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Abstract

Since the publication of Terzaghi’s theory on the ultimate bearing capacity of shallow
foundations in 1943, results of numerous studies—both theoretical and experimental—by
various investigators have been published. Most of the studies relate to the case of a
vertical load applied centrally to the foundation. Meyerhof (1953) developed empirical
procedures for estimating the ultimate bearing capacity of foundations subjected to
eccentric and inclined loads. Based on the review of the existing literature on the bearing
capacity of shallow foundations, it appears that limited attention has been paid to estimate
the ultimate bearing capacity when the foundation is subjected to both eccentric and
inclined load and the objective of present study stems from this paucity. Besides, only a
few studies have been made to estimate the average settlement of embedded footings

when subjected to eccentric load.

In order to arrive at the objective and to quantify certain parameters, extensive laboratory
model tests have been conducted to determine the ultimate bearing capacity of shallow
strip foundation resting over sand bed and subjected to eccentric and inclined loads. The
tests have been conducted on two types of sand i.e. dense sand and medium dense sand.
The load inclination has been varied from 0° to 20° whereas the eccentricity varies from 0
to 0.15B (B = width of footing). Depth of the footing is varied from O to B. Traditionally,
in all analysis of such problems; the line of load application is towards the center line of
the footing. However, in this thesis, it is investigated for the two possible ways of load
application i.e. (i) towards and (ii) away from the center line of the footing.

Based on the model test results, an empirical non-dimensional reduction factor has been
developed for each mode of load application. This reduction factor will compute the
ultimate bearing capacity of footing subjected to eccentric and inclined load by knowing
the ultimate bearing capacity of footings under centric vertical load at the same depth of
footing. Similarly, neural network models have been developed under each mode of load
application and combined mode of load application to compute reduction factor as
described above. Finally, the developed equations are compared with the existing

theories.



In addition to bearing capacity, the settlement of eccentrically loaded embedded footings
is investigated. Based on some of those laboratory test results as discussed above, an
empirical procedure has been developed to estimate the average settlement of the
foundation subjected to an average allowable eccentric load per unit area, where the

applied load is vertical.
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1. INTRODUCTION

Every civil engineering structure, whether it is a building, bridge, highway pavement or
railway track, will in general have a superstructure and a foundation. The function of the
foundation is to receive the loads from the superstructure and transmit safely them to the
soil or rock below as the case may be. The design of shallow foundation (i.e. the plan
dimensions of the foundation) is accomplished by satisfying two requirements: (1)
bearing capacity and (2) settlement. Bearing capacity refers to the ultimate, i.e., the
maximum load the soil can bear or sustain under given circumstances.

Engineers need to be able to calculate the capacity of foundations subject to; at least,
central vertical loads. This need has led to the development of the theories of bearing
capacity, notably Terzaghi's method. Bearing capacity predictions based on Terzaghi's
(1943) superposition method are partly theoretical and partly empirical in which the
contribution of different loading and soil strength parameters (cohesion, friction angle,
surface surcharge and self-weight) expressed in the form of non-dimensional bearing
capacity factors N., N, and N, are summed. Several analytical solutions have been
proposed for computing these factors. The literature contains many theoretical
derivations, as well as experimental results from model tests and prototype footings.

All the bearing capacity estimation methods may be classified into the following four
categories: (1) the limit equilibrium method; (2) the method of characteristics; (3) the
upper-bound plastic limit analysis and (4) the numerical methods based on either the
finite-element method or finite-difference method. The problems can be solved by two
different approaches: experimentally, by conducting model and full-scale tests; or, by
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using numerical methods such as finite element analyses. Full-scale tests are the ideal
method for obtaining data, however, practical difficulties and economic considerations
either eliminate or considerably restrict the possibility of full-scale testing. As an
alternative model tests may be employed, but they have disadvantages. The results of
these model tests are usually affected by the boundary conditions of the test box, the size
of the footing, the sample disturbance, the test setup and procedure. It is advantageous to
use the techniques of numerical methods to simulate the conditions of model tests to
verify the theoretical models.

Most of the studies for bearing capacity calculation are based on the foundation under
vertical and central load. However in some cases due to bending moments and horizontal
thrusts transferred from the superstructure, shallow foundations of structures like
retaining walls, abutments, waterfront structures, oil/gas platforms in offshore area,
industrial machines, and portal framed buildings are very often subjected to eccentric and
inclined loads. This may be due to (a) moments with or without axial forces (b) the
oblique loading (c) their location near the property line (d) wind force and (e) earth
pressure and water pressure. They can be analyzed as eccentrically inclined loaded strip
footings, with eccentricity of e and load inclination of ¢ to the vertical. Due to load
eccentricity and inclination, the overall stability of foundation decreases along with
differential settlement and tilting of the foundation which reduces the bearing capacity.
The increase of stress in soil layers due to the load imposed by various structures at the
foundation level will always be accompanied by some strain, which will result in the
settlement of the structures. The estimation of settlements of shallow foundations in

cohesionless soils is still considered as a serious geotechnical problem, both from



practical and theoretical point of view. In general, settlement of a foundation consists of
two major components - elastic settlement (S,) and consolidation settlement (S.). For a
foundation supported by granular soil, the elastic settlement is the only component that
needs consideration. Different methods are available for the determination of settlement
of shallow foundation on cohesionless soil. But, most of the available methods fail to
achieve consistent performance in predicting accurate settlement and most of them are

based on foundations subjected to central vertical load.

The estimation of bearing capacity and settlement of foundations under eccentric and
inclined loads is of considerable importance in geotechnical engineering. In order to
study further in this area, extensive literature review is made to narrow down the
objective of the present investigation. Detailed investigation and analyses are presented in
the subsequent chapters for both bearing capacity and settlement aspects. A procedure for

estimation of settlement of footing under eccentric load is proposed.



2. LITERATURE REVIEW

2.1 Introduction

The lowest part of a structure which transfers its load to the underlying soil or rock is
known as foundation. Foundations can be of shallow or deep depending on the depth of
embedment. Very often foundations of structures like earth retaining structures,
abutments, waterfront structures, industrial machines, oil/gas platform in offshore area
may be subjected to eccentric and/or inclined loading. This may be due to (i) moments
with or without axial forces (ii) the oblique loading (iii) their location near the property
line (iv) wind force and (v) earth pressure and water pressure. Due to eccentric and/or
inclined loading, the footing tilts and the pressure below the footing does not remain
uniform. The tilt of footing increases with an increase in the eccentricity and inclination

and the bearing capacity reduces considerably and undergoes differential settlements.

2.2 Bearing Capacity of Shallow Foundations on granular soil

The stability of a structure depends upon the stability of the supporting soil. For that the
foundation must be stable against shear failure of the supporting soil and must not settle
beyond a tolerable limit to avoid damage to the structure. For a given foundation to
perform its optimum capacity, one must be ensured that it does not exceed its safe
bearing capacity. The ultimate bearing capacity (g,) is defined as the pressure at which
shear failure occurs in the supporting soil immediately below and adjacent to the

foundation.



Since the publications of Terzaghi’s theory on the bearing capacity of shallow
foundations in 1943, numerous studies (both experimental and theoretical) have been
made by various investigators. Most of these studies are related to footings subjected to
vertical and central loads. Meyerhof (1953) developed empirical procedures for
estimating the ultimate bearing capacity of foundations subjected to eccentric vertical
loads. Researchers like Prakash and Saran (1971) and Purkayastha and Char (1977) also
studied the behavior of eccentrically loaded footings. Similarly, the effect of inclined load
on the foundation has been investigated by few investigators (Meyerhof 1953; Muhs and
Weiss 1973; Hanna and Meyerhof 1981; Sastry and Meyerhof 1987). However a few
works have been done by Meyerhof 1963, Saran and Agarwal (1991) and Loukidis et al.
(2008) towards the bearing capacity of footings subjected to combined action of eccentric
and inclined load which is the subject of the thesis. An extensive review of literature
based on bearing capacity of shallow foundations under different loading conditions is

presented below.

2.2.1 Central Vertical Loading

Terzaghi (1943) proposed that the ultimate bearing capacity of a strip foundation
subjected to a vertical central load [Figure 2.1] over a homogenous soil can be expressed

as
_ 1
4, =cN,.+gN, +§}BNy 2.1

For granular soil the above equation is reduced to the form as expressed by:



1
9, =N, +5 BN, 2.2)

Similarly, Meyerhof (1951) proposed a generalized equation for centrally vertical loaded

foundations as

q, =cN,s.d.+qN,s d, +%7/BN7s7d7 (2.3)

99

For granular soil the above equation (2.3) can be reduced to the form as:

q, =qN,s,d, +%7BN7s7d7 2.4)

949

where g, = ultimate bearing capacity; g = surcharge pressure at footing level = YDy; Dy =
depth of foundation; Y = unit weight of soil; B = width of foundation; N, N,, Ny =

bearing capacity factors; s., 4, sy = shape factors; d., d,;, dy = depth factors.

D, A
i
e /’/ // ’ /’/ // /’/
e e L
L R

|
- B =

Figure 2.1: Ultimate load per unit length Q, on a strip foundation for centric vertical load
In the past, many investigators have proposed bearing capacity factors as well as shape
and depth factors for estimating the bearing capacity of footings in above conditions.

These factors are summarized in Table 2.1 and Table 2.2.



Table 2.1: Summary of Bearing Capacity factors

Bearing Capacity ) )
Equation Investigator
Factors
Prandtl (1921), Reissner
N, N, =(N,~1)cot¢ (1924), Terzaghi (1943),
Meyerhof (1963)
228+4.3¢
: N =——"— i 1
N, 20—¢ Krizek (1965)
Prandtl (1921), Reissner
N, N, = tan2[45+gjem“¢ ( )
2 (1924), Meyerhof (1963)
3z @)
eZ(T—EJIdH‘D
N, N,= o) Terzaghi (1943)
200{45 +j
40+5¢
N, =——- i
N, T Krizek (1965)
N, N,=1.8 (Nq - l)cot ¢(tan ¢)2 Terzaghi (1943)
Lundgren and Mortensen
N, N,=1.5(N, -1)tan ¢
(1953) and Hansen (1970)
N, N,=18(N,-1)tang Biarez et al. (1961)
N, Ny:0.Ole°‘25‘” Feda (1961)
Ny N, :(Nq —1)tan(1.4¢) Meyerhof (1963)
6¢
N, = i
Ny T Krizek (1965)
N, N,=L5N,(tang)’ Hansen (1970)
N, N,=2(N, +1)tan¢ Vesic (1973)
Ny N, =1. I(Nq —1)tan(1.3¢) Spangler and Handy (1982)
N, N,= o 1:646+0.173¢) Ingra and Baecher (1983)




Bearing Capacity

Equation Investigator
Factors
N, N, = 000+5 1) o i Michalowski (1997)
N, =0.1045 e’
Ny Poulos et al. (2001)
¢ 1s in radians
l(7r+37r2 tan(p) 2z T
Ny N =6 (tang)s Hjiaj et al. (2005)
4
Ny N,=(N,-1)tan(1.32¢) Salgado (2008)
Table 2.2: Summary of Shape and Depth factors
Factors Equation Investigator
For ¢ =0": s, :1+0.2[§j
L
s,=s,=1
B & 2 Meyerhof (1963)
For ¢ >10% 5, =140 2&) tan[45 +—j
2
s, =s, =1+0.1 B tan 45+Q
L 2
Shape s =1+ & B
‘ N, \L
[Use N. and N, given by Meyerhof (1963)] DeBeer (1970).
s, :1.{%} tan @ Vesic (1975)
B
s, =1—0.4[—j
L
05 Michalowski
s, =1+(1.8(tan g)? +o.1{£j
L (1997)




Factors

Equation

Investigator

s, =1+(1.3(tang) —O.S{E

s, =1+1.9(tang)’ [%j |

s, =1+(0.6 (tan g’ —0.25{%} (for¢ <30°)

Lj i)

(for¢ >30°)

s, =1+C, [gjwz (%j | (for¢=0)

B/L C G

0.163  0.21
0.219

Circle
1.0 0.125
0.5 0.156 0.173
0.33 0.159 0.137
025 0.172  0.11

0.2 0.19 0.09

Salgado et al.
(2004)

Depth

D
For ¢ = 0% d_ :1+o.2(?fj

d,=d,=1

D
For ¢ > 10" d_ :1+o.2(?fj tan[45+§j

Meyerhof (1963)

D, ¢
dq :dy =1+0.1 ? tan 45+§
For Dy/B<1: d, :1+O.4(

Hansen (1970),
Vesic (1975)




Factors Equation Investigator

d,=1+2 tang(1-sin ¢){%}

d, =1

/4

D
For D;/B>1: d,=1+0.4tan™' (?fJ

D
_ o2 | P
d,=1+2 tan ¢ (1 —sin ¢) tan 1(?J

where, tan™ (DyB) is in radians

d,=1

0.5
4 =140 27(&} Salgado et al.
C B (2004)

The above section discusses about the bearing capacity of shallow foundations when the
loads are applied vertically at the center. However, to account for the bearing capacity of
the foundations when subjected to eccentric and inclined loads the extension of the above
theory can be made in three possible ways i.e. eccentric vertical condition, centric
inclined condition and eccentrically inclined condition. These there aspects are described

below.

2.2.2 Eccentric Vertical Condition

Meyerhof (1953) proposed an effective width method for foundations subjected to an
eccentric load. Due to an eccentric load on the foundation, the foundation tilts towards
the side of the eccentricity and the contact pressure below the foundation does not remain

uniform. Thus for a shallow horizontal strip foundation of width B and depth D carrying a
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vertical load Q with an eccentricity e on the base as shown in Figure 2.2, the ultimate

bearing capacity g can be expressed as
|
g=cN,, +§7B Ny, (2.5)

where N., Ny, = resultant bearing capacity factors for a central load and depend on ¢

and D/B’ ; ¢ = unit cohesion; Y = density of soil; B’ = effective width = B — 2e

0=gA 2.6)

where A’ = effective area = B’ x 1 (for strip footing)

E?

e Y e A
//// /////////%///////////////
N

— g -—
|
|

,..-73'4-423“—

t—— B ——— =

Figure 2.2: Eccentrically loaded footing (Meyerhof, 1953)

Prakash and Saran (1971) suggested a comprehensive mathematical formulation to
estimate the ultimate bearing capacity of a rough strip foundation under eccentric load.
The failure surface as assumed in a c—¢ soil under a continuous foundation subjected to a

load with eccentricity e is shown in Figure 2.3(a).
The contact width of the foundation with the soil is equal to Bx; (Figure 2.3b).
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Figure 2.3: Derivation of the bearing capacity theory by Prakash and Saran (1971)

According to this theory, for a strip foundation on a c-¢ soil the ultimate bearing capacity

can be expressed as,

Qu

1
Bx1) =CN oy * W N, + = BN

2 y(e)

= 2.7
T

where N(.), Nye) Nye) are the bearing capacity factors for an eccentrically loaded strip
foundation. The bearing capacity factors are functions of ¢/B, ¢ and foundation contact
factor x;. The variation of x; with e/B is shown in Figure 2.3(c). The bearing capacity

factors are presented in the form of figure for different /B and ¢.
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Purkayastha and Char (1977) performed stability analysis of an eccentrically loaded

strip foundation on sand using the method of slices as proposed by Janbu (1957). Based

on the analysis, they proposed that

Rk — 1 _ QM(eccemric)
QM(centric)

(2.8)

where Ry = reduction factor; gyeccenrric) = ultimate bearing capacity of eccentrically loaded

continuous foundations; @Guecenricy = ultimate bearing capacity of centrally loaded

continuous foundations.

The magnitude of R, can be expressed as

where a and k are functions of Dy/B

Combining Eqns. (2.8) and (2.9)

k
e
qu(eccemric) = qu(centric) (1 - Rk ): qu(centric) [1 - G[Ej j

where

1
qu(cenm’c) :qudq +E 7BNydy (C :O)

The values of a and k are presented in Table 2.3 for different D;/B.

13

(2.9)

(2.10)

2.11)



Table 2.3: Values of a and k

Df /B a k

0 1.862 0.73

0.25 1.811 0.785

0.5 1.754 0.8

1.0 1.820 0.888

From the analysis they found that the width of the footing and friction angle has no

influence on the reduction factor.

Michalowski and You (1998) presented the bearing capacity of eccentrically loaded
footings using the kinematic approach of limit analysis. They found that the effective
width method given by Meyerhof (1953) leads to the same bearing capacity as the limit
analysis solution for a smooth footing, and it underestimates the bearing capacity of
footings on cohesive soils with frictional or adhesive soil-footing interfaces as shown in
Figure 2.4. The effective width rule significantly underestimates the bearing capacity for
clays (¢=0) only when the footing is bonded with the soil and the eccentricity is relatively

large (e/B >0.25) [Figure 2.4].

For cohesive-frictional soils this underestimation decreases with an increase in the
internal friction angle. The rule of effective width gives very reasonable estimates of the
bearing capacity of eccentrically loaded footings on cohesive or cohesive-frictional soils
when the soil-footing interface is not bonded, and for any type of interface when the

eccentricity is small (e/B< 0.1) as shown in Figure 2.5.

14



p/p,

— - —--Tension cut-off .
— — - Perfect adhesion _
- - - - - Perfectly rough s S T
1| —— Smoath footing or gy ]

Meyerhof's hypothesis | =

OR#; || e No separation
0.2
I

0 __ _____ e S TRERE PO L S RSV PRIt | | 1=c oy ) | R PN ML
0 0.1 0.2 0.3 0.4 0.5
Eccentricity (e/B)

Figure 2.4: Solutions to bearing pressure ; on cohesive soil for different soil-footing
interface models (no surcharge)
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Figure 2.5: Solutions to bearing pressure ; on cohesive-frictional soil for different soil-

footing interface models (weightless soil, no surcharge)

The effective width rule also overestimates the bearing capacity for purely frictional soils

when the surcharge load is relatively small. For cohesionless soils, however, the effective

15



width rule may overestimate the best upper bound and this overestimation increases with
an increase in eccentricity [Figure 2.6].

- 9=40°, c=0, g=0
== ¢=40° c=0, g/yB=1
= = " 9=40° c=0, g/yB=4

""" p=40°, c=0, g/yB=8
——— Smooth footing or
Meyerhof's hypothesis

[/ i M S SR — P — | ==rz
0 0.1 0.2 0.3 0.4 0.5
Eccentricity (e/B)

Figure 2.6: Numerical solutions to bearing pressure of eccentrically loaded footings

(tension cut-off interface)

2.2.3 Central Inclined Condition

Meyerhof (1953) extended his theory for ultimate bearing capacity under vertical loading
to the case with inclined load. They have considered two types of inclination, first one
considering foundations with a horizontal base [Figure 2.7 (a) and (b)] and second one
considering foundations with a base normal to the load (i.e. base inclined ¢ to the
horizontal) as shown in Figure 2.7 (c).

For foundations with a horizontal base, the ultimate bearing capacity, g is expressed as

vertical component of the ultimate bearing capacity, i.e.

4o, =qcosa=cN.,, +% BN, (2.12)
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where, g, = Vertical component of the ultimate bearing capacity; N, N,, = Bearing
capacity factors which are functions of the soil friction angle, ¢, depth of the foundation,

D and load inclination « .
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(a) Horizontal base with small inclination of load
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(b) Horizontal base with large inclination of load
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(c) Inclined base with normal load

Figure 2.7: Inclined load applied to a rough strip foundation [Meyerhof (1953)]

Likewise, for an inclined foundation with a base normal to the load [Figure 2.7 (c)] the

ultimate bearing capacity can be expressed as
1
g=cN,, +EjBN7{7 (2.13)

He presented the bearing capacity factors N, N,, in the form of chart for different values
of a and ¢. He also found that that for a given inclination & an inclined foundation can

have a higher bearing capacity than a horizontal base.

Meyerhof (1963) proposed that for rough foundations the vertical component of the
bearing capacity (¢) under a load inclined at an angle of & with the vertical [Figure 2.8]

can be expressed as

q9 494

q=cN d i +)DN,d i, + % BN,di, (2.14)

where i, iy, i,= inclination factors

d., dg, d,= depth factors [as mentioned in Table 2.2]
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Figure 2.8: Ultimate load Q on a foundation for centric inclined load

Hansen (1970) proposed the relationships for inclination factors based on method of

characteristics
0.50, si ’
=11- 20, sin (2.17)
! Q, cosa+BLccot¢
-4,
A=A, — z (2.18)
“ | N,-1
0.70, si ’
A, =|1-— 0TCsma (2.19)
Q,cosa+BLccotg

where o = load inclination of foundation with the vertical; @, = Ultimate load on the
foundation = ¢, BL; B = width of the foundation; L = Length of the foundation.

Dubrova (1973) proposed a formulation for the ultimate bearing capacity of a continuous
foundation with centric inclined load and is given by

19



g,=c(N? =1)cotg+2gN; + BN’ (2.20)

where, N, N, = bearing capacity factors; g = yDs

The value of N ;‘, N ; are presented in the form of graph with different values of tana and
.
Muhs and Weiss (1973) conducted field tests and found that the ratio of the vertical

component Q) of the ultimate load with the inclination a with the vertical to the

ultimate load Q,, when the load is vertical (i.e. o = 0) and is given by

Lo _(1—ana) 2.21)
Qu((l:())
or
Qu(v)
BL _ %) _(1_tang) (2.22)
M Qu(a=0)
BL

where B = width of the foundation; L = length of the foundation; g,, = vertical
component of the ultimate bearing capacity when the load is inclined at an angle a with

the vertical; g.=0) = ultimate bearing capacity of the footing for central condition (a = 0).

Vesic (1975) proposed equation for inclination factors based on method of characteristics

mH
e, T 2.23)
o l—iq
lC :lq _N ) f0r¢>0 (224)
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i H "’ (2.25)
1 V +cBLcot ¢

i ~ 1_ H m+1
g V +cBLcotg (2.26)
2+E
where m= é‘ , for load inclined in in the direction parallel to the width of the footing
I+—
2+£
and m= B , for load inclined in in the direction parallel to the length of the footing; i,
I+—

iz, and i, are the inclination factors; ¢ = cohesion; A = Area of the footing; H and V are

the components of the load parallel and perpendicular to the base of the footing.

Sastry and Meyerhof (1987) carried out model tests to evaluate corresponding
inclination factors for a surface strip footing on purely cohesive soil subjected to a central
load at an inclination of ay acting in the direction of the footing length [Figure 2.9 (a)].
Saturated clay of medium plasticity (liquid limit w; = 43 %, plastic limit w, = 21 %) was
used with an average water content of w = 32 %. The average undrained shear strength c,
was 21 kN/m’. The steel strip footing had a width B of 25.4 mm, length L of 127 mm
(L/B =5), and thickness of 9.5 mm with a rough base. The tests were carried out at load

inclinations « of 0°, 10°, 15°, 30°, and 45°.

The vertical component ¢,, of the bearing capacity ¢, of the surface strip footing

supported by purely cohesive soil can be given by

QLW ZQu COS“B (227)
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9 =1i.C,N, (2.28)
where i, = inclination factor

The relationship between load inclination a; along the direction of footing length and

corresponding inclination factor i.” can be given by

) o :
= 1-2L 2.2
I, [ 9()} (2.29)

PLAM
Qlﬂ' u Qlﬂ' Qﬂ
“r o,
! . |
b B —]
(2 4

Figure 2.9: Strip footing under inclined load along (a) length and (b) breadth [Sastry and
Meyerhof (1987)]

Similar tests were carried out on a shallow strip footing as shown in Figure 2.9 (a)
supported by cohesionless soil with friction angle ¢ of 39° by Muhs and Weiss (1972).

They found the relationship between a; and corresponding inclination factor i, as

i {1—%} (2.30)

where, o, = load inclination in the direction of footing length
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i.’, i,/ = inclination factors for load inclination in the direction of footing length
They found that for the same load inclination a, i.” 2 i and i)’ = i

where i., i, = inclination factors for load inclination in the direction of footing width
[Figure 2.9 (b)]

Meyerhof and Koumoto (1987) studied the ultimate bearing capacity of shallow strip
footings under central load inclined in the direction of footing length to evaluate the
inclination factors. The theoretical values of the present inclination factors were
compared with some experimental results of model footings on clay and sand. They

proposed the inclination factors as:

Ca

CLt

T+2

i, =cosa|1-|1- sin ¢ (2.31)

B
D 2 — K, cosg+2K tang
i, =cosoq1— 1—[—j L

. sin @ 2.32)
i
i :cosa'[l— i “j (2.33)
cosx

where, ¢, and ¢, = The undrained shear strength of clay and the adhesion of clay on the
footing base; K, and K, = The average earth pressure coefficient on the footing front side

and the footing side respectively.
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From the theoretical analysis they concluded that the corresponding theoretical
inclination factors are found to be generally larger than the previous factors for a load

inclined in the direction of the footing width.

Hjiaj et al. (2004) investigated the ultimate bearing capacity of a rigid rough strip
footing of width B, subjected to an inclined load Q, which was resting on a deep layer of
homogeneous cohesive-frictional soil of unit weight y and the centric force acting upon
the foundation was inclined at an angle a with the vertical. The cohesive-frictional soil is
assumed to be rigid perfectly plastic and modelled by a Mohr—Coulomb yield criterion
with cohesion ¢ and friction angle ¢. Accurate lower and upper bounds are calculated

rigorously using finite elements and nonlinear programming.

They concluded that, the Meyerhof inclination factors are deficient for centric inclined
loading and that the Vesic’s expression for N, slightly overestimates the influence of self-

weight on the bearing capacity.

2.2.4 Eccentric Inclined Condition

Meyerhof (1963) extended the theory for shallow foundations subjected to centric
vertical load (Meyerhof 1951) to incorporate load eccentricity and inclination as shown in
Figure 2.10. He suggested that the vertical component of the bearing capacity in case of

eccentric inclined loads can be given by

g=cN _s.d.i +yN s d i +%7B'N7s di (2.34)

cPc%cte 9 q97q9°q Yyorvwy
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where B’ = B —2e = effective width; s, s,, sy = shape factors [mentioned in Table 2.2],
dc, d; , dy = depth factors [mentioned in Table 2.2], i, i, , iy = inclination factors

[mentioned in Egs. (2.15) and (2.16)].

) o
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Figure 2.10: Eccentric inclined load on foundation [Meyerhof (1963)]

Saran and Agarwal (1991) used a similar technique to that of Prakash and Saran (1971)
to theoretically evaluate the ultimate bearing capacity of a strip foundation subjected to
eccentrically inclined load [Figure 2.10]. According to this analysis, the ultimate bearing

capacity can be expressed as

0, 1
q, = 2 =CNC+7/DN4+57BNy (2.35)
For a foundation on granular soil, the above equation is reduced in the form as
B 1
q, =N, +57BN y (2.36)

where N,, N, and N, are the bearing capacity factors expressed in terms of load

eccentricity e and inclined at an angle « to the vertical. They presented the bearing

capacity factors in tabular and graphical forms.
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Loukidis et al. (2008) performed finite element analysis to determine the collapse load of
a rigid strip footing placed on a purely frictional soil subjected to eccentric and inclined
loading. The analyses were conducted on the free surface of the soil mass. Associated
flow rule and Nonassociated flow rule were adopted for the analysis. The equations

which are well fit to the finite element results are

0.8
B :3[1—2.273%j (2.37)
0.5
1%
H =0.69V {1—(—} } (2.38)
Vmax
0.5
1%
M =0.52V {1—(—} } (2.39)
Vmax
’ (1.5tan ¢p+0.4)>
iy:(1—0.94 an“} (2.40)
tan ¢
_1op 2.41
VL _578 N;/fie ( : )

where, f;,= combined inclination-eccentricity factor, expressed as

2

f.= {1—\/3.7(%)2 +2.1(tan@)* +1.5%tana' (2.42)

B’ = effective width of the footing; V; = (Vertical) limit load; H = Horizontal load; M =

Moment; V = Vertical load; V.., = Maximum vertical load; i,= inclination factor.
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IS 6403: (1981) covers the procedure for determining the ultimate bearing capacity and
allowable bearing pressure of shallow foundations based on shear and allowable
settlement criteria.

For eccentrically loaded footing, eccentricity can be applied in two way i.e.

(1)  Single Eccentricity — If the load has an eccentricity e, with respect to the
centroid of the foundation in only one direction, then the dimension of the
footing in the direction of eccentricity shall be reduced by a length equal to
2e. The modified dimension shall be used in the bearing capacity equation and
in determining the effective area of the footing in resisting the load.

(i)  Double Eccentricity — If the load has double eccentricity ( ez and ep ) with
respect to the centroid of the footing then the effective dimensions of the
footing to be used in determining the bearing capacity as well as in computing
the effective area of the footing in resisting the load shall be determined as

given below:

L'=L 2e; (2.43)
B’ =B 2ep (2.44)
A’ =L"xB’ (2.45)

For inclined footing, the inclination factors are expressed as follows:

a 2
| =i =|1-—— 2.4
. =1, ( 9()) (2.46)
and
. a ’
17:(1_Ej (2.47)



However, the code does not give any information to compute the bearing capacity of
eccentrically inclined loaded footing.

Similarly, IS 8009: (1976-Part I) provides simple methods for the estimation of
immediate and primary consolidation settlements of shallow foundations under
symmetrical static vertical loads.

Settlement of cohesionless soil deposits may be estimated by a semi-empirical method
based on the results of static cone or dynamic penetration test or plate load tests.

Based on standard cone penetration test, the settlement of each layer within the stressed
zone due to the foundation loading, should be separately calculated using the equation

below and the results added together to give the total settlement.

