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ABSTRACT 

 

 Advancement in science and technologies parallel to industrial revolution has opened 

new vistas to exploit the inherent traits of natural resources including green plants and 

microorganisms to overcome the damage to the environment by pollutants. 

 The present work was aimed to develop the phytoremediation potential of the aquatic 

plant Eichhornia crassipes for arsenic (III) and chromium (VI) from water. The 

accumulation, relative growth and bio-concentration factor of plant on treatment with 

different concentrations of arsenic(III) and chromium(VI) solution significantly 

increased (P<0.05) with the passage of time. Plants treated with 0.100 mg/L arsenic 

(III) accumulated the highest concentration of arsenite in roots (7.20 mg kg
-1

, dry 

weight) and shoots (32.1 mg kg
-1

, dry weight); while those treated with 4.0 mg/L of 

chromium (VI) accumulated the highest concentration of hexavalent chromium in 

roots (1320 mg/kg, dry weight) and shoots (260 mg/kg, dry weight) after 15 days. The 

plant biomass was characterized by SEM, EDX, FTIR and XRD techniques. 

Microwave-assisted extraction efficiency is investigated for extraction of arsenic from 

plant materials by comparison of the results by three extractant solutions: (i) 10% 

(v/v) tetramethylammonium hydroxide (TMAH) (ii) Deionized water and (iii) 

Modified protein extracting solution at different temperature and times. Extraction of 

chromium ions was carried by same procedure from plant materials using three 

extractant solutions: (i) 0.02 M ethylenediaminetetraacetic acid (EDTA), (ii) 

Deionized water and (iii) HCl solution at different temperature and times. 

Chromatograms are obtained for arsenic and chromium species in plant shoot biomass 

by using HPLC-ICP-MS.  

  The biosorption of arsenic (III) and chromium (VI) from water is studied by living 

cells of Bacillus cereus biomass as bioremediation.  Bacillus cereus biomass is 

characterized, using SEM-EDX, AFM and FTIR. Dependence of biosorption was 

studied with variation of various parameters to achieve the optimum condition. The 

maximum biosorption capacity of living cells of Bacillus cereus for arsenic (III) and 

chromium (VI) was found to be 32.42 mg/g and 39.06 mg/g at pH 7.5, at optimum 

conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 

± 2°C.  Biosorption data of arsenic (III) chromium (VI) are fitted to linearly 

transformed Langmuir isotherm and pseudo-second-order model with R
2
 (correlation 
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coefficient) > 0.99. Thermodynamic parameters reveal the endothermic, spontaneous, 

and feasible nature of sorption process of arsenic (III) chromium (VI) onto Bacillus 

cereus biomass. The arsenic (III) and chromium (VI) ions are desorbed from Bacillus 

cereus using both 1M HCl and 1M HNO3.   

 The biosorption data of both arsenic (III) and chromium (VI) ions collected from 

laboratory scale experimental set up is used to train a back propagation (BP) learning 

algorithm having 4-7-1 architecture. The model uses tangent sigmoid transfer function 

at input to hidden layer whereas a linear transfer function is used at output layer.  

  The removal of chromium (VI) from aqueous solutions by activated carbon prepared 

from the Eichhornia crassipes root biomass. The maximum removal capacity of 

activated carbon was found to be 36.34 mg/g for chromium (VI), at pH 4.5, contact 

time of 30 min, biomass dosage of 7 g/L, and temperature of 25 ± 2 °C. The 

adsorption mechanisms of chromium (VI) ions onto activated carbon prepared from 

the Eichhornia crassipes root biomass are also evaluated in terms of thermodynamics, 

equilibrium isotherm and kinetics studies. Column studies are also performed to know 

the breakthrough point with an initial concentration of 10 mg/L.   

  

Key words- Eichhornia crassipes ; Phytoremediation ; Arsenic (III); Chromium(VI); 

Microwave assisted extraction; Bio-concentration factor;  Bacillus cereus;  

Biosorption isotherm, Biosorption kinetics; Thermodynamic parameters; 

Regeneration and reuse; Atomic force microscopy; HPLC-ICP-MS; SEM-EDX; 

XRD, FTIR; HG-AAS; ANN; Activated carbon; Column studies. 
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1. Introduction 

 

The quality of life on Earth is linked inextricably to the overall quality of the environment. In 

early times, it was believed that land, water and other natural resources have unlimited 

abundance but today, it is not true; in greater or lesser degree the human society has shown the 

carelessness and negligence in using them. The problems associated with contaminated sites now 

assume increasing prominence in many countries throughout the globe. The living conditions 

today have surely improved to a great extent at the cost of environmental degradation. Global 

development, however, raises new challenges, especially in the field of environmental protection 

and conservation (Duruibe et al., 2007). Consequent to globalization, industrialization and 

urbanization creates the problem of pollution including heavy metal pollution .The pollution due 

to heavy metals and metalloids is a widespread problem and causes a major environmental  

degradation in each segment of environment. It is indeed a matter of concern to everybody as it 

has direct effect on human and environmental health (Hogan, 2012). The development is 

dominated by two prime factors. Firstly, each developed or developing countries are facing 

unprecedented problems in the environmental areas like issues of population, extremes of 

affluences, drinking water, global warming, stratospheric ozone depletion, ground water 

contamination, management of wastes and other pollution problems. Secondly, these problems 

invoke opportunities of parallel scope to solve the above problems. The air, water and soil are 

getting filled up with hazardous wastes. The very nature of environmental problems has changed 

(Agarwal, 2009) in the last few decades.  Natural resources may be renewable or non-renewable 

are made by nature, not by human beings.  A resource is anything which the environment 

provides to meet our needs and desires, which have dependability through time (University of 

Texas, 2003).  
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 Among the various environmental resources water is one of the most important commodities 

which require special attention. Water is a vital natural resource which forms the basis of all life.  

About 97% of the earth’s surface is covered by water and most of the animals and plants have 

60-65% water in their body. Every year 111,000 km
3
 of water falls on land and 70, 000 km

3
 

returns to the atmosphere by evapotranspiration from wet surfaces and plants. The remaining 41, 

000 km
3
, is the runoff, which eventually reaches the oceans. If the runoff were divided evenly, it 

could provide each person with 6,760 m
3
 a year of freshwater (2000 population). The major 

amount of water available for human consumption is also polluted. Any human activity that 

impairs the use of water as a resource may be called water pollution. The burgeoning population 

is exhausting the available fresh water resources as a result of which, the world is heading 

towards water crises (Saeijs and Van, 1995; Rosegrant and Cai, 2001). It is predicted that in 

future most of the social conflicts are going to be water based as predicated by the great scientist 

of present world Albert Einstein. At present, one liter of packaged water costs rupees 12-15 

whereas the milk is costing rupees 10-16 in villages and in future, pure water will be a heavily 

priced commodity.  

  In 2012, the world population reaches 7 billion marks. The UN estimates that, by 2050 there 

will be an additional 2.1 billion people (UN News Centre, 2012) with most of the growth in 

developing countries that already are under water stress. Former Secretary-General of the United 

Nations, Kofi Annan, who in 2001 said, “Fierce competition for fresh water may well become a 

source of conflict and wars in the future.” In appreciation of this situation, several steps being 

taken to control water pollution which seems to be insufficient. More research inputs are 

required to avoid conflicts in future. Water in the earth’s biosphere is used and reused again and 

again. This is called water cycle or continuous movement of water between the earth and the 

atmosphere. Water can change states among liquid, vapor, and solid at various places in the 

water cycle. Although the balance of water on Earth remains fairly constant over time, individual 

water molecules can come and go, in and out of the atmosphere.  

 Heavy metals/metalloids can be found in industrial wastewater/effluents and are deemed 

undesirable proclaimed by many researchers/environmentalists. Prolonged exposure to heavy 

metal ions has been found to cause the degradation of flourishing ecosystems which harm the 

inhabitants. Heavy metals/ metalloids are the main group of inorganic contaminants. A 

http://en.wikipedia.org/wiki/Liquid
http://en.wikipedia.org/wiki/Water_vapor
http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Atmosphere_of_Earth
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considerable large area of land is contaminated with them due to the use of sludge or municipal 

compost, pesticides, fertilizers, and emissions from municipal waste incinerators, car exhausts, 

residues from metalliferous mines, and smelting industries (Jackson et al., 2012).  Although 

metals are present naturally in the Earth’s crust at various levels but many metals are essential 

for cells (e.g. copper, iron, manganese, nickel, zinc). All metals are toxic at higher 

concentrations. Specifically, any metal (or metalloid) species may be considered as 

‘‘contaminant’’ if it occurs where it is unwanted, or in a form or concentration that causes a 

detrimental human or environmental effect (Matschullat, 2002).  Metal concentrations in soil 

typically range from less than one to as high as 100 000 mgkg
-1

.  

   Among the various heavy metals, Arsenic (III) and Chromium (VI) are well-known toxic metal 

that is considered as priority pollutant. The adverse effects of these two metals are well 

documented. Arsenic contamination in natural water possesses a great threat to millions of 

people in many regions of the world such as China, Bangladesh, Nepal, Myanmar, Cambodia 

and Thailand. Ground water contamination by arsenic has been a major problem in the 

northeastern parts of India like West Bengal, Assam and in few regions of Odisha. Arsenic 

occurs naturally in soil and water, and it also enters the environment due to anthropogenic 

activities. Common chemical forms of arsenic in the environment include arsenate, arsenite, 

dimethyl arsenic acid, and mono methyl arsenic acid. Epidemiological studies demonstrated that 

there is close link between the chronic exposure to arsenic in drinking water and some medical 

disorders and cancers. Chronic arsenic poisoning can cause a lot of human health problems 

through either contaminated drinking water or agriculture products irrigated by contaminated 

water (Zhao et al., 2012; Wang et al., 2007; Guha Mazumder, 2007).  

Chromium is another heavy metals found in effluents discharged from industries involved in 

electronics, electroplating, metallurgical, leather tanning and wood preservatives. The speciation 

of chromium in contaminated environments becomes critical for understanding its fate and 

exposure. At pH value less than 6.5 and at high chromium concentration; Cr2O7
2− 

predominates, 

whereas CrO4
2−

 predominates at pH value greater than 6.5. Strong exposure to Cr (VI) may 

cause epigastria pain, nausea, vomiting, severe diarrhea and cancer in the digestive tract and 

lungs (Saçmac et al., 2012; Megharaj et al., 2003). Many methods have been documented for 

removal of excessive heavy metals/metalloids from water such as coagulation, ion exchange, 

precipitation, electrolysis, and reverse osmosis (Balasubramanian et al., 2009; Kim et al., 2006; 
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Kumari et al., 2006). Most of these methods suffer from some disadvantages because of which it 

is not very popular (Sharma and Sohn, 2009).   

Among these methods, use of aquatic plants to absorb metals from surrounding water is 

extremely efficient.  Biosorption has been treated as a potential technology for removal of toxic 

heavy metals from industrial wastewater using microbial biomass (Veglio and Beolchini, 1997). 

A plant-based phytoremediation approach to remove heavy metals uses plant roots to extract, the 

vascular system to transport and the leaves as a sink to concentrate the elements above ground 

for harvest and processing of metals (Natarajan et al., 2008; Gratao et al., 2005; Jadia and 

Fulekar, 2009).  Contaminants such as metals, pesticides, solvents, explosives and crude oil and 

its derivatives, are being removed by phytoremediation projects worldwide (Greipsson, 2011). 

Many plants such as mustard plants, alpine pennycress, hemp, and pigweed
 
have proven to be 

successful at hyperaccumulating contaminants at toxic waste sites. Phytoremediation is 

considered a clean, cost-effective and non-environmentally disruptive technology, as opposed to 

mechanical cleanup methods such as soil excavation or pumping polluted groundwater. Over the 

past two decades, this technology has become increasingly popular and has been employed in 

situ in soil and water, contaminated with lead, uranium, and arsenic. However, one major 

disadvantage of phytoremediation is that, it requires a long-term commitment, as the process 

depends on plant growth, tolerance to toxicity, and bioaccumulation capacity (Salt et al., 1995; 

Glick, 2004). The use of hydroponic culture treatment has been considered as a means of 

assessing the plant tolerance to the toxic elements or its efficiency in mineral utilization. The bio 

removal process using aquatic plants contains two uptake processes such as (i) biosorption which 

is an initial fast, reversible, and metal-binding process and (ii) bioaccumulation which is a slow, 

irreversible, and ion-sequestration step. At the end of the 19th century, Thlaspi caerulescens and 

Viola calaminaria were the first plant species documented in the literature to accumulate high 

levels of metals in leaves.  In the last decade, extensive research has been conducted to 

investigate the importance of metal in biology. Some macrophytes are found to remove different 

concentrations of arsenic ions, which make them suitable to act as bio-monitors for metals, and 

have ability to act as biological filters of the aquatic environment (Chiu et al., 2005; Fayiga et 

al., 2005; Huang et al., 2004; Keith et al., 2006; Mishra et al., 2008).   

Phytoremediation, the use of plants and their associated microbes, offers an effective, low cost 

and sustainable means to achieve the desired results (Hannink et al., 2001).  It is a general term 

http://en.wikipedia.org/wiki/Mustard_plant
http://en.wikipedia.org/wiki/Alpine_pennycress
http://en.wikipedia.org/wiki/Pigweed
http://en.wikipedia.org/wiki/Toxic_waste
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for several ways in which plants are used to remediate sites by removing pollutants from soil and 

water. Plants can degrade organic pollutants or contain and stabilize metal contaminants by 

acting as filters or traps. Some of the methods that are being tested are described: 

Phytoaccumulation/extraction:  Phytoextraction, also called phytoaccumulation, refers to the 

plant uptake metal contaminants through the roots and moves them into the upper portion of the 

plant (stems and the leaves) (Salt et al., 1995; Saraswat and Rai, 2009; Maine et al., 2004; 

Ampiah-Bonney et al., 2007). Phytodegradation by plants: Phytodegradation, also called 

phytotransformation, is the breakdown of contaminants taken up by plants through metabolic 

processes within the plant. Rhizosphere biodegradation: The breakdown of contaminants in the 

soil through microbial activity and is enhanced by the presence of the rhizosphere are called 

enhanced rhizosphere biodegradation, phytostimulation, or plant-assisted 

bioremediation/degradation.  Rhizofiltration: Rhizofiltration is the adsorption or precipitation 

onto plant roots or absorption of contaminants into the roots which are in solution surrounding 

the root zone (Walton and Anderson, 1990). Phytostabilization: Plants prevent contaminants 

from migrating by reducing runoff, surface erosion, and ground water flow rates (Dary et al., 

2010). Phytovolatization: Phytovolatilization is the uptake and transpiration of a contaminant 

by a plant, with release of the contaminant or a modified form of the contaminant to the 

atmosphere from the plant (Di Lonardo et al., 2011).  The main advantages of this technique are 

environmentally friendly, cost-effective, aesthetically pleasing. In view of the above facts, it is 

considered worthwhile to use a plant species which are very commonly available and have 

potential to effectively remove the desired anions from water environments. 

  Eichhornia crassipes is common macrophyte which is abundant in wetlands, lakes and ditches. 

As it has a high growth-rate, fibrous root system and broad leaves along with tendency to tolerate 

high metal concentration, it is considered as an important species to be used in phytoremediation 

technique (Alvarado et al., 2008; Misbahuddin and Fariduddin, 2002; Snyder, 2006; Low and 

Lee, 1990). Arsenic (III) and chromium (VI) absorption from aqueous solution using Eichhornia 

crassipes attempt has been made in this work to develop the phytoremediation potential of this 

plant. These two species extracted from Eichhornia crassipes shoot biomass using different 

extracting solution by complete microwave assisted extraction method. These hazardous ions 

absorption and extraction using this floating water hyacinth has not been work elsewhere. Hence 

the present work was undertaken by using the Eichhornia crassipes.  
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   Bioremediation is another technique which involves the use of microorganisms for the 

degradation of hazardous ions and chemicals from soil, sediments, water, or other contaminated 

materials. Often the microorganisms metabolize the chemicals to produce carbon dioxide or 

methane, water and biomass (Harms et al., 2011; Silar et al., 2011). Alternatively, the 

contaminants may be enzymatically transformed to metabolites that are less toxic or innocuous 

(Iwamoto and Nasu, 2001). There are at least five critical factors that should be considered when 

evaluating the use of bioremediation for site cleanup. These factors are: (a) Magnitude, toxicity, 

and mobility of contaminants, (b) Proximity of human and environmental receptors, (c) 

Degradability of contaminants, (d) Planned site use and (e) Ability to monitor properly. Different 

bioremediation techniques are employed depending on the degree of saturation and aeration of 

an area (Tarangini et al., 2009; Qaiser et al., 2009). In situ bioremediation: In this remediation 

involves treating the contaminated material at the site. The most important in situ bioremediation 

treatments are bioventing, In situ biodegradation, biosparging and bioaugmentation. Ex situ 

bioremediation: In this remediation involves the removal of the contaminated material to be 

treated elsewhere. The most important ex situ bioremediation treatments are land farming, 

composting, biopiles and bioreactors.  

  Biosorption of metal /metalloids ions are examples of the wide variety of potential and actual 

applications of bioremediation technique in waste water treatment (Mungasavalli et al., 2007; 

Hansen et al., 2006).  Biosorption is proven to be quite effective for the removal of heavy 

metal/metalloids ions from contaminated effluent in a low cost and environment friendly 

manner. The biosorption is a passive process which utilizes cell wall of biomass to sequester the 

metal ions from aqueous solutions. Mechanisms of cell surface sorption are independent of cell 

metabolism which is based on physico-chemical interactions between metal and functional 

groups of the cell wall. The cell wall of microorganism mainly consists of polysaccharides, lipids 

and proteins that serve binding sites for metals. Microorganisms that affect the reactivity and 

mobility of metals can be used to detoxify some metals and prevent further metal contamination. 

Staphylococcus, Bacillus, Pseudomonas, Citrobacteia, Klebsilla, and Rhodococcus are 

organisms that are commonly used in bioremediation mechanisms. The main advantages of this 

technique are low cost and high efficiency, and regeneration of biosorbents and possibility of 

metal recovery.  
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 Bacillus cereus (MTCC NO: 1305) of microbial type culture and collection is obtained from the 

Institute of Microbial Technology, Chandigarh, India to undertake the study. The identified 

species of B. cereus is a gram-positive, rod shaped bacterium. Many active researches are going 

on throughout the globe to find a standard method including the bioremediation technique by 

different living microorganism. The biosorption of the two hazardous ions using the above 

mention microorganism has not been worked elsewhere. Hence it was considered the best choice 

to use this microorganism for biosorption of these two anions. In view of the above facts, an 

attempt has been made in this work for biosorption of arsenic (III) and chromium (VI) from 

aqueous solution using living cells of Bacillus cereus. The novelty of this work is to use a new 

microorganism for the removal of two hazardous ions and the results are compared with a model 

to find the validity of the experimental results.  

  Artificial Neural Network (ANN) is categorized as an artificial intelligence modelling 

technique due to their ability to recognize patterns and relationships in historical data and 

subsequently make inferences concerning new data. ANNs can be used for two broad categories 

of problems: data classification and parameter prediction (Aleboyeh et al., 2008). (i) Data 

classification problems, the ANN uses a specified algorithm to analyze data cases or patterns for 

similarities and then separates them into a pre-defined number of classes. (ii) Parameter 

prediction problems, the ANN learns to predict accurately the value of an output parameter when 

information is given with sufficient input parameter (Yetilmezsoy and Demirel, 2008; Schalkoff, 

1997). The main applications of the ANN technique in the water treatment industry are in the 

development of process models and model-based process-control and automation tools (Shetty 

and Chellam, 2003). Estimation of sorption efficiency using mathematical and analytical 

tools is involved because the physical phenomenon for removal of arsenic (III) and 

chromium (VI) by living cells of Bacillus cereus is complex one. Therefore, artificial neural 

network (ANN) has been attempted in this work for prediction purpose because ANN has 

the capacity to map inputs and outputs efficiently in complex situations.  

   Removal of metal ions using activated carbons is one of the examples of the wide variety of 

potential and actual application of adsorption technique in waste water treatment (Kimbrough et 

al., 1999). Adsorption is a conventional but efficient technology for the removal of toxic 

pollutants from wastewaters. So, there is a need to develop low cost and easily available 

activated carbon adsorbents for the removal of heavy metal ions from the aqueous environment. 
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The main advantages of this technique are the reusability of material, low operating cost, 

improved selectivity for specific metals of interest, removal of heavy metals from effluent 

irrespective of toxicity, short operation time. Activated carbon prepared from Eichhornia 

crassipes root biomass, and its use for the removal of chromium (VI) ions from water has not 

been reported. In view of the above facts it is worth to prepare the activated carbon from the root 

and subsequently use the material to remove the chromium (VI) from water.   

   In view of above facts, an attempt has been made in this work to evaluate the phytoremediation   

potential of the aquatic plant Eichhornia crassipes for arsenic (III) and chromium (VI) from 

aqueous solution. Similarly bioremediation technique has been used to remove the arsenic (III) 

and chromium (VI) from aqueous solution using living cells of Bacillus cereus biomass. To 

ascertain the mechanism of the process, the plant biomass was characterized by HPLC-ICP-MS, 

SEM, EDX, FTIR and XRD techniques. The biosorption of arsenic (III) and chromium (VI) 

from aqueous solution by living cells of Bacillus cereus biomass. Bacillus cereus biomass is 

characterized, using SEM-EDX, AFM and FTIR. To ascertain the validity of the experimental 

results, the data of both the biosorption process for both the hazardous ions collected from 

laboratory scale experimental set up will be used to train a back propagation (BP) learning 

algorithm having 4-7-1 architecture. The model uses tangent sigmoid transfer function at input to 

hidden layer whereas a linear transfer function is used at output layer. Many researchers 

throughout the globe are using modeling to validate the experimental data. The species used in 

this work for both the technique have not been used elsewhere hence It is assumed as a small 

step to approach to solve a big problem.  
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2. Aims and Objectives 

Water is one of the most important resources of nature which cover almost three-quarters of the 

planet. About 97 % of world’s water resources are locked-up in the oceans and seas which are 

too saline to be used directly.  Almost 2.4 % is trapped in giant glaciers and polar ice-caps. Thus 

not even 1 % of the total world’s water resources are available for exploitation by man for 

domestic, agricultural and industrial purposes. The water is called elixir of life because of its 

multiple uses. Indiscriminate use and misuse of water is making it unfit for human consumption.  

A survey of literature reveals that toxic pollutants are removed successfully by different green 

floating plants and microorganisms from water using phytoremediation and bioremediation 

techniques respectively. Hence an attempt has been made in the present study to remove two 

priority pollutants under the topic “Removal of arsenic (III) and chromium (VI) from the water 

using phytoremediation and bioremediation techniques”. To achieve the desired result, the 

present work was started with following objectives: 

1. To evaluate the phytoaccumulation potential from different concentration of arsenic (III) and 

 chromium (VI) ions (mg kg
-1

) by the plant Eichhornia crassipes from aqueous solution. This 

 objective has the following sub headings. 

 To study the relative growth, bio-concentration factor and toxicity of treated plants 

along with the temperature, TDS, DO of water. 

 To study the efficiency of arsenic and chromium extraction processes by complete 

microwave wet digestion and analysis by HPLC-ICP-MS. 

 To study the mechanism of the process. 
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2. To study the biosorption feasibility of arsenic (III) and chromium (VI) using living cells  

  of the Bacillus cereus biomass, by varying the various process parameters like initial   

  concentration, pH, biosorbent dose, contact time and temperature by batch mode. 

 To evaluate the mechanism of arsenic (III) and chromium (VI) biosorption using 

various biosorption isotherms, kinetic and thermodynamic study. 

 To study the reusability of the biosorbent by desorption and regeneration study. 

  To characterized the Bacillus cereus biomass before and after sorption of arsenic (III) 

and  chromium (VI) using SEM-EDX, AFM, FTIR etc. 

3. To predict and compare the removal efficiency of arsenic (III) and chromium (VI) from 

 aqueous solution by biosorption process using a multilayer feed forward neural network 

 model. 

4. To use the activated carbon prepared from Eichhornia crassipes root biomass, for removal of 

 chromium (VI) from aqueous solution by batch mode to know the practical applicability.  

 To evaluate the mechanisms.  

 To characterize the activated carbon by standard methods.  

 To understand the column study and breakthrough analysis to know the practical 

applicability. 
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3. Literature Review 

  

The development of future generation will be the result of research planned today. The 

knowledge of related literatures of the past studies is very much essential for any research for the 

formulation of sound methodology which acts as the guiding force during the advancement of 

research. New areas of research can be inferred from literature. The review of literature related to 

the present research is organized and presented as follows.  

 

3.1. Heavy metals/ metalloids 

The term ‘heavy metal/metalloid’ is the used to cover a diverse range of elements which 

constitute an important class of pollutants. These metals/metalloids are major pollutants in 

ground water, industrial effluent, marine water, and even treated waste water (Hogan, 2012). The 

important toxic metals/metalloids (i. e. Cd, Hg, As, Cr, Zn, and Pb) find its way to the water 

bodies through waste water (Agarwal, 2009; Merrill et al., 2007). Heavy metals/metalloids enter 

into the environment mainly via three routs: (i) deposition of atmospheric particulates, (ii) 

disposal of metal and metalloid enriched sewage sledges and sewage effluents, and (iii) by-

product from metal mining processes and other processing industries. The other sources of 

metals and metalloids pollution are by irrigation of agricultural fields and uses of pesticides and 

fertilizers (Hani and Pazira, 2011). Due to the non-biodegradability and persistence nature, these 

metals and metalloids can enter in to the food chain, and thus may pose significant danger to 

human health other organism and plants. 

 

3.1.1. Arsenic 
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  Arsenic (atomic number 33) is ubiquitous and ranks 20th in natural abundance, comprising 

about 0.00005% of the earth’s crust, 14th in the seawater, and 12th in the human body. It’s 

concentration in most rocks ranges from 0.5 to 2.5 mg/kg, though higher concentrations are 

found in finer grained argillaceous sediments and phosphorites (Mandal and Suzuki, 2002). It is 

a silver-grey brittle crystalline solid with atomic weight 74.92 g mol
 -1

; specific gravity 5.73, 

melting point 817 ◦C (at 28 atm), boiling point 613 ◦C and vapor pressure 1mm Hg at 372 °C. 

Since its isolation in 1250 A.D. by Albertus Magnus (Mandal and Suzuki, 2002), this element 

has been a continuous center of controversy.  

  Arsenic exists in the −3, 0, +3 and +5 oxidation states (Smedley et al., 2002). The various 

forms of arsenic in the environment include arsenious acids (H3AsO3), arsenic acids (H3AsO4, 

H2AsO4
−
, HAsO4

2−
), arsenites, arsenates, methylarsenic acid, dimethylarsinic acid, arsine, etc. 

Arsenic (III) exist a hard acid and preferentially complexes with oxides and nitrogen. 

Conversely, arsenic (V) behaves like a soft acid, forming complexes with sulfides.  Arsenic is 

uniquely sensitive to mobilization (pH 6.5-8.5) under both oxidizing and reducing conditions 

among heavy metalloids (Smedley and Kinniburgh, 2005). Two forms are common in natural 

waters: arsenite (AsO3
3-

) and arsenate (AsO4
3-

), referred to as arsenic (III) and arsenic (V). 

Pentavalent (+5) or arsenate species are (AsO4
3-

, HAsO4
2-

, H2AsO4
-
) oxyanions (Ranjan et al., 

2009) while trivalent (+3) arsenites include As(OH)3, As(OH)4
-
, AsO2OH

2-
 and AsO3

3-
 (Mohan 

and Pittman Jr.  2007). Pentavalent species predominate and are stable in oxygen rich aerobic 

environments. Trivalent arsenites predominate in moderately reducing anaerobic environments 

such as groundwater. Arsenic is well known highly toxic metalloids and is a cumulative poison 

to living being and green environment. 

 

3.1.1.1. Sources of arsenic 

  Arsenic is considered as one of the most significant pollutant in many countries of world. It can 

be easily solubilized in groundwater depending on pH, redox conditions, temperature, and 

solution composition (Jackson et al., 2012; Matschullat, 2000). There are many possible routes 

of human exposure to arsenic from both natural and anthropogenic sources. Arsenic is mobilized 

by natural weathering reactions, biological activity, mining activity, geochemical reactions, and 

volcanic eruptions (Dogan and Dogan, 2007). Soil erosion and leaching contribute to 612×10
8
 

and 2380×10
8
 g/year of arsenic, respectively, in dissolved and suspended forms in the oceans 
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(Mackenzie et al., 1979). Most environmental arsenic problems are the result of mobilization 

under natural conditions. Arsenic from weathered rocks and soils dissolves in groundwater. 

Arsenic concentrations in groundwater are particularly high in areas with geothermal activity. 

Inorganic arsenic derived from rocks such as arsenic trioxide (As2O3), orpiment (As2S3), 

arsenopyrite (AsFeS) and realgar (As4S4) is most prevalent (Smedley and Kinniburgh, 2005).  

 Large quantities of arsenic are released by anthropogenic activity from combustion of fossil 

fuels, use of arsenic pesticides, herbicides, and crop desiccants and use of arsenic additives to 

livestock feed create additional impacts. Metallic arsenic is processed in lead or copper alloys, to 

increase hardness. The extremely toxic arsenic gas AsH3 plays an important role in microchip 

production. Copper arsenate (Cu3 (AsO4)2.4H2O) is applied as a pesticide in viticulture. Paxite 

(CuAs2) is an insecticide and fungicide. Other arsenic compounds are applied as a wood 

preservative, in glass processing, in chemical industries, or in semiconductor technique with 

gallium and indium (Garelick et al., 2008). 

 

3.1.1.2. Uses of arsenic  

Arsenic is highly poisonous to most life and there are only a few species of bacteria that are able 

to use arsenic compounds safely. The following are some of the most common uses for arsenic in 

the world today (Benner, 2010). 

 The arsenic is used as pigment in paints. Specially as a white extender pigment in white 

paints where whiteness was important. It is also used to enhance green pigments. 

 The main use of metallic arsenic is for strengthening the alloys of copper and lead to use 

in batteries and other purposes. 

 Arsenic is also used in numerous pesticides, herbicides and insecticides though this 

practice is becoming less common as most of these products are banned.  

 It is used as a wood preservative because of its toxicity to insects, bacteria and fungi.  

 Arsenic is used in the medical treatment of cancers such as acute promyelocytic 

leukemia.  

 Arsenic-74 an isotope is being used as a way to locate tumors within the body. It 

produces clearer pictures than that of iodine.  

3.1.1.3. Toxicity of arsenic in water 
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The toxicity and deleterious effects of arsenic on living being as well as green environments are 

well documented. Arsenic occurrence in the environment, its toxicity, health hazards, and the 

techniques used for speciation analysis are well known and has been reviewed (Bissen and 

Frimmel, 2003; Jain and Ali, 2000; WHO, 1981). Long term drinking water exposure causes 

skin, lung, bladder, cardiovascular diseases, and kidney cancer as well as pigmentation changes, 

skin thickening (hyperkeratosis), neurological disorders, muscular   weakness, loss of appetite, 

and nausea (Zhao et al., 2012; Wang et al., 2007; Guha Mazumder, 2007; Kapaj et al., 2006; 

Kitchin and Wallace, 2008). Toxicity differs between various arsenic compounds, for example, 

monomethyl arsenic acid and inorganic arsenide have a higher toxicity level than arsenic choline. 

Acute toxicity is generally higher for inorganic arsenic compounds than for organic arsenic 

compounds (Sharma and Sohn, 2009). Oral intake of more than 100 mg is lethal. The lethal dose 

of arsenic trioxide is 10-180 mg, and for arsenide this is 70-210 mg. The mechanism of toxicity 

is binding and blocking sulphur enzymes. Symptoms of acute arsenic poisoning are nausea, 

vomiting, diarrhoea, cyanosis, cardiac arrhythmia, confusion and hallucinations. Symptoms of 

chronic arsenic poisoning are less specific (http://www.epha.org/a/2750; Ng et al., 2003). These 

include depression, numbness, sleeping disorders and headaches. Arsenic related health effects 

are usually not acute, but mostly encompass cancer, mainly skin cancer (Wang et al., 2007).  

  Arsenic in natural waters is a worldwide problem. Arsenic pollution has been reported recently 

in the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, 

New Zealand, Japan and India. The WHO provisional guideline of 10 ppb (0.01 mg/L) has been 

adopted as the drinking water standard. However, many countries have retained the earlier WHO 

guideline of 50 ppb (0.05 mg/L) as their standard or as an interim target including Bangladesh 

and China. In 2001, US-EPA published a new10 ppb (0.01 mg/L) standard for arsenic in 

drinking water, requiring public water supplies to reduce arsenic from 50 ppb (0.05 mg/L) to 10 

ppb (USEPA, 2001), which are in effect from January 2006.  

  Arsenic toxicity is known to interfere with sulfhydryl groups in cells of most plants. Hence, 

plants those are not tolerant to arsenic shows toxic symptoms such as a  decrease in plant  

growth,  plasmolysis, wilting and  necrosis  of  leaf  tips, and  decrease in photosynthetic 

capacity (Thomas et al., 2007; Natarajan et al., 2008). Arsenic in plant cells disrupts ATP 

production through several mechanisms. At the level of the citric acid cycle, arsenic inhibits 
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pyruvate dehydrogenase and by competing with phosphate it uncouples oxidative 

phosphorylation, thus inhibiting energy-linked reduction of NAD
+
, mitochondrial respiration, 

and ATP synthesis. Hydrogen peroxide production is also increased, which might form reactive 

oxygen species and oxidative stress. These metabolic interferences lead to death from multi-

system organ failure probably from necrotic cell death (Vigo and Ellzey, 2006). 

 

 3.1.2. Chromium 

 Chromium (atomic number 24) is a steel-gray, lustrous, hard crystalline metal. It occupies the 

24th position in the Periodic Table and belongs to transition group VI-B of with a ground-state 

electronic configuration of Ar 3d
5
4s

1
 along with molybdenum and tungsten. It comprises about 

0.037 percent of the earth's crust and therefore ranks 21
st
 in relative natural abundance (Shanker 

et al., 2005; Saha et al., 2011). Chromium (Cr) was first discovered in the Siberian red lead ore 

(crocoite) in 1798 by the French chemist Vauquelin. The atomic weight is 51.99 g.mol
 -1

; 

specific gravity 7.18 to 7.20; melting point 1857 ◦C and boiling point 2672 °C (Becquer et al., 

2003).  

  The stable forms of Cr are the trivalent Cr (III) and the hexavalent Cr (VI) species; although 

there are various others valence states which are unstable and short lived in biological systems. 

Cr (VI) is considered the most toxic form of Cr, which usually occurs associated with oxygen as 

chromate (CrO4
2-

) or dichromate (Cr2O7
2-

) oxyanions (Kabay et al., 2003; Kotas and Stasicka, 

2000; Beaubien et al., 1994). Cr (III) is less mobile, less toxic and is mainly found bound to 

organic matter in soil and aquatic environments (Becquer et al., 2003; Chen et al., 2011). The 

speciation of chromium in contaminated environments becomes critical for understanding its fate 

and exposure. The hydrolysis behavior of Cr(III) is complicated, and it  produces  mononuclear  

species CrOH
2+

, Cr(OH)2
+
, Cr(OH)4

-
, and Cr(OH)3  and the polynuclear species Cr2(OH)2 and 

neutral species Cr3(OH)4 (Beaubien et al., 1994 ). The hydrolysis of chromium (VI) produces 

only neutral and anionic species. The predominate species, are CrO4
2-

, HCrO4
2-

, and Cr2O7
2-

. At 

pH value less than 6.5 and at high chromium concentration; Cr2O7
2-

 predominates, whereas 

CrO4
2- 

predominates
 
at pH value greater than 6.5 (Saçmac et al., 2012; Megharaj et al., 2003). 

Chromium(VI) compounds are  found  to  be  more  toxic  than  Cr(III)  compounds because of 

the high solubility and mobility of Cr(VI) in water.   
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 3.1.2.1. Sources of chromium 

Cr (III) and Cr (VI) are released to the environment primarily from stationary point sources 

resulting from human activities. Chromium is released due to environmental as well as 

occupational sources (Rosane Alves et al., 2012). Environmental sources of chromium includes 

airborne emissions from chemical plants and incineration facilities, cement dust, contaminated 

landfill, effluents from chemical plants, asbestos lining erosion, road dust from catalytic 

converter erosion and asbestos brakes, tobacco smoke (Ahluwalia and Goyal, 2007). 

