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Abstract

Mining of minerals necessitates use of heavy energy intensive machineries and equipment
leading to miners to be exposed to high noise levels. Prolonged exposure of miners to
the high levels of noise can cause noise induced hearing loss besides several non-auditory
health effects. Hence, in order to improve the environmental condition in work place, it
is of utmost importance to develop appropriate noise prediction model for ensuring the
accurate status of noise levels from various surface mining machineries. The measurement
of sound pressure level (SPL) using sound measuring devices is not accurate due to
instrumental error, attenuation due to geometrical aberration, atmospheric attenuation
etc. Some of the popular frequency dependent noise prediction models e.g. ISO 9613-
2, ENM, CONCAWE and non-frequency based noise prediction model e.g. VDI-2714
have been applied in mining and allied industries. These models are used to predict the
machineries noise by considering all the attenuation factors.

Amongst above mathematical models, VDI-2714 is simplest noise prediction model
as it is independent from frequency domain. From literature review, it was found that
VDI-2714 gives noise prediction in dB (A) not in 1/1 or 1/3 octave bands as compared to
other prediction models e.g. ISO-9613-2, CONCAWE, OCMA, and ENM etc. Compared
to VDI-2714 noise prediction model, frequency dependent models are mathematically
complex to use. All the noise prediction models treat noise as a function of distance,
sound power level (SWL), different forms of attenuations such as geometrical absorptions,
barrier effects, ground topography, etc. Generally, these parameters are measured in the
mines and best fitting models are applied to predict noise. Mathematical models are
generally complex and cannot be implemented in real time systems. Additionally, they
fail to predict the future parameters from current and past measurements.

To overcome these limitations, in this work, soft-computing models have been used. It
has been seen that noise prediction is a non-stationary process and soft-computing tech-
niques have been tested for non-stationary time-series prediction for nearly two decades.
Considering successful application of soft-computing models in complex engineering prob-
lems, in this thesis work, soft-computing system based noise prediction models were de-
veloped for predicting far field noise levels due to operation of specific set of mining ma-
chinery. Soft Computing models: Fuzzy Inference System (Mamdani and Takagi Sugeno
Kang (T-S-K) fuzzy inference systems), MLP (multi layer perceptron or back propagation
neural network), RBF (radial basis function) and Adaptive network-based fuzzy inference
systems (ANFIS) were used to predict the machinery noise in two opencast mines.

The proposed soft-computing based noise prediction models were designed for both
frequency and non-frequency based noise prediction models. After successful applica-
tion of all proposed soft-computing models, comparitive studies were made considering
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Root Mean Square Error (RMSE) as the performance parameter. It was observed that
proposed soft-computing models give good prediction results with accuracy. However,
ANFIS model gives better noise prediction with better accuracy than other proposed
soft-computing models.

Keywords: Machineries noise; Noise prediction models; Opencast mines,
VDI-2714; CONCAWE; ISO 9613-2, ENM; NORDFORSK; VDI-
2720; Fuzzy system; Mamdani and Takagi Sugeno Kang (T-S-K)
fuzzy inference systems; MLP; RBF; ANFIS; MATLAB
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CHAPTER 1

INTRODUCTION

Noise is generated by almost all opencast mining operations from different fixed, mobile
and impulsive sources, thereby becoming an integral part of the mining environment. It
is defined as sound without agreeable musical quality or as unwanted sound. In opencast
mines, noise is a common environmental factor as generated by the heavy earthmoving
machineries [1]. The equipment and environment conditions continuously change as the
mining activity progresses. Depending on their placement, the overall mining noise em-
anating from the mining equipment varies in quality and level. In opencast mines most
of the mining machineries produce noise levels in the range of 90-115 dBA, exposure to
which over long time can result in noise induced hearing loss and other non-auditory
health effects in the miners[2, 3].

Hearing loss can impair the quality of life through a reduction in the ability to com-
municate with each other. Overall, it affects the general health of the human beings
in accordance with the World Health Organization’s (WHO) definition of health [4, 5].
Hearing loss (HL) can be defined as “the decibel difference between a patient’s thresholds
of audibility and that for a person having normal hearing at a given frequency” [6].In min-
ing industry, hearing loss or hearing damage is considered as a serious health problem, as
reported by various health organizations like the U.S. Environmental Protection Agency
(USEPA), the National Institute for Occupational Safety and Health (NIOSH) and the
WHO etc. In 1976, a study carried out by the National Institute for Occupational Safety
and Health, for coal mining concluded that the coal miners had health conditions worse
than the national mean and the hearing damage to coal miners were serious [7].