H Py +A
5, =2303- *log,, {M} (2.48)

Py

and ngg

2190

where S = settlement in each layer; H; = Thickness of the layer; C= Compressibility
coefficient; Ciy = static cone resistamce;p_0 = effective overburden pressure; Ap = increase

in pressure
Based on Plate load test, the total settlement of the proposed foundation is given by
B(B,+30)]
S,=S, W (2.49)
B, (B+
where S, = Total settlement of test plate; B, = width of square plate; B= width of square
foundation
Similarly, based on dynamic penetration test, Settlement of a footing of width B under

unit intensity of pressure resting on dry cohesionless deposit with known standard
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penetration resistance value N, may be read from Figure 2.11 (b). The settlement under
any other pressure may be computed by assuming that the settlement is proportional to
the intensity of pressure. If the water table is at a shallow depth, the settlement read from

Figure 2.11 (b) will be divided, by the correction factor W' read from Figure 2.11 (a).
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Figure 2.11: (a) Water table correction factor W' (b) Settlement per unit pressure from
standard penetration resistance
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where, GL=ground level, WT=water table

But the IS code does not provide any information to estimate the settlement of a footing
on granular soil under the action of either eccentric load, inclined load or eccentrically

inclined load.

2.3 Scope of the present study

Based on the review of the existing literature on the bearing capacity of shallow
foundations, it appears that limited attention has been paid to estimate the ultimate
bearing capacity when the foundation is subjected to an eccentrically inclined load. Most
of these studies are based on theoretical analyses (limit equilibrium method) and
numerical analyses (finite element method) supported by few number of model tests. So,
the objective of the present thesis is to study the bearing capacity of eccentrically inclined
loaded strip footing by conducting extensive laboratory model tests by varying
eccentricity ratio (e¢/B), load inclination (a), depth of embedment ratio (D; /B) and
relative density (Ip) to quantify certain parameters. The effect of load application in two
possible modes i.e. (i) towards and (ii) away from the center line of the footing [Figure
2.11] 1is investigated. Based on the laboratory model test results, empirical
nondimensional equations have been developed by regression analysis to determine the
ultimate bearing capacity of eccentrically inclined embedded strip footings for each mode
of load application. Also, Neural network models are developed based on the present
experimental results. Model equations are developed based on the trained weights and
biases of the neural network model. The predicted equations obtained from regression

analysis and neural network models have been compared with other available theories.
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In addition to bearing capacity, based on the results of laboratory load tests, an empirical
procedure is developed to estimate the average settlement of eccentrically loaded footings

subjected to an average allowable load per unit area.
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Figure 2.12: Eccentrically inclined load on a strip foundation: line of load application

(a) towards the center line, and (b) away from the center line of the footing

The outlines of the analysis and results on the above aspects are discussed in subsequent

chapters as mentioned below.

In Chapter 3, the test set up and procedure for experimentation has been discussed.

In Chapter 4, the details of tests sequence is reported when the line of load application is
towards the center line of the footing [Figure 2.11 (a)]. Empirical model for prediction of
ultimate bearing capacity has been developed using regression analysis. The results are

compared with available theories.

In Chapter 5, the details of tests sequence for the case when the line of load application is
away from the center line of the footing [Figure 2.11 (b)] is described. Based on the test
results an empirical nondimensional equation for reduction factor has been developed to
predict the ultimate bearing capacity. A comparison of the ultimate bearing capacity in
both cases [Figure 2.11 (a) and (b)] has been discussed.
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In Chapter 6, an artificial neural network model for estimating ultimate bearing capacity
[Figure 2.11 (a)] is presented based on the test results as discussed in Chapter 4. The
results from developed neural network model have been compared with developed

empirical equation as reported in Chapter 4 and with other available theories.

In Chapter 7 an artificial neural network model for estimating ultimate bearing capacity
[Figure 2.11 (b)] is presented based on the test results as discussed in Chapter 5. The
predictions from ANN are compared with the results by using developed empirical

equation mentioned in Chapter 5.

In Chapter 8 an ANN model has been developed by considering both mode of load
application (i.e. towards and away from the center line of the footing) simultaneously.
This model predicts the ultimate bearing capacity in either mode of load application on
the footing. The obtained results are compared with the results as discussed in Chapters 4,

5,6, and 7.

In Chapter 9 a relationship is developed between the average load per unit area and the
average settlement of footing subjected to eccentric load. A step by step procedure is
suggested to estimate the average settlement of the foundation while being subjected to

an average allowable eccentric load per unit area.

Chapter 10 brings all the conclusions drawn from the above chapters and suggests for

future research work.
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3. MATERIALS USED AND EXPERIMENTAL
PROCEDURE

3.1 Introduction

The experimental program was designed to study the bearing capacity of strip footings
resting on granular soils and subjected to eccentric and inclined loading. For this purpose,
the laboratory model tests were performed on strip footings resting on soil with two
different densities. The load eccentricity e was varied from O to 0.15B8 (B = width of strip
footing) with an increment of 0.05B, load inclination & was varied from 0" to 20" at an
increment of 5 and the depth of embedment (Dy /B) was varied from 0 to 1.0 at an
increment of 0.5. The ultimate bearing capacity was interpreted from each test and

analysed.

3.2 Materials Used

3.2.1 Sand

The sand used in the experimental program was collected from the river bed of a nearby
river. It is made free from roots, organic matters etc. by washing and cleaning. The above
sample was then oven dried and sieved by passing through 710 micron and retained on
300 micron IS sieve to get the required grading. Dry sand is used as soil medium for the
test as it does not include the effect of moisture and hence the apparent cohesion
associated with it. The geotechnical properties of the sand used are given in Table 3.1.
The grain size distribution curve is plotted in Figure 3.1. All the tests were conducted in
two densities (dense and medium dense) with relative densities of 69% and 51%

respectively. The respective average unit weights are 14.36 kN/m’ and 13.97 kN/m’. The
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friction angle at these two relative densities are 40.8” and 37.5° respectively from direct
shear tests. The tests were conducted in the pressure range of about 6-19kN/m”.

Table 3.1. Geotechnical property of sand

Property Value
Specific gravity (G) 2.61
Effective particle size (D) 0.325mm
Mean particle size (Dsp) 0.46mm
Uniformity Coefficient (C,) 1.45
Coefficient of Curvature (C,) 1.15

Maximum unit weight (Ymax) | 15.1 KN/ m’

Minimum unit weight (Ymin)) | 12.95 kN/m’
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Figure 3.1: Grain-size distribution curve of sand
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3.3 Experimental procedure

All the model tests were carried out in the Geotechnical Engineering Laboratory of NIT
Rourkela, India. The model tests were conducted in a mild steel tank measuring 1.0m
(length) x 0.504m (width) x 0.655m (height). The two length sides of the tank are made
of 12mm thick high strength fiberglass. All four sides of the tank are braced to avoid
bulging during testing. The size of the model foundation has been kept as 100mm (width
B) x 500mm (length L) x 30mm (thickness #) and is made from a mild steel plate. The
bottom of the footing was made rough by applying glue and then rolling the model
footing over sand. Since the width of the test tank and the length of the model foundation
are approximately the same and the length: width ratio of the model footing is 5:1, the

plane strain condition exists during the tests.

Sand was poured into the test tank in layers of 25mm from a fixed height by raining
technique to achieve the desired average unit weight. The height of fall was fixed by
making several trials in the test tank to relate the height of fall and the density achieved.
The model foundation was placed at a desired Dy /B ratio at the middle of the box. Load
to the model foundation was applied by a loading assembly (shown in Figure 3.2). It
consists of three units: (a) the electrical control panel, (b) hydraulic power pack and (c)
loading device. The loading device is a combination of a beam, four cylinders, four
supporting columns and a base. The hydraulic cylinder is the device that converts fluid
power into linear mechanical force and motion. It converts fluid energy to an output force
in a linear direction for executing different jobs. The capacity of the hydraulic cylinder in

universal static loading setup is 100kN. The load can be applied to the model foundation
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in the range of 0 to 100kN with an accuracy of IN. The inclination of the load can be
changed by forward and backward movement of the cylinder. The inclination of the load
remains constant throughout the testing period by the provision of the check valve. The
load applied to the model foundation is measured by proving ring. Settlement of the
model foundation is measured by dial gauges placed on two edges along the width side of
the model foundation. All the tests were conducted in stress controlled manner. Number
of trials was made prior to the test to maintain uniform rate of load application. The rate
of load application was 150N/min. For each sequence of test, approximate calculations
for ultimate load were made and then this load is divided into about 12 equal increments
to get well defined load-settlement curve. The loads are applied in increments and
settlement is recorded through dial gauges placed on two edges along the width side of
the model foundation. The next load of increment is applied when the rate of settlement
dropped to less than 0.02mm/minute [IS 1888: 1982]. The above procedure is continued
till the failure of footing. The accuracy of dial gauge is 0.0lmm and the total range is
S50mm. The load applied to the model foundation is measured by proving ring. Five
numbers of proving ring were used with capacity of SOkN, 20kN, 10kN, 5kN, and 2.5kN

and the respective least counts were 66.27N, 24.24N, 12.12N, 6.68N and 3.83N.

Figure 3.3 shows the photographic image of prepared sand sample for the test where the
lines of colour sands are placed at a distance of 0.5B (B=width of the model footing) from
the bottom of model footing up to a distance of 2B to observe the developed failure
surface inside the soil mass. However, for the first 0.5B distance from the bottom of the

footing, four lines of colour sand were drawn to observe the failure surface minutely.
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Legend

1. Inclination Indicator 6. Test Tank (1.0mx 0.504mx 0.655m)
2. Hydraulic Cylinder 7. Pressure Adjustable Knob

3. Proving Ring 8. Hydraulic Power Pack

4. Dial Gauge 9. Electrical Control Panel

5. Model Footing (100mm x 500mm X 30mm)

Figure 3.2: Three dimensional view of laboratory model experimental setup.
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Model Footing (100mm x 500mm x 30mm)

Figure 3.3: Photographic image of sand sample at the start of experiment
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4. ULTIMATE BEARING CAPACITY OF
ECCENTRICALLY INCLINED LOADED STRIP
FOOTING WHEN THE LINE OF LOAD APPLICATION IS
TOWARDS THE CENTER LINE OF THE FOOTING

4.1 Introduction

Eccentrically inclined load can be applied on the foundation in two ways. It can be
referred to as partially compensated (Perloff and Baron, 1976) when the line of load
application on the foundation is inclined towards the center line of the foundation [Figure
4.1]. In order to investigate the effect of load eccentricity and inclination, extensive
laboratory model tests have been conducted on a strip footing supported by dry sand. The
test results have been used to develop a nondimensional reduction factor which will be
used for estimating the ultimate bearing capacity. The developed empirical equation is

compared with the available theoretical and numerical approaches.
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Figure 4.1: Eccentrically inclined load on strip foundation: line of load application

towards the center line of the footing
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Based on a review of published theoretical and experimental studies related to the
estimation of ultimate bearing capacity of shallow strip foundation subjected to eccentric
and inclined load, it is evident that further efforts are needed to quantify certain

parameters.

Purkayastha and Char (1977) proposed the reduction factor for eccentricity for ultimate

bearing capacity as follows:

Rk — 1 _ QM(eccemric) (4 1)
QM(centric)

where Ry = reduction factor; gyeccenrric) = ultimate bearing capacity of eccentrically loaded
continuous foundations; @Gueenicy = ultimate bearing capacity of centrally loaded

continuous foundations.

Meyerhof (1963) proposed load inclination factors as follows:

o 2
=i =|1-— 4.2
i, =i, (1 9()} 4.2)
. o ’
l},:(l—EJ (43)

where i, iy, i,= inclination factors

Therefore, it appears that, for a given value of D; /B, a reduction factor RF can be
developed based on the concept advanced in Eq. (4.1) for load eccentricity and the

inclination factors similar to those given in Egs. (4.2) and (4.3). Or,
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94D, 1B,e/B,al9)

RF =

4.4)

qu(D, 1B, e1B=0,0/=0)

where Qu(D, 1B.e1B.alo) = ultimate bearing capacity with eccentricity ratio e/B and
inclination ratio &/¢ at an embedment ratio Dy /B and g, ;g c/p-0,as9=0)= Ultimate

bearing capacity with central vertical loading (e/B = 0 and /¢ = 0) at the same

embedment ratio Dy /B.

Thus it can initially be assumed that

Gy

where a, m, n = factors which are functions of Dy /B.

The purpose of this chapter is to discuss the results from several laboratory model tests
on strip foundations with varying D;/B, e/B and « and evaluate the coefficients a, m, and

n as given in Eq. (4.5).

4.2 Experimental Module

One hundred and twenty numbers of laboratory model tests were conducted under the
condition when the line of load application is towards the center line of the footing. The
detail sequence of model tests in this condition are shown in Table 4.1 and Table 4.2 for

dense sand and medium dense sand respectively.
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Table 4.1. Sequence of model test for Dense sand in Partially Compensated condition

Test No. e/B a Dy/B
1-5 0 0°, 5°, 10°, 15° 20° 0
6-10 0.05 0°, 5°, 10°, 15° 20° 0
11-15 0.1 0°, 5°, 10°, 15° 20° 0
16-20 0.15 0°, 5°, 10°, 15° 20° 0
21-25 0 0°, 5°, 10°, 15° 20° 0.5
26-30 0.05 0°, 5°, 10°, 15° 20° 0.5
31-35 0.1 0°, 5°, 10°, 15° 20° 0.5
36-40 0.15 0°, 5°, 10°, 15° 20° 0.5
41-45 0 0°, 5, 10°, 15°, 20° 1.0
46-50 0.05 0°, 5°, 10°, 15° 20° 1.0
51-55 0.1 0°, 5°, 10°, 15° 20° 1.0
56-60 0.15 0°, 5°, 10°, 15° 20° 1.0

Table 4.2. Sequence of model test for Medium Dense sand in Partially Compensated

condition
Test No. e/B a Dy/B
61-65 0 0°, 5°, 10°, 15° 20° 0
66-70 0.05 0°, 5°, 10°, 15° 20° 0
71-75 0.1 0°, 5°, 10°, 15° 20° 0
76-80 0.15 0°, 5°, 10°, 15° 20° 0
81-85 0 0°, 5°, 10°, 15° 20° 0.5
86-90 0.05 0°, 5°, 10°, 15° 20° 0.5
91-95 0.1 0°, 5°, 10°, 15° 20° 0.5
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96-100 0.15 0% 5° 10° 15° 20° 0.5

101-105 0 0°, 5°,10°, 15°, 20° 1.0
106-110 0.05 0°, 5°, 10°, 15° 20° 1.0
111-115 0.1 0°, 5°,10°, 15°, 20° 1.0
116-120 0.15 0°, 5, 10°, 15°, 20° 1.0

4.3 Model Test Results

4.3.1 Central Vertical Loading Conditions

Six number of model tests were performed (i.e. e/B = 0, a = 0% in central vertical
condition. The details of the test parameters are shown in Table 4.3. Basically there are
five different methods to interpret the ultimate bearing capacity from the load-settlement
curve namely Log-Log method (DeBeer 1970), Tangent Intersection method (Trautmann
and Kulhawy 1988), 0.1B method (Briaud and Jeanjean 1994), Hyperbolic method
(Cerato 2005), and Break Point method (Mosallanezhad et al. 2008). For the present test
results, the ultimate bearing capacity is determined by Break Point method [Figure 4.2] as
after the point of “failure load” with small increase in load significant increase in
settlement occurs.

Table 4.3. Model test parameters for the case of Centric Vertical Loading condition

Load
Sand | Unit weight of Relative Friction angle o — | Dr | € | Inclination,
type compaction |density of sand | direct shear test | B o
(kKN/m?3) (%) (degree) (degree)

Dense 14.36 69 40.8 0 0 0
0.5
1.0

Medium 13.97 51 37.5 0 0 0
dense 0.5
1.0
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Figure 4.2: Interpretation of Ultimate bearing capacity ¢, by Break Point method
(Mosallanezhad et al. 2008)

Few number of load-settlement curves are shown in Figures 4.3 and 4.4 to realize the
effect of depth of embedment and relative density of sand on ultimate bearing capacity.
As seen in Figures 4.3 and 4.4, the bearing capacity of footing increases with the increase

in depth of embedment as well as relative density of sand.
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Figure 4.3: Variation of load-settlement curve with embedment ratio (D;/B) at ¢/B=0 and

0=0 in Dense sand
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Figure 4.4: Variation of load-settlement curve with Relative Density (D,) of sand at

Dy¢/B=1, e/B=0 and a=0
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The ultimate bearing capacities for centric vertical loading (¢/B = 0, o¢= 0) at D;/B =0,
0.5 and 1.0 for dense and medium dense sand obtained using the expressions mentioned
in section 2.2.1. The values are plotted in Figure 4.5 and also presented in Table 4.4 and
4.5. It can be seen that experimental bearing capacities for a given D;/B are significantly
higher than those predicted by theory. Investigators like Balla 1962, Bolt 1982, Cichy et
al. 1978, Ingra and Baecher 1983, Hartikainen and Zadroga 1994, Milovic 1965, Saran
and Agarwal 1991, Shiraishi 1990, and Zadroga 1975 revealed that bearing-capacity
model test results which are being carried out in various geotechnical laboratories of
shallow footings and strip foundations are, in general, much higher than those calculated
by traditional methods. There are several reasons for this, the most important of which is
the unpredictability of Ny and the scale effect associated with the model tests. DeBeer
(1965) and Vesic (1973) have discussed this phenomenon at length. DeBeer (1965)
compiled several bearing capacity test results which are shown in Figure 4.6 as a plot of
Ny vs. YB. The value of Ny rapidly decreases with the increase in YB. In addition, DeBeer
(1965) compared the variation of Ny obtained from small scale laboratory and large scale
field test results, and these are given in Figure 4.7. For loose sand, the Ny value in the
field is larger than it is in the laboratory. However, for medium dense and dense sands, it
is the opposite. These results indicate that it is very difficult to isolate the discrepancies
between laboratory test results and theory. In any case, it is reasonable to assume that the
reduction factor RF as given in Eq. (4.4) is a ratio of two bearing capacities. Hence the
scale effect and other unforeseen factors in laboratory model tests will cancel out or will

be substantially minimized.
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Figure 4.5: Variation of g, with Dy /B for =0 and e/B = 0 using formulae of existing

theories along with present experimental values for (a) dense (b) medium dense sand
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Table 4.4. Calculated values of ultimate bearing capacities g, by Terzaghi (1943) and

Meyerhof (1951) for centric vertical condition along with Present experimental values

Present Experiment; | Terzaghi (1943); g, | Meyerhof (1951); g.
Inclination ¢u (KN/m?) (kN/m?) (kN/m?)
(at) ¢/B | D;/B | $=37.5" | 0=40.8" | $=37.5° | ¢=40.8" | 6=37.5" | ¢=40.8°
0 0 0 101.043 166.77 50.25 97.28 40.98 78.94
0 0 0.5 | 143.226 264.87 90.53 162.87 80.45 144.86
0 0 1 208.953 353.16 130.82 228.45 126.42 222.04

Table 4.5. Calculated values of ultimate bearing capacities g, by Hansen (1970) and

Vesic (1973) for centric vertical condition along with Present experimental values

Present Experiment; | Hansen (1970); g, Vesic (1973); qu
Inclination ) ) )
@ e/B | Di/B qu (kKN/m”) (kN/m”) (kN/m”)
a
0=37.5"| 6=40.8° | $=37.5" | $=40.8" | ¢ =37.5" | ¢ =40.8°
0 0 0 101.043 166.77 36.16 66.03 50.37 90.52
0 0 0.5 | 143.226 264.87 75.78 128.43 86.21 147.56
0 0 1 208.953 353.16 115.40 190.82 129.60 215.32
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Figure 4.6: Variation of Ny with YB (adapted after DeBeer, 1965)
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Figure 4.7: Comparison of Ny obtained from tests with small footings and large footings

of 1m? area on sand (adapted after DeBeer, 1965).
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The observed failure surface for footing resting on dense sand in centric vertical
condition (i.e. Dy/B=0, a=0, ¢/B=0) is shown in Figure 4.8. Up to a depth of B the effect
of applied load is prominent beyond that it gradually decreases and at a depth of 2B it

almost diminishes.

| Initial position of Footing

Figure 4.8: Photographic image of failure surface observed in dense sand in surface

condition at Dy/B =0, &= 0° and e/B =0
4.3.2 Eccentric Vertical Loading Conditions
Twenty four numbers of model tests are conducted in eccentric vertical condition. The
details of the test parameters are shown in Table 4.6. The load settlement curves of strip
foundations (&= 0 and ¢/B =0, 0.05, 0.1 and 0.15) on dense sand in surface condition are
plotted in Figure 4.9. The load carrying capacity decreases with increase in e/B ratio.
Similarly, Figures 4.10 and 4.11 show the variation of load-settlement curve with depth

of embedment (Dy/B) and relative density of sand respectively.
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Table 4.6. Model test parameters for the case of Eccentric Vertical Loading condition

Load
Sand | Unit weight of Relative Friction angle ¢ — & ¢ | Inclination,
type compaction |density of sand | direct shear test | B a
(kN/m?3) (%) (degree) (degree)
Dense 14.36 69 40.8 0 0 0
0.5 10.05
1.0 | 0.1
0.15
Medium 13.97 51 37.5 0 0 0
dense 0.5 10.05
1.0 | 0.1
0.15
Load Intensity ¢ (kN/m®)
0 50 100 150 200
0 T T T T T T T
Dense sand o=0; Df/B=0

—=&— ¢/B=0

—o— =005
4 —=—  =0.1 .
—a—  =0.15

12 -

Figure 4.9: Variation of load-settlement curve with eccentricity in Dense sand in surface

condition for a=0
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Figure 4.10: Effect of embedment on eccentricity in Dense sand for a=0, ¢/B=0.15
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Figure 4.11: Variation of load settlement curve with relative density for a=0, ¢/B=0.05

and Dy/B=1
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The experimental ultimate bearing capacities for eccentrically loaded foundations (e/B =
0,0.05,0.1 and 0.15, D;/B = 0, 0.5 and 1, and D, = 69%, 51%) are plotted along with the
bearing capacities obtained by using Meyerhof’s effective area method (Eq. 2.5). This is
shown in Figure 4.12 and Table 4.7. The nature of decrease of bearing capacity with the
increase in eccentricity as observed from experimental results are in good agreement with

those using Meyerhof’s method (1953).
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Figure 4.12: Comparison of ultimate bearing capacities of Present experimental results

with Meyerhof’s effective area method (1953) for (a) dense and (b) medium dense sand

Table 4.7. Calculated values of ultimate bearing capacities (g,) by Meyerhof (1953) for

eccentric vertical condition along with Present experimental values

Present Experiment; g, Meyerhof (1953); Variation (%)
(kN/m’) qu (KN/m’)
Inclination o o

() e/B | Di/B | 0=37.5" | ¢=40.8" | $=37.5" | ¢$=40.8° | =37.5" | =40.8°
0 0 0 101.043 166.77 40.98 78.94 | -146.6 | -111.3
0 0.05 0 84.366 133.416 | 36.88 71.05 | -128.8 | -87.8
0 0.1 0 68.67 109.872 | 32.78 63.15 | -109.5 | -74.0
0 0.15 0 54.936 86.328 28.69 5526 | -91.5 | -56.2
0 0 0.5 143.226 | 264.87 80.45 144.86 | -78.0 | -82.8
0 005 | 05 123.606 | 226.611 | 75.94 136.10 | -62.8 | -66.5
0 0.1 0.5 103.986 | 195219 | 71.43 127.35 | -45.6 | -53.3
0 015 | 05 87.309 164.808 | 66.91 118.59 | -30.5 | -39.0
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Inclination Present Experiment; g, Meyerhof (1953); Variation (%)
() e/B | D;/B (KN/m?) ¢ (KN/m?)

0 0 208.953 353.16 126.42 222.04 -65.3 | -59.1

0 0.05 193.257 313.92 121.50 212.43 -59.1 -47.8

0 0.1 175.599 278.604 116.57 202.81 -50.6 | -37.4

0 0.15 156.96 245.25 111.64 193.20 -40.6 | -26.9

The ultimate bearing capacities (ubc) are obtained by using digitized values of Ny.) and

Nye) for ¢ = 37.5% as given by Prakash and Saran (1971). These ubc values have been

compared with those obtained experimentally (Figure 4.13). The comparison is also

shown in Table 4.8. From the figure it is found that the nature of variation of ubc with

eccentricity is same as observed in experiment.

Ultimate bearing capacity g (kN/m?)

=250

350

300

N
200 T

—&— Prakash an

+
A

d Saran (1971); Mediu

---0--- Present Experiment; Medium Dense; D f/B=0
=0.5

150 |-

=1

m Dense; D f/B=0

=0.5
=1

0.00

e/B

Figure 4.13: Comparison of Present experimental results with Prakash and Saran (1971)

for medium dense sand
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Table 4.8. Calculated values of ultimate bearing capacities (g,) by Prakash and Saran

(1971) for eccentric vertical condition along with Present experimental values for

medium dense sand

L Present Experiment; Prakash and Saran (1971); g, %
Inclination | = |, g g (KN/m) (kN/m?) Variation

@ 9=37.5" 9=37.5"
0 0 0 101.043 39.88 60.5
0 0.05 0 84.366 31.29 62.9
0 0.1 0 68.67 23.26 66.1
0 0.15 0 54.936 18.44 66.4
0 0 0.5 143.226 76.69 46.5
0 0.05 0.5 123.606 63.63 48.5
0 0.1 0.5 103.986 52.32 49.7
0 0.15 0.5 87.309 43.44 50.2
0 0 1 208.953 113.50 45.7
0 0.05 1 193.257 95.97 50.3
0 0.1 1 175.599 81.37 53.7
0 0.15 1 156.96 68.45 56.4

Using Egs. (2.8) and (2.9) and Table 2.3, the experimental reduction factor (RF) and

theoretical reduction factor (RF) given by Purkayastha and Char (1977) are presented in

Figure 4.14 and Table 4.9. The comparisons of reduction factor obtained from two

approaches are reasonably good.
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Figure 4.14: Comparison of Present experimental results with Purkayastha and Char (1977)

Table 4.9. Calculated values of R, by Purkayastha and Char (1977) for eccentric vertical

condition along with Present experimental values

Inclination Present Experiment; R, | Purkayastha and Char (1977); R,
e/B Dy/B
(a) 0=37.5" | $=40.8"
0 0 0 1.00 1.00 1.00
0 0.05 0 0.83 0.80 0.79
0 0.1 0 0.68 0.66 0.65
0 0.15 0 0.54 0.52 0.53
0 0 0.5 1.00 1.00 1.00
0 0.05 0.5 0.86 0.86 0.84
0 0.1 0.5 0.73 0.74 0.72
0 0.15 0.5 0.61 0.62 0.62
0 0 1 1.00 1.00 1.00
0 0.05 1 0.92 0.89 0.87
0 0.1 1 0.84 0.79 0.76
0 0.15 1 0.75 0.69 0.66
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Similarly, Loukidis et al. (2008) proposed an equation based on finite element method.
The ultimate bearing capacities are calculated using Eq. 2.37 and plotted in Figure 4.15
along with present experimental values for surface condition. The comparisons have also

been shown in Table 4.10.
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Figure 4.15: Comparison of Present experimental results with Loukidis et al. (2008)

Table 4.10. Calculated values of ultimate bearing capacities g, by Loukidis et al. (2008)

for eccentric vertical condition along with Present experimental values

Present Experiment; g, Loukidis et al. (2008); g,
Inclination (kN/m?) (kN/m?)
(a) /B | D/B | 0=375"] ¢=408" | ¢=375" | ¢=40.8"
0 0 0 101.043 | 166.77 50.37 90.52
0 0.05 0 84.366 | 133.416 45.73 82.19
0 0.1 0 68.67 109.872 40.98 73.65
0 0.15 0 54.936 86.328 36.08 64.85
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Figure 4.16 shows the observed failure surface for eccentrically loaded footing (i.e. Dy
/B=0, 0=0, ¢/B=0.15) where the tilting of the footing occurs at the time of failure which

is due to load eccentricity.

Initial position of Footing

Figure 4.16: Photographic image of failure surface observed in medium dense sand in

surface condition at Dy/B =0, = 0° and e/B = 0.15

4.3.3 Centric Inclined Loading Condition

Thirty numbers of model tests are conducted as per Figure 2.3. The detailed parameters
are mentioned in Table 4.11. Figures 4.17 and 4.18 show the variation of load intensity
vs. /B at various load inclination in surface condition for both dense and medium dense
sand respectively. Most of the curves appear to be local shear failure type as given by
Vesic (1973). It is seen from graphs for both dense and medium dense sand that at any

embedment ratio (Dy /B), the load carrying capacity decreases with increase in load
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inclination. Similarly, Figures 4.19 and 4.20 show the variation of ubc with embedment
ratio (Dy/B) and relative density (D,) of sand respectively. As the embedment ratio (Dy
/B) increases the load carrying capacity increases. Similarly, with increase in relative
density of sand the ultimate bearing capacity increases.

Table 4.11. Model test parameters for the case of Centric Inclined Loading condition

Sand | Unit weight of Relative Friction angle o — | Dr | € Load
type compaction | density of sand | direct sheartest | B | B |Inclination, &
(kKN/m?3) (%) (degree) (degree)
Dense 14.36 69 40.8 0 0 0
0.5 5
1.0 10
15
20
Medium 13.97 51 37.5 0 0 0
dense 0.5 5
1.0 10
15
20

Load Intensity g, (KN/m”)

0 50 100 150 200
0 LY T T T T T T T T

Dense sand D//B:O; e¢/B=0

Figure 4.17: Variation of load settlement curve with load inclination (o) in dense sand for

Dy/B=0 and ¢/B=0
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Load Intensity g (kN/m”)
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Figure 4.18: Variation of load-settlement curve with load inclination (o) in medium dense

sand for Dy/B=0 and e/B=0
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Figure 4.19: Variation of load-settlement curve with embedment ratio (D;/B) in medium

dense sand for a:ZOO, e/B=0
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Load Intensity ¢ (kN/m’)
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Figure 4.20: Variation of load-settlement curve with relative density of sand at a=5",

e/B=0 and Dy/B=0.5,
A comparison of the nature of variation of ultimate bearing capacities obtained from the
experiment and those computed using various existing theories have been made and
explained below. It is to be noted that in existing theories, g, denotes the vertical
component of the inclined load, whereas in the present experimentation, g, is considered
as inclined load. So, in order to compare experimental values with the values obtained
using various theories present experimental value of g, is multiplied with cosa (a is the

load inclination with the vertical).