Occupational sources of chromium includes anti-algae agents, antifreeze, cement, chrome alloy 

production, chrome electroplating (soluble Cr[VI]), copier servicing, glassmaking, leather 

tanning (soluble Cr[III]), paints/pigments (insoluble Cr[VI]), photoengraving, porcelain and 

ceramics manufacturing, production of high-fidelity magnetic audio tapes, textile manufacturing, 

welding of alloys or steel, and wood preservatives (Kotas and Stasicka, 2000).  

  The estimates of atmospheric chromium emissions in 1976 and 1980 in the Los Angeles, CA 

and Houston, TX areas indicate that emissions from stationary fuel combustion are about 46-

47% of the total emission, and emissions from the metal industry range from 26 to 45% of the 

total (ATSDR, 2000).Coal and oil combustion contribute an estimated 1,723 metric tons of 

chromium per year in atmospheric emissions; however, only 0.2% of this chromium is Cr (VI). 

In contrast, chrome-plating sources are estimated to contribute 700 metric tons of chromium per 

year to atmospheric pollution, 100% of which is believed to be Cr (VI) (ATSDR, 2000). Cr (III) 

in the air does not undergo any reaction. Cr (VI) in the air eventually reacts with dust particles or 

other pollutants to form Cr (III). However, the exact nature of such atmospheric reactions has not 

been studied extensively (EPA, 1990).  

 

3.1.2.2. Uses of chromium 

Chromium has a wide range of uses in metals, chemicals, and refractories industries. The 

followings are some of the more common uses of chromium in the world today (Wugan and Tao, 

2012; Sardohan et al., 2010). 

 Magnetic tape (used in audio cassettes and high-class audio tapes) is made from a 

magnetic compound of chromium.  

 Wood preservative by using salts of chromium (VI).  
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 Different compounds of chromium are used to make different colored pigments and dyes. 

 Stainless steel, used in many applications, an alloy of iron with chromium.  

 Alloys of iron, nickel and chromium are very strong and handle very high temperatures 

which are used in jet engines and gas turbines.  

 Chromium is fairly hard and is resistant to corrosion. Therefore, many things are coated 

with chromium.  

3.1.2.3. Toxicity of chromium in water  

Chromium is unique among regulated toxic elements in the environment is due to different 

species of chromium. Specifically chromium (III) and chromium (VI) are regulated in different 

ways based on their differing toxicities.  According to the United States Environmental 

Protection Agency (USEPA) the maximum permissible limit for Cr (VI) for discharge into 

inland surface waters is 0.1 mg L
-1

 and in potable water is 0.05 mg L
-1 

(EPA, 1990). Other 

problems related to excessive amounts of chromium in the body include liver problems (elevated 

hepatic enzymes), thrombocytopenia (low blood platelets), renal failure (kidney failure), 

rhabdomyolysis (breakdown of muscle fibers that can lead to kidney damage), hemolysis 

(breakdown of red blood cells), changes in thought processes, chest pain, gastrointestinal 

disorders, erythema/flushing/rash, headache, dizziness, and agitation (Megharaj et al., 2003; 

ATSDR, 2000). 

 Chromium compounds are highly toxic to plants and are detrimental to their growth and 

development. Although some crops are not affected by low Cr concentration (3.8 x 10
-4

 µM), Cr 

is toxic to higher plants at 100 µM. kg
-1

 dry weight. The impact of Cr contamination in the 

physiology of plants depends on the metal speciation, which is responsible for its mobilization, 

subsequent uptake and resultant toxicity in the plant system. Cr toxicity in plants is observed at 

multiple levels, from reduced yield, through effects on leaf and root growth, to inhibition on 

enzymatic activities and mutagenesis (Becquer et al., 2003; Shanker et al., 2003; Mei et al., 

2002). 

 

3.2. Conventional methods for treatment of water 

A variety of conventional treatment technologies, based on the principle of precipitation, ion 

exchange, electrolysis, solvent extraction, reverse osmosis, membrane and biosorption process 
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have been proposed and is tested for removal efficiency of different pollutants from potable 

water as well as industrial effluent (Baciocchi et al., 2005; McNeill and Edwards, 1997; 

Balasubramanian et al., 2009; Kumari et al., 2006; Tiravanti, et al., 1997; Moussavi and 

Barikbin, 2010; Seaman et al., 1999). Each technique provides a different and unique approach 

and perhaps provides certain advantages over others for a particular situation. But these process 

are not very popular because one or more disadvantage. However, when large volumes of water 

containing toxic elements are to be treated, it would, be of great advantage if the method would 

provide reliable results without involving much cost and working efforts.  

 

3.2.1. Precipitation 

Chemical precipitation of heavy metals and metalloids as their hydroxides using lime or sodium 

hydroxide is widely used in this process. Lime is generally used for precipitation purpose due to 

its low cost and easy control pH in the range of 8-10. The efficiency of the process depends on a 

number of factors, which include the ease of hydrolysis of metal and metalloids ions, nature of 

the oxidation state, pH, and presence of complex forming ions, standing time and filtering 

characteristics of the precipitate. This method has been used for the removal of metals and 

metalloids such as iron, copper, chromium, arsenic, cadmium and zinc from the effluents of the 

industries (Leupin and Hug, 2005; Dutta et al., 2005; Zaw and Emett, 2002; Ramkrishnaiah and 

Prathima, 2012; Park et al., 2010). Carbonate precipitation used to precipitate metal and 

metalloids ions using calcium or sodium carbonate is very limited. Patterson et al. (1977) 

reported improved results for carbonate precipitation of cadmium and lead from electroplating 

effluents. 

   

3.2.2. Chemical reduction 

Certain ions such as arsenite, chromate and dichromate have least tendency for precipitation and 

cannot be removed efficiently by any other removal technology. On the other hand, adsorption is 

a feasible process but there isn’t many adsorbent available for removal of arsenite and 

dichromate ions since arsenite and dichromate are very selective towards bio-adsorption. To 

overcome these difficulties, researchers are working on chemical reduction methods. In recent 

years chemical methods of arsenite and chromate reduction using zero-valent metal like iron  
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(Fe 
0
), aluminium (Al 

0
) and magnesium (Mg 

0
) have been studied intensively. In reducing 

waters, arsenite is found in some form of arsenious acid which ionizes according to the equations 

(Kartinen and Martin, 1995):  

H
3
AsO

3 
→ H

+ 

+ H
2
AsO

3

-        

pKa = 9.22           (3.1a) 

H
2
AsO

3

- 

→ H
+ 

+ HAsO
3

2-       

pKa = 12.3           (3.1b) 

    In oxygenated waters, generally surface waters, arsenate should strongly dominate over 

arsenite at least on the basis of thermodynamic (Cullen and Reimer, 1989). Pentavalent arsenic is 

normally found in water as arsenic acid which ionizes according to the equations (Kartinen and 

Martin, 1995):  

H
3
AsO

4 
→ H

+ 

+ H
2
AsO

4

-            

pKa = 2.2            (3.1c) 

H
2
AsO

4

- 

→ H
+ 

+ HAsO
4

2-           

pKa = 7.08         (3.1d) 

HAsO
4

2- 

→ H
+ 

+ AsO
4

3-                

pKa = 11.5         (3.1e) 

  Arsenite and arsenate acid-base reactions can be assumed to occur instantaneously; however, 

time periods for the changes between oxidation states are uncertain in natural waters. The 

presence of manganese oxide, chlorine, permanganate and other oxidants can directly transform 

arsenite to arsenate in the absence of oxygen. The reduction of arsenate to arsenite in anaerobic 

conditions may require bacterial mediation since the conversion is chemically slow (Edwards, 

1994; Jiang, 2001). 

 Reduction of hexavalent chromium can be accomplished with electrochemical process. In 

electrochemical reduction process, consumable iron electrodes and electrical current are used to 

generate ferrous ions which react with hexavalent chromium to give trivalent chromium. 

3 Fe
2+

 + CrO4
2-

 + 4 H2O → 3 Fe
3+

  + Cr
3+

 + 8 OH
-
 

Cr
 3+

 is precipitated as Cr (III) hydroxide under slightly alkaline conditions (Thomas and Theis, 

1976). 

Cr
3+

 + 3OH
-
 → Cr (OH)3 

Another example of the application of reduction process is the use of sodium borohydride, which 

is found to be effective for the removal of arsenic, mercury, cadmium, lead, silver and gold (Kiff, 

1987). 

3.2.3. Cementation 



LITERATURE REVIEW  CHAPTER-3 

CHEMISTRY  20 

 

Cementation is the displacement of a metal/ metalloids from solution by a metal higher in the 

electromotive series. It offers an attractive possibility for treating any wastewater containing 

reducible metallic ions.  In practice a considerable spread in the electromotive force between 

metals is necessary to ensure adequate cementation capability. Cementation in wastewater 

treatment include the precipitation of silver from photo processing discharges, the precipitation 

of copper from printed etching solutions and the reduction of Cr(VI) in chromium plating and 

chrome inhibited cooling water discharges has been reported (Case, 1974). 

 

3.2.4. Solvent extraction 

Solvent extraction is recommended a suitable method for the removal of heavy metals/ 

metalloids from the waste waters of the chemical and electronic industries. Solvent extraction 

involves on organic and an aqueous phase. The aqueous solution containing the metal/ metalloid 

of interest is mixed intimately with the appropriate organic solvent and the metal passes into the 

organic phase. Liquid- liquid extraction of metals from solution on a large scale has experienced 

phenomenal growth in recent years due to introduction of selective complexing agents (Iberhan 

and Wisniewski, 2003; EI-Hefny, 2009). In addition to hydro metallurgical applications, solvent 

extraction has gained widespread usage for waste reprocessing and effluent treatment. Di-n-

pentyl sulphoxide has been evaluated as an extractant for the removal of Cr(VI), Fe(III), Co(II) 

and Ni(II) from aqueous solution (Reddy and Sayi, 1977). The extraction of Cr(VI) from 

aqueous solutions of 0.1 M ionic strength by trioctyl methyl ammonium compound, in a mixture 

of kerosene and xylene indicates that the extraction efficiency of Cr(VI) in acidic aqueous 

solution is good. The removal of arsenic from copper electrolytes by solvent extraction with 

tributylphosphate has also been reported (Navarro and Alguacil, 1996). 

  

3.2.5. Electrodeposition 

 Some metals/metalloids found in waste solutions can be recovered by electrodeposition 

technique using insoluble anodes.  Issabayeva et al. (2006) reported the electrodeposition of lead 

and copper ions into palm shell activated carbon electrodes. Kongsricharoem and Polprasert 

(1995) have reported Cr(VI) removal from an electroplating wastewater using the 

electrochemical precipitation process (ECP). The ECP process was found to be feasible in 

treating wastewater with a high concentration of Cr (VI). Ribeiro et al. (2000) reported 
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electrolytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste. 

Hansen et al. (2007) reported electro coagulation in wastewater containing arsenic: comparing 

different process designs. 

 

3.2.6. Reverse osmosis 

Reverse osmosis is pressure driven membrane process in which a feed stream under pressure is 

separated into a purified stream and a concentrated stream by selective permeation of water 

through a semi-permeable membrane (Applegate, 1984; Gooding, 1985). Reverse osmosis 

enjoys wide spread popularity in the treatment of numerous diverse wastewaters. Ning (2002) 

reported arsenic removal from aqueous solution by reverse osmosis. Grampton (1982) reported 

the use reverse osmosis for the recovery of plating chemicals from rinse water as well as 

purification of mixed wastewater to allow its reuse. In plating chemical recovery application 

reverse osmosis units separate the valuable metal salts from rinse solutions, yielding a 

concentrated metal solution, which can be recycled to the plating bath. Reverse osmosis has also 

been successfully demonstrated   for the removal of Cr, Pb, Fe, Ni, Cu and Zn from vehicle 

wash-rack water (Ameri et al., 2008; Kumari et al., 2006). This process is very costly and refines 

regularly maintenance.  

3.2.7. Electrodialysis 

Electrodialysis is accomplished by placing cation and anion selective membranes alternatively 

across the path of an electric current (Ribeiro et al., 2000). When current is applied, the 

electrically attracted cations pass through the cation-exchanging membranes in one direction and 

the anions pass through the anion-exchange membranes in the other direction. The result is that 

salinity decreases between one pair of membranes and increases between the next pair. Water 

can then pass through several such membranes until the required salinity is removed (Paul et al., 

2007; Grebenyuk and Grebenyuk, 2002). Dermentzis et al. (2011) have reported removal of 

nickel, copper, zinc and chromium from synthetic and industrial wastewater by electro 

coagulation.  

 

3.2.8. Biosorption/Adsorption 

The term “biosorption or adsorption” includes the uptake a gaseous or liquid components of 

mixtures from the external and/or internal surface of porous solids biosorbents or adsorbents. In 
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chemical engineering, biosorption or adsorption is called the separation process during which 

specific components of one phase of a fluid are transferred onto the surface of a solid biosorbent 

or adsorbent (Hamdi Karaoglu et al., 2010; Deng et al., 2009). The bio adsorption of various 

substances on solids is due to the increased free surface energy of the solids due to their 

extensive surface (Mungasavalli et al., 2007; Hansen et al., 2006; Brum et al., 2010). According 

to the second law of thermodynamics, this free energy has to be reduced. This is achieved by 

reducing the surface tension via the capture of extrinsic substances.  The term “sorption” is used 

to describe every type of capture of substances from the external surface of solids, liquids, or 

mesomorphs as well as from the internal surface of porous solids or liquids. Most of the heavy 

metals are efficiently removed by adsorption method (Connell et al., 2008).  

    Adsorption is a conventional but efficient technology for the removal of toxic pollutants from 

wastewaters. So, there is a need to develop low cost and easily available activated carbon 

adsorbents for the removal of heavy metal ions from the aqueous environment. The main 

advantages of this technique are the reusability of material, low operating cost, improved 

selectivity for specific metals of interest, removal of heavy metals from effluent irrespective of 

toxicity, short operation time. Removal of chromium (VI) ions from water was reported to be 

efficient by activated carbon prepared from saw dust, rice husk, raw rice bran, ethylenediamine-

modified rice hull, coconut husk fibers, hazelnut shell, modified saw dust, maple saw dust, 

sugarcane bagasse, agricultural waste, cow dung, activated sludge, cow dung, fly ash, coconut 

shell charcoal, coniferous leaves, pine needles etc (Karthikeyan et al., 2005; Guo et al., 

2003;Oliverira et al., 2005;Tang et al., 2003; Huang and Wu, 1977; Kobya, 2004; Sharma and 

Forster, 1994; Yu et al., 2003; Wartelle and Marshall, 2005; Mohan et al., 2005; Selvaraj et al., 

2003; Das et al., 2000; Di Natale et al., 2007; Babel and Kurniawan, 2004; Ayoama et al., 1999; 

Dakiky et al., 2002). Eichhornia crassipes (family Pontederiaceae) commonly known as water 

hyacinth, is an aquatic weed found abundantly. The disposal of this weed is a major problem all 

over the world because of its vigorous growth in water bodies. Activated carbon prepared from 

Eichhornia crassipes root biomass, and its use for the removal of chromium (VI) ions from water 

has not been reported. In view of the above facts it is worth to prepare the activated carbon from 

the root and subsequently use the material to remove the chromium (VI) from water.  Depending 

on the type of bonding involved, sorption can be classified as follows. 
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3.2.8.1. Physical sorption 

In physical sorption (or physisorption), no exchange of electron is observed; rather, 

intermolecular attraction between favorable energy sites take place and are therefore independent 

of the electronic properties of the molecules involved. The biosorbate is held to the surface by 

relatively weak van der Waals forces and multiple layers may be formed with approximately the 

same heat of biosorption. The heat of biosorption for physisorption is at most a few kcal/mole 

and therefore this type of adsorption is stable only at temperature below 50 °C. 

 

3.2.8.2. Chemical sorption 

Chemical sorption (or chemisorptions) involves an exchange of electron between specific surface 

sites and solute molecules, and as a result, a chemical bond is formed. Chemisorption is 

characterized by interaction energies between the surface and adsorbate comparable to the 

strength of chemical bonds (tens of Kcal/mol), and is consequently much stronger and more at 

high temperatures than physisorption. Generally, only a single molecular layer can be adsorbed. 

 

3.2.8.3. Electrostatic sorption (ion exchange) 

This is a term reserved for Coulomb attractive forces between ions and charged functional 

groups and is commonly classified as ion exchange. Ion exchange is a process in which solid 

material takes up charged ions from a solution and release an equivalent amount of other ions 

into the solution (Sahu et al., 2009). The ability to exchange ions is due to the properties of the 

structure of the materials. The exchanger consists of a matrix, with positive or negative excess 

charge. This excess charge is localized in specific locations in the solid structure or in functional 

groups. The charge of the matrix is compensated by the counter ions, which can move within the 

free space of the matrix and can be replaced by other ions of equal charge sign (Helfferich, 

1962). The pores sometimes contain not only counter ions but also solvent. When the exchanger 

is in contact with the liquid phase, the solvent can travel through the exchanger and cause 

“swelling” to an extent that depends on the kind of counter ions. Some electrolytes can also 

penetrate into the exchanger along with the solvent. As a result, there are additional counter ions, 

called co-ions, which have the same charge sign as fixed ions. Normally, exchanger has many 

open areas of variable size and shape that are altogether called “pores.” Only a few inorganic 

exchangers contain pores of uniform cross section. So, the exchangers exhibit a three-
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dimensional structure since a substance is captured by a solid in both processes, there is a 

characteristic difference between them: ion exchange is a stoichiometric process in contrast to 

sorption (Helfferich, 1962). It means that in the ion-exchange process, for contrast to other 

sorption, no replacement of the solute takes place. Ion exchange can be seen as a reversible 

reaction involving chemically equivalent quantities. 

  The removal of anionic or cationic constituents present in water by exchange with ions of the 

resin. When the resin bed becomes saturated, they are regenerated using acid or alkali. Ion-

exchange resins are available selectively for certain ions. However, in the presence of large 

quantities of competing mono and divalent ions such as sodium and calcium, efficiency of ion- 

exchange process decreases. Ion removal by solids could involves more phenomena, as for 

example in inorganic natural materials where ion uptake is attributed to ion exchange and 

adsorption processes or even to internal precipitation mechanism (Inglezakis et al., 2004). 

Inglezakis et al. (2005) reported the effects of competitive cations NH4
+
, K

+
, Ca

2+
, Na

+
, Mg

2+
 

and Li
+
 and co-anions Cl- and Br- on ion exchange of heavy metals Pb 

2+
, Fe 

3+
 , Cr 

3+
 and Cu 

2+
 

on clinoptilolite and found the selectivity of clinoptilolite for heavy metals to be Pb
2+

> Fe
3+

 > 

Cr
3+

  ≥ Cu
2+

. Baciocchi et al. (2005) reported ion exchange equilibrium of arsenic in the 

presence of high sulphate and nitrate concentrations. 

 

3.2.9. Disadvantages of conventional methods 

Most of conventional methods suffer from some disadvantages, such as high capital and 

operational cost, high cost of reagent, limited tolerance to pH change, incomplete metal removal,  

require technically skilled manpower for operation, requires a large area of land, provides a low 

treatment efficiency and energy requirements (Sharma and Sohn, 2009). 

 

3.3. Water treatment using phytoremediation techniques 

Phytoremediation is a novel strategy that uses various plants to degrade, extract, contain, or 

immobilize contaminants from soil and water (Sarma, 2011). The term phytoremediation is a 

combination of two words-phyto, which means plant, and remediation, which means to remedy 

(Salt et al., 1995; Mohanty and Patra, 2012). The term was first coined in 1991 to describe the 

use of plants to accumulate metals from soil and groundwater. This technology has been 

receiving attention lately as an innovative, cost-effective alternative to the more established 
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treatment methods used at hazardous waste sites (Kramer, 2010; Raskin et al., 1994). Although 

microorganisms have also been tested for remediation potential, plants have shown the greater 

ability to withstand and accumulate high concentrations of toxic metals and chemicals (Ali and 

Zulkifli Hj, 2010). To date, phytoremediation efforts have focused on the use of plants to 

accelerate degradation of organic contaminants, usually in concert with root rhizosphere 

microorganisms, or remove hazardous heavy metals from soils or water. Seven aspects of 

phytoremediation are described in this chapter: phytoextraction, phytodegradation, rhizosphere 

degradation, rhizofiltration, phytostabilization and phytovolatization (Braud et al., 2009; Malik, 

2007; Wang and Lewis, 1997; Zhu et al., 1999). However, the major focus is on phytoextraction.  

 

3.3.1. The role of genetics 

Genetic engineering are powerful methods for enhancing phtoremediation capabilities, or for 

introducing new capabilities into plants. Genes for phytoremediation may originate from micro-

organism or may be transferred from one plant to anther variety better adapted to the 

environmental conditions at cleanup site (Verbruggen et al., 2009; Kotrba and Najmanova, 

2009).  Microorganisms are very diverse, they includes bacteria, fungi, green algae and protists. 

The mechanisms involved in bacterial metal resistance result from either the active efflux 

pumping of the toxic metal out of the cell, or the enzymatic detoxification (generally redox 

chemistry) converting a toxic ion into a less toxic or less available metal ions. Occasionally, 

bioaccumulation or sequestration of the metal in a physiologically in accessible form is used 

(Silver, 1992). The genes encoding these resistance systems are most often located on plasmids 

or transposons. 

  Detoxification of metals/metalloids by the formation of complexes is used by most eukaryotes. 

Metallothioneins (MTs) or phytochelatins (PCs) are low molecular weight (6 -7 kDa), cysteine-

rich proteins found in animals, higher plants, eukaryotic microorganisms and some prokaryotes 

(Hamer, 1986).They are divided into three different classes on the basis of their cysteine content 

and structure. The Cys-Cys, Cys-X-Cys and Cys-X-X-Cys motifs (in which X denotes any 

amino acid) are characteristic and invariant for metallothioneins (Robinson et al., 1993). No 

aromatic amino acids or histidines are found in MTs.  MTs found in yeast, cyanobacteria and a 

few higher plants are also low molecular weight proteins with high cysteine content. The 

biosynthesis of MTs is regulated at the transcriptional level and is induced by several factors 
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such as hormones, cytotoxic agents and metals/metalloids including Cd, zinc (Zn), mercury (Hg), 

copper (Cu), gold (Au), silver (Ag), cobalt (Co), nickel (Ni), arsenic (As) and bismuth (Bi). Non-

essential metals, such as Cd, Hg, lead (Pb), Bi, Ag, Au and platinum (Pt), are sequestered by 

MTs (Kagi, 1991). 

 

3.3.2. Mechanisms involved in phytoremediation 

A relatively small group of hyperaccumulator plants is capable of sequestering heavy metals in 

their shoot tissues at high concentrations. In recent years, major scientific progress has been 

made in understanding the physiological mechanisms of metal uptake and transport in these 

plants. However, relatively little is known about the molecular bases of hyperaccumulation. The 

current progresses on understanding cellular/molecular mechanisms of metal 

tolerance/hyperaccumulation by plants are reviewed (Prasad et al., 2010; Prasad et al., 2007b). 

The major processes involved in hyperaccumulation of trace metals from the water to the shoots 

by hyperaccumulators include: (a) bioactivation of metals in the rhizosphere through root-

microbe interaction; (b) enhanced uptake by metal transporters in the plasma membranes; (c) 

detoxification of metals by distributing to the apoplasts like binding to cell walls and chelation of 

metals in the cytoplasm with various ligands, such as phytochelatins, metallothioneins, metal-

binding proteins; (d) sequestration of metals into the vacuole by tonoplast-located transporters. 

Once the rate-limiting steps for uptake, translocation, and detoxification of metals in 

hyperaccumulating plants are identified, more informed construction of transgenic plants would 

result in improved applicability of the phytoremediation technology. Possible mechanisms of 

plant roots and soil microbes and their interaction can improve metal bioavailability in 

rhizosphere through secretion of proton, organic acids, phytochelatins (PCs), amino acids, and 

enzymes are presented in Fig. 3.1. The prevailing mechanism is chelation through the induction 

of metal-binding peptides and the formation of metal complexes. The members of the third class 

of MTs, the PCs, are responsible for the formation of complexes with heavy metals in plants 

(Robinson, et al., 1993; Zenk, 1996). These peptides are enzymatically derived and synthesized 

on exposure of the cell to toxic metals. The structure of PCs is (γ -Glu-Cys) nX, in which X is 

Gly, γ-Ala, Ser or Glu and n = 2-11 depending on the organism, although the most common 

forms have 2-4 peptides (Robinson, et al., 1993). The biosynthesis of PCs is induced by many 

metals including Cd, Hg, As, Ag, Cu, Ni, Au, Pb and Zn; however, Cd is by far the strongest 
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inducer (Grill et al., 1987). The metal binds to the constitutively expressed enzyme, γ-

glutamylcysteinyl dipeptidyl transpeptidase (PC synthase), thereby activating it to catalyse the 

conversion of glutathione (GSH) to phytochelatin (Zenk, 1996) (Fig. 3.2). Glutathione, the 

substrate for PC synthase, is synthesized from its constituent amino acids in two steps. The first 

step is catalysed by γ -glutamyl-Cys synthetase (γ -ECS) and the second by glutathione 

synthetase (GS). γ-ECS is feedback regulated by glutathione and is dependent on the availability 

of cysteine. Plant MT-like genes have been isolated from several plant species including maize, 

soybean, rice, wheat, tobacco and Brassica napus (Nedkovska and Atanassov, 1998) although 

their role in metal detoxification has yet to be established. 

 

 

 

    

 

 

 

 

   

 

Fig.3.1. Processes possibly involved in heavy metal mobilization in the rhizosphere by root–

 microbe interaction. 
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                Fig. 3.2. The synthesis of phytochelatins (PCs) in plants. 
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  Some macrophytes are found to remove different concentrations of arsenic and chromium ions, 

which make them suitable to act as bio-monitors for metals, and considered as biological filters 

of the aquatic environment (Chiu et al., 2005; Fayiga et al., 2005; Huang et al., 2004; Keith et 

al., 2006; Mishra et al., 2008). Eichhornia crassipes (family Pontederiaceae) is common 

macrophyte which is abundant in water logging area. It has a high growth-rate and fibrous root 

system along with tendency to tolerate high metal concentration, it is considered as an important 

species to be used in phytoremediation. Many results have been documented the 

phytoremediation ability of the free-floating Eichhornia crassipes for nutrient-rich waters 

(Alvarado et al., 2008; Misbahuddin and Fariduddin, 2002; Snyder, 2006; Low and Lee, 1990). 

In all the reported methods cited above, different plant species are being used to remove a 

number of cations and anions from soil and water environments with variation of variable 

parameters to obtain the optimum conditions. However it is not reported that the Eichhornia 

crassipes has been used ever for the removal of arsenic (III) and chromium (VI). Hence in the 

present study, Eichhornia crassipes was used for two specific purpose (a) to remove the metal 

ions from water (b) then metal ions is extracted from this plant biomass using specific method.  

 

3.3.3. Advantages and limitations of phytoremediation techniques 

 Advantages:  

 Environmentally friendly, cost-effective, and aesthetically pleasing.  

 Metals absorbed by the plants may be extracted from harvested plant biomass.  

 May reduce the entry of contaminants into the environment by preventing their leakage 

into the groundwater systems. 

 It is potentially the least harmful method because it uses naturally occurring organisms 

and preserves the environment in a more natural state. 

 Limitations:  

 Slow growth and low biomass require a long term commitment. 

 With plant-based system of remediation, it is not possible to completely prevent the 

leaching of contaminants into the groundwater. 

 The survival of the plants is affected by the toxicity of the contaminated land and the 

general condition of the soil. 

3.4. Water treatment using bioremediation techniques 
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 Bioremediation is a technology that utilizes the metabolic potential of microorganisms to clean 

up contaminated environments (Tripathi et al., 2011). By definition, bioremediation is the use of 

living organisms, primarily microorganisms, to degrade the environmental contaminants into less 

toxic forms (Pal and Vimala, 2011). It uses naturally occurring bacteria and fungi or detoxify 

substances hazardous to human health and/or the environment (Tripathi et al., 2011; Iwamoto 

and Nasu, 2001; Watanabe and Baker, 2000; Srinath et al., 2002). The microorganisms may be 

indigenous to a contaminated area or they may be isolated from elsewhere and brought to the 

contaminated site. Contaminant compounds are transformed by living organisms through 

reactions that take place as a part of their metabolic processes. Biodegradation of a compound is 

often a result of the actions of multiple organisms. When microorganisms are imported to a 

contaminated site to enhance degradation, the process is known as bioaugmentation 

(Parameswari et al., 2009). For bioremediation to be effective, microorganisms must 

enzymatically attack the pollutants and convert them to harmless products. As bioremediation 

can be effective only where environmental conditions permit microbial growth and activity, its 

application often involves the manipulation of environmental parameters to allow microbial 

growth and degradation to proceed at a faster rate (Leavitt and Brown, 1994). 

 

3.4.1. Mechanism involved in bioremediation 

 The complex structure of microorganisms implies that there are many ways for the 

metal/metalloid to be taken up by the microbial cell which are presented in Fig. 3.3. The 

bioremediation mechanisms are very complex and are not fully understood. They may be 

classified according to various criteria.  

 According to the dependence on the cell's metabolism 

 Metabolism dependent and non -metabolism dependent 

 According to the location where the metal removed from solution is found 

  Extra cellular accumulation/ precipitation 

 Cell surface sorption/ precipitation and intracellular accumulation 

 Transport of the metal across the cell membrane yields intracellular accumulation, which is 

dependent on the cell's metabolism. This means that this kind of accumulation may take place 

only with viable cells. It is often associated with an active defense system of the microorganism, 

which reacts in the presence of toxic metal. In non metabolism dependent process, metal uptake 
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is by physico-chemical interaction between the metal and the functional groups present on the 

microbial cell surface. This is based on physical adsorption, ion exchange and chemical sorption, 

which is not dependent on the cells' metabolism. Cell walls of microbial biomass, mainly 

composed of polysaccharides, proteins and lipids have abundant metal binding groups such as 

carboxyl, sulphate, phosphate and amino groups. 

 

  

  

 

 

     

 

 

 

                           

                               Fig. 3.3. Bioremediation mechanisms by microorganisms. 

The non-metabolism dependent process is relatively rapid and can be reversible (Prasad et al., 

2011). In the case of precipitation, the metal uptake may take place both in the solution and on 

the cell surface (Shroff and Vaidya, 2012). Further, it may be dependent on the cell's' 

metabolism, if in the presence of toxic metals, the microorganism produces compounds that 

favor the precipitation process. Precipitation may not be dependent on the cells' metabolism, if it 

occurs after a chemical interaction between the metal and cell surface. 

 

3.4.2. Biosorption and Bioaccumulation 

 

 Bioaccumulation is defined as the phenomenon of living cells; whereas, biosorption 

mechanisms are based on the use of dead biomass (Nirmal Kumar et al., 2009). Biosorption 
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possesses certain inherent advantages over bioaccumulation processes, which are presented 

below. 

3.4.2.1. Biosorbent materials 

Any biological material which exhibits its affinity and concentrates the heavy metals even in 

very dilute aqueous solutions is called as biosorbent material. Strong biosorbent behavior of 

certain micro-organisms towards metallic ions is a function of the chemical make-up of the 

microbial cells. Some types of biosorbents would be broad range, binding and collecting the 

majority of heavy metals with no specific activity, while others are specific for certain metals. 

Some laboratories have used easily available biomass whereas others have isolated specific 

strains of microorganisms and some have also processed the existing raw biomass to a certain 

degree to improve their biosorption properties. Recent biosorption experiments have focused 

attention on waste materials, which are by-products or the waste materials from large-scale 

industrial operations. The waste mycelia available from fermentation processes, olive mill solid 

residues (Pagnanelli, et al., 2002), activated sludge from sewage treatment, biosolids (Norton et 

al., 2003), aquatic macrophytes (Keskinkan et aI., 2003), etc. has been used successfully.  

Norton et aI. 2003 used dewatered waste activated sludge from a sewage treatment plant for the 

biosorption of zinc from aqueous solutions. The adsorption capacity was determined to be 0.564 

mM/g of biosolids. Keskinkan et al., 2003 studied the adsorption characteristics of copper, zinc 

and lead on submerged aquatic plant. Myriophyllum spicatum. Pagnanelli, et al. 2000 have 

carried out a preliminary study on the use of olive mill residues as heavy metal sorbent material. 

The results revealed that copper was maximally adsorbed in the range of 5.0 to 13.5 mg/g under 

different operating conditions.  

3.4.2.2. Bacterial biosorption 

 Early in 1980 it was observed that the capability of some microorganisms to accumulate 

metallic elements. Numerous research reports have been published from toxicological points of 

view, but these were concerned with the accumulation due to the active metabolism of living 

cells, the effects of metal on the metabolic activities of the microbial cell and the consequences 

of accumulation on the food chain (Tripathi and Garg, 2010; Basha et al., 2006). However, 

further research has revealed that inactive/dead microbial biomass can passively bind metal ions 

through various physicochemical mechanisms. Researchers have understood and explained that 

biosorption depends not only on the type or chemical composition of the biomass, but also on the 
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external physicochemical factors and solution chemistry. Many investigators have been able to 

explain the mechanisms responsible for biosorption, which may be one or combination of ion 

exchange, complexation, coordination, adsorption, electrostatic interaction, chelation and micro 

precipitation (Veglio and Beolchini, 1997; Volesky and Schiewer, 1999). 

 

3.4.3. Mechanism of bacterial biosorption 

The bacterial cell wall is the first component that comes into contact with metal ions where the 

solutes can be deposited on the surface or within the cell wall structure (Ray et al., 2005; Pan et 

al., 2006). Since the mode of solute uptake by dead/inactive cells is extracellular, the chemical 

functional groups of the cell wall play vital roles in biosorption. Due to the nature of the cellular 

components, several functional groups are present on the bacterial cell wall, including carboxyl, 

phosphonate, amine and hydroxyl groups (van derWaal et al., 1997). As they are negatively 

charged and abundantly available, carboxyl groups actively participate in the binding of metal 

cations. Several dye molecules, which exist as dye cations in solutions, are also attracted towards 

carboxyl and other negatively charged groups. Golab and Breitenbach (1995) reported that the 

carboxyl groups of the cell wall peptidoglycan of Streptomyces pilosus were responsible for the 

binding of copper. Also, amine groups are very effective for removing metal ions, as it is not 

only chelates cationic metal ions, but also adsorbs anionic metal species or dyes via electrostatic 

interaction or hydrogen bonding. Kang et al. (2007) observed that amine groups protonated at pH 

3 and attracted negatively charged chromate ions via electrostatic interaction. In general, 

increasing the pH increases the overall negative charge on the surface of cells until all the 

relevant functional groups are deprotonated, which favors the electrochemical attraction and 

adsorption of cations. Anions would be expected to interact more strongly with cells with 

increasing concentration of positive charges, due to the protonation of functional groups at lower 

pH values. The solution chemistry affects not only the bacterial surface chemistry, but the 

metal/dye speciation as well. Metal ions in solution undergo hydrolysis as the pH increases. The 

extent of which differs at different pH values and with each metal, but the usual sequence of 

hydrolysis is the formation of hydroxylated monomeric species, followed by the formation of 

polymeric species, and then the formation of crystalline oxide precipitates after aging. The 

different chemical species of a metal occurring with pH changes will have variable charges and 

adsorb ability at solid–liquid interfaces. In many instances, biosorption experiments conducted at 
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high alkaline pH values have been reported to complicate evaluation of the biosorbent potential 

as a result of metal precipitation (Selatnia et al., 2004b). 

   Different microorganisms are found to remove different concentrations of arsenic and 

chromium ions from aquatic environments ((Pokhrel Viraraghavan, 2006; Kumari et al., 2006; 

Sari and Tuzen, 2009). In all the reported methods cited above, different microorganisms are 

being used to remove a number of cations and anions from waste water with variation of variable 

parameters to obtain the optimum conditions. However it is not reported that the Bacillus cereus 

has been used ever for the removal of arsenic (III) and chromium (VI). Hence in the present 

study, Bacillus cereus was used for two specific purposes (a) to remove the metal ions from 

water using bath mode method (b) the reusability of the biosorbent by desorption and 

regeneration study. 

   In the context of present situation, both the technique phytoremediation and bioremediation are 

potential methods to be used as an environmental friendly technique to combat the menace of 

pollution in the water and soil environments. Many successful case studies are reported for the 

removal of hazardous chemicals and toxic ions. In the last decade significance attention has been 

drawn by the researchers and R&D laboratories of many prestigious and reputed organizations. 

Keeping all the above in minds the present research work was undertaken to remove the arsenic 

(III) and chromium (VI) from water. After successful removal of both these ions by the plant 

species Eichhornia crassipes, it was thought to use the activated carbon prepared from the use as 

an adsorbent to remove these ions. The results of the work were published in a peer reviewed 

journal which tempted us to put the research finding in the thesis. 