The impact of noise in opencast mines depends upon the sound power level (SWL)
of the noise generators, prevailing geo-mining conditions and the meteorological param-
eters of the mines. The noise levels need to be studied as an integrated effect of the
above parameters. In mining conditions, the equipment conditions and the environment
continuously change as the mining activity progresses. Depending on their placement,
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the overall mining noise emanating from the mines varies in quality and level. Thus, for
environmental noise prediction models, the noise level at any receiver point needs to be
the resultant sound pressure level (SPL) of all the noise sources. The need for accurately
predicting the level of noise emitted in opencast mines is well established. Some of the
noise forecasting models used extensively in Europe are those of the German Draft Stan-
dard VDI-2714 Outdoor Sound Propagation, Conservation of Clean Air and Water in
Europe (CONCAWE) and Environmental Noise Model (ENM) of Australia [8,9]. These
models are generally used to predict noise in petrochemical complexes and mines. These
standards or algorithms were proposed in between 1970-1985. Out of these standards,
some are not suitable to predict noise accurately as these standards do not take into
consideration the attenuations factors such as ground effect, vegetation, barriers, indus-
trial areas etc. To overcome this problem, International Standard Organization (ISO)
proposed an empirical noise prediction model in 1996 [10, 11]. The algorithm used in
these models relied for a greater part on the interpolation of experimental data which is
a valid and useful technique, but their applications are limited to sites which are more
or less similar to those for which the experimental data were assimilated.

In the empirical models, nearly all influences are taken into account even when they
can not be separately recognized. This is the main advantage of these models. However,
the accuracy of these models depends on the accuracy of the measurements, similarities
between the conditions where the noise attenuation is analyzed and the conditions where
the measurements are carried out, and the statistical method that is used to make the
empirical model. The deterministic models are based on the principles of physics of sound
and therefore, can be applied in different conditions without affecting the accuracy. But
their implementation usually requires a great database of meteorological characteristics
such as atmospheric pressure, atmospheric temperature, humidity, wind and so on, which
is nearly difficult to obtain. Hence, the implementation of the noise prediction models is
usually restricted to the special area where the meteorological data can be available.

All the noise prediction models treat noise as a function of distance, SWL, different
forms of attenuations such as geometrical absorptions, barrier effects, ground topogra-
phy, etc. Generally, these parameters are measured in the mines and best fitting models
are applied to predict noise. Mathematical models are generally complex and cannot
be implemented in real time systems. Additionally, they fail to predict the future pa-
rameters from current and past measurements. It has been seen that noise prediction
is a non-stationary process and soft-computing techniques like Fuzzy systems (Mam-
dani Fuzzy Inference System, Takagi-Sugeno-Kang Fuzzy Inference System), Adaptive
neural network-based fuzzy inference systems (ANFIS), Neural networks (Multi-layer
Perceptron(MLP), Radial Basis Functions (RBF), Functional Link Artificial Neural Net-
work(FLAN), Neural Fuzzy, PPN) etc. have been tested for non-stationary time-series
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prediction for nearly two decades. Fuzzy logic was introduced as a mathematical way to
represent vagueness in linguistics and can be considered as a generalization of classical
set theory. This great innovation has supplemented conventional technologies in many
scientific and engineering applications. There is a scope of using different soft comput-
ing techniques: Fuzzy systems (Mamdani Fuzzy Inference System, Takagi-Sugeno-Kang
Fuzzy Inference System), Adaptive network-based fuzzy inference systems (ANFIS), Neu-
ral networks (Multi-layer Perceptron(MLP), Radial Basis Functions (RBF), Functional
Link Artificial Neural Network(FLAN), Neural Fuzzy, PPN), etc. for noise prediction in
mines.

1.1 Research Problem and the Objectives

In this research work, an attempt has been made to propose the appropriate soft com-
puting systems for predicting opencast mining machinery noise. Due to increasing mech-
anization of mining operations, the noise level in mines have increased over years. To
maintain a good working environment, it is important to predict appropriate noise status
of machineries in mines. However, the available conventional noise prediction models
are mathematically complex and difficult to use. Soft computing based noise prediction
models were developed for prediction of the noise of machineries in different opencast
mines.