The ultimate bearing capacity values are calculated using Eqs. 2.14 through 2.16 as given
by Meyerhof (1963) for centric inclined load and compared with experimental bearing

capacities. The comparison is shown in Figure 4.21.

The bearing capacity values have been calculated using Eqgs. 2.17 and 2.19 as proposed
by Hansen (1970). As per Vesic (1975), the ubc have been calculated by using Egs. 2.25
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and 2.26. The calculated bearing capacity values as per Hansen (1970) and Vesic (1975)
are shown in Figures 4.22 and 4.23 respectively along with experimental values. The
above comparison is also shown in Table 4.12. The experimental values are higher than
those obtained using equations proposed by Hansen (1970) and Vesic (1975). As has
been pointed out by several investigators in the past, this is not very unusual primarily
due to the inherent difficulty in establishing the proper magnitude of ¢ for bearing

capacity calculations.

. . 7 .
400 | Dense sand —=— Meyerhof (1963); Df/B=0 B
3 —— =0.5
350 poo —A— =1.0 H

e -0 Present Experiment; D,/B=0
300 o 0.5
A =1.0

A

Ultimate bearing capacity, g, (kN/mz)

0 5 10 15 20
o (degree)

(a)
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Figure 4.21: Comparison of ultimate bearing capacities of Present experimental results

with Meyerhof (1963) for (a) dense sand and (b) medium dense sand
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Figure 4.22: Comparison of ultimate bearing capacities of Present experimental results

with Hansen (1970) for (a) dense sand and (b) medium dense sand
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Figure 4.23: Comparison of ultimate bearing capacities of Present experimental results

with Vesic (1975) for (a) dense sand and (b) medium dense sand

Table 4.12. Calculated values of ultimate bearing capacities (q,) by using formulae of

existing theories for centric inclined condition along with Present experimental values

Present Experiment; | Meyerhof (1963); Hansen (1970) ;q, Vesic (1975); q.,
Inclination ¢, cosat (kN/m?) ¢ (KN/m®) (kN/m?) (kN/m?)

() e/B| Di/B | $=37.5°| ¢=40.8" | ¢$=37.5" | ¢=40.8" | ¢$=37.5" | 0=40.8" | $=37.5" | ¢=40.8"
0 0 0 101.043 | 166.770 40.98 78.94 36.16 66.03 50.37 90.52
5 0 0 79.159 128.022 30.78 60.78 26.37 48.15 38.28 68.79
10 0 0 55.068 94.679 22.04 44.99 18.72 34.18 28.15 50.60
15 0 0 36.957 64.437 14.75 31.57 12.81 23.38 19.77 35.53
20 0 0 22.586 40.564 8.92 20.52 8.32 15.19 12.97 23.31
0 0 0.5 143.226 | 264.870 80.45 144.86 75.78 128.43 86.21 149.03
5 0 0.5 120.204 | 222.818 65.41 118.52 58.05 98.05 68.13 117.51
10 0 0.5 96.611 183.561 52.18 95.17 43.70 73.53 52.48 90.30
15 0 0.5 76.756 145.931 40.78 74.81 32.12 53.79 38.99 66.90
20 0 0.5 54.761 108.784 31.20 57.42 22.84 38.06 27.48 47.00
0 0 1 208.953 | 353.160 | 126.42 | 222.04 115.40 190.82 129.60 221.20
5 0 1 185.681 | 312.727 | 105.82 | 186.32 89.73 147.94 104.26 177.61
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Inclination Present Experiment; | Meyerhof (1963); Hansen (1970) ;q, Vesic (1975); q.,
(@) e/B | D;/B gu cosa (KN/m?) gu (KN/m?) (kN/m?) (kN/m?)
10 0 1 158.442 | 260.850 87.45 154.26 68.68 112.87 81.92 139.27
15 0 1 128.875 | 217.950 71.31 125.87 51.42 84.20 62.25 105.59
20 0 1 92.190 172.395 57.40 101.14 37.36 60.93 45.04 76.21

Using Eqgs. 2.21 and 2.22 as given by Muhs and Weiss (1973) the ratio (gun)/qu=0)) are
evaluated and plotted in Figure 4.24 along with experimental values for different load
inclination (a=0-20"). The values are shown in Table 4.13. The computed values as per
Muhs and Weiss (1973) is in good agreement with experimental values for both dense

sand and medium dense sand.

1.6 T
| ' -m-- Muhs and Weiss (1973); D, /B=0=0.5=1 |
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> 06k
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0.0 L | L | L |

0 5 10 15 20
o (degree)

Figure 4.24: Comparison of Present experimental results with Muhs and Weiss (1973)
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Table 4.13. Calculated values of Muhs and Weiss (1973) ratio for centric inclined

condition along with Present experimental values

Inclination Present Experiment Muhs and Weiss (1973)

() e/B | Di/B | $=315" | ¢ =40.8° (1-tana)*
0 0 0 1.00 1.00 1.00

5 0 0 0.78 0.77 0.83
10 0 0 0.54 0.57 0.68
15 0 0 0.37 0.39 0.54
20 0 0 0.22 0.24 0.40

0 0 0.5 1.00 1.00 1.00

5 0 0.5 0.84 0.84 0.83
10 0 0.5 0.67 0.69 0.68
15 0 0.5 0.54 0.55 0.54
20 0 0.5 0.38 0.41 0.40

0 0 1 1.00 1.00 1.00

5 0 1 0.89 0.89 0.83
10 0 1 0.76 0.74 0.68
15 0 1 0.62 0.62 0.54
20 0 1 0.44 0.49 0.40

By using finite element method, Loukidis et al. (2008) proposed an equation for
inclination factor as mentioned in Eq. 2.40 for surface footing. The experimental values
of ultimate bearing capacity are plotted in Figure 4.25 along with the values obtained by
using equations given by Loukidis et al. (2008). The same has been presented in Table
4.14. The nature of variation of bearing capacity with load inclination is in good

agreement.

68



Ultimate bearing capacity, q (kKN/m’)

200

—_

W

(=}
T

100 -

wn
(=

D f/B=0

—=— Loukidis et al. (2008); Medium Dense |

—— Dense
---o--- Present Experiment; Medium Dense
---O-- Dense

o(degree)

Figure 4.25: Comparison of Present experimental results with Loukidis et al. (2008)

Table 4.14. Calculated values of ultimate bearing capacities by using formula of Loukidis

et al. (2008) for centric inclined condition along with Present experimental values

Present Experiment; g, | Loukidis et al. (2008);
Inclination cosa (kN/ mz) qu (KN/ 1‘112)

() e/B | Di/B | 0=375" | 6=40.8" | $=37.5 | ¢=40.8"
0 0 0 101.043 166.770 50.37 90.52

5 0 0 79.159 128.022 35.44 64.48
10 0 0 55.068 94.679 23.68 43.95
15 0 0 36.957 64.437 14.67 28.12
20 0 0 22.586 40.564 8.07 16.37

The failure surfaces in all these experiments with centric inclined loading conditions have

been observed. Figure 4.26 shows the failure surface as observed for the condition i.e. Dy

/B=0, a=20°, ¢/B=0. The sliding of the foundation has been observed which is due to

horizontal component of the inclined load. It is also seen that the deformation of sand
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layer is prominent up to a depth of 0.5B in the vertical direction and laterally up to a

distance of near about 2B.

Initial Position of Footing

Figure 4.26: Photographic image of failure surface observed in medium dense sand at

Dy/B=0, x=20°and e/B=0

4.3.4 Eccentric Inclined Loading Conditions

Seventy two tests have been conducted with loads applied both eccentric and inclined.

The combination of parameters chosen for these experiments is listed in Table 4.13.

Table 4.15. Model test parameters for the case of Eccentric Inclined Loading condition

Sand | Unit weight of Relative Friction angle ¢ — & e Load
type compaction | density of sand | direct shear test | B Inclination, &
(kKN/m3) (%) (degree) (degree)

Dense 14.36 69 40.8 0 ]0.05 5
0.5 0.1 10

1.0 10.15 15
20

Medium 13.97 51 37.5 0 ]0.05 5
dense 0.5] 0.1 10
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Sand | Unit weight of Relative Friction angle ¢ — & € Load
type compaction |density of sand | direct shear test | B Inclination, &
(kN/m3) (%) (degree) (degree)
1.0 |0.15 15
20

The variation of ubc with load inclination at all embedment ratios and eccentricity ratios
for both dense sand and medium dense sand have been observed. Figure 4.27 shows one
such plot of the nature of load-settlement curve with load inclination at a particular
embedment ratio Dy /B = 0.5 and e/B = 0.05 in medium dense sand. It is seen from the
graph that the ultimate bearing capacity decreases with increase in load inclination. This
is true for all eccentricities and all depth of embedment. Similarly, the variation of ubc
with load eccentricity at all embedment ratios and load inclinations for both dense sand
and medium dense sand have been observed. One combination of such plot is shown in
Figure 4.28 where the variation of ubc with e¢/B at a particular embedment ratio Dy /B =
1.0 and a = 15° in dense sand is presented. It is observed that the ultimate bearing
capacity decreases with increase in e/B ratio. The ubc increases with increase in
embedment ratio (Dy/B) for all eccentricities and all load inclinations. One such variation
of ubc with embedment ratio (Dy/B) at e/B = 0.15 and o = 20° in medium dense sand is
shown in Figure 4.29. It is also observed that the bearing capacity increases with increase
in relative density for all combinations of Dy /B, ¢/B and a. One such plot is shown in

Figure 4.30.
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Figure 4.27: Variation of load-settlement curve with load inclination a at Dy/B=0.5 and

¢/B=0.05 in medium dense sand
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Figure 4.28: Variation of load-settlement curve with e/B at Dy/B=1.0 and a =15" in dense

sand
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Figure 4.29: Variation of load-settlement curve with embedment ratio (Dy/B) at e/B =0.15

0. .
and o =20" in medium dense sand
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Figure 4.30: Variation of load-settlement curve with Relative Density (D,) at /B =0.15,
o =10° and D;/B=0.5
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Figure 4.31 shows the load arrangement for the test [Dy/B =0, ¢/B = 0.15, and a = 200].
The photographic images of failure surface developed at ultimate stage for one of the
tests is shown in Figure 4.32. From the figure it is observed that the failure surface is
significantly developed up to a depth of 0.5B below the base of the footing, whereas in
case of footing subjected to vertical and centric load the development of the failure
surface is seen up to a depth of 1.5B8 (Figure 4.8) from the base of the footing. At the time

of failure sliding of the footing occurs along with tilting.

Figure 4.31: Photographic image of load arrangement for the test at Dy/B =0, or=20°
and ¢/B =0.15
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n = Initial Position of Footing

Figure 4.32: Photographic image of the failure surface observed in dense sand at Dy /B
=0, #=15°and ¢/B =0.15

4.4 Analysis of Test Results

The ultimate bearing capacities of all tests determined from experimental model tests
under section 4.3 are given in Table 4.16 (Col. 5) for ready reference. As discussed in
section 4.1, in order to quantify certain parameters like /B, & Dy /B, and D, all the model
test results have been analysed using Nonlinear Regression Analysis Program (NLREG).
NLREG performs statistical regression analysis to estimate the values of parameters for
linear, multivariate, polynomial, logistic, exponential, and general nonlinear functions.
The regression analysis determines the values of the coefficients that cause the function
to best fit the observed data that is being provided. The reduction factor concept as

discussed in section 4.1 use the proposed Eqs. 4.4 and 4.5 to predict the ultimate bearing
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capacity of shallow foundation subjected to eccentric and inclined load. The following
procedure is adopted to analyse the test results and develop the reduction factor when the

line of load application is towards the center line of the footing.

Step 1: For vertical loading conditions (i.e. & =0), Eq. (4.5) takes the form

RF = {1-{%}1 (4.6)

With o = 0 and, for a given Dy /B and given sand type (i.e. dense or medium dense),

regression analyses is performed to obtain the magnitudes of a and m.

Step 2: Using the values of a and m obtained in Step 1 and Eq. (4.5), for a given D;/B

and sand type, a regression analysis is performed to obtain the value of n for ar> 0°.

The values of a, m and n obtained from analyses described above are shown in Table
4.17. It can be seen from Table 4.17 that the variations of a and m with D/B are very
minimal; however, the value of n decreases with the increase in embedment ratio. The

average values of a and m are 2.14 and 0.92 respectively.

Considering the uncertainties involved in any experimental evaluation of ultimate bearing

capacity, we can assume without loss of much accuracy

a=2 4.7
m=1 (4.8)

Df
n=2— ? 4.9)
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The experimental values of RF defined by Eq. (4.4) are shown in Col. 6 of Table 4.16. In
computing the experimental RF values, the first row of values for both dense and medium
dense sands (where Ds/B =0, & =0 and e/B = 0) are used as the reference values (i.e.
denominator). For comparison purposes, the predicted values of the reduction factor RF
obtained using Eqs. (4.5), (4.7), (4.8) and (4.9) are shown in Col. 7 of Table 4.16. The
deviations of the predicted values of RF from those obtained experimentally are shown in
Col. 8 of Table 4.16. In most cases the deviations are £15% or less; however, in some
cases, the deviations are 25 to 30%. Thus Egs. (4.5), (4.7), (4.8) and (4.9) provide a
reasonable good and simple approximation to estimate the ultimate bearing capacity of

strip foundations (0 < Dy/B < 1) subjected to eccentric inclined loading. Or

. o 2~(D, /B)
Qu(Df IB,e/B,al) — Qu(Df /B,e/B:O,(x/¢=O)|:1 - Z[Eﬂ(l _EJ (4.10)
Table 4.16. Model test results
Calculated
RF Deviation—
Experimental | Experimental | [Egs. 4.5, | Col.7—Col.6
Sand | Dy | o | e Gu RF 4.7,4.8, Col.7
type B |(deg)| B (kN/m?) [Eq. (4.4)] | and4.9] (%)
1) 2 | 3 | & &) (6) () (8)
Dense 0 0 0 166.77 1.0 1 0
0 0 |0.05 133.42 0.8 0.9 11.11
0 0 0.1 109.87 0.659 0.8 17.65
0 0 |0.15 86.33 0.518 0.7 26.05
0 5 0 128.51 0.771 0.77 -0.09
0 5 10.05 103.01 0.618 0.693 10.86
0 5 0.1 86.33 0.518 0.616 15.96
0 5 |0.15 65.73 0.394 0.539 26.87
0 10 0 96.14 0.576 0.570 -1.16
0 10 | 0.05 76.52 0.459 0.513 10.54
0 10 | 0.1 62.78 0.376 0.456 17.42
0 10 | 0.15 51.99 0.312 0.399 21.85
0 15 0 66.71 0.4 0.4 -0.03
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Table 4.16 (Continued)

Calculated
RF Deviation—
Experimental | Experimental | [Eqs. 4.5, | Col.7—-Col.6
Sand | Dr | a | e Gu RF 4.7,4.8, Col.7
type B |(deg)| B (kN/m?) [Eq. (4.4)] and 4.9] (%)
(L @[3 | @ %) () (N ©))
0 15 |0.05 53.96 0.324 0.36 10.1
0 15 | 0.1 44.15 0.265 0.32 17.25
0 15 | 0.15 35.12 0.211 0.28 24.77
0 20 0 43.16 0.259 0.26 0.41
0 20 | 0.05 34.83 0.209 0.234 10.72
0 20 | 0.1 29.43 0.176 0.208 15.13
0 20 | 0.15 23.54 0.141 0.182 22.4
0.5 0 0 264.87 1.0 1.0 0
0.5 0 |0.05 226.61 0.856 0.9 4.94
0.5 0 0.1 195.22 0.737 0.8 7.87
0.5 0 |0.15 164.81 0.622 0.7 11.11
0.5 5 0 223.67 0.844 0.822 -2.74
0.5 5 10.05 193.26 0.73 0.74 1.37
0.5 5 0.1 165.79 0.626 0.658 4.81
0.5 5 |10.15 140.28 0.530 0.575 7.95
0.5 10 0 186.39 0.704 0.656 -7.29
0.5 10 | 0.05 160.88 0.607 0.59 -2.9
0.5 10 | 0.1 137.34 0.519 0.525 1.18
0.5 10 | 0.15 116.74 0.441 0.459 4
0.5 15 0 151.07 0.57 0.503 -13.43
0.5 15 |0.05 129.49 0.489 0.453 -8.03
0.5 15 | 0.1 111.83 0.422 0.402 -4.96
0.5 15 | 0.15 94.18 0.356 0.352 -1.01
0.5 | 20 0 115.76 0.437 0.364 -20.06
0.5 | 20 |0.05 98.1 0.37 0.328 -13.05
05 ] 20 | 0.1 85.35 0.322 0.291 -10.65
05 | 20 | 0.5 72.59 0.274 0.255 -7.56
1.0 0 0 353.16 1.0 1.0 0
1.0 0 |0.05 313.92 0.889 0.9 1.23
1.0 0 0.1 278.6 0.789 0.8 1.39
1.0 0 |0.15 245.25 0.694 0.7 0.79
1.0 5 0 313.92 0.889 0.877 -1.3
1.0 5 10.05 277.62 0.786 0.79 0.46
1.0 5 0.1 241.33 0.683 0.702 2.65
1.0 5 |10.15 215.82 0.611 0.614 0.51
1.0 10 0 264.87 0.750 0.755 0.65
1.0 10 | 0.05 239.36 0.678 0.679 0.24
1.0 10 | 0.1 212.88 0.603 0.604 0.19
1.0 10 | 0.15 188.35 0.533 0.528 -0.93
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Table 4.16 (Continued)

Calculated
RF Deviation—
Experimental | Experimental | [Eqs. 4.5, | Col.7—-Col.6
Sand | Dr | a | e Gu RF 4.7,4.8, Col.7
type B |(deg)| B (kN/mz) [Eq. (4.4)] and 4.9] (%)
(L @[3 | @ %) () (N ©))
1.0 15 0 225.63 0.639 0.632 -1.03
1.0 15 |0.05 206.01 0.583 0.569 -2.5
1.0 15 | 0.1 179.52 0.508 0.506 -0.48
1.0 15 | 0.15 155.98 0.442 0.443 0.22
1.0 | 20 0 183.45 0.519 0.51 -1.89
1.0 | 20 | 0.05 166.77 0.472 0.459 -2.92
1.0 | 20 | 0.1 143.23 0.406 0.408 0.56
1.0 | 20 |0.15 126.55 0.358 0.357 -0.41
Medium | 0O 0 0 101.04 1.0 1.0 0
0 0 |0.05 84.37 0.835 0.9 7.23
dense 0 0 0.1 68.67 0.68 0.8 15.05
0 0 |0.15 54.94 0.544 0.7 22.33
0 5 0 79.46 0.786 0.751 -4.7
0 5 10.05 63.77 0.631 0.676 6.65
0 5 0.1 52.97 0.524 0.601 12.75
0 5 |10.15 42.18 0.417 0.526 20.6
0 10 0 55.92 0.533 0.538 -2.9
0 10 | 0.05 47.09 0.466 0.484 3.71
0 10 | 0.1 38.46 0.381 0.43 11.54
0 10 | 0.15 31.39 0.311 0.376 17.47
0 15 0 38.26 0.379 0.36 -5.18
0 15 |0.05 32.37 0.32 0.324 1.11
0 15 | 0.1 26.98 0.267 0.288 7.3
0 15 | 0.15 20.6 0.204 0.252 19.09
0 20 0 24.03 0.238 0.218 -9.22
0 20 | 0.05 19.62 0.294 0.196 0.93
0 20 | 0.1 16.68 0.165 0.174 5.27
0 20 | 0.15 13.34 0.132 0.152 13.39
0.5 0 0 143.23 1.0 1.0 0
0.5 0 |0.05 123.61 0.863 0.9 4.11
0.5 0 0.1 103.99 0.726 0.8 9.25
0.5 0 |0.15 87.31 0.61 0.7 12.92
0.5 5 0 120.66 0.842 0.807 -4.42
0.5 5 10.05 103.99 0.726 0.726 0.02
0.5 5 0.1 90.25 0.63 0.645 2.37
0.5 5 10.15 72.59 0.507 0.565 10.26
0.5 10 0 98.1 0.685 0.628 -9.07
0.5 10 | 0.05 84.86 0.592 0.565 -4.83
0.5 10 | 0.1 72.59 0.507 0.502 -0.89
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Table 4.16 (Continued)

Calculated
RF Deviation—
Experimental | Experimental | [Eqs. 4.5, | Col.7—-Col.6
Sand | Dr | a | e Gu RF 4.7,4.8, Col.7
type B |(deg)| B (kN/mz) [Eq. (4.4)] and 4.9] (%)
H @163 1 @ () 6) @) t))
0.5 10 | 0.15 60.82 0.425 0.44 34
0.5 15 0 79.46 0.555 0.465 -19.37
0.5 15 | 0.05 67.89 0.474 0.418 -13.31
0.5 15 0.1 56.9 0.397 0.372 -6.85
0.5 15 | 0.15 48.07 0.336 0.325 -3.16
0.5 20 0 58.27 0.407 0.319 -27.62
0.5 20 | 0.05 50.03 0.349 0.287 -21.75
0.5 20 0.1 43.16 0.301 0.255 -18.17
0.5 20 | 0.15 36.3 0.253 0.223 -13.56
1.0 0 0 208.95 1.0 1.0 0
1.0 0 0.05 193.26 0.925 0.9 -2.76
1.0 0 0.1 175.6 0.84 0.8 -5.05
1.0 0 0.15 156.96 0.751 0.7 -7.31
1.0 5 0 186.39 0.892 0.867 -2.93
1.0 5 0.05 168.73 0.808 0.78 -3.53
1.0 5 0.1 153.04 0.732 0.693 -5.63
1.0 5 0.15 137.34 0.657 0.607 -8.34
1.0 10 0 160.88 0.77 0.733 -4.99
1.0 10 | 0.05 144.21 0.69 0.66 -4.57
1.0 10 0.1 129.49 0.62 0.587 -5.63
1.0 10 | 0.15 112.82 0.54 0.513 -5.18
1.0 15 0 133.42 0.638 0.6 -6.42
1.0 15 | 0.05 118.7 0.568 0.54 -5.2
1.0 15 0.1 106.93 0.512 0.48 -6.61
1.0 15 | 0.15 94.18 0.451 0.42 -7.31
1.0 20 0 98.1 0.469 0.467 -0.6
1.0 20 | 0.05 92.21 0.441 0.42 -5.07
1.0 20 0.1 84.37 0.404 0.373 -8.15
1.0 20 | 0.15 75.54 0.362 0.327 -10.66
Table 4.17. Variation of a, m and n [Eq. (4.5)] along with R? values
Sand type % a m R’ n R’
Dense 0 2.23 0.81 0.99 1.98 0.99
0.5 2.0 0.88 1.0 1.23 0.99
1.0 1.76 | 0.92 1.0 0.97 0.99
Medium 0 2.59 | 091 0.99 1.868 0.99
dense 0.5 2.31 0.93 0.99 1.17 0.99
1.0 1.97 1.09 0.99 0.95 0.99
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Figure 4.33: Comparison of present experimental results with developed empirical
equation
Figure 4.33 shows the comparison of experimental reduction factor with developed

empirical reduction factor. The comparison seems to be reasonably good.

4.5 Comparison
4.5.1 Comparison with Meyerhof [1963]
The ultimate bearing capacity of shallow strip foundations subjected to eccentrically

inclined load on granular soil proposed by Meyerhof (1963) is

yorw

1 .
qM:qusqdqiq+EyBNys d.i “4.11)
All expressions for various factors and notations used in Eq. 4.11 have been described in

section 2.2.4.

Meyerhof’s equation for inclined and eccentric load considers (g,) to be vertical;
whereas in the present analysis g, is considered to be inclined at an angle (a).
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The reduction factor RF corresponding to Meyerhof (1963) can be written as

o

q,%B

B

cosax

w

qu(erB=0,a/$=0.D, B)

qu(e/B,aig.D,1B)

9u(c1B=0,a19=0,D, /B

B
sec | —
) (Bj

where ¢, = ultimate bearing capacity applied vertically

(4.12)

The comparison of the values of RF using Meyorhof’s method as discussed above has

been made with those using present developed equation and experimental RF values. The

same has been presented in the Table 4.18.

Table 4.18 Reduction Factor Comparison of Meyerhof (1963) with Present results

RF
Pred. | corresponding
RF to Meyerhof Expt.
Sand | P | a | e | [Eq (1963) RF
type B (deg) B 4.10] Eq. (4.12) [Eq. (4.4)]
Dense 0 0 0 1.000 1.000 1.000
0 0 0.05 | 0.900 0.810 0.800
0 0 0.1 0.800 0.640 0.659
0 0 0.15 | 0.700 0.490 0.518
0 5 0 0.770 0.773 0.771
0 5 0.05 | 0.693 0.626 0.618
0 5 0.1 0.616 0.495 0.518
0 5 0.15| 0.539 0.379 0.394
0 10 0 0.570 0.579 0.576
0 10 0.05 | 0.513 0.469 0.459
0 10 0.1 0.456 0.370 0.376
0 10 0.15| 0.399 0.284 0.312
0 15 0 0.400 0.414 0.400
0 15 0.05 | 0.360 0.335 0.324
0 15 0.1 0.320 0.265 0.265
0 15 0.15 | 0.280 0.203 0.211
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Table 4.18 (Continued)

RF
Pred. | corresponding
RF to Meyerhof Expt.
Sand | Pr | « | € | [Eq (1963) RF
type B (deg) B 4.10] Eq. (4.12) [Eq. (4.4)]
0 | 20 0 0.260 0.277 0.259
0 20 0.05 0.234 0.224 0.209
0 20 0.1 0.208 0.177 0.176
0 20 0.15 0.182 0.136 0.141
0.5 0 0 1.000 1.000 1.000
0.5 0 0.05 0.900 0.855 0.856
0.5 0 0.1 0.800 0.721 0.737
0.5 0 0.15 0.700 0.597 0.622
0.5 5 0 0.822 0.821 0.844
0.5 5 0.05 0.740 0.705 0.730
0.5 5 0.1 0.658 0.597 0.626
0.5 5 0.15 0.575 0.497 0.530
0.5 10 0 0.656 0.667 0.704
0.5 10 0.05 0.590 0.575 0.607
0.5 10 0.1 0.525 0.489 0.519
0.5 10 0.15 0.459 0.410 0.441
0.5 15 0 0.503 0.535 0.570
0.5 15 0.05 0.453 0.464 0.489
0.5 15 0.1 0.402 0.397 0.422
0.5 15 0.15 0.352 0.335 0.356
0.5 20 0 0.364 0.422 0.437
0.5 20 0.05 0.328 0.369 0.370
0.5 20 0.1 0.291 0.318 0.322
0.5 20 0.15 0.255 0.271 0.274
1 0 0 1.000 1.000 1.000
1 0 0.05 0.900 0.878 0.889
1 0 0.1 0.800 0.763 0.789
1 0 0.15 0.700 0.656 0.694
1 5 0 0.877 0.842 0.889
1 5 0.05 0.790 0.742 0.786
1 5 0.1 0.702 0.648 0.683
1 5 0.15 0.614 0.559 0.611
1 10 0 0.755 0.705 0.750
1 10 0.05 0.679 0.625 0.678
1 10 0.1 0.604 0.548 0.603
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Table 4.18 (Continued)

RF
Pred. | corresponding
RF to Meyerhof Expt.
Sand | Py | « | e | [Eq (1963) RF

type B (deg) B 4.10] Eq. (4.12) [Eq. (4.4)]

1} 10 | 015| 0.528 0.475 0.533

1| 15 0 | 0.632 0.587 0.639

1 | 15 | 0.05| 0.569 0.522 0.583

1| 15 0.1 | 0.506 0.461 0.508

1| 15 | 015 0443 0.402 0.442

1| 20 0 | 0510 0.485 0.519

1 | 20 | 005| 0459 0.434 0.472

1| 20 0.1 | 0.408 0.385 0.406

1 | 20 | 015| 0357 0.338 0.358

Medium 0 0 0 1.000 1.000 1.000

dense 0 0 | 005 | 0.900 0.810 0.835

0 0 0.1 | 0.800 0.640 0.680

0 0 | 015 | 0.700 0.490 0.544

0 5 0 0.751 0.754 0.786

0 5 | 005 | 0676 0.611 0.631

0 5 0.1 | 0.601 0.483 0.524

0 5 |015 | 0526 0.369 0.417

0 10 0 0.538 0.546 0.553

0 10 | 0.05 | 0.484 0.442 0.466

0 10 | 0.1 | 0.430 0.349 0.381

0 10 | 015 | 0376 0.268 0.311

0 15 0 0.360 0.373 0.379

0 15 | 0.05 | 0.324 0.302 0.320

0 15 | 01 | 0.288 0.239 0.267

0 15 | 0.15 | 0.252 0.183 0.204

0 20 0 0.218 0.232 0.238

0 20 | 0.05 | 0.196 0.188 0.194

0 20 | 01 | 0174 0.148 0.165

0 20 | 0.15 | 0.152 0.114 0.132

0.5 0 0 1.000 1.000 1.000

0.5 0 | 005 | 0.900 0.858 0.863

0.5 0 0.1 | 0.800 0.727 0.726

0.5 0 | 015 | 0.700 0.605 0.610

0.5 5 0 0.807 0.816 0.842

0.5 5 005 | 0726 0.704 0.726
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Table 4.18 (Continued)

RF
Pred. | corresponding
RF to Meyerhof Expt.
Sand | P | a | e | [Eq (1963) RF
type B (deg) B 4.10] Eq. (4.12) [Eq. (4.4)]
0.5 | 5 0.1 | 0.645 0.599 0.630
0.5 5 0.15 0.565 0.501 0.507
0.5 10 0 0.628 0.659 0.685
0.5 10 0.05 0.565 0.571 0.592
0.5 10 0.1 0.502 0.489 0.507
0.5 10 0.15 0.440 0.412 0.425
0.5 15 0 0.465 0.525 0.555
0.5 15 0.05 0.418 0.458 0.474
0.5 15 0.1 0.372 0.395 0.397
0.5 15 0.15 0.325 0.336 0.336
0.5 20 0 0.319 0.413 0.407
0.5 20 0.05 0.287 0.363 0.349
0.5 20 0.1 0.255 0.316 0.301
0.5 20 0.15 0.223 0.272 0.253
1 0 0 1.000 1.000 1.000
1 0 0.05 0.900 0.881 0.925
1 0 0.1 0.800 0.769 0.840
1 0 0.15 0.700 0.663 0.751
1 5 0 0.867 0.840 0.892
1 5 0.05 0.780 0.743 0.808
1 5 0.1 0.693 0.652 0.732
1 5 0.15 0.607 0.564 0.657
1 10 0 0.733 0.702 0.770
1 10 0.05 0.660 0.625 0.690
1 10 0.1 0.587 0.550 0.620
1 10 0.15 0.513 0.479 0.540
1 15 0 0.600 0.584 0.639
1 15 0.05 0.540 0.522 0.568
1 15 0.1 0.480 0.463 0.512
1 15 0.15 0.420 0.406 0.451
1 20 0 0.467 0.483 0.469
1 20 0.05 0.420 0.435 0.441
1 20 0.1 0.373 0.388 0.404
1 20 0.15 0.327 0.342 0.362
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Figure 4.34: Comparison of Present results with Meyerhof (1963)

Table 4.18 and Figure 4.34 show the comparison, and the agreement is reasonably good.

