of the footing occurs at the time of failure which 

is due to load eccentricity. 

 

Figure 4.16: Photographic image of failure surface observed in medium dense sand in 

surface condition at Df /B = 0, α = 0° and e/B = 0.15 

4.3.3 Centric Inclined Loading Condition 

Thirty numbers of model tests are conducted as per Figure 2.3. The detailed parameters 

are mentioned in Table 4.11. Figures 4.17 and 4.18 show the variation of load intensity 

vs. s/B at various load inclination in surface condition for both dense and medium dense 

sand respectively. Most of the curves appear to be local shear failure type as given by 

Vesic (1973). It is seen from graphs for both dense and medium dense sand that at any 

embedment ratio (Df /B), the load carrying capacity decreases with increase in load 
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Qu 
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inclination. Similarly, Figures 4.19 and 4.20 show the variation of ubc with embedment 

ratio (Df /B) and relative density (Dr) of sand respectively. As the embedment ratio (Df 

/B) increases the load carrying capacity increases. Similarly, with increase in relative 

density of sand the ultimate bearing capacity increases.  

Table 4.11. Model test parameters for the case of Centric Inclined Loading condition 

Sand 
type 

 

Unit weight of 
compaction 

(kN/m³) 

Relative 
density of sand 

(%) 

Friction angle φ − 
direct shear test  

(degree) 
B

D f  

 
B

e
 

 

Load 
Inclination, α 

(degree) 

Dense 14.36  69 40.8 0 
 0.5 
1.0 

0 
 

0 
5 

10 
15 
20 

Medium 
dense 

13.97 51 37.5 0 
 0.5 
1.0 

0 
 

0 
5 

10 
15 
20 
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Figure 4.17: Variation of load settlement curve with load inclination (α) in dense sand for 

Df /B=0 and e/B=0  
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Figure 4.18: Variation of load-settlement curve with load inclination (α) in medium dense 

sand for Df /B=0 and e/B=0  
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Figure 4.19: Variation of load-settlement curve with embedment ratio (Df /B) in medium 

dense sand for α=200, e/B=0 
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 Figure 4.20: Variation of load-settlement curve with relative density of sand at α=50, 

e/B=0 and Df /B=0.5,   

A comparison of the nature of variation of ultimate bearing capacities obtained from the 

experiment and those computed using various existing theories have been made and 

explained below. It is to be noted that in existing theories, qu denotes the vertical 

component of the inclined load, whereas in the present experimentation, qu is considered 

as inclined load. So, in order to compare experimental values with the values obtained 

using various theories present experimental value of qu is multiplied with cosα (α is the 

load inclination with the vertical). 

The ultimate bearing capacity values are calculated using Eqs. 2.14 through 2.16 as given 

by Meyerhof (1963) for centric inclined load and compared with experimental bearing 

capacities. The comparison is shown in Figure 4.21.  

The bearing capacity values have been calculated using Eqs. 2.17 and 2.19 as proposed 

by Hansen (1970). As per Vesic (1975), the ubc have been calculated by using Eqs. 2.25 
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and 2.26. The calculated bearing capacity values as per Hansen (1970) and Vesic (1975) 

are shown in Figures 4.22 and 4.23 respectively along with experimental values. The 

above comparison is also shown in Table 4.12. The experimental values are higher than 

those obtained using equations proposed by Hansen (1970) and Vesic (1975). As has 

been pointed out by several investigators in the past, this is not very unusual primarily 

due to the inherent difficulty in establishing the proper magnitude of φ for bearing 

capacity calculations.  

0 5 10 15 20
0

50

100

150

200

250

300

350

400

U
lt

im
at

e 
be

ar
in

g 
ca

pa
ci

ty
, q

u
 (

kN
/m

2 )

α (degree)

 Meyerhof (1963); D
f
 /B=0

         =0.5
         =1.0
 Present Experiment; D

f
 /B=0

            =0.5
             =1.0

Dense sand

 

(a) 



  

   

64 

 

0 5 10 15 20
0

50

100

150

200

250

 

U
lt

im
at

e 
be

ar
in

g 
ca

pa
ci

ty
, q

u
 (

kN
/m

2 )

α (degree)

 Meyerhof (1963); D
f
 /B=0

         =0.5
         =1.0
 Present Experiment; D

f
 /B=0

              =0.5
              =1.0

Medium Dense sand

 

(b) 

Figure 4.21: Comparison of ultimate bearing capacities of Present experimental results 

with Meyerhof (1963) for (a) dense sand and (b) medium dense sand 

0 5 10 15 20
0

50

100

150

200

250

300

350

400

U
lt

im
at

e 
be

ar
in

g 
ca

pa
ci

ty
, q

u
 (

kN
/m

2 )

α (degree)

 Hansen (1970); D
f
 /B=0

       =0.5
       =1.0
 Present Experiment; D

f
 /B=0

              =0.5
              =1.0

Dense sand

 

(a) 



  

   

65 

 

0 5 10 15 20
0

50

100

150

200

250

 

U
lt

im
at

e 
be

ar
in

g 
ca

pa
ci

ty
,q

u (
kN

/m
2 )

α (degree)

 Hansen (1970); D
f
 /B=0

       =0.5
       =1.0
 Present Experiment; D

f
 /B=0

              =0.5
             =1.0

Medium Dense sand

 

(b) 

 Figure 4.22: Comparison of ultimate bearing capacities of Present experimental results 

with Hansen (1970) for (a) dense sand and (b) medium dense sand 
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 Figure 4.23: Comparison of ultimate bearing capacities of Present experimental results 

with Vesic (1975) for (a) dense sand and (b) medium dense sand 

 

Table 4.12. Calculated values of ultimate bearing capacities (qu) by using formulae of 

existing theories for centric inclined condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment; 

qu cosα (kN/m2) 

Meyerhof (1963); 

qu (kN/m2) 

Hansen (1970) ;qu 

(kN/m2) 

Vesic (1975); qu 

(kN/m2) 

φ =37.50 φ =40.80 φ =37.50 φ =40.80 φ =37.50 φ =40.80 φ =37.50 φ =40.80 

0 0 0 101.043 166.770 40.98 78.94 36.16 66.03 50.37 90.52 

5 0 0 79.159 128.022 30.78 60.78 26.37 48.15 38.28 68.79 

10 0 0 55.068 94.679 22.04 44.99 18.72 34.18 28.15 50.60 

15 0 0 36.957 64.437 14.75 31.57 12.81 23.38 19.77 35.53 

20 0 0 22.586 40.564 8.92 20.52 8.32 15.19 12.97 23.31 

0 0 0.5 143.226 264.870 80.45 144.86 75.78 128.43 86.21 149.03 

5 0 0.5 120.204 222.818 65.41 118.52 58.05 98.05 68.13 117.51 

10 0 0.5 96.611 183.561 52.18 95.17 43.70 73.53 52.48 90.30 

15 0 0.5 76.756 145.931 40.78 74.81 32.12 53.79 38.99 66.90 

20 0 0.5 54.761 108.784 31.20 57.42 22.84 38.06 27.48 47.00 

0 0 1 208.953 353.160 126.42 222.04 115.40 190.82 129.60 221.20 

5 0 1 185.681 312.727 105.82 186.32 89.73 147.94 104.26 177.61 
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Inclination 

(α) e/B Df /B 

Present Experiment; 

qu cosα (kN/m2) 

Meyerhof (1963); 

qu (kN/m2) 

Hansen (1970) ;qu 

(kN/m2) 

Vesic (1975); qu 

(kN/m2) 

10 0 1 158.442 260.850 87.45 154.26 68.68 112.87 81.92 139.27 

15 0 1 128.875 217.950 71.31 125.87 51.42 84.20 62.25 105.59 

20 0 1 92.190 172.395 57.40 101.14 37.36 60.93 45.04 76.21 

 

Using Eqs. 2.21 and 2.22 as given by Muhs and Weiss (1973) the ratio (qu(v) /qu(α=0)) are 

evaluated and plotted in Figure 4.24 along with experimental values for different load 

inclination (α=0-20°). The values are shown in Table 4.13. The computed values as per 

Muhs and Weiss (1973) is in good agreement with experimental values for both dense 

sand and medium dense sand.  
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Figure 4.24: Comparison of Present experimental results with Muhs and Weiss (1973) 
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Table 4.13. Calculated values of Muhs and Weiss (1973) ratio for centric inclined 

condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment Muhs and Weiss (1973) 

φ =37.50 φ  =40.80 (1-tanα)2 

0 0 0 1.00 1.00 1.00 

5 0 0 0.78 0.77 0.83 

10 0 0 0.54 0.57 0.68 

15 0 0 0.37 0.39 0.54 

20 0 0 0.22 0.24 0.40 

0 0 0.5 1.00 1.00 1.00 

5 0 0.5 0.84 0.84 0.83 

10 0 0.5 0.67 0.69 0.68 

15 0 0.5 0.54 0.55 0.54 

20 0 0.5 0.38 0.41 0.40 

0 0 1 1.00 1.00 1.00 

5 0 1 0.89 0.89 0.83 

10 0 1 0.76 0.74 0.68 

15 0 1 0.62 0.62 0.54 

20 0 1 0.44 0.49 0.40 

 

By using finite element method, Loukidis et al. (2008) proposed an equation for 

inclination factor as mentioned in Eq. 2.40 for surface footing. The experimental values 

of ultimate bearing capacity are plotted in Figure 4.25 along with the values obtained by 

using equations given by Loukidis et al. (2008). The same has been presented in Table 

4.14. The nature of variation of bearing capacity with load inclination is in good 

agreement. 
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Figure 4.25: Comparison of Present experimental results with Loukidis et al. (2008) 

 

Table 4.14. Calculated values of ultimate bearing capacities by using formula of Loukidis 

et al. (2008) for centric inclined condition along with Present experimental values 

Inclination 

(α) e/B Df /B 

Present Experiment; qu 

cosα (kN/m2) 

Loukidis et al. (2008); 

 qu (kN/m2) 

φ =37.50 φ =40.80 φ =37.50 φ =40.80 

0 0 0 101.043 166.770 50.37 90.52 

5 0 0 79.159 128.022 35.44 64.48 

10 0 0 55.068 94.679 23.68 43.95 

15 0 0 36.957 64.437 14.67 28.12 

20 0 0 22.586 40.564 8.07 16.37 

 

The failure surfaces in all these experiments with centric inclined loading conditions have 

been observed. Figure 4.26 shows the failure surface as observed for the condition i.e. Df 

/B=0, α=200, e/B=0. The sliding of the foundation has been observed which is due to 

horizontal component of the inclined load. It is also seen that the deformation of sand 
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layer is prominent up to a depth of 0.5B in the vertical direction and laterally up to a 

distance of near about 2B. 

 

   Figure 4.26: Photographic image of failure surface observed in medium dense sand at 

Df /B = 0, α = 20° and e/B = 0 

4.3.4 Eccentric Inclined Loading Conditions 

Seventy two tests have been conducted with loads applied both eccentric and inclined. 

The combination of parameters chosen for these experiments is listed in Table 4.13.  

Table 4.15. Model test parameters for the case of Eccentric Inclined Loading condition 

Sand 
type 

 

Unit weight of 
compaction 

(kN/m³) 

Relative 
density of sand 

(%) 

Friction angle φ − 
direct shear test  

(degree) 
B

D f  

 
B

e
 

 

Load 
Inclination, α 

(degree) 

Dense 14.36   69 40.8 0 
 0.5 
1.0 

0.05 
0.1 

0.15 
 

5 
10 
15 
20 

Medium 
dense 

13.97 51 37.5 0 
 0.5 

0.05 
0.1 

5 
10 

Qu 
Initial Position of Footing 

2B 

α 
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Sand 
type 

 

Unit weight of 
compaction 

(kN/m³) 

Relative 
density of sand 

(%) 

Friction angle φ − 
direct shear test  

(degree) 
B

D f  

 
B

e
 

 

Load 
Inclination, α 

(degree) 

1.0 0.15 
 

15 
20 

The variation of ubc with load inclination at all embedment ratios and eccentricity ratios 

for both dense sand and medium dense sand have been observed. Figure 4.27 shows one 

such plot of the nature of load-settlement curve with load inclination at a particular 

embedment ratio Df /B = 0.5 and e/B = 0.05 in medium dense sand. It is seen from the 

graph that the ultimate bearing capacity decreases with increase in load inclination. This 

is true for all eccentricities and all depth of embedment. Similarly, the variation of ubc 

with load eccentricity at all embedment ratios and load inclinations for both dense sand 

and medium dense sand have been observed. One combination of such plot is shown in 

Figure 4.28 where the variation of ubc with e/B at a particular embedment ratio Df /B = 

1.0 and α = 150 in dense sand is presented. It is observed that the ultimate bearing 

capacity decreases with increase in e/B ratio. The ubc increases with increase in 

embedment ratio (Df /B) for all eccentricities and all load inclinations. One such variation 

of ubc with embedment ratio (Df /B) at e/B = 0.15 and α = 200 in medium dense sand is 

shown in Figure 4.29. It is also observed that the bearing capacity increases with increase 

in relative density for all combinations of Df /B, e/B and α. One such plot is shown in 

Figure 4.30.  
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Figure 4.27: Variation of load-settlement curve with load inclination α at Df /B=0.5 and 

e/B=0.05 in medium dense sand 
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Figure 4.28: Variation of load-settlement curve with e/B at Df /B=1.0 and α =150 in dense 

sand 
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Figure 4.29: Variation of load-settlement curve with embedment ratio (Df /B) at e/B =0.15 

and α =200 in medium dense sand 
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  Figure 4.30: Variation of load-settlement curve with Relative Density (Dr) at e/B =0.15, 

α =100 and Df /B=0.5 



  

   

74 

 

Figure 4.31 shows the load arrangement for the test [Df /B = 0, e/B = 0.15, and α = 200]. 

The photographic images of failure surface developed at ultimate stage for one of the 

tests is shown in Figure 4.32. From the figure it is observed that the failure surface is 

significantly developed up to a depth of 0.5B below the base of the footing, whereas in 

case of footing subjected to vertical and centric load the development of the failure 

surface is seen up to a depth of 1.5B (Figure 4.8) from the base of the footing. At the time 

of failure sliding of the footing occurs along with tilting.  

 

Figure 4.31: Photographic image of load arrangement for the test at Df /B = 0, α = 20° 

and e/B = 0.15 
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   Figure 4.32: Photographic image of the failure surface observed in dense sand at Df /B 

= 0, α = 15° and e/B = 0.15 

4.4 Analysis of Test Results 

The ultimate bearing capacities of all tests determined from experimental model tests 

under section 4.3 are given in Table 4.16 (Col. 5) for ready reference. As discussed in 

section 4.1, in order to quantify certain parameters like e/B,α, Df /B, and Dr all the model 

test results have been analysed using Nonlinear Regression Analysis Program (NLREG). 

NLREG performs statistical regression analysis to estimate the values of parameters for 

linear, multivariate, polynomial, logistic, exponential, and general nonlinear functions.  

The regression analysis determines the values of the coefficients that cause the function 

to best fit the observed data that is being provided. The reduction factor concept as 

discussed in section 4.1 use the proposed Eqs. 4.4 and 4.5 to predict the ultimate bearing 

α Initial Position of Footing 

e 

2B 

Qu 

1.5B 
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capacity of shallow foundation subjected to eccentric and inclined load. The following 

procedure is adopted to analyse the test results and develop the reduction factor when the 

line of load application is towards the center line of the footing. 

Step 1:  For vertical loading conditions (i.e. α =0), Eq. (4.5) takes the form 

   



















−=

m

B

e
aRF 1  (4.6) 

With α = 0 and, for a given Df /B and given sand type (i.e. dense or medium dense), 

regression analyses is performed to obtain the magnitudes of a and m. 

Step 2:  Using the values of a and m obtained in Step 1 and Eq. (4.5), for a given Df /B 

and sand type, a regression analysis is performed to obtain the value of n for α > 0°. 

The values of a, m and n obtained from analyses described above are shown in Table 

4.17. It can be seen from Table 4.17 that the variations of a and m with Df /B are very 

minimal; however, the value of n decreases with the increase in embedment ratio. The 

average values of a and m are 2.14 and 0.92 respectively.  

Considering the uncertainties involved in any experimental evaluation of ultimate bearing 

capacity, we can assume without loss of much accuracy 

   2≈a  (4.7) 

   1≈m  (4.8) 

   







−≈

B

D
n

f2  (4.9) 
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The experimental values of RF defined by Eq. (4.4) are shown in Col. 6 of Table 4.16. In 

computing the experimental RF values, the first row of values for both dense and medium 

dense sands (where Df /B = 0, α = 0 and e/B = 0) are used as the reference values (i.e. 

denominator). For comparison purposes, the predicted values of the reduction factor RF 

obtained using Eqs. (4.5), (4.7), (4.8) and (4.9) are shown in Col. 7 of Table 4.16. The 

deviations of the predicted values of RF from those obtained experimentally are shown in 

Col. 8 of Table 4.16. In most cases the deviations are ±15% or less; however, in some 

cases, the deviations are 25 to 30%. Thus Eqs. (4.5), (4.7), (4.8) and (4.9) provide a 

reasonable good and simple approximation to estimate the ultimate bearing capacity of 

strip foundations (0 ≤ Df /B ≤ 1) subjected to eccentric inclined loading. Or 
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Table 4.16. Model test results 

Sand 
type 
(1) 

 

B

D f  

(2) 

α 

(deg) 
(3) 

 
B

e
 

(4) 

 
Experimental 

qu  
(kN/m2) 

(5) 

Experimental 
RF 

[Eq. (4.4)] 
(6) 

Calculated 
RF 

[Eqs. 4.5, 
4.7, 4.8, 
and 4.9] 

(7) 

Deviation— 

7 Col.

6 Col.7 Col. −
 

(%) 
(8) 

Dense 
 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 
10 
15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 

166.77 

133.42 
109.87 
86.33 
128.51 
103.01 
86.33 
65.73 
96.14 
76.52 
62.78 
51.99 
66.71 

1.0 
0.8 

0.659 
0.518 
0.771 
0.618 
0.518 
0.394 
0.576 
0.459 
0.376 
0.312 
0.4 

1 
0.9 
0.8 
0.7 
0.77 

0.693 
0.616 
0.539 
0.570 
0.513 
0.456 
0.399 
0.4 

0 
11.11 
17.65 
26.05 
-0.09 
10.86 
15.96 
26.87 
-1.16 
10.54 
17.42 
21.85 
-0.03 
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Sand 
type 
(1) 

 

B

D f  

(2) 

α 

(deg) 
(3) 

 
B

e
 

(4) 

 
Experimental 

qu  
(kN/m2) 

(5) 

Experimental 
RF 

[Eq. (4.4)] 
(6) 

Calculated 
RF 

[Eqs. 4.5, 
4.7, 4.8, 
and 4.9] 

(7) 

Deviation— 

7 Col.

6 Col.7 Col. −
 

(%) 
(8) 

0 
0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

15 
15 
15 
20 
20 
20 
20 
0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 
10 
15 
15 
15 
15 
20 
20 
20 
20 
0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 
10 

0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.5 
0 

0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

53.96 
44.15 
35.12 
43.16 
34.83 
29.43 
23.54 
264.87 
226.61 
195.22 
164.81 
223.67 
193.26 
165.79 
140.28 
186.39 
160.88 
137.34 
116.74 
151.07 
129.49 
111.83 
94.18 
115.76 
98.1 

85.35 
72.59 
353.16 
313.92 
278.6 
245.25 
313.92 
277.62 
241.33 
215.82 
264.87 
239.36 
212.88 
188.35 

0.324 
0.265 
0.211 
0.259 
0.209 
0.176 
0.141 
1.0 

0.856 
0.737 
0.622 
0.844 
0.73 

0.626 
0.530 
0.704 
0.607 
0.519 
0.441 
0.57 

0.489 
0.422 
0.356 
0.437 
0.37 

0.322 
0.274 
1.0 

0.889 
0.789 
0.694 
0.889 
0.786 
0.683 
0.611 
0.750 
0.678 
0.603 
0.533 

0.36 
0.32 
0.28 
0.26 

0.234 
0.208 
0.182 
1.0 
0.9 
0.8 
0.7 

0.822 
0.74 

0.658 
0.575 
0.656 
0.59 

0.525 
0.459 
0.503 
0.453 
0.402 
0.352 
0.364 
0.328 
0.291 
0.255 
1.0 
0.9 
0.8 
0.7 

0.877 
0.79 

0.702 
0.614 
0.755 
0.679 
0.604 
0.528 

10.1 
17.25 
24.77 
0.41 
10.72 
15.13 
22.4 

0 
4.94 
7.87 
11.11 
-2.74 
1.37 
4.81 
7.95 
-7.29 
-2.9 
1.18 

4 
-13.43 
-8.03 
-4.96 
-1.01 

-20.06 
-13.05 
-10.65 
-7.56 

0 
1.23 
1.39 
0.79 
-1.3 
0.46 
2.65 
0.51 
0.65 
0.24 
0.19 
-0.93 
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Sand 
type 
(1) 

 

B

D f  

(2) 

α 

(deg) 
(3) 

 
B

e
 

(4) 

 
Experimental 

qu  
(kN/m2) 

(5) 

Experimental 
RF 

[Eq. (4.4)] 
(6) 

Calculated 
RF 

[Eqs. 4.5, 
4.7, 4.8, 
and 4.9] 

(7) 

Deviation— 

7 Col.

6 Col.7 Col. −
 

(%) 
(8) 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

15 
15 
15 
15 
20 
20 
20 
20 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