3.4.4. Advantages and limitations of bioremediation techniques  

 Advantages of bioremediation 

 Low cost and high efficiency 

  Minimization of chemical and biological sludge 

 Regeneration of biosorbents and possibility of metal recovery 

 Limitations of bioremediation 

 It is difficult to extrapolate from pilot-scale studies to full-scale field operations. 

 Bioremediation often takes longer than other treatment.  

 Regulatory uncertainty remains regarding acceptable performance criteria for 

bioremediation. 
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3.5. Artificial neural network modeling for environmental chemistry 

  The ANN modelling technique holds several advantages over mechanistic modelling that make 

it particularly suitable to process modelling in the drinking water treatment industry (Despagne 

and Massart, 1998). ANN models can handle non-linear relationships, and can provide 

predictions of output parameters in real time in response to simultaneous and independent 

fluctuations of the values of model input parameters. Data patterns where the value of one or 

more of the model inputs are missing can be incorporated into model building if necessary, 

although model prediction will improve if only complete data patterns are used. Similarly, when 

completed models are applied to new data patterns where values are missing, the value of model 

outputs can still be predicted. Yetilmezsoy and Demirel, (2008) observed that artificial neural 

network (ANN) can be applied for modeling of Pb(II) adsorption from aqueous solution by 

Antep pistachio (Pistacia vera L.) shells. Salari et al. (2005) observed that application of 

artificial neural networks for modeling of the treatment of wastewater contaminated with methyl 

tert-butyl ether (MTBE) by UV/H2O2 process. Strik et al. (2005) have used to predict of trace 

compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox. 

Many user-friendly ANN software packages exist, offering the user a myriad of modelling 

options and allowing the user to customize the modelling process to suit his or her knowledge of 

modelling heuristics. Hamed et al. (2004) proposed the prediction of wastewater treatment plant 

performance using artificial neural networks.  Aber et al. (2009) proposed the removal of Cr (VI) 

from polluted solutions by electrocoagulation: modeling of experimental results using artificial 

neural network.  Several researchers have worked on wastewater treatment using artificial neural 

network modeling (Turan et al., 2011; Gob et al., 1999; Aksu, 2002; Patra et al., 1997; Peng et 

al., 1992; Park et al., 2004). In present study the artificial neural network approach for modeling 

of arsenic (III) and chromium (VI) biosorption from aqueous solution by living cells of Bacillus 

cereus biomass. The results of the work were published in a peer reviewed journal which 

tempted us to put the research finding in the thesis. 

  3.5.1 Types of ANN models 

ANN models of drinking water treatment process can assume two distinct forms: (i) process 

models and (ii) inverse process models. (i) The process model predicts the value of one or more 

process outputs, if given the values of the process input parameters. An example of this type of 

model is the prediction of clarifier effluent turbidity using influent water parameters and 
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operational parameters. (ii) The inverse process model predicts the value of one or more process 

inputs, if given the values of the remaining process inputs and process output(s). This type of 

model is often used to predict the value of an operational parameter required to reach a target 

effluent quality (Patra et al., 1997; Peng et al., 1992).  

3.5.2. Key components of ANN models 

There are several key components to ANN models that are collectively referred to as the ANN 

architecture (Patra et al., 1997; Peng  et al., 1992). Processing units or neurons perform primitive 

operations such as scaling data, summing weights, and amplifying or thresholding sums.  

Neurons are organized into layers with each layer performing a specific function. The input layer 

serves as an interface between the input parameter data and the ANN model. Most models also 

contain one or two hidden layers, although more are possible. These layers perform most of the 

iterative calculations within the network (Fernandes and Lona, 2005; Lek and Guegan, 1999). 

The output layer serves as the interface between the ANN model and the end-user, transforming 

model information into an ANN-predicted value of the output parameter(s). Each neuron is 

connected to every neuron in adjacent layers by weights; links that represent the ‘strength’ of 

connection between neurons. Each ANN model has a propagation rule that defines how the 

weights connected to a neuron are combined to produce a net input. The propagation rule is 

generally a simple summation of the weights. As discussed, the input layer serves as an interface 

between input parameter data and the model. In this layer, a scaling function is used to scale data 

from their numeric range into a range that the network deals with efficiently, typically 0 to 1. 

The hidden and output layers contain an activation function that defines how the net input 

received by a neuron is combined with its current state of activation to produce a new state of 

activation. The most common activation function used in process modelling is the sigmoidal 

activation function (Yetilmezsoy, 2006; Chu, 2003). Finally, each network has a learning rule 

that defines how the weights are modified in order to minimize prediction error.  

3.5.3. ANN modeling requirements 

The key requirement of the ANN modeling approach is the availability of relevant data to 

describe the process being modeled. Data must be available in a useable electronic format for 

each of the process input and output parameters. The data used in model development must be 

representative of plant operations, spanning the range of operating conditions that may be 

encountered during both routine operations and process upset conditions. Model development 
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requires the use of appropriate ANN software (Math works Incorporation, 2005). With respect to 

hardware requirements, recent advances in computing technology have made even the most 

modest new home computing system capable of performing the modeling calculations. To ensure 

optimal performance however, a 500 MHz processor and 128 M of RAM should be considered 

to be the minimum system requirements.  
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4. Materials and methods 

4.1. Experimental procedure of phytoremediation techniques  

    4.1.1. Preparation of standards and reagent  

 All the chemicals used in the studies are of analytical grades (Merck chemicals, Germany) 

which are used without any further purification. In all experiments, deionized water (Milli-Q 

Millipore 18.2 MΩ cm
-1

 conductivity) is used for the preparation, dilution and analytical 

purposes of solutions.  A stock chromium (VI) solution of 1000 mg/L is prepared by dissolving 

2.828 g of anhydrous potassium dichromate (K2Cr2O7; MG7M571737) and by adding 1.5 mL 

1M HNO3 in a 1000 mL of deionized water. A stock arsenic (III) solution of 1000 mgL
-1

 is 

prepared by dissolving 1.320 g of arsenite (As2O3; Merck-HC622890, Chemicals, Germany) 

containing 4 g 1M NaOH in 1 L of deionized water (Greenberg et al., 2005).  The stock solutions 

are preserved with 1% trace metal grade nitric acid for one month. Subsequently, different 

working solutions of required concentrations for chromium (VI) and arsenic (III) are prepared by 

proper dilution up to mark in a measuring flask. For the analysis of arsenic (III), 500 mL NaBH4 

solution is prepared by dissolving 2.5 g NaOH and 2.0 g NaBH4, in deionized water and diluting 

up to mark. The NaBH4 reagent is always prepared immediately before use. Sodium 

tetrahydroborate solution is dispensed into the acidic test sample solution. The reaction of 

sodium tetrahydroborate in acidic solution and the simultaneous reduction of the hydride forming 

element can be described as represented.  

 

 BH
-
4 + H3O

+
 + 2H2O →H3BO3 + 4H2↑  
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and  

3BH
-
4 + 3H

+
 + 4H3AsO3 → 4AsH3↑ + 3H2O + 3H3BO3 

4.1.2. Selection of plant materials 

 Young aquatic plants Eichhornia crassipes (Class-Liliopsida, Family- Pontederiaceae) were 

collected from ponds near civil township, Rourkela. The plants were placed in cement tanks with 

tap water under natural sunlight for one week to allow them to adapt the new environment. The 

plants having approximately weight, 250g, 10 to 11 cm. root length and 6 to 7cm. shoot length 

were selected for further experimentation. The modified Hoagland nutrient solutions are required 

for nourishment of Eichhornia crassipes plant during the experiment. The modified 0.25 N 

Hoagland nutrient solution are prepared which consists of 4.0mM CaNO3, 2.0mM MgSO4, 

4.0mM KNO3, 0.4mM (NH4)2SO4, 2µM MnSO4, 0.3µM CuSO4, 0.8µM ZnSO4, 30µM NaCl, 

0.1µM Na2Mo4, 1.43µM KH2PO4, 10 µM H3BO3 and 20 µM Fe-Na-EDTA.  

4.1.3. Experiment setup and procedure 

 The experiments were conducted in a series of rectangular glass container with dimension (32 x 

20 x 18 cm) containing 200 mL/L of nutrient solutions at a temperature ranges of 15 ± 2
o
C to 45 

± 2
o
C. The rectangular glass container was kept in a growth room at desired temperature lighted 

with cool, fluorescent lamp (200 µmol.m
-2

 s
-1

) under16 h photoperiod. The pH (Orion two stars, 

USA) of the nutrient solution was adjusted to 6.8 -7.2 for better growth of the plants using 

required amount of 0.1 M HCl or 0.1M NaOH. The solution was changed regularly at intervals 

of 03 days to maintain the desired pH. The plants were maintained in the specified container 

separately for the removal of As (III) and Cr (VI) supplemented with 0, 0.01, 0.025, 0.05, and 

0.10 mgL
-1

 arsenic (III) solutions and 0, 5, 10, 15, and 20 mgL
-1

 chromium (VI) solutions 

respectively. The plants were harvested after 0, 3, 9 and 15 days.  Fig. 4.1 schematically 

summarizes details experimental procedure of absorption of arsenic (III) and chromium (VI) 

from water by phytoremediation process. Deionized water was added daily to compensate the 

water loss through plant transpiration, sampling and evaporation. After the completion of each 

test duration, Eichhornia crassipes were separated into shoots and roots for the analysis of 

relative growth, arsenic (III) and chromium (VI) accumulation, toxicity and bio-concentration 

factor. The total dissolved solid (TDS) and dissolved oxygen (DO) of the treated water are also 
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measured to know the effect of accumulation on the plant. In addition, the residual arsenic (III) 

and chromium (VI) concentration in the test solution was measured to assess the removal 

potential of Eichhornia crassipes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Schematic diagram for details experimental procedure of phytoremediation process for 

 the absorption of arsenic (III) and chromium (VI) from water by Eichhornia crassipes.  

 

4.1.4. Relative growth 

  The relative growth of plant species is a major factor for contributing to invasion. Relative 

growth of control and treated plants was calculated as represented below (Lu et al., 2004; James 
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and Drenovsky, 2007). The results are expressed as increase of biomass per unit mass per day (g. 

g
-1

.d
-1

). 

Relative growth = 
                                    

                                     
 

4.1.5. Bio-concentration factor (BCF) 

 The bio-concentration factor (BCF) provides an index of the ability of the plant to accumulate 

the metal with respect to the metal concentration in the substrate. The result of bio-concentration 

factor was calculated as follows (Lu et al., 2004).   

BCF= 
                                              

  

  
 

                                                          
  

 
 
  

4.1.6. Total dissolved solids and dissolved oxygen (TDS and DO) 

 100 mL of water sample was taken and was filtered it by using Whatmann 42 filter paper.  The 

filtrate was placed in a clean, dry and weighted crucible which was evaporated to dryness in an 

oven at 98°C and subsequently dried for one hour at 103-105 °C. The crucible with residue was 

cooled in desiccators and weighted till a constant weight. 

 TDS (mg/L) = 
                                  

                     
 x 1000 

                     = 
           

 
 x 1000 

Weight of crucible = W1 g, Weight of residue + crucible = W2 g, Weight of residue = (W2-W1) g 

Dissolved oxygen is required for living organism to maintain their biological processes. DO is 

also important in precipitation and dissolution of inorganic substances water. Dissolved oxygen 

is determined in water sample by Winkler’s method. 

  

 Total dissolved solids (TDS) are the measure of the combined content of all inorganic and 

organic substances contained in a liquid in: molecular, ionized or micro-granular suspended 

form. The two principal methods of measuring total dissolved solids are available: gravimetry 

and conductivity. Gravimetric methods are the most accurate which involve the weighing of 
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mass of residues left after evaporating the liquid solvent. Dissolved oxygen (DO) analysis 

measures the amount of gaseous oxygen (O2) dissolved in an aqueous solution. Oxygen gets into 

water by diffusion from the surrounding air, by aeration (rapid movement), and as a waste 

product of photosynthesis. In the present study, the results of the effects of treatment by 

Eichhornia crassipes on  total dissolved solids (TDS) and dissolved oxygen (DO) without and 

with nutrient solution of control with arsenic (III) and chromium (VI) containing water tank at 

different days results are presented  in Table 4.1.  

 

Table 4.1. Results of TDS and DO without and with nutrient solution of control, arsenic(III) and 

 chromium(VI) containing water tank at different days treatment. 

  

TDS may be consists of CaNO3, MgSO4, KNO3, (NH4)2SO4, MnSO4, CuSO4, ZnSO4, NaCl, 

Na2Mo4, KH2PO4, H3BO3 and Fe-Na-EDTA. There is an increase in the growth of Eichhornia 

crassipes with the increase in TDS value containing As (III) and Cr (VI) ions. It may be due to 

the presence of suitable cations and anions that have influencing effect on the nutrient uptake. 

The comparison of dissolved oxygen without and with As (III) and Cr (VI) reveals that uptake of 

metal/metalloids ions increases with increasing dissolved oxygen. It may be due to the 

enhancement in the binding capacity to the site of metals/metalloids by molecular oxygen.  Goto 

et al. (1996) were reported that Lettuce growth experiments were carried out to study the effect 

of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system and 

reported similar results. 

4.1.7. Temperature 

 3 days 9 days 15 days 

 TDS 

(ppm) 

DO 

(ppm) 

TDS 

(ppm) 

DO 

(ppm) 

TDS 

(ppm) 

DO 

(ppm) 

Without 

metal/metalloid ion 

and nutrient solution 

container 

74 4.52 75 4.54 77 4.57 

Control(nutrient 

solution) 

762.43 5.78 750.23 5.73 755.11 5.75 

With nutrient solution container 

Arsenic(III) 769.00 6.23 771.12 6.75 785.45 6.84 

Chromium(VI) 755.32 6.42 762.42 6.64 781.23 6.74 
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 Temperature influences most plant processes, including photosynthesis, transpiration, and 

respiration. Depending on the situation and the specific plant species, the effect of temperature 

can either speed up or slow down this transition. In the present study, the effect of temperature 

on the absorption of arsenic (III) and chromium (VI) ions onto Eichhornia crassipes with initial 

arsenic (III) concentration of 0.010, 0.025, 0.05 and 0.10 mgL
-1

, while initial chromium (VI) 

concentration 0.75, 1.50, 2.50 and 4 mg/L and 15 days exposure times and the results are  

presented in Table 4.2. It can be clearly seen from the results from Table 4.2 that the removal of 

arsenic (III) and chromium (VI) decreases slowly with increase in temperature (25
 o
C to 45

 o
C).  

 

Table 4.2. The effects of temperature of E. crassipes at different concentrations of arsenic (III) 

 and chromium (VI) and 15 days exposure times (Mean ± S.D.). 

 (The standard deviation has been obtained for n=3, “n” stands for the number of experiment 

replicates.) 

 

  It  is  evident  that  rapid  absorption  rate  occurs  at  the  beginning  of  absorption process may 

be due to availability of more number of active metal/metalloid binding sites on the root 

biomass. Téllaz et al. (2008) were reported the effects of water hyacinth, Eichhornia crassipes: 

 Temperature (° C) 

 25°C 35°C 45°C 

As2O3 concentration (mg/L) 

0.010 61.80 ± 0.11 55.35 ± 0.24 53.13 ± 0.16 

0.025 66.68 ± 0.16 59.23 ± 0.43 54.25 ± 0.42 

0.050 79.04 ± 1.22 71.51 ± 0.75 64.90 ± 1.06 

0.100 85.96 ± 0.24 75.12 ± 0.29 69.60 ± 0.06 

K2Cr2O7 concentration (mg/L) 

0.75 88.95 ± 1.02 85.25 ± 1.12 80.24 ± 0.04 

1.50 93.40 ± 0.08 88.21 ± 1.11 85.10 ± 0.02 

2.50 94.40 ± 0.15 91.30 ± 0.27 87.12 ± 0.24 

4.0 98.26 ± 0.43 94.07 ± 0.33 90.16 ± 0.13 
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an invasive plant in the Guadiana river basin (Spain). From the above it indicates the absorption 

process of arsenic (III) and chromium (VI) by Eichhornia crassipes was controlled by an 

exothermic process. As the maximum removal occurs at 25 
o
C, the room temperature was 

selected at 25 ± 2 
o
C at 15 days experiment for further absorption experiments. 

  

4.2. Experimental procedure of bioremediation techniques 

 4.2.1. Selection of microorganism  

Bacillus cereus (MTCC NO: 1305) of microbial type culture and collection was obtained from 

the Institute of Microbial Technology, Chandigarh, India to undertake the study. The identified 

species of B. cereus is a gram-positive, rod shaped bacterium. The surface properties of Bacillus 

cereus cells indicated that, there is formation of bio film due to biosorption. The extracellular 

polymeric substances proteins are function as non-specific adhesions during bio film formation. 

The extracellular polymeric substances (EPS) are implicated in imparting bio films with 

structural stability and resistance to cleaning heavy metals/metalloids. Because of these 

properties, the species is selected for the biosorption of the heavy metals. Bacterial strain was 

first grown on agar petri dish containing agar medium, which consisted of beef extract (3.0 g), 

peptone (5.0 g), agar (20.0 g), NaCl (5.0 g) in 1 L deionized water, and the pH is adjusted to 7.2 

± 0.3 with 10% (w/v) NaOH and 10% (w/v) HCl. After the incubation of cultures at 30 ºC for 24 

h  in agar plates, the bacteria are inoculated from the plates onto the  agar  slants  and  stored  at  

4 ºC  until  needed  for  further experiments. Fig. 4.2 schematically summarizes details 

experimental procedure of biosorption of arsenic (III) and chromium (VI) from water by 

bioremediation process.  

 

4.2.2. Bacterial growth and preparation 

 Before the beginning of each experiment, strains are enriched by transferring one loop of cells 

from the agar slants to 100 mL of previously sterilized liquid nutrient medium in 250 mL flasks 

and incubated at 30 ºC for 24 h by shaking at 160 rpm in an orbital shaker. The liquid medium 

contained the same components described above in agar medium except agar, and the pH value 

is also adjusted to 7.2 ± 0.3 in the same way mentioned above. The cells grown in liquid nutrient 

medium are centrifuged at 7000 rpm for 30 min at 4 ºC. The supernatant is discarded and the cell 

pellets were washed six times with deionized water and suspended in phosphate buffer (1/15 
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mol/L NaH2PO4, 1/15 mol/L Na2HPO4, pH 7) before used in experiments. The experiments are 

conducted in presence of mineral liquid medium for the survival of Bactria. The components of 

the mineral liquid medium are KH2PO4 0.5 g/L,  MgSO4.7H2O  0.2 g/L,  CaCl2  0.1 g/L,  NaCl 

0.2 g/L,  MnSO4.H2O 0.01 g/L,  NH4NO3  1.0 g/L. For experiment, 5 ml of the above solution 

are added to culture along with the solution of arsenic (III) and chromium (VI) in required 

concentrations separately. 

 

                                Bacillus cereus are inoculated in agar slants   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Schematic diagram for details experimental procedure of bioremediation process for the 

 biosorption of arsenic (III) and chromium (VI) from water by living cells of Bacillus 

 cereus. 

B. cereus cells kept in liquid nutrient medium at pH 

7.2 ± 0.3 and centrifuged at 7000 rpm for 30 min at 

4 ºC. The cell pellets were washed deionized water 

six times. 
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4.2.3. Batch experiments 

The arsenic(III) sorption experiments from its aqueous solution on living cells of  Bacillus cereus 

were carried out using standard 1 mg/l, 5 mg/L and 10 mg/L As
3+

 solution in absence of other 

competing ions. Optimum sorption conditions are determined as a function of pH, initial arsenite 

concentration, biomass loading, contact time, and temperature affecting the biosorption of 

arsenic (III) in the batch mode process. The biosorption experiments were carried out in series of 

100 mL Borosil conical flask with stopper by adding 0.50 - 15 g/L of the biosorbent in 50 mL of 

synthetic arsenic (III) solution. Stoppers were provided to avoid change in concentration due to 

evaporation. All the biosorption experiments were carried out at ambient temperature (30 ± 2 

°C). Necessary amount of the biomass is added and contents in the flasks are shaken at 120 rpm 

for the desired period of contact time in an electrically thermostatic reciprocating shaker. The 

time required for reaching the equilibrium condition is estimated by drawing samples at regular 

intervals of time till equilibrium is reached. The contents of the flasks are filtered through blue 

band filter paper and the filtrate is analyzed for arsenic (III) concentration by using hydride 

generated system HG-AAS (Perkin-Elmer P 200, USA). The chromium (VI) sorption 

experiments are conducted with similar procedure as discussed in arsenic (III) sorption 

experiment. But the concentration of chromium (VI) is measured by using FAAS (Perkin-Elmer 

P 200, USA). The biosorption capacity of the metal is expressed the arsenic (III) and chromium 

(VI) sorbed per gram of sorbent (mgg
-1

), and is calculated as follows: 

            qe (mg/g) =   (Ci – Cf ) V/M                   

The amount of arsenic (III) and chromium (VI) sorbed percentage is calculated as per the 

equation:  

     Sorption (%) = (Ci – Cf )/Ci  x 100                     

 Where Ci and Cf   are the initial and final concentrations of the arsenic (III) and chromium (VI) 

in the aqueous solution (mgL
-1

), respectively. V is the volume (L) of test solution; and M is the 

mass of biosorbent in (g) used. 
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4.2.3.1. Estimation of arsenic (III) and chromium (VI) ions after biosorption 

 Estimation of arsenic (III) was done by using standard method given in user’s manual of 

(Perkin-Elmer 200) hydride generated system (HG-AAS). Estimation of chromium (VI) was 

done by using standard method given user’s manual of (Perkin-Elmer 200) flame atomic 

spectroscopy (FAAS). Three standards were prepared for both arsenic (III) and chromium (VI) 

that bracket the expected concentration range of sample which differs in concentration by factor 

ten. Measurements were done by taking 10 µL of each standard and sample in separate 100 mL 

beaker. All the sample and standards were maintained at same temperature to avoid interference 

due to difference in temperature.  

4.2.3.2. Effect of biosorbent dose 

The effect of biosorbent dose on biosorption was studied by using 50 mL of arsenic (III) solution 

of initial concentration of 1 mg/L prepared by serial dilution of stock solution (1000 mg/L). The 

solutions were taken in  a series of conical flasks (Borosil 100 mL with stopper) containing  

0.05g, 0.10g, 0.15g, 0.20 g, 0.25g, 0.30g, 0.35g, 0.40g, 0.45g, 0.50g, 0.55g, 0.60g , 0.65g , 0.70g, 

0.75g and 0.80 g of Bacillus cereus biomass. Similarly, 50 mL of arsenic (III) solution of initial 

concentrations, 5 mg/L and 10 mg/L were prepared by serial dilution of stock solution and were 

added to a series of conical flask containing 0.05g, 0.10g, 0.15g, 0.20 g, 0.25g, 0.30g, 0.35g, 

0.40g, 0.45g, 0.50g, 0.55g, 0.60g, 0.65g, 0.70g, 0.75g and 0.80 g of Bacillus cereus biomass. All 

the studies were carried out at pH 7.5 for arsenic (III). The contents of conical flask were stirred 

at 120 rpm at ambient temperature (30 ± 2 °C) till equilibrium is achieved (30 minutes). Then the 

contents of the conical flasks were filtered through blue band filter paper and filtrates were 

analyzed for residual arsenic (III) concentration by standard method using AAS. The effects of 

biosorbent dose on biosorption of chromium (VI) are studied by the similar procedure as 

discussed in arsenic (III) experiment. 

 4.2.3.3. Effect of pH 

The effect of pH on biosorption was studied by varying the pH from 3.5 to 9.5 (3.5, 4.5, 5.5. 6.5, 

7.5, 8.5, and 9.5) keeping the other variable constant. pH was measured by  using Orion two star 

pH meter. 50 mL of arsenic (III) solutions with initial concentration of 1 mg/L, 5 mg/L and 10 

mg/L were prepared by serial dilution of arsenite stock solution (1000 mg/L). The pH of the test 
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solutions is adjusted using required amount of 1M HNO3 and 1M NaOH solution. The solutions 

of metal were added to conical flasks (Borosil 100 mL with stopper) containing optimum 

biosorbent dose (0.30 g of Bacillus cereus biomass). The contents of conical flask were stirred at 

120 rpm at ambient temperature (30 ± 2 °C) till equilibrium is achieved (30 minutes). After the 

desired period, the contents of the conical flasks were filtered through blue band filter paper and 

filtrates were analyzed for residual arsenic (III) concentration by standard method using AAS. 

The effects of pH on chromium (VI) bisorption are done following similar procedure as 

discussed above in arsenic (III) experiment.  

4.2.3.4. Effect of contact time 

 The effect of contact time was studied at ambient temperature of 30 ± 2°C. Arsenic (III) solution 

of initial concentration 1 mg/L was prepared by proper dilution of stock solution (1000 mg/L). 

50 mL of the above mentioned solution was added to conical flasks containing optimum 

biosorbent dose (0.30 g of Bacillus cereus biomass) for different contact time (5 min, 10 min, 15 

min, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min and 60 min). pH 

adjustments were made by adding required amount of 1M HNO3 and 1M NaOH solution  and all 

the studies were carried out at pH 7.5 for arsenic(III). After predetermined time interval the 

content of the flasks were taken and filtered through blue band filter paper. The filtrate was 

analyzed for residual arsenic (III) concentration in the solutions by standard method using AAS. 

Similar 5 mg/L and 10 mg/L arsenic (III) solution were also prepared by serial dilution of stock 

solution (1000 mg/L). And all the above processes were repeated. The effects of contact time on 

biosorption of chromium (VI) are studied by the similar procedure as discussed in arsenic (III) 

experiment. 

4.2.3.5. Effect of temperature 

To study the effect of temperature, arsenic (III) solution of initial concentration 1 mg/L was 

prepared by proper dilution of stock solution (1000 mg/L). 50 mL of the solution was taken in 

series of conical flasks and were maintained at different temperatures (10 °C, 15 °C, 20 °C, 25 

°C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C and 60 °C). To above solutions, maintained at 

appropriate temperature, optimum adsorbent dose (0.30 g of Bacillus cereus biomass) were 

added and were stirred at 120 rpm till equilibrium was achieved (30 minutes). All the 
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experiments were carried out at pH 7.5 for arsenic (III). After predetermined time interval, the 

content of the flasks were filtered through blue band filter paper and the filtrate was analyzed for 

residual arsenic (III) concentration using AAS. Similarly 5 mg/L and 10 mg/L arsenic (III) 

solution were also prepared by proper dilution of stock solution (1000 mg/L) and were 

maintained at different temperatures. To the above solutions optimum biosorbent doses (0.30 g 

of Bacillus cereus biomass) were added and were stirred, filtered and analyzed for residual 

arsenic (III) as above. The effects of temperature on biosorption of chromium (VI) are studied by 

the similar procedure as discussed in arsenic (III) experiment.  

4.2.3.6. Effect of initial concentration 

Batch mode experiments were performed with optimum amount of Bacillus cereus biomass and 

varying initial concentration of 1 mg/L, 2 mg/L, 3 mg/L, 4 mg/L, 5 mg/L, 6 mg/L, 7 mg/L, 8 

mg/L, 9 mg/L and 10 mg/L. The solutions of different initial arsenic (III) concentration were 

taken in Borosil conical flask with stopper of 100 mL capacity and optimum biosorbent doses 

(0.30 g of Bacillus cereus biomass) were added and stirred at 120 rpm till equilibrium was 

achieved (30 minutes). pH adjustments were made and all the studies were carried out at pH 7.5  

for arsenic(III). After predetermined time interval the content of the flasks were filtered through 

blue band filter paper. The filtrate was analyzed for residual arsenic (III) concentration using by 

standard method using AAS. The study was carried out at ambient temperature (30 ± 2 °C). The 

effects of initial concentration on biosorption of chromium (VI) are studied by the similar 

procedure as discussed in arsenic (III) experiment. 

4.2.3.7. Desorption and regeneration studies 

For the sustainability of biosorption process, the biosorbents should have good desorption and 

reuse potential. For this 50 mL of 1 mg/L arsenic (III) solution, was transferred separately into a 

beaker and 10mL of buffer solution was added. After a fast shaking, 6 g/L of living cells of 

Bacillus cereus was added and the mixture was shaken again for 90 min at 150 rpm. The solution 

was filtered with blue band filter paper and separated. Then the residues are washed with 

deionized water. In order to elute the sorbed analytes onto Bacillus cereus, 10mL of 1M HCl and 

10mL of 1M HNO3 is used separately. The filtered biosorbent was retreated with 100 mL  

deionized water and adjusted to different pH with the help of 1M HNO3 and 1M NaOH solution. 
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It was stirred for 24 hours. The residual arsenic (III) concentration was measured using AAS by 

standard method. The study was carried out at ambient temperature (30 ± 2 °C). Desorption and 

regeneration studies of chromium (VI) are studied by the similar procedure as discussed in 

arsenic (III) experiment. 

4.3. Experimental procedure of adsorption study   

   4.3.1. Adsorbent preparation  

 Young aquatic weeds Eichhornia crassipes are collected from nearby ponds. The weeds are 

placed in cement tanks with tap water under natural sunlight for one week to allow them to adapt 

the new environment. The root and shoot parts of selected Eichhornia crassipes weeds are 

separated. Fig 4.3 schematically summarizes details preparation procedure of activated carbon 

from root biomass.  

 

 

 

 

 

 

 

 

Fig. 4.3. Schematic diagram of Eichhornia crassipes root biomass-derived activated carbon. 

 

 

The material was activated at higher temperatures of 600-1000 °C which form (H-AC) ‘H’ 

activated carbon, and develops basic surface sites which increase the pH value (Sinha et al., 

2003). These materials adsorb acids and exhibit a positive zeta potential (Sinha et al., 2003; 
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Mattson and Mark, 1971). The desired product is cooled and sieved to the desired particle sizes 

(0.1 to 210 µm). Finally, the product is stored in vacuum desiccators until required. The analysis, 

characterization, and batch-to-batch reproducibility of the materials are strictly controlled. 

4.3.2. Characterization of activated carbon  

   4.3.2.1. Physico-chemical parameters 

  The physico-chemical parameters of the activated carbon are analyzed using standard 

 methods and results are summarized in Table 4.3.  

Table 4.3. Physico-chemical parameters of the activated carbon.  

Parameter Value 

Carbon particle size ( µm) 0.1 to 210  

pH 3.5 

Moisture contained (%) 9.45 

Conductivity (μS cm
-1

) 28.23 

Specific gravity 0.66 

Porosity (%) 70 

Bulk density (g/mL
-1

) 0.75 

Ash contained (%) 1.92 

Ion exchange capacity (meq./g) 0.87 

Water soluble matter (%) 1.46 

Acid soluble matter (%) 5.21 

Volatile matter (%) 47 

Surface area (m
2
/g) 109.23 

Fixed carbon (%) 70.38 

O (w/w) (%) 22.27 
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4.3.2.1. Determination of Zeta potential at different pH value  

The surface charge density () of sorbent was determined by a potentiometric titration method. 

The following equation-1 was used to determine the surface charge density  

σo =((CA-CB+[OH
-
 ]-[H

+
])F) / m        

Where CA and CB are the molar concentrations of acid and base needed to reach a point on the 

titration curve, [H
+
] an [OH

-
] were the concentrations of H

+
 and OH

-
, F was the Faraday constant 

(96,490 C/mol), m (g/L) was the concentration of the sorbent. Fig. 4.4 show Zeta potential at 

different pH value 

H (w/w) (%) 2.14 

N (w/w) (%) 4.20 

Cl (w/w) (%) 5.39 

K (w/w) (%) 2.92 

Mg (w/w) (%) 1.00 

Na (w/w) (%) 0.93 

Ca (w/w) (%) 0.88 

P (w/w) (%) 0.83 
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Fig. 4.4. Zeta potential at different pH values of activated carbon. 

 

4.3.3. Batch adsorption experiment 

Adsorption experiments are optimized at the desired pH value, contact time and adsorbent 

dosage level using the necessary adsorbents in a 250mL stopper conical flask containing 50mL 

of test solution. A number of experimental parameters such as adsorbent dose, pH, initial Cr (VI) 

concentration and temperature affecting the adsorption of chromium (VI) have been studied to 

optimize in the batch mode process. Necessary amount of the adsorbents is then added and 

contents in the flask are shaken for the desired contact time in an electrically thermostatic 

reciprocating shaker at 120 rpm. The experiments are repeated at 25 °C to 55 °C. The time 

required for reaching the equilibrium condition is estimated by drawing samples at regular 

intervals of time till equilibrium is reached. Adsorption experiments for the effect of pH are 

conducted by using a solution having 10 mg/L, 50 mg/L and 100 mg/L of chromium (VI) 

concentration with a biomass dosage of 7 g/L. Throughout the study, the contact time is varied 

from 5 to 90 min, the pH from 1.5 to 8.5, chromium (VI) concentration from 10 to 100 mg/L, 

and the adsorbent dosage from 0.5 to 15 g/L. All adsorption studies are carried out at a constant 

ionic strength of 0.01M maintained with NaCl. After stirring, the solutions are allowed to settle 

for 10 min and the samples are centrifuged at 3000 rpm for 20 min and filtered through 

Whatman 42 filter paper. The filtrate is used for the analysis of residual chromium (VI) 

concentration in the solution. For each experiment, the concentrations of the metals before and 

after adsorption are determined by atomic absorption spectrophotometer (AAS). The adsorption 

capacity, expressed as the chromium (VI) adsorbed per gram of adsorbent (mg g
-1

), is calculated 

as follows:  
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      qe (mg/g) =   
        

 
                    

The adsorbed percentage of chromium (VI) is calculated as per the equation:  

 

Adsorption (%) = 
       

  
 x 100   

Where Ci and Cf   are the initial and final concentrations of the chromium (VI) in the aqueous 

solution (mg L
-1

), respectively. V is the volume in liter (L) of test solution; and M is the mass of 

adsorbent in (g) used. 

  

4.3.4. Desorption experiment  

 The sample volume of 50mL, containing 100 mg/L of chromium (VI) at pH 4.5, is transferred 

into a beaker; and 10mL of buffer solution is added to maintain the pH value. After shaking for 

few minutes, 7 g/L of activated carbon is added and the mixture is shaken with a mechanical 

shaker at 120 rpm again for 90 min. The content is filtered with Whatman 42 filter paper. Then 

the constituents in the residue are washed with distilled water several times. In order to elute the 

adsorbed analytes by activated carbon, 100 mL of 5N H2SO4 is used. Analyte contents of the 

final solution are determined by AAS. The same procedure is applied to the blank solution. In 

order to use the activated carbon for the next experiment, the activated carbon is washed with 

excess of 1M H2SO4 solution and distilled water. It is again used as an adsorbent in subsequent 

cycles to evaluate the reuse potential of the adsorbent.  

 

4.3.5. Column studies  

Adsorption isotherms have traditionally been used for preliminary investigations and fixing the 

operating parameters. The isotherms cannot provide accurate scale-up data in a fixed-bed system, 

so to know the practical applicability of materials, column operations has also been investigated 

to obtain a factual design model. The column tests are performed in a 1.20 cm diameter column. 

The column is filled with a 200 mg sample of the activated carbon (particle size 0.1-210 µm). 

This weighed quantity of adsorbent is made into slurry with hot water and fed slowly into the 

column, displacing a below of water. The bed height is 6 cm, and the bed volume is 20 mL.  The 
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inlet concentration is 10 mg/L solution and pH is 4.5.  The flow rate is 1.2 mL/min. The results 

are used to build the breakthrough curve and to determine the breaking point. 

 

4.4. Instrumental Analysis 

 4.4.1. Arsenic (III) and chromium (VI) analysis using AAS  

  The freeze-dried samples were ground to fine powder using a ceramic mortar and pestle. About 

0.5 g the powder was taken in a 50 mL conical flask. Plant samples were heated to dry matter by 

heating at 120 °C for 24 hours in a hot air oven and the ash was digested with 10 mL nitric acid 

and filtered into a volumetric flask with the help of Whatman -42 filter paper. The final volume 

was made up with de-ionized water and the analysis of arsenic (III) and chromium (VI) 

concentration was carried using AAS standard method given is user’s manual of (Perkin-Elmer 

200). 