1.1.1 The Objectives of the Research Work

• To conduct noise survey in opencast mines to find the noise status of various heavy
earth moving machineries.

• To develop both non-frequency and frequency based statistical noise prediction
models for prediction of the noise of machineries in different opencast mines.

• To develop noise prediction models using different soft computing techniques viz.
Fuzzy Inference Systems (Mamdani, Takagi-Sugeno-Kang Fuzzy Inference System)
ii) Multi-layer Perceptron (MLP), iii) Radial Basis Function Network (RBFN) and
iv) Adaptive Network based Fuzzy Inference System (ANFIS)etc.

• To develop Fuzzy logic system based noise induced hearing loss prediction models.

• To select and recommend best soft-computing model for noise prediction in opencast
mines.
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1.2 Organization of the Thesis

Seven chapters are presented in this thesis and the structure of organization of the thesis
is depicted in Figure 1.1. A chapter-wise summary of the thesis is given below:

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Noise Prediction in Mining Industry

using Mathematical Models

Chapter 4
Introduction to Soft-Computing

Techniques

Chapter 5
Soft-Computing Techniques for

Noise Prediction in Opencast Mines

Chapter 6
Noise-Induced Hearing Loss(NIHL) Modeling

using Fuzzy System in Mining Industry

Chapter 7
Conclusion

The Thesis

Figure 1.1: Structure of the thesis

• Chapter-2 (Literature Survey and Review)
This chapter makes a comprehensive review of related literatures to provide

background information on the issues to be considered in the thesis and to empha-
size the relevance of the present study. This treatise embraces various aspects of
prediction of opencast mining machineries noise, noise impact assessment and noise
induced hearing loss in mines. The topics included in this chapter for brief reviews
are as follows:

⋆ Sources and Types of noise in opencast mines

⋆ Health effect of the noise

⋆ Noise survey in opencast mines

⋆ Survey of noise induced hearing loss in opencast mines

⋆ Noise Impact Assessment

⋆ Noise Prediction Models

⋆ Survey of application of frequency independent (VDI-2714 ) and frequency
dependent (CONCAWE, VDI-2720, ISO-9613-2, NORDFORSK etc.) noise
prediction models
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⋆ Application of soft-computing models (Fuzzy, ANN, RBF etc.) for prediction
of noise and noise induced hearing loss

• Chapter 3 (Noise Prediction in Mining Industry using Mathematical Models)
This chapter highlights the application of mathematical noise prediction models

for prediction of opencast mining machineries noise. In this chapter, one frequency
independent noise prediction model (VDI-2714) and five frequency dependent noise
prediction models were discussed. Location and equipment selection were discussed.
Two mines were selected as per the requirement of noise prediction models. The
first one is Balaram opencast coal mine of Mahanadi Coalfields Limited (MCL),
Talcher (Odisha, India). It was selected for frequency independent models e.x.
VDI-2714. The second one is Panchpatmali Bauxite Mine of National Aluminium
Company Limited (NALCO), Damanjodi (Koraput, Odisha, India). It was selected
for frequency dependent models e.g. CONCAWE , ENM , ISO-9613-2 etc.

• Chapter 4 (Introduction to Soft-Computing Techniques)
In this chapter, different soft computing techniques were discussed. Soft comput-

ing techniques viz. Fuzzy Logic Systems (Mamdani and T-S-K) , Adaptive Network
based Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) models,
Radial Basis Functions (RBF) etc were discussed. Network architectures, system
models, learning algorithm and the procedure for the development of intelligent
systems were briefly discussed.

• Chapter 5 (Soft Computing Techniques for Noise Prediction in Opencast Mines)
This chapter represents the implementation of various soft-computing techniques

like fuzzy logic system, neural network, radial basis function network etc. for noise
prediction of opencast mining machineries. Due to the high complexity of the
classical mathematical models and statistical models (VDI-2714, CONCAWE, ISO-
9613-2, ENM etc), the need of implementation of Soft-Computing models in noise
prediction obtained greater relevance. In this chapter, two major applications of
Soft-Computing models were highlighted. One was for frequency independent noise
prediction model (VDI-2714) and the other was for the frequency dependent models
viz. CONCAWE, ISO-9613-2, ENM etc.