225.63 
206.01 
179.52 
155.98 
183.45 
166.77 
143.23 
126.55 

0.639 
0.583 
0.508 
0.442 
0.519 
0.472 
0.406 
0.358 

0.632 
0.569 
0.506 
0.443 
0.51 

0.459 
0.408 
0.357 

-1.03 
-2.5 
-0.48 
0.22 
-1.89 
-2.92 
0.56 
-0.41 

Medium 

dense 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 
10 
15 
15 
15 
15 
20 
20 
20 
20 
0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 

101.04 

84.37 
68.67 
54.94 
79.46 
63.77 
52.97 
42.18 
55.92 
47.09 
38.46 
31.39 
38.26 
32.37 
26.98 
20.6 

24.03 
19.62 
16.68 
13.34 
143.23 
123.61 
103.99 
87.31 
120.66 
103.99 
90.25 
72.59 
98.1 

84.86 
72.59 

1.0 
0.835 
0.68 

0.544 
0.786 
0.631 
0.524 
0.417 
0.533 
0.466 
0.381 
0.311 
0.379 
0.32 

0.267 
0.204 
0.238 
0.294 
0.165 
0.132 
1.0 

0.863 
0.726 
0.61 

0.842 
0.726 
0.63 

0.507 
0.685 
0.592 
0.507 

1.0 
0.9 
0.8 
0.7 

0.751 
0.676 
0.601 
0.526 
0.538 
0.484 
0.43 

0.376 
0.36 

0.324 
0.288 
0.252 
0.218 
0.196 
0.174 
0.152 
1.0 
0.9 
0.8 
0.7 

0.807 
0.726 
0.645 
0.565 
0.628 
0.565 
0.502 

0 
7.23 
15.05 
22.33 
-4.7 
6.65 
12.75 
20.6 
-2.9 
3.71 
11.54 
17.47 
-5.18 
1.11 
7.3 

19.09 
-9.22 
0.93 
5.27 
13.39 

0 
4.11 
9.25 
12.92 
-4.42 
0.02 
2.37 
10.26 
-9.07 
-4.83 
-0.89 
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Sand 
type 
(1) 

 

B

D f  

(2) 

α 

(deg) 
(3) 

 
B

e
 

(4) 

 
Experimental 

qu  
(kN/m2) 

(5) 

Experimental 
RF 

[Eq. (4.4)] 
(6) 

Calculated 
RF 

[Eqs. 4.5, 
4.7, 4.8, 
and 4.9] 

(7) 

Deviation— 

7 Col.

6 Col.7 Col. −
 

(%) 
(8) 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

10 
15 
15 
15 
15 
20 
20 
20 
20 
0 
0 
0 
0 
5 
5 
5 
5 

10 
10 
10 
10 
15 
15 
15 
15 
20 
20 
20 
20 

0.15 
0 

0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

60.82 
79.46 
67.89 
56.9 

48.07 
58.27 
50.03 
43.16 
36.3 

208.95 
193.26 
175.6 
156.96 
186.39 
168.73 
153.04 
137.34 
160.88 
144.21 
129.49 
112.82 
133.42 
118.7 
106.93 
94.18 
98.1 

92.21 
84.37 
75.54 

0.425 
0.555 
0.474 
0.397 
0.336 
0.407 
0.349 
0.301 
0.253 
1.0 

0.925 
0.84 

0.751 
0.892 
0.808 
0.732 
0.657 
0.77 
0.69 
0.62 
0.54 

0.638 
0.568 
0.512 
0.451 
0.469 
0.441 
0.404 
0.362 

0.44 
0.465 
0.418 
0.372 
0.325 
0.319 
0.287 
0.255 
0.223 
1.0 
0.9 
0.8 
0.7 

0.867 
0.78 

0.693 
0.607 
0.733 
0.66 

0.587 
0.513 
0.6 
0.54 
0.48 
0.42 

0.467 
0.42 

0.373 
0.327 

3.4 
-19.37 
-13.31 
-6.85 
-3.16 

-27.62 
-21.75 
-18.17 
-13.56 

0 
-2.76 
-5.05 
-7.31 
-2.93 
-3.53 
-5.63 
-8.34 
-4.99 
-4.57 
-5.63 
-5.18 
-6.42 
-5.2 
-6.61 
-7.31 
-0.6 
-5.07 
-8.15 

-10.66 

Table 4.17. Variation of a, m and n [Eq. (4.5)] along with R2 values 

Sand type 
B

D f  a m R
2
 n R

2
 

Dense 0 
0.5 
1.0 

2.23 
2.0 

1.76 

0.81 
0.88 
0.92 

0.99 
1.0 
1.0 

1.98 
1.23 
0.97 

0.99 
0.99 
0.99 

Medium 
dense 

0 
0.5 
1.0 

2.59 
2.31 
1.97 

0.91 
0.93 
1.09 

0.99 
0.99 
0.99 

1.868 
1.17 
0.95 

0.99 
0.99 
0.99 
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Figure 4.33: Comparison of present experimental results with developed empirical 

equation 

Figure 4.33 shows the comparison of experimental reduction factor with developed 

empirical reduction factor. The comparison seems to be reasonably good. 

4.5 Comparison  

4.5.1 Comparison with Meyerhof [1963] 

The ultimate bearing capacity of shallow strip foundations subjected to eccentrically 

inclined load on granular soil proposed by Meyerhof (1963) is 

(4.11) 

All expressions for various factors and notations used in Eq. 4.11 have been described in 

section 2.2.4.  

Meyerhof’s equation for inclined and eccentric load considers (qu) to be vertical; 

whereas in the present analysis qu is considered to be inclined at an angle (α).  
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The reduction factor RF corresponding to Meyerhof (1963) can be written as 
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f
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/,/,/

/,0/,0/

'

sec

cos

1

α

α

φα

φα

φα                                       (4.12) 

where qu = ultimate bearing capacity applied vertically 

The comparison of the values of RF using Meyorhof’s method as discussed above has 

been made with those using present developed equation and experimental RF values. The 

same has been presented in the Table 4.18.  

Table 4.18 Reduction Factor Comparison of Meyerhof (1963) with Present results 

Sand 
type 

 

 

B

D f  

 

α 

(deg) 
 

B

e
 

 

Pred. 
RF 

[Eq. 
4.10] 

 

RF 

corresponding 
to Meyerhof 

(1963) 
Eq. (4.12) 

 

Expt. 
RF 

[Eq. (4.4)] 
 

Dense 
 
 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 

5 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

1.000 

0.900 

0.800 

0.700 

0.770 

0.693 

0.616 

0.539 

0.570 

0.513 

0.456 

0.399 

0.400 

0.360 

0.320 

0.280 

1.000 

0.810 

0.640 

0.490 

0.773 

0.626 

0.495 

0.379 

0.579 

0.469 

0.370 

0.284 

0.414 

0.335 

0.265 

0.203 

1.000 

0.800 

0.659 

0.518 

0.771 

0.618 

0.518 

0.394 

0.576 

0.459 

0.376 

0.312 

0.400 

0.324 

0.265 

0.211 
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Sand 
type 

 

 

B

D f  

 

α 

(deg) 
 

B

e
 

 

Pred. 
RF 

[Eq. 
4.10] 

 

RF 

corresponding 
to Meyerhof 

(1963) 
Eq. (4.12) 

 

Expt. 
RF 

[Eq. (4.4)] 
 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

20 

20 

20 

20 
0 

0 

0 

0 

5 

5 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

20 

20 

20 

20 
0 

0 

0 

0 

5 

5 

5 

5 

10 

10 

10 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.260 

0.234 

0.208 

0.182 

1.000 

0.900 

0.800 

0.700 

0.822 

0.740 

0.658 

0.575 

0.656 

0.590 

0.525 

0.459 

0.503 

0.453 

0.402 

0.352 

0.364 

0.328 

0.291 

0.255 

1.000 

0.900 

0.800 

0.700 

0.877 

0.790 

0.702 

0.614 

0.755 

0.679 

0.604 

0.277 

0.224 

0.177 

0.136 

1.000 

0.855 

0.721 

0.597 

0.821 

0.705 

0.597 

0.497 

0.667 

0.575 

0.489 

0.410 

0.535 

0.464 

0.397 

0.335 

0.422 

0.369 

0.318 

0.271 

1.000 

0.878 

0.763 

0.656 

0.842 

0.742 

0.648 

0.559 

0.705 

0.625 

0.548 

0.259 

0.209 

0.176 

0.141 

1.000 

0.856 

0.737 

0.622 

0.844 

0.730 

0.626 

0.530 

0.704 

0.607 

0.519 

0.441 

0.570 

0.489 

0.422 

0.356 

0.437 

0.370 

0.322 

0.274 

1.000 

0.889 

0.789 

0.694 

0.889 

0.786 

0.683 

0.611 

0.750 

0.678 

0.603 
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Sand 
type 

 

 

B

D f  

 

α 

(deg) 
 

B

e
 

 

Pred. 
RF 

[Eq. 
4.10] 

 

RF 

corresponding 
to Meyerhof 

(1963) 
Eq. (4.12) 

 

Expt. 
RF 

[Eq. (4.4)] 
 

1 

1 

1 

1 

1 

1 

1 

1 

1 
 

10 

15 

15 

15 

15 

20 

20 

20 

20 
 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 
 

0.528 

0.632 

0.569 

0.506 

0.443 

0.510 

0.459 

0.408 

0.357 
 

0.475 

0.587 

0.522 

0.461 

0.402 

0.485 

0.434 

0.385 

0.338 
  

0.533 

0.639 

0.583 

0.508 

0.442 

0.519 

0.472 

0.406 

0.358 
  

Medium 

dense 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0 

0 

0 

0 

5 

5 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

20 

20 

20 

20 
0 

0 

0 

0 

5 

5 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

1.000 

0.900 

0.800 

0.700 

0.751 

0.676 

0.601 

0.526 

0.538 

0.484 

0.430 

0.376 

0.360 

0.324 

0.288 

0.252 

0.218 

0.196 

0.174 

0.152 

1.000 

0.900 

0.800 

0.700 

0.807 

0.726 

1.000 

0.810 

0.640 

0.490 

0.754 

0.611 

0.483 

0.369 

0.546 

0.442 

0.349 

0.268 

0.373 

0.302 

0.239 

0.183 

0.232 

0.188 

0.148 

0.114 

1.000 

0.858 

0.727 

0.605 

0.816 

0.704 

1.000 

0.835 

0.680 

0.544 

0.786 

0.631 

0.524 

0.417 

0.553 

0.466 

0.381 

0.311 

0.379 

0.320 

0.267 

0.204 

0.238 

0.194 

0.165 

0.132 

1.000 

0.863 

0.726 

0.610 

0.842 

0.726 
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Sand 
type 

 

 

B

D f  

 

α 

(deg) 
 

B

e
 

 

Pred. 
RF 

[Eq. 
4.10] 

 

RF 

corresponding 
to Meyerhof 

(1963) 
Eq. (4.12) 

 

Expt. 
RF 

[Eq. (4.4)] 
 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

20 

20 

20 

20 
0 

0 

0 

0 

5 

5 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

20 

20 

20 

20 
 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 
 

0.645 

0.565 

0.628 

0.565 

0.502 

0.440 

0.465 

0.418 

0.372 

0.325 

0.319 

0.287 

0.255 

0.223 

1.000 

0.900 

0.800 

0.700 

0.867 

0.780 

0.693 

0.607 

0.733 

0.660 

0.587 

0.513 

0.600 

0.540 

0.480 

0.420 

0.467 

0.420 

0.373 

0.327 
 

0.599 

0.501 

0.659 

0.571 

0.489 

0.412 

0.525 

0.458 

0.395 

0.336 

0.413 

0.363 

0.316 

0.272 

1.000 

0.881 

0.769 

0.663 

0.840 

0.743 

0.652 

0.564 

0.702 

0.625 

0.550 

0.479 

0.584 

0.522 

0.463 

0.406 

0.483 

0.435 

0.388 

0.342 
  

0.630 

0.507 

0.685 

0.592 

0.507 

0.425 

0.555 

0.474 

0.397 

0.336 

0.407 

0.349 

0.301 

0.253 

1.000 

0.925 

0.840 

0.751 

0.892 

0.808 

0.732 

0.657 

0.770 

0.690 

0.620 

0.540 

0.639 

0.568 

0.512 

0.451 

0.469 

0.441 

0.404 

0.362 
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Figure 4.34: Comparison of Present results with Meyerhof (1963)  

Table 4.18 and Figure 4.34 show the comparison, and the agreement is reasonably good. 

4.5.2 Comparison with Saran and Agarwal [1991] 

As discussed in section 2.2.4, Saran and Agarwal (1991) proposed an equation for the 

determination of ultimate bearing capacity of footing under eccentric and inclined load. 

They presented the bearing capacity factors cN , qN  and γN  in tabular and graphical 

forms. To compare their results with the present results, Nq and Nγ values (e/B=0, 0.1, 

α=00, 100 and 200) are digitized from the graph given by Saran and Agarwal (1991) for 

medium dense sand (φ = 37.50). Using Eqs. (2.36) as proposed by Saran and Agarwal 

(1991) and (4.4), values of RF for bearing capacity corresponding to Saran and Agarwal 

(1991) is calculated and compared with present Predicted and Experimental RF values. 

This is shown in Table 4.19. 
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Table 4.19. Comparison of Reduction Factors corresponding to Saran and Agarwal 

(1991) along with Present results 

Experiment 
No. 
(1) 

 

B

D f  

(2) 

α 

(deg) 
(3) 

 

B

e
 

(4) 

 RF 

corresponding 
to 

Saran and 
Agarwal 
(1991)  

 [Eqs. (2.36) 
and (4.4)] 

(5) 

Experimental 
RF 

[Eq. (4.4)] 
(6) 

Predicted 
RF 

[Eq. 
4.10] 
(7) 

Deviation— 

Col.7

Col.5Col.7 −
 

(%) 
(8) 

1 
  2  

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

 

0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0 
0 

10 
10 
20 
20 
0 
0 

10 
10 
20 
20 
0 
0 

10 
10 
20 
20 

0 
0.1 
0 

0.1 
0 

0.1 
0 

0.1 
0 

0.1 
0 

0.1 
0 

0.1 
0 

0.1 
0 

0.1 

1.0 
0.54 
0.44 
0.33 
0.36 
0.18 
1.0 
0.6 
0.52 
0.38 
0.38 
0.22 
1.0 
0.63 
0.56 
0.41 
0.39 
0.24 

1.0 
0.68 
0.553 
0.381 
0.238 
0.165 

1.0 
0.726 
0.685 
0.507 
0.407 
0.301 

1.0 
0.84 
0.77 
0.62 
0.469 
0.404 

1 
0.8 

0.538 
0.43 
0.218 
0.174 
1.0 
0.8 

0.628 
0.502 
0.319 
0.255 
1.0 
0.8 

0.733 
0.587 
0.467 
0.373 

-0.06 
32.89 
18.44 
23.17 
-67.37 
-5.12 
0.02 
25.26 
17.85 
23.61 
-19.81 
13.17 
-0.01 
21.31 
24.23 
29.92 
16.19 
35.41 

   

 
Most of the values of RF computed by Saran and Agarwal (1991) are found to be 

deviated in the range of 30% from the present results as shown in Table 4.19 and Figure 

4.35.  
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 Figure 4.35: Comparison: (a) Present results with Saran and Agarwal (1991), (b) Present 

predicted RF with RF corresponding to Saran and Agarwal (1991) 
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4.5.3 Comparison with Loukidis et al. [2008] 

Recently, Loukidis et al. (2008) developed an equation for combined inclination-

eccentricity factor fie using finite element method for surface foundation (Df /B = 0) as 

given by: 

2

2

2

tan5.1)(tan1.27.31
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
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                                     (4.14) 

where qu(e/B, α) = Ultimate bearing capacity of strip footing at an eccentricity e and 

inclination α; VL = (Vertical)  limit load on a strip footing resting over the surface of an 

uncemented  sand deposit subjected to eccentric and inclined load. 

The reduction factor RF corresponding to Loukidis et al. (2008) can be written as 

                                                                
αcos

ie
f

RF =                                                    (4.15)                    

The reduction factors computed using Eq. (4.15) is compared with those obtained from 

Eqs. (4.10)  and (4.4) in Figures 4.36 and 4.37 and also in Table 4.20. The comparison 

seems to be good. 
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Table 4.20. Comparison of Reduction Factors Obtained from Eqs. (4.15) and (4.13) with 

Eq. (4.10) for Df /B = 0 

Experiment 
No. 
(1) 

α 

(deg) 
(2) 

B

e
 

(3) 

Loukidis et al. 
(2008) RF 

[Eqs. (4.13) and 
(4.15)] 

(4) 

Dense  
sand 
[Eq. 

(4.10)] 
(5) 

Medium 
dense sand 
[Eq. (4.10)] 

(6) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
0 
5 
5 
5 
5 
10 
10 
10 
10 
15 
15 
15 
15 
20 
20 
20 
20 

0 
0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 

1.0 
0.817 
0.652 
0.506 
0.766 
0.677 
0.554 
0.431 
0.563 
0.503 
0.418 
0.326 
0.388 
0.343 
0.283 
0.217 
0.238 
0.205 
0.164 
0.119 

1 
0.9 
0.8 
0.7 

0.77 
0.693 
0.616 
0.539 
0.570 
0.513 
0.456 
0.399 
0.4 

0.36 
0.32 
0.28 
0.26 
0.234 
0.208 
0.182 

1.0 
0.9 
0.8 
0.7 

0.751 
0.676 
0.601 
0.526 
0.538 
0.484 
0.43 

0.376 
0.36 

0.324 
0.288 
0.252 
0.218 
0.196 
0.174 
0.152 
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     Figure 4.36: Comparison of Present results with Loukidis et al. (2008) for dense sand. 
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Figure 4.37: Comparison of Present results with Loukidis et al. (2008) for medium dense 

sand. 
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4.6 Conclusions 

The results of a number of laboratory model tests conducted to determine the ultimate 

bearing capacity of a strip foundation supported by sand and subjected to an eccentrically 

inclined load with an embedment ratio (Df /B) varying from zero to one have been 

reported. Tests are conducted on dense and medium dense sand. The load eccentricity 

ratio e/B is varied from 0 to 0.15, and the load inclination α is varied from 00 to 20° (i.e. 

α/φ ≈ 0 to 0.5). Based on the test results and within the range of parameters studied, 

following conclusions are drawn: 

• An empirical relationship for reduction factor in predicting ultimate bearing 

capacity has been proposed. 

• A comparison between the reduction factors obtained from the empirical 

relationships and those obtained from experiments shows, in general, a variation 

of ±15% or less. In some cases, the deviation is about 25 to 30%.  

• The developed reduction factor is also in well agreement with existing theories.  
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5. ULTIMATE BEARING CAPACITY OF 
ECCENTRICALLY INCLINED LOADED STRIP 

FOOTING ON GRANULAR SOIL WHEN THE LINE OF 
LOAD APPLICATION IS AWAY FROM THE CENTER 

LINE OF THE FOOTING 

5.1 Introduction 

Shallow strip foundations are at times subjected to eccentrically inclined loads. Figure 5.1 

shows two possible modes of load application. In this figure B is the width of the 

foundation, e is the load eccentricity, α is the load inclination, and Qu is the ultimate load 

per unit length of the foundation. In Figure 5.1(a) the line of load application of the 

foundation is inclined towards the center line of the foundation and is referred to as 

partially compensated by Perloff and Baron (1976). It is also possible for the line of load 

application on the foundation to be inclined away from the center line of the foundation 

as shown in Figure 5.1(b). Perloff and Baron (1976) called this type of loading as 

reinforced case. 

The results of practically all studies relating to the bearing capacity of a shallow 

foundation subjected to eccentrically inclined load presently available in the literature, 

though fairly limited, consider the so-called partially compensated case. This chapter 

deals with the study for the reinforced type of loading [Figure 5.1(b)]. 
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Figure 5.1: Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case 

Based on a review of published theoretical and experimental studies related to the 

estimation of ultimate bearing capacity of shallow strip foundation subjected to 

eccentrically inclined loading, most of the cases are pertaining to the partially 

compensated condition as mentioned in Chapter 4. In order to quantify certain 

parameters, for a given value of Df /B, a reduction factor RF as developed in Eq. (4.10) 

can be developed based on the concept advanced in Eq. (4.5) for load eccentricity and the 

inclination factors. Or, 

  
)0/ ,0/ ,/(

)/ ,/ ,/(

=φα=

φα
=

BeBDu

BeBDu

f

f

q

q
RF  (5.1) 

where )/ ,/ ,/( φαBeBDu f
q = ultimate bearing capacity with eccentricity ratio e/B and 

inclination ratio α/φ at an embedment ratio Df /B and )0/ ,0/ ,/( =φα=BeBDu f
q = ultimate 

bearing capacity with centric vertical loading (e/B = 0 and α/φ = 0)  at the same 

embedment ratio Df /B. 
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Thus it can initially be assumed that 
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where a, m, n = factors which are functions of Df /B. 

The purpose of this chapter is to analyse the results of laboratory model tests conducted 

on a strip foundation with varying Df /B, e/B and α to quantify certain coefficients as 

given in Eq. (5.2). 

5.2 Experimental Module 

Seventy eight numbers of laboratory model tests were conducted out of which six tests in 

central vertical condition (i.e. Test No. 1, 14, 27, 40, 53, and 66) are common with test 

sequence as mentioned in Chapter 4. The details of the tests are mentioned in Table 5.1 

and Table 5.2. 