Reduction Factor - Experiment

4.5.2 Comparison with Saran and Agarwal [1991]

As discussed in section 2.2.4, Saran and Agarwal (1991) proposed an equation for the
determination of ultimate bearing capacity of footing under eccentric and inclined load.

They presented the bearing capacity factors N, N, and N, in tabular and graphical

forms. To compare their results with the present results, N, and N, values (e/B=0, 0.1,
0=0°, 10° and 20") are digitized from the graph given by Saran and Agarwal (1991) for
medium dense sand (¢ = 37.59. Using Eqgs. (2.36) as proposed by Saran and Agarwal
(1991) and (4.4), values of RF for bearing capacity corresponding to Saran and Agarwal
(1991) is calculated and compared with present Predicted and Experimental RF values.

This is shown in Table 4.19.
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Table 4.19. Comparison of Reduction Factors corresponding to Saran and Agarwal

(1991) along with Present results

RF
corresponding
to
Saran and o
Agarwal Predicted | Deviation—
(1991) Experimental RF Col.7—-Col.5

Experiment & a | € | [Egs.(2.36) RF [Eq. Col.7

No. B |(deg)| B and (4.4)] [Eq. (4.4)] 4.10] (%)

1) ORNCOREC, ) (6) () (8)
1 0 0 0 1.0 1.0 1 -0.06
2 0 0 0.1 0.54 0.68 0.8 32.89
3 0 10 0 0.44 0.553 0.538 18.44
4 0 10 | 0.1 0.33 0.381 0.43 23.17
5 0 20 0 0.36 0.238 0.218 -67.37
6 0 20 | 0.1 0.18 0.165 0.174 -5.12
7 0.5 0 0 1.0 1.0 1.0 0.02
8 0.5 0 0.1 0.6 0.726 0.8 25.26
9 0.5 10 0 0.52 0.685 0.628 17.85
10 0.5 10 | 0.1 0.38 0.507 0.502 23.61
11 0.5 20 0 0.38 0.407 0.319 -19.81
12 0.5 20 | 0.1 0.22 0.301 0.255 13.17
13 1.0 0 0 1.0 1.0 1.0 -0.01
14 1.0 0 0.1 0.63 0.84 0.8 21.31
15 1.0 10 0 0.56 0.77 0.733 24.23
16 1.0 10 | 0.1 0.41 0.62 0.587 29.92
17 1.0 20 0 0.39 0.469 0.467 16.19
18 1.0 20 | 0.1 0.24 0.404 0.373 35.41

Most of the values of RF computed by Saran and Agarwal (1991) are found to be
deviated in the range of 30% from the present results as shown in Table 4.19 and Figure

4.35.
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predicted RF with RF corresponding to Saran and Agarwal (1991)
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4.5.3 Comparison with Loukidis et al. [2008]

Recently, Loukidis et al. (2008) developed an equation for combined inclination-
eccentricity factor f, using finite element method for surface foundation (Dy/B = 0) as

given by:

fi= {1— \/3.7(%j +2.1(tan)* +1.5[%j tana} (4.13)
)L
4u(e/B.a) _( COSCZ](B)

1
5 7BZN7fie

B Bcosa (4.14)

_1 fi
2 7BN7(C0505]

where quem o = Ultimate bearing capacity of strip footing at an eccentricity e and

inclination a; V; = (Vertical) limit load on a strip footing resting over the surface of an

uncemented sand deposit subjected to eccentric and inclined load.

The reduction factor RF corresponding to Loukidis et al. (2008) can be written as

Ji

RF =—+—
cosa

(4.15)

The reduction factors computed using Eq. (4.15) is compared with those obtained from
Egs. (4.10) and (4.4) in Figures 4.36 and 4.37 and also in Table 4.20. The comparison

seems to be good.
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Table 4.20. Comparison of Reduction Factors Obtained from Eqgs. (4.15) and (4.13) with
Eq. (4.10) for Dy/B =0

Loukidis et al. | Dense
(2008) RF sand Medium
Experiment a ¢ |[Egs.(4.13)and | [Eq. | dense sand

No. (deg) | B (4.15)] (4.10)] | [Eq. (4.10)]
1) @ | G “) ) (6)

1 0 0 1.0 1 1.0

2 0 0.05 0.817 0.9 0.9

3 0 0.1 0.652 0.8 0.8

4 0 0.15 0.506 0.7 0.7

5 5 0 0.766 0.77 0.751

6 5 0.05 0.677 0.693 0.676
7 5 0.1 0.554 0.616 0.601

8 5 0.15 0.431 0.539 0.526

9 10 0 0.563 0.570 0.538
10 10 | 0.05 0.503 0.513 0.484
11 10 0.1 0.418 0.456 0.43
12 10 | 0.15 0.326 0.399 0.376
13 15 0 0.388 0.4 0.36
14 15 | 0.05 0.343 0.36 0.324
15 15 0.1 0.283 0.32 0.288
16 15 |0.15 0.217 0.28 0.252
17 20 0 0.238 0.26 0.218
18 20 | 0.05 0.205 0.234 0.196
19 20 0.1 0.164 0.208 0.174
20 20 | 0.15 0.119 0.182 0.152
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4.6 Conclusions

The results of a number of laboratory model tests conducted to determine the ultimate
bearing capacity of a strip foundation supported by sand and subjected to an eccentrically
inclined load with an embedment ratio (Dy /B) varying from zero to one have been
reported. Tests are conducted on dense and medium dense sand. The load eccentricity
ratio /B is varied from 0 to 0.15, and the load inclination & is varied from 0° to 20° (ie.
/¢ = 0 to 0.5). Based on the test results and within the range of parameters studied,

following conclusions are drawn:

* An empirical relationship for reduction factor in predicting ultimate bearing

capacity has been proposed.

e A comparison between the reduction factors obtained from the empirical
relationships and those obtained from experiments shows, in general, a variation

of £15% or less. In some cases, the deviation is about 25 to 30%.

¢ The developed reduction factor is also in well agreement with existing theories.
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5. ULTIMATE BEARING CAPACITY OF
ECCENTRICALLY INCLINED LOADED STRIP
FOOTING ON GRANULAR SOIL WHEN THE LINE OF
LOAD APPLICATION IS AWAY FROM THE CENTER
LINE OF THE FOOTING

5.1 Introduction

Shallow strip foundations are at times subjected to eccentrically inclined loads. Figure 5.1
shows two possible modes of load application. In this figure B is the width of the
foundation, e is the load eccentricity, ¢ is the load inclination, and Q, is the ultimate load
per unit length of the foundation. In Figure 5.1(a) the line of load application of the
foundation is inclined towards the center line of the foundation and is referred to as
partially compensated by Perloff and Baron (1976). It is also possible for the line of load
application on the foundation to be inclined away from the center line of the foundation
as shown in Figure 5.1(b). Perloff and Baron (1976) called this type of loading as

reinforced case.

The results of practically all studies relating to the bearing capacity of a shallow
foundation subjected to eccentrically inclined load presently available in the literature,
though fairly limited, consider the so-called partially compensated case. This chapter

deals with the study for the reinforced type of loading [Figure 5.1(b)].
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Figure 5.1: Eccentrically inclined load on a strip foundation: (a) Partially compensated

case, (b) Reinforced case

Based on a review of published theoretical and experimental studies related to the
estimation of ultimate bearing capacity of shallow strip foundation subjected to
eccentrically inclined loading, most of the cases are pertaining to the partially
compensated condition as mentioned in Chapter 4. In order to quantify certain
parameters, for a given value of Dy /B, a reduction factor RF as developed in Eq. (4.10)
can be developed based on the concept advanced in Eq. (4.5) for load eccentricity and the

inclination factors. Or,

4u(D; IB.eIBald)

RF = (5.1

4u(D, 1B, e/B=0,0/=0)
where Qu(D, 1B.e1B.alo) = ultimate bearing capacity with eccentricity ratio e/B and
inclination ratio &/¢ at an embedment ratio Dy /B and Qu(D, 1B.e1 B=0,019=0) = ultimate

bearing capacity with centric vertical loading (e/B = 0 and /¢ = 0) at the same

embedment ratio Dy/B.

94



Thus it can initially be assumed that

Gy e

where a, m, n = factors which are functions of Dy/B.

The purpose of this chapter is to analyse the results of laboratory model tests conducted
on a strip foundation with varying Dy /B, e/B and o to quantify certain coefficients as

given in Eq. (5.2).

5.2 Experimental Module

Seventy eight numbers of laboratory model tests were conducted out of which six tests in
central vertical condition (i.e. Test No. 1, 14, 27, 40, 53, and 66) are common with test
sequence as mentioned in Chapter 4. The details of the tests are mentioned in Table 5.1
and Table 5.2.

Table 5.1. Sequence of Model Tests on Dense sand as per Figure 5.1(b)

Test No. e/B a D;/B
1 0 0 0
25 0.05 5%, 10°, 15°, 20° 0
6-9 0.1 5%, 10°, 15°, 20° 0
10-13 0.15 5%, 10°, 15°, 20° 0
14 0 0 0.5
15-18 0.05 5%, 10°, 15°, 20° 0.5
19-22 0.1 5%, 10°, 15°, 20° 0.5
23-26 0.15 5%, 10°, 15°, 20° 0.5
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27 0 0 1.0

28-31 0.05 5%, 10°, 15°, 20° 1.0
32-35 0.1 5%, 10°, 15°, 20° 1.0
36-39 0.15 5%, 10°, 15°, 20° 1.0

Table 5.2. Sequence of Model Tests on Medium Dense sand as per Figure 5.1(b)

Test No. e/B a Dy/B
40 0 0 0
41-44 0.05 5%, 10°, 15°, 20° 0
45-48 0.1 5%, 10°, 15°, 20° 0
49-52 0.15 5%, 10°, 15°, 20° 0
53 0 0 0.5
54-57 0.05 5%, 10°, 15°, 20° 0.5
58-61 0.1 5%, 10°, 15°, 20° 0.5
62-65 0.15 5%, 10°, 15°, 20° 0.5
66 0 0 1.0
67-70 0.05 5%, 10°, 15°, 20° 1.0
71-74 0.1 5%, 10°, 15°, 20° 1.0
75-78 0.15 5°,10°, 15°, 20" 1.0

5.3 Model Test Results

The ultimate bearing capacities g, obtained from the present model tests are given in

Table 5.3 (Column 5). Other ultimate bearing capacity test results for vertical loading

96



conditions (o = 0 with e¢/B varying from 0.05 to 0.15) relevant to the present study as
mentioned in case of partially compensated type (Chapter 4) are summarized in Table
5.4. It needs to be mentioned however that, in the majority of eccentrically inclined
loading (reinforced type) cases, the failure mode is local shear type as defined by Vesic
(1973). The application of load considering both eccentricity and inclination for one of

the test is shown in Figure 5.2.

Figure 5.2: Photograph of load application for the test [e/B = 0.15, a = 20° and Dy/B = 0]

when the line of load application is away from the center line of the footing

As observed in the case of partially compensated type of loading, the ultimate bearing
capacity (ubc) decreases with increase in the values of e¢/B and « for the case of
reinforced type of loading. Similarly increase in ubc occurs with increase in Dy/B and
relative density of sand as seen with partially compensated type of loading. These are
shown in Figures 5.3 through 5.6.
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Figure 5.3: Variation of load-settlement curve with e¢/B at D;/B=0.5, a=10" in medium

dense sand
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Figure 5.4: Variation of load-settlement curve with load inclination (&) at Dy/B=0,

e/B = 0.15 in dense sand
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Figure 5.5: Variation of load-settlement curve with relative density (D,) at Dy/B=1,

a=15°, ¢/B =0.15
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Figure 5.6: Variation of load-settlement curve with D;/B at a':SO, e/B =0.05 in medium

dense sand
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A comparison has been made with the ultimate bearing capacities of partially

compensated and reinforced type of footings as discussed. Figures 5.7 and 5.8 show plots

of the ratio of the ultimate bearing capacities—(g,—reinforced) determined from the

present tests (Table 5.3) to (g,—partially compensated) provided in Chapter 4 for similar

values of Dy/B, e/B (>0) and o (>0). These figures show that:

a. For given values of Dy /B and e/B, the magnitude of (g,—reinforced)/(q,—partially
compensated) increases with the load inclination a.

b. Generally speaking, for similar values of « and e/B, the ratio shows a tendency to
decrease with the increase in embedment ratio.

c. For a given value of Dy /B and «, the ratio increases with the increase in e/B.
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Figure 5.7: Plot of (g,—reinforced)/(q,—partially compensated) for cases of eccentrically

inclined loading in dense sand
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Figure 5.8: Plot of (g,—reinforced)/(q,—partially compensated) for cases of eccentrically
inclined loading in medium dense sand

Figures 5.9 and 5.10 show the plots of the ratio of (s,/B-reinforced) obtained from the
present tests to (s,/B-partially compensated) obtained from the tests reported in Chapter 4
(s, = average settlement along the center line of the foundation at ultimate load) for

similar values of D;/B, e/B (>0) and « (>0). As expected, in any model test program of

102



this type, the plots are somewhat scattered. However, based on the results shown in these
figures, the following general observations can be made:
a. For any given value of D;/B, the settlement ratio increases with the angle of load

inclination a.

b. For similar values of o and e/B, the settlement ratio in general tends to decrease with

the increase in Dy /B.

c. For a given Dy/B and a, there is a tendency for the settlement ratio to remain the same

irrespective of the value of e/B.

d. For the range of tests conducted, the average value of the settlement ratio is about 1 at

a = 5° and increase to about 1.4 at o = 20°.
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eccentrically inclined loading in dense sand
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Figures 5.11 and 5.12 show plots of the ratio of the ultimate bearing capacities—

(gu—partially compensated) to (g,—central vertical) for similar values of Dy /B, e/B (>0)

and & (>0). These figures show that:

e For

compensated)/(g,—central vertical) decreases with increase in the load inclination

a.

given values

of D/B and e/B,
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e For similar values of & and e/B, the ratio shows a tendency to increase with the

increase in embedment ratio (Dy/B).

e For a given value of Dy/B and a, the ratio decreases with the increase in e/B.
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Figure 5.11: Plot of (g,— partially compensated)/(q,—central vertical) for cases of

eccentrically inclined loading in dense sand
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Figure 5.12: Plot of (g,— partially compensated)/(q,—central vertical) for cases of

eccentrically inclined loading in medium dense sand
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Similar types of results were found in Figures 5.13 and 5.14 which show plots of the ratio

of the ultimate bearing capacities— (g,—reinforced)/(q,—central vertical). The values are

also presented in Table 5.3.
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Figure 5.13: Plot of (g,—reinforced)/(g,—central vertical) for cases of eccentrically

inclined loading in dense sand
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Table 5.3. Ratio of ultimate bearing capacity ¢, in both conditions i.e. partially

compensated and reinforced case with ultimate bearing capacity g, in central vertical

condition
Sand Type e/B a D;/B qu(mz Gury GN/M) | Guipe) [ Guier) | Query /Gucen)
(KN/m”)

0.05 5 0 103.005 113.796 0.62 0.68
0.05 10 0 76.518 88.29 0.46 0.53
0.05 15 0 53.955 68.67 0.32 0.41
0.05 20 0 34.826 53.955 0.21 0.32
0.1 5 0 86.328 107.91 0.52 0.65
0.1 10 0 62.784 85.347 0.38 0.51
0.1 15 0 44.145 66.708 0.26 0.40
0.1 20 0 29.430 51.993 0.18 0.31
0.15 5 0 65.727 92.214 0.39 0.55
0.15 10 0 51.993 81.423 0.31 0.49
0.15 15 0 35.120 64.746 0.21 0.39
0.15 20 0 23.544 49.05 0.14 0.29
0.05 5.00 0.50 193.26 196.2 0.73 0.74
Dense sand 0.05 10.00 0.50 160.88 166.77 0.61 0.63
0.05 15.00 0.50 129.49 137.34 0.49 0.52
0.05 20.00 0.50 98.10 113.796 0.37 0.43
0.10 5.00 0.50 165.79 173.637 0.63 0.66
0.10 10.00 0.50 137.34 151.074 0.52 0.57
0.10 15.00 0.50 111.83 129.492 0.42 0.49
0.10 20.00 0.50 85.35 105.948 0.32 0.40
0.15 5.00 0.50 140.28 152.055 0.53 0.57
0.15 10.00 0.50 116.74 132.435 0.44 0.50
0.15 15.00 0.50 94.18 112.815 0.36 0.43
0.15 20.00 0.50 72.59 95.157 0.27 0.36
0.05 5.00 1.00 277.62 284.49 0.79 0.81
0.05 10.00 1.00 239.36 249.174 0.68 0.71
0.05 15.00 1.00 206.01 217.782 0.58 0.62

108




Qu(pe)

Sand Type e/B a Dy /B (kN/md) Gury &N/ | Guipe) [ quier) | Query /Gucen)
0.05 20.00 1.00 166.77 179.523 0.47 0.51
0.10 5.00 1.00 241.33 251.136 0.68 0.71
0.10 10.00 1.00 212.88 225.63 0.60 0.64
0.10 15.00 1.00 179.52 193.257 0.51 0.55
0.10 20.00 1.00 143.23 156.96 0.41 0.44
0.15 5.00 1.00 215.82 228.573 0.61 0.65
0.15 10.00 1.00 188.35 203.067 0.53 0.58
0.15 15.00 1.00 155.98 171.675 0.44 0.49
0.15 20.00 1.00 126.55 143.226 0.36 0.41
0.05 5 0 63.765 71.613 0.63 0.71
0.05 10 0 47.088 56.898 0.47 0.56
0.05 15 0 32.373 42.5754 0.32 0.42
0.05 20 0 19.62 31.392 0.19 0.31
0.1 5 0 52.974 62.784 0.52 0.62
0.1 10 0 38.4552 51.993 0.38 0.51
0.1 15 0 26.9775 41.202 0.27 0.41
0.1 20 0 16.677 30.411 0.17 0.30
0.15 5 0 42.183 52.974 0.42 0.52
0.15 10 0 31.392 49.05 0.31 0.49

Medium dense
cand 0.15 15 0 20.601 38.6514 0.20 0.38
0.15 20 0 13.3416 29.43 0.13 0.29
0.05 5 0.5 103.986 105.948 0.73 0.74
0.05 10 0.5 84.8565 88.29 0.59 0.62
0.05 15 0.5 67.8852 73.575 0.47 0.51
0.05 20 0.5 50.031 58.86 0.35 0.41
0.1 5 0.5 90.252 94.176 0.63 0.66
0.1 10 0.5 72.594 77.499 0.51 0.54
0.1 15 0.5 56.898 63.765 0.40 0.45
0.1 20 0.5 43.164 53.955 0.30 0.38
0.15 5 0.5 72.594 77.499 0.51 0.54
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Qu(pe)

Sand Type e/B a D;/B N/ Gury &N/ | Guipe) [ quier) | Query /Gucen)
0.15 10 0.5 60.822 67.689 0.42 0.47
0.15 15 0.5 48.069 56.898 0.34 0.40
0.15 20 0.5 36.297 48.069 0.25 0.34
0.05 5 1 168.732 170.694 0.81 0.82
0.05 10 1 144.207 148.131 0.69 0.71
0.05 15 1 118.701 124.587 0.57 0.60
0.05 20 1 92.214 99.081 0.44 0.47

0.1 5 1 153.036 156.96 0.73 0.75
0.1 10 1 129.492 135.378 0.62 0.65
0.1 15 1 106.929 114.777 0.51 0.55
0.1 20 1 84.366 92.214 0.40 0.44
0.15 5 1 137.34 144.207 0.66 0.69
0.15 10 1 112.815 120.663 0.54 0.58
0.15 15 1 94.176 103.005 0.45 0.49
0.15 20 1 75.537 86.328 0.36 0.41

Note: g, =ultimate bearing capacity in partially compensated condition; g,=ultimate bearing

capacity in reinforced condition; g,y=ultimate bearing capacity in central vertical condition.

Figures 5.15 and 5.16 show the plots of the ratio of (s,/B- partially compensated) to (s,/B-

central vertical) for similar values of D/B, e/B (>0) and « (>0). As expected, in any

model test program of this type, the plots are somewhat scattered. However, based on the

results shown in these figures, the following general observations can be made:

o For any given value of D#B, the settlement ratio decreases with the angle of load

inclination a.

o For the range of tests conducted, the average value of the settlement ratio is near

about 0.6 at o = 5° and decrease to about 0.3 at o = 20°.
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Figure 5.15: Plot of (s,— partially compensated)/(s,—central vertical) for cases of

eccentrically inclined loading in dense sand
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Figure 5.16: Plot of (s,— partially compensated)/(s,—central vertical) for cases of
eccentrically inclined loading in medium dense sand
Figures 5.17 and 5.18 show the plots of the ratio of (s,/B- reinforced) to (s,/B-central
vertical) obtained from the tests (s, = average settlement along the center line of the
foundation at ultimate load) for similar values of Dy /B, e/B (>0) and « (>0). However,
based on the results shown in these figures, the following general observations can be

made:
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a. For any given value of Dy /B, the settlement ratio decreases with the angle

of load inclination «.

b. For the range of tests conducted, the average value of the settlement ratio is

near about 0.62 at « = 0° and decrease to about 0.36 at o = 20°.
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Figure 5.17: Plot of (s,— reinforced)/(s,—central vertical) for cases of eccentrically

inclined loading in dense sand
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Figure 5.18: Plot of (s,— reinforced)/(s,—central vertical) for cases of eccentrically

inclined loading in medium dense sand
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Figures 5.19 and 5.20 show plots of the ultimate bearing capacities—(g,—partially

compensated) with ¢. These figures show that:

e For given values of D¢/B and e/B, the magnitude of (g,— partially compensated)

decreases with the load inclination ¢

e For similar values of & and e/B, the magnitude of (¢,— partially compensated)

shows a tendency to increase with the increase in embedment ratio.

e For a given value of Dy /B and «a, the magnitude of (g,— partially compensated)

decreases with the increase in e/B.
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Figure 5.19: Plot of g, with a for partially compensated case in dense sand
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Figure 5.20: Plot of g, with a for partially compensated case in medium dense sand

Figures 5.21 and 5.22 show plots of the ultimate bearing capacities—(g,—reinforced) with

¢, for similar values of D4/B, e/B (>0) and & (>0). These figures show that:

a. For given values of D¢/B and e/B, the magnitude of (g,—reinforced) decreases with

the load inclinationc.

b. For surface condition, the variation of magnitude of (g,—reinforced) for any value

of e/B and ¢ is in a narrow range.

c. For similar values of & and e/B, the magnitude of (g,—reinforced) shows a

tendency to increase with the increase in embedment ratio.
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Figure 5.21: Plot of g, with a for reinforced case in dense sand
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Figure 5.22: Plot of g, with a for reinforced case in medium dense sand

The photographic images of failure surface developed at ultimate stage for one of the
tests for reinforced condition is shown in Figure 5.23 for dense sand at Dy/B = 1, a=20°
and e/B = 0.15. The failure surface is well developed up to a depth of 2B from the bottom
of the footing in the vertical direction and near about 2.5B in the horizontal direction

from the edge of the footing.
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Figure 5.23: Photographic image of the failure surface observed in dense sand at Dy /B

=1, ®=20° and e¢/B = 0.15 in reinforced condition
5.4 Analysis of Test Results

In Chapter 4, a two-step procedure is adopted to analyse the experimental ultimate
bearing capacities obtained for tests conducted with eccentrically inclined load for the
partially compensated case. According to that analysis, the reduction factor RF may be

expressed as

qu e/B, e " o "
RF = DA |- a(—} (1 - —J (5.3)
4u(D,/B, /B =0, 0/ = 0) B o
where g, D, /B, /B, os/g) = ultimate bearing capacity with eccentricity ratio e/B and inclination

ratio /¢ at an embedment ratio Dy/B and q,(p 5 o5 -0, - 0) = Ultimate bearing capacity

with centric vertical loading (e/B = 0 and o/¢ = 0) at the same embedment ratio Dy/B.
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Similar procedure is adopted in this case to analyse the test results given in Tables 5.4
and 5.5. As a first step, considering the tests with vertical load (a = 0, i.e. o/¢ = 0)
regression analyses are performed which give the values of a and m. These values are
mentioned along with the R values in Table 5.6. The average values of a and m are 2.14
and 0.92 respectively; however, for simplicity and considering the scattering in an
experimental program like this, we can approximate

e a=?2

e m~1

These values are the same as those reported in Chapter 4. Substituting these approximate

values of a and m into Eq. (5.3), we obtain

w1

In the second step, Eq. (5.4) is used to conduct regression analyses for the ultimate
bearing capacities obtained with eccentrically inclined loading (Table 5.4) to determine
the value of n at varying embedment ratios (for o > 0 and e/B > 0). These values are
given in Table 5.6 along with the R? values. It appears that these values of n can be

approximated as
Df
n=15-0.7 — (5.5
B

Table 5.7 also shows the variation of n with embedment ratio calculated from Eq. (5.5).
These values are fairly close to the experimental values, thus it can be concluded that Eq.

(5.5) is a reasonable approximation. Combining Eqgs. (5.4) and (5.5)
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1.5-0.7(D, /B)
RF = {1 - 2(£ﬂ(1 —Ej (5.6)
8)| o

Table 5.4 shows the experimental variation of RF in Column 6, and the RF calculated
based on Eq. (5.6) is shown in Column 7. Column 8 of Table 5.3 shows the deviations of
the reduction factor -calculated using Eq. (5.6) compared to those obtained
experimentally. In most cases the deviation is £10% or less. There are only a few cases
where the deviation is about 15% and about 30% in one case. Hence, Eq. (5.6) can be
used to obtain a reasonable prediction of the reduction factor and, thus, the ultimate

bearing capacity for shallow strip foundation with eccentrically inclined load via Eq.