• Chapter 6(Noise-Induced-Hearing Loss (NIHL) Modeling using Fuzzy Systems in
Mining Industry)

This chapter highlights the application of soft computing techniques for pre-
dicting noise induced hearing loss. In this chapter, fuzzy system applications were
discussed. Both Mamdani and Takagi-Sugeno-Kang (T-S-K) fuzzy inference sys-
tems were applied for predicting noise induced hearing loss. All model results were

5



1.3 Conclusion

highlighted briefly in Chapter 6.

• Chapter 7 (Conclusion)
This chapter provides a comprehensive summary of the entire research presented

in the thesis and clearly outlines the specific conclusions drawn from the work. This
is the concluding chapter of the thesis. It presents the major findings of all the
studies undertaken and their implications.

1.3 Conclusion

Present chapter highlights the importance of noise problem in opencast mines due to
increased mechanization. This chapter also develops the new idea of applications of
soft-computing models for prediction of the noise from the opencast mining machineries.
It also systematically outlines the scope, the motivations behind the research and the
objectives of the thesis. In essence, this chapter provides comprehensive outline of the
thesis.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Noise is defined as a sound without agreeable musical quality or as an unwanted sound.
It is generated from all the opencast and underground mining operations from almost
different fixed, mobile and impulsive sources; thereby becoming an integral part of min-
ing environment. Depending on the sources of generation, noise can be classified into
following classes:

• continuous wide band noise,

• continuous narrow band noise,

• impact/impulsive noise,

• repetitive impact noise and

• intermittent noise.

Increased mechanization brought in use of large and high capacity equipments.This in-
creased the magnitude of the problem of noise in mines. Prolonged exposure of miners to
high levels of noise can cause auditory and non-auditory health effects. Before initiating
any administrative, engineering and medical measures against the noise hazards, noise
surveys are essential. They help in identifying the noise pollution sources and quantifying
the risk exposure of workers. Effective anti-noise measures can be accordingly formulated
and implemented, thereafter [1].
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2.3 Basics of Sound

2.2 Effects of Noise on Human Health

Exposure to high levels of noise over a long time causes harmful physiological effects.
The detrimental effects of noise depend not only on its SPL and frequency, but also
on the total duration of exposure and the age, general health and susceptibility of the
individual. Harmful effects of noise can be broadly classified into, auditory effects, non-
auditory effects and threshold shift [12,13]. Fig. 2.1 represents the noise exposure effects
on human health.

Figure 2.1: Noise exposure effects on human health [13]

2.3 Basics of Sound

Sound arises when fluctuations in air pressure give rise to pressure waves which travel
through the atmosphere. As they travel they will interact in various ways with their
surroundings. Noise is a word which is normally applied to unwanted sound and the
sound present in most work situations is unwanted, so it was normally talked about
exposure to workplace noise rather than to workplace sound [14,15]. It also defined that
smallest audible smallest audible at the frequency of greatest sensitivity in young people
with clinically normal ears [16].
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2.3 Basics of Sound

2.3.1 Sound Pressure Level

Sound pressure is the local pressure deviation from the ambient (average, or equilibrium)
pressure caused by a sound wave. Sound pressure can be measured using a microphone in
air and a hydrophone in water. The SI unit for sound pressure is the Pascal (symbol: Pa).
Sound pressure is used as the fundamental measure of sound amplitude because sound
power or sound intensity (energy per unit time and energy per unit area, respectively) are
not measurable directly by instruments. However, there are mathematical relationships
that relate energy of sound waves and pressure changes. By most instrumentation, sound
pressure is measured by providing a reading of root mean square (rms) sound pressure
level (Lp) as decibels (dB). Absolute pressure is not measured; instead, the reading is
related to a reference pressure. For sound measurement in air the reference pressure is:

• 0.00002 N/m2,

• 20 pN/m2

• 0.0002 d/cm2

• 0.0002 µbar.

This level was chosen as the normal threshold of hearing for a frequency of 1000 Hz. The
sound pressure level is

Lp = 20log
(P1)

(Pr)
(2.1)

or
Lp =

10log(P1)
2

(Pr)
(2.2)

Where Lp = sound pressure level (SPL) (dB), P1 = sound pressure rms, usually in
N/m2,Pr = reference sound pressure in N/m2,log = logarithm to base 10. If there are
more number of noise sources, then the addition of the SPL is deduced as follows:

Lp = 10× log
(
10

L1
10 + 10

L2
10 + 10

L3
10 + ....