Table 5.1. Sequence of Model Tests on Dense sand as per Figure 5.1(b) 

       _________________________________________________________________ 

         Test No.             e/B      α          Df /B  

       __________________________________________________________________ 
             1   0   0   0 

           2-5   0.05  50, 100, 150, 200  0 

           6-9   0.1  50, 100, 150, 200  0 

         10-13   0.15  50, 100, 150, 200  0 

           14   0   0   0.5 

         15-18   0.05  50, 100, 150, 200  0.5 

         19-22   0.1  50, 100, 150, 200  0.5 

         23-26   0.15  50, 100, 150, 200  0.5 
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            27   0   0   1.0 

         28-31   0.05  50, 100, 150, 200  1.0 

         32-35   0.1  50, 100, 150, 200  1.0 

         36-39   0.15  50, 100, 150, 200  1.0 

     _________________________________________________________________ 

 

Table 5.2. Sequence of Model Tests on Medium Dense sand as per Figure 5.1(b) 

_________________________________________________________________ 

          Test No.   e/B    α   Df /B  

      __________________________________________________________________ 
             40   0   0   0 

          41-44   0.05  50, 100, 150, 200  0 

          45-48   0.1  50, 100, 150, 200  0 

          49-52   0.15  50, 100, 150, 200  0 

            53   0   0   0.5 

          54-57   0.05  50, 100, 150, 200  0.5 

          58-61   0.1  50, 100, 150, 200  0.5 

          62-65   0.15  50, 100, 150, 200  0.5 

            66   0   0   1.0 

          67-70   0.05  50, 100, 150, 200  1.0 

          71-74   0.1  50, 100, 150, 200  1.0 

          75-78   0.15  50, 100, 150, 200  1.0 

    _________________________________________________________________ 

5.3 Model Test Results 

The ultimate bearing capacities qu obtained from the present model tests are given in 

Table 5.3 (Column 5). Other ultimate bearing capacity test results for vertical loading 
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conditions (α = 0 with e/B varying from 0.05 to 0.15) relevant to the present study as 

mentioned in case of partially compensated type (Chapter 4) are summarized in Table 

5.4. It needs to be mentioned however that, in the majority of eccentrically inclined 

loading (reinforced type) cases, the failure mode is local shear type as defined by Vesic 

(1973). The application of load considering both eccentricity and inclination for one of 

the test is shown in Figure 5.2. 

 

 Figure 5.2: Photograph of load application for the test [e/B = 0.15, α = 200 and Df /B = 0] 

when the line of load application is away from the center line of the footing 

As observed in the case of partially compensated type of loading, the ultimate bearing 

capacity (ubc) decreases with increase in the values of e/B and α for the case of 

reinforced type of loading. Similarly increase in ubc occurs with increase in Df /B and 

relative density of sand as seen with partially compensated type of loading. These are 

shown in Figures 5.3 through 5.6.  
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Figure 5.3: Variation of load-settlement curve with e/B at Df /B=0.5, α=100 in medium 

dense sand 
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      Figure 5.4: Variation of load-settlement curve with load inclination (α) at Df /B=0, 

e/B = 0.15 in dense sand 
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Figure 5.5: Variation of load-settlement curve with relative density (Dr) at Df /B=1, 

α=150, e/B =0.15  
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Figure 5.6: Variation of load-settlement curve with Df /B at α=50, e/B =0.05 in medium 

dense sand 
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A comparison has been made with the ultimate bearing capacities of partially 

compensated and reinforced type of footings as discussed. Figures 5.7 and 5.8 show plots 

of the ratio of the ultimate bearing capacities—(qu−reinforced) determined from the 

present tests (Table 5.3) to (qu−partially compensated) provided in Chapter 4 for similar 

values of Df /B, e/B (>0) and α (>0). These figures show that: 

a. For given values of Df /B and e/B, the magnitude of (qu−reinforced)/(qu−partially 

compensated) increases with the load inclination α. 

b. Generally speaking, for similar values of α and e/B, the ratio shows a tendency to 

decrease with the increase in embedment ratio. 

c. For a given value of Df  /B and α, the ratio increases with the increase in e/B. 
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Figure 5.7: Plot of (qu−reinforced)/(qu−partially compensated) for cases of eccentrically 

inclined loading in dense sand 
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Figure 5.8: Plot of (qu−reinforced)/(qu−partially compensated) for cases of eccentrically 

inclined loading in medium dense sand 

Figures 5.9 and 5.10 show the plots of the ratio of (su/B-reinforced) obtained from the 

present tests to (su/B-partially compensated) obtained from the tests reported in Chapter 4 

(su = average settlement along the center line of the foundation at ultimate load) for 

similar values of Df /B, e/B (>0) and α (>0). As expected, in any model test program of 
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this type, the plots are somewhat scattered. However, based on the results shown in these 

figures, the following general observations can be made: 

a. For any given value of Df /B, the settlement ratio increases with the angle of load 

inclination α. 

b. For similar values of α and e/B, the settlement ratio in general tends to decrease with 

the increase in Df /B. 

c. For a given Df /B and α, there is a tendency for the settlement ratio to remain the same 

irrespective of the value of e/B. 

d. For the range of tests conducted, the average value of the settlement ratio is about 1 at 

α = 5º and increase to about 1.4 at α = 20º. 
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Figure 5.9: Plot of (su/B-reinforced)/(su/B-partially compensated) for cases of 

eccentrically inclined loading in dense sand 
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Figure 5.10: Plot of (su/B-reinforced)/(su/B-partially compensated) for cases of 

eccentrically inclined loading in medium dense sand 

Figures 5.11 and 5.12 show plots of the ratio of the ultimate bearing capacities—

(qu−partially compensated) to (qu−central vertical) for similar values of Df /B, e/B (>0) 

and α (>0). These figures show that: 

• For given values of Df/B and e/B, the magnitude of (qu−partially 

compensated)/(qu−central vertical) decreases with increase in the load inclination 

α. 
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• For similar values of α and e/B, the ratio shows a tendency to increase with the 

increase in embedment ratio (Df /B). 

• For a given value of Df /B and α, the ratio decreases with the increase in e/B. 
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Figure 5.11: Plot of (qu− partially compensated)/(qu−central vertical) for cases of 

eccentrically inclined loading in dense sand 
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Figure 5.12: Plot of (qu− partially compensated)/(qu−central vertical) for cases of 

eccentrically inclined loading in medium dense sand 
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Similar types of results were found in Figures 5.13 and 5.14 which show plots of the ratio 

of the ultimate bearing capacities— (qu−reinforced)/(qu−central vertical). The values are 

also presented in Table 5.3. 
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Figure 5.13: Plot of (qu−reinforced)/(qu−central vertical) for cases of eccentrically 

inclined loading in dense sand 
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Figure 5.14: Plot of (qu−reinforced)/(qu−central vertical) for cases of eccentrically 

inclined loading in medium dense sand 
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Table 5.3. Ratio of ultimate bearing capacity qu in both conditions i.e. partially 

compensated and reinforced case with ultimate bearing capacity qu in central vertical 

condition 

Sand Type e/B α Df  /B 
qu(pc) 

(kN/m2) 
qu (R) (kN/m2) qu(pc) /qu(cv) qu(R) /qu(cv) 

Dense sand 

0.05 5 0 103.005 113.796 0.62 0.68 

0.05 10 0 76.518 88.29 0.46 0.53 

0.05 15 0 53.955 68.67 0.32 0.41 

0.05 20 0 34.826 53.955 0.21 0.32 

0.1 5 0 86.328 107.91 0.52 0.65 

0.1 10 0 62.784 85.347 0.38 0.51 

0.1 15 0 44.145 66.708 0.26 0.40 

0.1 20 0 29.430 51.993 0.18 0.31 

0.15 5 0 65.727 92.214 0.39 0.55 

0.15 10 0 51.993 81.423 0.31 0.49 

0.15 15 0 35.120 64.746 0.21 0.39 

0.15 20 0 23.544 49.05 0.14 0.29 

0.05 5.00 0.50 193.26 196.2 0.73 0.74 

0.05 10.00 0.50 160.88 166.77 0.61 0.63 

0.05 15.00 0.50 129.49 137.34 0.49 0.52 

0.05 20.00 0.50 98.10 113.796 0.37 0.43 

0.10 5.00 0.50 165.79 173.637 0.63 0.66 

0.10 10.00 0.50 137.34 151.074 0.52 0.57 

0.10 15.00 0.50 111.83 129.492 0.42 0.49 

0.10 20.00 0.50 85.35 105.948 0.32 0.40 

0.15 5.00 0.50 140.28 152.055 0.53 0.57 

0.15 10.00 0.50 116.74 132.435 0.44 0.50 

0.15 15.00 0.50 94.18 112.815 0.36 0.43 

0.15 20.00 0.50 72.59 95.157 0.27 0.36 

0.05 5.00 1.00 277.62 284.49 0.79 0.81 

0.05 10.00 1.00 239.36 249.174 0.68 0.71 

0.05 15.00 1.00 206.01 217.782 0.58 0.62 
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Sand Type e/B α Df  /B 
qu(pc) 

(kN/m2) 
qu (R) (kN/m2) qu(pc) /qu(cv) qu(R) /qu(cv) 

0.05 20.00 1.00 166.77 179.523 0.47 0.51 

0.10 5.00 1.00 241.33 251.136 0.68 0.71 

0.10 10.00 1.00 212.88 225.63 0.60 0.64 

0.10 15.00 1.00 179.52 193.257 0.51 0.55 

0.10 20.00 1.00 143.23 156.96 0.41 0.44 

0.15 5.00 1.00 215.82 228.573 0.61 0.65 

0.15 10.00 1.00 188.35 203.067 0.53 0.58 

0.15 15.00 1.00 155.98 171.675 0.44 0.49 

0.15 20.00 1.00 126.55 143.226 0.36 0.41 

Medium dense 

sand 

0.05 5 0 63.765 71.613 0.63 0.71 

0.05 10 0 47.088 56.898 0.47 0.56 

0.05 15 0 32.373 42.5754 0.32 0.42 

0.05 20 0 19.62 31.392 0.19 0.31 

0.1 5 0 52.974 62.784 0.52 0.62 

0.1 10 0 38.4552 51.993 0.38 0.51 

0.1 15 0 26.9775 41.202 0.27 0.41 

0.1 20 0 16.677 30.411 0.17 0.30 

0.15 5 0 42.183 52.974 0.42 0.52 

0.15 10 0 31.392 49.05 0.31 0.49 

0.15 15 0 20.601 38.6514 0.20 0.38 

0.15 20 0 13.3416 29.43 0.13 0.29 

0.05 5 0.5 103.986 105.948 0.73 0.74 

0.05 10 0.5 84.8565 88.29 0.59 0.62 

0.05 15 0.5 67.8852 73.575 0.47 0.51 

0.05 20 0.5 50.031 58.86 0.35 0.41 

0.1 5 0.5 90.252 94.176 0.63 0.66 

0.1 10 0.5 72.594 77.499 0.51 0.54 

0.1 15 0.5 56.898 63.765 0.40 0.45 

0.1 20 0.5 43.164 53.955 0.30 0.38 

0.15 5 0.5 72.594 77.499 0.51 0.54 
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Sand Type e/B α Df  /B 
qu(pc) 

(kN/m2) 
qu (R) (kN/m2) qu(pc) /qu(cv) qu(R) /qu(cv) 

0.15 10 0.5 60.822 67.689 0.42 0.47 

0.15 15 0.5 48.069 56.898 0.34 0.40 

0.15 20 0.5 36.297 48.069 0.25 0.34 

0.05 5 1 168.732 170.694 0.81 0.82 

0.05 10 1 144.207 148.131 0.69 0.71 

0.05 15 1 118.701 124.587 0.57 0.60 

0.05 20 1 92.214 99.081 0.44 0.47 

0.1 5 1 153.036 156.96 0.73 0.75 

0.1 10 1 129.492 135.378 0.62 0.65 

0.1 15 1 106.929 114.777 0.51 0.55 

0.1 20 1 84.366 92.214 0.40 0.44 

0.15 5 1 137.34 144.207 0.66 0.69 

0.15 10 1 112.815 120.663 0.54 0.58 

0.15 15 1 94.176 103.005 0.45 0.49 

0.15 20 1 75.537 86.328 0.36 0.41 

Note: qu(pc)=ultimate bearing capacity in partially compensated condition; qu(R)=ultimate bearing 

capacity in reinforced condition; qu(cv)=ultimate bearing capacity in central vertical condition. 

 

Figures 5.15 and 5.16 show the plots of the ratio of (su/B- partially compensated) to (su/B-

central vertical) for similar values of Df/B, e/B (>0) and α (>0). As expected, in any 

model test program of this type, the plots are somewhat scattered. However, based on the 

results shown in these figures, the following general observations can be made: 

• For any given value of Df/B, the settlement ratio decreases with the angle of load 

inclination α. 

• For the range of tests conducted, the average value of the settlement ratio is near 

about 0.6 at α = 5º and decrease to about 0.3 at α = 20º. 
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Figure 5.15: Plot of (su− partially compensated)/(su−central vertical) for cases of 

eccentrically inclined loading in dense sand 
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Figure 5.16: Plot of (su− partially compensated)/(su−central vertical) for cases of 

eccentrically inclined loading in medium dense sand 

Figures 5.17 and 5.18 show the plots of the ratio of (su/B- reinforced) to (su/B-central 

vertical) obtained from the tests (su = average settlement along the center line of the 

foundation at ultimate load) for similar values of Df /B, e/B (>0) and α (>0). However, 

based on the results shown in these figures, the following general observations can be 

made: 
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a. For any given value of Df /B, the settlement ratio decreases with the angle 

of load inclination α. 

b. For the range of tests conducted, the average value of the settlement ratio is 

near about 0.62 at α = 0º and decrease to about 0.36 at α = 20º. 
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Figure 5.17: Plot of (su− reinforced)/(su−central vertical) for cases of eccentrically 

inclined loading in dense sand 
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Figure 5.18: Plot of (su− reinforced)/(su−central vertical) for cases of eccentrically 

inclined loading in medium dense sand 



  

   

113 

 

Figures 5.19 and 5.20 show plots of the ultimate bearing capacities—(qu−partially 

compensated) with α. These figures show that: 

• For given values of Df/B and e/B, the magnitude of (qu− partially compensated) 

decreases with the load inclination α. 

• For similar values of α and e/B, the magnitude of (qu− partially compensated) 

shows a tendency to increase with the increase in embedment ratio. 

• For a given value of Df /B and α, the magnitude of (qu− partially compensated) 

decreases with the increase in e/B. 
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 Figure 5.19: Plot of qu with α for partially compensated case in dense sand 
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 Figure 5.20: Plot of qu with α for partially compensated case in medium dense sand 

Figures 5.21 and 5.22 show plots of the ultimate bearing capacities—(qu−reinforced) with 

α, for similar values of Df/B, e/B (>0) and α (>0). These figures show that: 

a. For given values of Df/B and e/B, the magnitude of (qu−reinforced) decreases with 

the load inclinationα. 

b. For surface condition, the variation of magnitude of (qu−reinforced) for any value 

of e/B and α  is in a narrow range. 

c. For similar values of α and e/B, the magnitude of (qu−reinforced) shows a 

tendency to increase with the increase in embedment ratio. 
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 Figure 5.21: Plot of qu with α for reinforced case in dense sand 
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 Figure 5.22: Plot of qu with α for reinforced case in medium dense sand 

The photographic images of failure surface developed at ultimate stage for one of the 

tests for reinforced condition is shown in Figure 5.23 for dense sand at Df /B = 1, α = 20° 

and e/B = 0.15. The failure surface is well developed up to a depth of 2B from the bottom 

of the footing in the vertical direction and near about 2.5B in the horizontal direction 

from the edge of the footing.  
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   Figure 5.23: Photographic image of the failure surface observed in dense sand at Df /B 

= 1, α = 20° and e/B = 0.15 in reinforced condition 

5.4 Analysis of Test Results 

In Chapter 4, a two-step procedure is adopted to analyse the experimental ultimate 

bearing capacities obtained for tests conducted with eccentrically inclined load for the 

partially compensated case. According to that analysis, the reduction factor RF may be 

expressed as 

                             

nm
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where =φα )( /e/B,/B,Du f
q ultimate bearing capacity with eccentricity ratio e/B and inclination 

ratio α/φ at an embedment ratio Df /B and ==φα= )00 (   /,e/B /B,Du f
q  ultimate bearing capacity 

with centric vertical loading (e/B = 0 and α/φ = 0) at the same embedment ratio Df /B. 
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Initial Position of Footing 
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Similar procedure is adopted in this case to analyse the test results given in Tables 5.4 

and 5.5. As a first step, considering the tests with vertical load (α = 0, i.e. α/φ = 0) 

regression analyses are performed which give the values of a and m. These values are 

mentioned along with the R2 values in Table 5.6. The average values of a and m are 2.14 

and 0.92 respectively; however, for simplicity and considering the scattering in an 

experimental program like this, we can approximate  

• a ≈ 2 

• m ≈ 1 

These values are the same as those reported in Chapter 4. Substituting these approximate 

values of a and m into Eq. (5.3), we obtain 

                                          

n

B

e
RF 
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α
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




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


−= 121                                              (5.4) 

In the second step, Eq. (5.4) is used to conduct regression analyses for the ultimate 

bearing capacities obtained with eccentrically inclined loading (Table 5.4) to determine 

the value of n at varying embedment ratios (for α > 0 and e/B > 0). These values are 

given in Table 5.6 along with the R
2 values. It appears that these values of n can be 

approximated as 

                                              







−≈

B

D
n

f7.05.1                                                       (5.5) 

Table 5.7 also shows the variation of n with embedment ratio calculated from Eq. (5.5). 

These values are fairly close to the experimental values, thus it can be concluded that Eq. 

(5.5) is a reasonable approximation. Combining Eqs. (5.4) and (5.5) 
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Table 5.4 shows the experimental variation of RF in Column 6, and the RF calculated 

based on Eq. (5.6) is shown in Column 7. Column 8 of Table 5.3 shows the deviations of 

the reduction factor calculated using Eq. (5.6) compared to those obtained 

experimentally. In most cases the deviation is ±10% or less. There are only a few cases 

where the deviation is about 15% and about 30% in one case. Hence, Eq. (5.6) can be 

used to obtain a reasonable prediction of the reduction factor and, thus, the ultimate 

bearing capacity for shallow strip foundation with eccentrically inclined load via Eq. 

(5.3). 

Table 5.4. Model Test Results 

Sand 
type 
(1) 

B

D f
 

(2) 

α 

(deg) 
(3) 

B

e
 

(4) 

 Experimental 
qu  

(kN/m2) 
(5) 

Experimenta
l 

RF 

(6) 

Calculated 
RF 

[Eq. (5.6)] 
(7) 

Deviation— 

7 Col.

6 Col.7 Col. −

 
(%) 
(8) 

Dense 
 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0.5 

0 
5 
5 
5 

10 
10 
10 
15 
15 
15 
20 
20 
20 
0 
5 
5 
5 

0 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 

166.77 

113.8 
107.91 
92.21 
88.29 
85.35 
81.42 
68.67 
66.71 
64.75 
53.96 
51.99 
49.05 

264.87 
196.2 

173.64 
152.06 

1.0 
0.682 
0.647 
0.553 
0.529 
0.512 
0.488 
0.412 
0.4 

0.388 
0.324 
0.312 
0.294 
1.0 

0.741 
0.656 
0.574 

1.0 
0.74 
0.66 
0.58 
0.59 
0.52 
0.46 
0.45 
0.4 
0.35 
0.33 
0.29 
0.25 
1.0 
0.77 
0.69 
0.60 

0 
7.76 
1.59 
3.89 

10.32 
2.47 
-6.34 
9.02 
0.57 
-10.3 
1.24 
-7.06 
-15.43 

0 
4.34 
4.76 
4.68 
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Sand 
type 
(1) 

B

D f
 

(2) 

α 

(deg) 
(3) 

B

e
 

(4) 

 Experimental 
qu  

(kN/m2) 
(5) 

Experimenta
l 

RF 

(6) 

Calculated 
RF 

[Eq. (5.6)] 
(7) 

Deviation— 

7 Col.

6 Col.7 Col. −

 
(%) 
(8) 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

10 
10 
10 
15 
15 
15 
20 
20 
20 
0 
5 
5 
5 

10 
10 
10 
15 
15 
15 
20 
20 
20 

0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0 

0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 

166.77 
151.07 
132.44 
137.34 
129.49 
112.82 
113.8 

105.95 
95.16 

353.16 
284.49 
251.14 
228.57 
249.17 
225.63 
203.07 
217.78 
193.26 
171.68 
179.52 
156.96 
143.23 

0.630 
0.570 
0.5 

0.519 
0.489 
0.426 
0.43 
0. 4 

0.359 
1.0 

0.806 
0.711 
0.647 
0.706 
0.639 
0.575 
0.617 
0.547 
0.486 
0.508 
0.444 
0.406 

0.65 
0.58 
0.51 
0.53 
0.47 
0.41 
0.41 
0.37 
0.32 
1.0 
0.81 
0.72 
0.63 
0.72 
0.64 
0.56 
0.62 
0.55 
0.49 
0.53 
0.47 
0.41 

3.34 
1.49 
1.3 
2.41 
-3.52 
-3.07 
-3.59 
-8.51 
-11.38 

0 
0.63 
1.31 
-2.65 
1.83 
-0.01 
-2.86 
1.14 
1.3 
-0.2 
3.18 
4.76 
0.68 

Mediu
m 

dense 
 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0.5 

0 
5 
5 
5 

10 
10 
10 
15 
15 
15 
20 
20 
20 
0 
5 
5 
5 

0 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 

101.04 

71.61 
62.78 
52.97 
56.9 

51.99 
49.05 
42.58 
41.2 

38.65 
31.39 
30.41 
29.43 
143.23 
105.95 
94.18 
77.5 

1.0 
0.709 
0.621 
0.524 
0.563 
0.515 
0.485 
0.421 
0.408 
0.383 
0.311 
0.301 
0.291 
1.0 