(5.3).
Table 5.4. Model Test Results
Deviation—
Col.7-Col. 6
Experimental | Experimenta | Calculated Col.7
Sand | Pr | o | € Gu 1 RF
type | B |(deg)| B (kN/m?) RF [Eq. (5.6)] (%)
1) 2 | 3 | & &) (6) () (8)
Dense 0 0 0 166.77 1.0 1.0 0
0 5 0.05 113.8 0.682 0.74 7.76
0 5 0.1 107.91 0.647 0.66 1.59
0 5 0.15 92.21 0.553 0.58 3.89
0 10 | 0.05 88.29 0.529 0.59 10.32
0 10 0.1 85.35 0.512 0.52 2.47
0 10 | 0.15 81.42 0.488 0.46 -6.34
0 15 | 0.05 68.67 0.412 0.45 9.02
0 15 0.1 66.71 0.4 0.4 0.57
0 15 | 0.15 64.75 0.388 0.35 -10.3
0 20 | 0.05 53.96 0.324 0.33 1.24
0 20 0.1 51.99 0.312 0.29 -7.06
0 20 | 0.15 49.05 0.294 0.25 -15.43
0.5 0 0 264.87 1.0 1.0 0
0.5 5 0.05 196.2 0.741 0.77 4.34
0.5 5 0.1 173.64 0.656 0.69 4.76
0.5 5 0.15 152.06 0.574 0.60 4.68
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Table 5.3 (Continued)

Deviation—
Col.7-Col.6
Experimental | Experimenta | Calculated Col.7
Sand | Pr | o | € Gu 1 RF
type | B |(deg)| B (kN/m?) RF [Eq. (5.6)] (%)
) @ | G | @ ) (6) () (8)
0.5 10 | 0.05 166.77 0.630 0.65 3.34
0.5 10 0.1 151.07 0.570 0.58 1.49
0.5 10 | 0.15 132.44 0.5 0.51 1.3
0.5 15 | 0.05 137.34 0.519 0.53 241
0.5 15 0.1 129.49 0.489 0.47 -3.52
0.5 15 | 0.15 112.82 0.426 0.41 -3.07
0.5 20 | 0.05 113.8 0.43 0.41 -3.59
0.5 20 0.1 105.95 0.4 0.37 -8.51
0.5 20 | 0.15 95.16 0.359 0.32 -11.38
1.0 0 0 353.16 1.0 1.0 0
1.0 5 0.05 284.49 0.806 0.81 0.63
1.0 5 0.1 251.14 0.711 0.72 1.31
1.0 5 0.15 228.57 0.647 0.63 -2.65
1.0 10 | 0.05 249.17 0.706 0.72 1.83
1.0 10 0.1 225.63 0.639 0.64 -0.01
1.0 10 | 0.15 203.07 0.575 0.56 -2.86
1.0 15 | 0.05 217.78 0.617 0.62 1.14
1.0 15 0.1 193.26 0.547 0.55 1.3
1.0 15 | 0.15 171.68 0.486 0.49 -0.2
1.0 20 | 0.05 179.52 0.508 0.53 3.18
1.0 20 0.1 156.96 0.444 0.47 4.76
1.0 20 | 0.15 143.23 0.406 0.41 0.68
Mediu 0 0 0 101.04 1.0 1.0 0
m 0 5 0.05 71.61 0.709 0.73 24
dense 0 5 0.1 62.78 0.621 0.65 3.73
0 5 0.15 52.97 0.524 0.56 7.17
0 10 | 0.05 56.9 0.563 0.57 0.37
0 10 0.1 51.99 0.515 0.5 -2.42
0 10 | 0.15 49.05 0.485 0.44 -10.43
0 15 | 0.05 42.58 0.421 0.42 -0.74
0 15 0.1 41.2 0.408 0.37 -9.67
0 15 | 0.15 38.65 0.383 0.33 -17.58
0 20 | 0.05 31.39 0.311 0.29 -8.28
0 20 0.1 30.41 0.301 0.26 -18.01
0 20 | 0.15 29.43 0.291 0.22 -30.52
0.5 0 0 143.23 1.0 1.0 0
0.5 5 0.05 105.95 0.74 0.76 3.11
0.5 5 0.1 94.18 0.658 0.68 3.11
0.5 5 0.15 77.5 0.541 0.59 8.87
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Table 5.3 (Continued)

Deviation—
Col.7-Col.6

Experimental | Experimenta | Calculated Col.7

Sand | Pr | o | € Gu 1 RF

type | B |(deg)| B (kN/m?) RF [Eq. (5.6)] (%)
) @ | G | & ) (6) () (8)
0.5 10 | 0.05 88.29 0.616 0.63 2.15

0.5 10 0.1 77.5 0.541 0.56 3.38

0.5 10 | 0.15 67.69 0.473 0.49 3.55

0.5 15 | 0.05 73.58 0.514 0.5 -2.71

0.5 15 0.1 63.77 0.445 0.44 -0.14

0.5 15 | 0.15 56.9 0.397 0.39 -2.12

0.5 20 | 0.05 58.86 0.411 0.37 -9.7

0.5 20 0.1 53.96 0.377 0.33 -13.13

0.5 20 | 0.15 48.07 0.336 0.29 -15.18

1.0 0 0 208.95 1.0 1.0 0

1.0 5 0.05 170.69 0.817 0.8 -1.78

1.0 5 0.1 156.96 0.751 0.71 -5.29

1.0 5 0.15 144.21 0.69 0.62 -10.55

1.0 10 | 0.05 148.13 0.709 0.7 -0.95

1.0 10 0.1 135.38 0.648 0.62 -3.79

1.0 10 | 0.15 120.66 0.577 0.55 -5.73

1.0 15 | 0.05 124.59 0.596 0.6 0.31

1.0 15 0.1 114.78 0.549 0.53 -3.32

1.0 15 | 0.15 103.01 0.493 0.47 -5.97

1.0 20 | 0.05 99.08 0.474 0.49 3.06

1.0 20 0.1 92.21 0.441 0.43 -1.5

1.0 20 | 0.15 86.33 0.413 0.38 -8.59

Table 5.5. Experimental Ultimate Bearing Capacity for Vertical Loading (o = 0)

Dy e qu

Sand type B B (kN/m?)
0 0.05 | 133.42

0 0.10 | 109.87

0 0.15 86.33

0.5 | 0.05 | 226.61

Dense 0.5 | 0.10 | 195.22
0.5 | 0.15 | 164.81

1.0 | 0.05 | 313.92

1.0 | 0.10 | 278.60

1.0 | 0.15 | 245.26

Medium Dense 0 0.05 84.37
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D e

= £ qu
Sand type B B (kN/m?)
0 0.10 | 68.67
0 0.15 | 54.94
0.5 | 0.05 | 123.61
0.5 | 0.10 | 103.99

0.5 015 ] 8731
1.0 | 0.05 | 193.26
1.0 | 0.10 | 175.60
1.0 | 0.15 | 156.96

Table 5.6. Values of a and m based on Regression Analyses (for o = 0 —Tables 5.1 and
5.2) along with R’ value

D

_r
Sand type B a m R’
0 2.23 | 0.81 | 0.99
Dense 0.5 20 | 088 | 1.0

1.0 1.76 |1 0.92 | 1.0
0 2.59 | 0.91 | 0.99
Medium Dense | 0.5 2.31 | 0.93 | 0.99
1.0 1.97 | 1.09 | 0.99
2.14 | 0.92
~20 | =1

Average

Table 5.7. Values of n Based on Regression Analyses (for a > 0 and e/B = 0) along with

R’ value

D n [from

f
B n | R® | Eq.(5.5)]
0 1.53 | 0.93 1.5

Dense 0.5 1.13 | 0.96 1.15
1.0 | 0.83 | 0.99 0.8

0 1.37 | 0.98 1.5

Medium Dense | 0.5 1.11 | 0.94 1.15

1.0 | 0.75 | 0.96 0.8

Sand type
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5.5 Comparison

5.5.1 Comparison with Loukidis et al. [2008]

Loukidis et al. (2008) developed an equation for combined inclination-eccentricity factor
fie using finite element method for surface foundation (Dy/B = 0) as given by Eq. 4.13 and
4.14 as discussed in Chapter 4. This equation can take the load inclination clockwise as
well as anti-clockwise. A comparison has been made in Chapter 4 for the partially
compensated condition by using angles in anti-clockwise direction. In this chapter the
comparison has been made with results from present analysis with results by using Eqgs.
proposed by Loukidis et al. (2008) in clockwise direction which simulates to the
condition of reinforced footing. It is to be noted that the equations given by Loukidis et
al. (2008) are for surface footings (Dy/B=0) whereas the present prediction is for all depth

of footing (0 < Dy/B<1).
The reduction factor RF corresponding to Loukidis et al. (2008) can be written as

fi

RF =—"*—
cosa

(5.7)

The comparisons have been shown in Figures 5.24 and 5.25. Also the comparisons are
presented in Table 5.8. It appears that the results from both analyses are in good

agreement.
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Figure 5.24: Comparison of Present results with Loukidis et al. (2008) for dense sand.
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Figure 5.25: Comparison of Present results with Loukidis et al. (2008) for medium dense

sand.
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Table 5.8. Comparison of Reduction Factors Obtained from Eq. (5.7) with Eq. (5.6) for

Dy/B=0
Dense
Loukidis et al. sand Medium
Experiment a e (2008) RF [Eq. dense sand
No. (deg) B [Eq. (5.7)] (5.6)] | [Eq. (5.6)]
(D 2 | 3 “4) () (6)
1 5 0.05 0.748 0.74 0.726
2 5 0.1 0.643 0.658 0.645
3 5 0.15 0.517 0.575 0.565
4 10 | 0.05 0.575 0.590 0.565
5 10 0.1 0.533 0.525 0.502
6 10 | 0.15 0.456 0.459 0.44
7 15 0.05 0.406 0.453 0.418
8 15 0.1 0.393 0.402 0.372
9 15 0.15 0.352 0.352 0.325
10 20 | 0.05 0.256 0.328 0.287
11 20 0.1 0.255 0.291 0.255
12 20 | 0.15 0.237 0.255 0.223

5.6 Conclusions

Analysis of a number of laboratory model test results for the ultimate bearing capacity of
shallow strip foundation under eccentrically inclined load is presented. This study relates
to the case of reinforced type of loading [Figure 5.1(b)]. It complements the previous
study as mentioned in Chapter 4 which is for partially compensated type of loading.
Based on this study and the results of the Chapter 4, the following general conclusions
can be drawn.

 Fora=0and0<Dy/B<1,

RF=1—2(£)
B

This is common to reinforced and partially compensated cases.
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For e/B=0,0<D¢/B <1 and a > 0, the reduction factor

2-(D, /B)
RF = (1 —EJ
o

This is common to reinforced and partially compensated cases.

For partially compensated case with e/B > 0

o 2-(D;/B)
e

=l1-2 Z|[1-= 4.7
RF {1 2(3}}(1 qJ [Eqn. 4.7]

For reinforced case with e/B > 0

1.5-0.7(D;/B)
BB
B ¢

For given values of Dy /B and e/B, the magnitude of (g,—reinforced)/(q,—partially
compensated) increases with the load inclination a.

For similar values of &z and e/B, the above ratio shows a tendency to decrease with the
increase in embedment ratio (Dy/B).

For a given value of Dy/B and a, the ratio (g,—reinforced)/(q,—partially compensated)
increases with the increase in e/B.

At ultimate load, the settlement ratio of s, in the reinforced case to s, in the partially

compensated case can be approximated as follows

lata=5°
s, —reinforced o
— partiall ted
s, — partially compensate L4 at 0= 20°

For reinforced case, the comparison of results from present prediction with Loukidis
et al. (2008) is in good agreement for surface condition (Dy/B = 0).
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6. PREDICTION OF ULTIMATE BEARING CAPACITY OF
ECCENTRICALLY INCLINED LOADED STRIP
FOOTING BY ANN: PART I

6.1 Introduction

The computation of ultimate bearing capacity of shallow foundations on granular soil
when subjected to eccentric and inclined load has been explained in Chapter 4 by using
reduction factor method. The analysis gives fairly good prediction as compared to other
existing theories. In this chapter, it is desired to predict the ultimate bearing capacity
under above conditions using neural network model. This model uses a database of large
number of model tests carried out in a calibration tank as discussed in Chapter 4 to
estimate the reduction factor in case when the resultant load (eccentric and inclined) acts
towards the center line of the footing [Figure 6.1]. The concept of Reduction Factor (RF)
re. the ratio of the ultimate bearing capacity of the foundation subjected to an
eccentrically inclined load to the ultimate bearing capacity of the foundation subjected to

a centric vertical load has been adopted.

| - Sand -
D, |

L R
A s o e
o e e o S

——del'-—

st B -—

Rl

Figure 6.1: Partially Compensated Footing (Perloff and Baron 1976)
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6.2 Overview of Artificial Neural Network

6.2.1 Biological model of a neuron

The neuron is the basic unit for processing the signals in the biological nervous system.
Each neuron receives and processes the signals from other neurons through the input
paths called dendrites (Figure 6.2). The dendrites collect the signals and send them to the
cell body, or the soma of the neuron, which sums the incoming signals. If the charge of
the collected signals is strong enough, the neuron is activated and produces an output
signal; otherwise the neuron remains inactive. The output signal is then transmitted to the
neighboring neurons through an output structure called the axon. The axon of a neuron
divides and connects to dendrites of the neighboring neurons through junctions called

synapses.

dendrites

Cell body

Synapse

Figure 6.2: Biological neuron (after Park, 2011)
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6.2.2 The concept of Artificial Neural Network

Artificial neural networks (ANNs) are a form of artificial intelligence, which, in their
architecture, attempt to simulate the biological structure of the human brain and nervous
system (Shahin et al. 2002). Typically, the architecture of ANNs consists of a series of
processing elements (PEs), or nodes, that are usually arranged in layers: an input layer, an
output layer and one or more hidden layers, as shown in Figure 6.3. The determination of
number of hidden layers and the number of neurons in each hidden layer is a significant
task. The number of hidden layers is usually determined first and is a critical step. The
number of hidden layers required generally depends on the complexity of the relationship

between the input parameters and the output value (Park, 2011).

[INPUT LAYER =[] [HIDDEN LAYER =m]  [OUTPUT LAYER = n]
e/B
D;/B RF
/P

) 4

Figure 6.3: The ANN Architecture.

ANNSs learn from data set presented to them and use these data to adjust their weights in
an attempt to capture the relationship between the model input variables and the
corresponding outputs. Consequently, Artificial Neural Networks do not need prior

knowledge regarding the nature of the mathematical relationship between the input and
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output variables. This is one of the main benefits of ANNs over most empirical and

statistical methods (Jaksa et al. 2008).

6.2.3 Application of ANN in Geotechnical Engineering

Based on the literature review it has been reported that ANNs have been applied
successfully to many geotechnical engineering problems such as predicting pile capacity,
shallow foundations, modelling soil behaviour, site characterisation, earth retaining
structures, settlement of structures, slope stability, design of tunnels and underground
openings, liquefaction, soil permeability and hydraulic conductivity, soil compaction, soil
swelling and classification of soils. A comprehensive review report on the applications of

ANNs in geotechnical engineering is presented by Shahin et al. (2008) and Park (2011).

6.3 Problem Definition

Extensive laboratory model tests have been conducted on a strip footing lying over sand
bed subjected to an eccentrically inclined load (the line of load application is towards the
center line of the footing as shown in Figure 6.1) to determine the ultimate bearing
capacity. Based on the laboratory test results, a neural network model is developed to
predict the ultimate bearing capacity of the footing. The ultimate bearing capacity of
footing at any depth of embedment subjected to eccentric and inclined load can be
determined by knowing the ultimate bearing capacity of footing subjected to centric and
vertical load at that depth of embedment and the corresponding reduction factor. This
reduction factor (RF) is the ratio of the ultimate bearing capacity of the foundation
subjected to an eccentrically inclined load to the ultimate bearing capacity of the

foundation subjected to a centric vertical load at the same depth of embedment. Different
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sensitivity analysis is carried out to evaluate the parameters affecting the reduction factor.
Emphasis is placed on the construction of neural interpretation diagram, based on the
weights of the developed neural network model, to find out direct or inverse effect of
input parameters on the output. A prediction model equation is established with the
weights of the neural network as the model parameters. Finally, the predictions from
ANN, and those from developed empirical equation in Chapter 4, are compared with the

existing theories.

6.4 Database and Preprocessing

The extensive database of laboratory experimental data as presented in Chapter 4 has
been considered for the analysis in this chapter. The laboratory test data consist of
parameters like load eccentricity (e), load inclination (a), embedment ratio (D /B),
friction angle (¢) and ultimate bearing capacity (g,). One hundred and twenty numbers of
laboratory model tests results as conducted in this series have been considered for
analysis. In this ANN model, the three dimensionless input parameters are e/B, o/¢ and Dy

/B, and the output is the reduction factor (RF). The reduction factor (RF) is given by

RE = 94D, 1B,e/B,al9)

(6.1)

9u(D, I1B,e/B=0,0/9=0)

where Qu(p, 1B.e1B.alo) = ultimate bearing capacity with eccentricity ratio e/B and
inclination ratio ¢/¢ at an embedment ratio Dy /B and g, ;g c/p=0,as9=0)= Ultimate

bearing capacity with centric vertical loading (i.e., ¢/B = 0 and &/¢ = 0) at the same

embedment ratio Dy/B.
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Out of 120 test records shown in Table 6.1, 90 tests are considered for training and the
remaining 30 are reserved for testing. Each record represents a complete model test
where an eccentrically inclined loaded strip footing is subjected to failure. All the
variables (i.e. inputs and output) are normalized in the range [-1, 1] before training. A
feedforward backpropagation neural network is used with hyperbolic tangent sigmoid
function and linear function as the transfer function. The backpropagation algorithm
trains the network by iteratively adjusting all the connection weights among neurons,
with the goal of finding a set of connection weights that minimizes the error of the
network, i.e. sum-of-the-squares between the actual and predicted output (least squares
error function, Olden 2000). A feedforward neural network has one-way connections to
other units so that each unit can only be connected to units in later layers. Inputs are
passed from layer to layer in a feed-forward manner. In the model, each input unit is
connected to each hidden unit and then each hidden unit is connected to each output unit
(Ozesmi and Ozesmi 1999). The network is trained (learning) with Levenberg—Marquardt
(LM) algorithm as it is efficient in comparison to gradient descent backpropagation
algorithm (Goh et al. 2005; Das and Basudhar 2006). The ANN has been implemented

using MATLAB V 7.11.0 (R2010b).

132



Table 6.1. Dataset used for training and testing of ANN model [Chapter 4]

Experimental | Experimental | Calculated
Data e Dy o Gu RF RF
Type | Expt. No. B B ¢ (KN/m?) [Eq. (6.1)] | [Eq. (6.17)]
€)) (2) 3) (€)) ®) (6) @) ®)
Training 1 0.05 0 0 133.42 0.800 0.900
2 0.1 0 0 109.87 0.659 0.800
3 0.15 0 0 86.33 0.518 0.700
4 0 0 0.123 128.51 0.771 0.770
5 0.05 0 0.123 103.01 0.618 0.693
6 0.1 0 0.123 86.33 0.518 0.616
7 0 0 0.245 96.14 0.576 0.570
8 0.05 0 0.245 76.52 0.459 0.513
9 0.15 0 0.245 51.99 0.312 0.399
10 0 0 0.368 66.71 0.400 0.400
11 0.1 0 0.368 44.15 0.265 0.320
12 0.15 0 0.368 35.12 0.211 0.280
13 0.05 0 0.49 34.83 0.209 0.234
14 0.1 0 0.49 29.43 0.176 0.208
15 0.15 0 0.49 23.54 0.141 0.182
16 0 0.5 0 264.87 1.000 1.000
17 0.05 0.5 0 226.61 0.856 0.900
18 0.1 0.5 0 195.22 0.737 0.800
19 0 0.5 0.123 223.67 0.844 0.822
20 0.05 0.5 0.123 193.26 0.730 0.740
21 0.15 0.5 0.123 140.28 0.530 0.575
22 0 0.5 0.245 186.39 0.704 0.656
23 0.1 0.5 0.245 137.34 0.519 0.525
24 0.15 0.5 0.245 116.74 0.441 0.459
25 0.05 0.5 0.368 129.49 0.489 0.453
26 0.1 0.5 0.368 111.83 0.422 0.402
27 0.15 0.5 0.368 94.18 0.356 0.352
28 0 0.5 0.49 115.76 0.437 0.364
29 0.05 0.5 0.49 98.10 0.370 0.328
30 0.15 0.5 0.49 72.59 0.274 0.255
31 0 1 0 353.16 1.000 1.000
32 0.1 1 0 278.60 0.789 0.800
33 0.15 1 0 24525 0.694 0.700
34 0.05 1 0.123 277.62 0.786 0.790
35 0.1 1 0.123 24133 0.683 0.702
36 0.15 1 0.123 215.82 0.611 0.614
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Table 6.1 (continued)

Experimental | Experimental | Calculated
Data e Dy o Gu RF RF
Type | Expt. No. B B ¢ (kN/m?) [Eq. (6.1)] | [Eq. (6.17)]
1) (2) 3) “) ) (6) () (8)
37 0 1 0.245 264.87 0.750 0.755
38 0.05 1 0.245 239.36 0.678 0.679
39 0.1 1 0.245 212.88 0.603 0.604
40 0 1 0.368 225.63 0.639 0.632
41 0.1 1 0.368 179.52 0.508 0.506
42 0.15 1 0.368 155.98 0.442 0.443
43 0.05 1 0.49 166.77 0.472 0.459
44 0.1 1 0.49 143.23 0.406 0.408
45 0.15 1 0.49 126.55 0.358 0.357
46 0 0 0 101.04 1.000 1.000
47 0.05 0 0 84.37 0.835 0.900
48 0.15 0 0 54.94 0.544 0.700
49 0 0 0.133 79.46 0.786 0.751
50 0.1 0 0.133 52.97 0.524 0.601
51 0.15 0 0.133 42.18 0.417 0.526
52 0.05 0 0.267 47.09 0.466 0.484
53 0.1 0 0.267 38.46 0.381 0.430
54 0.15 0 0.267 31.39 0.311 0.376
55 0 0 0.4 38.26 0.379 0.360
56 0.05 0 0.4 32.37 0.320 0.324
57 0.1 0 0.4 26.98 0.267 0.288
58 0 0 0.533 24.03 0.238 0.218
59 0.05 0 0.533 19.62 0.194 0.196
60 0.15 0 0.533 13.34 0.132 0.152
61 0 0.5 0 143.23 1.000 1.000
62 0.1 0.5 0 103.99 0.726 0.800
63 0.15 0.5 0 87.31 0.610 0.700
64 0.05 0.5 0.133 103.99 0.726 0.726
65 0.1 0.5 0.133 90.25 0.630 0.645
66 0.15 0.5 0.133 72.59 0.507 0.565
67 0 0.5 0.267 98.10 0.685 0.628
68 0.05 0.5 0.267 84.86 0.592 0.565
69 0.1 0.5 0.267 72.59 0.507 0.502
70 0 0.5 0.4 79.46 0.555 0.465
71 0.05 0.5 0.4 67.89 0.474 0.418
72 0.15 0.5 0.4 48.07 0.336 0.325
73 0 0.5 0.533 58.27 0.407 0.319
74 0.1 0.5 0.533 43.16 0.301 0.255
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Table 6.1 (continued)

Experimental | Experimental | Calculated
Data e Dy o Gu RF RF
Type | Expt. No. B B ¢ (kN/m?) [Eq. (6.1)] | [Eq. (6.17)]
1) (2) 3) “) ) (6) () (8)
75 0.15 0.5 0.533 36.30 0.253 0.223
76 0.05 1 0 193.26 0.925 0.900
77 0.1 1 0 175.60 0.840 0.800
78 0.15 1 0 156.96 0.751 0.700
79 0 1 0.133 186.39 0.892 0.867
80 0.05 1 0.133 168.73 0.808 0.780
81 0.1 1 0.133 153.04 0.732 0.693
82 0 1 0.267 160.88 0.770 0.733
83 0.05 1 0.267 144.21 0.690 0.660
84 0.15 1 0.267 112.82 0.540 0.513
85 0 1 0.4 133.42 0.638 0.600
86 0.1 1 0.4 106.93 0.512 0.480
87 0.15 1 0.4 94.18 0.451 0.420
88 0.05 1 0.533 92.21 0.441 0.420
89 0.1 1 0.533 84.37 0.404 0.373
90 0.15 1 0.533 75.54 0.362 0.327
Testing 1 0 0 0 166.77 1.0 1.000
2 0.15 0 0.123 65.73 0.394 0.539
3 0.1 0 0.245 62.78 0.376 0.456
4 0.05 0 0.368 53.96 0.324 0.360
5 0 0 0.490 43.16 0.259 0.260
6 0.15 0.5 0 164.81 0.622 0.700
7 0.1 0.5 0.123 165.79 0.626 0.658
8 0.05 0.5 0.245 160.88 0.607 0.590
9 0 0.5 0.368 151.07 0.570 0.503
10 0.1 0.5 0.490 85.35 0.322 0.291
11 0.05 1 0 313.92 0.889 0.900
12 0 1 0.123 313.92 0.889 0.877
13 0.15 1 0.245 188.35 0.533 0.528
14 0.05 1 0.368 206.01 0.583 0.569
15 0 1 0.49 183.45 0.519 0.510
16 0.1 0 0 68.67 0.680 0.800
17 0.05 0 0.133 63.77 0.631 0.676
18 0 0 0.267 55.92 0.553 0.538
19 0.15 0 0.4 20.60 0.204 0.252
20 0.1 0 0.533 16.68 0.165 0.174
21 0.05 0.5 0 123.61 0.863 0.900
22 0 0.5 0.133 120.66 0.842 0.807
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Table 6.1 (continued)

Experimental | Experimental | Calculated
Data e D, o Gu RF RF
Type | Expt. No. B B ¢ (kN/m?) [Eq. (6.1)] | [Eq. (6.17)]
€] 2 3) €] ®) (6) @) ®)
23 0.15 0.5 0.267 60.82 0.425 0.440
24 0.1 0.5 0.4 56.90 0.397 0.372
25 0.05 0.5 0.533 50.03 0.349 0.287
26 0 1 0 208.95 1.000 1.000
27 0.15 1 0.133 137.34 0.657 0.607
28 0.1 1 0.267 129.49 0.620 0.587
29 0.05 1 0.4 118.70 0.568 0.540
30 0 1 0.533 98.10 0.469 0.467

6.5 Results and Discussion

The maximum, minimum, average and standard deviation values of the three input and

one output parameters used in the ANN model are presented in Table 6.2. The schematic

diagram of ANN architecture is shown in Figure 6.3. The number of hidden layer neurons

is varied and the mean square error (mse) is noted. The minimum mse is found to be

0.001 when there are three neurons in the hidden layer [Figure 6.4]. Therefore, the final

ANN architecture is retained as 3-3-1 [i.e. 3 (input) — 3 (hidden layer neuron) — 1

(Output)]. Mean Square Error (MSE) is defined as

Z": (RF,—RF, )

MSE=""

n

Coefficient of Efficiency, R’ is expressed as

where

_ El _Ez
E,

R2

2

(rF,~RF)

E =

i=1
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and

n 2

E,=) (RF,-RF)) (6.3b)
i=1

where RF[,ﬁ, and RF  are the experimental, average experimental and predicted RF

value respectively and n = number of training data.

Table 6.2. Statistical values of the parameters

Maximum Minimum
Parameter value value Average value | Standard Deviation
e/B 0.15 0 0.075 0.056
Dy/B 1 0 0.5 0.408
o/ 0.533 0 0.256 0.181
RF 1.0 0.132 0.555 0.217
10 : . . .
sl -
6 -
2t -
N
0 ! ! ! !

No. of hidden layer neuron

Figure 6.4: Variation of hidden layer neurons with mean square error (mse)

The coefficient of efficiency (R?) for training and testing data are found to be 0.995 and
0.993, respectively, as shown in Figures 6.5 and 6.6. Data used in this analysis have been

obtained from laboratory model tests carried out in duplicate, in a calibration chamber,
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the details of which are given in Chapter 3 and 4. All the data used in the training and the
testing are from the same source and are of same nature. Probably, this may be one of the
causes for better fitting in both testing and training phase as well. The weights and biases
of the network are presented in Table 6.3. These weights and biases can be utilized for
interpretation of relationship between the inputs and output, sensitivity analysis and
framing an ANN model in the form of an equation. The residual analysis is carried out by
calculating the residuals from the experimental reduction factor and predicted reduction
factor for training data set. Residual (e,) can be defined as the difference between the

experimental and predicted RF value and is given by

e, =RF,—RF, (6.4)
The residuals are plotted with the experiment number as shown in Figure 6.7. It is
observed that the residuals are distributed evenly along the center line of the plot.
Therefore, it can be said that the network is well trained and can be used for prediction
with reasonable accuracy.

Table 6.3. Values of connection weights and biases

Weight
Bias

Neuron Wik Wk

e/B D;/B /9 RF b bo

Hidden Neuron 1 (k=1) | -0.0523 0.6833 -0.5784 9.3907 -0.0116

Hidden Neuron 2 (k=2) | 0.0401 -0.7286 0.6003 8.5052 0.0298 | 1.0177

Hidden Neuron 3 (k=3) | 0.3693 0.0724 0.4722 -1.4541 1.2362
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Figure 6.5: Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for training data.
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Figure 6.6: Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for testing data.
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Figure 6.7: Residual distribution of training data

6.5.1 Sensitivity Analysis
Sensitivity analysis is carried out for selection of important input variables. Different

approaches have been suggested to select the important input variables. The Pearson
correlation coefficient is defined as one of the variable ranking criteria in selecting proper
inputs for the ANN (Guyon and Elisseeff 2003; Wilby et al. 2003). Goh (1994) and
Shahin et al. (2002) have used Garson’s algorithm (Garson 1991) in which the input-
hidden and hidden-output weights of trained ANN model are partitioned and the absolute
values of the weights are taken to select the important input variables. It does not provide
information on the effect of input variables in terms of direct or inverse relation to the
output. Olden et al. (2004) proposed a connection weight approach based on the NID, in
which the actual values of input-hidden and hidden-output weights are taken. It sums the
products across all the hidden neurons, which is defined as S;. The relative inputs are

corresponding to absolute S; values, where the most important input corresponds to

140



highest S; value. The details of connection weight approach are presented in Olden et al.
(2004).

Table 6.4 shows the cross correlation of inputs with the reduction factor. From the table it
is observed that RF is highly correlated to /¢ with a cross correlation values of 0.79,
followed by e/B and Dy/B. The relative importance of the three input parameters as per
Garson’s algorithm is presented in Table 6.5. The o/¢ is found to be the most important
input parameter with the relative importance value being 46.5% followed by 37.7% for
Dy /B and 15.8% for e/B. The relative importance of the present input variables, as
calculated following the connection weight approach (Olden et al. 2004) is also presented
in Table 6.5. /¢ is found to be the most important input parameter (S; value = -1.012)
followed by e/B (S; value = -0.687) and Dy /B (S; value = 0.115). The S§; values being
negative imply that both o/¢ and e/B are indirectly related and Dy /B is directly related to
RF values. In other words, increasing a/¢ or e/B will lead to a reduction in the RF and
hence leads to lower ultimate bearing capacity. Increasing Dy /B increases the RF, and
hence increases the bearing capacity.