)
(2.3)

similarly, the subtraction of more than two noise sources is calculated as follows:

Lp = 10× log
(
10

L1
10 − 10

L2
10 − 10

L3
10 − ....

)
(2.4)

Here, Lp is used to denote the combined sound levels, while the levels due to each source
on its own are denoted by L1, L2, L3 and so on [17–19].

2.3.2 Sound Power Level

Sound power is the total amount of sound energy emitted per second by a particular
noise source. It is therefore a property of that noise source and will not depend on the
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2.3 Basics of Sound

environment in which it is placed. In general, it depends on the operating conditions.
For example, the noise output of a circular saw will depend on whether it is running
freely or being used to cut material. The decibel counterpart of sound power is called
sound power level (abbreviated to LW, SWL or PWL) and is the most useful quantity
to use when one noise source is compared with another. Use of the term sound power
level is preferred, since it characterizes the noise emitted by various types of machines
and equipments that are essentially independent of the environments. Sound power level
is derived using a reference level.

LW = 10log
(W1)

(Wr)
(2.5)

where Lw = sound power level (SWL), dB W1 = power of source (watt), Wr = reference
power 10−l2 (w), log = logarithm to base 10.

Under free field conditions, where there are no reflections in sound and sound radiates
equally in all directions, the sound propagation wave follows a spherical distribution. The
surface area of a sphere, 4πr2, would be used to define the sphere surrounding a noise
source. If sound intensity, defined as the energy per unit area, is multiplied by the surface
area, a relationship between sound power and intensity is established:

W = IA (2.6)

where W = sound power in watt, I= average sound intensity at a distance r from noise
source, A = spherical area, 4πr2 under free field conditions, of an imaginary shell sur-
rounding a source at distance (r) in meter [15,20,21].

2.3.3 Sound Intensity

Sound intensity is the amount of sound power flowing across a particular imaginary
surface with an area of 1m2. It is measured in watts per square metre (Wm−2). Its decibel
counterpart is sound intensity level, and it is measured in some advanced acoustical
investigations.From equation 2.6, it is clear that the sound intensity will decrease with
the square of the distance. The factor A is reduced as obstructions are introduced.
Typically, only half of free field is approached, A is reduced to 2πr2 for hemispherical
radiation. (For l/4 spherical radiation A = πr2; for a spherical radiation A = πr2/2.)
The sound intensity, like sound pressure and sound power, also covers a large range of
values. Sound intensity is expressed as a dB level described by the following relationship
[20–22]:

LI = 10logI/Ir (2.7)

where LI = sound intensity level,dB; I = sound intensity at a given distance, Ir =
reference sound intensity, 10−12W/m2.
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2.4 Frequency of Sound

2.3.4 Relationship between SPL and SWL

For a given set of conditions, sound power and sound intensity can be defined in terms
of sound pressure, and vice versa.

Sound intensity = I = P 2/ρV (2.8)

where P = rms sound pressure (Pa), ρ = density of air at standard conditions 1.2 kg/m3,
I = intensity, V = speed of sound in air, 344 m/sec.
Equation 2.8 can be represented in terms of pressure as follows:

Sound pressure = P = (IρV )1/2 (2.9)

Again Equation 2.8 can be described in terms of intensity.

Sound power = W = IA (2.10)

Using the above equation, the additional relationships exist between sound pressure
level and sound power level as:

Lw = Lp + 10logA (2.11)

A is defined as the surface area of an imaginary shell at distance, r, where Lp would be
the measured sound pressure level for any point on the shell [14, 18,19,21].

2.4 Frequency of Sound

Frequency can be defined as the number of compressions and rarefaction per unit time
(set) qualified to a given medium, usually air. Units of frequency are hertz, which desig-
nate the number of cycles per second. Frequency is independent of the speed of sound in
a given medium. All frequencies travel at the same speed. In air, at standard conditions,
all frequencies travel at approximately 344 m/sec. The relationship between the speed
of sound and the frequency is defined by:

V = λf (2.12)

where V = speed of sound (m/sec), λ = wavelength (m), f = frequency (Hz).
Wavelength, is defined as the distance a sound wave travels during one pressure cycle

(1 compression and 1 rarefaction). The most important frequency for all acoustical
measurements is 1000 Hz since this frequency is the reference frequency of the Phon scale
i.e. of equal loudness contours, as also it is the base for all series of preferred frequencies.
To cover the whole audio range, the scale on both sides of the reference frequency is
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2.5 Equal loudness counter and weighting networks

divided by fractions of octaves like 1/1 octave, 1/2 octave and 1/3 octave etc. The
following (Table 2.1) are the preferred frequencies in the octave bands.