0.74 
0.658 
0.541 

1.0 
0.73 
0.65 
0.56 
0.57 
0.5 
0.44 
0.42 
0.37 
0.33 
0.29 
0.26 
0.22 
1.0 
0.76 
0.68 
0.59 

0 
2.4 

3.73 
7.17 
0.37 
-2.42 

-10.43 
-0.74 
-9.67 

-17.58 
-8.28 

-18.01 
-30.52 

0 
3.11 
3.11 
8.87 

Table 5.3 (Continued) 
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Sand 
type 
(1) 

B

D f
 

(2) 

α 

(deg) 
(3) 

B

e
 

(4) 

 Experimental 
qu  

(kN/m2) 
(5) 

Experimenta
l 

RF 

(6) 

Calculated 
RF 

[Eq. (5.6)] 
(7) 

Deviation— 

7 Col.

6 Col.7 Col. −

 
(%) 
(8) 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

10 
10 
10 
15 
15 
15 
20 
20 
20 
0 
5 
5 
5 

10 
10 
10 
15 
15 
15 
20 
20 
20 

0.05 
0.1 
0.15 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 

0 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 
0.05 
0.1 
0.15 

88.29 
77.5 

67.69 
73.58 
63.77 
56.9 

58.86 
53.96 
48.07 
208.95 
170.69 
156.96 
144.21 
148.13 
135.38 
120.66 
124.59 
114.78 
103.01 
99.08 
92.21 
86.33 

0.616 
0.541 
0.473 
0.514 
0.445 
0.397 
0.411 
0.377 
0.336 
1.0 

0.817 
0.751 
0.69 
0.709 
0.648 
0.577 
0.596 
0.549 
0.493 
0.474 
0.441 
0.413 

0.63 
0.56 
0.49 
0.5 
0.44 
0.39 
0.37 
0.33 
0.29 
1.0 
0.8 
0.71 
0.62 
0.7 
0.62 
0.55 
0.6 
0.53 
0.47 
0.49 
0.43 
0.38 

2.15 
3.38 
3.55 
-2.71 
-0.14 
-2.12 
-9.7 

-13.13 
-15.18 

0 
-1.78 
-5.29 

-10.55 
-0.95 
-3.79 
-5.73 
0.31 
-3.32 
-5.97 
3.06 
-1.5 
-8.59 

 
 

Table 5.5. Experimental Ultimate Bearing Capacity for Vertical Loading (α = 0) 

Sand type B

D f
 

B

e
 qu 

(kN/m2) 

Dense 

0 
0 
0 

0.05 
0.10 
0.15 

133.42 
109.87 
86.33 

0.5 
0.5 
0.5 

0.05 
0.10 
0.15 

226.61 
195.22 
164.81 

1.0 
1.0 
1.0 

0.05 
0.10 
0.15 

313.92 
278.60 
245.26 

Medium Dense 0 0.05 84.37 

Table 5.3 (Continued) 
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Sand type B

D f
 

B

e
 qu 

(kN/m2) 
0 
0 

0.10 
0.15 

68.67 
54.94 

0.5 
0.5 
0.5 

0.05 
0.10 
0.15 

123.61 
103.99 
87.31 

1.0 
1.0 
1.0 

0.05 
0.10 
0.15 

193.26 
175.60 
156.96 

 
Table 5.6. Values of a and m based on Regression Analyses (for α = 0 —Tables 5.1 and 

5.2) along with R2 value 

Sand type B

D f
 

a m R
2 

Dense 
0 

0.5 
1.0 

2.23 
2.0 
1.76 

0.81 
0.88 
0.92 

0.99 
1.0 
1.0 

Medium Dense 
0 

0.5 
1.0 

2.59 
2.31 
1.97 

0.91 
0.93 
1.09 

0.99 
0.99 
0.99 

Average 
2.14 
≈ 2.0 

0.92 
≈ 1  

 
Table 5.7. Values of n Based on Regression Analyses (for α > 0 and e/B ≥ 0) along with 

R
2 value 

Sand type B

D f
 

n R
2
 

n [from 
Eq. (5.5)] 

Dense 
0 

0.5 
1.0 

1.53 
1.13 
0.83 

0.93 
0.96 
0.99 

1.5 
1.15 
0.8 

Medium Dense 
0 

0.5 
1.0 

1.37 
1.11 
0.75 

0.98 
0.94 
0.96 

1.5 
1.15 
0.8 



  

   

123 

 

5.5 Comparison 

5.5.1 Comparison with Loukidis et al. [2008] 

Loukidis et al. (2008) developed an equation for combined inclination-eccentricity factor 

fie using finite element method for surface foundation (Df /B = 0) as given by Eq. 4.13 and 

4.14 as discussed in Chapter 4. This equation can take the load inclination clockwise as 

well as anti-clockwise. A comparison has been made in Chapter 4 for the partially 

compensated condition by using angles in anti-clockwise direction. In this chapter the 

comparison has been made with results from present analysis with results by using Eqs. 

proposed by Loukidis et al. (2008) in clockwise direction which simulates to the 

condition of reinforced footing. It is to be noted that the equations given by Loukidis et 

al. (2008) are for surface footings (Df /B=0) whereas the present prediction is for all depth 

of footing (0 ≤ Df /B ≤ 1).  

The reduction factor RF corresponding to Loukidis et al. (2008) can be written as 

                                                                
αcos

ie
f

RF =                                                    (5.7)                    

The comparisons have been shown in Figures 5.24 and 5.25. Also the comparisons are 

presented in Table 5.8. It appears that the results from both analyses are in good 

agreement. 
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Figure 5.24: Comparison of Present results with Loukidis et al. (2008) for dense sand. 
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Figure 5.25: Comparison of Present results with Loukidis et al. (2008) for medium dense 

sand. 
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Table 5.8. Comparison of Reduction Factors Obtained from Eq. (5.7) with Eq. (5.6) for 

Df /B = 0 

Experiment 
No. 
(1) 

α 

(deg) 
(2) 

B

e
 

(3) 

Loukidis et al. 
(2008) RF 
[Eq. (5.7)] 

(4) 

Dense  
sand 
[Eq. 

(5.6)] 
(5) 

Medium 
dense sand 
[Eq. (5.6)] 

(6) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

5 
5 
5 
10 
10 
10 
15 
15 
15 
20 
20 
20 

0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 
0.05 
0.1 

0.15 

0.748 
0.643 
0.517 
0.575 
0.533 
0.456 
0.406 
0.393 
0.352 
0.256 
0.255 
0.237 

0.74 
0.658 
0.575 
0.590 
0.525 
0.459 
0.453 
0.402 
0.352 
0.328 
0.291 
0.255 

0.726 
0.645 
0.565 
0.565 
0.502 
0.44 

0.418 
0.372 
0.325 
0.287 
0.255 
0.223 

5.6 Conclusions 

Analysis of a number of laboratory model test results for the ultimate bearing capacity of 

shallow strip foundation under eccentrically inclined load is presented. This study relates 

to the case of reinforced type of loading [Figure 5.1(b)]. It complements the previous 

study as mentioned in Chapter 4 which is for partially compensated type of loading. 

Based on this study and the results of the Chapter 4, the following general conclusions 

can be drawn. 

• For α = 0 and 0 ≤ Df /B ≤ 1,    

                                                             







−=

B

e
RF 21  

This is common to reinforced and partially compensated cases. 
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• For e/B = 0, 0 ≤ Df /B ≤ 1 and α > 0, the reduction factor 

)/(2

1

BD f

RF

−










φ

α
−=  

This is common to reinforced and partially compensated cases. 

• For partially compensated case with e/B > 0 

)/(2

121

BD f

B

e
RF

−










φ

α
−
















−=    [Eqn. 4.7] 

• For reinforced case with e/B > 0 

)/(7.05.1

121

BD f

B

e
RF

−










φ

α
−
















−=  

• For given values of Df /B and e/B, the magnitude of (qu−reinforced)/(qu−partially 

compensated) increases with the load inclination α. 

• For similar values of α and e/B, the above ratio shows a tendency to decrease with the 

increase in embedment ratio (Df /B). 

• For a given value of Df /B and α, the ratio (qu−reinforced)/(qu−partially compensated) 

increases with the increase in e/B. 

• At ultimate load, the settlement ratio of su in the reinforced case to su in the partially 

compensated case can be approximated as follows 

  








°=α

°=α

≈
−

−

20at  4.1

to

5at  1

dcompensatepartially 

reinforced

u

u

s

s
 

• For reinforced case, the comparison of results from present prediction with Loukidis 

et al. (2008) is in good agreement for surface condition (Df /B = 0). 
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6. PREDICTION OF ULTIMATE BEARING CAPACITY OF 
ECCENTRICALLY INCLINED LOADED STRIP 

FOOTING BY ANN: PART I 

6.1 Introduction 

The computation of ultimate bearing capacity of shallow foundations on granular soil 

when subjected to eccentric and inclined load has been explained in Chapter 4 by using 

reduction factor method. The analysis gives fairly good prediction as compared to other 

existing theories. In this chapter, it is desired to predict the ultimate bearing capacity 

under above conditions using neural network model. This model uses a database of large 

number of model tests carried out in a calibration tank as discussed in Chapter 4 to 

estimate the reduction factor in case when the resultant load (eccentric and inclined) acts 

towards the center line of the footing [Figure 6.1]. The concept of Reduction Factor (RF) 

i.e. the ratio of the ultimate bearing capacity of the foundation subjected to an 

eccentrically inclined load to the ultimate bearing capacity of the foundation subjected to 

a centric vertical load has been adopted.  

 

Figure 6.1: Partially Compensated Footing (Perloff and Baron 1976) 
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6.2 Overview of Artificial Neural Network 

6.2.1 Biological model of a neuron 

The neuron is the basic unit for processing the signals in the biological nervous system. 

Each neuron receives and processes the signals from other neurons through the input 

paths called dendrites (Figure 6.2). The dendrites collect the signals and send them to the 

cell body, or the soma of the neuron, which sums the incoming signals. If the charge of 

the collected signals is strong enough, the neuron is activated and produces an output 

signal; otherwise the neuron remains inactive. The output signal is then transmitted to the 

neighboring neurons through an output structure called the axon. The axon of a neuron 

divides and connects to dendrites of the neighboring neurons through junctions called 

synapses. 

 

Figure 6.2: Biological neuron (after Park, 2011) 
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6.2.2 The concept of Artificial Neural Network 

Artificial neural networks (ANNs) are a form of artificial intelligence, which, in their 

architecture, attempt to simulate the biological structure of the human brain and nervous 

system (Shahin et al. 2002). Typically, the architecture of ANNs consists of a series of 

processing elements (PEs), or nodes, that are usually arranged in layers: an input layer, an 

output layer and one or more hidden layers, as shown in Figure 6.3. The determination of 

number of hidden layers and the number of neurons in each hidden layer is a significant 

task. The number of hidden layers is usually determined first and is a critical step. The 

number of hidden layers required generally depends on the complexity of the relationship 

between the input parameters and the output value (Park, 2011). 

 

Figure 6.3: The ANN Architecture. 

ANNs learn from data set presented to them and use these data to adjust their weights in 

an attempt to capture the relationship between the model input variables and the 

corresponding outputs. Consequently, Artificial Neural Networks do not need prior 

knowledge regarding the nature of the mathematical relationship between the input and 

RF 

α/φ 

Df /B 

e/B 

[INPUT LAYER = l] [HIDDEN LAYER = m] [OUTPUT LAYER = n] 
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output variables. This is one of the main benefits of ANNs over most empirical and 

statistical methods (Jaksa et al. 2008). 

6.2.3 Application of ANN in Geotechnical Engineering 

Based on the literature review it has been reported that ANNs have been applied 

successfully to many geotechnical engineering problems such as predicting pile capacity, 

shallow foundations, modelling soil behaviour, site characterisation, earth retaining 

structures, settlement of structures, slope stability, design of tunnels and underground 

openings, liquefaction, soil permeability and hydraulic conductivity, soil compaction, soil 

swelling and classification of soils. A comprehensive review report on the applications of 

ANNs in geotechnical engineering is presented by Shahin et al. (2008) and Park (2011). 

6.3 Problem Definition 

Extensive laboratory model tests have been conducted on a strip footing lying over sand 

bed subjected to an eccentrically inclined load (the line of load application is towards the 

center line of the footing as shown in Figure 6.1) to determine the ultimate bearing 

capacity. Based on the laboratory test results, a neural network model is developed to 

predict the ultimate bearing capacity of the footing. The ultimate bearing capacity of 

footing at any depth of embedment subjected to eccentric and inclined load can be 

determined by knowing the ultimate bearing capacity of footing subjected to centric and 

vertical load at that depth of embedment and the corresponding reduction factor. This 

reduction factor (RF) is the ratio of the ultimate bearing capacity of the foundation 

subjected to an eccentrically inclined load to the ultimate bearing capacity of the 

foundation subjected to a centric vertical load at the same depth of embedment. Different 
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sensitivity analysis is carried out to evaluate the parameters affecting the reduction factor. 

Emphasis is placed on the construction of neural interpretation diagram, based on the 

weights of the developed neural network model, to find out direct or inverse effect of 

input parameters on the output. A prediction model equation is established with the 

weights of the neural network as the model parameters. Finally, the predictions from 

ANN, and those from developed empirical equation in Chapter 4, are compared with the 

existing theories. 

6.4 Database and Preprocessing 

The extensive database of laboratory experimental data as presented in Chapter 4 has 

been considered for the analysis in this chapter. The laboratory test data consist of 

parameters like load eccentricity (e), load inclination (α), embedment ratio (Df /B), 

friction angle (φ) and ultimate bearing capacity (qu). One hundred and twenty numbers of 

laboratory model tests results as conducted in this series have been considered for 

analysis. In this ANN model, the three dimensionless input parameters are e/B, α/φ and Df 

/B, and the output is the reduction factor (RF). The reduction factor (RF) is given by 

)0/ ,0/ ,/(

)/ ,/ ,/(

=φα=

φα
=

BeBDu

BeBDu

f

f

q

q
RF                                                                  (6.1) 

where )/ ,/ ,/( φαBeBDu f
q = ultimate bearing capacity with eccentricity ratio e/B and 

inclination ratio α/φ at an embedment ratio Df /B and )0/ ,0/ ,/( =φα=BeBDu f
q = ultimate 

bearing capacity with centric vertical loading (i.e., e/B = 0 and α/φ = 0) at the same 

embedment ratio Df /B. 
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Out of 120 test records shown in Table 6.1, 90 tests are considered for training and the 

remaining 30 are reserved for testing. Each record represents a complete model test 

where an eccentrically inclined loaded strip footing is subjected to failure. All the 

variables (i.e. inputs and output) are normalized in the range [-1, 1] before training. A 

feedforward backpropagation neural network is used with hyperbolic tangent sigmoid 

function and linear function as the transfer function. The backpropagation algorithm 

trains the network by iteratively adjusting all the connection weights among neurons, 

with the goal of finding a set of connection weights that minimizes the error of the 

network, i.e. sum-of-the-squares between the actual and predicted output (least squares 

error function, Olden 2000). A feedforward neural network has one-way connections to 

other units so that each unit can only be connected to units in later layers. Inputs are 

passed from layer to layer in a feed-forward manner. In the model, each input unit is 

connected to each hidden unit and then each hidden unit is connected to each output unit 

(Ozesmi and Ozesmi 1999). The network is trained (learning) with Levenberg–Marquardt 

(LM) algorithm as it is efficient in comparison to gradient descent backpropagation 

algorithm (Goh et al. 2005; Das and Basudhar 2006). The ANN has been implemented 

using MATLAB V 7.11.0 (R2010b). 
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Table 6.1. Dataset used for training and testing of ANN model [Chapter 4] 

Data 
Type 
(1) 

Expt. No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (6.1)] 
(7) 

Calculated 
RF 

[Eq. (6.17)] 
(8) 

Training 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0.123 

0.123 

0.123 

0.245 

0.245 

0.245 

0.368 

0.368 

0.368 

0.49 

0.49 

0.49 

0 

0 

0 

0.123 

0.123 

0.123 

0.245 

0.245 

0.245 

0.368 

0.368 

0.368 

0.49 

0.49 

0.49 

0 

0 

0 

0.123 

0.123 

0.123 

133.42 

109.87 

86.33 

128.51 

103.01 

86.33 

96.14 

76.52 

51.99 

66.71 

44.15 

35.12 

34.83 

29.43 

23.54 

264.87 

226.61 

195.22 

223.67 

193.26 

140.28 

186.39 

137.34 

116.74 

129.49 

111.83 

94.18 

115.76 

98.10 

72.59 

353.16 

278.60 

245.25 

277.62 

241.33 

215.82 

0.800 

0.659 

0.518 

0.771 

0.618 

0.518 

0.576 

0.459 

0.312 

0.400 

0.265 

0.211 

0.209 

0.176 

0.141 

1.000 

0.856 

0.737 

0.844 

0.730 

0.530 

0.704 

0.519 

0.441 

0.489 

0.422 

0.356 

0.437 

0.370 

0.274 

1.000 

0.789 

0.694 

0.786 

0.683 

0.611 

0.900 

0.800 

0.700 

0.770 

0.693 

0.616 

0.570 

0.513 

0.399 

0.400 

0.320 

0.280 

0.234 

0.208 

0.182 

1.000 

0.900 

0.800 

0.822 

0.740 

0.575 

0.656 

0.525 

0.459 

0.453 

0.402 

0.352 

0.364 

0.328 

0.255 

1.000 

0.800 

0.700 

0.790 

0.702 

0.614 
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Data 
Type 
(1) 

Expt. No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (6.1)] 
(7) 

Calculated 
RF 

[Eq. (6.17)] 
(8) 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

0 

0.05 

0.1 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0 

0.05 

0.15 

0 

0.1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.245 

0.245 

0.245 

0.368 

0.368 

0.368 

0.49 

0.49 

0.49 

0 

0 

0 

0.133 

0.133 

0.133 

0.267 

0.267 

0.267 

0.4 

0.4 

0.4 

0.533 

0.533 

0.533 

0 

0 

0 

0.133 

0.133 

0.133 

0.267 

0.267 

0.267 

0.4 

0.4 

0.4 

0.533 

0.533 

264.87 

239.36 

212.88 

225.63 

179.52 

155.98 

166.77 

143.23 

126.55 

101.04 

84.37 

54.94 

79.46 

52.97 

42.18 

47.09 

38.46 

31.39 

38.26 

32.37 

26.98 

24.03 

19.62 

13.34 

143.23 

103.99 

87.31 

103.99 

90.25 

72.59 

98.10 

84.86 

72.59 

79.46 

67.89 

48.07 

58.27 

43.16 

0.750 

0.678 

0.603 

0.639 

0.508 

0.442 

0.472 

0.406 

0.358 

1.000 

0.835 

0.544 

0.786 

0.524 

0.417 

0.466 

0.381 

0.311 

0.379 

0.320 

0.267 

0.238 

0.194 

0.132 

1.000 

0.726 

0.610 

0.726 

0.630 

0.507 

0.685 

0.592 

0.507 

0.555 

0.474 

0.336 

0.407 

0.301 

0.755 

0.679 

0.604 

0.632 

0.506 

0.443 

0.459 

0.408 

0.357 

1.000 

0.900 

0.700 

0.751 

0.601 

0.526 

0.484 

0.430 

0.376 

0.360 

0.324 

0.288 

0.218 

0.196 

0.152 

1.000 

0.800 

0.700 

0.726 

0.645 

0.565 

0.628 

0.565 

0.502 

0.465 

0.418 

0.325 

0.319 

0.255 

Table 6.1 (continued) 
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Data 
Type 
(1) 

Expt. No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (6.1)] 
(7) 

Calculated 
RF 

[Eq. (6.17)] 
(8) 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 
 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.15 
 

0.5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
 

0.533 

0 

0 

0 

0.133 

0.133 

0.133 

0.267 

0.267 

0.267 

0.4 

0.4 

0.4 

0.533 

0.533 

0.533 
 

36.30 

193.26 

175.60 

156.96 

186.39 

168.73 

153.04 

160.88 

144.21 

112.82 

133.42 

106.93 

94.18 

92.21 

84.37 

75.54 
 

0.253 

0.925 

0.840 

0.751 

0.892 

0.808 

0.732 

0.770 

0.690 

0.540 

0.638 

0.512 

0.451 

0.441 

0.404 

0.362 
 

0.223 

0.900 

0.800 

0.700 

0.867 

0.780 

0.693 

0.733 

0.660 

0.513 

0.600 

0.480 

0.420 

0.420 

0.373 

0.327 
  

Testing 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

0 

0.15 

0.1 

0.05 

0 

0.15 

0.1 

0.05 

0 

0.1 

0.05 

0 

0.15 

0.05 

0 

0.1 

0.05 

0 

0.15 

0.1 

0.05 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0.5 

0.5 

0 

0.123 

0.245 

0.368 

0.490 

0 

0.123 

0.245 

0.368 

0.490 

0 

0.123 

0.245 

0.368 

0.49 

0 

0.133 

0.267 

0.4 

0.533 

0 

0.133 

166.77 

65.73 

62.78 

53.96 

43.16 

164.81 

165.79 

160.88 

151.07 

85.35 

313.92 

313.92 

188.35 

206.01 

183.45 

68.67 

63.77 

55.92 

20.60 

16.68 

123.61 

120.66 

1.0 

0.394 

0.376 

0.324 

0.259 

0.622 

0.626 

0.607 

0.570 

0.322 

0.889 

0.889 

0.533 

0.583 

0.519 

0.680 

0.631 

0.553 

0.204 

0.165 

0.863 

0.842 

1.000 

0.539 

0.456 

0.360 

0.260 

0.700 

0.658 

0.590 

0.503 

0.291 

0.900 

0.877 

0.528 

0.569 

0.510 

0.800 

0.676 

0.538 

0.252 

0.174 

0.900 

0.807 

Table 6.1 (continued) 
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Data 
Type 
(1) 

Expt. No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (6.1)] 
(7) 

Calculated 
RF 

[Eq. (6.17)] 
(8) 

23 

24 

25 

26 

27 

28 

29 

30 
 

0.15 

0.1 

0.05 

0 

0.15 

0.1 

0.05 

0 
 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 
 

0.267 

0.4 

0.533 

0 

0.133 

0.267 

0.4 

0.533 
 

60.82 

56.90 

50.03 

208.95 

137.34 

129.49 

118.70 

98.10 
 

0.425 

0.397 

0.349 

1.000 

0.657 

0.620 

0.568 

0.469 
 

0.440 

0.372 

0.287 

1.000 

0.607 

0.587 

0.540 

0.467 
 

6.5 Results and Discussion 

The maximum, minimum, average and standard deviation values of the three input and 

one output parameters used in the ANN model are presented in Table 6.2. The schematic 

diagram of ANN architecture is shown in Figure 6.3. The number of hidden layer neurons 

is varied and the mean square error (mse) is noted. The minimum mse is found to be 

0.001 when there are three neurons in the hidden layer [Figure 6.4]. Therefore, the final 

ANN architecture is retained as 3-3-1 [i.e. 3 (input) – 3 (hidden layer neuron) – 1 

(Output)]. Mean Square Error (MSE) is defined as 

( )

n

RFRF

MSE

n

i

pi∑
=

−

=
1

2

                                                       (6.2) 

Coefficient of Efficiency, R2 is expressed as 

1

212

E

EE
R

−
=                                                                 (6.3) 

where 

( )
2

1
1 ∑

=

−=
n

i

i RFRFE                                                      (6.3a) 

Table 6.1 (continued) 
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and 

( )
2

1
2 ∑

=

−=
n

i

iP RFRFE                                                      (6.3b) 

where pi RFandRFRF ,, are the experimental, average experimental and predicted RF 

value respectively and n = number of training data. 