Table 6.4. Cross-correlation of the input and output for the reduction factor

Parameters e/B Dy/B o/ RF
e/B 1 0 0 -0.44
Dy /B 1 0 0.37
/¢ 1 -0.79
RF 1
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Table 6.5. Relative Importance of different inputs as per Garson’s algorithm and

connection weight approach

Parameters Garson’s algorithm Connection weight approach
Ranking of
Ranking of inputs Si values as per inputs as per
Relative as per relative Connection weight relative
Importance (%) importance approach importance
(1) () 3) “4) (5)
e/B 15.8 3 -0.687 2
Dy/B 37.7 2 0.115 3
/P 46.5 1 -1.012 1

6.5.2 Neural Interpretation Diagram (NID)

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram (NID) for visual
interpretation of the connection weight among the neurons. For the present study with the
weights as obtained and shown in Table 6.3, a Neural Interpretation Diagram is presented
in Figure 6.8. The lines joining the input-hidden and hidden-output neurons represent the
weights. The positive weights are represented by solid lines and negative weights by
dashed lines and the thickness of the line is proportional to its magnitude. The
relationship between the input and output is determined in two steps. Direct
proportionality of the input variables is depicted by positive input-hidden and positive
hidden-output weights, or negative input-hidden and negative hidden-output weights. The
positive input-hidden and negative hidden-output; negative input-hidden and positive
hidden-output weight indicates the inverse proportionality of the input variables.
Therefore, the multiplication of actual weights of input-hidden and hidden-output rather

than multiplication of absolute weights indicate the effect of that input variable on the
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output. The input directly related to the output is represented with a grey circle and that

having inverse effect with blank circle.

It is seen from Table 6.5 (4th Column) that §; values for parameters (e/B) and (/@) are
negative indicating that both the parameters (e¢/B) and (a/¢) are inversely related to
whereas S; value for parameter (Dy/B) being positive is directly related to RF values. This

is shown in Figure 6.8. Therefore, the developed ANN model is not a “black box” and

could explain the physical effect of the input parameters on the output.

e/B

Dy /B

o/p

Figure 6.8: Neural Interpretation Diagram (NID) showing lines representing connection

weights and effects of inputs on Reduction Factor (RF)

6.5.3 ANN model equation for the Reduction Factor based on trained neural
network
A model equation is developed with the weights obtained from trained neural network as

the model parameters (Goh et al. 2005). The mathematical equation relating input

parameters (e/B, Dy/B, and /¢ ) to output (Reduction Factor) can be given by
h m
RFn :fn b0+z kan bhk +ZwikXi (65)
k=1 i=
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where RF, = normalized value of RF in the range [-1, 1], f, = transfer function, # = no. of
neurons in the hidden layer, X; = normalized value of inputs in the range [-1, 1], m = no.
of input variables, wjy = connection weight between i" layer of input and k" neuron of
hidden layer, wy = connection weight between k™ neuron of hidden layer and single
output neuron, by, = bias at the k" neuron of hidden layer, and b, = bias at the output
layer.

The model equation for Reduction Factor of shallow strip foundations subjected to
eccentrically inclined load is formulated using the values of the weights and biases shown
in Table 6.3 as per the following steps.

Step—1

The input parameters are normalized in the range [-1, 1] by the following expressions

X, zz(ﬂj_l (6.6)
Xmax _Xmin

where, X,, = Normalized value of input parameter X;, and X, and X,,;, are maximum and

minimum values of the input parameter X; in the data set.

Step—2

Calculate the normalized value of reduction factor (RF,) using the following expressions

e Df a
A =-0.0523 — | +0.6833 — | —0.5784 —| —0.0116 (6.7)
B) B ) 0)

D
A, =0.0401(5) ~0.7286 =L | +0.6003 £ | +0.0298 (6.8)
B) B ) ¢ )
D
A, =O.3693(%j +0.0724(?fJ +0.4722(%j +1.2362 (6.9)
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B,=9.3907| £—°—
e'+e ™
€A2—€_A2

B,=8.5052 "

C,=1.0177+B,+ B, + B,

RF,=C,

Step—3

Denormalize the RF, value obtained from Eq. (6.14) to actual RF as

RF =0.5(RF,+1)RF,, —RF, )+RF,,

RF=0.5(RF, +)(1-0.132)+0.132

6.6 Comparison

6.6.1 Comparison with Developed Empirical Equation

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

An empirical equation for ultimate bearing capacity is developed based on laboratory

model tests data for prediction of reduction factor (RF) as discussed in Chapter 4, which

can be expressed as

s
RE = 9.(p,/B.e1B,aly) :{1_z[ﬁﬂ{l_(zj}[
9.(p; 1B,e1B=0,a1¢=0) B ¢
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The results for reduction factor (RF) obtained from developed ANN equation (Eq. 6.15)
are compared with those obtained by use of empirical equation (Eq. 6.17). The
comparison is shown in Figures 6.9 and 6.10. It is seen that ANN results are closer to

experimental values than those from developed empirical equation [Eq. (6.17)].
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Figure 6.9: Comparison of ANN results with Experimental RF' and Eq. 6.17 for
training data

12 T T T T T
ANN[Eq. (6.15)] Testing Data
o Developed Eqn [Eg. (6.17)]
10F R
- [m)
3
% 08 al o 4
& g \
g 06 ? Line of Equality 7
3 o
a0 a
=] a
S o4} -
Q a
% oo
& 0
02 i
00 1 1 1 1 1
00 02 04 06 08 10 12

Reduction Factor - Experiment

Figure 6.10: Comparison of ANN results with Experimental RF and Eq. 6.17 for
testing data
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6.6.2 Comparison with Meyerhof [1963]
As discussed in section 4.5.1 of Chapter 4, the reduction factor (RF) corresponding to

Meyerhof (1963) can be written as

q,xXB [ 1 j
B cosx
RF

9u(erB=0,a/9=0.D, /B) (6.18)
Qulern.a '
_ (e/B,a1$,D; /B) SCCCZ(EJ
4.(ec1B=0,019=0,D, /B) B

The values so found by using Eq. (6.18) are compared with the reduction factor as given

by Egs. 6.1 and 6.15. This is presented in Figure 6.11. Reasonably good agreements are

found.
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Figure 6.11: Comparison of Present results with Meyerhof (1963)
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6.6.3 Comparison with Saran and Agarwal [1991]
The digitized values of N, and N, (e/B=0, 0.1, oc:OO, 10° and 200) for medium dense sand

(0= 37.5% are calculated from the graph originally given by Saran and Agarwal (1991)
as discussed in section 2.2.4 and 4.5.2. Using Eqgs. (2.36) and (6.1) the reduction factor
(RF) corresponding to Saran and Agarwal (1991) is calculated and compared with
Predicted and Experimental RF and shown in Figure 6.12. The RF values obtained from
Saran and Agarwal (1991) are away from the line of equality as compared to present

experimental and predicted results.
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Figure 6.12: Comparison of Present results with Saran and Agarwal (1991) for

medium dense sand
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6.6.4 Comparison with Loukidis et al. [2008]

As mentioned in section 4.5.3, the reduction factor RF corresponding to Loukidis et al.

(2008) can be written as

RrE=_Jie (6.19)
cosax

The reduction factors computed using Eq. (6.19) are compared with those obtained from
Eqgs. (6.15) and (6.1) which are shown in Figures 6.13 and 6.14. It is seen that the values
(RF) predicted by ANN, developed empirical equation and Loukidis et al. (2008) are in
good agreement with experimental values. The values obtained by ANN and Loukidis et
al. (2008) are very close to experimental values. However, this is to be mentioned that

Loukidis et al. (2008) give the values for surface footing only.
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Figure 6.13: Comparison of ANN results with Loukidis et al. (2008) and developed
equation [Eq. (6.17)] for dense sand.
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Figure 6.14: Comparison of ANN results with Loukidis et al. (2008) and developed

equation [Eq. (6.17)] for medium dense sand.

6.7 Conclusions

Based on developed neural network model, the following conclusions are drawn:

e As per residual analysis, the errors are distributed evenly along the center line. It
can be concluded that the network is well trained and can predict the result with
reasonable accuracy.

e Based on Pearson correlation coefficient, it is observed that o/¢ is the most
important input parameter followed by e¢/B and D;/B.

e As per Garson’s algorithm, o/¢ is found to be the most important input parameter
followed by Dy/B and e/B.

¢ Connection weight approach gives similar results as found in Pearson correlation

coefficient

150



Sensitivity analysis using Connection weight approach is able to explore the
inputs-output relationship as it considers the actual value of trained weights.

The developed ANN model has explained the physical effect of inputs on the
output, as depicted in NID. It is observed that e/B and /¢ are inversely related to
RF values whereas D;/B is directly related to RF.

A model equation is developed based on the trained weights of the ANN.

The predictability of ANN model is found to be slightly better than the developed

empirical equation, Meyerhof (1963) and Loukidis et al. (2008).
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7.PREDICTION OF ULTIMATE BEARING CAPACITY OF
ECCENTRICALLY INCLINED LOADED STRIP
FOOTING BY ANN: PART II

7.1 Introduction

When a shallow strip footing is subjected to eccentric and inclined load, there may be two
possible modes of load applications as shown in Figure 7.1. In this figure, B is the width
of the footing, e is the load eccentricity, a is the load inclination, and Q, is the ultimate
load per unit length of the footing. As discussed in Chapter 5, when the line of load
application of the footing is inclined towards the center line of the footing (Figure 7.1 a)
is referred as partially compensated (Perloff and Baron 1976). However, there may be
another mode of application where the line of load application on the footing is inclined
away from the center line as shown in Figure 7.1(b). Perloff and Baron (1976) called this

type of loading as reinforced case.

In this chapter a neural network model has been developed to predict the ultimate bearing

capacity when the line of load application is away from the center line of the footing.

| |
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I - |
P - Sind o |
| Sand” |
|
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/’//’//’ i e W
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—ng-— R R m—
I |
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Figure 7.1: Eccentrically inclined load on a strip foundation: (a) Partially compensated

case, (b) Reinforced case
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7.2 Problem Definition

The results of laboratory model tests conducted on a strip footing resting over dry sand
bed subjected to load arrangement as per Figure 7.1 (b) has been used for determining the
ultimate bearing capacity. The details of load tests have been described in Chapter 5. The
ultimate bearing capacity of the eccentrically inclined loaded strip foundation at any
depth of embedment will be equal to the reduction factor multiplied by the ultimate
bearing capacity of strip footing under centric and vertical load at the same depth of
embedment. From the laboratory test results, a neural network model is developed to
predict the reduction factor to compute the ultimate bearing capacity of an eccentrically
inclined loaded strip footing as shown in Figure 7.1 (b). This reduction factor (RF) is the
ratio of the ultimate bearing capacity of the footing subjected to an eccentrically inclined
load to the ultimate bearing capacity of the footing subjected to a centric vertical load. A
thorough sensitivity analysis is carried out to evaluate the parameters affecting the
reduction factor. Based on the weights of the developed neural network model, a neural
interpretation diagram is developed to find out whether the input parameters have direct
or inverse effect on the output. A prediction model equation is established with the
weights of the neural network as the model parameters. The results are compared with the
values based on developed empirical equation as in Chapter 5. Also the results have been
compared with those obtained by Loukidis et al. (2008) by using finite element methods

for the case of surface footings.
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7.3 Database and Preprocessing

The database available in Chapter 5 has been used in the present study. The data consists
of parameters like load eccentricity (e), load inclination (a), embedment ratio (Dy /B),
friction angle (¢) and ultimate bearing capacity (g,). Seventy eight number of laboratory
model tests are carried out. The input parameters for the ANN model are ¢/B, a/¢ and Dy

/B and the output is the reduction factor (RF). The reduction factor (RF) is given by

RF = qu(D, 1B,e/B,ald)

(7.1)

4u(D, 1B, e/B=0,0/9=0)

where, Qu(p, 1B.e1B.alo) = ultimate bearing capacity with eccentricity ratio e/B and
inclination ratio &/¢ at an embedment ratio Dy /B and Qu(D, /Bl B=0,0/0=0)= ultimate

bearing capacity with centric vertical loading (e/B = 0 and /¢ = 0) at the same

embedment ratio Dy/B.

Out of 78 test records shown in Table 7.1, 59 tests are considered for training and the
remaining 19 are reserved for testing. Each record represents a complete model test
where an eccentrically inclined loaded strip footing is subjected to failure. Similar type of

preprocessing is adopted here as mentioned in section 6.4.

7.4 Results and Discussion

The maximum, minimum, average and standard deviation values of the three input and
one output parameters are presented in Table 7.2. They are computed from the database.
The schematic diagram of ANN architecture is shown [Figure 7.2]. The number of

hidden layer neurons is varied with mean square error (mse). The minimum mse is found
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to be 0.001 for four neurons in the hidden layer [Figure 7.3]. Therefore, the final ANN

architecture used in this study will be 3-4-1 [i.e. 3 (input) — 4 (hidden layer neuron) — 1
(Output)] as shown in Figure 7.4.

[INPUT LAYER =[] [HIDDEN LAYER =m]  [OUTPUT LAYER = ]

e/B

Dy/B

RF
P

Figure 7.2: The ANN Architecture

3

mse x 10
B
T

No. of hidden neuron

Figure 7.3: Variation of hidden layer neuron with mean square error (mse).
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e/B

D¢/B

o/o

Figure 7.4 NID showing lines of connection weights and effects of inputs on RF

Table 7.1. Dataset used for training and testing of ANN model [Chapter 6]

Experimental | Experimental | Calculated
Data |Expt| ¢ | Dr o Gu RF RF
Type | No. B B ¢ (kN/m?) [Eq. (7.1)] | [Eq. (7.17)]
€)) (2) 3) €] ®) (6) @) ®)
Training 1 0.05 0 0.123 113.80 0.682 0.740
2 0.1 0 0.123 107.91 0.647 0.658
3 0.05 0 0.245 88.29 0.529 0.590
4 0.1 0 0.245 85.35 0.512 0.525
5 0.15 0 0.245 81.42 0.488 0.459
6 0.05 0 0.368 68.67 0.412 0.453
7 0.15 0 0.368 64.75 0.388 0.352
8 0.1 0 0.490 51.99 0.312 0.291
9 0.15 0 0.490 49.05 0.294 0.255
10 0 0.5 | 0.000 264.87 1.000 1.000
11 | 005 | 05 | 0123 196.20 0.741 0.774
12 0.1 0.5 | 0.123 173.64 0.656 0.688
13| 015 | 05 | 0.123 152.06 0.574 0.602
14 | 005 | 05 | 0245 166.77 0.630 0.651
15 0.1 0.5 | 0245 151.07 0.570 0.579
16 | 005 | 05 | 0.368 137.34 0.519 0.531
17 | 015 | 05 | 0368 112.82 0.426 0.413
18 0.1 0.5 | 0.490 105.95 0.400 0.369
19 | 015 | 05 | 0.490 95.16 0.359 0.323
20 0 1 0.000 353.16 1.000 1.000
21 | 005 1 0.123 284.49 0.806 0.811
22 0.1 1 0.123 251.14 0.711 0.721
23 | 0.05 1 0.245 249.17 0.706 0.719
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Table 7.1 (continued)

Experimental | Experimental | Calculated
Data |Expt| ¢ | Dr o Gu RF RF
Type | No. B B ¢ (kN/m?) [Eq. (7.1)] | [Eq. (7.17)]
€)) (2) 3) (€)) ®) (6) @) ®)
24 | 015 1 0.245 203.07 0.575 0.559
25 | 0.05 1 0.368 217.78 0.617 0.624
26 0.1 1 0.368 193.26 0.547 0.554
27 | 015 1 0.368 171.68 0.486 0.485
28 0.1 1 0.490 156.96 0.444 0.467
29 | 015 1 0.490 143.23 0.406 0.408
30 0 0 0.000 101.04 1.000 1.000
31 0.1 0 0.133 62.78 0.621 0.645
32 | 015 0 0.133 52.97 0.524 0.565
33 | 005 0 0.267 56.90 0.563 0.565
34 0.1 0 0.267 51.99 0.515 0.502
35 | 005 0 0.400 42.58 0.421 0.418
36 | 0.5 0 0.400 38.65 0.383 0.325
37 | 0.05 0 0.533 31.39 0.311 0.287
38 0.1 0 0.533 30.41 0.301 0.255
39 | 015 0 0.533 29.43 0.291 0.223
40 0 0.5 | 0.000 143.23 1.000 1.000
41 | 005 | 05 | 0.133 105.95 0.740 0.763
42 0.1 0.5 | 0.133 94.18 0.658 0.679
43 | 015 | 05 | 0133 77.50 0.541 0.594
44 0.1 0.5 | 0267 77.50 0.541 0.560
45 | 015 | 05 | 0267 67.69 0.473 0.490
46 | 005 | 05 | 0400 73.58 0.514 0.500
47 0.1 0.5 | 0.400 63.77 0.445 0.445
48 | 005 | 05 | 0533 58.86 0.411 0.375
49 | 015 | 05 | 0533 48.07 0.336 0.291
50 0 1 0.000 208.95 1.000 1.000
51 0.1 1 0.133 156.96 0.751 0.713
52 | 015 1 0.133 14421 0.690 0.624
53 | 005 1 0.267 148.13 0.709 0.702
54 0.1 1 0.267 135.38 0.648 0.624
55 | 0.05 1 0.400 124.59 0.596 0.598
56 0.1 1 0.400 11478 0.549 0.532
57 | 015 1 0.400 103.01 0.493 0.465
58 | 0.05 1 0.533 99.08 0.474 0.489
59 | 0.5 1 0.533 86.33 0.413 0.380
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Table 7.1 (continued)

Experimental | Experimental | Calculated
Data |Expt| ¢ | Dr o Gu RF RF
Type | No. B B ¢ (kN/m?) [Eq. (7.1)] | [Eq. (7.17)]
1) (2) 3) “) ) (6) () (8)
Testing 1 0 0 0.000 166.77 1.000 1.000
2 0.15 0 0.123 92.21 0.553 0.575
3 0.1 0 0.368 66.71 0.400 0.402
4 0.05 0 0.490 53.96 0.324 0.328
5 0.15 0.5 0.245 132.44 0.500 0.507
6 0.1 0.5 0.368 129.49 0.489 0.472
7 0.05 0.5 0.490 113.80 0.430 0.415
8 0.15 1 0.123 228.57 0.647 0.630
9 0.1 1 0.245 225.63 0.639 0.639
10 0.05 1 0.490 179.52 0.508 0.525
11 0.05 0 0.133 71.61 0.709 0.726
12 0.15 0 0.267 49.05 0.485 0.440
13 0.1 0 0.400 41.20 0.408 0.372
14 0.05 0.5 0.267 88.29 0.616 0.630
15 0.15 0.5 0.400 56.90 0.397 0.389
16 0.1 0.5 0.533 53.96 0.377 0.333
17 0.05 0.133 170.69 0.817 0.803
18 0.15 0.267 120.66 0.577 0.546
19 0.1 0.533 92.21 0.441 0.435
Table 7.2. Statistical values of the parameters
Parameter | Maximum value Minimum value | Average value | Standard Deviation
e/B 0.15 0 0.092 0.047
Dy/B 1 0 0.5 0.408
o/ 0.533 0 0.295 0.162
RF 1 0.291 0.56 0.179

The coefficient of efficiency (R?) for the training and testing data are found to be 0.994

and 0.988, respectively [Figures 7.5 & 7.6]. Data used in this analysis have been obtained

from laboratory model tests carried out in duplicate, in a calibration chamber, the details

of which are given in Chapter 3 and 5. All the data used in the training and the testing are
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from the same source and are of same nature. Probably, this may be one of the causes for
better fitting in both testing and training phase as well. The weights and biases of the
network are presented in Table 7.3. The weights and biases can be utilized for
interpretation of the relationships between the inputs and output, to carry out a sensitivity
analysis, and for framing an ANN model in the form of an equation that can be used for
predicting RF. The residual analysis is carried out by calculating the residuals from the
experimental reduction factor and predicted reduction factor for training data set.
Residual (e,) can be defined as the difference between the experimental and predicted RF
value and is given by

e, =RF,—RF, (7.2)
where RF; and RF), are the experimental and predicted RF value respectively.
The residuals are plotted with the experiment number as shown in Figure 7.7. It is
observed that the residuals are distributed evenly along the horizontal axis of the plot.
Therefore, it can be said that the network is well trained and can be used for prediction
with reasonable accuracy.

Table 7.3. Values of connection weights and biases

Weight
Bias
Neuron Wik Wk
e/B Df/B 0{/¢ RF bhk
Hidden Neuron 1 (k=1) | -0.4188 0.3928 -0.8511 0.7337 -0.005

Hidden Neuron 2 (k=2) 0.17 5.2462 3.1071 -0.1013 3.874

Hidden Neuron 3 (k=3) | 4.0168 8.1273 -4.8781 0.0693 7.3396

Hidden Neuron 4 (k=4) | 6.2788 -0.3513 3.247 -0.2621 4.8671
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Figure 7.5 Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for training data
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Figure 7.6 Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for testing data
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7.4.1 Sensitivity Analysis
Sensitivity analysis is conducted for selection of important input variables. Different

approaches like Pearson correlation coefficient (Guyon and Elisseeff 2003; Wilby et al.
2003), Garson’s algorithm (Garson 1991; Goh 1995) and connection weight approach
method (Olden et al. 2004) are used to identify important input parameters based on the
trained weights and biases of neural network model as discussed in Chapter 6.

The sensitivity analysis based on Pearson correlation coefficient is presented in Table 7.4
which shows the cross correlation of inputs with the reduction factor. It is seen that the
parameters (e/B) and (/@) are inter-related with a cross-correlation value of 0.3. This is
possibly due to the reinforcing effect. From the table it is observed that RF is highly
correlated to a/¢ with a cross correlation values of 0.87, followed by e/B (=0.59) and
Dy /B (=0.28). The sensitivity analysis for the model as per Garson’s algorithm is
presented in Table 7.5. The a/¢ is found to be the most important input parameter with

the relative importance value being 37.3% followed by 34.1% for Dy /B and 28.6% for

161



e/B. The relative importance of the input variables as calculated following connection

weight approach (Olden et al. 2004) is also presented in Table 7.5. As per connection

weight approach method a/¢ is found to be the most important input parameter (S; value

-2.13) followed by e/B (S; value -1.69) and Dy /B (S; value 0.41). The S; values being

negative imply that both a/¢ and e/B are indirectly and Dy /B is directly related to RF

values.

Table 7.4. Cross-correlation of the input and output for the reduction factor

Parameters e/B Dy/B o/ ¢ RF
e/B 1 0 0.3 -0.59
Dy /B 1 0 0.28
/¢ 1 -0.87
RF 1

Table 7.5. Relative Importance of different inputs as per Garson’s algorithm and

connection weight approach

Parameters Garson’s algorithm Connection weight approach
Ranking of
Ranking of inputs Si values as per inputs as per
Relative as per relative Connection weight relative

Importance (%) importance approach importance

(1) (2) (3) (4) (5)

e/B 28.6 3 -1.6918 2

Dy/B 34.1 2 0.412 3

o/P 37.3 1 -2.128 1

7.4.2 Neural Interpretation Diagram (NID)

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram (NID) for visual

interpretation of the connection weight among the neurons. For the present study with the
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weights obtained as shown in Table 7.3, a Neural Interpretation Diagram is presented in

Figure 7.4. The detail of neural interpretation diagram is enumerated in Chapter 6.

It can be seen from Figure 7.4 and 4™ column of Table 7.5 that e/B and a/¢ are inversely
related to RF values whereas Dy /B is directly related to RF. It can be concluded that RF
value decreases with increase in e/B and o/¢ , but increases with increase in Dy /B. In
other words, the developed ANN model is not a “black box” and could explain the

physical effect of inputs on the output.

7.4.3 ANN model equation for the Reduction Factor based on trained neural
network
A model equation is developed with the weights obtained from trained neural network as

the model parameters (Goh et al. 2005). The mathematical equation relating input

parameters (e/B, Dy/B, o/@) to output (Reduction Factor i.e. RF) can be given by

h m
RFn :fn b0+z kan bhk +ZwikXi (73)
k=1 i=1

where RF, = normalized value of RF in the range [-1, 1], f, = transfer function, # = no. of
neurons in the hidden layer, X; = normalized value of inputs in the range [-1, 1], m = no.
of input variables, wjy = connection weight between i" layer of input and k™ neuron of
hidden layer, w; = connection weight between k” neuron of hidden layer and single
output neuron, by = bias at the k" neuron of hidden layer, and b, = bias at the output

layer.
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The model equation for the reduction factor of a shallow strip footing subjected to
eccentrically inclined load as shown in Figure 7.1(b) is formulated using the values of the
weights and biases shown in Table 7.3 as per the following steps.

Step—1

The input parameters are normalized in the range [-1, 1] by the following expressions

X, —-X
X =0 1 fmin | (7.4)
Xmax_Xmin

Where, X,, = Normalized value of input parameter X; and X,,,,x and X, are maximum and
minimum values of input parameter X; in the data set.

Step—2

Calculate the normalized value of reduction factor (RF,) using the following expressions

e Df a
A=-04188 2| +0.3928 —L | —0.8511 % | —0.005 75)
B) B o) :
D,
A, =0.17(%) +5, 2462(?J +3.1071(ﬂj +3.874 (7.6)
e Df a
A, =4.0168 < | +8.1273 =L | —4.8781 % | +7.3396 17
B) B o)
D
A, =6. 2788(£) —03513| =L | +3.247 & | +4.8671 (7.8)
B B ) o)
oM e
B, 07337(?” (7.9)
ot o
et +e ™
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eA3 _e—A3
B, :0.0693[—j (7.11)

e e
B, =—0.2621(Z::Z:::J (7.12)
C,=0.0972+B,+B,+B, +B, (7.13)
RF, =C, (7.14)

Step—3

Denormalize the RF), value obtained from Eq. (7.14) to actual RF as

RF =0.5(RF +)RF, —RF

min

)+RF, (7.15)
RF=0.5(RF,+1)(1-0.291)+0.291 (7.16)
7.5 Comparison

7.5.1 Comparison with Developed Empirical Equation

In Chapter 5, an empirical equation is developed for reduction factor (RF) in reinforced

case and expressed as

Dy
q e 2 o (1.5—0.7?]
RF = BeBelo) 1—(—] [1—(—]} (7.17)
qu(Df/B,e/B:O,a/qﬁ:O) B ¢

Figures 7.8 and 7.9 show the comparison of RF values obtained from Eq. 7.15 (obtained

from ANN) with Egs. (7.17) (obtained by Empirical equation) and (7.1) (obtained from
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experiments). It is seen that ANN results are closer to line of equality than the empirical

ones from Eq. (7.17).
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Figure 7.8: Comparison of ANN results with Experimental RF and Developed equation
for training data
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Figure 7.9: Comparison of ANN results with Experimental RF and Developed equation
for testing data
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7.5.2 Comparison with Loukidis et al. [2008]

As discussed in section 5.5.1, using Eqs. for combined eccentricity-inclination factor
proposed by Loukidis et al. (2008) and considering load inclination in clockwise
direction simulating to the condition of reinforced footing, the reduction factor RF

corresponding to Loukidis et al. (2008) can be written as

Ji

RF =—tie_
cosa

(7.18)

The reduction factors corresponding to Loukidis et al. (2008) obtained by using Eq.
(7.18) are shown in Figures 7.10 and 7.11 for dense and medium dense sand along with
those values obtained from Egs. (7.15) (obtained from ANN) and (7.1) (obtained from

experiments). The comparison appears to be good.

87—+

Dense sand ANN [Eq, (7.15)] 0

ol o Loukidis et al. (2008) ]
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Figure 7.10: Comparison of ANN results with Loukidis et al. (2008) for dense sand
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Figure 7.11: Comparison of ANN results with Loukidis et al. (2008) for medium dense

sand

7.6 Conclusions

Based on the neural network model developed herein, the following conclusions are

drawn.

Since the errors are distributed evenly along the horizontal axis, the network is
well trained and can predict the result with reasonable accuracy.

o/¢ 1s the most important input parameter followed by e¢/B and Dy /B as observed
in Pearson correlation coefficient.

Similarly, using Garson’s algorithm, o/¢ is found to be the most important input
parameter followed by D;/B and e/B.

The results obtained by using Connection weight approach are same as Pearson

correlation coefficient.
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The developed ANN model has explained the physical effect of inputs on the
output, as depicted in NID. It is observed that e/B and /¢ are inversely related to
RF values whereas D;/B is directly related to RF.

A model equation is developed based on the trained weights of the ANN.

The predictability of ANN model is better than the developed empirical equation.
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8. PREDICTION OF ULTIMATE BEARING CAPACITY OF
ECCENTRICALLY INCLINED LOADED STRIP
FOOTING BY ANN: PART III

8.1 Introduction

There may be two possible modes of load application when a shallow strip footing is

subjected to eccentrically inclined loads.

applications.

Figure 8.1 shows such cases of load

As mentioned in the Chapter 4 and 5, laboratory model tests have been conducted with

shallow strip footings subjected to loads which are both eccentric and inclined. The

prediction of ultimate bearing capacity in such loading conditions have been mentioned

independently in Chapter 6 and 7 when the line of load application is towards the center-

line and away from the center line of the footing respectively. In this chapter, the

objective is to predict the ultimate bearing capacity in a single formulation when the load

is applied either away from the center line or towards the center line of the footing.

|
0.

|

—ng-i—

|
e E -

N

—Hﬂl-—

|
e B

Figure 8.1 Eccentrically inclined load on a strip foundation: (a) Partially compensated

case, (b) Reinforced case
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8.2 Database and Preprocessing

The extensive results of laboratory experimental data presented in Chapter 4 and 5 have
been considered for study in this chapter. Load tests are carried out on model strip
footings subjected to eccentrically inclined loads in the manner as shown in both Figures
8.1(a) and 8.1(b) that are increased to failure. The data consist of parameters like load
eccentricity (e), load inclination (a), embedment ratio (Dy /B), friction angle (¢) and
ultimate bearing capacity (g,). Results from one hundred and ninety two number of
laboratory model tests have been considered in the analysis. The input parameters are
e/B, a/¢, Dy /B and LA and the output is reduction factor (RF). LA is known as Load
Arrangement. It can be defined as
LA =-1 [Line of load application is towards the center line of the footing as shown
in Figure 8.1(a)]
=0 [Centric Vertical and Eccentric Vertical loading condition]
=1 [Line of load application is away from the center line of the footing as shown
in Figure 8.1(b)]

The reduction factor (RF) is given by

Qu, 1B,e1Balg,LA)

RF = 8.1

4u(, I1B,e1B=0,a1$=0,14=0)

where Qu(p,B.c1B.aip.La) = ultimate bearing capacity with eccentricity ratio e/B and

inclination ratio ¢/¢ and load arrangement LA at an embedment ratio Dy /B and

Qu(D,B.e1 B=0.a19=0,L4=0)= ultimate settlement corresponding to ultimate bearing capacity
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with centric vertical loading (e/B = 0, &/¢ = 0 and LA = 0) at the same embedment ratio

Dy/B.