Table 2.1: Octave frequency bands

Centre frequency Minimum and maximum frequencies
31.5 Hz 22–45 Hz
63 Hz 45–89 Hz
125 Hz 89–177 Hz
250 Hz 177–354 Hz
500 Hz 354–707 Hz
1 kHz 707–1414 Hz
2 kHz 1414–2828 Hz
4 kHz 2828–5657 Hz
8 kHz 5657–11 313 Hz

In general, in octave band, the center frequency (fc) is related to lower (fl) and upper
(fu) band frequency as per the following relation.

fc =
√
flfu (2.13)

Calculation of the band width, △f of every band, using the following equation:

△f = fc
21/N − 1

22/N
= 0.2316 fc for 1/3 octave band

= 0.7071 fc for octave band

(2.14)

For an octave band (1/1), the upper and lower frequencies are related to the center
frequency by: fl = fc / 21/2 and fu = 21/2fc

For 1/3-octave bands,
fl = fc / 21/6 and fu = 21/6fc

1/1 and 1/3 octave bands are used in industrial acoustic measurements and may be used
for more accurate noise control work. Narrower bands such as 1/2 octave are used more
rarely, particularly to identify prominent tones in a broadband noise [15,20,21,23].

2.5 Equal loudness counter and weighting networks

2.5.1 Equal loudness counter

The ear is less sensitive to low frequencies than to high frequencies. For example, a
20-Hz tone at 70 dB sounds as loud as a 1000 Hz tone at 40 dB. Equal loudness contours
(Figure 2.2) show that as sound levels increase, the ear becomes more uniformly sensitive
to all frequencies. In general, an equal-loudness contour is a measure of sound pressure
(dB SPL), over the frequency spectrum, for which a listener perceives a constant loudness
when presented with pure steady tones. The unit of measurement for loudness levels is the
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2.5 Equal loudness counter and weighting networks

phon and is arrived at by reference to equal-loudness contours. Equal-loudness contours

Figure 2.2: Fletcher-Munson equal-loudness counter [21].

are often referred to as "Fletcher-Munson"’ curves, after the earliest experimenters, but
this is now incorrect, the definitive curves being those defined in ISO:226:2003 [17,20,24].

2.5.2 Weighting networks

Loudness of a sound (that is, the subjective response of the ear) varies with frequency as
well as with sound pressure and that the variation of loudness with frequency also depends
to some extent on the sound pressure. Sound-measuring instruments are designed to make
allowances for this behavior of the ear by the use of electronic “weighting” networks. The
various standards organizations recommend the use of three weighting networks, as well
as a linear (unweighted) network for use in sound level meters. The A-weighting circuit
was originally designed to approximate the response of the human ear at low sound
levels. Similarly, B and C networks were intended to approximate the response of the
ear at levels of 55-85 dB and above 85 dB, respectively. The characteristics of these
networks are shown in Figure 2.3. A fourth network, the D-weighting, has been proposed
specifically for aircraft noise measurements. However, it has not gained acceptance and
the trend appears to be towards the exclusive use of the A-weighting network. Figure
2.3 shows the correction which must be added to a linear reading to obtain the weighted
reading for a particular frequency. When even a weighting network proves desirable,
in industrial locations, the A-weighting network was taken to measure noise. Table 2.2
represents the A- weighting corrections for different frequency bands [17,19,21,25].
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2.5 Equal loudness counter and weighting networks

Figure 2.3: International standard A,B and C weighting curves for sound level meters [18].