Table 6.2. Statistical values of the parameters 

Parameter 

Maximum 

value 

Minimum 

value Average value Standard Deviation 

e/B 0.15 0 0.075 0.056 

Df /B 1 0 0.5 0.408 

α/φ 0.533 0 0.256 0.181 

RF 1.0 0.132 0.555 0.217 

1 2 3 4
0

2

4

6

8

10

 

m
se

 x
 1

0-3

No. of hidden layer neuron
 

Figure 6.4: Variation of hidden layer neurons with mean square error (mse) 

The coefficient of efficiency (R2) for training and testing data are found to be 0.995 and 

0.993, respectively, as shown in Figures 6.5 and 6.6. Data used in this analysis have been 

obtained from laboratory model tests carried out in duplicate, in a calibration chamber, 
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the details of which are given in Chapter 3 and 4. All the data used in the training and the 

testing are from the same source and are of same nature. Probably, this may be one of the 

causes for better fitting in both testing and training phase as well. The weights and biases 

of the network are presented in Table 6.3. These weights and biases can be utilized for 

interpretation of relationship between the inputs and output, sensitivity analysis and 

framing an ANN model in the form of an equation. The residual analysis is carried out by 

calculating the residuals from the experimental reduction factor and predicted reduction 

factor for training data set. Residual (er) can be defined as the difference between the 

experimental and predicted RF value and is given by 

pir RFRFe −=                                                                 (6.4) 

The residuals are plotted with the experiment number as shown in Figure 6.7. It is 

observed that the residuals are distributed evenly along the center line of the plot. 

Therefore, it can be said that the network is well trained and can be used for prediction 

with reasonable accuracy. 

Table 6.3. Values of connection weights and biases 

Neuron 

Weight 
Bias 

wik wk 

e/B Df /B α/φ RF bhk b0 

Hidden Neuron 1 (k=1) -0.0523 0.6833 -0.5784 9.3907 -0.0116 

1.0177 Hidden Neuron 2 (k=2) 0.0401 -0.7286 0.6003 8.5052 0.0298 

Hidden Neuron 3 (k=3) 0.3693 0.0724 0.4722 -1.4541 1.2362 
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Figure 6.5: Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for training data. 
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Figure 6.6: Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for testing data. 
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Figure 6.7: Residual distribution of training data 

6.5.1 Sensitivity Analysis 

Sensitivity analysis is carried out for selection of important input variables. Different 

approaches have been suggested to select the important input variables. The Pearson 

correlation coefficient is defined as one of the variable ranking criteria in selecting proper 

inputs for the ANN (Guyon and Elisseeff 2003; Wilby et al. 2003). Goh (1994) and 

Shahin et al. (2002) have used Garson’s algorithm (Garson 1991) in which the input-

hidden and hidden-output weights of trained ANN model are partitioned and the absolute 

values of the weights are taken to select the important input variables. It does not provide 

information on the effect of input variables in terms of direct or inverse relation to the 

output. Olden et al. (2004) proposed a connection weight approach based on the NID, in 

which the actual values of input-hidden and hidden-output weights are taken. It sums the 

products across all the hidden neurons, which is defined as Si.  The relative inputs are 

corresponding to absolute Si values, where the most important input corresponds to 
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highest Si value. The details of connection weight approach are presented in Olden et al. 

(2004).  

Table 6.4 shows the cross correlation of inputs with the reduction factor. From the table it 

is observed that RF is highly correlated to α/φ with a cross correlation values of 0.79, 

followed by e/B and Df /B.  The relative importance of the three input parameters as per 

Garson’s algorithm is presented in Table 6.5. The α/φ is found to be the most important 

input parameter with the relative importance value being 46.5% followed by 37.7% for  

Df /B and 15.8% for e/B. The relative importance of the present input variables, as 

calculated following the connection weight approach (Olden et al. 2004) is also presented 

in Table 6.5. α/φ  is found to be the  most important input parameter (Si value = -1.012) 

followed by e/B (Si value = -0.687) and Df /B (Si value = 0.115).  The Si values being 

negative imply that both α/φ and e/B are indirectly related and Df /B is directly related to 

RF values. In other words, increasing α/φ or e/B will lead to a reduction in the RF and 

hence leads to lower ultimate bearing capacity. Increasing Df /B increases the RF, and 

hence increases the bearing capacity. 

Table 6.4. Cross-correlation of the input and output for the reduction factor 

Parameters e/B Df /B α/φ RF 

e/B 1 0 0 -0.44 

Df /B 

 

1 0 0.37 

α/φ 

  

1 -0.79 

RF 

   

1 
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Table 6.5. Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach 

Parameters Garson’s algorithm Connection weight approach 

(1) 

Relative 

Importance (%) 

(2) 

Ranking of inputs 

as per relative 

importance 

(3) 

Si values as per 

Connection weight 

approach 

(4) 

Ranking of 

inputs as per 

relative 

importance 

(5) 

e/B 15.8 3 -0.687 2 

Df /B 37.7 2 0.115 3 

α/φ 46.5 1 -1.012 1 

6.5.2 Neural Interpretation Diagram (NID) 

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram (NID) for visual 

interpretation of the connection weight among the neurons. For the present study with the 

weights as obtained and shown in Table 6.3, a Neural Interpretation Diagram is presented 

in Figure 6.8. The lines joining the input-hidden and hidden-output neurons represent the 

weights. The positive weights are represented by solid lines and negative weights by 

dashed lines and the thickness of the line is proportional to its magnitude. The 

relationship between the input and output is determined in two steps. Direct 

proportionality of the input variables is depicted by positive input-hidden and positive 

hidden-output weights, or negative input-hidden and negative hidden-output weights. The 

positive input-hidden and negative hidden-output; negative input-hidden and positive 

hidden-output weight indicates the inverse proportionality of the input variables. 

Therefore, the multiplication of actual weights of input-hidden and hidden-output rather 

than multiplication of absolute weights indicate the effect of that input variable on the 
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output. The input directly related to the output is represented with a grey circle and that 

having inverse effect with blank circle.     

It is seen from Table 6.5 (4th Column) that Si values for parameters (e/B) and (α/φ) are 

negative indicating that both the parameters (e/B) and (α/φ) are inversely related to 

whereas Si value for parameter (Df /B) being positive is directly related to RF values. This 

is shown in Figure 6.8.  Therefore, the developed ANN model is not a “black box” and 

could explain the physical effect of the input parameters on the output. 

      

 

Figure 6.8: Neural Interpretation Diagram (NID) showing lines representing connection 

weights and effects of inputs on Reduction Factor (RF) 

6.5.3 ANN model equation for the Reduction Factor based on trained neural 
network   

A model equation is developed with the weights obtained from trained neural network as 

the model parameters (Goh et al. 2005). The mathematical equation relating input 

parameters (e/B, Df /B, and α/φ ) to output (Reduction Factor) can be given by 

 

                                                                                                                                        (6.5) 
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where RFn = normalized value of RF in the range [-1, 1], fn = transfer function, h = no. of 

neurons in the hidden layer, Xi = normalized value of inputs in the range [-1, 1], m = no. 

of input variables,  wik = connection weight between ith layer of input and kth neuron of 

hidden layer, wk = connection weight between k
th neuron of hidden layer and single 

output neuron, bhk = bias at the k
th neuron of hidden layer, and bo = bias at the output 

layer.  

The model equation for Reduction Factor of shallow strip foundations subjected to 

eccentrically inclined load is formulated using the values of the weights and biases shown 

in Table 6.3 as per the following steps. 

Step – 1 

The input parameters are normalized in the range [-1, 1] by the following expressions 

12
minmax

min1 −








−

−
=

XX

XX
X n

                                                    (6.6) 

where, Xn = Normalized value of input parameter X1, and Xmax and Xmin are maximum and 

minimum values of the input parameter X1 in the data set. 

Step – 2 

Calculate the normalized value of reduction factor (RFn) using the following expressions 

                                                                                                   

(6.7) 
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                                                                         (4)                                  (6.9) 
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(6.10) 

 

 (6.11) 

 

 (6.12) 

      

(6.13) 

 

(6.14) 

Step – 3 

Denormalize the RFn value obtained from Eq. (6.14) to actual RF as 

                                 ( )( ) minminmax15.0 RFRFRFRFRF n +−+=                                     (6.15)  

   ( )( ) 132.0132.0115.0 +−+= nRFRF                                         (6.16) 

6.6 Comparison 

6.6.1 Comparison with Developed Empirical Equation 

An empirical equation for ultimate bearing capacity is developed based on laboratory 

model tests data for prediction of reduction factor (RF) as discussed in Chapter 4, which 

can be expressed as 
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The results for reduction factor (RF) obtained from developed ANN equation (Eq. 6.15) 

are compared with those obtained by use of empirical equation (Eq. 6.17). The 

comparison is shown in Figures 6.9 and 6.10. It is seen that ANN results are closer to 

experimental values than those from developed empirical equation [Eq. (6.17)].  
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    Figure 6.9: Comparison of ANN results with Experimental RF and Eq. 6.17 for 

training data 
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    Figure 6.10: Comparison of ANN results with Experimental RF and Eq. 6.17 for 

testing data 
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6.6.2 Comparison with Meyerhof [1963] 

As discussed in section 4.5.1 of Chapter 4, the reduction factor (RF) corresponding to 

Meyerhof (1963) can be written as  

( )

( )

( )








=
















 ×

=

==

==

B

B

q

q

q

B

Bq

RF

BDBeu

BDBeu

BDBeu

u

f

f

f

'

/,0/,0/

/,/,/

/,0/,0/

'

sec

cos

1

α

α

φα

φα

φα                                        (6.18) 

The values so found by using Eq. (6.18) are compared with the reduction factor as given 

by Eqs. 6.1 and 6.15. This is presented in Figure 6.11. Reasonably good agreements are 

found. 
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Figure 6.11: Comparison of Present results with Meyerhof (1963)   
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6.6.3 Comparison with Saran and Agarwal [1991] 

The digitized values of Nq and Nγ (e/B=0, 0.1, α=00, 100 and 200) for medium dense sand 

(φ = 37.50) are calculated from the graph originally given by Saran and Agarwal (1991) 

as discussed in section 2.2.4 and 4.5.2. Using Eqs. (2.36) and (6.1) the reduction factor 

(RF) corresponding to Saran and Agarwal (1991) is calculated and compared with 

Predicted and Experimental RF and shown in Figure 6.12. The RF values obtained from 

Saran and Agarwal (1991) are away from the line of equality as compared to present 

experimental and predicted results. 
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     Figure 6.12: Comparison of Present results with Saran and Agarwal (1991) for 

medium dense sand 
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6.6.4 Comparison with Loukidis et al. [2008] 

As mentioned in section 4.5.3, the reduction factor RF corresponding to Loukidis et al. 

(2008) can be written as 

                                                               
αcos

ie
f

RF =                                                     (6.19)                     

The reduction factors computed using Eq. (6.19) are compared with those obtained from 

Eqs. (6.15) and (6.1) which are shown in Figures 6.13 and 6.14. It is seen that the values 

(RF) predicted by ANN, developed empirical equation and Loukidis et al. (2008) are in 

good agreement with experimental values. The values obtained by ANN and Loukidis et 

al. (2008) are very close to experimental values. However, this is to be mentioned that 

Loukidis et al. (2008) give the values for surface footing only.  
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Figure 6.13: Comparison of ANN results with Loukidis et al. (2008) and developed 

equation [Eq. (6.17)] for dense sand. 
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Figure 6.14: Comparison of ANN results with Loukidis et al. (2008) and developed 

equation [Eq. (6.17)] for medium dense sand. 

6.7 Conclusions 

Based on developed neural network model, the following conclusions are drawn: 

• As per residual analysis, the errors are distributed evenly along the center line. It 

can be concluded that the network is well trained and can predict the result with 

reasonable accuracy. 

• Based on Pearson correlation coefficient, it is observed that α/φ is the most 

important input parameter followed by e/B and Df /B. 

• As per Garson’s algorithm, α/φ is found to be the most important input parameter 

followed by Df /B and e/B. 

• Connection weight approach gives similar results as found in Pearson correlation 

coefficient  
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• Sensitivity analysis using Connection weight approach is able to explore the 

inputs-output relationship as it considers the actual value of trained weights.  

• The developed ANN model has explained the physical effect of inputs on the 

output, as depicted in NID. It is observed that e/B and α/φ  are inversely related to 

RF values whereas Df /B is directly related to RF.   

• A model equation is developed based on the trained weights of the ANN. 

• The predictability of ANN model is found to be slightly better than the developed 

empirical equation, Meyerhof (1963) and Loukidis et al. (2008). 
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7. PREDICTION OF ULTIMATE BEARING CAPACITY OF 
ECCENTRICALLY INCLINED LOADED STRIP 

FOOTING BY ANN: PART II  

7.1 Introduction 

When a shallow strip footing is subjected to eccentric and inclined load, there may be two 

possible modes of load applications as shown in Figure 7.1. In this figure, B is the width 

of the footing, e is the load eccentricity, α is the load inclination, and Qu is the ultimate 

load per unit length of the footing. As discussed in Chapter 5, when the line of load 

application of the footing is inclined towards the center line of the footing (Figure 7.1 a) 

is referred as partially compensated (Perloff and Baron 1976). However, there may be 

another mode of application where the line of load application on the footing is inclined 

away from the center line as shown in Figure 7.1(b). Perloff and Baron (1976) called this 

type of loading as reinforced case. 

In this chapter a neural network model has been developed to predict the ultimate bearing 

capacity when the line of load application is away from the center line of the footing.  

 

Figure 7.1: Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case 
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7.2 Problem Definition 

The results of laboratory model tests conducted on a strip footing resting over dry sand 

bed subjected to load arrangement as per Figure 7.1 (b) has been used for determining the 

ultimate bearing capacity. The details of load tests have been described in Chapter 5. The 

ultimate bearing capacity of the eccentrically inclined loaded strip foundation at any 

depth of embedment will be equal to the reduction factor multiplied by the ultimate 

bearing capacity of strip footing under centric and vertical load at the same depth of 

embedment. From the laboratory test results, a neural network model is developed to 

predict the reduction factor to compute the ultimate bearing capacity of an eccentrically 

inclined loaded strip footing as shown in Figure 7.1 (b). This reduction factor (RF) is the 

ratio of the ultimate bearing capacity of the footing subjected to an eccentrically inclined 

load to the ultimate bearing capacity of the footing subjected to a centric vertical load. A 

thorough sensitivity analysis is carried out to evaluate the parameters affecting the 

reduction factor. Based on the weights of the developed neural network model, a neural 

interpretation diagram is developed to find out whether the input parameters have direct 

or inverse effect on the output. A prediction model equation is established with the 

weights of the neural network as the model parameters. The results are compared with the 

values based on developed empirical equation as in Chapter 5. Also the results have been 

compared with those obtained by Loukidis et al. (2008) by using finite element methods 

for the case of surface footings.  
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7.3 Database and Preprocessing 

The database available in Chapter 5 has been used in the present study. The data consists 

of parameters like load eccentricity (e), load inclination (α), embedment ratio (Df /B), 

friction angle (φ) and ultimate bearing capacity (qu). Seventy eight number of laboratory 

model tests are carried out. The input parameters for the ANN model are e/B, α/φ and  Df 

/B and the output is the reduction factor (RF). The reduction factor (RF) is given by 

 
)0/ ,0/ ,/(

)/ ,/ ,/(

=φα=

φα
=

BeBDu

BeBDu

f

f

q

q
RF                                                                  (7.1) 

where, )/ ,/ ,/( φαBeBDu f
q = ultimate bearing capacity with eccentricity ratio e/B and 

inclination ratio α/φ at an embedment ratio Df /B and )0/ ,0/ ,/( =φα=BeBDu f
q = ultimate 

bearing capacity with centric vertical loading (e/B = 0 and α/φ = 0)  at the same 

embedment ratio Df /B. 

Out of 78 test records shown in Table 7.1, 59 tests are considered for training and the 

remaining 19 are reserved for testing. Each record represents a complete model test 

where an eccentrically inclined loaded strip footing is subjected to failure. Similar type of 

preprocessing is adopted here as mentioned in section 6.4. 

7.4 Results and Discussion 

The maximum, minimum, average and standard deviation values of the three input and 

one output parameters are presented in Table 7.2. They are computed from the database. 

The schematic diagram of ANN architecture is shown [Figure 7.2]. The number of 

hidden layer neurons is varied with mean square error (mse). The minimum mse is found 
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to be 0.001 for four neurons in the hidden layer [Figure 7.3]. Therefore, the final ANN 

architecture used in this study will be 3-4-1 [i.e. 3 (input) – 4 (hidden layer neuron) – 1 

(Output)] as shown in Figure 7.4.   