4.4.2. Microwave assisted extraction procedure  

 Microwave digestion with closed vessel of microwave assisted extraction is conducted with 

Shanghai Sineo MAS-II oven delivering a maximum power of 1000 W.  To optimize the 

microwave-assisted extraction of arsenic and chromium ions from shoot parts of plant material, a 

factorial experiment was conducted consisting of heating of different temperatures at 40, 60 and 

80 °C and for heating times of 5, 15 and 25 min for each of the three different extraction 

solutions. The three extracting solutions used were 10% (v/v) tetramethylammonium hydroxide 

(TMAH), deionized water and a modified protein extracting solution for arsenic (III) and 0.02 M 

ethylenediaminetetraacetic acid (EDTA), deionized water and HCl for chromium (VI).  Each 

treatment was replicated three times. Freeze dried Eichhornia crassipes shoot biomass with 

arsenic (III) concentration of 32.1 ± 0.05 mg kg
-1

 and Eichhornia crassipes shoot biomass with 

chromium (VI) concentration of 260 ± 0.05 mg kg
-1

 was weighed (0.50 g) into the reaction 

vessels and 10 mL of each  extractant was added to each sample. The microwave system was 

programmed to digest the sample to a specified temperature, for a specified period.  After 

microwave digestion, the samples were allowed to cool to room temperature followed by 

filtering through a Whatman no. 42.  Total arsenic and chromium in the filtrate were then 

measured by flow injection of ICP-MS. 

4.4.2.1. Total arsenic and chromium analysis by ICP-MS 
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 Total arsenic in the shoot part of plant samples were determined by digesting the plant material 

in concentrated nitric acid using the Frypan method. Dry plant material (0.50 g) was weighed 

into a 50 mL conical flask to which 10 mL of concentrated nitric acid was added. The digested 

mixture was then digested at 60 °C for 30 min and filtered into a volumetric flask with the help 

of Whatman 42 filter paper. The flasks were allowed to cool to room temperature and made up to 

a final volume (10 mL) with deionized water. In each analytical batch, at least two reagent 

blanks and one internationally certified reference material (2 replicates) were included. The 

accuracy of the method was checked by analysis of the standard reference material 1575 Pine 

needles (NBS certified arsenic concentrations: 0.21 ± 0.04 µgg
-1

. The measured arsenic 

concentration: 0.20 ± 0.04 µgg
-1

; n= 4, values represents mean and 95% confidence limits. To 

measure total arsenic concentration in digested samples, 1 mL of digest was mixed with 9 mL of 

reducing solution consisting of 1.5% (w/v) potassium iodide, 1.5% (w/v) ascorbic acid and 10% 

(v/v) hydrochloric acid. This mixture was then heated at 40 °C for 1 h. Total arsenic in digests 

was determined by a hydride generation-ICP-MS. The carrier solution was 10% (v/v) 

hydrochloric acid, and the reductant solution consisted of 0.2% (w/v) sodium borohydride and 

0.05% (w/v) sodium hydroxide. The carrier solution was 1% (v/v) nitric acid; samples were 

made up in solution of 10 µg rhodium L
-1

 which served as an internal standard.  

  Total chromium in the shoot part of plant samples were determined by digesting the plant 

material in concentrated nitric acid using the frypan method. Dry plant material (0.50 g) was 

weighed into a 50 mL conical flask to which 10 mL of concentrated nitric acid, 2.0 mL hydrogen 

peroxide, and 3.0 mL water was added. The digested mixture was then heated at 60 °C for 30 

min and filtered into a volumetric flask with the help of Whatman 42 filter paper. The flasks 

were allowed to cool to room temperature and made up to a final volume (10 mL) with deionized 

water. Total chromium in digests was determined by ICP-MS. The carrier solution was 1% (v/v) 

nitric acid; samples were made up in solution of 10 µg rhodium L
-1

 which served as an internal 

standard. 

4.4.2.2. Arsenic and chromium ions speciation analysis using HPLC-ICP-MS 

 For arsenic speciation, 0.5 g samples were ultrasonically extracted with 5 ml of 1:1 methanol / 

water for 2 h. The samples were then centrifuged; the supernatant was decanted into a 50 mL 

volumetric flask. The procedure was repeated with the residual pellet and the two extracts were 

combined. The residue was rinsed three times with 5 mL of water, and all supernatants were 
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combined. Mobile phase was 20 mM ammonium phosphate (NH4H2PO4) buffer at pH 6.0 and 

flow rate 1.5mLmin
-1

. 

 For chromium speciation, the mobile phase was prepared by dissolving the appropriate amounts 

of 1 mM tetrabutylammonium hydroxide (TBAH) and the 0.60 mM dipotassium salt of 

ethylenediaminetetraactic acid (EDTA) in deionized water with a flow rate of 1.5mLmin
-1

. The 

pH was then adjusted with nitric acid to 6.90 and methanol was added to make 2% methanol 

solution. The extract was then diluted to the 50 ml mark with water and then filtered using 0.45 

PTFE syringe filters. The filtrate was directly subjected to HPLC-ICP-MS and experiments were 

performed using an anion exchange column (Hamilton PRP x100 250mm×4.6 mm).  

4.5. Instrumental analysis of arsenic (III) and chromium (VI) ions  

 4.5.1. Inductively coupled plasma-mass spectroscopy (ICP-MS) 

 

The mass spectrometry is an instrumental technique of analysis based on separation, and the 

identification and the quantification of the components of a sample are made according to their 

mass. It is supported on the coupling of a plasma generating ions and of a quadrupolar mass 

spectrometer which separates these ions accordingly to  mass, and a model PE ELAN 6000 

inductively coupled plasma mass spectrometry (ICP-MS) instrument (Perkin-Elmer, Norwalk, 

CT, USA) is used for this purpose.  

4.5.2. Hydride generation atomic absorption spectroscopy (HG-AAS) 

Atomic absorption spectroscopy (AAS) is one of the commonest instrumental methods for 

analyzing the metals and some metalloids ions. But because of interferences, poor 

reproducibility, and poor detection limits an alternative method for detection some metalloids 

like arsenic, antimony, bismuth, selenium has been developed, which are called Hydride 

generation atomic absorption spectroscopy (HG-AAS, Perkin-Elmer P 200, USA). Instrument 

calibration standards for transfer of 2.00, 5.00, 10.00 and 15.00 mL standard solution of As (III) 

to 100 mL volumetric flasks and bring to volume with water containing the same acid 

concentration (2 to 5 mL conc. HNO3/L) used for sample preservation. So the standard solutions 

are respectively 2, 5, 10 and 15 µg/L. Details preparation procedure of As(III) standards solution 

has been using manual’s of Perkin-Elmer P 200. A calibration curve of As(III) standard solutions 

are presented in Fig. 4.5.   

4.5.3. Flame atomic absorption spectroscopy (FAAS) 



MATERIAL AND METHODS  CHAPTER-4 

CHEMISTRY  57 

 

  Flame atomic absorption spectroscopy is one of the commonest instrumental methods for 

analyzing for metals ions (FAAS, Perkin-Elmer P 200, USA). This is used in the present study. 

Instrument calibration standards for transfer of 5.00, 10.00, 15.00 and 20.00 mL standard 

solution of Cr(VI) to 100 mL volumetric flask, add appropriate amount of matrix modifier and 

dilute to volume with water. So the standard solutions are respectively 5, 10, 15 and 20 µg/L. 

Details preparation procedure of Cr(VI) standards solution has been using manual’s of Perkin-

Elmer P 200. A calibration curve of Cr(VI) standard solutions are presented in Fig. 4.6.  

  

 

Fig. 4.5. A calibration curve of As(III) standards solution. 
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Fig. 4.6. A calibration curve of Cr(VI) standards solution. 

 

4.5.4. High performance liquid chromatography (HPLC) 

 High-performance liquid chromatography is a chromatographic technique used to separate a 

mixture of compounds in analytical chemistry and biochemistry with the purpose of identifying, 

quantifying and purifying the individual components of the mixture. HPLC-ICP-MS experiments 

were performed using an anion exchange column (Hamilton PRP x100 250mm×4.6 mm).  

 

  4.5.5. Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) 

 Scanning electron micrographs – Energy dispersive X-ray (EDX) of the sample was obtained by 

JEOL JSM – 6480 LV (Japan) scanning electron microscope. The sample was coated with 

platinum for 30 seconds at a current of 50 mA before the SEM-EDX micrograph was obtained. 

 

4.5.6. FTIR study 

 FTIR of the sample was obtained by KBr pellet method using Perkin Elmer FTIR 

spectrophotometer SPECTRUM RX - 1. A homogenous mixture of sample and KBr in the ratio 

of 1:50 was made. The pellet was prepared by taking the mixture in a KBr Die and a pressure of 

5 Ton was applied using a hydraulic pressure for 2 minutes. Then the pellet was gently removed 

and was placed in a pellet holder. The instrument was switched on and background scan was 

obtained without placing the pellet. The data was plotted using standard software provided with 

the instrument. 

4.5.7. Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) (Digital Instruments, Santa Barbara, CA, USA) is a very high-

resolution type of scanning probe microscopy, with demonstrated resolution on the order of 

fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The 

standard V-shaped silicon nitride (Si3N4) cantilevers (with integral tips, Model OTR8-35) of 

different stiffness and tip sharpness were used for imaging. AFM scan size detection limit of 130 

x 130 μm is used in the present study.  

4.5.8. X-Ray diffraction study 
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The powder X-ray diffraction (XRD) of sample was determined by using Philips X’ Pert X-ray 

diffractometer (model PW 1710) with Cu K  (35 kV and 30 mA) radiation at a scan rate of 

2
o
/min and is analyzed using standard software provided with the instrument.  

4.6. Prediction of arsenic (III) and chromium (VI) ions by biosorption process using  

 artificial neural network (ANN) modeling 

 In recent years, considerable advancement in artificial intelligence techniques has been used to 

predict the responses in complex and difficult situations using MATLAB 7.0 is used for 

simulation purpose. Such techniques can enhance predicting capability of the model when 

mathematical or statistical methods are difficult to formulate and fails to predict with 

desired accuracy. In the present work, estimation of sorption efficiency using mathematical 

and analytical tools is involved because the physical phenomenon for removal of arsenic 

(III) and chromium (VI) by living cells of B. cereus is complex one. Therefore, artificial 

neural network (ANN) has been attempted in this work for prediction purpose because ANN 

has the capacity to map inputs and outputs efficiently in complex situations.  

4.6.1. Back propagation neural network architecture (BPNNA) 

A back propagation neural network (BPNN) architecture consisting of three layers such as input 

layer, hidden layer and output layer is considered. Functioning of neural network proceed in two 

stages viz., learning or training and testing or inferences (Yetilmezsoy and Demirel, 2008; 

Schalkoff, 1997). The network architecture is represented as l-m-n where l neurons are present at 

input layer (equal to the number of inputs in the models), m neurons at the hidden layer 

(optimized through experimentation), and n neurons at the output layer depending on number of 

outputs desired from the model. Input layer receives information from the external sources and 

passes this information to the network for processing. Hidden layer receives information from 

the input layer, does all the information processing and output layer receives processed 

information from the network, and sends the results out to an external receptor. The input signals 

are modified by interconnection weight known as weight factor (Wji), which represents the 

interconnection of i
th

 node of the first layer to j
th

 node of the second layer. The sum of modified 

signals (total activation) is then modified by a sigmoid transfer function (f). Similarly, outputs 

signal of hidden layer are modified by interconnection weight (Wji) of k
th 

node of output layer to 
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j
th 

node of hidden layer. The sum of the modified signal is then modified by sigmoid transfer (f) 

function and output is collected at output layer (Aleboyeh et al., 2008; Giri et al., 2011).   

  Let Ip = (Ip1, Ip2, ………. Ipl), P = 1, 2 …. N is the P
th

 pattern among N input patterns. Where Wji 

and Wkj are connection weights between i
th

 input neuron to j
th

 hidden neuron, and j
th

 hidden 

neuron to k
th
 output neuron, respectively.   

Output from a neuron in the input layer is, 

    Opi = Ipi, i= 1, 2…….l                                                                           
 

                                                                                                                                          

 Output from a neuron in the output layer is, 

     (∑    
 
      )                                                                  

Sigmoid transfer function (f) is a bounded, monotonic, non-decreasing, S-shaped function that 

provides a graded nonlinear response (Yetilmezsoy, 2006; Park et al., 2004). The logistic 

sigmoidal function is given as 

                     
1

( )
1 x

f x
e




                                                                      

Sigmoid transfer function is recommended for obtaining activation signals from input and hidden 

layer neurons whereas linear transfer function is used to get the same at output layer neurons. 

Metal concentration, biosorbent dosage, different temperature and time are used as inputs to the 

ANN model. Sorption efficiency (%) is desired from the network as output. One hundred seventy 

one experimental data are used to develop the ANN model. The complete experimental are 

divided into two sets - training (75% of data) and test sets (25% of data). All data are normalized 

in the 0.1-0.9 range to avoid the scaling effect of parameter values. Therefore, all of the data (xi) 

are converted to normalize values (xnorm) as follows. 

  Xnorm = 0.8 × ( 
       

         
 ) + 0.1                                                                

where Xi is i
th

 input or output variable X. 

 Xmin and Xmax are minimum and maximum value of variable X. 

     (∑    
 
      )           
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 4.6.2. Learning or training in back propagation neural network 

Initially, the connection weights are generated randomly in the range of -1 to +1. Batch mode 

type of supervised learning has been adopted in the present case where interconnection weights 

are adjusted using delta rule algorithm after sending the entire training sample to the network. 

During training, the predicted output is compared with the desired output, and the mean square 

error is calculated. If the mean square error is more than a prescribed limiting value, it is back 

propagated from output to input, and weights are further modified till the error or number of 

iterations is within a prescribed limit. Mean square error, 
pE  for pattern p is defined as 

2

1

1
( )

2

n

p pi pi

i

E D O


                                                                                                                                                        

where, 
piD is the target output, and 

piO  is the computed output for the i
th

 pattern. 

Weight change at any time t, is given by 

∆W(t) = -ηEp (t) + α x ∆W(t-1) 

η = learning rate i.e 0 < η < 1 

α = momentum coefficient i.e 0 < α < 1                                                       

 4.6.3. Testing of back propagation neural network 

 Entire experimental data set is divided into training set and testing set. The mean square error is 

monitored during the training phase. The error usually decreases during the initial phase of 

training. However, when the network begins to over fit the data, the error on the training set will 

typically begin to rise. When the training error starts increasing for a specified number of 

iterations, the training is stopped and the weights at the minimum value of the training error are 

returned. The testing data is then fed to the trained network to check the percentage variation of 

predicted output in comparison to the actual one.  

4.7. Statistical analysis   

4.7.1. F-statistics  
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 F-test can be regarded as a comparison of two variances, but the specific case being discussed in 

this work is that of two populations, where the test statistic used is the ratio of two sample 

variances. Let X1…..Xn and Y1…..Ym be independent and identically distributed samples from 

two populations which each have a normal distribution. The expected values for the two 

populations can be different, and the hypothesis to be tested is that the variances are equal. Let  

    X = 
 

 
∑   

 
    and Y = 

 

 
∑    

 
    

be the sample means. Let  

  
  = 

 

   
∑    

 
    – X)

 2
 and    

  = 
 

   
∑    

 
    – Y)

 2 
 

Be the sample variances. Then the test statistic has an F-distribution with n-1 and m-1 degrees 

of freedom if the null hypothesis of equality of variances is true. 

            F =   
  
 

  
  

4.7.2. p-value 

The p-value measures consistency by calculating the probability of observing the results from 

samples of data or a sample with results more extreme, assuming the null hypothesis is true. The 

smaller the p-value, the greater the inconsistency.  

4.7.3. Data analysis and calculations 

Experimental measurements always have some random error, so no conclusions can be drawn 

with complete certainty. However, statistical methods give us tools to accept conclusions that 

have a high probability of being correct and to reject those are not. Various inbuilt statistical 

tools of Microsoft Excel 2007 like Pearson’s correlation coefficient, plotting the best straight line 

etc. were extensively used in the present research work. Microsoft Excel 2007 proved to be very 

beneficial for calculating the values of various constants, plotting graph, calculating pearson’s 

correlation coefficient, finding the best straight line, and getting slope and getting slope and 

intercept of the straight line. Syntax of various functions is below.  

4.7.3.1. Slope 

Slope is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight 

line. A higher slope value indicates a steeper incline. The slope of a line in the plane containing the x and 
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y axes is defined as the change in the y coordinate divided by the corresponding change in the x 

coordinate, between two distinct points on the line. The slope is the vertical distance divided by the 

horizontal distance between any two points on the line, which is the rate of change along the regression 

line. 

The equation for the slope of the regression line is:  

b = 
∑          

∑      
 

where ‘x’ and ‘y’ are the sample means AVERAGE (known x’s) and AVERAGE (known y’s). 

4.7.3.2. Intercept 

Intercept of a straight line is the point at which a line will intersect the y-axis by using existing x-

values and y-values. The intercept point is based on a best fit regression line plotted through the 

known x-values and known y-values. Intercept function is used when it is necessary want to 

determine the value of the dependent variable when the independent variable is 0 (zero). 

The equation for the intercept of the regression line, a, is  

 a = y - bx 

where the slope, b, is calculated as: 

b = 
∑          

∑      
 

and where x and y are the sample means AVERAGE (known x's) and AVERAGE (known y's). 

 4.7.3.3. Pearson’s correlation coefficient (R) 

 In probability theory and statistics, correlation, (often measure as a correlation coefficient), indicates the 

strength and direction of a linear relationship between two random variables. In general statistical usage, 

correlation or co-relation refers to the departure of two variables from independence. Pearson’s 

correlation coefficient, r, a dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the 

extent of a linear relationship between two data sets. 

The equation for the correlation coefficient, R, is:  

R = 
∑          

√∑      ∑      
 

where x and y are the sample means AVERAGE(array1) and AVERAGE (array 2). 
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5. Results and discussion 

  5.1. Accumulation of arsenic (III) and chromium (VI) on Eichhornia crassipes using 

 Phytoremediation techniques.  

   In the present work, studies on the removal of arsenic (III) and chromium (VI) was carried out 

by phytoremediation technique using water floating macrophytes Eichhornia crassipes. The 

technique used in this process is called more appropriately phyto-accumulation technique, which 

is a part of phytoremediation. The phytoremediation studies were performed as a function of 

relative growth, bioconcentration factor, total dissolved solids, dissolved oxygen, accumulation 

and toxicity. High-performance liquid chromatography in conjunction with inductively coupled 

plasma mass spectrometry (HPLC-ICP-MS) was used to measure arsenic and chromium 

speciation in plant material using microwave extraction processes. 

 

 5.1.1. Effects on relative growth  

 Relative growth is considered to be the most widely used method for estimating plant growth. It 

is measured as the increase in biomass per day, with unit as g. g
-1

.d
-1

 (Hoffmann and Poorter, 

2002; Sarma, 2011). In the present study, the effects of different concentrations and exposure 

times of arsenic (III) and chromium (VI) ions on relative growth of Eichhornia crassipes were 

studied and the results are presented in Fig. 5.1 and Fig. 5.2, respectively. The relative growth of 

control plants significantly increased (P< 0.05) with the passage of time. As indicated from Table 

5.1 the plants treated with arsenic (III), the relative growth significantly increased (P < 0.05) in 

0.010, 0.025, 0.05 and 0.10 mgL
-1

 treatments. As indicated from Table 5.1 the plants treated with 

K2Cr2O7, the relative growth significantly increased (P<0.05) in 0.75, 1.50, 2.50 treatments but 

decreased in 4 mg/L. The statistical analysis of treated plants at different concentration of arsenic 

(III), chromium (VI) and exposure days have been conducted at 0.05 levels and presented in 

Table 5.2. The highest values of relative growth were 1.34g.g
-1

.d
-1

 treated with arsenic (III) at 0.1 
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mg L
-1

 and 1.33g.g
-1

.d
-1

 treated with chromium (VI) at 2.50 mgL
-1

 solution after 15 days 

treatments respectively.  

 

Fig. 5.1. The effects of arsenic (III) on relative growth of Eichhornia crassipes at  different 

 concentrations and exposure time. 

 

 

Fig. 5.2. The effects of chromium (VI) on relative growth of Eichhornia crassipes at different 

 concentrations and exposure time. 

 

 

 

 

 

Table 5.1. The relative growth of E. crassipes at different concentration of arsenic(III) and 

 chromium(VI) and exposure times (Mean ± S.D.). 
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(The standard deviation has been obtained for n=3, “n” stands for the number of experiment  

replicates.) 

  

Table 5.2. ANOVA table for relative growth of E. crassipes at different concentration of arsenic 

 (III) and chromium (VI) and exposure times.  

 

As2O3 concentration (mg/L)                              Days 

 3 9 15 

0.010 1.06 ± 0.01 1.14 ± 0.05 1.18 ± 0.01 

0.025 1.11 ± 0.03 1.25 ± 0.03 1.28 ± 0.04 

0.050 1.23 ± 0.02 1.26 ± 0.04 1.30 ± 0.03 

0.10 1.25 ± 0.01 1.30 ± 0.02 1.34 ± 0.06 

K2Cr2O7 concentration (mg/L) 

0.75 1.03 ± 0.03 1.17 ± 0.04 1.23 ± 0.13 

1.50 1.08 ± 0.01 1.29 ± 0.11 1.31 ± 0.08 

2.50 1.20 ± 0.04 1.32 ± 0.08 1.33 ± 0.04 

4.0 0.98 ± 0.01 1.28 ± 0.05 1.30 ± 0.12 

Source Degree of 

Freedom (df) 

Sum of 

Squares 

(SS) 

 Mean 

Squares (MS) 

= SS/df 

F-

Statics 

P-value 

As2O3 concentration (mg/L)    

Different 

concentration 

3 0.00645 0.00215 20.59 0.001 

Different days 2 0.00345 0.0017 16.53 0.004 

Error 6 0.0063 0.000104   

Total 11 0.01053    
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Lu et al., 2004 reported the relative growth were 0.85 g.g
-1

.d
-1

 and 0.89 g.g
-1

.d
-1 

for Eichhornia 

crassipes treated with Cd at 4 mg/L and Zn at 40 mg/L, respectively. Zaranyika and Ndapwadza, 

(1995) were reported that Cr (VI) tolerance and accumulation in selected Eichhornia crassipes 

growth are mainly by suppressing development of new roots and reducing relative growth rates 

to about 15% of those controls.  Several researchers have reported similar results (Stratford et 

al., 1984; Gupta et al., 2009; Murányi and Ködöböcz, 2008). The best way of long term strategy 

for improving phytoextraction is to understand and exploit the biological processes involved in 

metal/metalloid acquisition, transport and shoot accumulation. This is due to higher 

concentrations level of heavy metal/metalloid ions in solution and also have inhibitory effects on 

plant metabolic activity, alternatively reduced growth of plants, leaf necrosis and inhibits the 

plant physiology systems. It appears that low concentration could stimulate plants growths.  

 

5.1.2. Effects of bio-concentration factor  

Bio-concentration factor (BCF) is a useful parameter to evaluate the potential of the plants in 

accumulating metals/metalloids and this value was calculated on dry weight basis. The ambient 

metal/metalloid concentration in water was the major factor influencing the metal/metalloid 

uptake efficiency. In general, when the metal/metalloid concentration in water increases, the 

amount of metal/metalloid accumulation in plants increases, accordingly the BCF values also 

increases (Wang and Lewis, 1997; Karimi et al., 2009). In the present study, the effects of bio-

concentration factor values of arsenic (III) and chromium (VI) at different concentration and 

exposure times were presented in Fig. 5.3 and Fig. 5.4, respectively. 

K2Cr2O7 concentration (mg/L) 

Different 

concentration 

3 0.00431 0.00143 4.13 0.046 

Different days 2 0.01593 0.00796 22.84 0.002 

Error 6 0.00209 0.000349   

Total 11 0.02233    
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Fig. 5.3. The effects of arsenic (III) on bio-concentration factor of Eichhornia crassipes at 

 different concentrations and exposure time. 

 

 

 Fig. 5.4. The effects of chromium (VI) on bio-concentration factor of Eichhornia crassipes at 

 different concentrations and exposure time. 

 As expected the bio-concentration factor for arsenic (III) and chromium (VI) significantly 

increased (P < 0.05) with passage of time. In plants treated with arsenic (III), the bio-

concentration factor significantly increased (P < 0.05) in 0.010, 0.025, 0.05 and 0.10 mgL
-1

 

treatments and results are presented in Table 5.3. In plants treated with K2Cr2O7, the bio-
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concentration factor significantly increased (P<0.05) in 0.75, 1.50 mg/L treatments but decreased 

in 2.50 and 4.0 mg/L and results were presented in Table 5.3.   

Table 5.3. The bio-concentration (BCF) values of Eichhornia crassipes at different 

 concentrations of arsenic (III) and chromium (VI) and exposure times (Mean ± S.D.). 

(The standard deviation has been obtained for n=3, “n” stands for the number of experiment 

replicates.) 

  

 The bio-concentration factor of 249.20 was obtained in plants treated with 0.10 mg/L of As2O3 

and 413.33 was obtained in plants treated with 1.50 mg/L of K2Cr2O7 after 9 days treatments. 

The maximum bio-concentration factor values for arsenic (III) were 323.12 in plants treated with 

0.10 mg/L of As2O3 on day 15, indicating that Eichhornia crassipes can be used for effective 

phytoremediation. The maximum BCF of 510.03 was obtained in plants treated with 1.50 mg/L 

of K2Cr2O7 after 15 days treatments. The statistical analysis of treated plants at different 

concentration of arsenic (III), chromium (VI) and exposure days have been conducted at 0.05 

levels and results are presented in Table 5.4.  Zhu et al. (1999) reported that the bio-

Bio-concentration factor                            Mean ± S.D. 

As2O3 concentration (mg/L)                              Days 

 3 9 15 

0.010 185 ± 1.24 207 ± 1.45 226 ± 0.65 

0.025 166 ± 0.54 199 ± 0.62 230 ± 1.32 

0.050 226 ± 1.44 235 ± 1.11 302 ± 2.05 

0.10 227 ± 0.37 249 ± 2.21 323 ± 1.25 

K2Cr2O7 concentration (mg/L) 

0.75 280 ± 1.11 400 ± 2.32 478.23 ± 1.21 

1.50 233.33 ± 2.10 413.32 ± 1.34 510.03 ± 2.31 

2.50 228 ± 0.65 324 ± 0.88 395.55 ± 1.41 

4.0 265 ± 1.06 365 ± 2.13 425.23 ± 0.21 
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concentration factor values of Eichhornia crassipes are very high for Cd, Cu, Cr and Se at low 

external concentration, and they are found to decreases with the increase in external 

concentration (Mohanty et al., 2012; Wang and Lewis, 1997). The maximum BCF values for As 

(III)
 
and Cr (VI)

 
were 323.12 and 510.03, respectively indicating that Eichhornia crassipes can 

be used for effective phytoremediation. It represents a cost-effective plant-based technology for 

the removal of metals from the environment and has great potential for future applications. 

Table 5.4. ANOVA table for bio-concentration factor of Eichhornia crassipes at different 

 concentrations of arsenic (III) and chromium (VI) and exposure times.  

 

5.1.3. Arsenic (III), chromium (VI) accumulation and remediation mechanism 

    5.1.3.1. Translocation of arsenic (III) ions and accumulation mechanism  

 Movement of metal/metalloids containing sap from the root to the shoot, termed translocation is 

primarily controlled by two processes root pressure and leaf transpiration. Some metals are 

Source Degree of 

Freedom (df) 

Sum of 

Squares 

(SS) 

 Mean Squares 

(MS) = SS/df 

F-Statics P-value 

As2O3 concentration (mg/L)    

Different 

concentration 

3 0.03612 0.012042 25.70 0.001 

Different days 2 0.033008 0.016504 35.23 0.000 

Error 6 0.002811 0.00046   

Total 11 0.071944    

K2Cr2O7 concentration (mg/L) 

Different 

concentration 

3 0.020547 0.006849 91.01 0.000 

Different days 2 0.108262 0.054131 719.88 0.000 

Error 6 0.000451 0.0000752   

Total 11 0.1292609    
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accumulated in roots, probably due to the some physiological barriers against metal/metalloid 

transport to the aerial parts (Rahman et al., 2008; Bose et al., 2008).  The results of arsenite ions 

accumulation by Eichhornia crassipes at 25
 o

C of different concentrations and exposure times 

are presented in Table 5.5.  

Table 5.5. The accumulation of arsenic (III) ions at pH 6.8 in shoots and roots of Eichhornia 

 crassipes at different arsenite concentration and exposure times. 

 (The standard deviation has been obtained for n=3, “n” stands for the number of experiment 

replicates.) 

  

    From the data in Table 5.5 it is inferred that, there is an increase in the arsenic (III) 

accumulation in shoots and roots when arsenite concentration and exposure times were increased 

(P < 0.05). The statistical analysis of treated plants at different concentration of arsenic (III) and 

exposure times have been conducted at 0.05 levels and presented in Table 5.6. Plants treated with 

0.10 mgL
-1

 of arsenite for 15 days accumulated the highest arsenic (III) in shoots (32.1 mg kg
-1

, 

                                                                        (Mean ± S.D.) 

As2O3 concentration (mg/L )                                                       Days 

 3 9 15 

                                                    Shoot (mg/kg) 

0.010 1.42 ± 0.04 1.61 ± 0.03 1.74 ± 0.12 

0.025 3.05 ± 0.08 4.47 ± 0.11 5.47 ± 0.06 

0.050 9.58 ± 0.13 10.21 ± 0.06 12.21 ± 0.22 

0.10 19.53 ± 0.24 21.3 ± 0.28 32.1 ± 0.05 

                                                       Root (mg/kg) 

0.010 0.43 ± 0.02 0.46 ± 0.01 0.52 ± 0.03 

0.025 1.11± 0.05 1.25 ± 0.08 1.32 ± 0.05 

0.05 1.82 ± 0.11 2.52 ± 0.04 3.18 ± 0.14 

0.10 4.21 ± 0.15 5.62 ± 0.02 9.20 ± 0.12 
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dry weight; Fig. 5.5) and in roots (9.2 mg kg
-1

, dry weight; Fig. 5.6). Arsenic once accumulated 

inside the plant, the arsenic ions must be translocated through the symplast at high 

concentrations in a manner that does not disrupt cytoplasmic function, which gives the 

considerable phytotoxicity of arsenic species. Finally, the arsenic is stored at very high 

concentrations in the shoots.  

Table 5.6. ANOVA table for arsenic (III) ions absorption efficiency of shoots and roots. 

 

Source Degree of 

Freedom 

 (df) 

Sum of 

Squares (SM) 

Mean 

Squares MS 

= SS/df 

F-

Statistics  

 

P-

value 

Shoots    

Different concentration 3 2.30222 0.01904 523.25 0.000 

Different days 2 0.03808 0.76741 12.98 0.007 

Error 6 0.00880 0.00147   

Total 11 2.34910    

Roots  

Different concentration 3 1.2672 0.4224 3210.5 0.000 

Different days 2 0.0178 0.00891 67.72 0.000 

Error 6 0.00078 0.00013   

Total 11 1.28587    
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Fig. 5.5. The accumulations of arsenic (III) ions shoot part of Eichhornia crassipes at different 

 concentrations and exposure time. 

 

Fig. 5.6. The accumulations of arsenic(III) ions root part of Eichhornia  crassipes at different 

 concentrations and exposure time. 

 

 The metals accumulation increased linearly with the solution concentration in the order of leaves 

> stems > roots in Eichhornia crassipes (Feng et al., 2009; Alvarado et al., 2008; Snyder, 2006; 

Low and Lee, 1990; Vamerali et al., 2009; Misbahuddin and Fariduddin, 2002; Mishra et al., 

2008; Keith et al., 2006). Metalloid ions penetrated plants by passive process, mostly by 
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exchange of cations which occurred in the cell wall. All heavy metals were taken up by plants 

through absorption, translocation and released by excretion. It can be proposed that the roots 

reached saturation during the period and there exists some mechanism in roots that could 

detoxify heavy metals or transfer them to aerial parts.  

  The most efficacious remediation of arsenic requires that plants extract arsenic from water and 

accumulate in shoot parts. To accomplish this, the electrochemical species of arsenic must be 

changed in different parts of the plant. The bacterial arsenate reductase (ArsC) catalyzes the 

electrochemical reduction of arsenate to arsenite. The bacterial γ-glutamylcysteine synthetase (γ-

ECS) catalyzes the formation of γ-glutamylcysteine (γ-EC) from the amino acids glutamate and 

cysteine and is the committed step in the synthesis of glutathione (GSH) and phytochelatine 

(PCs) (indicated by three arrows which represents the interaction of three thiols groups) (Meharg 

and Hartley-Whitaker, 2002; Zhu and Rosen, 2009). Reduced arsenite can bind organic thiols 

(RS) such as those in γ- EC, GSH, and PCs through the replacement of oxygen by organic sulfur 

species. The scheme of reaction mechanism is as follows (Dhankher and Meagher, 2005). 

                                                

AsO4
-3

 + 2GSH                                      GS-SG + AsO3
-3   

 

        Glu + Cys                                       γ – Glu-Cys 

  

 

5.1.3.2. Translocation of chromium (VI) ions and accumulation mechanism     

Phytoremediation methods using aquatic plants to absorb metals/metalloids from their 

surrounding waters are highly efficient (Dutton and Fisher, 2011). The bio removal process using 

aquatic plants contains two uptake processes; (i) biosorption which is an initial fast, reversible, 

and metal-binding process and (ii) bioaccumulation which is a slow, irreversible, and ion-

sequestration step (Braud et al., 2009; Keskinkan et al., 2003; Mohanty and Patra, 2012; 

Delgado et al., 1993). 

 Table 5.7 The accumulation of chromium (VI) ions at pH 6.8 in shoots and roots of Eichhornia 

 crassipes at different hexavalent chromium concentration and exposure times. 

(Mean ± S.D.) 

 Arsenate reductase (ArsC) 

EC 

γ- ECS 

                     

                 As (III)  

                

 

 R-S  R-S 

 R-S 
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   (The standard deviation has been obtained for n=3, “n” stands for the number of experiment 

replicates.) 

   In the present study, the accumulation of hexavalent chromium ions by Eichhornia crassipes at 

 25
 o

C with different concentrations and exposure times was analyzed and were presented in 

Table 5.7.  From the data in Table 5.7 it is clear that there is an increase in the chromium (VI) 

accumulation in shoots and roots when chromium (VI) concentration and exposure times are 

increased (P<0.05). The statistical analysis of treated plants at different concentration of 

chromium (VI) and exposure times have been conducted at 0.05 levels and presented in Table 

5.8.  

 

Table  5.8. ANOVA table for chromium (VI) absorption efficiency of shoots and roots. 

 

K2Cr2O7 concentration (mg/L )                                                 Days 

 3 9 15 

                                                    Shoot (mg/kg) 

0.75 10.11 ± 0.04 40.44 ± 0.43 50.45 ± 0.12 

1.50 50.23 ± 0.08 80 ± 1.11 101 ± 0.16 

2.50 70.24± 0.13 120 ± 0.62 140 ± 0.42 

4.0 90.22 ± 0.24 240 ± 0.18 260 ± 0.05 

                                                       Root (mg/kg) 

0.75 200 ± 0.42 260 ± 1.01 280 ± 1.03 

1.50 300± 2.05 540 ± 0.08 560 ± 2.05 

2.50 500 ± 0.11 790 ± 1.04 820 ± 1.14 

4 570 ± 2.15 1220 ± 3.02 1320 ± 3.12 

Source Degree of 

Freedom 

 (df) 

Sum of 

Squares (SM) 

Mean 

Squares MS 

= SS/df 

F-

Statistics  

 

P-

value 
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 Plants treated with 4.0 mg/L of Cr (VI) after day 15 accumulated the highest level of metal in 

shoots (260 mg/kg, dry weight; Fig. 5.7) and roots (1320 mg/kg, dry weight; Fig. 5.8). In the 

presence of excessive oxygen, chromium (III) oxidizes into chromium (VI), which is highly 

toxic and more soluble in water than the other forms. Chromium (VI) can easily cross the cell 

membrane, whereas the phosphate-sulphate carrier also transports the chromite anions. Fe, S, and 

P are known also to compete with Cr for carrier binding (Hadad et al., 2011; Mei et al., 2002; 

Wang and Lewis, 1997). Metal ions penetrated plants by passive process, mostly by exchange of 

cations which occurred in the cell wall. The metals accumulation in Eichhornia crassipes 

increases linearly with the solution concentration in the order of leaves < stems < roots (Maine et 

al., 2004; Qian et al., 1999; Keith et al., 2006). It can be proposed that the roots reached 

saturation during the period and there exists some mechanism in roots that could detoxify heavy 

metals or transfer them to aerial parts.  

Shoots    

Different concentration 3 1.0574 0.3525 30.02 0.001 

Different days 2 0.4442 0.2221 18.92 0.003 

Error 6 0.0704 0.0117   

Total 11 1.5721    

Roots  

Different concentration 3 0.60391 0.20130 64.65  0.000 

Different days 2 0.16080 0.08040 25.82  0.001 

Error 6 0.01868 0.00311   

Total 11 0.78340    
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Fig. 5.7. The accumulation of chromium (VI) ions in shoot part of Eichhornia crassipes at 

 different concentration and exposure time. 