Table 2.2: A-weighting network corrections (dB) [18]

Frequency
(Hz)

A-weighting
correction

Frequency
(Hz)

A-weighting
correction

Frequency
(Hz)

A-weighting
correction

10 −70.4 160 −13.4 2500 1.3
12.5 −63.4 200 −10.9 3150 1.2
16 −56.7 250 −8.6 4000 1.0
20 −50.5 315 −6.6 5000 0.5
25 −44.7 400 −4.8 6300 −0.1
31.5 −39.4 500 −3.2 8000 −1.1
40 −34.6 630 −1.9 10000 −2.5
50 −30.2 800 −0.8 12500 −4.3
63 −26.2 1000 0.0 16000 −6.6
80 −22.5 1250 0.6 20000 −9.3
100 −19.1 1600 1.0
125 −16.1 2000 1.2
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2.6 Mechanism of Hearing

2.6 Mechanism of Hearing

The mechanism of the ear is shown in Fig.2.4. Sound waves from the air around are
collected by the pinna, travel down the meatus, and are conducted to the cochlea via
the three auditory ossicles (i.e. the malleus , the incus and the stapes which act as an
impedance device, matching the sound wave impedance in the air to that in the basilar
fluid) and the oval window. The vibrations conducted in the basilar fluid cause groups of
hair cells along the basilar membrane to move; this motion induces piezoelectric action
and the mechanical energy is converted to an electrical pulse which travels along the
auditory nerve to the brain [26,27].

The inner ear is highly susceptible to injury and disease. Damage to the inner ear
may result in temporary or permanent hearing loss. The auditory nerve attached with
cochlea is mostly damaged due to noise.

Figure 2.4: Mechanism of human ear, Source [28].

2.6.1 Noise Induced Hearing Loss

Hearing loss can impair the quality of life through a reduction in the ability to com-
municate with each other. Overall it affects the general health of the human beings in
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2.6 Mechanism of Hearing

accordance with the World Health Organization’s (WHO) definition of health [4]. Hear-
ing level (HL) can be defined as “the decibel difference between a patient’s thresholds
of audibility and that for a person having normal hearing at a given frequency” [29].
Mathematically, it is expressed as:

HL = 10 log I/I0 dB (2.15)

where I is the threshold sound intensity for the patient’s ear and I0 is the threshold
sound intensity for the normal ear.

Hearing loss is mostly of three types:

• Conductive hearing loss

• Sensorineural (SN) hearing loss and

• Mixed hearing loss.

Conductive hearing loss is caused by any disease interfering with the conduction of sound
from the external ear to the stapedio-vestibular joints. This type of hearing loss typically
results in a loss of sensitivity to air-conducted sound. Conductive hearing losses are
usually correctable by medication or surgery. Sensorineural (SN) hearing loss results from
non-performance of the lesions of the cochlea (sensory type) and its central connections
(neural type). These hearing losses are typically seen as decreased sensitivity to both air-
and bone conducted sound. Patients with sensorineural hearing losses may complain of
difficulty under hearing noisy situations and sensitivity to loud sounds. In mixed hearing
loss, the elements of both conductive and sensorineural deafness are present with in the
same ear. There is air-bone gap indicating conductive element and impairment of bone
conduction indicating sensorineural loss.

Hearing loss follows chronic exposure to less intense sound than seen in acoustic trauma
and is mainly a hazard of noisy occupations [30].

1. Temporary threshold shift (TTS): The hearing is impaired immediately after expo-
sure to noise but recovers after an interval of a few minutes to a few hours.

2. Permanent threshold shift (PTS): The hearing impairment is permanent and does
not recover at all.

Hearing handicap is defined as “a binaural average hearing threshold level of greater
than 25dB for a selected set of frequencies”. In this analysis, the set of frequencies in-
cludes (a) 0.5,1 and 2kHz. (b) 1.2, and 3 kHz and (c) 1, 2, 3 and 4 kHz. The 1-4kHz
frequency average was recommended by an American Speech-Language-Hearing Associ-
ation (ASHA) Task Force [31,32], which focused on the need to include frequencies most
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2.6 Mechanism of Hearing

affected by noise exposure. The ASHA Task force recommended that percentage formu-
lae should include hearing threshold levels for 1, 2, 3 and 4 kHz, with low and high fences
of 25 and 75 dB, representing 0 percent and 100 percent hearing handicap boundaries,
respectively.

American Academy of Ophthalmology and Otolaryngology (AAOO) Criteria of Hear-
ing loss is shown in the Table 2.3. It indicates the effect of speech communication on
hearing loss at 500, 1000 and 2000Hz [1,33].