Out of 192 test records shown in Table 8.1, 144 tests are considered for training and the

remaining 48 are reserved for testing. Each record represents a complete model test

where an eccentrically inclined loaded strip footing is subjected to failure. Similar type of

preprocessing is adopted here as discussed in section 6.4.

Table 8.1. Dataset used for training and testing of ANN model

Experimental
Data € & a Experimental RF
Type | Expt. No. B B ¢ LA ¢ (KN/m®) [Eq. (8.1)]
(€9) 2 3) “ (&) ) (@) ®)
Training 1 0.05 0 0 0 133.42 0.800
2 0.1 0 0 0 109.87 0.659
3 0.15 0 0 0 86.33 0.518
4 0 0 0.123 0 128.51 0.771
5 0.05 0 0.123 -1 103.01 0.618
6 0.1 0 0.123 -1 86.33 0.518
7 0 0 0.245 0 96.14 0.576
8 0.05 0 0.245 -1 76.52 0.459
9 0.15 0 0.245 -1 51.99 0.312
10 0 0 0.368 0 66.71 0.400
11 0.1 0 0.368 -1 44.15 0.265
12 0.15 0 0.368 -1 35.12 0.211
13 0.05 0 0.49 -1 34.83 0.209
14 0.1 0 0.49 -1 29.43 0.176
15 0.15 0 0.49 -1 23.54 0.141
16 0 0.5 0 0 264.87 1.000
17 0.05 0.5 0 0 226.61 0.856
18 0.1 0.5 0 0 195.22 0.737
19 0 0.5 0.123 0 223.67 0.844
20 0.05 0.5 0.123 -1 193.26 0.730
21 0.15 0.5 0.123 -1 140.28 0.530
22 0 0.5 0.245 0 186.39 0.704
23 0.1 0.5 0.245 -1 137.34 0.519
24 0.15 0.5 0.245 -1 116.74 0.441
25 0.05 0.5 0.368 -1 129.49 0.489
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Table 8.1 (Continued)

Experimental
Data e & @ Experimental RF
Type | Expt. No. B B ¢ LA g (KN/m?) [Eq. (8.1)]
H 2 3 (C)) (&) 6) (N ®
26 0.1 0.5 0.368 -1 111.83 0.422
27 0.15 0.5 0.368 -1 94.18 0.356
28 0 0.5 0.49 0 115.76 0.437
29 0.05 0.5 0.49 -1 98.10 0.370
30 0.1 0.5 0.49 -1 85.35 0.322
31 0 1 0 0 353.16 1.000
32 0.05 1 0 0 313.92 0.889
33 0.15 1 0 0 245.25 0.694
34 0 1 0.123 0 313.92 0.889
35 0.1 1 0.123 -1 241.33 0.683
36 0.15 1 0.123 -1 215.82 0.611
37 0.05 1 0.245 -1 239.36 0.678
38 0.1 1 0.245 -1 212.88 0.603
39 0.15 1 0.245 -1 188.35 0.533
40 0 1 0.368 0 225.63 0.639
41 0.05 1 0.368 -1 206.01 0.583
42 0.1 1 0.368 -1 179.52 0.508
43 0 1 0.49 0 183.45 0.519
44 0.05 1 0.49 -1 166.77 0.472
45 0.15 1 0.49 -1 126.55 0.358
46 0 0 0 0 101.04 1.000
47 0.1 0 0 0 68.67 0.680
48 0.15 0 0 0 54.94 0.544
49 0.05 0 0.133 -1 63.77 0.631
50 0.1 0 0.133 -1 52.97 0.524
51 0.15 0 0.133 -1 42.18 0.417
52 0 0 0.267 0 55.92 0.553
53 0.05 0 0.267 -1 47.09 0.466
54 0.1 0 0.267 -1 38.46 0.381
55 0 0 0.4 0 38.26 0.379
56 0.05 0 0.4 -1 32.37 0.320
57 0.15 0 0.4 -1 20.60 0.204
58 0 0 0.533 0 24.03 0.238
59 0.1 0 0.533 -1 16.68 0.165
60 0.15 0 0.533 -1 13.34 0.132
61 0.05 0.5 0 0 123.61 0.863
62 0.1 0.5 0 0 103.99 0.726
63 0.15 0.5 0 0 87.31 0.610
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Table 8.1 (Continued)

Experimental
Data e & @ Experimental RF
Type | Expt. No. B B ¢ LA g (KN/m?) [Eq. (8.1)]
1) 2) 3) “) ) (6) () )
64 0 0.5 0.133 0 120.66 0.842
65 0.05 0.5 0.133 -1 103.99 0.726
66 0.1 0.5 0.133 -1 90.25 0.630
67 0 0.5 0.267 0 98.10 0.685
68 0.05 0.5 0.267 -1 84.86 0.592
69 0.15 0.5 0.267 -1 60.82 0.425
70 0 0.5 0.4 0 79.46 0.555
71 0.1 0.5 0.4 -1 56.90 0.397
72 0.15 0.5 0.4 -1 48.07 0.336
73 0.05 0.5 0.533 -1 50.03 0.349
74 0.1 0.5 0.533 -1 43.16 0.301
75 0.15 0.5 0.533 -1 36.30 0.253
76 0 1 0 0 208.95 1.000
77 0.05 1 0 0 193.26 0.925
78 0.1 1 0 0 175.60 0.840
79 0 1 0.133 0 186.39 0.892
80 0.05 1 0.133 -1 168.73 0.808
81 0.15 1 0.133 -1 137.34 0.657
82 0 1 0.267 0 160.88 0.770
83 0.1 1 0.267 -1 129.49 0.620
84 0.15 1 0.267 -1 112.82 0.540
85 0.05 1 0.4 -1 118.70 0.568
86 0.1 1 0.4 -1 106.93 0.512
87 0.15 1 0.4 -1 94.18 0.451
88 0 1 0.533 0 98.10 0.469
89 0.05 1 0.533 -1 92.21 0.441
90 0.1 1 0.533 -1 84.37 0.404
91 0.1 0 0.123 1 107.91 0.647
92 0.15 0 0.123 1 92.214 0.553
93 0.05 0 0.245 1 88.29 0.529
94 0.1 0 0.245 1 85.347 0.512
95 0.05 0 0.368 1 68.67 0.412
96 0.15 0 0.368 1 64.746 0.388
97 0.05 0 0.49 1 53.955 0.324
98 0.1 0 0.49 1 51.993 0.312
99 0.15 0 0.49 1 49.05 0.294
100 0.1 0.5 0.123 1 173.637 0.656
101 0.15 0.5 0.123 1 152.055 0.574
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Table 8.1 (Continued)

Experimental
Data € & a Experimental RF
Type | Expt. No. B B ¢ LA g (KN/m?) [Eq. (8.1)]
1) (2) 3) “) ) (6) () )
102 0.05 0.5 0.245 1 166.77 0.630
103 0.1 0.5 0.245 1 151.074 0.570
104 0.15 0.5 0.245 1 132.435 0.500
105 0.05 0.5 0.368 1 137.34 0.519
106 0.1 0.5 0.368 1 129.492 0.489
107 0.05 0.5 0.49 1 113.796 0.430
108 0.15 0.5 0.49 1 95.157 0.359
109 0.05 1 0.123 1 284.49 0.806
110 0.1 1 0.123 1 251.136 0.711
111 0.15 1 0.123 1 228.573 0.647
112 0.1 1 0.245 1 225.63 0.639
113 0.15 1 0.245 1 203.067 0.575
114 0.05 1 0.368 1 217.782 0.617
115 0.1 1 0.368 1 193.257 0.547
116 0.05 1 0.49 1 179.523 0.508
117 0.15 1 0.49 1 143.226 0.406
118 0.1 0 0.133 1 62.78 0.621
119 0.15 0 0.133 1 52.97 0.524
120 0.05 0 0.267 1 56.90 0.563
121 0.1 0 0.267 1 51.99 0.515
122 0.15 0 0.267 1 49.05 0.485
123 0.05 0 0.4 1 42.58 0.421
124 0.1 0 0.4 1 41.20 0.408
125 0.05 0 0.533 1 31.39 0.311
126 0.15 0 0.533 1 29.43 0.291
127 0.1 0.5 0.133 1 94.18 0.658
128 0.15 0.5 0.133 1 77.50 0.541
129 0.05 0.5 0.267 1 88.29 0.616
130 0.1 0.5 0.267 1 77.50 0.541
131 0.05 0.5 0.4 1 73.58 0.514
132 0.15 0.5 0.4 1 56.90 0.397
133 0.05 0.5 0.533 1 58.86 0.411
134 0.1 0.5 0.533 1 53.96 0.377
135 0.15 0.5 0.533 1 48.07 0.336
136 0.1 1 0.133 1 156.96 0.751
137 0.15 1 0.133 1 144.21 0.690
138 0.05 1 0.267 1 148.13 0.709
139 0.1 1 0.267 1 135.38 0.648
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Table 8.1 (Continued)

Experimental
Data e & @ Experimental RF
Type | Expt. No. B B ¢ LA g (KN/m?) [Eq. (8.1)]
1) (2) 3) “) ) (6) () )

140 0.05 1 0.4 1 124.59 0.596
141 0.1 1 0.4 1 114.78 0.549
142 0.15 1 0.4 1 103.01 0.493
143 0.05 1 0.533 1 99.08 0.474
144 0.15 1 0.533 1 86.33 0.413
Testing 1 0 0 0 0 166.77 1.000
2 0.15 0 0.123 -1 65.73 0.394
3 0.1 0 0.245 -1 62.78 0.376
4 0.05 0 0.368 -1 53.96 0.324
5 0 0 0.49 0 43.16 0.259
6 0.15 0.5 0 0 164.81 0.622
7 0.1 0.5 0.123 -1 165.79 0.626
8 0.05 0.5 0.245 -1 160.88 0.607
9 0 0.5 0.368 0 151.07 0.570
10 0.15 0.5 0.49 -1 72.59 0.274
11 0.1 1 0 0 278.60 0.789
12 0.05 1 0.123 -1 277.62 0.786
13 0 1 0.245 0 264.87 0.750
14 0.15 1 0.368 -1 155.98 0.442
15 0.1 1 0.49 -1 143.23 0.406
16 0.05 0 0 0 84.37 0.835
17 0 0 0.133 0 79.46 0.786
18 0.15 0 0.267 -1 31.39 0.311
19 0.1 0 0.4 -1 26.98 0.267
20 0.05 0 0.533 -1 19.62 0.194
21 0 0.5 0 0 143.23 1.000
22 0.15 0.5 0.133 -1 72.59 0.507
23 0.1 0.5 0.267 -1 72.59 0.507
24 0.05 0.5 0.4 -1 67.89 0.474
25 0 0.5 0.533 0 58.27 0.407
26 0.15 1 0 0 156.96 0.751
27 0.1 1 0.133 -1 153.04 0.732
28 0.05 1 0.267 -1 144.21 0.690
29 0 1 0.4 0 133.42 0.638
30 0.15 1 0.533 -1 75.54 0.362
31 0.05 0 0.123 1 113.796 0.682
32 0.15 0 0.245 1 81.423 0.488
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Table 8.1 (Continued)

Experimental
Data e & @ Experimental RF
Type | Expt. No. B B ¢ LA g (KN/m?) [Eq. (8.1)]
H 2 3 (C)) (&) 6) (N ®
33 0.1 0 0.368 1 66.708 0.400
34 0.05 0.5 0.123 1 196.2 0.741
35 0.15 0.5 0.368 1 112.815 0.426
36 0.1 0.5 0.49 1 105.948 0.400
37 0.05 1 0.245 1 249.174 0.706
38 0.15 1 0.368 1 171.675 0.486
39 0.1 1 0.49 1 156.96 0.444
40 0.05 0 0.133 1 71.61 0.709
41 0.15 0 0.4 1 38.65 0.383
42 0.1 0 0.533 1 30.41 0.301
43 0.05 0.5 0.133 1 105.95 0.740
44 0.15 0.5 0.267 1 67.69 0.473
45 0.1 0.5 0.4 1 63.77 0.445
46 0.05 1 0.133 1 170.69 0.817
47 0.15 1 0.267 1 120.66 0.577
48 0.1 1 0.533 1 92.21 0.441

8.3 Results and Discussion

The maximum, minimum, average and standard deviation values of the four inputs and
one output parameters used in the ANN model are presented in Table 8.2. They are
calculated from the database. The schematic diagram of ANN architecture is shown in
Figure 8.2. The number of hidden layer neurons is varied and the mean square error
(mse) is noted. The minimum mse is found to be 1.0 x 10” when there are five neurons in
the hidden layer [Figure 8.3]. Therefore, the final ANN architecture is retained as 4-5-1
[i.e. 4 (input) — 5 (hidden layer neuron) — 1 (Output)].

Table 8.2. Statistical values of the parameters

Parameter | Maximum value | Minimum value | Average value | Standard Deviation
e/B 0.15 0 0.084 0.052
Dy /B 1 0 0.5 0.408
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Parameter

Maximum value

Minimum value

Average value

Standard Deviation

o/ 0.533 0 0.28 0.171
LA 1.0 -1.0 0 0.866
RF 1.0 0.132 0.543 0.19

[INPUT LAYER =]

e/B

D;/B

/P

[HIDDEN LAYER = m]

Figure 8.2 The ANN Architecture

[OUTPUT LAYER =n]

RF

3

mse x 10

3 4

5 6

No. of hidden neuron

Figure 8.3 Variation of hidden layer neuron with mean square error (mse)
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The coefficient of efficiency (R?) for training and testing data are found to be 0.99 and
0.98 respectively, as shown in Figures 8.4 and 8.5. Data used in this analysis have been
obtained from laboratory model tests carried out in duplicate, in a calibration chamber,
the details of which are given in Chapter 3, 4 and 6. The weights and biases of the
network are presented in Table 8.3. These weights and biases can be utilized for
interpretation of relationship between the inputs and output, sensitivity analysis and

framing an ANN model in the form of an equation.
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Reduction Factor - Predicted
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Figure 8.4 Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for training data
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Figure 8.5 Correlation between Predicted Reduction Factor with Experimental Reduction

Factor for testing data

Table 8.3. Values of connection weights and biases

Weight
Bias
Neuron Wik W
e/B Dy/B o/¢ LA RF bk by
Hidden Neuron 1
-1.35 -0.9514 | -3.1318 2.0935 0.1861 | -4.7877
(k=1)
Hidden Neuron 2
1.1469 -0.3053 1.4808 -3.5185 | -0.1399 | 1.4851
(k=2)
Hidden Neuron 3
(k=3) 0.8794 0.7097 -1.2318 | -0.8993 | 0.1846 | 2.3233 | -0.0064
Hidden Neuron 4
-0.231 0.9149 -0.9087 1.0174 0.2944 2.265
(k=4)
Hidden Neuron 5
(k=5) 0.4031 -0.2417 | 0.7069 0.1688 -0.7199 | 0.3686
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The residual analysis is carried out by calculating the residuals from the experimental
reduction factor and predicted reduction factor for training data set. Residual (e,) can be
defined as the difference between the experimental and predicted RF value and is given

by

e,=RF,—RF, (8.2)
where RF; and RF), are experimental and predicted RF value respectively.
The residuals are plotted with the experiment number as shown in Figure 8.6. It is
observed that the residuals are distributed evenly along the centerline of the plot.
Therefore, it can be said that the network is well trained and can be used for prediction

with reasonable accuracy.
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Figure 8.6. Residual distribution of training data

8.3.1 Sensitivity Analysis

Artificial neural networks are data driven approach and the important inputs are selected
by conducting sensitivity analysis. Different approaches like Pearson correlation
coefficient (Guyon and Elisseeff 2003; Wilby et al. 2003), Garson’s algorithm (Garson

181



1991; Goh 1995) and connection weight approach method (Olden et al. 2004) are used to
identify important input parameters based on the trained weights and biases of neural
network model (briefly described in Chapter 6).

Table 8.4. Cross-correlation of the input and output for the reduction factor

Parameters | e/B D;/B /P LA RF
e/B 1 0 0.04 0 -0.42
Ds/B 1 0 0 0.37
/¢ 1 0 -0.79
LA 1 0.16
RF 1

Table 8.4 shows the cross correlation of inputs with the reduction factor. From the table it
is observed that RF is highly correlated to /¢ with a cross correlation values of 0.79,
followed by e¢/B, Dy/B and LA. The ranking of the four input parameters as per Garson’s
algorithm is presented in Table 8.5. The a/¢ is found to be the most important input
parameter with the relative importance value being 34.75% followed by 30.15% for LA,
18.68% for e¢/B and 16.42% for Dy /B. The relative importance of the input variables
using connection weight approach (Olden et al. 2004) is also presented in Table 8.5. The
o/¢ is found to be the most important input parameter (S; value = -1.794) followed by LA
(S; value = 0.894), e¢/B (S, value = -0.608) and D;/B (S; value = 0.44). The summation of
products of input-hidden and hidden-output weights across all the hidden neurons is
called as S; (Olden et al. 2004). The S; values being negative imply that both o/¢ and e/B

are indirectly related whereas LA and Dy /B are directly related to RF values.
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Table 8.5. Relative Importance of different inputs as per Garson’s algorithm and

connection weight approach

Parameters Garson’s algorithm Connection weight approach
Ranking of
Ranking of inputs Si values as per inputs as per
Relative as per relative Connection weight relative
Importance (%) importance approach importance
ey 2) 3) C)) (&)
e/B 18.68 3 -0.608 3
Dy/B 16.42 4 0.44 4
o/ 34.75 1 -1.794 1
LA 30.15 2 0.894 2

8.3.2 Neural Interpretation Diagram (NID)

Ozesmi and Ozesmi (1999) proposed a novel approach called as Neural Interpretation

Diagram (NID) for visual interpretation of the connection weight among the neurons and

to find interrelationship between the inputs and output. Neural interpretation diagram is

discussed in detail in Chapter 6.
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Figure 8.7. Neural Interpretation Diagram (NID) showing lines representing connection

weights and effects of inputs on Reduction Factor (RF)
It can be seen from Table 8.5 (4™ Column) that S; values for parameters ¢/B and o/¢ are
negative indicating that both the parameters e/B and o/¢ are inversely related to whereas
S; value for parameter LA and Dy /B being positive is directly related to RF values. This is
shown in Figure 8.7. Thus it is inferred that RF value increases with increase in LA and
Dy /B values and decreases with increase in ¢/B and o/¢ values. Therefore, the developed
ANN model is not a “black box” and could explain the physical effect of the input

parameters on the output.

8.3.3 ANN model equation for the Reduction Factor based on trained neural
network
A model equation is developed with the weights obtained from trained neural network as

the model parameters (Goh et al. 2005). The mathematical equation relating input

parameters (e/B, Dy/B, o/¢, LA ) to output (Reduction Factor) can be given by
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h m
RFn :fn b0+z kan bhk +ZwikXi (8.3)
k=1 i=l

where RF, = normalized value of RF in the range [-1, 1], f, = transfer function, 4 = no. of
neurons in the hidden layer, X; = normalized value of inputs in the range [-1, 1], m = no.
of input variables, wjy = connection weight between i" layer of input and k™ neuron of
hidden layer, wy = connection weight between k" neuron of hidden layer and single
output neuron, by, = bias at the k™ neuron of hidden layer, and b, = bias at the output
layer.

The model equation for Reduction Factor of shallow strip foundations subjected to
eccentrically inclined load (both mode of load application) is formulated using the values
of the weights and biases shown in Table 8.3 as per the following steps.

Step—1

The input parameters are normalized in the range [-1 1] by the following expressions

X, - X .
X, =2($J—1 (8.4)
Xmax_Xmin

where, X,, = Normalized value of input parameter X;, and X,,,, and X,,;, are maximum and

minimum values of the input parameter X; in the data set.

Step—2

Calculate the normalized value of reduction factor (RF,) using the following expressions

D
A1=—1.35(%J —0.9514(?0 —3.1318(%} +2.0935(LA), —4.7877 (8.5)

n
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D
A2=1.1469(%J —0.3053(?J +1.4808(%J —3.5185(LA) +1.4851 (8.6)
e D o
A3:O.8794(EJ +o.7097(?J —1.2318(;} ~0.8993(LA), +2.3233 (8.7)

e Df o
A, =-0.231 = +0.9149 = -0.9087 s +1.0174(LA), +2.265 (8.8)

n n

D
A5:0.4O31(%J —0.2417(?fJ +O.7069(%J +0.1688(LA), +0.3686 (8.9)

Al _— _Al
BI:O.1861(%J (8.10)
el +e ™
eAz _e_Az
BZ:—O.1399(ﬁ @.11)
e’ +e
et —e™®
e’ +e
€A4 _e_A4
B,=0.2944 [ﬁ (8.13)
e’ +te ™
As _ 45
B,=—0.7199| (8.14)
e’ +e "
C,=-0.0064+B,+ B, + B, + B, + B, (8.15)
C,=RF, (8.16)
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Step—3

Denormalize the RF, value obtained from Eq. (8.18) to actual RF as
RF =0.5(RF +H)(RF, —RF.. )+RF,. (8.17)

RF=0.5(RF,+1)(1-0.132)+0.132 (8.18)

8.4 Comparison

Earlier, in Chapter 6 an ANN model equation is proposed for eccentrically inclined
loaded strip foundation considering that the line of load application is towards the center

line of the footing which can be expressed as
RF, =0.5(RF, +1)(1-0.132)+0.132 (8.19)

where RF; = Reduction Factor for the above loading condition

Similarly, in Chapter 7 an ANN model equation is developed for eccentrically inclined
loaded strip foundation when the load is applied away from the center line of the footing

that can be expressed as
RF,=0.5(RF, +1)(1-0..291)+0.291 (8.20)

where, RF,; = Reduction Factor for above case

The plot of reduction factor obtained from Eqgs. (8.19) and (8.20) with Eq. (8.17) and Eq.

(8.1) is shown in Figure 8.8. Excellent results are found.

The present developed model ANN equation is in well agreement with the empirical

equations mentioned in Chapter 4 and 5 along with results from other approaches. The
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comparison is shown in Figure 8.9 and also in Table A.1 [Appendix A]. This single

equation can predict with reasonable accuracy in both type of loading.

! T ! T ! T ! T !
10} o Model Eqn (Chapter 6) V-
&  Model Eqn (Chapter 7)
¢ Present Analysis

08 .
T o Ea%
S
3 N
g Line of Equality
&
v 06F 4
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45 O
<
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8 o4t _
3
=
kS
9}
(a2

02 i

0.0 1 ] L ] L ] L ] L ]

0.0 02 04 06 0.8 10

Reduction Factor - Experiment
Figure 8.8. Comparison of Reduction Factor of Present analysis with ANN model

equation developed in Chapter 6 and 7 for both type of load arrangement
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Figure 8.9. Comparison of Reduction Factor of Present analysis with other approaches

8.5 Conclusions

Based on the developed neural network model, following conclusions are drawn:
e As the errors are distributed evenly along the center line, the network is well
trained and can predict the result with reasonable accuracy.
e Based on Pearson correlation coefficient, o/¢ is the most important input
parameter followed by e¢/B, Dy/B and LA.
e Using connection weight approach and Garson’s algorithm, /¢ is found to be the

most important input parameter followed by LA, e/B, and D;/B.
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The developed ANN model has explained the physical effect of inputs on the
output, as depicted in NID. It is observed that e/B and /¢ are inversely related to
RF values whereas D;/B and LA are directly related to RF.

This developed combined ANN model equation can be applicable for either mode
of load application to predict ultimate bearing capacity which is in good

agreement with other methods.
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9. ESTIMATION OF AVERAGE SETTLEMENT OF
SHALLOW STRIP FOUNDATION ON GRANULAR SOIL
UNDER ECCENTRIC LOADING

9.1 Introduction

For a foundation supported by granular soil within the zone of influence of stress
distribution, the elastic settlement is the only component that needs consideration.
During the last sixty years or so, a number of procedures have been developed to predict
elastic settlement; however, there is a lack of a reliable standardized procedure. This is
due to difficulty in getting the undisturbed samples for cohesionless soil and the lack of
determination of accurate effective depth of influence zone for loads applied to the

foundation.

Despite above problems, several methodologies are available in the literature for
settlement analysis such as Terzaghi and Peck (1948), DeBeer and Martens (1957), Alpan
(1964), Meyerhof (1965), D’ Appolonia et al. (1968), Schmertmann (1970), Schultze and
Sherif (1973), Schmertmann et al. (1978), Wahls (1981), Burland and Burbidge (1985),
Jeyapalan and Boehm (1986), Leonards and Frost (1988), Berardi and Lancellotta (1991),
Nova and Montrasio (1991), Tan and Duncan (1991), Papadopoulos (1992), and Berardi
(1992). However, most of them are showing inconsistent performance in settlement
predictions for shallow foundation on cohesionless soil. However, the above methods
consider the case of vertically centric loaded footing. The settlement analysis for the
eccentrically loaded footing is limited in the literature. Therefore, in this chapter,
estimation of average settlement of eccentrically loaded embedded footings has been

discussed. From the model test results an empirical equation is developed to predict the
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ultimate settlement of eccentrically loaded embedded footings by knowing the ultimate
settlement of surface footing subjected to centric load. A relation has been established
between the ultimate bearing capacity, ultimate settlement, average load per unit area and
the corresponding average settlement. Based on the laboratory test results, an empirical
procedure has been developed to estimate the average settlement of the foundation while
being subjected to an average allowable eccentric load per unit area, where the applied

load is vertical.

9.2 Development of an empirical equation from DeBeer’s chart (1967)
It 1s important to keep in mind that the average settlement at ultimate load depends on

several factors. It appears that, for preliminary estimation purposes, the variations of

(iJ with YB (Y = unit weight of sand), and D, (relative density of sand)
B (D} 1B=0,e/B=0)

for circular foundation as provided by DeBeer (1967) are reasonable. Figure 9.1 shows

the experimental results of DeBeer (1967) in a nondimensional form (Note: p =

atmospheric pressure = 100 kN/m?). The average plots can be approximated as

[S_j (%)=30 o090 11 67 m[ﬁj—l 9.1
B (D, B=0./B=0) F

a

where D, is expressed as a fraction. For comparison purposes Eq. (9.1) is also plotted in

Figure 9.1. The comparison seems to be reasonably good for all relative densities.
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Figure 9.1: Comparison of curve by developed equation with DeBeer’s curve

9.3 Average settlement at ultimate load (

Figures 9.2 (a) and (b) show the plots of [S—“

SM

B j(Df/B,e/B)

j vs. D;/B in dense and medium
(D, 1B,e/B)

dense sand. As might be expected for any experimental work of this type, there is some

scatter.
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Figure 9.2: Variation of (s./B)py/s, sy With Dy /B and e/B: (a) dense sand, (b) medium

dense sand
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Thus it can initially be assumed that

D
(S_J :[S_j [1+a[—fﬂ 9.2)
B (; 1B,¢/B=0) B (D; 1B=0,e/B=0) B

where a = constant to be evaluated based on regression analysis of test results on centric

vertical load under different relative densities.

The regression analysis is shown in Table 9.1.

Table 9.1. Values of a based on regression analysis along with R*

Type of sand a R
Dense 0.635 1.0
Medium Dense 0.55 0.94
Average 0.593

However, from Table 9.1 based on the values of a, it appears that for any given e/B,

D
[S_J ,{S_j |:1+O.6[—fj:| 93)
B (D;/B,e/B=0) B (D; 1B=0,e/B=0) B

It may thus be reasonable to express the average settlement at ultimate load in the form of

B (D, 1B,e/B)
Su
(B j(Df/B—O,e/B—O)

a reduction factor. Or

RF = 9.4
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S ) ) )
Note that K—“j is the settlement at ultimate load for a surface foundation
(D; 1B=0,e/B=0)

. . . N . .
with vertical centric load and K—“J ] is the settlement at ultimate load for an

(p; /B, erB)
embedded foundation with vertical eccentric load.

The reduction factor can be initially taken as

choft] e

where b = constant to be evaluated based on regression analysis of eccentrically loaded

test results

The values of b along with R’ value are shown in Table 9.2.

Table 9.2. Value of b based on regression analysis along with R
Type of sand b R’

Dense 2.18 0.94

Medium Dense 2.06 0.87

Average 2.17

So, the reduction factor can be approximated as

ool ool

Table 9.3 columns 6 — 8 show the experimental values of RF, RF calculated from Eq.

(9.6), and the deviations of the experimental values from those calculated using Eq. (9.6).
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The experimental values compare reasonably well with those estimated by using the

empirical relationship.

Hence using Egs. (9.1), (9.4) and (9.6), one can estimate the general magnitude

of (S—“J :
B (D, /1B,e/B)

9.4 Average load per unit area and Average settlement relationship

In order to develop a load-settlement relationship for shallow strip foundation subjected

to eccentric loading, the following parameters can be defined:

g=Ts1Ber8) ©9.7)
9.(p, 1B,e/B)
and
)
B e
B (D, /B.elB) ©8)
9
B (D, /B,e/B)
where ¢(p /5.5 and (iJ are respectively the average load per unit area, and
(D, 1B.e1B)

the corresponding settlement ratio at a given D;/B and e/B.