 

 

 

 

 

 

Figure 7.2: The ANN Architecture 
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Figure 7.3: Variation of hidden layer neuron with mean square error (mse). 
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Figure 7.4 NID showing lines of connection weights and effects of inputs on RF 

 

Table 7.1. Dataset used for training and testing of ANN model [Chapter 6] 

Data 
Type 
(1) 

Expt 
No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (7.1)] 
(7) 

Calculated 
RF 

[Eq. (7.17)] 
(8) 

Training 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

0.05 

0.1 

0.05 

0.1 

0.15 

0.05 

0.15 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0.05 

0.1 

0.05 

0.15 

0.1 

0.15 

0 

0.05 

0.1 

0.05 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

0.123 

0.123 

0.245 

0.245 

0.245 

0.368 

0.368 

0.490 

0.490 

0.000 

0.123 

0.123 

0.123 

0.245 

0.245 

0.368 

0.368 

0.490 

0.490 

0.000 

0.123 

0.123 

0.245 

113.80 

107.91 

88.29 

85.35 

81.42 

68.67 

64.75 

51.99 

49.05 

264.87 

196.20 

173.64 

152.06 

166.77 

151.07 

137.34 

112.82 

105.95 

95.16 

353.16 

284.49 

251.14 

249.17 

0.682 

0.647 

0.529 

0.512 

0.488 

0.412 

0.388 

0.312 

0.294 

1.000 

0.741 

0.656 

0.574 

0.630 

0.570 

0.519 

0.426 

0.400 

0.359 

1.000 

0.806 

0.711 

0.706 

0.740 

0.658 

0.590 

0.525 

0.459 

0.453 

0.352 

0.291 

0.255 

1.000 

0.774 

0.688 

0.602 

0.651 

0.579 

0.531 

0.413 

0.369 

0.323 

1.000 

0.811 

0.721 

0.719 

α/φ 

Df /B 

e/B 

RF 

3 

2 

1 

4 
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Data 
Type 
(1) 

Expt 
No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (7.1)] 
(7) 

Calculated 
RF 

[Eq. (7.17)] 
(8) 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 
 

0.15 

0.05 

0.1 

0.15 

0.1 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.05 

0.15 

0.05 

0.1 

0.15 

0 

0.05 

0.1 

0.15 

0.1 

0.15 

0.05 

0.1 

0.05 

0.15 

0 

0.1 

0.15 

0.05 

0.1 

0.05 

0.1 

0.15 

0.05 

0.15 
  

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
  

0.245 

0.368 

0.368 

0.368 

0.490 

0.490 

0.000 

0.133 

0.133 

0.267 

0.267 

0.400 

0.400 

0.533 

0.533 

0.533 

0.000 

0.133 

0.133 

0.133 

0.267 

0.267 

0.400 

0.400 

0.533 

0.533 

0.000 

0.133 

0.133 

0.267 

0.267 

0.400 

0.400 

0.400 

0.533 

0.533 
  

203.07 

217.78 

193.26 

171.68 

156.96 

143.23 

101.04 

62.78 

52.97 

56.90 

51.99 

42.58 

38.65 

31.39 

30.41 

29.43 

143.23 

105.95 

94.18 

77.50 

77.50 

67.69 

73.58 

63.77 

58.86 

48.07 

208.95 

156.96 

144.21 

148.13 

135.38 

124.59 

114.78 

103.01 

99.08 

86.33 
  

0.575 

0.617 

0.547 

0.486 

0.444 

0.406 

1.000 

0.621 

0.524 

0.563 

0.515 

0.421 

0.383 

0.311 

0.301 

0.291 

1.000 

0.740 

0.658 

0.541 

0.541 

0.473 

0.514 

0.445 

0.411 

0.336 

1.000 

0.751 

0.690 

0.709 

0.648 

0.596 

0.549 

0.493 

0.474 

0.413 
  

0.559 

0.624 

0.554 

0.485 

0.467 

0.408 

1.000 

0.645 

0.565 

0.565 

0.502 

0.418 

0.325 

0.287 

0.255 

0.223 

1.000 

0.763 

0.679 

0.594 

0.560 

0.490 

0.500 

0.445 

0.375 

0.291 

1.000 

0.713 

0.624 

0.702 

0.624 

0.598 

0.532 

0.465 

0.489 

0.380 
  

Table 7.1 (continued) 
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Data 
Type 
(1) 

Expt 
No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 

 Experimental 
qu  

(kN/m2) 
(6) 

Experimental 
RF 

[Eq. (7.1)] 
(7) 

Calculated 
RF 

[Eq. (7.17)] 
(8) 

Testing 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
 

0 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 
  

0 

0 

0 

0 

0.5 

0.5 

0.5 

1 

1 

1 

0 

0 

0 

0.5 

0.5 

0.5 

1 

1 

1 
  

0.000 

0.123 

0.368 

0.490 

0.245 

0.368 

0.490 

0.123 

0.245 

0.490 

0.133 

0.267 

0.400 

0.267 

0.400 

0.533 

0.133 

0.267 

0.533 
  

166.77 

92.21 

66.71 

53.96 

132.44 

129.49 

113.80 

228.57 

225.63 

179.52 

71.61 

49.05 

41.20 

88.29 

56.90 

53.96 

170.69 

120.66 

92.21 
 

  

1.000 

0.553 

0.400 

0.324 

0.500 

0.489 

0.430 

0.647 

0.639 

0.508 

0.709 

0.485 

0.408 

0.616 

0.397 

0.377 

0.817 

0.577 

0.441 
  

1.000 

0.575 

0.402 

0.328 

0.507 

0.472 

0.415 

0.630 

0.639 

0.525 

0.726 

0.440 

0.372 

0.630 

0.389 

0.333 

0.803 

0.546 

0.435 
  

 
Table 7.2. Statistical values of the parameters 

Parameter Maximum value Minimum value Average value Standard Deviation 

e/B 0.15 0 0.092 0.047 

Df /B 1 0 0. 5 0.408 

α/φ 0.533 0 0.295 0.162 

RF 1 0.291 0.56 0.179 

 
The coefficient of efficiency (R2) for the training and testing data are found to be 0.994 

and 0.988, respectively [Figures 7.5 & 7.6]. Data used in this analysis have been obtained 

from laboratory model tests carried out in duplicate, in a calibration chamber, the details 

of which are given in Chapter 3 and 5. All the data used in the training and the testing are 

Table 7.1 (continued) 
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from the same source and are of same nature. Probably, this may be one of the causes for 

better fitting in both testing and training phase as well. The weights and biases of the 

network are presented in Table 7.3. The weights and biases can be utilized for 

interpretation of the relationships between the inputs and output, to carry out a sensitivity 

analysis, and for framing an ANN model in the form of an equation that can be used for 

predicting RF. The residual analysis is carried out by calculating the residuals from the 

experimental reduction factor and predicted reduction factor for training data set. 

Residual (er) can be defined as the difference between the experimental and predicted RF 

value and is given by                                 

                  pir RFRFe −=                                                      (7.2) 

where RFi and RFp are the experimental and predicted RF value respectively. 

The residuals are plotted with the experiment number as shown in Figure 7.7. It is 

observed that the residuals are distributed evenly along the horizontal axis of the plot. 

Therefore, it can be said that the network is well trained and can be used for prediction 

with reasonable accuracy. 

Table 7.3. Values of connection weights and biases 

Neuron 

Weight 
Bias 

wik wk 

e/B Df /B α/φ RF bhk b0 

Hidden Neuron 1 (k=1) -0.4188 0.3928 -0.8511 0.7337 -0.005 

0.0972 
Hidden Neuron 2 (k=2) 0.17 5.2462 3.1071 -0.1013 3.874 

Hidden Neuron 3 (k=3) 4.0168 8.1273 -4.8781 0.0693 7.3396 

Hidden Neuron 4 (k=4) 6.2788 -0.3513 3.247 -0.2621 4.8671 
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Figure 7.5 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for training data 
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Figure 7.6 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for testing data 
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Figure 7.7: Residual distribution of training data 

7.4.1 Sensitivity Analysis 

Sensitivity analysis is conducted for selection of important input variables. Different 

approaches like Pearson correlation coefficient (Guyon and Elisseeff 2003; Wilby et al. 

2003), Garson’s algorithm (Garson 1991; Goh 1995) and connection weight approach 

method (Olden et al. 2004) are used to identify important input parameters based on the 

trained weights and biases of neural network model as discussed in Chapter 6. 

The sensitivity analysis based on Pearson correlation coefficient is presented in Table 7.4 

which shows the cross correlation of inputs with the reduction factor. It is seen that the 

parameters (e/B) and (α/φ) are inter-related with a cross-correlation value of 0.3. This is 

possibly due to the reinforcing effect. From the table it is observed that RF is highly 

correlated to α/φ with a cross correlation values of 0.87, followed by e/B (=0.59) and      

Df /B (=0.28). The sensitivity analysis for the model as per Garson’s algorithm is 

presented in Table 7.5.  The α/φ is found to be the most important input parameter with 

the relative importance value being 37.3% followed by 34.1% for Df /B and 28.6% for 
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e/B. The relative importance of the input variables as calculated following connection 

weight approach (Olden et al. 2004) is also presented in Table 7.5. As per connection 

weight approach method α/φ  is found to be the most important input parameter (Si value 

-2.13) followed by e/B (Si value -1.69) and Df /B (Si value 0.41).  The Si values being 

negative imply that both α/φ and e/B are indirectly and Df /B is directly related to RF 

values.  

Table 7.4. Cross-correlation of the input and output for the reduction factor 

Parameters e/B Df /B α/φ RF 

e/B 1 0 0.3 -0.59 

Df /B 
 

1 0 0.28 

α/φ 
  

1 -0.87 

RF 
   

1 

 

Table 7.5. Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach 

Parameters Garson’s algorithm Connection weight approach 

(1) 

Relative 

Importance (%) 

(2) 

Ranking of inputs 

as per relative 

importance 

(3) 

Si values as per 

Connection weight 

approach 

(4) 

Ranking of 

inputs as per 

relative 

importance 

(5) 

e/B 28.6 3 -1.6918 2 

Df /B 34.1 2 0.412 3 

α/φ 37.3 1 -2.128 1 

7.4.2 Neural Interpretation Diagram (NID) 

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram (NID) for visual 

interpretation of the connection weight among the neurons. For the present study with the 



  

   

163 

 

weights obtained as shown in Table 7.3, a Neural Interpretation Diagram is presented in 

Figure 7.4. The detail of neural interpretation diagram is enumerated in Chapter 6. 

It can be seen from Figure 7.4 and 4th column of Table 7.5 that e/B and α/φ  are inversely 

related to RF values whereas Df /B is directly related to RF.  It can be concluded that RF 

value decreases with increase in e/B and α/φ , but increases with increase in Df /B. In 

other words, the developed ANN model is not a “black box” and could explain the 

physical effect of inputs on the output. 

7.4.3 ANN model equation for the Reduction Factor based on trained neural 
network   

A model equation is developed with the weights obtained from trained neural network as 

the model parameters (Goh et al. 2005). The mathematical equation relating input 

parameters (e/B, Df /B, α/φ) to output (Reduction Factor i.e. RF) can be given by 

 

                                                                                                                                        (7.3) 

 

where RFn = normalized value of RF in the range [-1, 1], fn = transfer function, h = no. of 

neurons in the hidden layer, Xi = normalized value of inputs in the range [-1, 1], m = no. 

of input variables,  wik = connection weight between ith layer of input and kth neuron of 

hidden layer, wk = connection weight between k
th neuron of hidden layer and single 

output neuron, bhk = bias at the k
th neuron of hidden layer, and bo = bias at the output 

layer.  
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The model equation for the reduction factor of a shallow strip footing subjected to 

eccentrically inclined load as shown in Figure 7.1(b) is formulated using the values of the 

weights and biases shown in Table 7.3 as per the following steps. 

Step – 1 

The input parameters are normalized in the range [-1, 1] by the following expressions 

12
minmax

min1 −








−

−
=

XX

XX
X n

                                                    (7.4) 

Where, Xn = Normalized value of input parameter X1 and Xmax and Xmin are maximum and 

minimum values of input parameter X1 in the data set. 

Step – 2 

Calculate the normalized value of reduction factor (RFn) using the following expressions 

                                                                                                                             

(7.5) 
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 (7.11) 

 

(7.12) 

      

(7.13) 

 

(7.14) 

Step – 3 

Denormalize the RFn value obtained from Eq. (7.14) to actual RF as 

 

                                       ( )( ) minminmax15.0 RFRFRFRFRF n +−+=                                (7.15)  

( )( ) 291.0291.0115.0 +−+= nRFRF                                   (7.16) 

7.5 Comparison 

7.5.1 Comparison with Developed Empirical Equation  

In Chapter 5, an empirical equation is developed for reduction factor (RF) in reinforced 

case and expressed as 
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Figures 7.8 and 7.9 show the comparison of RF values obtained from Eq. 7.15 (obtained 

from ANN) with Eqs. (7.17) (obtained by Empirical equation) and (7.1) (obtained from 
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experiments). It is seen that ANN results are closer to line of equality than the empirical 

ones from Eq. (7.17). 
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Figure 7.8: Comparison of ANN results with Experimental RF and Developed equation 
for training data 
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Figure 7.9: Comparison of ANN results with Experimental RF and Developed equation 
for testing data 
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7.5.2 Comparison with Loukidis et al. [2008] 

As discussed in section 5.5.1, using Eqs. for combined eccentricity-inclination factor 

proposed by Loukidis et al. (2008) and considering load inclination in clockwise 

direction simulating to the condition of reinforced footing, the reduction factor RF 

corresponding to Loukidis et al. (2008) can be written as                                    

                                                                
αcos

ief
RF =                                                    (7.18)                    

The reduction factors corresponding to Loukidis et al. (2008) obtained by using Eq. 

(7.18) are shown in Figures 7.10 and 7.11 for dense and medium dense sand along with 

those values obtained from Eqs. (7.15) (obtained from ANN) and (7.1) (obtained from 

experiments). The comparison appears to be good. 
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Figure 7.10: Comparison of ANN results with Loukidis et al. (2008) for dense sand 
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Figure 7.11: Comparison of ANN results with Loukidis et al. (2008) for medium dense 

sand 

7.6 Conclusions 

Based on the neural network model developed herein, the following conclusions are 

drawn. 

• Since the errors are distributed evenly along the horizontal axis, the network is 

well trained and can predict the result with reasonable accuracy. 

• α/φ is the most important input parameter followed by e/B and Df /B as observed 

in Pearson correlation coefficient. 

• Similarly, using Garson’s algorithm, α/φ is found to be the most important input 

parameter followed by Df /B and e/B. 

• The results obtained by using Connection weight approach are same as Pearson 

correlation coefficient.  
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• The developed ANN model has explained the physical effect of inputs on the 

output, as depicted in NID. It is observed that e/B and α/φ  are inversely related to 

RF values whereas Df /B is directly related to RF.    

• A model equation is developed based on the trained weights of the ANN. 

• The predictability of ANN model is better than the developed empirical equation. 
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8. PREDICTION OF ULTIMATE BEARING CAPACITY OF 
ECCENTRICALLY INCLINED LOADED STRIP 

FOOTING BY ANN: PART III 

8.1 Introduction 

There may be two possible modes of load application when a shallow strip footing is 

subjected to eccentrically inclined loads. Figure 8.1 shows such cases of load 

applications.  

As mentioned in the Chapter 4 and 5, laboratory model tests have been conducted with 

shallow strip footings subjected to loads which are both eccentric and inclined. The 

prediction of ultimate bearing capacity in such loading conditions have been mentioned 

independently in Chapter 6 and 7 when the line of load application is towards the center-

line and away from the center line of the footing respectively. In this chapter, the 

objective is to predict the ultimate bearing capacity in a single formulation when the load 

is applied either away from the center line or towards the center line of the footing.  

 

Figure 8.1 Eccentrically inclined load on a strip foundation:  (a) Partially compensated 

case, (b) Reinforced case 
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8.2 Database and Preprocessing 

The extensive results of laboratory experimental data presented in Chapter 4 and 5 have 

been considered for study in this chapter. Load tests are carried out on model strip 

footings subjected to eccentrically inclined loads in the manner as shown in both Figures 

8.1(a) and 8.1(b) that are increased to failure. The data consist of parameters like load 

eccentricity (e), load inclination (α), embedment ratio (Df /B), friction angle (φ) and 

ultimate bearing capacity (qu). Results from one hundred and ninety two number of 

laboratory model tests have been considered in the analysis. The input parameters are 

e/B, α/φ, Df /B and LA and the output is reduction factor (RF). LA is known as Load 

Arrangement. It can be defined as 

LA = -1        [Line of load application is towards the center line of the footing as shown                                           

                      in Figure 8.1(a)] 

      = 0         [Centric Vertical and Eccentric Vertical loading condition] 

      = 1         [Line of load application is away from the center line of the footing as shown   

                     in Figure 8.1(b)] 

The reduction factor (RF) is given by 

)0,0/ ,0/ ,/(

),/ ,/ ,/(

===

=
LABeBDu

LABeBDu

f

f

q

q
RF

φα

φα

                                                                 (8.1) 

where ( )LABeBDu f
q ,/,/, ϕα  = ultimate bearing capacity with eccentricity ratio e/B and 

inclination ratio α/φ and load arrangement LA at an embedment ratio Df /B and 

( )0,0/,0/, === LABeBDu f
q ϕα = ultimate settlement corresponding to ultimate bearing capacity 
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with centric vertical loading (e/B = 0, α/φ = 0 and LA = 0) at the same embedment ratio 

Df /B. 

Out of 192 test records shown in Table 8.1, 144 tests are considered for training and the 

remaining 48 are reserved for testing. Each record represents a complete model test 

where an eccentrically inclined loaded strip footing is subjected to failure. Similar type of 

preprocessing is adopted here as discussed in section 6.4. 

Table 8.1. Dataset used for training and testing of ANN model 
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86.33 

128.51 
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96.14 
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66.71 

44.15 
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29.43 

23.54 

264.87 

226.61 
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193.26 

140.28 

186.39 

137.34 

116.74 

129.49 

0.800 
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94.18 

115.76 

98.10 

85.35 

353.16 

313.92 

245.25 

313.92 

241.33 

215.82 

239.36 

212.88 

188.35 

225.63 

206.01 

179.52 

183.45 

166.77 

126.55 

101.04 

68.67 

54.94 

63.77 

52.97 

42.18 

55.92 

47.09 

38.46 

38.26 

32.37 

20.60 

24.03 

16.68 

13.34 
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87.31 
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0.437 
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0.322 

1.000 

0.889 
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0.533 
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0.519 
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0.544 

0.631 

0.524 

0.417 

0.553 

0.466 

0.381 

0.379 

0.320 

0.204 

0.238 

0.165 

0.132 

0.863 

0.726 

0.610 

Table 8.1 (Continued) 
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0.349 
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0.647 
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Table 8.1 (Continued) 
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49.05 

42.58 

41.20 

31.39 

29.43 

94.18 

77.50 

88.29 

77.50 

73.58 
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Table 8.1 (Continued) 
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165.79 

160.88 

151.07 

72.59 

278.60 

277.62 

264.87 

155.98 

143.23 

84.37 

79.46 

31.39 

26.98 

19.62 

143.23 

72.59 

72.59 

67.89 

58.27 

156.96 

153.04 

144.21 

133.42 

75.54 

113.796 

81.423 

1.000 

0.394 

0.376 

0.324 

0.259 

0.622 

0.626 

0.607 

0.570 

0.274 

0.789 

0.786 

0.750 

0.442 

0.406 

0.835 

0.786 

0.311 

0.267 

0.194 

1.000 

0.507 

0.507 

0.474 

0.407 

0.751 

0.732 

0.690 

0.638 

0.362 

0.682 

0.488 

Table 8.1 (Continued) 
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Data 
Type 
(1) 

Expt. No. 
(2) 

 
B

e
 

(3) 

 

B

D f  

(4) 
φ

α
 

(5) 
     LA 

     (6) 

 Experimental 
qu (kN/m2)  

 (7) 

Experimental 
RF 

[Eq. (8.1)] 
(8) 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 
 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 

0.05 

0.15 

0.1 
 

0 

0.5 

0.5 

0.5 

1 

1 

1 

0 

0 

0 

0.5 

0.5 

0.5 

1 

1 

1 
 

0.368 

0.123 

0.368 

0.49 

0.245 

0.368 

0.49 

0.133 

0.4 

0.533 

0.133 

0.267 

0.4 

0.133 

0.267 

0.533 
 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
  

66.708 

196.2 

112.815 

105.948 

249.174 

171.675 

156.96 

71.61 

38.65 

30.41 

105.95 

67.69 

63.77 

170.69 

120.66 

92.21 
   

0.400 

0.741 

0.426 

0.400 

0.706 

0.486 

0.444 

0.709 

0.383 

0.301 

0.740 

0.473 

0.445 

0.817 

0.577 

0.441 
  

8.3 Results and Discussion 

The maximum, minimum, average and standard deviation values of the four inputs and 

one output parameters used in the ANN model are presented in Table 8.2. They are 

calculated from the database. The schematic diagram of ANN architecture is shown in 

Figure 8.2. The number of hidden layer neurons is varied and the mean square error 

(mse) is noted. The minimum mse is found to be 1.0 x 10-3 when there are five neurons in 

the hidden layer [Figure 8.3]. Therefore, the final ANN architecture is retained as 4-5-1 

[i.e. 4 (input) – 5 (hidden layer neuron) – 1 (Output)].  

Table 8.2. Statistical values of the parameters 

Parameter Maximum value Minimum value Average value Standard Deviation 

e/B 0.15 0 0.084 0.052 

Df /B 1 0 0.5 0.408 

Table 8.1 (Continued) 
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Parameter Maximum value Minimum value Average value Standard Deviation 

α/φ 0.533 0 0.28 0.171 

LA 1.0 -1.0 0 0.866 

RF 1.0 0.132 0.543 0.19 
 

 

Figure 8.2 The ANN Architecture 
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Figure 8.3 Variation of hidden layer neuron with mean square error (mse) 
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The coefficient of efficiency (R2) for training and testing data are found to be 0.99 and 

0.98 respectively, as shown in Figures 8.4 and 8.5. Data used in this analysis have been 

obtained from laboratory model tests carried out in duplicate, in a calibration chamber, 

the details of which are given in Chapter 3, 4 and 6. The weights and biases of the 

network are presented in Table 8.3. These weights and biases can be utilized for 

interpretation of relationship between the inputs and output, sensitivity analysis and 

framing an ANN model in the form of an equation.  
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Figure 8.4 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for training data 
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Figure 8.5 Correlation between Predicted Reduction Factor with Experimental Reduction 

Factor for testing data 

 

Table 8.3. Values of connection weights and biases 

Neuron 

Weight 
Bias 

wik wk 

e/B Df /B α/φ LA RF bhk b0 

Hidden Neuron 1 

(k=1) 
-1.35 -0.9514 -3.1318 2.0935 0.1861 -4.7877 

-0.0064 

Hidden Neuron 2 

(k=2) 
1.1469 -0.3053 1.4808 -3.5185 -0.1399 1.4851 

Hidden Neuron 3 

(k=3) 
0.8794 0.7097 -1.2318 -0.8993 0.1846 2.3233 

Hidden Neuron 4 

(k=4) 
-0.231 0.9149 -0.9087 1.0174 0.2944 2.265 

Hidden Neuron 5 

(k=5) 
0.4031 -0.2417 0.7069 0.1688 -0.7199 0.3686 
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The residual analysis is carried out by calculating the residuals from the experimental 

reduction factor and predicted reduction factor for training data set. Residual (er) can be 

defined as the difference between the experimental and predicted RF value and is given 

by                                

             pir RFRFe −=                                                           (8.2) 

where RFi and RFp are experimental and predicted RF value respectively. 

The residuals are plotted with the experiment number as shown in Figure 8.6. It is 

observed that the residuals are distributed evenly along the centerline of the plot. 