 

Fig. 5.8. The accumulation of chromium (VI) ions in root part of Eichhornia crassipes at 

 different concentration and exposure time. 

 

  5.1.4. Toxic effects of arsenic and chromium ions in plants  

    5.1.4.1. Arsenic ions detoxification and remediation mechanism 

  The toxic effects of arsenic ions mainly depend on the metal speciation, which decides its 

uptake, translocation and accumulation mechanism. A strategy for cells to detoxify non-essential 

metal ions and an excess of essential metal ions is the synthesis of high-affinity binding sites to 

suppress binding to physiologically important functional groups. The high reactivity of metal 
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ions with thiol, amino or hydroxyl groups makes the molecules carrying these functional groups 

as metal chelators. The best-known and presumably most effective chelators for arsenic ions are 

small Cys-rich proteins (metallothioneins, MTs) and Cys-containing peptides glutathione (GSH) 

and phytochelatins (PCs). PCs peptides of general structure (γ-Glu-Cys)n -Gly (n= 2-11)  has 

been represented in Fig. 5.9(a) (Meharg and Hartley-Whitaker, 2002). They are enzymatically 

synthesized by a specific transpeptidase, the phytochelatin synthase, which is activated by the 

presence of metal ions and uses glutathione as substrate. Their detoxifying function depends on 

the ability to bind metals to form stable complexes, which effectively reduce the intracellular 

concentration of potentially toxic free metal ions.    

 A detoxification pathway for arsenate (AsO4
3-

) by conversion to arsenite (AsO3
3-

) upon its 

uptake into roots has been proposed. Arsenite (AsO3
3-

) transformation and detoxification system 

in root cells is responsible for the phytochelatins and oxidized to form arsenate (Sneller et al., 

1999). Arsenate can be reduced to arsenite enzymatically by arsenate reductase as shown in vitro 

and non-enzymatically by glutathione (GSH) (Delnomdedieu  et al., 1994) followed by the 

formation of an arsenite-thiol (AsO3
3-

-SH) complex. Acylation of binding site (Fig. 5.9(b)) I 

(step 1) occurs at a cysteine that is 100% conserved in all known phytochelatin synthases and 

phytochelatin synthase-like proteins. The cysteine together with a histidine and an aspartate 

forms the catalytic triad typical for cysteine proteases. Glycine is cleaved off (step 2) and the 

resulting γ-glutamylcysteine dipeptide is transferred onto another glutathione (or a PC molecule). 

Binding site II remains to be identified and is possibly not present in bacterial phytochelatin 

synthase-like proteins (Mukhopadhyay et al., 2000). They catalyse steps 1 and 2, resulting in the 

degradation of glutathione to γ-glutamylcysteine and glycine. Steps 1 and 2 are metal ion-

independent. Acylation of site II and peptide transferase activity require metal ion activation 

and/or the binding of a metal-glutathione complex.  
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His

Cys

SHI

II                                

Glu
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His

Cys

SI

II

+ Gly

            

                   Step-1                                                                                Step-11 

 Fig. 5.9 (a) The structure of phytochelatins, metal-binding peptides synthesized non-ribosomally 

 from glutathione. (b) Acylation of site II and peptide transferase activity require 

 metal ion activation and/or the binding of a metal-glutathione complex. 

  

5.1.4.2. Chromium detoxification and remediation mechanism 

  The toxic effects of Chromium are primarily dependent on the metal speciation, which 

determines its uptake, translocation and accumulation mechanism. The oxidation state of 

chromium strongly influences the rate of chromium uptake. Chromium (VI) can easily cross the 

cell membrane and the phosphate sulphate carrier transports the chromate anions. It forms a 

number of stable oxyacids and anions, including HCrO4
- 
(Hydrochromate), Cr2O7

2-
 (dichromate), 

and CrO4
-2

 (chromate).The chromate ion has a large ionic potential and have the potential for 

tetrahedral coordination and acts both as strong acid and an oxidizing agent. The toxic properties 

of Cr (VI) originate from the action of this form which as an oxidizing agent, as well as from the 

formation of free radicals during the reduction of Cr (VI) to Cr (III) inside the cell. Induction and 

activation of superoxide dismutase (SOD) and of antioxidant catalase are some of major metal 

detoxification mechanisms in plants as shown in Fig. 5.10.   

(b) 



RESULTS AND DISCUSSION  CHAPTER-5 

CHEMISTRY 80 

 

 

Fig. 5.10. Hypothetical model of chromium ions transport and toxicity in Eichhornia crassipes 

 plant root cell.  

 

 SOD has been proposed to be important in plant stress tolerance and provide the first line of 

defense against the toxic effects of elevated levels of reactive oxygen species (Puntarulo et al., 

1988). The SODs remove O2• by catalyzing its dismutation, one O2• being reduced to H2O2 and 

another oxidized to O2. It has been noted that O2•
 
can undergo protonation to give up a strong 

oxidizing agent, HO2• in negatively charged membrane surfaces, which directly attack the 

polyunsaturated fatty acids (Halliwell, 2006; Elstner, 1987) Furthermore, O2•
 
can also donate an 

electron to chromium (Cr
6+

) to yield a reduced form of chromium (Cr
+3

) which can then reduce 

H2O2, produced as a result of SOD led dismutation of O2•
 
and OH

•
. The reactions through which 

O2•, H2O2 and chromium rapidly generate OH
•
 which is called the Haber-Weiss reaction 

(Scarpeci et al., 2008). 

O2• + Cr
6+

  
1
O2 + Cr

+3
 

 

2O2•+ 2H
+
     O2 + H2O2 Cr

6+
 

Cr
+3

 + H2O2  Cr
6+ 

+ OH
-
 + OH• (Fenton reaction) 

 

 

SOD 
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5.1.5. Arsenic and chromium speciation in Eichhornia crassipes shoot biomass using 

 complete microwave assisted extraction by HPLC-ICP-MS 

 

    5.1.5.1. Extraction efficiency of arsenic ions 

 Extraction is an important step for separation of constituents from the plant material (adsorbed). 

Microwave heating technique is a simple, inexpensive and valuable tool used in applied 

chemistry which requires lesser amount of solvent, simplified manipulation and higher purity of 

final product with lower cost (Ammann, 2007; Quaghebeur et al., 2003). Microwave extraction 

is becoming the choice for the extraction of solid matrices for organic analyte analysis by HPLC-

ICP-MS techniques. In the present study, extraction of 32.1 ± 0.05 mgkg
-1

 arsenic (III) ions from 

Eichhornia crassipes shoots biomass using 10% (v/v) tetramethylammonium hydroxide 

(TMAH), deionized water, and a modified protein extracting solution has been conducted at 

different time  temperatures and times durations and the results are  presented in Fig. 5.11, Fig. 

5.12 and Fig. 5.13, respectively.  

 

 

Fig. 5.11. Total arsenic extraction efficiency for Eichhornia crassipes shoot biomass using a 

 modified protein extracting solution at different temperature and times. Data 

 represents the mean ± S.D (n=3, “n” stands for the number of experiment replicates.) 
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Fig. 5.12. Total arsenic extraction efficiency for Eichhornia crassipes shoot biomass using 

 deionized  water at different temperature and times. Data represents the mean ± S.D 

 (n=3, “n” stands for the number of experiment replicates.) 

 . 

  

 

Fig. 5.13. Total arsenic extraction efficiency for Eichhornia crassipes shoot biomass using 10% 

 TMAH solution at different temperature and times. Data represents the mean ± S.D 

 (n=3, “n” stands for the number of experiment replicates.) 

The efficiency of the extraction of arsenic ions increased with increasing temperature in both 

modified protein extracting solution and deionized water (Fig. 5.11 and Fig. 5.12) but in TMAH 

the extraction efficiency decreased with increase in temperature with the lowest value at a 

temperature of 80 °C (Fig. 5.13). This is because at high temperature, TMAH is expected to 

break the strong As-SH bonds present in plant material and can extract inorganic arsenic 

successfully even at low temperatures. It is evident from the results that TMAH extracted around 

95% of the arsenic from Eichhornia crassipes shoot biomass at 60 °C, which was significant 

compared to deionized water (87.24%) at the same temperature. The extraction time significantly 
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affected arsenic extraction efficiencies (Table 5.9). Longer extraction times improved arsenic 

recoveries in all extractants at 40 °C and in the modified protein extracting solution and TMAH 

at 60 °C. However, the extraction time did not significantly affect extraction efficiencies at 80 °C 

in any of the 3 extractants (Table 5.9). Ackley et al. 1999 have reported that TMAH can able to 

extract 95% of the total arsenic from DORM-2 reference material heated in a microwave at 50 

°C compared a recovery of 74% when water was used as a solvent. Quaghebeur et al. 2003 have 

reported the modified protein extracting solution extracted arsenic from shoot and root materials 

of Brassica napus, Holcus lanatus, Arabidopsis thaliana and Senna planitiicola by microwave 

heating the sample at 90 °C for 20 min and the extraction efficiency was 104 ± 16 %. 

 

   Table 5.9. Analysis of variance of arsenic extraction efficiency for Eichhornia crassipes 

 shoots biomass with extractant, heating temperature and duration as main factors.  

 

In order to validate statistical importance of each influencing parameter on response, analysis of 

variance has been conducted and the data of statistical analysis are presented in Table 5.9 at 

confidence level of 95% for arsenic (III). The results from the above table indicate that there is a 

Source Degree of 

Freedom 

(df) 

Sum of 

Squares (SM) 

Adj. Sum 

Squares (SM) 

Adj. Mean 

Squares 

MS = 

SS/df  

F-

Statistics  

 

P-value 

Extractant 2 0.0000558 0.0000558 0.0000279 50.46 0.000 

Temperature 2 0.0001564 0.0001564 0.0000782 141.48 0.000 

Time 2 0.0000599 0.0000599 0.0000300 54.18 0.000 

Extractant 

xTemp. 

4 0.0001937 0.0001937 0.0000484 87.61 0.000 

Extractant 

xTime 

4 0.0000060 0.0000060 0.0000015 2.70 0.108 

Temp. xTime 4 0.0000099 0.0000099 0.0000025 4.48 0.034 

Error 8 0.0000044 0.0000044 0.0000006   

Total 26 0.0004862     
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significant variation in the results. It is observed from the table that the factors extractant, 

temperature and time are statistically significant as the p-value is less than 0.05. From the data of 

Table 5.9, it is revealed that interactions of extractant × temperature have largest influence on 

response as p-value is 0.000. The interaction extractant × time may be treated as having 

moderate influence on response as p-value is observed as 0.108. To establish the fact, DOE has 

proceeded in a reasonably good manner; normal probability plot of residuals is shown in Fig. 

5.14. Because the data points roughly follow the straight line, it is concluded that the data are 

from a normally distributed population.  
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Fig. 5.14. Residual plots for arsenic (III) extraction efficiency from Eichhornia crassipes shoot 

 biomass. 

 

5.1.5.2. Stability of arsenic species during the extraction procedure 

Eichhornia crassipes shoot biomass was spiked with mixture of four arsenic species [As (III), As 

(V), DMA and MMA] and was taken through the extraction procedure as described. 0.15 g of the 
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plant material was weighed and 500 µL of a stock solution containing 1000 µgL
-1

 of the species 

and 9500 µL of the extracting solution were added. The extracts were subjected to only one 

heating temperature (60 °C) and heating duration of 25 min.  The experiments are conducted 

plant materials, the 3 extractants (water, modified protein extracting solution, and 10% (v/v) 

TMAH) separately. After microwave heating, the samples were allowed to cool and were filtered 

through Whatman 42 filter paper. The arsenic species were measured by HPLC-ICP-MS. Before 

injection, the samples were filtered through a 0.45 µm low protein binding Durapore disposable 

syringe filter. Before injecting TMAH solutions into the chromatographic column, the pH was 

adjusted to 5.0 by adding 0.1 mL concentrated acetic acid and 0.133 mL acetate buffer solution 

to 1 mL of sample. Chromatogram of a solution containing a mixture of As(III), As(V), DMA 

and MMA standards at concentration of 25 µgL
-1

 each and presented in Fig. 5.15.  

 

Fig. 5.15. Chromatogram of a solution containing a mixture of As(III), DMA, MMA and As(V) 

 standards at concentrations of 25 µg AsL
-1

 each.  

 Arsenic species were separated on the Hamilton PRP x 100 anion-exchange column. In present 

study, the plant material was used to evaluate the stability of arsenic species during the extraction 

procedure. Heitkemper et al. 2001 extracted 97 or 23% of total arsenic from two different rice 

grain samples using methanol by accelerated solvent extraction. Francesconi et al. 2002 

extracted 22-93% of total arsenic from different fern parts (fronds, petioles and rhizoids) which 

contained various amounts of arsenic (88-5230 mg kg
-1

) using water in combination with 
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sonication. Therefore, the method adopted in this study was tested on shoot biomass of E. 

crassipes containing 32.1 ± 0.05 mgkg
-1

 arsenic (III) ions.  Extraction of arsenic from plant 

materials using three extractant solutions: (i) Extracted by 10% (v/v) tetramethylammonium 

hydroxide (TMAH) with yield of 95.14%, (ii) Extracted by double deionized water with yield of 

87.24% and (iii) Extracted by a modified protein extracting solution with yield of 88.92%. 

Chromatograms are obtained for arsenic species in plant shoot biomass with modified protein 

extraction and TMAH extract solution by using HPLC-ICP-MS, and are shown in Fig. 5.16a and 

Fig. 5.16b, respectively.  Eichhornia crassipes consisted only inorganic arsenic species as it is 

indicated from the above figures. Arsenic (III) are present in maximum quantity, arsenic (V) in 

minimum quantity and the organic arsenic like monomethylarsonic (MMA) and dimethylarsinic 

acid (DMA) are absent. Recent studies have described the formation of As-phytochelatin 

complexes in several terrestrial plants upon exposure to arsenate (Sneller et al., 1999; Hartley-

Whitaker et al., 2002; Schmoger et al., 2000; Aydina and Soylaka, 2010; Ambushe et al., 2009). 

Phytochelatins (PCs) are thiol (SH) - rich peptides derived from glutathione (GSH) and are 

considered to be involved in the mechanism of detoxifying heavy metals in higher plants. Arenic 

(III) readily forms complexes with thiol groups which is supported by the results. 

 

 

(a) 
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 Fig. 5.16. Hamilton PRP-X100 anion-exchange column Chromatogram of (a) a modified protein 

 extraction solution, and (b) TMAH extract of freeze-dried Eichhornia crassipes shoot 

 biomass  

 

5.1.5.3. Extraction efficiency of chromium ions  

 In this work, microwave assisted extraction as a method of sample preparation for determination 

of a range of chromium ions in plant samples was studied. Extraction of 260 ± 0.05 mgkg
-1

 

chromium (VI) ions from Eichhornia crassipes shoots biomass using 0.02 M 

ethylenediaminetetraacetic acid (EDTA), deionized water and hydrochloric acid. The percentage 

of chromium extracted with respect to temperatures and time durations are presented in Fig. 

5.17, Fig. 5.18 and Fig. 5.19, respectively. The extraction of chromium ions efficiency increased 

with increasing temperature for all the extranct: ethylenediaminetetraacetic acid (EDTA), 

deionized water and hydrochloric acid with maximum extraction efficiency at 60 ° C for a time 

duration of 15 min. EDTA extracted around 97% of the chromium ions from Eichhornia 

crassipes shoot biomass at 60 °C, which was significantly compared to deionized water 

(88.22%) at the same temperature. The extraction time significantly affected chromium 

extraction efficiencies (Table 5.10).  

  

(b) 
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Fig. 5.17. Total chromium extraction efficiency for Eichhornia crassipes shoot biomass using 

 0.02 M EDTA solutions at different temperature and times. Data represents the mean ± 

 S.D (n=3, “n” stands for the number of experiment replicates.) 

 

 

Fig. 5.18. Total chromium extraction efficiency for Eichhornia crassipes shoot biomass using 

 deionized water at different temperature and times. Data represents the mean ± S.D 

 (n=3, “n” stands for the number of experiment replicates.) 
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Fig. 5.19. Total chromium extraction efficiency for Eichhornia crassipes shoot biomass using 

 HCl solution at different temperature and times. Data represents the mean ± S.D (n=3, 

 “n” stands for the number of experiment replicates.) 

 

 

 Table 5.10. Analysis of variance of chromium extraction efficiency for Eichhornia crassipes 

 shoots biomass with extractant, heating temperature and heating duration as main 

 factors. 
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Source Degree of 

Freedom 

(df) 

Sum of 

Squares (SM) 

Adj. Sum 

Squares (SM) 

Adj. Mean 

Squares 

MS = 

SS/df  

F-

Statistics  

 

P-value 

Extractant 2 0.0121410   0.0121410 0.0060705 80.38 0.000 

Temperature 2 0.0125336 0.0125333 0.0062668 82.97 0.000 

Time 2 0.0070470 0.0070470 0.0035235 46.65 0.000 

Extractant 

xTemp. 

4 0.0067935 0.0067935 0.0016984 22.49 0.000 

Extractant 

xTime 

4 0.0008996 0.0008996 0.0002249 2.98 0.088 

Temp. xTime 4 0.0005002 0.0005002 0.0001250 1.66 0.252 

Error 8 0.0006042 0.0006042 0.0000755   
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Longer extraction times improved chromium recoveries in ethylenediaminetetraacetic acid 

(EDTA) and deionized water at 60 °C, but HCl at 80 °C. However, the extraction time did not 

significantly affect extraction efficiencies at 80 °C in any of the 3 extractants (Table 5.10). The 

statistical analysis of efficiency differences between various extractants, extraction temperatures 

and durations are presented in Table 5.10. The results from the above table indicate that there is a 

significant variation in the results. In order to validate statistical importance of each influencing 

parameter on response, analysis of variance has been conducted and the data are presented in 

Table 5.10 at confidence level of 95% for chromium (VI). It is observed from the table that the 

factors extractant, temperature and time are statistically significant as the p-value is less than 

0.05. From Table 5.10, it is revealed that interactions of extractant × temperature have largest 

influence on response as p-value is 0.000. The interaction extractant × time may be treated as 

having moderate influence on response as p-value is observed as 0.088. To establish the above 

fact, DOE has proceeded in a reasonably good manner; normal probability plot of residuals is 

shown in Fig. 5.20. Because the data points roughly follow the straight line, one can conclude 

that the data are from a normally distributed population.  

 

5.1.5.4. Stability of chromium species during the extraction procedure 

 Chromium exists primarily in two forms, trivalent and hexavalent. Trivalent chromium is 

present in cationic forms as Cr
+3

 and is an essential nutrient, but hexavalent chromium is toxic 

and exists as an anion, either as chromate (CrO4
-2

) or dichromate (Cr2O7
-2

). A common problem 

with chromium speciation is the well-known interconversion of Cr
+3

 and Cr
+6

. The focus of this 

work is to explore chromatographic and instrumental analysis and parameters necessary to 

distinguish Cr
+3

 from Cr
+6

 in samples using HPLC-ICP-MS (Wolf et al., 2007; Sheehan et al., 

1992). 1000 mg/L stock solutions for chromium standards for Cr
+3

 and Cr
+6

 were prepared from 

[Cr (NO3)3.9 H2O and [(NH4)2Cr2O7] respectively. Intermediate 2 mg/L solutions of each species 

were prepared in deionized water. Standards of different chromium concentrations were made by 

appropriate dilution of the intermediate standards with mobile phase. Fig. 5.21 shows a 

chromatogram of a mixture of Cr
+3

 and Cr
+6

 (10µg/L each) acquired while monitoring ions.  

 

Total 26 0.0405191     
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Fig. 5.20. Residual plots for chromium (VI) extraction efficiency from Eichhornia crassipes 

 shoot biomass. 

 

 

 

Fig. 5.21. Chromatogram of a solution containing a mixture of Cr (III) and Cr (VI) standards at 

 concentrations of 10 µg Cr L
-1

 each.  

  The separation is accomplished by interaction of the chromium species with the different 

components of the mobile phase. The Cr
+3

 forms a complex with the EDTA is retained on the 
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column and Cr
+6

 exist in solution as dichromate. The negative charge of the chromium-EDTA 

complex and the negative charge of the dichromate interact with positive charge of the 

tetrabutylammonium hydroxide (TBAH) (Wolf et al., 2007).  Therefore, the method developed 

in this study was tested on shoot biomass of Eichhornia crassipes containing 260 ± 0.05 mgkg
-1

 

chromium (VI) ions. Extraction of chromium from plant materials using three extractant 

solutions: (i) Extracted by 0.02 M ethylenediaminetetraacetic acid (EDTA), with yield of 

97.24%, (ii) Extracted by double deionized water with yield of 72.21% and (iii) Extracted by 

HCl solution with yield of 87%. All extraction was done in similar condition at 60 °C and 

duration of 15 minutes. Chromatograms are obtained for chromium species in plant shoot 

biomass 0.02 M ethylenediaminetetraacetic acid (EDTA) and HCl extract solution by using 

HPLC-ICP-MS, and are shown in Fig. 5.22a and Fig. 5.22b, respectively.  The results in figures 

clearly indicate that chromium species in the Eichhornia crassipes consisted only Cr
+3

 and Cr
+6

, 

chromium (VI) are present in maximum quantity compare with chromium (III) ions. 

 

 

 

 

 

 

 

 

 

 

(a) 
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Fig. 5.22. Hamilton PRP-X100 anion-exchange column Chromatogram of (a) 0.02 M 

 ethylenediaminetetraacetic acid (EDTA) and (b) HCl extract of freeze-dried Eichhornia

 crassipes shoot biomass.  

 

5.1.6. Characterizations of Eichhornia crassipes shoot biomass before and after absorption 

 of arsenic (III) and chromium (VI) ions. 

 5.1.6.1. SEM-EDX analysis 

The surface morphology of Eichhornia crassipes shoot biomass without and with removal of 

arsenic (III) and chromium (VI) ions during absorption process was observed with the help of 

SEM-EDX (JOEL model JSM-6480LV, Japan) and presented in   Fig. 5.23. It clearly reveals the 

surface texture and pores in the species without absorption of arsenic (III) and chromium (VI) 

ions.  Fig. 5.24 and Fig. 5.25 show the morphological changes with respect to shape and size of 

the materials after absorption of arsenic (III) and chromium (VI) ions respectively.  It can be 

clearly observed that the surface of materials shape has been changed into a new shiny bulky 

particle and whitish patches structure the adsorption of after arsenic (III) and chromium (VI) 

ions. The EDX spectra of arsenic (III) and chromium (VI) ions are shown in Fig. 5.23 and 

arsenic (III) and chromium (VI) loaded of extract materials are shown in Fig. 5.24 and Fig. 5.25, 

respectively. So, it was concluded that, arsenic (III) and chromium (VI) ions were adsorbed on 

the surface of the extract materials. These results are further confirmed with the results of FTIR 

spectra analysis. 

(b) 
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Fig. 5.23. SEM-EDX images of Eichhornia crassipes shoot biomass without absorption of 

 arsenic (III) and chromium(VI) ions. 

 

 

 

 

 

 

 

 

Fig. 5.24. SEM-EDX images of Eichhornia crassipes shoot biomass with absorption of 

 arsenic(III) ions. 
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Fig. 5.25. SEM-EDX images of Eichhornia crassipes shoot biomass with absorption of 

 chromium(VI) ions. 

 5.1.6.2. FTIR analysis 

Infrared spectra (Perkin Elmer Spectrum RX-I) of the Eichhornia crassipes shoot biomass 

without arsenic and chromium ions loaded are obtained to determine which functional groups 

may have contributed to the arsenic and chromium ions adsorption are presented in Fig. 5.26. 

The FTIR spectra of the shoot biomass loaded with arsenic ions are presented in Fig. 5.27 which 

displays a number of absorption peaks, indicating the complex nature of the biomass. The spectra 

of loaded with arsenic and without are compared and found the following shift is observed in 

spectra. The spectra of extract materials exhibits a broad absorption band at 3225.78 cm
-1 

due to 

bonded –OH stretching vibration which is shifted to 3195.91 cm
-1 

may be due to complexation of 

–OH groups with metal. The band at 2,918.50 cm
-1

 has been shifted insignificantly. The new 

peak at 2,351.75 cm
-1

 may be due to the complexation of –SH group with arsenic ions (Coates, 

1996). The next absorption peak at 1,638.96 cm
-1 

may be due to the presence of amide group (N-

H stretching and C=O stretching vibration) is shifted to higher frequency and appeared at 

1,645.03 cm
-1

 may be due to the complexation of amide group with arsenic ions (Bang et al., 

2005). Another peak at1, 319.75 cm
-1

 has been shifted insignificantly.  Another shift was 

observed from 1,163.54 cm
-1

 to 1,169.27 cm
-1

 and 1,022.47 cm
-1

 to 1,023.65 cm
-1

 may be due the 

interaction of nitrogen from amino group with arsenic ions (Roddick-Lanzillota et al., 2002; 

Castaldi et al., 2010). The other weak absorption peak shifted from 780.91 cm
-1

 to 780.64 cm
-1
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and 670.09 cm
-1

 to 668.44 cm
-1 

corresponding to the thiol or sulfhydryl group with arsenic ions 

(Coates, 1996). The above changes in the spectra may be attributed to the interaction of arsenic 

ions with the hydroxyl, amide, thiol and amino groups present on the shoot biomass.  

  The spectra of the chromium (VI) loaded biomass, when compared with that of without 

biomass represented in Fig. 5.28. There is a significant shift of few absorption peaks indicate the 

coordination of metal to biomass. The band at 2918.50 cm
-1

   has been shifted insignificantly. 

The peaks at 1645.17 cm
-1

 have been shifted to 1638.96 cm
-1

 may be due to the complexation of   

carboxylic group with Cr (VI). Another shift was observed from 1418.96 cm
-1

 to 1319.75 cm
-1

, 

corresponding to the complexation of nitrogen with chromium from the N-H group. The next 

shift was observed from 1172.97 cm
-1

 to 1163.54 cm
-1

 and 1008.50 cm
-1

 to 1022.47 cm
-1

 may be 

due the interaction of nitrogen from amino group with chromium. The other weak absorption 

peak shifted from 632.40 cm
-1

 to   630.18 and 520.23 cm
-1

 to 522.34 cm
-1

, corresponding to the 

O-C-O scissoring vibration of polysaccharide. The above changes in the spectra may be 

attributed to the interaction of Cr (VI) with the carboxyl, hydroxyl and amino groups present on 

the surface of the Eichhornia crassipes biomass. This clearly manifests the binding chromium to 

the biomass.  

 Fig. 5.26. FTIR spectra of  Eichhornia crassipes shoot biomass without absorption of   

   arsenic(III) and chromium(VI) ions. 
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        Fig. 5.27. FTIR spectra of Eichhornia  crassipes shoot biomass with absorption of   

 arsenic(III) ions. 

 Fig. 5.28 FTIR spectra of the Eichhornia  crassipes shoot biomass with absorption of   

           chromium(VI) ions. 

 

5.1.6.3. X-Ray diffraction analysis 
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XRD pattern of the arsenic and chromium extract materials is shown in Fig. 5.29 and Fig. 5.30, 

respectively. Few sharp peaks are observed indicating the sample is crystalline in nature. 

Fig.5.29 represents the XRD (JCPDS No- 37-1129) pattern of arsenic ions loaded plant 

materials. The phases of AlAsO4, As2O3 and As (OH)3  are found in the recovered arsenic ions. 

So it is concluded that, some of the arsenic ions are converted into AlAsO4, and As2O3, some are 

converted into As(OH)3  and finally get adsorbed over the surface of plant materials (Jia et al., 

2007; Lim et al., 2009). Fig. 5.30 represents the XRD (JCPDS No- 34-0756) pattern of 

chromium ions loaded plant materials. The phases of K2Cr2O7, K3Er (CrO4)3, and Al8Cr4 Dy are 

found in the recovered chromium ions, So it is concluded that, some of the chromium ions are 

converted into K2Cr2O7 and K3Er (CrO4)3, some of the converted into Al8Cr4 Dy and finally get 

adsorbed over the surface of plant materials (Wang et al., 2006).  

 

                      Fig. 5.29. XRD pattern of arsenic ions loaded materials. 

 

(a) AlAsO4 
(b) As2O3 
(c ) As(OH)3   

(b) 

(b) 

(a) 

(c) 

(a) 
(c) 
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                          Fig. 5.30. XRD pattern of chromium ions loaded materials. 

 

5.2. Biosorption of arsenic (III) and chromium (VI) ions by living cells of Bacillus cereus 

 biomass using bioremediation techniques. 

The arsenic(III) and chromium(VI) sorption experiments from its aqueous solution on living 

cells of  Bacillus cereus were carried out using standard 1 mg/l, 5 mg/L and 10 mg/L As
3+

 and  

Cr 
6+

 solution in absence of other competing ions. Optimum sorption conditions are determined 

in batch mode process as a function of pH, initial arsenite concentration, biomass loading, 

contact time, and temperature affecting the biosorption of arsenic (III) and chromium (VI). The 

biosorption experiments were carried out in a series of 100 mL Borosil conical flask with stopper 

by adding 0.5 - 15 g/L of the biosorbent in 50 mL of synthetic arsenic (III) and chromium (VI) 

solution in distilled water. Stoppers were provided to avoid change in concentration due to 

evaporation. All the biosorption experiments were carried out at ambient temperature (30 ± 2 

°C). 

5.2.1. Effects of biosorbent dosage on arsenic (III) and chromium (VI) removal 

 Biosorbent dose is an important parameter which determines the capacity of biosorbent for an 

initial concentration of the sorbate. The effect of biosorbent dose on the biosorption of  arsenic 

(III) and chromium (VI) ions are studied at ambient temperature 30 ± 2°C and contact time of 60 

(a)K2Cr2O7,  
(b)K3Er (CrO4)3,  
(c ) Al8Cr4 Dy 

(a) 
(a) 

(b) 

(b) 

(c) 

(a) 

(c) 
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min for initial arsenic(III) and chromium(VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L and 

the results are represented in Fig. 5.31 and Fig. 5.32, respectively.  

 

Fig. 5.31 Effect of biosorbent dose on the biosorption of arsenic (III) with initial concentration 

 of 1  mg/L, 5 mg/L and 10 mg/L.   

 

 

Fig. 5.32 Effect of biosorbent dose on the biosorption of chromium(VI) with initial 

 concentration of 1 mg/L, 5 mg/L and 10 mg/L.  

   

 Experimental results showed that with the increase in biosorpbent dose of living cells of 

Bacillus cereus from 1g/L to 6 g/L, the percentage removal of arsenic (III) increased from72.28 

% to 86.14 %, 70.15% to 80.23% and 67.22% to 78.54% for 0.05 to 0.5 g/50 mL of synthetic 

solution of initial arsenic (III) concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively. 
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Similarly, with the increase in biosorpbent dose of living cells of Bacillus cereus from 1g/L to 6 

g/L, the percentage removal of chromium (VI) increased from 78.40 % to 89.24 %, 74.45% to 

85.13% and 71.12% to 81.54%, for 0.05 to 0.5 g/50 mL of synthetic solution of initial chromium 

(VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively. This result is expected because 

for a fixed initial biosorbent concentration, increase in total biosorbent doses provides a greater 

biosorption sites and increases the biosorption potential. Several researchers have reported 

similar results (Singh et al., 2012; Davis et al., 2003; Hussein et al., 2004; Beolchini et al., 2009; 

Bai and Abraham, 2002; Qaiser et al., 2009; Kim et al., 2004; Radhika et al., 2006; Pokhrel and 

Viraraghavan, 2006). However it is observed that after 0.3g/50 ml of Bacillus cereus biomass, 

there is no significant change in percentage of removal of arsenic (III) and chromium (VI) , may 

be due to the higher dosage could produce a ‘screening effect’ on the cell wall, protecting the 

binding sites, causes lower arsenite and hexavalent chromium sorption.  So, 0.3 g of Bacillus 

cereus biomass in 50 mL of arsenic (III) and chromium (VI) solution was considered as optimum 

dose and was used for further study. The initial and final pH of the solutions was measured after 

biosorption using optimum biosorbent dose and the results are presented in Table 5.11.  

 

Table 5.11.  Initial and final pH of arsenic(III) and chromium(VI) solution of 1 mg/L, 5 mg/L 

 and 10 mg/L concentration in biosorption process. 

 

Initial 

concentration in 

(mg/L) 

Arsenic(III) biosorption Chromium(VI) biosorption 

Initial pH Final pH Initial pH Final pH 

1 7.51 7.21 7.50 6.25 

 5 7.53 7.28 7.54 6.20 

10 7.52 7.30 7.51 6.22 

 

  It was observed that there was slight decrease in pH of the solution after treatment. It is due 

exchange of H
+
 ion from biomass by arsenic and chromium ion, which increase the H

+
 ion 

concentration in the solution thereby decreasing the pH. The maximum percentage removal of 

arsenic (III) by Bacillus cereus biomass was found to be 86.14 %, 80.23%, and 78.54% for initial 

concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively. Whereas the maximum percentage 

removal of chromium(VI) by Bacillus cereus biomass was found to be 89.24 %, 85.13% and 

81.54%, for initial concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively.  
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 5.2.2. Effects of pH on arsenic (III) and chromium (VI) removal 

The pH is one of the important factors affecting the biosorption process and thus the role of 

hydrogen ion concentration on the biosorption  was studied with  initial arsenic (III) and 

chromium (VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L of synthetic solution at different 

pH ranges of 2.5 to 9.5 (2.5, 3.5, 4.5, 6.5, 7.5, 8.5 and 9.5) with prepared biosorbents dose of 0.3 

g of  Bacillus cereus in 50 mL at an ambient temperature of 30 ± 2°C and contact time 60 

minutes by batch mode. The results of the above studies are presented in Fig. 5.33 for arsenic 

(III) and Fig. 5.34 for chromium (VI), respectively. The percentage removal of arsenic (III) was 

found to increase from 38% to 76%(10mg/L), 43% to 82%(5mg/L), 45% to 86%(1mg/L)  and 

increased from 53% to 80%(10mg/L) , 55% to 85%(5mg/L) ,58% to 89%(1mg/L)  for chromium 

(VI) by Bacillus cereus biomass, with the variation of pH from 2.5 to 9.5.  The results in Fig. 

5.33 clearly indicate that the sorption efficiency was increased with the increase of pH from 2.5 

to 7.5 than decreases slightly with further increase in pH up to 9.5 for arsenic (III). The results in 

Fig. 5.34 clearly indicate that, the sorption efficiency was increased with the increase in pH from 

2.5 to 7.5 than remain almost constant with further increase in pH up to 10.5 for chromium (VI). 

 

Fig. 5.33 Effect of pH on the biosorption of arsenic (III) ions with initial concentration of 1 

 mg/L, 5 mg/L and 10 mg/L.  
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Fig. 5.34 Effect of pH on the biosorption of chromium (VI) ions with initial concentration of 1 

 mg/L, 5 mg/L and 10 mg/L.   

  

At low pH (2.0-6.0), the surface of living Bacillus cereus biomass is highly protonated and as a 

result, a strong attraction exists between oxyanion and positively charged surface of the biomass 

(Boddu et al., 2008). The further decreases in arsenic (III) and chromium (VI) uptake with 

increase in pH (7.5 - 10.5) may be due to the fact that at higher pH, the substrate may be 

negatively charged by adsorbing hydroxyl ions on the surface or by ionization of very weak 

acidic functional groups of the living cells of Bacillus cereus biomass. A repulsive force may 

develop between the negatively charged surface and the anions. At lower pH, the process of 

regeneration predominates over the process of removal. The process of conversion of biosorbent 

into its H
+
 form plays an important role leaving behind arsenic (III) and chromium(VI) ions in 

the aqueous solution (Costa et al. 2001). The above results are supported by decrease in pH of 

the solution. In the solution having pH above 7 the predominant species is    
    . A suitable 

mechanism is proposed which explains the decrease in pH during removal of arsenic (III) and 

chromium (VI) ions, which is in line with the mechanism proposed by Igwe et al., 2005 and 

Manning and Goldberg, 1997.  