The load-settlement curves of twenty four numbers of tests in the database are estimated

by using the hyperbolic fitting method as mentioned in Eq. 9.9.

_ o
p a(a)+b ©9)
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The value of a and b are found to be -0.427 and 1.436 respectively. Figure 9.3 shows the
experimental variation of £ vs. « for dense and medium dense sands. The average

variation obtained by hyperbolic fitting gives a relationship which can be approximated

as,
o
p=——"-— (9.10)
1.43-0.43cx
o
0.0 02 0.4 0.6 0.8 1.0

0.0 . : . : . , . , . : Legend
Df/B e/B symbol

02 - 1 0o o o
05 0  m
I

04r 1 0o 005 @
0.5 005 O
1 0.05 A

Q. 06} i

0 01 =
0.5 0.1 D
1 01 &

08 | .

% | 05 015 -
N S 015 A
1 1 1 1 1

(a)
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Figure 9.3: Plot of a vs. 5 curves obtained from laboratory tests along with Eq. (9.10) for

(a) dense sand, (b) medium dense sand
9.5 Ultimate load under eccentric loading

Figure 9.4 shows a shallow strip foundation of width B located at a depth Dy on a
granular soil having an unit weight y and angle of friction ¢. The foundation is subjected

to a load of Q, per unit length with an eccentricity e. Table 9.1 gives the variation of the

U

ultimate average load per unit area of the foundation {%:%(Df IB.el 3)} along with the

u

. s . o
average settlement along the center line (—J at ultimate load which is based
(D, 1B,e/B)

on the model tests [as per Figure 9.4] as discussed in Chapter 4.
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It is also observed in Chapter 4 that for a given sand (i.e. relative density of compaction

D, and friction angle (¢) at a given embedment ratio Dy /B,

qu(Df /B,e/B) = qu(Df /B,e/B:O) |:1_ 2[

S

I
I
I
I
I
!

ol

/""//""/)"'//.-

//.-"'
[ R A A T )
%’/;}"x////’“/

|———
I

e B =

Figure 9.4: Eccentrically loaded embedded strip footing

P

(9.11)

Table 9.3. Ultimate load per unit area and corresponding average settlement based on

the eccentrically loaded embedded tests. [Note: width of foundation B = 100 mm; relative

density D, for dense and medium dense sands are 69% and 51% respectively.]

Deviation—

s RF | Col.6-Col.7
Sand & € 9u(D; 1B.¢/B) (?j RF [Eq. Col.6
type B B (kKN/m?) (b, 1.¢/5)| (Experimental) | (9.6)] (%)
(H 2 3) (C)) ®) 6) (@) ®
Dense 0 0 166.77 8.5 1.0 1.0 0.0
0.5 0 264.87 11.2 1.318 1.30 1.34
1 0 353.16 13.90 1.635 1.60 2.16
(Unit 0 | 005 133.42 6.96 0.819 0.893 9.0
weight=1" 5 | (05 226.61 10 1.176 1.160 1.38
kﬁ/';?) 1 0.05 313.92 12.50 1.471 1.428 2.90
0 0.1 109.87 6.00 0.706 0.785 11.21
05 | 0.1 195.22 8.4 0.988 1.021 326
1 0.1 278.60 11.10 1.306 1.256 3.82
0 | 015 86.33 4.70 0.553 0.678 22.53
0.5 | 0.15 164.81 6.6 0.776 0.881 -13.43
1 0.15 245.25 10.90 1.282 1.084 15.47
Medium | 0 0 101.04 8.4 1.0 1.0 0.0
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Table 9.3 (Continued)

Deviation—

s RF | Col.6-Col.7
Sand Dy e | Qup; 1B.e18) (?j RF [Eq. Col.6
type B B (KN/m?) (o, /B./8)| (Experimental) | (9.6)] (%)
H 2 3 (C)) ®) 6) (@) ®
dense 0.5 0 143.23 9.9 1.179 1.3 -10.30
1 0 208.95 13.4 1.595 1.600 -0.30
(Unit 0 | 005 | 8437 7.4 0.881 0.893 -1.31
weight=1" o5 | (o5 | 12361 8.4 1.000 1.160 -16.03
13.97 1| 005 | 19326 12.3 1.464 1.428 248
KN/ 0 0.1 68.67 5.6 0.667 0.785 17.75
05 | 01 103.99 7.7 0.917 1.021 -11.33
1 0.1 175.60 11.7 1.393 1.256 9.83
0 015 | 54.94 4.4 0.524 0.678 129.34
05 | 015 | 8731 6.7 0.798 0.881 -10.42
1 015 | 156.96 10.6 1.262 1.084 14.10

9.6 Suggested procedure for estimation of average settlement at allowable load

Based on the present test results, following is a step by step procedure to estimate the

average settlement at allowable average load per unit area.

1. For a given Dy /B with ¢/B=0, estimate the magnitude of q,(, ,p./5-) for the

procedure described by Vesic (1973)

2. Estimate ¢(p /5., 5) Using Eq. (9.11).

3. Estimate (ij using Eq. (9.1).

D, /B=0,e/B=0
(o, )

4. With a known factor of safety F determine

_ qu(Df /B,e/B)

(D, 1B.e/B)=

F

N

5. Determine & from Eq. (9.7).
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6. Using Eq. (9.10) obtain S

7. Estimate (iJ via Egs. (9.1), (9.4), (9.6), and (9.8) as

(D, 1B.e/B)

S S
o wes(] )
[Bj(Df/B,e/B) B (D, /B.e/B)

Ay o525

The magnitude of (S—“j can be obtained from Eq. (9.1).
(p; 1B=0,e/B=0)

9.12)

9.7 Conclusions

Laboratory model tests have been conducted to determine the ultimate settlement on
eccentrically embedded strip footings on sand bed. Based on the analysis of the test
results, the following conclusions are drawn.
e An empirical equation is developed from DeBeer’s chart (1967) to estimate
ultimate settlement of surface footing.
e Based on the results from model tests conducted, the above equation is extended
to predict the ultimate settlement of eccentrically embedded footings.
e The load-settlement curve for eccentrically embedded footing on sand can be
developed if the load intensity and settlement corresponding to ultimate level are

known.

e The average settlement calculated by using Eq. (9.12) should be treated as an

approximate first estimation.
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10. CONCLUSIONS AND SCOPE FOR FUTURE
RESEARCH WORK

10.1 Conclusions

The results of a large number of laboratory model tests conducted to determine the
ultimate bearing capacity of a strip footing supported by sand and subjected to an
eccentrically inclined load with an embedment ratio varying from zero to one have been
reported. The line of load application is inclined towards or away from the center line of
the footing. Tests have been conducted on dense and medium dense sand. The load
eccentricity ratio e¢/B has been varied from O to 0.15, and the load inclination ¢ is varied
from 0° to 20° (i.e. /¢ = 0 to 0.5). The results obtained from the model tests conducted
in the laboratory have been analysed both by regression analysis and artificial neural
network. The following are the general conclusions obtained from the analysis.

® Fora=0and0<D;/B<1,

RF =1—2(ﬁJ
B

This is common to reinforced and partially compensated cases.

e Fore/B=0,0<D;/B<1anda>0, the reduction factor

2-(D, /B)
RF = (1 —EJ
(0

This is common to reinforced and partially compensated cases.
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e For partially compensated case (i.e. line of load application is towards the center line

of the footing)

The reduction factor (RF) for ultimate bearing capacity is given by:

w5

e For reinforced case (line of load application is away from the center line of the

footing)

The reduction factor (RF) for ultimate bearing capacity is given by:

. 1_2[£j 1_2 1.5-0.7(D;/B)
= B q)

e For given values of Dy /B and e/B, the magnitude of (g,—reinforced)/(q,—partially
compensated) increases with the load inclination «.

e For similar values of and e/B, the above ratio shows a tendency to decrease with the
increase in embedment ratio (Dy/B).

e For a given value of Dy/B and a, the ratio (g,—reinforced)/(q,~partially compensated)
increases with the increase in e/B.

e At ultimate load, the settlement ratio of s, in the reinforced case to s, in the partially

compensated case can be approximated as follows

lato=5°
s, —reinforced ~Jio
— partiall ted
s, — partially compensate L4 at o= 20°
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A model equation developed based on the trained weights of the ANN for the
partially compensated case predicts slightly better than the present developed
empirical equation.
Similarly, the predictability of ANN models for the reinforced case as discussed in
Chapter 7 are found better than the developed empirical equation.
The developed combined ANN model equation can be applied for both modes of
load application to predict ultimate bearing capacity which is in good agreement
with other methods.
An empirical equation is developed from DeBeer’s chart (1967) to estimate ultimate
settlement of surface footing. Based on the results from model tests conducted, the
above equation is further extended to predict the ultimate settlement of eccentrically

embedded footings.

A relationship between average load per unit area and average settlement is
developed and thus a step-wise procedure is suggested for estimating average

settlement at any allowable load of the eccentrically loaded shallow foundation.

10.2 Future research work

The present thesis pertains to the study on the bearing capacity and settlement of

eccentrically inclined loaded strip footing on dry sand bed. Due to time constraint all

other aspects related to shallow foundations could not be studied. The future research

work should address the below mentioned points:

Large scale study should be carried out to validate the present developed equations.
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Settlement, failure pattern and stress distribution of eccentrically inclined loaded

footing can be experimentally studied.

Numerical constitutive modeling of the present work can be done and compared with

the present results.
The present work can be extended to foundations on cohesive soil.

The present work can be extended to reinforced soil condition.
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APPENDIX A

Table A.1. Comparative value of Present analysis results with other approaches

e/B | Di/B | o/d LA s RFexpr | RFemp | RFEany | RFy1963) | RFs & a1991) | RFL2008) | RFEaNN (C)
(kKN/m’)
Line of load application is towards the center line of the footing

0 0 0.000 | 0.000 166.77 1.000 1.000 0.983 1.000 1.000 0.998
0.05 0 0.000 | 0.000 133.42 0.800 0.900 0.811 0.810 0.817 0.823
0.1 0 0.000 | 0.000 109.87 0.659 0.800 0.668 0.640 0.652 0.653
0.15 0 0.000 | 0.000 86.33 0.518 0.700 0.552 0.490 0.506 0.541

0 0 0.123 | 0.000 128.51 0.771 0.770 0.781 0.773 0.766 0.767
0.05 0 0.123 | -1.000 | 103.01 0.618 0.693 0.636 0.626 0.677 0.616
0.1 0 0.123 | -1.000 86.33 0.518 0.616 0.520 0.495 0.554 0.522
0.15 0 0.123 | -1.000 65.73 0.394 0.539 0.429 0.379 0.431 0.434
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0 0 0.245 | 0.000 96.14 0.576 0.570 0.587 0.579 0.563 0.582
0.05 0 0.245 | -1.000 76.52 0.459 0.513 0.473 0.469 0.503 0.481
0.1 0 0.245 | -1.000 62.78 0.376 0.456 0.385 0.370 0.418 0.393
0.15 0 0.245 | -1.000 51.99 0.312 0.399 0.317 0.284 0.326 0.319

0 0 0.368 | 0.000 66.71 0.400 0.400 0.416 0.414 0.388 0.422
0.05 0 0.368 | -1.000 53.96 0.324 0.360 0.332 0.335 0.343 0.343
0.1 0 0.368 | -1.000 44.15 0.265 0.320 0.270 0.265 0.283 0.274
0.15 0 0.368 | -1.000 35.12 0.211 0.280 0.222 0.203 0.217 0.219

0 0 0.490 | 0.000 43.16 0.259 0.260 0.283 0.277 0.238 0.280
0.05 0 0.490 | -1.000 34.83 0.209 0.234 0.224 0.224 0.205 0.221
0.1 0 0.490 | -1.000 29.43 0.176 0.208 0.181 0.177 0.164 0.180
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.15 0 0.490 | -1.000 23.54 0.141 0.182 0.149 0.136 0.119 0.148
0 0.5 0.000 | 0.000 264.87 1.000 1.000 1.005 1.000 0.993
0.05 0.5 0.000 | 0.000 226.61 0.856 0.900 0.854 0.855 0.863
0.1 0.5 0.000 | 0.000 195.22 0.737 0.800 0.730 0.721 0.733
0.15 0.5 0.000 | 0.000 164.81 0.622 0.700 0.632 0.597 0.620
0 0.5 0.123 | 0.000 223.67 0.844 0.822 0.855 0.821 0.841
0.05 0.5 0.123 | -1.000 193.26 0.730 0.740 0.722 0.705 0.718
0.1 0.5 0.123 | -1.000 165.79 0.626 0.658 0.615 0.597 0.635
0.15 0.5 0.123 | -1.000 140.28 0.530 0.575 0.529 0.497 0.549
0 0.5 0.245 | 0.000 186.39 0.704 0.656 0.718 0.667 0.698
0.05 0.5 0.245 | -1.000 160.88 0.607 0.590 0.604 0.575 0.612
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.1 0.5 0.245 | -1.000 137.34 0.519 0.525 0.513 0.489 0.526
0.15 0.5 0.245 | -1.000 116.74 0.441 0.459 0.438 0.410 0.448
0 0.5 0.368 | 0.000 151.07 0.570 0.503 0.584 0.535 0.551
0.05 0.5 0.368 | -1.000 129.49 0.489 0.453 0.491 0.464 0.496
0.1 0.5 0.368 | -1.000 111.83 0.422 0.402 0.416 0.397 0.420
0.15 0.5 0.368 | -1.000 94.18 0.356 0.352 0.353 0.335 0.357
0 0.5 0.490 | 0.000 115.76 0.437 0.364 0.455 0.422 0.420
0.05 0.5 0.490 | -1.000 98.10 0.370 0.328 0.382 0.369 0.383
0.1 0.5 0.490 | -1.000 85.35 0.322 0.291 0.323 0.318 0.322
0.15 0.5 0.490 | -1.000 72.59 0.274 0.255 0.274 0.271 0.273
0 1 0.000 | 0.000 353.16 1.000 1.000 1.030 1.000 0.992
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.05 1 0.000 | 0.000 313.92 0.889 0.900 0.906 0.878 0.920
0.1 1 0.000 | 0.000 278.60 0.789 0.800 0.808 0.763 0.816
0.15 1 0.000 | 0.000 245.25 0.694 0.700 0.735 0.656 0.703
0 1 0.123 | 0.000 313.92 0.889 0.877 0.892 0.842 0.910
0.05 1 0.123 | -1.000 277.62 0.786 0.790 0.787 0.742 0.787
0.1 1 0.123 | -1.000 241.33 0.683 0.702 0.705 0.648 0.716
0.15 1 0.123 | -1.000 215.82 0.611 0.614 0.642 0.559 0.634
0 1 0.245 | 0.000 264.87 0.750 0.755 0.769 0.705 0.794
0.05 1 0.245 | -1.000 239.36 0.678 0.679 0.678 0.625 0.699
0.1 1 0.245 | -1.000 212.88 0.603 0.604 0.607 0.548 0.615
0.15 1 0.245 | -1.000 188.35 0.533 0.528 0.548 0.475 0.533
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0 1 0.368 | 0.000 225.63 0.639 0.632 0.658 0.587 0.654
0.05 1 0.368 | -1.000 206.01 0.583 0.569 0.579 0.522 0.595
0.1 1 0.368 | -1.000 179.52 0.508 0.506 0.513 0.461 0.514
0.15 1 0.368 | -1.000 155.98 0.442 0.443 0.456 0.402 0.445

0 1 0.490 | 0.000 183.45 0.519 0.510 0.561 0.485 0.526
0.05 1 0.490 | -1.000 166.77 0.472 0.459 0.489 0.434 0.493
0.1 1 0.490 | -1.000 143.23 0.406 0.408 0.427 0.385 0.427
0.15 1 0.490 | -1.000 126.55 0.358 0.357 0.372 0.338 0.375

0 0 0.000 | 0.000 101.04 1.000 1.000 0.983 1.000 1.000 1.000 0.998
0.05 0 0.000 | 0.000 84.37 0.835 0.900 0.811 0.810 0.817 0.823
0.1 0 0.000 | 0.000 68.67 0.680 0.800 0.668 0.640 0.537 0.652 0.653
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.15 0 0.000 | 0.000 54.94 0.544 0.700 0.552 0.490 0.506 0.541
0 0 0.133 | 0.000 79.46 0.786 0.751 0.765 0.754 0.766 0.750
0.05 0 0.133 | -1.000 63.77 0.631 0.676 0.622 0.611 0.677 0.605
0.1 0 0.133 | -1.000 52.97 0.524 0.601 0.508 0.483 0.554 0.512
0.15 0 0.133 | -1.000 42.18 0.417 0.526 0.419 0.369 0.431 0.424
0 0 0.267 | 0.000 55.92 0.553 0.538 0.554 0.546 0.439 0.563 0.552
0.05 0 0.267 | -1.000 47.09 0.466 0.484 0.445 0.442 0.503 0.456
0.1 0 0.267 | -1.000 38.46 0.381 0.430 0.362 0.349 0.331 0.418 0.370
0.15 0 0.267 | -1.000 31.39 0.311 0.376 0.298 0.268 0.326 0.299
0 0 0.400 | 0.000 38.26 0.379 0.360 0.377 0.373 0.388 0.383
0.05 0 0.400 | -1.000 32.37 0.320 0.324 0.301 0.302 0.343 0.309
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.1 0 0.400 | -1.000 26.98 0.267 0.288 0.244 0.239 0.283 0.247
0.15 0 0.400 | -1.000 20.60 0.204 0.252 0.200 0.183 0.217 0.198
0 0 0.533 | 0.000 24.03 0.238 0.218 0.244 0.232 0.364 0.238 0.236
0.05 0 0.533 | -1.000 19.62 0.194 0.196 0.193 0.188 0.205 0.184
0.1 0 0.533 | -1.000 16.68 0.165 0.174 0.156 0.148 0.183 0.164 0.154
0.15 0 0.533 | -1.000 13.34 0.132 0.152 0.128 0.114 0.119 0.129
0 0.5 0.000 | 0.000 143.23 1.000 1.000 1.005 1.000 1.000 0.993
0.05 0.5 0.000 | 0.000 123.61 0.863 0.900 0.854 0.858 0.863
0.1 0.5 0.000 | 0.000 103.99 0.726 0.800 0.730 0.727 0.598 0.733
0.15 0.5 0.000 | 0.000 87.31 0.610 0.700 0.632 0.605 0.620
0 0.5 0.133 | 0.000 120.66 0.842 0.807 0.843 0.816 0.830
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.05 0.5 0.133 | -1.000 103.99 0.726 0.726 0.712 0.704 0.710
0.1 0.5 0.133 | -1.000 90.25 0.630 0.645 0.606 0.599 0.626
0.15 0.5 0.133 | -1.000 72.59 0.507 0.565 0.521 0.501 0.541
0 0.5 0.267 | 0.000 98.10 0.685 0.628 0.694 0.659 0.516 0.671
0.05 0.5 0.267 | -1.000 84.86 0.592 0.565 0.584 0.571 0.591
0.1 0.5 0.267 | -1.000 72.59 0.507 0.502 0.495 0.489 0.384 0.506
0.15 0.5 0.267 | -1.000 60.82 0.425 0.440 0.423 0.412 0.431
0 0.5 0.400 | 0.000 79.46 0.555 0.465 0.550 0.525 0.516
0.05 0.5 0.400 | -1.000 67.89 0.474 0.418 0.462 0.458 0.466
0.1 0.5 0.400 | -1.000 56.90 0.397 0.372 0.391 0.395 0.393
0.15 0.5 0.400 | -1.000 48.07 0.336 0.325 0.332 0.336 0.335
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0 0.5 0.533 | 0.000 58.27 0.407 0.319 0.412 0.413 0.382 0.376
0.05 0.5 0.533 | -1.000 50.03 0.349 0.287 0.345 0.363 0.344
0.1 0.5 0.533 | -1.000 43.16 0.301 0.255 0.292 0.316 0.221 0.290
0.15 0.5 0.533 | -1.000 36.30 0.253 0.223 0.247 0.272 0.245

0 1 0.000 | 0.000 208.95 1.000 1.000 1.030 1.000 1.000 0.992
0.05 1 0.000 | 0.000 193.26 0.925 0.900 0.906 0.881 0.920
0.1 1 0.000 | 0.000 175.60 0.840 0.800 0.808 0.769 0.629 0.816
0.15 1 0.000 | 0.000 156.96 0.751 0.700 0.735 0.663 0.703

0 1 0.133 | 0.000 186.39 0.892 0.867 0.882 0.840 0.902
0.05 1 0.133 | -1.000 168.73 0.808 0.780 0.777 0.743 0.780
0.1 1 0.133 | -1.000 153.04 0.732 0.693 0.697 0.652 0.708
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.15 1 0.133 | -1.000 137.34 0.657 0.607 0.635 0.564 0.625
0 1 0.267 | 0.000 160.88 0.770 0.733 0.748 0.702 0.556 0.770
0.05 1 0.267 | -1.000 144.21 0.690 0.660 0.660 0.625 0.681
0.1 1 0.267 | -1.000 129.49 0.620 0.587 0.590 0.550 0.411 0.597
0.15 1 0.267 | -1.000 112.82 0.540 0.513 0.532 0.479 0.516
0 1 0.400 | 0.000 133.42 0.638 0.600 0.632 0.584 0.619
0.05 1 0.400 | -1.000 118.70 0.568 0.540 0.554 0.522 0.567
0.1 1 0.400 | -1.000 106.93 0.512 0.480 0.489 0.463 0.489
0.15 1 0.400 | -1.000 94.18 0.451 0.420 0.433 0.406 0.425
0 1 0.533 | 0.000 98.10 0.469 0.467 0.529 0.483 0.391 0.485
0.05 1 0.533 | -1.000 92.21 0.441 0.420 0.459 0.435 0.460
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0.1 1 0.533 | -1.000 84.37 0.404 0.373 0.399 0.388 0.241 0.400
0.15 1 0.533 | -1.000 75.54 0.362 0.327 0.345 0.342 0.354
Line of load application is away from the center line of the footing

0 0 0.000 | 0.000 166.77 1.000 1.000 0.993 1.000 0.998
0.05 0 0.123 | 1.000 113.80 0.682 0.740 0.697 0.748 0.764
0.1 0 0.123 | 1.000 107.91 0.647 0.658 0.627 0.643 0.634
0.15 0 0.123 | 1.000 92.21 0.553 0.575 0.558 0.517 0.542
0.05 0 0.245 | 1.000 88.29 0.529 0.590 0.549 0.575 0.559
0.1 0 0.245 | 1.000 85.35 0.512 0.525 0.524 0.533 0.513
0.15 0 0.245 | 1.000 81.42 0.488 0.459 0.479 0.456 0.467
0.05 0 0.368 | 1.000 68.67 0.412 0.453 0.435 0.406 0.433
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0.1 0 0.368 1.000 66.71 0.400 0.402 0.390 0.393 0.426
0.15 0 0.368 1.000 64.75 0.388 0.352 0.398 0.352 0.389
0.05 0 0.490 1.000 53.96 0.324 0.328 0.338 0.256 0.337

0.1 0 0.490 1.000 51.99 0.312 0.291 0.311 0.255 0.320
0.15 0 0.490 1.000 49.05 0.294 0.255 0.301 0.237 0.306

0 0.5 0.000 | 0.000 264.87 1.000 1.000 1.000 0.993
0.05 0.5 0.123 1.000 196.20 0.741 0.774 0.736 0.779

0.1 0.5 0.123 1.000 173.64 0.656 0.688 0.656 0.669
0.15 0.5 0.123 1.000 152.06 0.574 0.602 0.585 0.589
0.05 0.5 0.245 1.000 166.77 0.630 0.651 0.629 0.636

0.1 0.5 0.245 1.000 151.07 0.570 0.579 0.556 0.573
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.15 0.5 0.245 1.000 132.44 0.500 0.507 0.487 0.514
0.05 0.5 0.368 1.000 137.34 0.519 0.531 0.527 0.531
0.1 0.5 0.368 1.000 129.49 0.489 0.472 0.462 0.496
0.15 0.5 0.368 1.000 112.82 0.426 0.413 0.411 0.443
0.05 0.5 0.490 1.000 113.80 0.430 0.415 0.439 0.429
0.1 0.5 0.490 1.000 105.95 0.400 0.369 0.395 0.413
0.15 0.5 0.490 1.000 95.16 0.359 0.323 0.364 0.371
0 1 0.000 | 0.000 353.16 1.000 1.000 1.003 0.992
0.05 1 0.123 1.000 284.49 0.806 0.811 0.811 0.825
0.1 1 0.123 1.000 251.14 0.711 0.721 0.734 0.736
0.15 1 0.123 1.000 228.57 0.647 0.630 0.681 0.653
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.05 1 0.245 1.000 249.17 0.706 0.719 0.717 0.715
0.1 1 0.245 1.000 225.63 0.639 0.639 0.656 0.637
0.15 1 0.245 1.000 203.07 0.575 0.559 0.586 0.566
0.05 1 0.368 1.000 217.78 0.617 0.624 0.628 0.613
0.1 1 0.368 1.000 193.26 0.547 0.554 0.556 0.552
0.15 1 0.368 1.000 171.68 0.486 0.485 0.487 0.489
0.05 1 0.490 1.000 179.52 0.508 0.525 0.528 0.519
0.1 1 0.490 1.000 156.96 0.444 0.467 0.463 0.477
0.15 1 0.490 1.000 143.23 0.406 0.408 0.411 0.415
0 0 0.000 | 0.000 101.04 1.000 1.000 0.993 1.000 0.998
0.05 0 0.133 1.000 71.61 0.709 0.726 0.682 0.748 0.746
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.1 0 0.133 1.000 62.78 0.621 0.645 0.618 0.643 0.620
0.15 0 0.133 1.000 52.97 0.524 0.565 0.551 0.517 0.535
0.05 0 0.267 1.000 56.90 0.563 0.565 0.530 0.575 0.532
0.1 0 0.267 1.000 51.99 0.515 0.502 0.502 0.533 0.498
0.15 0 0.267 1.000 49.05 0.485 0.440 0.466 0.456 0.454
0.05 0 0.400 1.000 42.58 0.421 0.418 0.404 0.406 0.406
0.1 0 0.400 1.000 41.20 0.408 0.372 0.362 0.393 0.400
0.15 0 0.400 1.000 38.65 0.383 0.325 0.371 0.352 0.368
0.05 0 0.533 1.000 31.39 0.311 0.287 0.320 0.256 0.306
0.1 0 0.533 1.000 30.41 0.301 0.255 0.299 0.255 0.280
0.15 0 0.533 1.000 29.43 0.291 0.223 0.288 0.237 0.276
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)

0 0.5 0.000 | 0.000 143.23 1.000 1.000 1.000 0.993
0.05 0.5 0.133 1.000 105.95 0.740 0.763 0.726 0.764
0.1 0.5 0.133 1.000 94.18 0.658 0.679 0.648 0.659
0.15 0.5 0.133 1.000 77.50 0.541 0.594 0.577 0.582
0.05 0.5 0.267 1.000 88.29 0.616 0.630 0.611 0.617
0.1 0.5 0.267 1.000 77.50 0.541 0.560 0.538 0.558
0.15 0.5 0.267 1.000 67.69 0.473 0.490 0.471 0.501
0.05 0.5 0.400 1.000 73.58 0.514 0.500 0.502 0.504
0.1 0.5 0.400 1.000 63.77 0.445 0.445 0.442 0.476
0.15 0.5 0.400 1.000 56.90 0.397 0.389 0.396 0.424
0.05 0.5 0.533 1.000 58.86 0.411 0.375 0.411 0.394
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Expt. qu

e/B | D¢/B | o/ LA RFey: | RFewp | RFany | RFum1963) | REs & a1991) | RFL2008) | RFaNN (0)
(kKN/m®)
0.1 0.5 0.533 1.000 53.96 0.377 0.333 0.378 0.379
0.15 0.5 0.533 1.000 48.07 0.336 0.291 0.353 0.348
0 1 0.000 | 0.000 208.95 1.000 1.000 1.003 0.992
0.05 1 0.133 1.000 170.69 0.817 0.803 0.800 0.815
0.1 1 0.133 1.000 156.96 0.751 0.713 0.729 0.728
0.15 1 0.133 1.000 144.21 0.690 0.624 0.674 0.645
0.05 1 0.267 1.000 148.13 0.709 0.702 0.703 0.697
0.1 1 0.267 1.000 135.38 0.648 0.624 0.639 0.620
0.15 1 0.267 1.000 120.66 0.577 0.546 0.567 0.552
0.05 1 0.400 1.000 124.59 0.596 0.598 0.602 0.588
0.1 1 0.400 1.000 114.78 0.549 0.532 0.530 0.532
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e/B | Di/B | o/d LA L RFexpi | RFgmp | RFEany | RFy1963) | RFs & a1991) | RFL2008) | RFEaNN (C)
(kKN/m®)

0.15 1 0.400 1.000 103.01 0.493 0.465 0.464 0.470

0.05 1 0.533 1.000 99.08 0.474 0.489 0.494 0.486

0.1 1 0.533 1.000 92.21 0.441 0.435 0.436 0.449

0.15 1 0.533 1.000 86.33 0.413 0.380 0.392 0.391

Note:

RF,,,:: Reduction Factor values corresponding to present experimental results

RFEmp: Reduction Factor values by using developed empirical equations in Chapter 4 and 5

RFsny: Reduction Factor values by using developed ANN model equations in Chapter 6 and 7

RFwm(1963): Reduction Factor values corresponding to Meyerhof (1963)

RF & a¢1991): Reduction Factor values corresponding to Saran and Agarwal (1991)

RF12008): Reduction Factor values corresponding to Louikidis et al. (2008) for both clockwise and anti-clockwise load inclination

RFsnn (c)): Reduction Factor values by using present combined ANN model equation
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