Therefore, it can be said that the network is well trained and can be used for prediction 

with reasonable accuracy. 
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Figure 8.6. Residual distribution of training data 

8.3.1 Sensitivity Analysis 

Artificial neural networks are data driven approach and the important inputs are selected 

by conducting sensitivity analysis. Different approaches like Pearson correlation 

coefficient (Guyon and Elisseeff 2003; Wilby et al. 2003), Garson’s algorithm (Garson 
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1991; Goh 1995) and connection weight approach method (Olden et al. 2004) are used to 

identify important input parameters based on the trained weights and biases of neural 

network model (briefly described in Chapter 6). 

Table 8.4.  Cross-correlation of the input and output for the reduction factor 

Parameters e/B Df /B α/φ LA RF 

e/B 1 0 0.04 0 -0.42 

Df /B 1 0 0 0.37 

α/φ 1 0 -0.79 

LA    1 0.16 

RF  1 

 

Table 8.4 shows the cross correlation of inputs with the reduction factor. From the table it 

is observed that RF is highly correlated to α/φ with a cross correlation values of 0.79, 

followed by e/B, Df /B and LA.  The ranking of the four input parameters as per Garson’s 

algorithm is presented in Table 8.5. The α/φ is found to be the most important input 

parameter with the relative importance value being 34.75% followed by 30.15% for LA, 

18.68% for e/B and 16.42% for Df /B. The relative importance of the input variables 

using connection weight approach (Olden et al. 2004) is also presented in Table 8.5. The 

α/φ is found to be the most important input parameter (Si value = -1.794) followed by LA 

(Si value = 0.894), e/B (Si value = -0.608) and Df /B (Si value = 0.44). The summation of 

products of input-hidden and hidden-output weights across all the hidden neurons is 

called as Si (Olden et al. 2004). The Si values being negative imply that both α/φ and e/B 

are indirectly related whereas LA and Df /B are directly related to RF values.  
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Table 8.5.  Relative Importance of different inputs as per Garson’s algorithm and 

connection weight approach 

Parameters Garson’s algorithm Connection weight approach 

(1) 

Relative 

Importance (%) 

(2) 

Ranking of inputs 

as per relative 

importance 

(3) 

Si values as per 

Connection weight 

approach 

(4) 

Ranking of 

inputs as per 

relative 

importance 

(5) 

e/B 18.68 3 -0.608 3 

Df /B 16.42 4 0.44 4 

α/φ 34.75 1 -1.794 1 

LA 30.15 2 0.894 2 

 

8.3.2 Neural Interpretation Diagram (NID) 

Ozesmi and Ozesmi (1999) proposed a novel approach called as Neural Interpretation 

Diagram (NID) for visual interpretation of the connection weight among the neurons and 

to find interrelationship between the inputs and output. Neural interpretation diagram is 

discussed in detail in Chapter 6. 
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Figure 8.7. Neural Interpretation Diagram (NID) showing lines representing connection 

weights and effects of inputs on Reduction Factor (RF) 

It can be seen from Table 8.5 (4th Column) that Si values for parameters e/B and α/φ are 

negative indicating that both the parameters e/B and α/φ are inversely related to whereas 

Si value for parameter LA and Df /B being positive is directly related to RF values. This is 

shown in Figure 8.7. Thus it is inferred that RF value increases with increase in LA and 

Df /B values and decreases with increase in e/B and α/φ values.  Therefore, the developed 

ANN model is not a “black box” and could explain the physical effect of the input 

parameters on the output. 

8.3.3 ANN model equation for the Reduction Factor based on trained neural 
network   

A model equation is developed with the weights obtained from trained neural network as 

the model parameters (Goh et al. 2005). The mathematical equation relating input 

parameters (e/B, Df /B, α/φ, LA ) to output (Reduction Factor) can be given by 

 

Df /B 

e/B 

LA 

α/φ 

RF 

4 
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                                                                                                                                        (8.3) 

 

where RFn = normalized value of RF in the range [-1, 1], fn = transfer function, h = no. of 

neurons in the hidden layer, Xi = normalized value of inputs in the range [-1, 1], m = no. 

of input variables,  wik = connection weight between ith layer of input and kth neuron of 

hidden layer, wk = connection weight between k
th neuron of hidden layer and single 

output neuron, bhk = bias at the k
th neuron of hidden layer, and bo = bias at the output 

layer.  

The model equation for Reduction Factor of shallow strip foundations subjected to 

eccentrically inclined load (both mode of load application) is formulated using the values 

of the weights and biases shown in Table 8.3 as per the following steps. 

Step – 1 

The input parameters are normalized in the range [-1 1] by the following expressions 

12
minmax

min1 −








−

−
=

XX

XX
X n                                                     (8.4) 

where, Xn = Normalized value of input parameter X1, and Xmax and Xmin are maximum and 

minimum values of the input parameter X1 in the data set. 

Step – 2 

Calculate the normalized value of reduction factor (RFn) using the following expressions 

 

             (8.5)                                                                                                                     
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Step – 3 

Denormalize the RFn value obtained from Eq. (8.18) to actual RF as 

                                       ( )( ) minminmax15.0 RFRFRFRFRF n +−+=                             (8.17)  

( )( ) 132.0132.0115.0 +−+=
n

RFRF                                    (8.18) 

8.4 Comparison 

Earlier, in Chapter 6 an ANN model equation is proposed for eccentrically inclined 

loaded strip foundation considering that the line of load application is towards the center 

line of the footing which can be expressed as  

( )( ) 132.0132.0115.01 +−+=
n

RFRF                                          (8.19) 

where RF1 = Reduction Factor for the above loading condition 

Similarly, in Chapter 7 an ANN model equation is developed for eccentrically inclined 

loaded strip foundation when the load is applied away from the center line of the footing 

that can be expressed as  

( )( ) 291.0291..0115.02 +−+=
n

RFRF                                          (8.20) 

where, RF2 = Reduction Factor for above case 

The plot of reduction factor obtained from Eqs. (8.19) and (8.20) with Eq. (8.17) and Eq. 

(8.1) is shown in Figure 8.8. Excellent results are found.  

The present developed model ANN equation is in well agreement with the empirical 

equations mentioned in Chapter 4 and 5 along with results from other approaches. The 
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comparison is shown in Figure 8.9 and also in Table A.1 [Appendix A]. This single 

equation can predict with reasonable accuracy in both type of loading.  
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Figure 8.8. Comparison of Reduction Factor of Present analysis with ANN model 

equation developed in Chapter 6 and 7 for both type of load arrangement 
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Figure 8.9. Comparison of Reduction Factor of Present analysis with other approaches 

 

8.5 Conclusions 

Based on the developed neural network model, following conclusions are drawn: 

• As the errors are distributed evenly along the center line, the network is well 

trained and can predict the result with reasonable accuracy. 

• Based on Pearson correlation coefficient, α/φ is the most important input 

parameter followed by e/B, Df /B and LA. 

• Using connection weight approach and Garson’s algorithm, α/φ is found to be the 

most important input parameter followed by LA, e/B, and Df /B.  
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• The developed ANN model has explained the physical effect of inputs on the 

output, as depicted in NID. It is observed that e/B and α/φ  are inversely related to 

RF values whereas Df /B and LA are directly related to RF.   

• This developed combined ANN model equation can be applicable for either mode 

of load application to predict ultimate bearing capacity which is in good 

agreement with other methods.  
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9. ESTIMATION OF AVERAGE SETTLEMENT OF 
SHALLOW STRIP FOUNDATION ON GRANULAR SOIL 

UNDER ECCENTRIC LOADING 

9.1 Introduction 

For a foundation supported by granular soil within the zone of influence of stress 

distribution, the elastic settlement is the only component that needs consideration.  

During the last sixty years or so, a number of procedures have been developed to predict 

elastic settlement; however, there is a lack of a reliable standardized procedure. This is 

due to difficulty in getting the undisturbed samples for cohesionless soil and the lack of 

determination of accurate effective depth of influence zone for loads applied to the 

foundation.  

Despite above problems, several methodologies are available in the literature for 

settlement analysis such as Terzaghi and Peck (1948), DeBeer and Martens (1957), Alpan 

(1964), Meyerhof (1965), D’Appolonia et al. (1968), Schmertmann (1970), Schultze and 

Sherif (1973), Schmertmann et al. (1978), Wahls (1981), Burland and Burbidge (1985), 

Jeyapalan and Boehm (1986), Leonards and Frost (1988), Berardi and Lancellotta (1991), 

Nova and Montrasio (1991), Tan and Duncan (1991), Papadopoulos (1992), and Berardi 

(1992). However, most of them are showing inconsistent performance in settlement 

predictions for shallow foundation on cohesionless soil. However, the above methods 

consider the case of vertically centric loaded footing. The settlement analysis for the 

eccentrically loaded footing is limited in the literature. Therefore, in this chapter, 

estimation of average settlement of eccentrically loaded embedded footings has been 

discussed. From the model test results an empirical equation is developed to predict the 
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ultimate settlement of eccentrically loaded embedded footings by knowing the ultimate 

settlement of surface footing subjected to centric load. A relation has been established 

between the ultimate bearing capacity, ultimate settlement, average load per unit area and 

the corresponding average settlement. Based on the laboratory test results, an empirical 

procedure has been developed to estimate the average settlement of the foundation while 

being subjected to an average allowable eccentric load per unit area, where the applied 

load is vertical.  

9.2 Development of an empirical equation from DeBeer’s chart (1967)   

It is important to keep in mind that the average settlement at ultimate load depends on 

several factors. It appears that, for preliminary estimation purposes, the variations of 
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 with γB (γ = unit weight of sand), and Dr (relative density of sand) 

for circular foundation as provided by DeBeer (1967) are reasonable. Figure 9.1 shows 

the experimental results of DeBeer (1967) in a nondimensional form (Note: ap = 

atmospheric pressure ≈ 100 kN/m2). The average plots can be approximated as  

 

          (9.1) 

 

where Dr is expressed as a fraction. For comparison purposes Eq. (9.1) is also plotted in 

Figure 9.1. The comparison seems to be reasonably good for all relative densities.  
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Figure 9.1: Comparison of curve by developed equation with DeBeer’s curve  

9.3 Average settlement at ultimate load 
( )






















BeBD

u

f
B

s

/,/

 

Figures 9.2 (a) and (b) show the plots of 
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 vs. Df /B in dense and medium 

dense sand. As might be expected for any experimental work of this type, there is some 

scatter.  
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Figure 9.2: Variation of (su/B)(Df /B, e/B) with Df  /B and e/B: (a) dense sand, (b) medium 

dense sand 
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Thus it can initially be assumed that  
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                              (9.2) 

where a = constant to be evaluated based on regression analysis of test results on centric 

vertical load under different relative densities. 

The regression analysis is shown in Table 9.1. 

Table 9.1. Values of a based on regression analysis along with R2  

Type of sand a R
2 

Dense 0.635 1.0 

Medium Dense 0.55 0.94 

Average 0.593  

However, from Table 9.1 based on the values of a, it appears that for any given e/B,  

( ) ( ) 


















+








≈




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



=== B

D

B

s

B

s f

BeBD

u

BeBD

u

ff

6.01
0/,0/0/,/

                              (9.3) 

It may thus be reasonable to express the average settlement at ultimate load in the form of 

a reduction factor. Or 

( )

( )0/,0/

/,/

==














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



=
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u

BeBD

u

f

f

B

s

B

s

RF                                                    (9.4) 
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Note that 
( )






















== 0/,0/ BeBD

u

f
B

s
 is the settlement at ultimate load for a surface foundation 

with vertical centric load and 
( )




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









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
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u

f
B
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/,/

 is the settlement at ultimate load for an 

embedded foundation with vertical eccentric load. 

The reduction factor can be initially taken as  














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
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e
b
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D
RF
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16.01                                         (9.5) 

where b = constant to be evaluated based on regression analysis of eccentrically loaded 

test results 

The values of b along with R2 value are shown in Table 9.2. 

Table 9.2. Value of b based on regression analysis along with R2  

Type of sand b R
2 

Dense 2.18 0.94 

Medium Dense 2.06 0.87 

Average 2.17  

 

So, the reduction factor can be approximated as  

















−


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
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
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
+≈

B

e

B

D
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f
15.216.01                                         (9.6) 

Table 9.3 columns 6 – 8 show the experimental values of RF, RF calculated from Eq. 

(9.6), and the deviations of the experimental values from those calculated using Eq. (9.6). 
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The experimental values compare reasonably well with those estimated by using the 

empirical relationship. 

Hence using Eqs. (9.1), (9.4) and (9.6), one can estimate the general magnitude 

of
( )






















BeBD

u

f
B

s

/,/

. 

9.4 Average load per unit area and Average settlement relationship 

In order to develop a load-settlement relationship for shallow strip foundation subjected 

to eccentric loading, the following parameters can be defined: 

( )

( )BeBDu

BeBD

f

f

q

q

/,/

/,/
=α                                                              (9.7) 

and 

( )

( )BeBD

u
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f
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/,/

/,/



















=β                                                             (9.8) 

where ( )BeBD f
q /,/  and 

( )BeBD f
B

s

/,/









 are respectively the average load per unit area, and 

the corresponding settlement ratio at a given Df /B and e/B.  

The load-settlement curves of twenty four numbers of tests in the database are estimated 

by using the hyperbolic fitting method as mentioned in Eq. 9.9. 

ba +
=

)(α

α
β                                                               (9.9) 
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The value of a and b are found to be -0.427 and 1.436 respectively. Figure 9.3 shows the 

experimental variation of β vs. α for dense and medium dense sands. The average 

variation obtained by hyperbolic fitting gives a relationship which can be approximated 

as,  

α

α
β

43.043.1 −
=                                                              (9.10) 
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(b) 

Figure 9.3: Plot of α vs. β curves obtained from laboratory tests along with Eq. (9.10) for 

(a) dense sand, (b) medium dense sand  

9.5 Ultimate load under eccentric loading  

Figure 9.4 shows a shallow strip foundation of width B located at a depth Df  on a 

granular soil having an unit weight γ and angle of friction φ. The foundation is subjected 

to a load of Qu per unit length with an eccentricity e. Table 9.1 gives the variation of the 

ultimate average load per unit area of the foundation ( )







= BeBDu

u

f
q

B

Q
/,/  along with the 

average settlement along the center line 
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
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
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
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f
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/,/

 at ultimate load which is based 

on the model tests [as per Figure 9.4] as discussed in Chapter 4. 
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It is also observed in Chapter 4 that for a given sand (i.e. relative density of compaction 

Dr and friction angle (φ) at a given embedment ratio Df /B, 

( ) ( ) 















−≈ =

B

e
qq BeBDuBeBDu ff

210/,//,/                                       (9.11) 

 

 
Figure 9.4: Eccentrically loaded embedded strip footing 

 

Table 9.3.   Ultimate load per unit area and corresponding average settlement based on 

the eccentrically loaded embedded tests. [Note: width of foundation B = 100 mm; relative 

density Dr for dense and medium dense sands are 69% and 51% respectively.] 

Sand 
type 
(1) 

B

D f
 

(2) 
B

e
 

(3) 

( )BeBDu f
q /,/  

(kN/m2) 
(4) 

( )BeBD

u

f
B

s

/,/










(5) 

RF 

(Experimental) 
(6) 

RF 

[Eq. 
(9.6)] 

(7) 

Deviation— 

6 Col.

7 Col.6 Col. −

(%) 
(8) 

Dense 
 
 

(Unit 
weight = 

14.36 
kN/m3) 

 
 

0 

0.5 

1 

0 

0.5 

1 

0 

0.5 

1 

0 

0.5 

1 
 

0 

0 

0 

0.05 

0.05 

0.05 

0.1 

0.1 

0.1 

0.15 

0.15 

0.15 
 

166.77 

264.87 

353.16 

133.42 

226.61 

313.92 

109.87 

195.22 

278.60 

86.33 

164.81 

245.25 
 

8.5 

11.2 

13.90 

6.96 

10 

12.50 

6.00 

8.4 

11.10 

4.70 

6.6 

10.90 
 

1.0 

1.318 

1.635 

0.819 

1.176 

1.471 

0.706 

0.988 

1.306 

0.553 

0.776 

1.282 
 

1.0 

1.30 

1.60 

0.893 

1.160 

1.428 

0.785 

1.021 

1.256 

0.678 

0.881 

1.084 
 

0.0 

1.34 

2.16 

-9.0 

1.38 

2.90 

-11.21 

-3.26 

3.82 

-22.53 

-13.43 

15.47 
 

Medium 0 0 101.04 8.4 1.0 1.0 0.0 



  

   

201 

 

Sand 
type 
(1) 

B

D f
 

(2) 
B

e
 

(3) 

( )BeBDu f
q /,/  

(kN/m2) 
(4) 

( )BeBD

u

f
B

s

/,/










(5) 

RF 

(Experimental) 
(6) 

RF 

[Eq. 
(9.6)] 

(7) 

Deviation— 

6 Col.

7 Col.6 Col. −

(%) 
(8) 

dense 
 

(Unit 
weight = 

13.97 
kN/m3) 

 

0.5 

1 

0 

0.5 

1 

0 

0.5 

1 

0 

0.5 

1 
 

0 

0 

0.05 

0.05 

0.05 

0.1 

0.1 

0.1 

0.15 

0.15 

0.15 
 

143.23 

208.95 

84.37 

123.61 

193.26 

68.67 

103.99 

175.60 

54.94 

87.31 

156.96 
 

9.9 

13.4 

7.4 

8.4 

12.3 

5.6 

7.7 

11.7 

4.4 

6.7 

10.6 
 

1.179 

1.595 

0.881 

1.000 

1.464 

0.667 

0.917 

1.393 

0.524 

0.798 

1.262 
 

1.3 

1.600 

0.893 

1.160 

1.428 

0.785 

1.021 

1.256 

0.678 

0.881 

1.084 
 

-10.30 

-0.30 

-1.31 

-16.03 

2.48 

-17.75 

-11.33 

9.83 

-29.34 

-10.42 

14.10 
 

 

9.6 Suggested procedure for estimation of average settlement at allowable load 

Based on the present test results, following is a step by step procedure to estimate the 

average settlement at allowable average load per unit area.  

1. For a given Df /B with e/B=0, estimate the magnitude of  ( )0/,/ =BeBDu f
q  for the 

procedure described by Vesic (1973) 

2. Estimate ( )BeBD f
q /,/  using Eq. (9.11). 

3. Estimate 
( )0/,0/ ==










BeBD

u

f
B

s
 using Eq. (9.1). 

4. With a known factor of safety Fs determine 

( )
( )

s

BeBDu

BeBD
F

q
q

f

f

/,/

/,/ =  

5. Determine α from Eq. (9.7). 

Table 9.3 (Continued) 
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6. Using Eq. (9.10) obtain β 

7. Estimate 
( )BeBD f

B

s

/,/









 via Eqs. (9.1), (9.4), (9.6), and (9.8) as 
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             (9.12) 

The magnitude of 
( )0/,0/ ==










BeBD

u

f
B

s
 can be obtained from Eq. (9.1). 

9.7 Conclusions 

Laboratory model tests have been conducted to determine the ultimate settlement on 

eccentrically embedded strip footings on sand bed. Based on the analysis of the test 

results, the following conclusions are drawn. 

• An empirical equation is developed from DeBeer’s chart (1967) to estimate 

ultimate settlement of surface footing.  

• Based on the results from model tests conducted, the above equation is extended 

to predict the ultimate settlement of eccentrically embedded footings.  

• The load-settlement curve for eccentrically embedded footing on sand can be 

developed if the load intensity and settlement corresponding to ultimate level are 

known. 

• The average settlement calculated by using Eq. (9.12) should be treated as an 

approximate first estimation. 
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10. CONCLUSIONS AND SCOPE FOR FUTURE 
RESEARCH WORK 

 

10.1 Conclusions 

The results of a large number of laboratory model tests conducted to determine the 

ultimate bearing capacity of a strip footing supported by sand and subjected to an 

eccentrically inclined load with an embedment ratio varying from zero to one have been 

reported. The line of load application is inclined towards or away from the center line of 

the footing. Tests have been conducted on dense and medium dense sand. The load 

eccentricity ratio e/B has been varied from 0 to 0.15, and the load inclination α is varied 

from 00 to 20° (i.e. α/φ ≈ 0 to 0.5). The results obtained from the model tests conducted 

in the laboratory have been analysed both by regression analysis and artificial neural 

network. The following are the general conclusions obtained from the analysis.  

• For α = 0 and 0 ≤ Df /B ≤ 1,    

                                                 







−=

B

e
RF 21  

This is common to reinforced and partially compensated cases. 

• For e/B = 0, 0 ≤ Df /B ≤ 1 and α > 0, the reduction factor 

)/(2

1
BD f

RF

−










φ

α
−=  

This is common to reinforced and partially compensated cases. 
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• For partially compensated case (i.e. line of load application is towards the center line 

of the footing) 

The reduction factor (RF) for ultimate bearing capacity is given by: 

)/(2

121
BD f

B

e
RF

−









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

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
−=     

• For reinforced case (line of load application is away from  the center line of the 

footing) 

The reduction factor (RF) for ultimate bearing capacity is given by: 

)/(7.05.1
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BD f
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e
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
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
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• For given values of Df /B and e/B, the magnitude of (qu−reinforced)/(qu−partially 

compensated) increases with the load inclination α. 

• For similar values of α and e/B, the above ratio shows a tendency to decrease with the 

increase in embedment ratio (Df /B). 

• For a given value of Df /B and α, the ratio (qu−reinforced)/(qu−partially compensated) 

increases with the increase in e/B. 