                                                         (5.2.2.a) 
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         (5.2.2d) 

 

  5.2.3. Mechanism of arsenic (III) and chromium (VI) removal 

 The mechanism of any biosorption process is an important component in understanding the 

process as well as to know the characteristics of the material which help to design a new 

biosorbent for future applications. A mechanism for the biosorption of arsenic (III) and 

chromium (VI) ions by ion-exchanger Bacillus cereus biomass has been proposed by taking the 

results obtained from the experimental investigations. At lower pH of the medium, surface sites 

are positively charged and, therefore, attract negatively charged arsenite ion and hexavalent 

chromium ion, by an electrostatic interaction process (Mashitah et al., 1999; Hansen et al., 

2006). The materials under hydration, the Bacillus cereus biomass surface completes the 

coordination shells with the available OH group. On the variation of pH, these surface active OH 

groups may further bind or release H
+
 where the surface remains positive due to the reaction:  

MOH + H3O
+
                      MOH2 

+
 + H2O        

Thus, when pH < 7.00, the overall arsenite and hexavalent chromium, sorption mechanism can 

be represented in three different forms: (i) electrostatic interaction between positively charged 

center (nitrogen, OH) and negatively charged arsenite and dichromate, in solution, (ii) 

electrostatic attraction between positively charged surface hydroxyl group and AsO3
3-

 , Cr2O7
2- 

 

and (iii) ion-exchange reaction between positively charged biomass center and AsO3
3-

, Cr2O7
2-

. 

MOH + H3O
+ 

+ AsO3
3-

, Cr2O7
2-

                       MOH2
+…….

 AsO3
3-

, Cr2O7
2- 

+ H2O   

                                           (Electrostatic attraction)  

MOH + H3O
+
+ AsO3

3- 
, Cr2O7

2- 
                         M

+…….
 AsO3

3- 
, Cr2O7

2- 
+ 2H2O (ion-exchange) 

 Further,  when  the  pH  of  the  medium  remains  relatively  in  a  neutral  range,  (pH = 7.00),   

the arsenic (III), sorption  onto  the  neutral  biosorbent surface  can  be  described  by  a  ligand  

or  ion exchange reaction mechanism, which is represented as:   

  MOH + AsO3
3- 

, Cr2O7
2- 

                         M
+…….

 AsO3
3-

, Cr2O7
2- 

+ OH
-  

 

  The modeling of the specific sorption of AsO3
3-

, Cr2O7
2- 

on any material surface depends on a 

number of external factors such as temperature, pH, AsO3
3-

 , Cr2O7
2- 

concentration, as well as the 

density of surface functional groups available for coordination. In light of the above mentioned 

mechanism of biosorption, it may be further noted that Bacillus cereus biomass showed 
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biosorption capacity at normal pH range of 6.5-7.5, which could be useful for commercial 

exploitation purpose.  

  

5.2.4. Effect of contact time on arsenic (III) and chromium (VI) removal 

 Removal of arsenic (III) and chromium (VI) also depends on its contact time with the 

biosorbents. Biosorption of arsenic (III) and chromium (VI) at different contact time was studied 

for initial arsenite and hexavalent chromium concentration of 1 mg/L, 5 mg/L and 10 mg/L at pH 

7.5 for arsenic(III) and chromium(VI) keeping all other parameters constant. Batch biosorption 

experiments were conducted with living cells of Bacillus cereus biomass at 30 ± 2°C by varying 

the contact time from 5 to 60 minutes (5min, 10 min, 20min, 30min, 40min, 50min and 60 min). 

The results are presented in Fig.5.35 and Fig. 5.36. It is clear from the Figure 5.35 and 5.36 that 

maximum removal takes place within few minutes and equilibrium is reached 30 min. The 

percentage removal with living cells of B. cereus biomass was found to increase from 47.32 % to 

86.24%, 43.02% to 85% and 40% to 80.44%  for 5 min to 60 min of contact time, for initial 

arsenic (III) concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively.  

 

Fig. 5.35.  Effect of contact time on the biosorption of arsenic (III) ions with initial concentration 

 of 1 mg/L, 5 mg/L and 10 mg/L.    
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Fig. 5.36 Effect of contact time on the biosorption of chromium (VI) with initial concentration of 

 1 mg/L, 5 mg/L and 10 mg/L.   

  

And the percentage removal with living cells of Bacillus cereus biomass was found to increase 

from 50.11% to 90%, 45.33% to 85.32% and 43.16% to 80.11% for 5 min to 60 min of contact 

time, for initial chromium (VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L respectively. The 

change in the rate of removal might be due to the fact that initially all sorbent sites are vacant  

and  also  the  solute  concentration  gradient  was  high. As time passes, the number of sites on 

the sorbent filled up by the sorbate also increases. At equilibrium, when all the sites are filled, 

the rate of biosorption is equal to the rate of desorption. So, after equilibrium, it is found that 

there was no further increase in the removal of metal ion with increases in contact time. At 

higher concentrations, metals need to diffuse to the sorbent surface by intraparticle diffusion and 

greatly hydrolyzed ions will diffuse at a slower rate. This indicates the possible monolayer 

formation of arsenic (III) and chromium (VI) ions on the outer surface. In the present work, a 

steady increase in percentage removal was observed up to a contact time of 30 minutes, after that 

there wasn’t any further increase in percentage removal with increase in time. The results in this 

study are also similar to the results reported in the removal of arsenic and chromium from 

aqueous solution by microorganisms (Kotiranta et al., 2000; Kang et al., 2007; Preetha and 

Viruthagiri, 2007; San and Dönmez, 2012), use of modified A. niger biomass (Pokhrel and 

Viraraghavan, 2006). 

5.2.5. Biosorption kinetics  
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The  prediction  of  biosorption  rate  gives  important  information  for  designing  batch  

biosorption  systems. The experimental data are applied to pseudo-first-order, pseudo-second-

order and Intraparticle diffusion rate constant (Weber-Morris equation) models to clarify the 

sorption kinetics of arsenic (III) and chromium (VI) ions onto living cells of Bacillus cereus 

biomass.  Biosorption of arsenic (III) and chromium (VI) ions are rapid for the first 30 minutes 

and its rate slowed down and it approaches towards equilibrium. 

5.2.5.1. Lagergren’s rate equation 

Determination of efficiency of biosorption process requires an understanding of the kinetics of 

uptake of sorbate by biosorbent or the time dependence of the concentration distribution of the 

solute in both bulk solution and solid biosorbent and identification of the rate determining step. 

The study of kinetics of biosorption describes the solute uptake rate. The rate constants for the 

biosorption from arsenic (III) and chromium (VI) from aqueous solution on living cells of B. 

cereus biomass were determined using Lagergren’s rate equation (Lagergren, 1898, Aksu, 2002). 

       Pseudo-first-order rate depends on the concentration of only one reactant. The rate constant 

K1 for biosorption of arsenic (III) and chromium(VI) are studied by Lagergren rate equation for 

initial arsenite and hexavalent chromium concentration of 1 mg/L, 5 mg/L and 10 mg/L.  

     log (qe − qt) = log qe −  K1 (
 

     
)                                                      

where qe and qt (both in mg/g) are the amounts of arsenic(III) and chromium(VI) ions  sorbed at 

equilibrium (mg/g) and at time ‘t’ (min), respectively, and k1 is the rate constant of the equation 

(min
-1

). The sorption rate constants (k1) was calculated from the slope of the linear plot of log (qe 

- qt) vs t and the results are presented in Fig. 5.37 and Fig 5.38, respectively. The values of R
2 

(correlation coefficient) calculated shows good correlation. The biosorption rate constant (K1), 

calculated from the slope of the above plot and standard error were presented for arsenic (III) and 

chromium (VI) in Table 5.12. The plots of log (qe - qt) vs t for the pseudo-first-order model were 

almost linear, indicates the validity of Lagergren rate equation of first order kinetics (Prasad et 

al., 2011). The results of this investigation are matching well with the results obtained in the 

biosorption of arsenic (III) using rice polish (Ranjan et al., 2009),  modified A. niger biomass 

(Pokhrel  Viraraghavan, 2006),  shelled Moringa oleifera (Kumari et al., 2006), and 

macrofungus (Inonotus hispidus) biomass (Sari and Tuzen, 2009). The results noted in 

biosorption of Cr (VI) on methylated yeast biomass (Seki et al., 2005),  red, green and brown 
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seaweed biomass (Murphy et al., 2008), and acid-treated green alga Oedogonium hatei (Gupta 

and Rastogi, 2009) were also found to obey first order kinetics, comparable with the present 

investigation. 

 

 

Fig. 5.37. Linear plot of Lagergren rate equation using living cells of Bacillus cereus, time vs. 

 log (qe-qt) with initial arsenic (III) ions concentration of 1 mg/L, 5 mg/L and 10 mg/L.  

 

 

Fig. 5.38. Linear plot of Lagergren rate equation using living cells of Bacillus cereus, time vs. 

 log(qe-qt) with initial chromium(VI) ions concentration of 1 mg/L, 5 mg/L and 10 

 mg/L. 

   5.2.5.2.   Second order rate equation 
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  Pseudo-second-order depends on the concentrations of one second-order reactant, or two first-

order reactants. Experimental data were also tested by the pseudo-second-order kinetic model 

which is given in the following form (Ho and McKay, 1999; Singh et al., 2012):  

        
 

  
 

 

    
  + 

 

  
  t         

where k2 (g/mg /min) is the rate constant of the second-order equation for sorption of initial 

arsenite and hexavalent chromium concentration of 1 mg/L, 5 mg/L and 10 mg/L, qt (mg/g) is 

the amount of arsenic(III) and chromium(VI) sorped per unit gram of biosorbent (in mg/g) at 

time ‘t’ and  qe is the maximum biosorption capacity (mg/g) for the second-order biosorption. 

The kinetic plots of t/qt versus t for arsenic (III) and chromium (VI) sorption at ambient 

temperature (30 ± 2°C) are presented in Fig. 5.39 and Fig. 5.40. Values of K2, qo, R
2
 and 

standard error were calculated from the plot of t/qt versus t and the results are presented in Table 

5.12. The correlation coefficient (R
2
) for second order rate constant are in the range of 0.98-0.99 

for the bisorption of the arsenic (III) and chromium (VI).  The data obtained from the study at 

different time interval fits the second order rate equation better than the Lagergren’s rate 

equation. Fig. 5.39 and Fig. 5.40 shows the linear plot of t/qt vs t for the pseudo-second-order 

model is more likely to predict kinetic behavior of arsenic(III) and chromium(VI) sorption with 

chemical sorption being the rate-controlling step (Yan et al., 2010).  

 

Fig. 5.39.  Linear plot of second order rate equation using living cells of Bacillus cereus, time vs. 

 t/qt with initial arsenic (III) ions concentration of 1 mg/L, 5 mg/L and 10 mg/L. 
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Fig. 5.40.  Linear plot of second order rate equation using living cells of Bacillus cereus, time vs. 

 t/qt with initial chromium (VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L. 

 

 

Table 5.12. Kinetic parameters from pseudo-first-order and pseudo-second-order for arsenic (III) 

 and chromium(VI) ions biosorption onto living cells of Bacillus cereus at different 

 initial concentration.  

      Pseudo-first-order  Pseudo-second-order 

 Slope Intercept K1 

(min
-1

) 

SD R
2
 Slope Intercept q0 

(mg/g) 

K2 (g/mg 

min) 

SD R
2
 

Initial As(III) concentration (mg/L) 

1(mg/L) -

0.165 

0.154 0.3799 0.0067 0.957 0.034 0.03355 29.23 0.03488 0.0080 0.985 

5(mg/L) -

0.214 

0.326 0.4928 0.0030 0.986 0.085 0.03822 11.68 0.19179 0.0208 0.984 

10(mg/L) -

0.194 

0.361 0.4467 0.0050 0.971 0.134 0.03200 7.434 0.56548 0.0132 0.974 

Initial Cr(VI) concentration (mg/L)  

1(mg/L) - 0.217 0.3339 0.0064 0.942 0.026 0.02365 38.16 0.02908 0.0065 0.998 
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5.2.5.3.    Intraparticle diffusion rate constant (Weber-Morris equation) 

  Due to rapid stirring in batch reactors, there is a possibility of insertion of arsenic (III) and 

chromium (VI) species from the bulk into pores of the biosorbent as well as biosorption at outer 

surface of the biosorbent. The rate-limiting step may be either biosorption or intraparticle 

diffusion. The possibility of arsenic (III) and chromium (VI) species to diffuse into the tenor sites 

of the biosorbents was tested with Weber-Morris equation given as follows: (Allievi et al., 2011; 

Inbaraj and Sulochana, 2002).  

     qe = Kp t
1/2

 + C  

Where qe is the amount of arsenic (III) and chromium (VI) biosorbed in mg, Kp is the 

intraparticle diffusion rate constant and t is the time (agitation) in minutes. In order to study the 

diffusion process, batch biosorption experiments were carried out with Bacillus cereus biomass 

at 30 ± 2°C and at pH 7.5 with initial arsenic (III) and chromium (VI) concentration of 1 mg/L, 5 

mg/L and 10 mg/L respectively.  The results are presented in the Table 5.13 and graphically 

shown in the Fig. 5.41 and Fig. 5.42.  The rate constant (Kp) for intraparticle diffusion for 

various initial concentration of arsenic (III) and chromium(VI) solution, for the different 

biosorbents were determined from the slope of respective plots drawn between square root of 

time and amount of biosorbate biosorbed and the results are presented in Table 5.13.  The 

intercept of the plot reflects the boundary layer effect. The larger the intercept greater the 

contribution of the surface adsorption in the rate controlling step. If the regression of qt verses t
1/2 

is linear and passes through the origin, the intraparticle diffusion is the sole rate limiting step.  

0.145 

5(mg/L) -

0.102 

0.126 0.2349 0.0066 0.962 0.081 0.02812 12.26 0.23674 0.0011 0.998 

10(mg/L) -

0.155 

0.068 0.3569 0.0055 0.967 0.167 0.0221 5.970 1.26903 0.0005 0.997 
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Fig. 5.41.  Linear plot of Intraparticle diffusion rate equation using living cells of Bacillus 

 cereus, t
0.5 

vs.  qt with  initial arsenic (III) ions concentration of 1 mg/L, 5 mg/L and 10 

 mg/L. 

 

Fig. 5.42.  Linear plot of Intraparticle diffusion rate equation using living cells of Bacillus 

 cereus, t
0.5 

vs.  qt with  initial chromium(VI) ions concentration of 1 mg/L, 5 mg/L and 10 

 mg/L. 

 

Table 5.13. Intraparticle diffusion rate constants obtained from Weber- Morris equation for 

 different initial arsenic (III) and chromium (VI) concentration. 

      Intraparticle diffusion rate constant 
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However, the linear plots at each initial concentration did not pass through the origin which 

indicates that the intraparticle diffusion was not only the rate controlling step but the surface 

adsorption on activated adsorbent also contributes to the rate determining step (Chowdhury and 

Mulligan, 2011). In the present study the plots are straight lines but not passing through the 

origin and thus indicating that intraparticle diffusion is not the sole rate-limiting factor for the 

biosorption of arsenic (III) and chromium (VI) on various biosorbents (Gupta and Rastogi, 2009, 

Sari and Tuzen, 2009, Park et al., 2005 and Han et al., 2007). The results obtained by 

Mangaiyarkarasi et al., (2011), Deepa et al., (2006), and Kumari et al., (2006) were similar with 

the results of the present work.  As evident from the results of Table 5.15 there is an increase in 

Kp values with the increase in arsenic (III) and chromium (VI) concentration (Tuzen et al., 

2009).  

5.2.6. Effects of initial concentration on arsenic (III) and chromium (VI) removal 

  The biosorption of arsenic (III) and chromium (VI) ions onto living cells of Bacillus cereus 

biomass is studied by varying arsenite and hexavalent chromium concentration using optimum 

 Slope Intercept Kp ( mgg
-1

 min
-0.5

) SD R
2
 

Initial As(III) concentration (mg/L) 

1 0.1015 -1.5828 0.1015 0.036

7 

0.997 

5 0.1701 -0.8318 0.1701 0.421

2 

0.984 

10 0.8841 -1.0165 0.8441 0.542

6 

0.990 

Initial Cr(VI) concentration (mg/L)   

1 0.0867 -0.6926 0.0867 0.102

9 

0.973 

5 0.169 -0.7921 0.1690 0.443

3 

0.982 

10 0.908 -1.373 0.9080 1.334

0 

0.958 
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biosorbent dose (0.3g/50 mL) at ambient temperature and contact time of 60 min.  The results are 

presented in graphical form as percentage removal verseus initial arsenic (III) and chromium 

(VI) concentration in Fig. 5.43 and Fig. 5.44. It is evident from  initial arsenite concentration is 

decreased from 1 mg/L to 10mg/L and the corresponding removal gradually decreases from 

86.14% to 79.24 % at pH 7.5, respectively. The initial chromium (VI) concentration increases 

from 1 mg/L to 10mg/L and the corresponding removal gradually decreases from 89.24% to 

79.22 % at pH 7.5, respectively. It is clear from the results that more than 80 % sorption of 

arsenic (III) and chromium (VI) ions took place in first 30 min and equilibrium is established 30 

min. At higher concentrations, metals need to diffuse to the biosorbent surface by intraparticle 

diffusion and highly hydrolyzed ions will diffuse at a slower rate. This indicates the possible 

monolayer formation of arsenic (III) and chromium (VI) ions on the outer surface.  

 

 

 

Fig. 5.43. Percentage removal of arsenic (III) by living cells of Bacillus cereus versus initial 

 arsenite concentration. 
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Fig. 5.44. Percentage removal of chromium (VI) by living cells of Bacillus cereus versus initial 

 hexavalent chromium concentration. 

 

5.2.7. Biosorption isotherms  

It is important to have a satisfactory description of the equilibrium sate between the two phases 

in order to successfully represent the dynamic behavior of any biosorbate from solution to the 

solid (biosorbent) phase.  Biosorption isotherm can be defined as a functional expression for the 

variation in biosorption of the biosorbate by the biosorbent in the bulk solution at constant 

temperature.  The capacity of living cells of Bacillus cereus biomass can be described by 

equilibrium biosorption isotherm, which is characterized by certain constants whose values 

express the surface properties and affinity of the biomass (Velásquez and  Dussan, 2009; 

Merroun et al., 2005; Allievi et al., 2011). The analysis of the isotherm data is important to 

develop an equation which accurately represents the results and could be used for design 

purpose. An analysis of the bisorption isotherm is important to develop and represent the results 

accurately for design purpose. Batch mode biosorption were carried out at 30 ± 2°C by varying 

the concentration of arsenic (III) and chromium (VI). 

 

 5.2.7.1. Langmuir biosorption isotherm 

The Langmuir isotherm was developed by Irving Langmuir in 1916. The Langmuir biosorption 

isotherm describes quantitatively the buildup of a layer of molecules on a biosorbent surface as a 

function of the concentration of the biosorbed material in the liquid phase in which it is in 

contact. Langmuir assumed that a surface consists of a given number of equivalent sites where a 

species can physically or chemically stick. Physical biosorption through van der Waals 

interaction is called physisorption, whereas chemical biosorption through the formation of a 

covalent bond is called chemisorptions. It is important to realize that the processes of biosorption 

and the opposite process (desorption) is dynamic. A rate can be written for each processs, and 

when the rates become equal, an equilibrium sate will exist characterized by a constant fractional 

coverage of the original sites. The Langmuir isotherm is the simplest of all mechanistic models 

and it is based on the following assumptions: 
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1. Biosorption cannot proceed beyond monolayer coverage onto a surface containing finite 

number of biosorption sites. (2) All surfaces sites are equivalent (With uniform energies of 

biosorption) and can accommodate, at the most one molecular or atomic species of the adsorbate. 

(3) Adsorbate species on different sites do not interact with each other and there is no 

transmigration of adsorbate on the plane of the surface. 

When the whole surface of the biosorbent is completely covered by a unimolecular layer of the 

adsorbate, further biosorption is not possible and it indicates a saturation of biosorption. The 

Langmuir equation correlates the amount of adsorbate adsorbed with the equilibrium aqueous 

solution. The Langmuir bisorption isotherm data for arsenic (III) and chromium (VI) biosorption 

on living cells of Bacillus cereus biomass are presented in the Table 5.14 and graphically 

represented in the Fig. 5.45 and Fig. 5.46.  

 

                Fig. 5.45. Langmuir isotherm plot of 1/Ce versus 1/qe for arsenic (III) biosorption.  

 

 

                Fig. 5.46. Langmuir isotherm plot of 1/Ce versus 1/qe for chromium(VI) biosorption. 
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A basic assumption of the Langmuir theory is that sorption takes place at specific homogeneous 

sites within the sorbent. This model can be written in linear form. 

 

       
  

  
 = 

 

     
 + 

 

  
      

Where qe is the amount adsorbed per unit mass of biosorbent (mg/g), Ce is the equilibrium 

arsenic (III) and chromium (VI) ion concentration in the solution (mg/L), q0 is the monolayer 

biosorption capacity of the biosorbent (mg/g), and b is the Langmuir biosorption constant (L/mg) 

related with the free energy of biosorption. The values of ‘qo’ and ‘b’ were calculated from 

intercept and slope of the graph (1/ Ce versus 1/ qe) respectively. The Langmuir parameters (q0, b 

and R
2
) for arsenic (III) and chromium (VI) biosorption in 30 minutes of bisorption study at 30 ± 

2°C are given in Table 5.14.  

Table 5.14. Langmuir, Freundlich and Dubinin–Radushkevich isotherm constants on the 

 adsorption of arsenic (III) and chromium (VI) ions from aqueous solution onto 

 living cells of Bacillus cereus at ambient temperature (30 ± 2°C). 

 

Table 5.15. Langmuir dimensionless equilibrium parameter of living cells of Bacillus cereus of 

 arsenic (III) and chromium (VI) at different concentrations. 

Langmuir isotherm  Freundlich isotherm    Dubinin–Radushkevich isotherm 

 b 

(L/mg) 

qo 

(mg/g) 

SD 2 R2 Kf  

(mg/g) 

1/n SD 2 R2 K 

(mol2 

kJ-2) 

qm  

(g/g) 

E 

(kJ 

mol-1) 

SD 2 R2 

Arsenic (III)   

0.078 32.42 0.008 2.97 0.99 1.133 0.61 0.068 0.00

5 

0.96 3.18 x  

10-4 

0.003 12.65 0.69 0.003 0.99 

Chromium(VI)   

0.098 39.06 0.001 0.27 0.99 4.042 0.62 0.066 0.00

5 

0.97 16.64 x  

10-4 

0.008 17.36 0.057 0.001 0.99 

Biosorbents Langmuir dimensionless equilibrium parameter (r) 

1 mg/L 5 mg/L 10 mg/L 

Arsenic(III) with living 

cells of B. cereus  

0.927 0.719 0.561 
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Table 5.16. Comparison of biosorption capacity of Bacillus cereus biomass for chromium (VI) 

 and arsenic(III) with that of different biosorbents.     

Chromium(VI) with living 

cells of B. cereus 

0.910 0.671 0.505 

Biosorbent Type of water pH Cr(VI) 

mg/g 

References 

Bacillus circulans Aqueous solution 2.5 34.5 Srinath et al 2002 

Bacillus megaterium Aqueous solution 2.5 32.0 Srinath et al., 2002 

Rhizopus nigricans Aqueous solution  4.0 200 Bai and Abraham, 2001  

Aspergillus flavus Waste water  3.0 0.335 Deepa et al., 2006 

Rhizopus arrhizus Aqueous solution - 5.1 Sag et al., 2001 

Hazelnut shell Aqueous solution 1.0 170 Kobya, 2004 

Saw dust Waste waters 2.0 39.7 Sharma and Forster, 1994 

Maple saw dust Aqueous solution 6.0 5.1 Yu et al., 2003 

Sugarcane bagasse Waste water 3.0 103 Wartelle and  Marshall, 2005 

Agricultural waste Aqueous solution 2.0 22.29 Mohan et al., 2005 

Bacillus cereus biomass  Aqueous solution 7.0 39.06 Present study 

     

Biosorbent Type of water pH As(III) 

(mg/g) 

References 

L. nigrescens Aqueous solution 2.5 45.5 Hansen et al., 2006 

A. niger biomass Aqueous solution 3.5 0.20 Pokhrel and Viraraghavan, 2007 

Tea fungal biomass Ground water 7.20 4.95 Murugesan et al., 2006 

P.  purpurogenum Aquous solution 5.0 35.5 Ridvan et al., 2003 
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Hall in 1966 has proposed dimensionless equilibrium parameters (r), to revel the essential 

characteristics of Langmuir isotherm by relating ‘r’ with Langmuir constant ‘b’ and the initial 

concentration of the adsorbate solution, C0 (Singh et al., 2006; Manju et al., 1999). 

r = 
 

     
 

Value of ‘r’ indicates the shape of isotherm to be either unfavorable (RL > 1) or linear (RL = 1) or 

favorable (0 < RL <1) or irreversible (RL =0). The values of the dimensionless equilibrium 

parameters are presented in Table 5.15. The values of the dimensionless equilibrium parameter 

‘r’ revealed that the process was favorable for initial arsenic (III) and chromium (VI) 

concentration of 1 mg/L, 5 mg/L and 10 mg/L for Bacillus cereus biomass. The comparison of 

biosorption capacity of living cells of B. cereus biomass for arsenic (III) and chromium (VI) ions 

with that of different biosorbent in literature is presented in Table 5.16. 

 

5.2.7.2. Freundlich biosorption isotherm 

Herbert Max Finley Freundlich, a German physical chemist, presented an empirical bisorption 

isotherm for non ideal system in 1906. The Freundlich isotherm is the earliest known 

relationship describing the applicability of heterogeneous surface energy in the bisorption 

process. The empirical Freundlich equation (Freundlch, 1926) is  

 

   qe = Kf Ce
1/n

 

This empirical equation when expressed in logarithmic form becomes a straight line equation 

with a slope of 1/n and y-intercept of log Kf. The linear form of Freundlich equation (Sumanjit 

and Prasad, 2001) is represented as 

 

Methylated biomass Aqueous solution 6.5 3.75 Seki et al., 2005 

I. hispidus Aqueous solution 2.0 59.6 Sari and Tuzen, 2009 

Chitosan-coated 

biosorbent 

Aqueous medium 4.0 96.46 Boddu et al., 2008 

M. oleifera seed powder Aqueous solution 2.5 2.16 Kumari et al., 2006 

Bacillus cereus biomass  Aqueous solution 7.5 32.24 Present study 
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                     log qe = log Kf + 
 

 
 log Ce                 

Where qe is the amount adsorbed per unit mass of biosorbent (mg/g), Ce is the equilibrium 

adsorbate concentration in solution (mg/L), Kf and ‘n’ are Freundlich constants related to the 

bisorption capacity and bisorption intensity respectively.  Freundlich bisorption data for arsenic 

(III) and chromium (VI) onto living cells of Bacillus cereus biomass are given in Table 5.14 and 

graphically shown in Fig. 5.47 and Fig 5.48. Comparing the correlation coefficient values of 

Freundlich bisorption isotherm with those of Langmuir isotherm, It is clear that Langmuir 

isotherm fits better than Freundlich isotherm. The values of 1/n (>1) indicates unfavorable nature 

of the isotherm for arsenic (III) and chromium (VI) onto living cells of Bacillus cereus biomass. 

The values of n (intensity of adsorption) between 1 and 10 (i.e., 1/n less than represents a 

favorable biosorption. For the present study the value of n represented the same trend of a 

beneficial biosorption (François et al., 2012).   

 

Fig. 5.47. Freundlich isotherm plot of log qe vs. log Ce, for arsenic (III) biosorption. 
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Fig. 5.48. Freundlich isotherm plot of log qe vs. log Ce, for chromium(VI) biosorption. 

 

5.2.7.3. Dubinin-Radushkevich isotherm 

The development of Dubinin-Radushkevich equation was prompted by the failure to extend the 

theories governing adsorption on non-porous solids to that on real, porous solids such as active 

carbon, synthetic zeolites, and dehydrated inorganic gels (Dubinin, 1975). This lack of success 

led Dubinin and co-workers to focus their investigation on the problem of physical adsorption on 

porous materials and resulted in the Dubinin-Polanyi theory of micropore filling (also known as 

the theory of volume filling of micropores (TVFM)). This theory is based on the postulate that 

the mechanism for biosorption in micropores is that of pore filling rather than a layer-by layer 

formation of a film on the walls of the pores. The D-R equation is an adaptation of the earlier 

Polanyi potential theory of biosorption (Dubinin and Stoeckli, 1980; Gregg and Sing, 1982). The 

D-R equation has been effectively used to describe bisorption by microporous solids (Stoeckli et 

al., 1978). The D-R equation seems to be particularly useful in describing bisorption by 

microporous sorbents (Dubinin and Stoeckli, 1980).  

It is known that the Langmuir and Freundlich biosorption isotherm constant do not give any idea 

about the biosorption mechanism. In order to understand the biosorption type, equilibrium data 

are tested with Dubinin–Radushkevich isotherm (Pokhrel and Viraraghavan, 2007). The non 

linear form of D-R isotherm equation is given below, 

qe = qm e
-K 2 

 

 The linearized D. R. equation can be obtained by taking logarithm on both sides and written as  

            ln qe = ln qm – K 2                                                        

 Where ε is Polanyi potential, and is equal to RT ln(1+ 1/Ce), qe is the amount of arsenic(III) and 

chromium(VI) ions biosorbed per unit mass of biosorbent, qm is the theoretical sorption capacity, 

Ce is the equilibrium concentration of arsenic(III) and chromium(VI) ions, K is the constant 

related to biosorption energy, R is the universal gas constant and T is the temperature in Kelvin.  

 Fig. 5.49 and Fig. 5.50 shows the plot of ln qe against  2
 of arsenic (III) and chromium (VI) onto 

living cells of Bacillus cereus biomass, which were almost linear with correlation coefficient 

(R
2
), 0.997 and 0.981. D. R. isotherm constants K and qm are calculated from the slope and 

intercept of the plot, respectively and the results are presented in Table 5.14.  For arsenic (III), 
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the value of K is found to be 3.18 x 10
-3

 mol
2
 kJ

-2
 and that of qm is 0.0039g/g. And for chromium 

(VI), the value of K is found to be 16.64 x 10
-4

 mol
2
 kJ

-2
 and that of qm is 0.0083g/g.   

The mean free energy of biosorption (E) was calculated from the constant K using the relation 

(Baciocchi et al., 2005). 

                          E = (-2K) 
-1/2

                                                       

It is defined the free energy change when 1 mole of ions is transferred to the surface of the solid 

from infinity in solution. The value of E was found to be 12.65 kJ mol
-1

 for arsenic (III) and 

17.36 kJ mol
-1

 for chromium (VI). The value of E is very useful in predicting the type of 

biosorption. If the value is less than 8 kJmol
−1

, the biosorption process is of physical in nature 

due to weak vander Waals forces. If the magnitude of E is between 8 and 16 kJ mol
−1

, then the 

sorption is due to exchange of ions (McNeill and Edwards, 1997). The value in the present study 

was found to be little greater than16 kJmol
-1

. This is due to different chemical processes 

accompanying the ion exchange process (Tuzen et al., 2009a; Tuzen et al., 2009b).   

 

  Fig. 5.49. Dubinin–Radushkevich (D–R) isotherm of ln qe versus ε
2
, for arsenic (III) 

 biosorption. 
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  Fig. 5.50. Dubinin–Radushkevich (D–R) isotherm of ln qe versus ε
2
, for chromium(VI) 

 biosorption. 

 

5.2.8. Effects of temperature 

  Temperature affects the biosrption rate by altering the molecular interaction and the solubility 

of the biosorbate (Singh and Srivastava, 2001). Batch biosorption studies were carried out at 

varying temperature (15 ºC to 40 ºC).  The effects of temperature on the biosorption of arsenic 

(III) and chromium (VI) with initial concentration 1 mg/L, 5 mg/L and 10 mg/L onto living cells 

of Bacillus cereus biomass  was studied using optimum biosorbent dose (0.3 g /50 mL) and are 

presented in Fig. 5.51 and Fig. 5.52.  

 

 

Fig. 5.51. Effect of temperature on the biosorption of arsenic (III) with initial concentration of 1 

 mg/L, 5 mg/L and 10 mg/L. 
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Fig. 5.52. Effect of temperature on the biosorption of chromium (VI) with initial concentration 

 of 1 mg/L, 5 mg/L and 10 mg/L. 

The results are presented as percentage removal of arsenic (III) with initial concentration 1 mg/L, 

increased  from  72.22%  to  86.14%,  the  percentage  removal  of arsenic(III) ions  of  initial  

concentration  5  mg/L,  increased  from  68.16%  to  83.12%  and  the  percentage removal of 

arsenic(III) ions of initial concentration 10mg/L, increased from 59.44% to 79.24 % for 15-40 

ºC. It can be clearly seen from the figures that, with the increase in temperature the percentage 

removal increases slowly and reached almost 86 %. The percentage removal of chromium (VI) 

increased  from  77.22%  to  85.56% with initial  concentration  of 10  mg/L, from  78.36%  to  

88.32% with initial  concentration  of 5  mg/L  and from 79.24% to 89.24 % with initial 

concentration 1mg/Lin the range of temperature 15-40 ºC respectively. It can be clearly seen 

from the figure that, with the increase in temperature, the percentage removal increased slowly 

and reached almost 90%. The continuous increase in percentage removal with increase in 

temperature for arsenic (III) and chromium (VI) onto living cells of Bacillus cereus biomass 

indicated that the biosorption process was endothermic in nature. But many researchers have 

reported it and this may be probably due to a decrease in the escaping tendency of the adsorbate 

species from the surface of the bisorbent. The increase in metal/metalloid biosorption with 

increase in temperature could be due to dissociation of some compounds available in the 

biosorbent, which may provide more sites for metal adsorption. The H
+ 

ions biosorbent bond is 

important because biosorption of arsenic (III) and chromium (VI) involves displacement of H
+
 

ions from the biosorbent surface. Therefore it may be inferred that at higher temperatures, the 

increased in biosorption could be due to the weakening of H
+
 biosorbent bond which 

consequently increases the percentage removal. 

5.2.9. Thermodynamic parameters 

 It is a fundamental concept that any chemical system tends to attain a state of equilibrium from 

the state of non-equilibrium. In order to determine the thermodynamic parameters, experiments 

are carried out at different temperature. The change in free energy (∆G), enthalpy (∆H) and 

entropy (∆S) of sorption are calculated using the following equation (Baciocchi et al., 2005; 

Murugesan et al., 2006). 

   log Kc = 
  

      
 - 

  

       
 

     ∆G = ∆H - T∆S     



RESULTS AND DISCUSSION  CHAPTER-5 

CHEMISTRY 125 

 

   The Kc value is calculated using the following equation.                                                  

    Kc =    C1/C2                                                          

Where Kc is the equilibrium constant, C1 is the amount of arsenic (III) and chromium (VI) ions 

sorbed per unit mass of Bacillus cereus biomass and C2 is the concentration of arsenic (III) and 

chromium (VI) ions in aqueous phase. R is the gas constant (8.314 J/mol K), T is the temperature 

in Kelvin and ∆G, ∆S and ∆H are the changes in Gibb’s free energy, entropy and enthalpy of 

biosorption respectively. 

Batch biosorption studies were carried out with arsenic (III) and chromium (VI)  solution 

separately at varying temperature (15 °C to 40 °C) and with optimum biosorbent dose. A graph 

was plotted, 1000/T versus log Kc (Van’t Hoff plots) for initial arsenic (III) and chromium (VI) 

concentration of 1 mg/L, 5 mg/L and 10 mg/L and are  presented in Fig. 5.53 and Fig. 5.54. 

Values of ∆H and ∆S were calculated from the slope and intercept of Van’t Hoff plots 

respectively and results are presented in Table 5.17.  It is evident from the figures and tables that 

for arsenic (III) and chromium (VI), ∆G values were negative in whole range of temperature. 

The value of ∆H and ∆S were positive. The positive value of entropy (∆S) indicates the increase 

in randomness of the ongoing process and hence a good affinity of Bacillus cereus biomass. The 

positive values of ∆S indicate some structural changes in the biosorbent and also reflect the 

affinity of the biosorbent for arsenic (III) and chromium (VI) species. During the biosorption of 

arsenic (III) and chromium (VI), the H
+
 ions, which are displaced by the As(III) and Cr(VI) ions, 

gain more entropy than is lost by sorbate species, thus allowing the prevalence of randomness in 

the system. Similar results were reported in the adsorption of basic dyes (Khatri and Singh, 

1999), Cr (VI), Fe (II) and Hg (II) (Singh et al., 2001) and Cr (VI) (Murugan and Subramanian, 

2003). For both arsenic (III) and chromium (VI) ions biosorption by Bacillus cereus biomass, 

positive value of (∆H) indicates the endothermic nature of sorption process. The increase of 

percentage removal of arsenic (III) and chromium (VI) with increase in temperature can be 

explained by taking into account, the endothermic nature of the process. Negative value of ∆G at 

each temperature indicates the feasibility and spontaneity of ongoing sorption. A decrease in 

values of ∆G with the increase in temperature suggests more bisorption of arsenic (III) and 

chromium (VI) at higher temperature. Positive value of enthalpy (∆H) suggests that entropy (∆S) 
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is responsible for making the ∆G value negative. So, the biosorption process is spontaneous, 

since the entropy contribution is much larger than that of enthalpy (Sari et al., 2011). 

 

Fig. 5.53. Van’t Hoff plots, log Kc vs. 1000/T for arsenic (III) biosorption with initial   

 concentration of 1 mg/L, 5 mg/L and 10 mg/L. 

 

 

            Fig. 5.54. Van’t Hoff plots, log Kc vs. 1000/T for chromium (VI) biosorption with initial  

  concentration of 1 mg/L, 5 mg/L and 10 mg/L. 

Table 5.17. Thermodynamic parameters using arsenic (III) and chromium (VI) solution of 

 1mg/L, 5 mg/L, and 10 mg/L. 
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 5.2.10. Desorption and regeneration studies 

Desorption and regeneration studies were carried out in order to know the reusability and nature 

of biosorption (i. e. physical or chemical). Desorption of biosorbed analyte ions onto Bacillus 

cereus were also studied by using HCl and HNO3 at various concentrations in Table 5.18. For 

these studies, 10mL of each eluent was used. Analyte ions were desorbed from Bacillus cereus 

with both 1M HCl and 1M HNO3. The highest recovery for arsenic (III) ions was found to be 

90.55% using 1M HNO3 and 81.33% using 1M HCl. The highest recovery for chromium (VI) 

ions was found to be 90.23% using 1M HNO3 and 87.21% using 1M HCl.  

Table  5.18. Influence of various eluents on desorption of arsenic(III) and chromium (VI) ions 

 from living cells of Bacillus cereus .  

  

 

 

 

 

  

The effects of volume of 1M 

HNO3 as eluent were 

also investigated in 

 ∆H  

(KJ mol
-1

) 

∆S  

(KJ/(Kmol)) 

∆G (KJ mol
-1

) R
2
 

15 º C 20 º C 25 ºC 30 ºC 35 ºC 40 º C  

Initial As(III) concentration (mg/L) 

1 10.301 0.04160 -1.679 -1.887 -2.095 -2.303 -2.511 -2.719 0.995 

5 11.141 0.04362 -1.421 -1.639 -1.857 -2.075 -2.293 -2.512 0.994 

10 12.023 0.04256 -0.234 -0.447 -0.659 -0.872 -1.085 -1.298 0.990 

Initial Cr(VI)  concentration (mg/L) 

1 12.331 0.05160 -2.529 -2.787 -3.045 -3.303 -3.561 -3.819 0.990 

5 13.241 0.05362 -2.094 -2.469 -2.737 -3.005 -3.273 -3.542 0.982 

10 14.423 0.05256 -0.714 -0.977 -1.239 -1.502 -1.765 -2.028 0.993 

Eluent Recovery (%) Recovery (%) 

 Arsenic(III) Chromium(VI) 

0.5 mol L
-1

 HCl 72.23±3 77.11±3 

1mol L
-1

 HCl  81.33±3 87.21±3 

0.5 mol L
-1

 HNO3 78.34±3 84.55±2 

1mol L
-1

 HNO3 90.55±3 90.23±2 
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the range of 5.0-10.0 mL. The highest recovery values (90%) were obtained for arsenic (III) and 

chromium (VI) ions after 8.0mL of 1M HNO3. Subsequent elution with 10mL 1MHNO3 readily 

strips the sorbed arsenic (III) and chromium (VI) ions from Bacillus cereus biomass (Sari and 

Tuzen, 2009, 2010; Lin and Puls, 2000). The high stability of B. cereus permitted ten times of 

sorption-elution process along the studies without a decrease about 10% in recovery of arsenic 

(III) and chromium (VI) ions and results are presented in Fig. 5.55.   

 

          Fig. 5.55. Desorption efficiency of Bacillus cereus biomass with cycle number 

 

5.2.11. Characterization of Bacillus cereus biomass before and after biosorption of 

 arsenic (III) and chromium (VI) ions. 

  5.2.11.1. Atomic force microscopy (AFM) analysis 

 Atomic force microscopy (AFM) is one of the for most tools for imaging, measuring, and 

manipulating matter at the nanoscale and was developed by Gred Binning and Heinrich Rohrer 

in the early 1980s at IBM research-zurich. The present investigation for surface morphology of 

Bacillus cereus biomass without and with sorption of arsenic (III) and chromium (VI) during 

biosorption process is observed with the help of Atomic Force Microscopy (Digital Instruments, 

Santa Barbara, CA, USA). Bacillus cereus bacteria without arsenic (III) and chromium (VI) ions 

exposure in the control blank are rod-like in shape with a smooth surface (the dimension of these 

cells is about 4.0 µm long and 1.0 µm wide, on average, as shown in Fig. 5.56. After the arsenic 

(III) and chromium (VI) ions exposure and the ultra-structures mostly disconnected with the cells 
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adhering to each other randomly. It can be clearly observed that the biomass shape has changed 

into a spindle-like structure after arsenic (III) and chromium (VI) sorption and presented in Fig. 

5.57 and Fig. 5.58. The morphological changes of the sample can be attributed to the interactions 

between arsenic (III) and chromium (VI) ions and the surface of Bacillus cereus cells. These 

agree with the results of FTIR spectra analysis. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.56. AFM image of Bacillus cereus cells (ion strength 0.01 mol/L; pH 7.0) control blank of 

 Bacillus cereus. 

                 

 

Fig. 5.57. AFM image of B. cereus cells (ion strength 0.01 mol/L; pH 7.0) with 1 mg/L As(III) 

 ion-exposed cells. 
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Fig. 5.58. AFM image of B. cereus cells (ion strength 0.01 mol/L; pH 7.0) with 1 mg/L Cr (VI) 

 ion-exposed cells. 

  

5.2.11.2. Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) analysis 

 The surface morphology of Bacillus cereus biomass without and with sorption of arsenic (III) 

and chromium (VI) ions during biosorption process is measured with the help of SEM-EDX 

(Jeol JSM-6480 LV electron microscope). Fig. 5.59 shows without sorption of arsenic (III) and 

chromium (VI) ions reveal rod-like shape with a smooth surface of Bacillus cereus cells (Ray et 

al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.59. SEM-EDX images of B. cereus biomass (ion strength 0.01 mol/L; pH 7.0) without 

 sorption of arsenic (III) and chromium(VI) ions.  

The morphological changes with respect to shape and size of the bacteria after sorption of 

arsenic (III) and chromium (VI) ions with B. cereus cells are presented in Fig. 5.60 and Fig. 5.61. 
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It can be clearly observed that the biomass shape has changed into a spindle-like structure after 

arsenic (III) and chromium (VI) ions sorption. The EDX spectra of arsenic (III) and chromium 

(VI) ions unloaded and loaded biomass obtained are shown in Fig. 5.59, Fig. 5.60 and Fig. 5.61, 

respectively. So, it is concluded that, arsenic (III) and chromium (VI) ions sorbed on the 

biosorbent. 

 

 

 

 

 

 

 

  

  Fig.5.60. SEM-EDX images of Bacillus cereus biomass (ion strength 0.01 mol/L; pH 7.0) with 

 sorption of arsenic (III) ions. 

 

 

 

 

 

 

 

 

 

 

Fig.5.61. SEM-EDX images of Bacillus cereus biomass (ion strength 0.01 mol/L; pH 7.0) with 

 sorption of chromium (VI) ions. 

5.2.11.3. FTIR analysis 
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 FTIR spectra of the Bacillus cereus biomass with and without arsenic (III) ions loaded are 

obtained to determine the probable functional groups which may have contributed to the arsenic 

(III) ions sorption. The FTIR spectra of the Bacillus cereus biomass without arsenic (III) and 

chromium (VI) ions loaded displays a number of absorption peaks, indicating the complex nature 

of the bacterial biomass and the spectra is presented in Fig. 5.62. The spectra of Bacillus cereus 

biomass loaded with arsenic (III) are presented in Fig. 5.63. Where both the spectra in Fig. 5.62 

and Fig. 5.63 are compared than the following changes are observed. The spectra of sorbent 

exhibits a broad absorption band at 3,448.94 cm
-1 

due to bonded –OH stretching vibration which 

is shifted to 3,460.29 cm
-1

 may be due to possibly complexation of –OH groups with arsenic(III) 

ions (Pangnanelli  et al., 2000; Ray et al., 2005). The absorption peaks at 2,920.11 cm
-1

 has not 

been shifted. The next absorption peaks at 2,343.50 cm
-1

 has been shifted to lower frequency and 

appears at 2,282.91 cm
-1 

possibly due to the complexation of -CH stretching vibration of alkyl 

chains. The next absorption peaks at 1655.83 cm
-1 

has been shifted to 1,652.62 cm
-1

 possibly due 

to the complexation of amide group (N-H stretching and C=O stretching vibration) with arsenic 

(III) ions (Seki et al., 2005). Another shift is observed from 1,407.37 cm
-1 

to 1,450.38 cm
-1

, 

corresponding to the complexation of nitrogen N-H group with arsenic (III) ions of the (Kumari 

et al., 2006). The peaks at 1,074.06 cm
-1 

may be attributed to C-N stretching vibrations of amino 

groups which is  shifted to higher frequency and appeared at 1,116.26 cm
-1

 due the interaction of 

nitrogen from amino group with arsenic(III) ions (Baciocchi et al., 2005; Giri et al., 2011). The 

other weak absorption peak is shifted from 889.44 cm
-1

 to 879.51 cm
-1

, corresponding to the O-

C-O scissoring vibration of polysaccharide (Pokhrel and Viraraghavan 2007).The above changes 

in the spectra may be attributed to the interaction of arsenic (III) ions with the hydroxyl, amide 

and amino groups present on the Bacillus cereus biomass.   

   Similarly the FTIR spectra of the Bacillus cereus biomass with and without chromium (VI) 

ions loaded displays a number of absorption peaks, indicating the complex nature of the bacterial 

biomass and the spectra are presented in Fig. 5.62 and Fig. 5.64, respectively.  The spectra of 

sorbent exhibits a broad absorption band at 3,448.94 cm
-1 

due to bonded –OH stretching 

vibration which is shifted to 3,450.21 cm
-1

 may be due to complexation of –OH groups with 

chromium (VI) (Gardea-Torresdey et al., 2000). The next absorption peaks at 1655.83 cm
-1 

has 

been shifted to 1,648.97 cm
-1

 possibly due to the complexation of amide group (N-H stretching 

and C=O stretching vibration) with chromium (VI) (Nourbakhsh et al., 2002; Park et al., 2004). 
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Another shift is observed from 1,407.37 cm
-1 

to 1,412.83 cm
-1

, corresponding to the 

complexation of nitrogen with chromium (VI) of the N-H group. The peaks at 1,074.06 cm
-1 

may 

be attributed to C-N stretching vibrations of amino groups is  shifted to higher frequency and 

appeared at 1,118.07 cm
-1

 due the interaction of nitrogen from amino group with chromium(VI) 

(Mangaiyarkari et al., 2011). The other weak absorption peak is shifted from 889.44 cm
-1

 to 

849.69 cm
-1

, corresponding to the O-C-O scissoring vibration of polysaccharide (Seki et al., 

2005). The above changes in the spectra may be attributed to the interaction of chromium (VI) 

with the hydroxyl, amide and amino groups present on the Bacillus cereus biomass.  

 

Fig. 5.62. FTIR spectra of B. cereus biomass without exposed of arsenic (III) and chromium(VI) 

ions. 
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Fig. 5.63. FTIR spectra of Bacillus cereus biomass with exposed of arsenic (III) ions.   

Fig. 5.64. FTIR spectra of Bacillus cereus biomass with exposed of chromium (VI) ions 

5.3. Artificial neural network (ANN) modeling of arsenic (III) and chromium (VI) ions 

 biosorption by living cells of Bacillus cereus biomass. 

 Waste water treatment using biosorption process is a complex process because a large number 

of variables influence the removal efficiency. Modeling of such processes is difficult when 

standard procedure like simple linear multivariate correlation is used. Artificial neural network 

(ANN), being capable of mapping inputs and outputs efficiently, can recognize and reproduce 

the cause and effect relationships through training in a multiple input-output systems (Peng et al., 

1992). Like any experimental investigation, study on biosorption by living cells demand 

4000.0 3000 2000 1500 1000 600.0 
-5.0 

-2 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

21.0 

Wave number (cm-1) 

%T  

  Arsenic (III) exposed biomass 

3460.29 

2282.91 

1652.62 
1450.38 

1116.26 879.51 

 

4000.0 3000 2000 1500 1000 400.0 
-2.5 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

19.9 

wavenumber (cm-1) 

%T  

3450.21 

1648.97 

1412.83 
1118.07 

849.69 618.05 

  Chromium(VI) exposed biomass 



RESULTS AND DISCUSSION  CHAPTER-5 

CHEMISTRY 135 

 

substantial amount of time, energy and materials. Hence, there is a need for a prediction tool to 

supplement to the experiments. Over the last two decades, ANNs have been used by many 

researchers for a variety of engineering applications. ANNs are a family of massively parallel 

architectures that solve difficult problems via the cooperation of highly interconnected but 

simple computing elements (or artificial neurons) arranged in layers. ANN represents a powerful 

tool for the identification of the relevant parameters and their interactions especially when 

relationships are very complex and highly non-linear. Prediction of biosorption of heavy metals 

from aqueous solution has been attempted in the past by many researchers using ANN to a 

reasonably good degree of success (Aleboyeh et al., 2008; Chu, 2003; Saha et al., 2010).  

 

5.3.1. Effect of biosorbent dosage on the sorption efficiency   

   Biosorbent dose is an important parameter which determines the capacity of sorbent for an 

initial concentration of the sorbate. The effect of sorbent dose on the sorption of arsenic (III) and 

chromium is studied at ambient temperature (30±2°C) and contact time of 60 min for initial 

arsenic (III) and chromium(VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L  and results are 

presented in Fig. 5.65 and Fig. 5.66, respectively. Experimental results details discussed in 

chapter 5 (Section 5.2.1.) Fig. 5.65 and Fig. 5.66 show a comparison between the ANN model 

predictions and the experimental data as a function of biosorbent dose. It can be seen that the 

ANN model satisfactorily predicts the trend of the experimental data.  
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Fig. 5.65 Experimental data and ANN outputs as a function of biosorbent dose versus (%) 

 removal of arsenic (III) by Bacillus cereus biomass. 

  

  

 

Fig. 5.66 Experimental data and ANN outputs as a function of biosorbent dose versus (%) 

 removal of chromium (VI) by Bacillus cereus biomass. 
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5.3.2. Effect of contact time on the sorption efficiency  

   Biosorption of arsenic (III) and chromium (VI) at different contact time is studied for initial 

arsenic (III) and chromium (VI) concentration of 1 mg/L, 5 mg/L and 10 mg/L at pH 7.5 keeping 

all other parameters constant and results are presented in Fig. 5.67 and Fig. 5.68, respectively. 

Experimental results details discussed in chapter 5 (Section 5.2.4). Fig. 5.67 and Fig. 5.68 show a 

comparison between the ANN model predictions and the experimental data as a function of 

contact time. It can be seen that the ANN model satisfactorily predicts the trend of the 

experimental data. 

 

 

 

 

  

   

Fig. 5.67 Experimental data and ANN outputs as a function of contact time versus (%) 

 removal of arsenic (III) by Bacillus cereus biomass. 
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Fig. 5.68 Experimental data and ANN outputs as a function of contact time versus (%) 

 removal of chromium(VI) by B. cereus biomass. 

 

5.3.3. Effect of initial concentration on the sorption efficiency  

   The biosorption of arsenic (III) onto B. cereus is studied by varying initial arsenic (III) and 

chromium(VI) concentration using optimum adsorbent dose (0.3 g/50 mL) at ambient 

temperature (30±2º C) and contact time of 60 min.  Experimental results details discussed in 

chapter 5 (Section 5.2.6). Fig. 5.69 and Fig. 5.70 show a comparison between the ANN model 

predictions and the experimental data as a function of initial concentration.  It can be seen that 

the ANN model satisfactorily predicts the trend of the experimental data. 
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Fig. 5.69. Experimental data and ANN outputs as a function of initial concentration versus (%) 

 removal of arsenic (III) by Bacillus cereus biomass. 

 

Fig. 5.70. Experimental data and ANN outputs as a function of initial concentration versus (%) 

 removal of chromium(VI) by Bacillus cereus biomass. 

 

 

5.3.4. Effect of temperature of sorption efficiency  

  The effect of temperature on the sorption of arsenic (III) and chromium(VI) with initial 

concentration 1mg/L, 5 mg/L and 10 mg/L is studied using optimum adsorbent dose (0.3 g /50 

mL). The results are represented as percentage removal of arsenic (III) and chromium (VI) 

versus temperature. Experimental results details discussed in chapter 5 (Section 5.2.8). The ANN 

model predictions and the experimental data as a function of operating temperature are depicted 

in Fig.5.71 and Fig. 5.72. From this plot it can be seen that there is a good agreement between 

predictions of the ANN model and the experimental data. 
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Fig. 5.71. Experimental data and ANN outputs as a function of temperature versus (%) removal 

 of arsenic (III) by Bacillus cereus biomass.  
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Fig. 5.72. Experimental data and ANN outputs as a function of temperature versus (%) removal 

 of chromium (VI) by Bacillus cereus biomass.  

5.3.5. Prediction of sorption efficiency using ANN model 

    The prediction of removal efficiency of arsenic(III) and chromium(VI) ions from aqueous 

system using Bacillus cereus biomass is a complex proposition and hence, a neural network 

approach is adopted.  One hundred seventy one experimental data is divided into training and 

testing sets. Seventy five percent of data (131) is used as training set whereas twenty five percent 

of data (40) are used for testing for arsenic (III). And One hundred seventy one experimental 

data is divided into training and testing sets. Seventy five percent of data (131) is used as training 

set whereas twenty five percent of data (40) are used for testing for chromium (VI). Fig. 5.73 

shows a BP algorithm with three-layer architecture (a single hidden layer) with a tangent sigmoid 

transfer function (tansig) at input and hidden layer and a linear transfer function (purelin) at 

output layer is used and run on MATLAB 7.0 using a Pentium IV PC (Chu, 2003).The 

distribution of output of training data is shown in Fig. 5.74 for arsenic (III) and Fig. 5.75 for 

chromium (VI). Initially, the training data set is presented to the network. 
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                                                       Fig. 5.73. The ANN Architecture 

 

            Fig.  5.74. Distribution of As (III) sorption percentage (Training data). 
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               Fig.  5.75. Distribution of chromium (VI) sorption percentage (Training data). 

 

The number of nodes in the hidden layer (H) is decided by the relation below: 

   √                                                                                              

where I is the number of nodes at the input layer. 

The network is tested with different number of neurons to find the optimal number of neurons at 

the hidden layer by observing the mean squared error (Gob et al., 1999; Turan et al., 2011a; 

Turan et al., 2011b). Seven neurons are selected in the hidden layer when mean square error 

starts decreasing. Learning and momentum parameters are set at 0.25 and 0.20 respectively 

during the training phase both arsenic (III) and chromium (VI). During training phase, the output 

vector is computed by a forward pass in which the input is propagated forward through the 

network to compute the output value of each unit. The output vector is then compared with the 

desired vector which resulted into error signal for each output unit. In order to minimize the 

error, appropriate adjustments were made for each of the weights of the network. After several 

such iterations, the network was trained to give the desired output for a given input vector. The 

network is trained till minimum root mean square error is observed. A root mean square error of 

0.77 is observed at epoch number 23, 644, 85 for arsenic (III) and 0.68 is observed at epoch 

number 23, 835, 76 for chromium (VI). Training was stopped at this point and weights have been 
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frozen for network to undergo testing phase. A high degree of correlation between actual and 

predicted sorption efficiency (%) is observed as shown in Fig. 5.76 for arsenic (III) and Fig. 5.77 

for chromium (VI). Coefficient of determination (R
2
) of 0.986 is for arsenic (III) and 0.984 for 

chromium (VI) obtained for training data set. When the network is well trained, testing of the 

network with testing data set is carried out.  

 

Fig. 5.76. Correlation of predicted and actual arsenic (III) sorption percentage (Training data). 

 

Fig. 5.77. Correlation of predicted and actual chromium (VI) sorption percentage (Training 

 data). 
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network. The distribution of output of testing data is shown in Fig. 5.78 for arsenic (III) and Fig. 

5.79 for chromium (VI), respectively.  

 

                    Fig. 5.78. Distribution of arsenic (III) sorption percentage (Testing data). 

 

             Fig. 5.79. Distribution of chromium (VI) sorption percentage (Testing data). 

A high degree of correlation (R
2
=0.9849) between actual and predicted arsenic(III) sorption 
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percentage error for training data is obtained as 0.567 whereas mean absolute relative percentage 

error for testing data is found to be 0.563. The predicted and actual experimental values for 

testing data are shown in Table 5.19. The residuals for training data are plotted in Fig. 5.81. It 

can be observed that the residuals are distributed uniformly below and above zero line. 

 

Fig. 5.80. Correlation of predicted and actual As (III) sorption percentage (Testing data). 

 

                        Fig. 5.81. Distribution of residuals (Training data). 

Table 5.19. Comparison of experimental and predicted output for arsenic (III) (testing data).       
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Exp. 

No. 

Concentr

a-tion 

(mg/L) 

Biosorbent 

(g/L) 

Temp 

(ºC) 

Time 

(min) 

 

Actual  

sorptio

n  

 (%) 

Predicted 

sorption  

 (%) 

Residua

l (%) 

(%) 

error 

Absolut

e error 

1 10 6 40 30 73.11 73.38136 -

0.27136 

-

0.36979 

0.36979

4 

2 10 6 20 30 75.21 75.29337 -

0.08337 

-

0.11073 

0.11072

7 

3 10 6 30 30 79.32 79.06295 0.25705 0.32512

1 

0.32512

1 

4 10 6 40 30 75.12 75.24944 -

0.12944 

-

0.17201 

0.17201

5 

5 5 2 20 30 77.11 77.35783 -

0.24783 

-

0.32037 

0.32036

8 

6 5 2 30 30 78.16 78.68963 -

0.52963 

-

0.67306 

0.67306

2 

7 5 2 40 30 79.89 80.09287 -

0.20287 

-

0.25329 

0.25329

3 

8 5 4 20 30 79.22 78.93162 0.28838 0.36535

4 

0.36535

4 

9 1 4 30 30 80.99 80.34122 0.64878 0.80753

1 

0.80753

1 

10 1 4 40 30 83.21 82.6212 0.5888 0.71265 0.71265 

11 1 6 20 30 80.54 81.05475 -

0.51475 

-

0.63506 

0.63506

5 

12 1 6 40 60 85.62 85.26082 0.35918 0.42127

2 

0.42127

2 

13 5 4 20 60 84.98 84.84826 0.13174 0.15526

5 

0.15526

5 

14 5 4 30 60 69.02 69.57363 - - 0.79574
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0.55363 0.79575 7 

15 5 4 40 60 75.11 75.79496 -

0.68496 

-0.9037 0.90370

1 

16 3 2 20 60 76.98 77.12617 -

0.14617 

-

0.18952 

0.18952

1 

17 10 2 30 60 80.05 78.62916 1.42084 1.80701

4 

1.80701

4 

18 10 2 40 60 73.43 72.76161 0.66839 0.91860

3 

0.91860

3 

19 10 4 20 60 75.21 74.89846 0.31154 0.41595 0.41595 

20 1 4 30 60 81.32 80.60181 0.71819 0.89103

5 

0.89103

5 

21 1 6 40 30 84.22 83.84704 0.37296 0.44481 0.44481 

22 10 2 20 30 70.32 70.37903 -

0.05903 

-

0.08387 

0.08387

4 

23 10 2 30 30 69.87 69.56259 0.30741 0.44191

9 

0.44191

9 

24 10 2 40 30 71.56 71.45126 0.10874 0.15218

8 

0.15218

8 

25 5 4 20 30 72.56 73.73324 -

1.17324 

-1.5912 1.59119

6 

26 5 4 30 30 69.35 68.81047 0.53953 0.78408

1 

0.78408

1 

27 5 4 40 30 73.56 73.32636 0.23364 0.31863 0.31863 

28 5 4 20 30 76.43 75.9723 0.4577 0.60245

6 

0.60245

6 

29 1  2 30 30 77.05 77.37918 -

0.32918 

-

0.42541 

0.42541

2 

30 1 2 40 30 77.78 78.88525 - - 1.40108
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A high degree of correlation (R
2
=0.9773) between actual and predicted chromium(VI) sorption 

efficiency (%) is observed as shown in Fig. 5.82 for testing data set. The mean absolute relative 

percentage error for training data is obtained as 0.749 whereas mean absolute relative percentage 

error for testing data is found to be 0.673. The predicted and actual experimental values for 

testing data are shown in Table 5.20. The residuals for training data are plotted in Fig. 5.83. It 

can be observed that the residuals are distributed uniformly below and above zero line. 

1.10525 1.40109 6 

31 1 6 20 30 80.55 80.52705 0.02295 0.0285 0.0285 

32 10 6 30 90    79.34 79.7483 -0.4083 -

0.51199 

0.51198

6 

33 10 6 40 90 75.13 74.56836 0.56164 0.75318

8 

0.75318

8 

34 10 6 20 90 76.32 76.82391 -

0.50391 

-

0.65593 

0.65592

9 

35 10 6 30 90 77.45 77.75763 -

0.30763 

-

0.39563 

0.39562

7 

36 10 6 40 90 79.31 78.99341 0.31659 0.40078 0.40078 

37 1 4 20 90 79.52 78.93287 0.58713 0.74383

5 

0.74383

5 

38 1 4 30 90 79.88 80.3618 -0.4818 -

0.59954 

0.59953

9 

39 1 4 40 90 80.56 80.40672 0.15328 0.19063

1 

0.19063

1 

40 1 4 20 90 83.34 82.69735 0.64265 0.77711

1 

0.77711

1 
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Fig. 5.82. Correlation of predicted and actual chromium(VI) sorption percentage (Testing data). 

 

Fig. 5.83. Distribution of residuals (Training data). 

 

Table 5.20. Comparison of experimental and predicted output for chromium(VI) (testing data).       
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Time 

(min) 

 

Actual  

sorption  

 (%) 

Predicted 

sorption  

 (%) 

Residual 

(%) 

(%) error Absolute 

error 

1 10 6 40 30 85.11 84.9976 0.1124 0.132064 0.132064 

2 10 6 20 30 85.07 84.7944 0.2756 0.323968 0.323968 
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3 10 6 30 30 89.24 88.3401 0.8999 1.0084 1.0084 

4 10 6 40 30 88.24 89.1302 -0.8902 -1.0088 1.0088 

5 5 2 20 30 83.21 84.4803 -1.2703 -1.52661 1.52661 

6 5 2 30 30 87.04 87.0811 -0.0411 -0.04722 0.04722 

7 5 2 40 30 86.21 86.0977 0.1123 0.13026 0.13026 

8 5 4 20 30 80.05 80.489 -0.4391 -0.54841 0.5484 

9 1 4 30 30 81.55 81.1587 0.3913 0.479828 0.479828 

10 1 4 40 60 80.51 80.2694 0.2406 0.298844 0.298844 

11 1 6 20 60 79.48 80.1682 -0.6882 -0.8658 0.8658 

12 1 6 40 60 78.45 79.5125 -1.0625 -1.37227 1.37227 

13 5 4 20 60 77.426 77.9345 -0.5085 -0.65676 0.65676 

14 5 4 30 60 76.395 77.3455 -0.9505 -1.24491 1.24491 

15 5 4 40 60 75.364 75.7895 -0.4255 -0.56459 0.564592 

16 5 2 20 60 74.333 73.3659 0.9671 1.301037 1.301037 

17 10 2 30 60 73.302 73.2625 0.0395 0.053887 0.053886 

18 10 2 40 60 72.271 72.621 -0.35 -0.48429 0.484229 

19 10 4 20 60 71.24 71.8066 -0.5666 -0.79534 0.795343 

20 1 4 30 30 70.209 69.4716 0.7374 1.050292 1.050292 

21 1 6 40 30 69.178 70.3689 -1.1909 -1.7215 1.72152 

22 10 2 20 30 84.21 84.9976 -0.7876 -0.93528 0.93528 

23 10 2 30 30 87.44 86.7944 0.6456 0.738334 0.738334 

24 10 2 40 30 85.11 86.3401 -1.2301 -1.44531 1.44531 

25 5 4 20 30 81.05 81.1302 -0.0802 -0.09895 0.09895 

26 5 4 30 30 82.35 82.4803 -0.1303 -0.15823 0.158227 

27 5 4 40 30 82.419 81.0811 1.3379 1.62329 1.62329 

28 5 4 20 30 80.488 80.0977 0.3903 0.484912 0.484912 

29 1 2 30 30 81.457 81.489 -0.032 -0.03928 0.039284 
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Therefore, it can be assumed that the errors are normally distributed and the model can be used 

for prediction purpose with reasonable accuracy. The development of the proposed ANN model 

is an effort towards the growing interest in applying ANN modeling technique to the area of 

biosorption of pollutants from water bodies (Aber et al., 2009; Hamed et al., 2004; Giri et al., 

2011). Turan et al. (2011) have tested several ANN approaches to discover the optimum learning 

algorithm for modeling Zn(II) adsorption from leachate using a new biosorbent considering input 

parameters as initial pH, adsorbent dosage, contact time, and temperature. They have also 

suggested a design of experiment approach for finding out significant parameters. However, the 

present study is focused on modelling As(III) and Cr(VI) biosorption using a new biosorbent. 

Both the studies conclude that ANN approach is quite efficient in modelling complex biological 

phenomenon.   

5.4. Adsorption of chromium(VI) ions from aqueous solution using activated carbon 

 derived from  Eichhornia crassipes root biomass 

   5.4.1. Characterization of the activated carbon before and after adsorption 

   5.4.1.1. SEM-EDX analysis 

The surface morphology of activated carbon without sorption of chromium (VI) ions and with 

sorption of chromium (VI) ions during adsorption process is measured with the help of SEM-

30 1 2 40 30 79.426 79.1587 0.2673 0.336539 0.336539 

31 1 6 20 30 82.395 82.2694 0.1256 0.152436 0.152436 

32 10 6 30 90 74.164 74.1682 -0.00042 -0.00057 0.00057 

33 10 6 40 90 75.333 76.5125 -1.1795 -1.56571 1.56571 

34 10 6 20 90 73.402 73.9345 -0.5352 0.725457 0.725457 

35 10 6 30 90 73.271 73.3455 -0.0745 -0.10168 0.101677 

36 10 6 40 90 74.24 74.7895 -0.5495 -0.74017 0.74017 

37 1 4 20 90 69.209 70.3659 -1.1569 -1.6716 1.67161 

38 1 4 30 90 70.178 70.2625 -0.0845 -0.12041 0.12041 

39 1 4 40 90 73.41 73.621 -0.211 -0.28748 0.28748 

40 1 4 20 90 72.86 72.8066 0.0534 0.073291 0.073291 
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EDX and is presented in Fig. 5.84 and Fig. 5.85, respectively. Fig. 5.84 clearly reveals the 

surface texture and porosity in the materials. It is evident that the carbon particles are in the form 

of spheres with a wide range of sizes (Sinha et al., 2003). Fig. 5.85 shows the morphological 

changes with respect to shape and size of the activated carbon after adsorption of chromium (VI) 

ion. It can be clearly observed that the surface of activated carbon has been changed into a new 

shiny bulky particles and whitish patches structure after chromium (VI) adsorption.  The EDX 

spectra of chromium (VI) unloaded and loaded activated carbon obtained is shown in Fig. 5.84 

and Fig. 5.85, respectively. So, it is concluded that, chromium (VI) are adsorbed on the surface 

of the adsorbent. These results are further confirmed with the results of FTIR spectra analysis. 

 

 

 

 

 

 

 

Fig.5.84. SEM-EDX images of activated carbon without sorption of chromium (VI) ions. 
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 Fig.5.85. SEM-EDX images of activated carbon with sorption of chromium (VI) ions.   

5.4.1.2. FTIR analysis 

 FTIR spectra of the activated carbon without chromium (VI) loaded displays a number of 

absorption peaks, presented in Fig. 5.86 indicates the complex nature of the activated carbon. 

The spectra of activated carbon loaded with chromium (VI), presented in Fig. 5.87. When the 

spectra are compared the following changes are observed. The spectra of activated carbon 

exhibits a broad absorption band at 3,146.34 cm
-1 

due to bonded –OH stretching vibration which 

is shifted to 3,225.78 cm
-1 

may be due to complexation of –OH groups with chromium (VI) ions 

(Gardea-Torresday et al., 2000). The peak at 2,918.50 cm
-1

 has been shifted insignificantly. The 

peak at 1,645.17 cm
-1

 has been shifted to 1,638.96 cm
-1

, may be due to the complexation of 

carboxylic group with chromium (VI) (Basha et al., 2008). Another shift is observed from 

1,418.96 cm
-1 

1,319.75 cm
-1

, corresponding to the complexation of N-H group with chromium 

(VI) (Bansal et al., 2009). The next shift was observed from 1,172.97 cm
-1

 to 1,163.54 cm
-1

 

possibly due to the interaction of nitrogen from amino group with chromium (VI) (Vinodhini and 

Das, 2009). The other weak absorption peak shifted from 1,008.50 to 1,022.47 cm
-1

, 

corresponding to the O-C-O scissoring vibration of polysaccharide. The above changes in the 

spectra may be attributed to the interaction of chromium (VI) with the hydroxyl, carboxyl and 

amino groups present on the surface of the activated carbon (Ning et al., 2009). This clearly 

manifests the binding of chromium (VI) to the activated carbon. 
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Fig. 5.86. FTIR spectra of the activated carbon without sorption of chromium (VI) ions.  

  

 

 

      Fig.5.87. FTIR spectra of the activated carbon with sorption of chromium (VI) ions.  

 

5.4.1.3. XRD analysis 

  XRD pattern of the activated carbon without treated with the chromium (VI) solution is shown 

in Fig. 5.88. Broad peaks were obtained instead of sharp peaks indicating the sample was poorly 

crystalline. The phases of Cr2O7
2−

 and HCrO4
-
 are found in the recovered adsorbent as 

represented in Fig. 5.89. Some of the Cr (V) is converted into Cr2O7
2− 

and some of the converted 

into HCrO4
- 
at pH 4.5. So it was concluded that, chromium (VI) ions finally get adsorbed over 

the surface of adsorbent (Ramkrishnaiah and Prathima, 2012).  
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    Fig. 5.88. XRD pattern of activated carbon without sorption of chromium (VI)  ions. 
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Fig. 89. XRD pattern of activated carbon with sorption of chromium (VI) ions.  

 

5.4.2. Adsorption study of chromium (VI) batch experiments  

 5.4.2.1. Effects of adsorbent dosage on chromium (VI) removal  

Adsorbent dose is an important parameter which determines the capacity of adsorbent for an 

initial concentration of the adsorbate. The effect of adsorbent dose on the adsorption of 

chromium (VI) is studied at pH 4.5, at ambient temperature (25 ± 2°C) and contact time of 60 
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min for initial chromium (VI) concentration of 10 mg/L, 50 mg/L and 100 mg/L. Experimental 

results showed that as the adsorbent mass increased from 1g/L to 7 g/L, the percentage removal 

of  chromium (VI) also increased from 75.22% to 85.56%, 77.45% to 88.32% and 81.70 % to 

92.24% for 0.05-0.5 g/50 mL of activated carbon and initial Cr(VI) concentration of 10 mg/L, 50 

mg/L and 100 mg/L. It is observed that after dosage of 0.35 g/50 mL, there is no significant 

change in percentage of removal of chromium (VI). This may be due to the overlapping of active 

sites at higher dosage (Dakiky et al., 2002; Kyzas et al., 2009). So, there is not any appreciable 

increase in the effective surface area resulting due to the conglomeration of exchanger particles, 

thus in lower chromium (VI) uptake. Hence 0.35 gm/50 mL is considered as the optimum dose 

uses for further studies.  

 5.4.2.2. Effects of pH on chromium (VI) removal 

  The pH is one of the important factors which affect the adsorption of metal ions in the solution. 

Percentage removal of chromium(VI) at pH 1.5-8.5 was studied in batch experiments using 0.35 

g of activated carbon in 50 mL synthetic solution, at ambient temperature (25 ± 2°C) and contact 

time of 60 min for initial chromium(VI) concentration of 10 mg/L, 50 mg/L and 100 mg/L. The 

adsorption efficiency of chromium (VI) was found to increase from 41.22% to 85.52% for 10 

mg/L, 45.34% to 89.23 % for 50 mg/L and 50.23% to 92.24 % for 100 mg/L with the increase of 

pH from 1.5 to 4.5 than decreases with further increase in pH up to 9.5 and presented in Fig. 