• At ultimate load, the settlement ratio of su in the reinforced case to su in the partially 

compensated case can be approximated as follows 
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



°=α

°=α

≈
−

−

20at  4.1

to

5at  1

dcompensatepartially 

reinforced

u

u

s

s
 



  

   

205 

 

• A model equation developed based on the trained weights of the ANN for the 

partially compensated case predicts slightly better than the present developed 

empirical equation. 

• Similarly, the predictability of ANN models for the reinforced case as discussed in 

Chapter 7 are found better than the developed empirical equation. 

• The developed combined ANN model equation can be applied for both modes of 

load application to predict ultimate bearing capacity which is in good agreement 

with other methods.  

• An empirical equation is developed from DeBeer’s chart (1967) to estimate ultimate 

settlement of surface footing. Based on the results from model tests conducted, the 

above equation is further extended to predict the ultimate settlement of eccentrically 

embedded footings.  

• A relationship between average load per unit area and average settlement is 

developed and thus a step-wise procedure is suggested for estimating average 

settlement at any allowable load of the eccentrically loaded shallow foundation. 

10.2 Future research work 

The present thesis pertains to the study on the bearing capacity and settlement of 

eccentrically inclined loaded strip footing on dry sand bed. Due to time constraint all 

other aspects related to shallow foundations could not be studied. The future research 

work should address the below mentioned points: 

• Large scale study should be carried out to validate the present developed equations. 
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• Settlement, failure pattern and stress distribution of eccentrically inclined loaded 

footing can be experimentally studied. 

• Numerical constitutive modeling of the present work can be done and compared with 

the present results. 

• The present work can be extended to foundations on cohesive soil. 

• The present work can be extended to reinforced soil condition. 
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APPENDIX A 

 

Table A.1. Comparative value of Present analysis results with other approaches  

e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

Line of load application is towards the center line of the footing 

0 0 0.000 0.000 166.77 1.000 1.000 0.983 1.000 1.000 0.998 

0.05 0 0.000 0.000 133.42 0.800 0.900 0.811 0.810 0.817 0.823 

0.1 0 0.000 0.000 109.87 0.659 0.800 0.668 0.640 0.652 0.653 

0.15 0 0.000 0.000 86.33 0.518 0.700 0.552 0.490 0.506 0.541 

0 0 0.123 0.000 128.51 0.771 0.770 0.781 0.773 0.766 0.767 

0.05 0 0.123 -1.000 103.01 0.618 0.693 0.636 0.626 0.677 0.616 

0.1 0 0.123 -1.000 86.33 0.518 0.616 0.520 0.495 0.554 0.522 

0.15 0 0.123 -1.000 65.73 0.394 0.539 0.429 0.379 0.431 0.434 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0 0 0.245 0.000 96.14 0.576 0.570 0.587 0.579 0.563 0.582 

0.05 0 0.245 -1.000 76.52 0.459 0.513 0.473 0.469 0.503 0.481 

0.1 0 0.245 -1.000 62.78 0.376 0.456 0.385 0.370 0.418 0.393 

0.15 0 0.245 -1.000 51.99 0.312 0.399 0.317 0.284 0.326 0.319 

0 0 0.368 0.000 66.71 0.400 0.400 0.416 0.414 0.388 0.422 

0.05 0 0.368 -1.000 53.96 0.324 0.360 0.332 0.335 0.343 0.343 

0.1 0 0.368 -1.000 44.15 0.265 0.320 0.270 0.265 0.283 0.274 

0.15 0 0.368 -1.000 35.12 0.211 0.280 0.222 0.203 0.217 0.219 

0 0 0.490 0.000 43.16 0.259 0.260 0.283 0.277 0.238 0.280 

0.05 0 0.490 -1.000 34.83 0.209 0.234 0.224 0.224 0.205 0.221 

0.1 0 0.490 -1.000 29.43 0.176 0.208 0.181 0.177 0.164 0.180 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.15 0 0.490 -1.000 23.54 0.141 0.182 0.149 0.136 0.119 0.148 

0 0.5 0.000 0.000 264.87 1.000 1.000 1.005 1.000 0.993 

0.05 0.5 0.000 0.000 226.61 0.856 0.900 0.854 0.855 0.863 

0.1 0.5 0.000 0.000 195.22 0.737 0.800 0.730 0.721 0.733 

0.15 0.5 0.000 0.000 164.81 0.622 0.700 0.632 0.597 0.620 

0 0.5 0.123 0.000 223.67 0.844 0.822 0.855 0.821 0.841 

0.05 0.5 0.123 -1.000 193.26 0.730 0.740 0.722 0.705 0.718 

0.1 0.5 0.123 -1.000 165.79 0.626 0.658 0.615 0.597 0.635 

0.15 0.5 0.123 -1.000 140.28 0.530 0.575 0.529 0.497 0.549 

0 0.5 0.245 0.000 186.39 0.704 0.656 0.718 0.667 0.698 

0.05 0.5 0.245 -1.000 160.88 0.607 0.590 0.604 0.575 0.612 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 0.5 0.245 -1.000 137.34 0.519 0.525 0.513 0.489 0.526 

0.15 0.5 0.245 -1.000 116.74 0.441 0.459 0.438 0.410 0.448 

0 0.5 0.368 0.000 151.07 0.570 0.503 0.584 0.535 0.551 

0.05 0.5 0.368 -1.000 129.49 0.489 0.453 0.491 0.464 0.496 

0.1 0.5 0.368 -1.000 111.83 0.422 0.402 0.416 0.397 0.420 

0.15 0.5 0.368 -1.000 94.18 0.356 0.352 0.353 0.335 0.357 

0 0.5 0.490 0.000 115.76 0.437 0.364 0.455 0.422 0.420 

0.05 0.5 0.490 -1.000 98.10 0.370 0.328 0.382 0.369 0.383 

0.1 0.5 0.490 -1.000 85.35 0.322 0.291 0.323 0.318 0.322 

0.15 0.5 0.490 -1.000 72.59 0.274 0.255 0.274 0.271 0.273 

0 1 0.000 0.000 353.16 1.000 1.000 1.030 1.000 0.992 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.05 1 0.000 0.000 313.92 0.889 0.900 0.906 0.878 0.920 

0.1 1 0.000 0.000 278.60 0.789 0.800 0.808 0.763 0.816 

0.15 1 0.000 0.000 245.25 0.694 0.700 0.735 0.656 0.703 

0 1 0.123 0.000 313.92 0.889 0.877 0.892 0.842 0.910 

0.05 1 0.123 -1.000 277.62 0.786 0.790 0.787 0.742 0.787 

0.1 1 0.123 -1.000 241.33 0.683 0.702 0.705 0.648 0.716 

0.15 1 0.123 -1.000 215.82 0.611 0.614 0.642 0.559 0.634 

0 1 0.245 0.000 264.87 0.750 0.755 0.769 0.705 0.794 

0.05 1 0.245 -1.000 239.36 0.678 0.679 0.678 0.625 0.699 

0.1 1 0.245 -1.000 212.88 0.603 0.604 0.607 0.548 0.615 

0.15 1 0.245 -1.000 188.35 0.533 0.528 0.548 0.475 0.533 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0 1 0.368 0.000 225.63 0.639 0.632 0.658 0.587 0.654 

0.05 1 0.368 -1.000 206.01 0.583 0.569 0.579 0.522 0.595 

0.1 1 0.368 -1.000 179.52 0.508 0.506 0.513 0.461 0.514 

0.15 1 0.368 -1.000 155.98 0.442 0.443 0.456 0.402 0.445 

0 1 0.490 0.000 183.45 0.519 0.510 0.561 0.485 0.526 

0.05 1 0.490 -1.000 166.77 0.472 0.459 0.489 0.434 0.493 

0.1 1 0.490 -1.000 143.23 0.406 0.408 0.427 0.385 0.427 

0.15 1 0.490 -1.000 126.55 0.358 0.357 0.372 0.338 0.375 

0 0 0.000 0.000 101.04 1.000 1.000 0.983 1.000 1.000 1.000 0.998 

0.05 0 0.000 0.000 84.37 0.835 0.900 0.811 0.810 0.817 0.823 

0.1 0 0.000 0.000 68.67 0.680 0.800 0.668 0.640 0.537 0.652 0.653 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.15 0 0.000 0.000 54.94 0.544 0.700 0.552 0.490 0.506 0.541 

0 0 0.133 0.000 79.46 0.786 0.751 0.765 0.754 0.766 0.750 

0.05 0 0.133 -1.000 63.77 0.631 0.676 0.622 0.611 0.677 0.605 

0.1 0 0.133 -1.000 52.97 0.524 0.601 0.508 0.483 0.554 0.512 

0.15 0 0.133 -1.000 42.18 0.417 0.526 0.419 0.369 0.431 0.424 

0 0 0.267 0.000 55.92 0.553 0.538 0.554 0.546 0.439 0.563 0.552 

0.05 0 0.267 -1.000 47.09 0.466 0.484 0.445 0.442 0.503 0.456 

0.1 0 0.267 -1.000 38.46 0.381 0.430 0.362 0.349 0.331 0.418 0.370 

0.15 0 0.267 -1.000 31.39 0.311 0.376 0.298 0.268 0.326 0.299 

0 0 0.400 0.000 38.26 0.379 0.360 0.377 0.373 0.388 0.383 

0.05 0 0.400 -1.000 32.37 0.320 0.324 0.301 0.302 0.343 0.309 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 0 0.400 -1.000 26.98 0.267 0.288 0.244 0.239 0.283 0.247 

0.15 0 0.400 -1.000 20.60 0.204 0.252 0.200 0.183 0.217 0.198 

0 0 0.533 0.000 24.03 0.238 0.218 0.244 0.232 0.364 0.238 0.236 

0.05 0 0.533 -1.000 19.62 0.194 0.196 0.193 0.188 0.205 0.184 

0.1 0 0.533 -1.000 16.68 0.165 0.174 0.156 0.148 0.183 0.164 0.154 

0.15 0 0.533 -1.000 13.34 0.132 0.152 0.128 0.114 0.119 0.129 

0 0.5 0.000 0.000 143.23 1.000 1.000 1.005 1.000 1.000 0.993 

0.05 0.5 0.000 0.000 123.61 0.863 0.900 0.854 0.858 0.863 

0.1 0.5 0.000 0.000 103.99 0.726 0.800 0.730 0.727 0.598 0.733 

0.15 0.5 0.000 0.000 87.31 0.610 0.700 0.632 0.605 0.620 

0 0.5 0.133 0.000 120.66 0.842 0.807 0.843 0.816 0.830 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.05 0.5 0.133 -1.000 103.99 0.726 0.726 0.712 0.704 0.710 

0.1 0.5 0.133 -1.000 90.25 0.630 0.645 0.606 0.599 0.626 

0.15 0.5 0.133 -1.000 72.59 0.507 0.565 0.521 0.501 0.541 

0 0.5 0.267 0.000 98.10 0.685 0.628 0.694 0.659 0.516 0.671 

0.05 0.5 0.267 -1.000 84.86 0.592 0.565 0.584 0.571 0.591 

0.1 0.5 0.267 -1.000 72.59 0.507 0.502 0.495 0.489 0.384 0.506 

0.15 0.5 0.267 -1.000 60.82 0.425 0.440 0.423 0.412 0.431 

0 0.5 0.400 0.000 79.46 0.555 0.465 0.550 0.525 0.516 

0.05 0.5 0.400 -1.000 67.89 0.474 0.418 0.462 0.458 0.466 

0.1 0.5 0.400 -1.000 56.90 0.397 0.372 0.391 0.395 0.393 

0.15 0.5 0.400 -1.000 48.07 0.336 0.325 0.332 0.336 0.335 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0 0.5 0.533 0.000 58.27 0.407 0.319 0.412 0.413 0.382 0.376 

0.05 0.5 0.533 -1.000 50.03 0.349 0.287 0.345 0.363 0.344 

0.1 0.5 0.533 -1.000 43.16 0.301 0.255 0.292 0.316 0.221 0.290 

0.15 0.5 0.533 -1.000 36.30 0.253 0.223 0.247 0.272 0.245 

0 1 0.000 0.000 208.95 1.000 1.000 1.030 1.000 1.000 0.992 

0.05 1 0.000 0.000 193.26 0.925 0.900 0.906 0.881 0.920 

0.1 1 0.000 0.000 175.60 0.840 0.800 0.808 0.769 0.629 0.816 

0.15 1 0.000 0.000 156.96 0.751 0.700 0.735 0.663 0.703 

0 1 0.133 0.000 186.39 0.892 0.867 0.882 0.840 0.902 

0.05 1 0.133 -1.000 168.73 0.808 0.780 0.777 0.743 0.780 

0.1 1 0.133 -1.000 153.04 0.732 0.693 0.697 0.652 0.708 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.15 1 0.133 -1.000 137.34 0.657 0.607 0.635 0.564 0.625 

0 1 0.267 0.000 160.88 0.770 0.733 0.748 0.702 0.556 0.770 

0.05 1 0.267 -1.000 144.21 0.690 0.660 0.660 0.625 0.681 

0.1 1 0.267 -1.000 129.49 0.620 0.587 0.590 0.550 0.411 0.597 

0.15 1 0.267 -1.000 112.82 0.540 0.513 0.532 0.479 0.516 

0 1 0.400 0.000 133.42 0.638 0.600 0.632 0.584 0.619 

0.05 1 0.400 -1.000 118.70 0.568 0.540 0.554 0.522 0.567 

0.1 1 0.400 -1.000 106.93 0.512 0.480 0.489 0.463 0.489 

0.15 1 0.400 -1.000 94.18 0.451 0.420 0.433 0.406 0.425 

0 1 0.533 0.000 98.10 0.469 0.467 0.529 0.483 0.391 0.485 

0.05 1 0.533 -1.000 92.21 0.441 0.420 0.459 0.435 0.460 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 1 0.533 -1.000 84.37 0.404 0.373 0.399 0.388 0.241 0.400 

0.15 1 0.533 -1.000 75.54 0.362 0.327 0.345 0.342 0.354 

Line of load application is away from the center line of the footing 

0 0 0.000 0.000 166.77 1.000 1.000 0.993 1.000 0.998 

0.05 0 0.123 1.000 113.80 0.682 0.740 0.697 0.748 0.764 

0.1 0 0.123 1.000 107.91 0.647 0.658 0.627 0.643 0.634 

0.15 0 0.123 1.000 92.21 0.553 0.575 0.558 0.517 0.542 

0.05 0 0.245 1.000 88.29 0.529 0.590 0.549 0.575 0.559 

0.1 0 0.245 1.000 85.35 0.512 0.525 0.524 0.533 0.513 

0.15 0 0.245 1.000 81.42 0.488 0.459 0.479 0.456 0.467 

0.05 0 0.368 1.000 68.67 0.412 0.453 0.435 0.406 0.433 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 0 0.368 1.000 66.71 0.400 0.402 0.390 0.393 0.426 

0.15 0 0.368 1.000 64.75 0.388 0.352 0.398 0.352 0.389 

0.05 0 0.490 1.000 53.96 0.324 0.328 0.338 0.256 0.337 

0.1 0 0.490 1.000 51.99 0.312 0.291 0.311 0.255 0.320 

0.15 0 0.490 1.000 49.05 0.294 0.255 0.301 0.237 0.306 

0 0.5 0.000 0.000 264.87 1.000 1.000 1.000 0.993 

0.05 0.5 0.123 1.000 196.20 0.741 0.774 0.736 0.779 

0.1 0.5 0.123 1.000 173.64 0.656 0.688 0.656 0.669 

0.15 0.5 0.123 1.000 152.06 0.574 0.602 0.585 0.589 

0.05 0.5 0.245 1.000 166.77 0.630 0.651 0.629 0.636 

0.1 0.5 0.245 1.000 151.07 0.570 0.579 0.556 0.573 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.15 0.5 0.245 1.000 132.44 0.500 0.507 0.487 0.514 

0.05 0.5 0.368 1.000 137.34 0.519 0.531 0.527 0.531 

0.1 0.5 0.368 1.000 129.49 0.489 0.472 0.462 0.496 

0.15 0.5 0.368 1.000 112.82 0.426 0.413 0.411 0.443 

0.05 0.5 0.490 1.000 113.80 0.430 0.415 0.439 0.429 

0.1 0.5 0.490 1.000 105.95 0.400 0.369 0.395 0.413 

0.15 0.5 0.490 1.000 95.16 0.359 0.323 0.364 0.371 

0 1 0.000 0.000 353.16 1.000 1.000 1.003 0.992 

0.05 1 0.123 1.000 284.49 0.806 0.811 0.811 0.825 

0.1 1 0.123 1.000 251.14 0.711 0.721 0.734 0.736 

0.15 1 0.123 1.000 228.57 0.647 0.630 0.681 0.653 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.05 1 0.245 1.000 249.17 0.706 0.719 0.717 0.715 

0.1 1 0.245 1.000 225.63 0.639 0.639 0.656 0.637 

0.15 1 0.245 1.000 203.07 0.575 0.559 0.586 0.566 

0.05 1 0.368 1.000 217.78 0.617 0.624 0.628 0.613 

0.1 1 0.368 1.000 193.26 0.547 0.554 0.556 0.552 

0.15 1 0.368 1.000 171.68 0.486 0.485 0.487 0.489 

0.05 1 0.490 1.000 179.52 0.508 0.525 0.528 0.519 

0.1 1 0.490 1.000 156.96 0.444 0.467 0.463 0.477 

0.15 1 0.490 1.000 143.23 0.406 0.408 0.411 0.415 

0 0 0.000 0.000 101.04 1.000 1.000 0.993 1.000 0.998 

0.05 0 0.133 1.000 71.61 0.709 0.726 0.682 0.748 0.746 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 0 0.133 1.000 62.78 0.621 0.645 0.618 0.643 0.620 

0.15 0 0.133 1.000 52.97 0.524 0.565 0.551 0.517 0.535 

0.05 0 0.267 1.000 56.90 0.563 0.565 0.530 0.575 0.532 

0.1 0 0.267 1.000 51.99 0.515 0.502 0.502 0.533 0.498 

0.15 0 0.267 1.000 49.05 0.485 0.440 0.466 0.456 0.454 

0.05 0 0.400 1.000 42.58 0.421 0.418 0.404 0.406 0.406 

0.1 0 0.400 1.000 41.20 0.408 0.372 0.362 0.393 0.400 

0.15 0 0.400 1.000 38.65 0.383 0.325 0.371 0.352 0.368 

0.05 0 0.533 1.000 31.39 0.311 0.287 0.320 0.256 0.306 

0.1 0 0.533 1.000 30.41 0.301 0.255 0.299 0.255 0.280 

0.15 0 0.533 1.000 29.43 0.291 0.223 0.288 0.237 0.276 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0 0.5 0.000 0.000 143.23 1.000 1.000 1.000 0.993 

0.05 0.5 0.133 1.000 105.95 0.740 0.763 0.726 0.764 

0.1 0.5 0.133 1.000 94.18 0.658 0.679 0.648 0.659 

0.15 0.5 0.133 1.000 77.50 0.541 0.594 0.577 0.582 

0.05 0.5 0.267 1.000 88.29 0.616 0.630 0.611 0.617 

0.1 0.5 0.267 1.000 77.50 0.541 0.560 0.538 0.558 

0.15 0.5 0.267 1.000 67.69 0.473 0.490 0.471 0.501 

0.05 0.5 0.400 1.000 73.58 0.514 0.500 0.502 0.504 

0.1 0.5 0.400 1.000 63.77 0.445 0.445 0.442 0.476 

0.15 0.5 0.400 1.000 56.90 0.397 0.389 0.396 0.424 

0.05 0.5 0.533 1.000 58.86 0.411 0.375 0.411 0.394 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.1 0.5 0.533 1.000 53.96 0.377 0.333 0.378 0.379 

0.15 0.5 0.533 1.000 48.07 0.336 0.291 0.353 0.348 

0 1 0.000 0.000 208.95 1.000 1.000 1.003 0.992 

0.05 1 0.133 1.000 170.69 0.817 0.803 0.800 0.815 

0.1 1 0.133 1.000 156.96 0.751 0.713 0.729 0.728 

0.15 1 0.133 1.000 144.21 0.690 0.624 0.674 0.645 

0.05 1 0.267 1.000 148.13 0.709 0.702 0.703 0.697 

0.1 1 0.267 1.000 135.38 0.648 0.624 0.639 0.620 

0.15 1 0.267 1.000 120.66 0.577 0.546 0.567 0.552 

0.05 1 0.400 1.000 124.59 0.596 0.598 0.602 0.588 

0.1 1 0.400 1.000 114.78 0.549 0.532 0.530 0.532 
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e/B Df /B α/φ LA 

Expt. qu 

(kN/m2) 
RFexpt RFEmp RFANN RFM(1963) RFS & A(1991) RFL(2008) RFANN (C) 

0.15 1 0.400 1.000 103.01 0.493 0.465 0.464 0.470 

0.05 1 0.533 1.000 99.08 0.474 0.489 0.494 0.486 

0.1 1 0.533 1.000 92.21 0.441 0.435 0.436 0.449 

0.15 1 0.533 1.000 86.33 0.413 0.380 0.392 0.391 

Note:  

RFexpt: Reduction Factor values corresponding to present experimental results 

RFEmp: Reduction Factor values by using developed empirical equations in Chapter 4 and 5 

RFANN: Reduction Factor values by using developed ANN model equations in Chapter 6 and 7 

RFM(1963): Reduction Factor values corresponding to Meyerhof (1963) 

RFS & A(1991): Reduction Factor values corresponding to Saran and Agarwal (1991) 

RFL(2008): Reduction Factor values corresponding to Louikidis et al. (2008) for both clockwise and anti-clockwise load inclination 

RFANN (C)): Reduction Factor values by using present combined ANN model equation 
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