5.90. 

 

Fig. 5.90. Effect of pH on the activated carbon of chromium (VI) ions with initial concentration 

 of 10 mg/L, 50 mg/L and 100 mg/L.   
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At low pH (1.5-4.5) the surface of activated carbon is highly protonated and as a result, a strong 

attraction exists between positively charged surface of the adsorbent and oxyanion (Heidmann et 

al., 2008; Huang et al., 2009). The further decrease in chromium (VI) uptake with increase in pH 

(4.0 - 9.5) may be due to the fact that at higher pH, the substrate may be negatively charged by 

adsorbing hydroxyl ions on the surface or by ionization of very weak acidic functional groups of 

the adsorbent, or both. A repulsive force may develop between the negatively charged surface 

and the anions. At lower pH, the process of regeneration predominates over the process of 

removal. And hence the process of conversion of adsorbent into its H
+
 form plays an important 

role leaving behind chromium (VI) in the aqueous solution. The process of adsorption and 

regeneration is demonstrated in Fig. 5.91. 

 

                 H
+ 

                                                                              Cr2O7
2-

 

                    +      Cr2O7
2- 

                                                            +       H
+
                                  

        Activated carbon                                          Cr (VI) loaded activated carbon 

 

                     Cr2O7
2- 

                                                                              H
+
 

                      +       H
+
      

                                                                                    
        + Cr2O7

2-  

                Cr (VI) loaded activated carbon                     Activated carbon 

 

Fig.5.91. Adsorption and regeneration process of activated carbon with chromium (VI) ions. 

  

5.4.2.3. Mechanism of chromium (VI) removal 

   The mechanism of any adsorption process is an important component in understanding the 

process as well as to know the characteristics of the material which help to design a new 

adsorbent for future applications. A mechanism for the adsorption of chromium (VI) by ion-

exchanger activated carbon has been proposed by taking the results obtained from the 

experimental investigations. At lower pH 4.0 and 4.5 of the medium, surface sites are positively 

charged and, therefore, attract negatively charged Cr2O7
2- 

by an electrostatic interaction process 

(Mashitah et al., 1999; Vinodhini and Das, 2009; Sengupta and Clifford, 1986). The materials 

under hydration, the activated carbon surface completes the coordination shells with the 

Adsorption process 

Regeneration process 
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available OH group. On the variation of pH, these surface active OH groups may further bind or 

release H
+
 where the surface remains positive due to the reaction: 

MOH + H3O
+
                      MOH2 

+
 + H2O                    (5.4.2.3a) 

Thus, when pH < 7.00, the overall chromium (VI) adsorption mechanism can be represented in 

three different forms: (i) electrostatic interaction between positively charged center (nitrogen) 

and negatively charged chromium molecule in solution, (ii) electrostatic attraction between 

positively charged surface hydroxyl group and Cr2O7
2- 

 

MOH + H3O
+ 

+ Cr2O7
2-

                        MOH2
+…….

  Cr2O7
2- 

+ H2O      (5.4.2.3b) 

(Electrostatic attraction) and (iii) ion-exchange reaction between positively charged metal center 

and AsO3
3-

, Cr2O7
2- 

: 

MOH + H3O
+
+ Cr2O7

2-
             M

+…….
 Cr2O7

2-
 + 2H2O (ion-exchange) (5.4.2.3c) 

 The modeling of the specific adsorption of Cr2O7
2-

 on any material surface depends on a number 

of external factors such as temperature, pH, initial Cr2O7
2-

concentration, as well as the density of 

surface functional groups available for coordination. In light of the above-mentioned mechanism 

of adsorption, it may be further noted that activated carbon material showed adsorption capacity 

at a wide pH of acidic pH range, which could be useful for commercial exploitation purpose. 

   

5.4.2.4. Effect of contact time on chromium (VI) removal 

  Adsorption of chromium (VI) at different contact time is studied for initial chromium(VI) at pH 

4.5 concentration of 10 mg/L, 50 mg/L and 100 mg/L keeping all other parameters constant and 

results are presented in Fig. 5.92.   It is clear from the figure that more than 90% removal takes 

place within 30 min and equilibrium is reached after 30 min. The change in the rate of removal 

might be due to the fact that initially all sorbent sites are vacant  and  also  the  solute  

concentration  gradient  is  high. At higher concentrations, metals need to diffuse to the sorbent 

surface by intraparticle diffusion and greatly hydrolyzed ions will diffuse at a slower rate. This 

indicates the possible monolayer formation of chromium (VI) ions on the outer surface. 
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Fig. 5.92. Effect of contact time on the adsorption of chromium (VI) with  initial  concentration 

 of 10 mg/L, 50 mg/L and 100 mg/L.  

5.4.2.5. Adsorption kinetics  

   The  prediction  of  adsorption  rate  gives  important  information  for  designing  batch  

adsorption  systems. The experimental data are applied to pseudo-first-order, pseudo-second-

order and Intraparticle diffusion models to clarify the adsorption kinetics of chromium (VI) onto 

activated carbon. Adsorption of chromium (VI) ions is rapid for the first 30 minutes and its rate 

slowed down as it approaches towards equilibrium (Chen et al., 2011). 

  

5.4.2.5.1. Pseudo-first-order or Lagergren’s rate equation 

  Pseudo-first-order has a rate depends on the concentration of only one reactant. The rate 

constant K1 for adsorption of chromium (VI) is studied by Lagergren rate equation (Lagergren, 

1898; Yu et al., 2003; Pokhrel and Viraraghavan, 2007) for initial chromium (VI) concentration 

of 10 mg/L, 50 mg/L and 100 mg/L.  

                    log (qe − qt) = Log qe − 
    

     
  t     

where qe and qt (mg/g) are the amounts of chromium(VI) ions adsorbed at equilibrium (mg/g) 

and at time ‘t’ (min), respectively, and k1 is the rate constant of the equation (min
-1

). The 

adsorption rate constants (k1) was calculated from the slope of the linear plot of log (qe - qt) vs. t, 

which is presented in Fig. 5.93.  
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Fig. 5.93. Adsorption kinetics of time vs. log (qe-qt) with initial chromium (VI) concentration of 

 10 mg/L, 50 mg/L and 100 mg/L. 

The plots of log (qe - qt) vs. t for the pseudo-first-order model was almost linear, indicates the 

validity of Lagergren rate equation of first order kinetics (Fig. 5.93). The adsorption rate constant 

(k1), calculated from the slope of the above plot is presented in Table 5.21. 

5.4.2.5.2. Pseudo-second-order rate equation 

   Pseudo-second-order depends on the concentrations of one second-order reactant, or two first-

order reactants. Experimental data were also tested by the pseudo-second-order kinetic model 

which is given in the following form (Ho and McKay, 1999; Brum et al., 2010): 

             
 

  
 

 

    
  + 

 

  
 X t                                        

where k2 (g/mg min) is the rate constant of the second-order equation for adsorption of initial  

chromium(VI) concentration of 10 mg/L, 50 mg/L and 100 mg/L. qt (mg/g) is the amount of 

adsorption time t (min) and qe is the amount of adsorption equilibrium (mg/g).  
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Fig. 5.94. Adsorption kinetics of time vs. t/qt with initial chromium(VI) concentration of 10 

 mg/L, 50 mg/L and 100 mg/L.  

The rate constant K2 and the R
2
 values are given in Table 5.21. It is clear from these results that 

the R
2
 values are very high in range of 0.98-0.99 for the adsorption of the chromium (VI). Fig. 

5.94 shows the linear plot of t/qt vs. t for the pseudo-second-order model is more likely to predict 

kinetic behavior of adsorption with chemical adsorption being the rate-controlling step.  

Table 5.21. Kinetic parameters from pseudo-first-order and pseudo-second-order for 

 chromium (VI) ions adsorption onto activated carbon at different initial concentration. 

 

5.4.2.5.3. Intraparticle diffusion rate constant (Weber-Morris equation) 
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   During the batch mode of operation, there was a possibility of transport of adsorbate species 

into the pores of adsorbent, which is often the rate controlling step (Weber and Morris, 

1963).The rate constants of intraparticle diffusion Kp at different initial chromium (VI) 

concentration of 10 mg/L, 50 mg/L and 100 mg/L were determined using the following equation.   

           qt = Kp t
0.5

 + C                                                    

Where C is the intercept and Kp is the intraparticle diffusion rate constant (mgg
-1

 min
-0.5

) 

calculated from the slopes of respective plot q vs. t
0.5

 and presented in Fig. 5.95 The rate constant 

Kp the R
2
 values are given in Table 5.22. The intercept of the plot reflects the boundary layer 

effect. The larger intercept the greater the contribution of the surface adsorption in the rate 

controlling step. If the regression of qt vs. t
0.5 

is linear and passes through the origin, the 

intraparticle diffusion is the sole rate limiting step.  However, the linear plots at each initial 

concentration of chromium (VI) did not pass through the origin. This indicates that the 

intraparticle diffusion was not only the rate controlling step. This indicates that the mechanism of 

chromium (VI) adsorption by activated carbon is a complex and both, the surface adsorption as 

well as intraparticle diffusion contribute to the rate determining step.  

 

 Fig.5.95. Adsorption kinetics of time vs. t
0.5 

with initial chromium (VI) concentration of 10 

 mg/L, 50 mg/L and 100 mg/L. 

 

Table 5.22. Intraparticle diffusion rate constants obtained from Weber- Morris equation for 

 different initial chromium (VI) concentration. 
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5.4.2.6. Effect of initial concentration on chromium (VI) removal  

   The adsorption of chromium (VI) onto activated carbon is studied by varying chromium (VI) 

concentration using optimum adsorbent dose (0.35g/50 mL) at ambient temperature (25 ± 2°C) 

and contact time of 60 min. The initial chromium (VI) concentration is increased from 10 mg/L 

to 100 mg/L and the corresponding removal gradually increases from 77.22 % to 92.24% for 

chromium (VI) ions. It is clear from the figure that more than 80 % adsorption of chromium (VI) 

took place in first 30 min and equilibrium is established after 30 min. At higher concentrations, 

metals need to diffuse to the adsorbent surface by intraparticle diffusion and greatly hydrolyzed 

ions will diffuse at a slower rate. This indicates the possible monolayer formation of chromium 

(VI) ion on the outer surface. From the above data it is clear that the removal method can be 

implemented to remove of chromium (VI) from water present in any concentration.  

5.4.2.7. Adsorption isotherms    

Adsorption is a well-known equilibrium separation process for water treatment. Adsorption 

isotherms are the equilibrium relationships between the concentrations of adsorbed metal ions 

and solid adsorbent at a given temperature. Adsorption isotherms have been successfully 

described by the well accepted adsorption isotherm models of Langmuir, Freundlich and 

Dubinin–Radushkevich. The study of isotherm was carried out by varying initial chromium (VI) 

concentration from 10 to 100 mg/L at ambient temperature (25 ± 2°C).  

 5.4.2.7.1. Langmuir adsorption isotherm 

   The adsorption data are fitted to linearly transformed Langmuir isotherm. The Langmuir model 

assumes that a monolayer adsorption on a homogenous surface with finite number of identical 

sites is given by the following equation (Chen et al., 2011; Langmuir, 1916).  

     Intraparticle diffusion rate constant 

 Slope Intercept Kp ( mgg
-1

 min
-0.5

) R
2
 

Initial Cr(VI) concentration (mg/L) 

10 0.1110 -1.32510 0.1110 0.996 

50 0.0314 -1.63212 0.0314 0.994 

100 0.0206 -1.56063 0.0206 0.997 
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 = 

 

     
 + 

 

  
    

 where q0 is the maximum amount of the chromium (VI) ion per weight of activated carbon to 

form a complete monolayer on the surface (adsorption capacity) (mg/g), Ce denotes equilibrium 

adsorbate concentration in solution (mg/L), qe is the amount adsorbed per unit mass of adsorbent 

(mg/g), and b is the binding energy constant (L/mg). From this data it can be concluded that the 

maximum adsorption corresponds to a saturated monolayer of adsorbate molecules on adsorbent 

surface. The comparison of adsorption capacity of activated carbon derived from Eichhornia 

crassipes root biomass for chromium (VI) ions with that of different adsorbent in literature is 

presented in Table 5.24. 

  

 

                                     Fig.5.96. Langmuir adsorption isotherm, 1/Ce vs.1/qe. 

 Table 5.23. Langmuir, Freundlich and Dubinin–Radushkevich isotherm constants on the 

 adsorptionof chromium (VI) ions from aqueous solution onto activated carbon at 

 ambient temperature (25 ± 2°C). 
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Chromium (VI) 

 0.021 36.34 0.999 3.304 0.624 0.96 16.64 x 

10
-4

 

0.008

3 

17.36 0.9

7 

  

In order to predict the adsorption efficiency of the adsorption process, the dimensionless 

equilibrium parameter is determined by using the following equation (Hall et al., 1966). 

                                                       RL =  
 

     
  

where Ci is the initial chromium (VI) concentration (mgL
-1

). Value of RL indicates the shape of 

isotherm to be either unfavorable (RL > 1) or linear (RL = 1) or favorable (0 < RL <1) or 

irreversible (RL =0). The RL value for initial chromium (VI) concentration of 10, 50 and 100 

mgL
-1

 is found to be 0.826, 0.487 and 0.322, respectively.  The values indicated a favorable 

isotherm shape (0 < RL < 1) for adsorption of chromium (VI) on surface of activated carbon. The 

linear plot of 1/ Ce versus 1/qe indicates the applicability of Langmuir adsorption isotherm 

presented in Fig. 5.96. The values of Langmuir parameter, q0, b and R
2
 for chromium (VI) are 

presented in Table 5.23. 

5.4.2.7.2. Freundlich adsorption isotherm 

The Freundlich isotherm is an empirical equation which assumes in multilayer adsorption on 

heterogeneous surface of solid. The linear form of Freundlich isotherm is represented in the 

following equation (Freundlich, 1926). 

         log qe = log Kf + 
 

 
 log Ce                                             

Freundlich isotherm constants n and Kf were calculated from the slope and intercept of the plot 

log qe vs. log Ce shown in Fig. 5.97. The values of Freundlich parameter, Kf, 1/n, and R
2
 for 

chromium (VI) are presented in Table 5.23. The intensity of adsorption is an indicative of bond 

energies between metal ion and adsorbent, which indicate the possibility of slight chemisorptions 

rather than physisorption. The values of n (intensity of adsorption) between 1 and 10 (i.e., 1/n 

less than 1) represents a favorable adsorption. For the present study, the value of n also presented 

the same trend representing a beneficial adsorption.    

Table 5.24. Comparison of adsorption capacity of activated carbon prepared from E. crassipes 

 root biomass for chromium (VI) with that of different adsorbents.    
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                               Fig.5.97. Freundlich adsorption isotherm, log qe vs. log Ce. 
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Saw dust activated carbon Aqueous solution 2.0 65.8 Karthikeyan et al., 2005 

Rice husk-based active carbon Aqueous solution 2.0 0.49 Guo et al., 2003 

Raw rice bran Aqueous solution 5.0 0.07 Oliveira et al., 2005 

Coconut husk fibers Aqueous solution 2.0 29.0 Babel and Kurniawan, 

2004 

Hazelnut shell Aqueous solution 1.0 170 Kobya, 2004 

Saw dust  Waste waters 2.0 39.7 Sharma and Forster, 1994 

Maple saw dust Aqueous solution 6.0 5.1 Yu et al., 2003 

Agricultural waste Aqueous solution 2.0 22.29 Mohan et al., 2005 

Distillery sludge Waste water 3.0 5.7 Selvaraj et al., 2003 

Cow dung carbon Aqueous solution 4.5 3.5 Das et al, 2000 

Coniferous leaves Aqueous solution 3.0 6.3 Ayoama et al., 1999 

Pine needles Industrial water 2.0 21.5 Dakiky et al., 2002 

Activated carbon derived from  

E. crassipes  root biomass  

Aqueous solution 4.5 36.34 Present study 
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 5.4.2.7.3. Dubinin–Radushkevich isotherm  

  In order to understand the adsorption type, equilibrium data are tested with Dubinin–

Radushkevich isotherm. This model envisages about the heterogeneity of the surface energies 

and is represented in the following linear equation (Namasivayam and Sureshkumar, 2008; 

Pokhrel and Viraraghavan, 2007; Chen et al., 2011). 

      ln qe = ln qm – K 2
                                                       

  where ε is Polanyi potential, and is equal to ε = RT ln (1 +  
 

  
 ), qe is the amount of chromium 

(VI) adsorbed per unit mass of adsorbent (m mol/g), qm is the theoretical adsorption capacity, Ce 

is the equilibrium concentration of chromium (VI) (m mol/L), K is the constant related to 

adsorption energy, R is the universal gas constant and T is the temperature in Kelvin.  The 

isotherm constants K and qm were calculated from the slope and intercept of the plot ln qe versus 

 2
 shown in Fig. 5.98. The values of Dubinin–Radushkevich parameter, K, qm, and R

2
 for 

chromium (VI) are presented in Table 5.23.  The mean free energy of adsorption (E) was 

calculated from the constant K using the relation.  

   E = (-2K) 
-1/2

                                                    

  It is defined as the free energy change when 1 mole of ion is transferred to the surface of the 

solid from infinity in solution. The value of E chromium (VI) is presented in Table 6.4. The 

value of E is very useful in predicting the type of sorption and if the value is less than 8 kJmol
−1

, 

the adsorption process is of physical nature. If the magnitude of E is between 8 and 16 kJ mol
−1

, 

then the adsorption is due to exchange of ions. The value in the present study was found to be 

little greater than16 kJmol
-1

. This is due to chemical processes accompanying the ion exchange 

process.  
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   Fig.5.98. Dubinin–Radushkevich adsorption isotherm, ln qe vs.  2
, chromium (VI). 

 

5.4.2.8. Effect of temperature on chromium (VI) removal 

The effect of temperature on the adsorption of chromium(VI) with initial concentration 10mg/L, 

50 mg/L and 100 mg/L is studied using optimum adsorbent dose (0.35 g /50 mL) and results are 

presented in Fig. 5.99. The percentage removal of chromium (VI) with initial concentration 10 

mg/L, increased from 77.22% to 85.56%, the initial concentration 50 mg/L, increased from 

78.36% to 88.32% and the initial concentration 100mg/L, increased from 79.24% to 92.24 % for 

25-55 º C temperature. It can be clearly seen from the figure that, increase in temperature the 

percentage removal increased slowly and reached almost 92%. The increase in adsorption 

capacity with the increase in temperature indicates that the adsorption process is endothermic in 

nature.  
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       Fig. 5.99. Effect of temperature on the adsorption of chromium (VI) with initial 

 concentration of 10 mg/L, 50 mg/L and 100 mg/L.  

                   

5.4.2.9. Thermodynamic parameters 

    In order to determine the thermodynamic parameters, experiments are carried out at different 

temperature. The change in free energy (∆G), enthalpy (∆H) and entropy (∆S) of adsorption are 

calculated using the following equation (Chen et al., 2011).   

         log Kc = 
  

      
 + 

  

       
   

         ∆G = ∆H - T∆S  

where ∆S and ∆H are changes in entropy and enthalpy of adsorption, respectively. A plot of log 

Kc vs. 1000/T for initial chromium(VI)concentration of 10 mg/L, 50 mg/L and 100 mg/L is 

presented in Fig. 5.100 and the plot was found to be linear.  

The Kc value is calculated using the following equation. 

              Kc = 
  

  
                                                                 

Where T is the temperature (K); R is the gas constant (8.314 J/ mol K), Kc is the equilibrium 

constant obtained from Langmuir isotherm. C1 is the amount of chromium (VI) adsorbed per unit 

mass of activated carbon (mg/L) and C2 is the concentration of chromium (VI) in aqueous phase 

(mg/L). The values of ∆H and ∆S are evaluated from the slope and intercept of Van’t Hoff plots 

and represented in Table 5.25. Negative value of ∆G at each temperature indicates the feasibility 

and spontaneity of ongoing adsorption. The positive value of entropy (∆S) indicates the increase 

in randomness of the ongoing process. A decrease in values of ∆G with the increase in 

temperature suggests more adsorption of chromium (VI) at higher temperature. The positive 

value of ∆H indicates the adsorption process is endothermic nature and the positive values of ∆S 

suggest increased randomness at the solids/solution interface during the adsorption of metal ions 

onto adsorbent.  



RESULTS AND DISCUSSION  CHAPTER-5 

CHEMISTRY 171 

 

 

                            Fig. 5.100. Van’t Hoff’s plots, log Kc vs. 1000/T, chromium (VI). 

 

Table 5.25. Thermodynamic parameters using chromium (VI) solution of 10 mg/L, 50 mg/L, 

 and 100 mg/L. 

5.4.2.10. Regeneration and reuse studies    

    For the sustainability of adsorption process, the adsorbents should have good desorption and 

reuse potential. Studies are carried out to evaluate the reuse potential of activated carbon as an 

adsorbent for chromium (VI). Desorption of adsorbed chromium (VI) onto activated carbon is 

studied by using different strength of H2SO4 as shown in Fig. 5.101  5N H2SO4 is better 

desorption of chromium (VI) than other. Repeated acid treatment has reduced the weight of 
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adsorbent considerably. As shown in Fig. 5.102 (a), there was approximately 11.23% weight loss 

in the first acid wash and a total of 39.22% of the weight was lost in the second wash with 5N 

H2SO4. However, there was no significant weight loss after the second wash. This shows that, in 

the first two cycles, almost all acid soluble material from the adsorbent is washed away and the 

left over material is acid resistant. The weight loss of the adsorbent may also due to corrosive 

nature of H2SO4 which may be corroding some amount of adsorbent. The percentage desorption 

of chromium (VI) was 72.23 %, 85.33% and 94.55 % in first, second and third cycles of 

operation as shown in Fig. 5.102(b). The lower desorption in the first cycle may be the 

irreversible adsorption of chromium (VI) to some of the functional groups (Vinodhini and Das, 

2009; Sengupta and Clifford, 1986). As the acid washing proceeded, these material must have 

washed away (evident from weight loss) and chromium (VI) adsorption in the remaining 

functional groups might be reversible.                                        

 

Fig. 5.101. Percentage of chromium (VI) desorption using different strength of H2SO4 .  
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Fig. 5.102. (a) Weight losses due to acid (5N H2SO4) treatment in different cycles; and (b) 

 chromium (VI) desorption from activated carbon at different cycle.    

 

 5.4.2.11. Column study for chromium (VI) removal  

 The breakthrough curve is a plot of the concentration measured at a fixed point in the column, 

usually at or near to the outlet, versus time. In a multicomponent system, the accuracy of the 

adsorption equilibrium model will be of great significance in the simulation of breakthrough 

curves when adsorption competition between the adsorbate is strong. Adsorption isotherms are 

used for some primary studies and obtaining the operational parameters before running more 

costly experiments. Hence, the practical applicability of the product for column operations was 

always studied to obtain some parameters necessary for better approach in water treatment 

method (Lizama Allende et al., 2012; Ahamad and Jawed, 2012). The breakthrough curves were 

obtained by plotting C/Co versus the volume of 10 mg/L chromium (VI) solution, in order to 

determine both the volume and capacity of saturation. Fig. 5.103 shows the breakthrough curves 

for the column studies of chromium (VI). It can be observed that the breakthrough volumes are 

35 mL. The saturation volumes (Vx) were found to be 80 mL, in 60 min (tx). The maximum 

capacity of removal of chromium (VI) ions in column is given by Equation (Gupta et al., 1997). 

    Q = 
       

  
  ∫    

 

  

   

   
  dt 

where Q is the maximum adsorption capacity (mg g
-1

); C0 and C are the initial concentration of 

the solution and the concentration of chromium in a determined volume (mg L
-1

), respectively; 

ms is the mass of the adsorbent (g); V is the flow rate (L min
-1

) and the time is given in minutes.  
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The values of Q are 0.8 mg/g for chromium (VI). Operational column parameters are helpful in 

designing a fixed adsorbent for chromium (VI) removal from aqueous solution. 

 

Fig. 5.103. Break through curve for the adsorption of Cr (VI) on activated carbon (initial 

 concentration Cr (VI): 10 mg/L; flow rate: 1.2 mL/min; pH 4.5 and room temperature: 

 25 ± 2 °C).  
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   LUB = L x (1- 
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where L is the height of the bed (cm), Vb is the breakthrough volume (mL), and V
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stoichiometric volume (mL), which corresponds to less than half the saturation volume (Vx). The 

values of LUB are 0.129 cm. 
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6.  Summary and Conclusion 

 

Environmental pollution is increasing ceaselessly on account of an unabated increment in 

population, industrialization, urbanization, anthropogenic activities and natural sources. The 

metal/metalloids pollution is of great concerns, as these hazardous pollutants are accumulated in 

living organisms are responsible for many metabolic and physiological disorders. Advancement 

in science and technologies parallel to industrial revolution has opened new vistas to exploit the 

inherent traits of natural resources including green plants and microorganisms to overcome the 

damage to the environment by pollutants. 

The Phytoremediation and bioremediation techniques are relatively new methods for abetment of 

hazardous ions from water, waste water and effluents. Many research organization and academic 

institution are actively involved in this field. However a huge scope is there to explore for future 

development.  In this thesis, four problems have been addressed: 1. Phytoremediation of arsenic 

(III) and chromium (VI) by Eichhornia crassipes plant. 2. Bioremediation of arsenic (III) and 

chromium (VI) by living cells of B. cereus biomass. 3. Prediction of arsenic (III) and chromium 

(VI) removal by biosorption process using living cells of B. cereus biomass with multilayer feed 

forward artificial neural network (ANN). 4. Removal of chromium (VI) from aqueous solution 

using activated carbon derived from Eichhornia crassipes root biomass.  

 Eichhornia crassipes used in ‘Eco-technology’ for phytoextraction and phytofiltration are the 

best-developed subsets for removal of toxic metal from environment. Nutrient culture is an 

efficient method for screening heavy metal ions tolerant for free floating plants of   Eichhornia 

crassipes in hydroponic culture. The mechanism of uptake, translocation and detoxification of 

arsenic (III) and chromium (VI) ions are well understood in plant root cells. The accumulation, 
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relative growth and bio-concentration factor of plant on treatment with different concentrations 

of arsenic(III) and chromium(VI) solution significantly increased (P<0.05) with the passage of 

time.  Plants treated with 0.100 mg/L arsenic (III) accumulated the highest concentration of 

metal in roots (7.20 mg kg
-1

, dry weight) and shoots (32.1 mg kg
-1

, dry weight); while those 

treated with 4.0 mg/L of chromium (VI) accumulated the highest concentration of metal in roots 

(1320 mg/kg, dry weight) and shoots (260 mg/kg, dry weight) after 15 days. The metal uptake 

was ascertained by adopting various characterization methods like AAS, SEM-EDX, XRD and 

FTIR of the biomass before and after treatment. FTIR spectra confirmed the interaction of 

arsenic (III) ions with the hydroxyl, amide, thiol and amino groups present on the Eichhornia 

crassipes biomass.  Similarly the FTIR spectra confirmed the interaction of chromium (VI) ions 

with the hydroxyl, carboxyl and amino groups present on the plant biomass. XRD pattern of 

arsenic ions loaded plant materials shows the presence of phases of AlAsO4, As2O3, and 

As(OH)3  which indicates that arsenite ion  are converted into the above species and finally get 

adsorbed over the surface of plant materials. XRD pattern of chromium ions loaded plant 

materials indicates that the Cr (VI) converted into K3Er (CrO4)3, some of the species are even 

converted into Al8Cr4 Dy and also remain as K2Cr2 O7  and finally get adsorbed over the surface 

of plant materials. The high removal efficiency and more accumulation capacity of arsenic and 

chromium ions make Eichhornia crassipes an excellent choice for phytoremediation processes.  

 Microwave extraction is becoming the choice for the extraction of solid matrices for organic 

analyte analysis by HPLC-ICP-MS techniques. Therefore, the method adopted in this study was 

tested on shoot biomass of Eichhornia crassipes containing 32.1 ± 0.05 mgkg
-1

 arsenic (III) ions.  

Extraction of arsenic from plant materials was conducted using three extractant solutions: (i) 

Extracted by 10% (v/v) tetramethylammonium hydroxide (TMAH) with yield of 95.14%, (ii) 

Extracted by double deionized water with yield of 87.24% and (iii) Extracted by a modified 

protein extracting solution with yield of 88.92%. Eichhornia crassipes consisted only inorganic 

arsenic species as it is indicated from the results of these experiments. Arsenic (III) are present in 

maximum quantity, arsenic (V) in minimum quantity and the organic arsenic like 

monomethylarsonic (MMA) and dimethylarsinic acid (DMA) are absent. Extraction of 

chromium ions was conducted by same procedure from plant materials using three extractant 

solutions: (i) Extracted by 0.02 M ethylenediaminetetraacetic acid (EDTA), with yield of 

97.24%, (ii) Extracted by double deionized water with yield of 72.21% and (iii) Extracted by 
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HCl solution with yield of 87%. The method developed in this study was tested on shoot biomass 

of E. crassipes containing 260 ± 0.05 mgkg
-1

 chromium (VI) ions. The results in this 

experiments clearly indicate that chromium species adsorbed in the Eichhornia crassipes 

consisted only Cr
+3

 and Cr
+6

 but chromium (VI) are present in maximum quantity as compare to 

chromium (III) ions. 

The biosorption of arsenic (III) and chromium (VI) from water is studied by living cells of 

Bacillus cereus biomass as bioremediation. Dependence of biosorption was studied with 

variation of various operating parameters, pH of solution, biomass dosage, contact time, initial 

concentration and temperature to achieve the optimum condition. The maximum biosorption 

capacity of living cells of B. cereus for arsenic (III) and chromium (VI) was found to be 32.42 

mg/g and 39.06 mg/g at pH 7.5, at optimum conditions of contact time of 30 min, biomass 

dosage of 6 g/L, and temperature of 30 ± 2°C.  Biosorption data of arsenic (III) chromium (VI) 

are fitted to linearly transformed Langmuir isotherm and pseudo-second-order model with R
2
 

(correlation coefficient) > 0.99. Thermodynamic parameters reveal the endothermic, 

spontaneous, and feasible nature of sorption process of arsenic (III) chromium (VI) onto Bacillus 

cereus biomass. The arsenic (III) and chromium (VI) ions are desorbed from B. cereus using 

both 1M HCl and 1M HNO3.   B. cereus biomass is characterized, using SEM-EDX, AFM and 

FTIR. The SEM-EDX studies reveal the morphological changes with respect to shape and size of 

the bacteria after sorption of arsenic (III) and chromium (VI) ions with Bacillus cereus cells. 

AFM figures reveals after the arsenic (III) and chromium (VI) ions exposure and the ultra-

structures mostly disconnected with the cells adhering to each other randomly. It can be clearly 

observed that the biomass shape has changed into a spindle-like structure after arsenic (III) and 

chromium (VI) sorption. FTIR spectra may be attributed to the interaction of arsenic (III) ions 

with the hydroxyl, amide and amino groups present on the Bacillus cereus biomass.  FTIR 

spectra may be attributed to the interaction of chromium (VI) ions with the hydroxyl, amide and 

amino groups present on the Bacillus cereus biomass.   

 The present work demonstrates successful removal of As (III) and Cr(VI) ions from the aqueous 

solutions using Bacillus cereus biomass with maximum removal efficiency 86.14% for As(III) 

and 89.24% for Cr(VI) initial concentration 1 mg/L.  

Artificial neural network (ANN) techniques can enhance predicting capability of the model 

when mathematical or statistical methods are difficult to formulate and fails to predict with 
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desired accuracy. In the present work, estimation of sorption efficiency using mathematical 

and analytical tools is involved because the physical phenomenon for removal of arsenic 

(III) and chromium (VI) by living cells of Bacillus cereus is complex one. Therefore, 

artificial neural network (ANN) has been attempted in this work for prediction purpose 

because ANN has the capacity to map inputs and outputs efficiently in complex situations.  

A three layer back propagation algorithm of neural net-work is adopted to predict the response of 

the process. A simple back propagation network with momentum is proved meaningful 

supplement for the conventional and complicated mathematical models for the prediction of 

sorption efficiency in bioremediation process. The biosorption data of both metal ions collected 

from laboratory scale experimental set up is used to train a back propagation (BP) learning 

algorithm having 4-7-1 architecture. The model uses tangent sigmoid transfer function at input to 

hidden layer whereas a linear transfer function is used at output layer. The data is divided into 

training (75%) and testing (25%) sets. The network is found to be working satisfactorily as seven 

neurons are selected in the hidden layer when mean square error starts decreasing. Learning and 

momentum parameters are set at 0.25 and 0.20 respectively during the training phase both 

arsenic (III) and chromium (VI). The network is trained till minimum root mean square error is 

observed. A root mean square error of 0.77 is observed at epoch number 23, 644, 85 for arsenic 

(III) and 0.68 is observed at epoch number 23, 835, 76 for chromium (VI). The network is found 

to be working satisfactorily as absolute relative percentage error of 0.749 for arsenic (III) and 

0.567 for chromium (VI) during training phase. Comparison between the model results and 

experimental data gives a high degree of correlation (R
2 

= 0.986 for arsenic (III) and R
2 

= 0.984 

for chromium (VI)) indicating that the model is able to predict the sorption efficiency with 

reasonable accuracy.  

  The removal of chromium (VI) from aqueous solutions by activated carbon prepared from the 

Eichhornia crassipes root biomass.  The operating parameters, pH of solution, biomass dosage, 

contact time, and temperature, have tremendous effect on the adsorption efficiency of chromium 

(VI). The adsorption capacity of activated carbon derived from Eichhornia crassipes root 

biomass was found to be 36.34 mg/g for chromium (VI), at pH 4.5, contact time of 30 min and 

temperature of 25 ± 2°C. The mean free energy values evaluated from the D-R model indicated 

that the adsorption of chromium (VI) onto activated carbon is due to by chemical ion-exchange. 

The kinetic data signified that the adsorption of chromium (VI) ions onto activated carbon 
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followed both the pseudo-first-order and pseudo-second-order kinetic model. The 

thermodynamic calculations showed the feasibility, endothermic and spontaneous nature of the 

adsorption of chromium (VI) onto activated carbon at 25-55 °C.  Regeneration studies were 

carried out to evaluate the reuse potential of the adsorbent. The maximum removal capacity in 

column studies was found to be 0.8 mg/g for chromium (VI). The FTIR spectroscopic analysis 

confirmed that the interaction of chromium (VI) with the hydroxyl, carboxyl and amino groups 

present on the surface of the activated carbon. Activated carbon derived from Eichhornia 

crassipes root biomass is low-cost biomass with considerable high adsorption capacity. 

 From the above studies it is concluded that Eichhornia crassipes plant can be used for effective 

phytoremediation of arsenic (III) and chromium (VI). The removal of arsenic is effective but 

further improvement is required but for chromium (VI) it can be used effectively from effluents. 

Bacillus cereus can be used effectively for the removal of arsenic (III) and chromium (VI) by 

bioremediation techniques. Both the process represents a cost-effective, efficient and easy to use 

plant and microorganism based technology for the removal of metals from the water 

environment and has great potential for future applications. For the practical applicability of this 

technique further experiments are ongoing.  
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7.    SCOPE FOR FUTURE WORK 

 

Human impacts leading to large scale degradation of the environment have aroused global 

concern on environmental issues in the recent years. Based on the findings of the present 

investigation, the following future scope of studies will be undertaken to carry forward the 

research further. 

1. Microwave assisted extraction studies for arsenic, chromium, mercury, and cadmium analysis 

 by water hyacinths with ICP-AES method which will ensure the recovery of the metal ions. 

2. To study the bioaccumulation kinetics and toxic effects of Cr, As and Hg on  Monochoria 

 hastata. 

3. Sequential eluent injection technique as a new approach for the on-line enrichment and 

 speciation of Cr(III), Cr(VI) and As(III), As(V) species on a single column with FAAS 

 detection. 

4. Extracellular reduction of arsenate by cytochromes MtrC and OmcA of Shewanella oneidensis 

 MR-1. 
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5. Biosorption of chromium (VI), arsenic (V) and mercury (II) by living cells of Bacillus 

 licheniformis biomass. 

6. Adsorption of Cr (VI) and As (III) on ureolytic mixed culture from biocatalytic calcification 

 reactor. 

7. Chromium (VI) and arsenic (III) reduction and phenol degradation in aqueous mixed culture 

 of living cells of Bacillus cereus and Bacillus licheniformis biomass. 

8.  To use the natural surfactant as a feed for the microorganism which will generate the reluctant 

 which can be used to reduce the toxicity of the metal/mettaloid?  

9. To apply the mathematical model to predict of accumulation and extraction of 

 metals/metalloids by the treatments of wastewater.  
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