Table 2.3: Classes of hearing ability based on average value of hearing levels at 500,1000
and 2000Hz. [1]

Class Degree of
Handicap

Avrege hearing
level, dB

Ability to understand ordinary speech

A Not signifi-
cant

<25 Not significant difficulty with faint speech

B Slight 25-40 Difficulty with faint speech
C Mild 40-55 Frequent difficulty with normal speech
D Marked 55-70 Frequent difficulty with loud speech
E Severe 70-90 Shouted or amplified speech only understood.
F Extreme 90 Even amplified speech not understood

The damage caused by noise trauma depends on several factors:

• Frequency of noise : A frequency of 2000 to 3000 Hz causes more damage than
lower or higher frequencies;

• Intensity and duration of noise: As the intensity increases, permissible time for
exposure is reduced.

• Continuous vs. interrupted noise: Continuous noise is more harmful.

• Pre-existing ear disease.

The audiometric notch was defined when the thresholds at 2000 Hz and 8000 Hz were
both minimally at hearing levels 10-dB lower than (better than) the threshold at 4000
Hz. These confirmed that with exposure to broad band, steady noise, or noise with an
impulsive component, the first sign was a dip or notch in the audiogram maximal at 4
kHz with recovery at 6 and 8 kHz. The notch broadens with increasing exposure, and
may eventually become indistinguishable from the changes of aging (presbycusis), where
the hearing shows a gradual deterioration at the high frequencies. Although 4 kHz is the
classic frequency affected the notch may be noted elsewhere because the frequency range
of the noise influences where the cochlear damage occurs. However, intense low frequency
noise may cause maximal loss over the 0.5-2 kHz range and intense high frequency noise
loss at 6 or 8 kHz [26,27].
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The audiogram in NIHL shows a typical notch, at 4kHz both for air and bone con-
duction. It is usually symmetrical on both sides. At this stage, patient complains of
high pitched tinnitus and difficulty in day to day hearing. As the duration of noise
exposure increases, the notch deepens and also widens to involve lower and higher fre-
quencies. Noise-induced hearing loss is preventable. Persons who have to work at places
where noise is above 85dB(A) should have pre-employment and then annual audiogram
for early detection. Ear protectors should be used where noise levels exceed 85dB(A)
[26,27,34].

2.7 Noise Measurement

Acoustic instruments have been used for decades to quantify the physical properties of
sound and classify them on the basis of physical parameters like amplitude and duration.
The instruments are: sound level meter, octave band analyzers, noise dose meter, noise
average meter, noise survey meter, statistical analyzers, recorders (magnetic tape, cas-
sette, and pen), acoustic calibrator and sound scope meter. Different weighting networks
viz. A, B, and C have been adopted in sound level meters. However, scales other than
A are seldom used since they do not provide a good approximation to the human ear
frequency response. Noise survey meter is the simplest and cheapest instruments used
in the measurement and analysis of steady noise. Sound scope meter is a combination
of both sound level meter and octave band analyzer in a small unit. Noise integrator is
capable of measuring intermittent noise by giving an intermittent or average noise level
when used in conjunction with a noise survey meter. Noise dose meter is used to inte-
grate automatically the sound energy received with regard to its intensity and duration.
They are simple, small and assess total noise exposure at work place. The dose may be
expressed as a proportion of the maximum permitted 8 hr. dose. Noise measuring instru-
ments of different make and specifications are available in the market, but most widely
B & K make instruments are used in practice in view of reliability and accuracy [1].

2.7.1 Sound Level Meter

The basic parts of most sound level meters include a microphone, amplifiers, weighting
networks, and a display indicating decibels. Schematic diagram of B & K type sound
level meter is shown in Figs 2.5. Figure 2.6 shows the block diagram of sound level me-
ter.The microphone acts to convert the input acoustic signal (acoustic pressure) into an
electrical signal (usually voltage). This signal is magnified as it passes through the elec-
tronic preamplifier. The amplified signal may then be modified by the weighting network
to obtain the A-, B-, or C-weighted signal. This signal is digitized to drive the display
meter, where the output is indicated in decibels. The display setting may be “fast” re-
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sponse, “slow” response, “impact” response, or “peak” response. Unless one is interested
in measuring rapid noise fluctuations, the “slow” response setting is usually used. An
output jack may be provided to record or analyze the signal in an external instrument
system. Sound level meters are rated in the following categories, based on the accuracy
of the meter: (a) type 1, precision; (b) type 2, general-purpose; (c) type 3, survey; and
(d) special-purpose sound level meters.
Class 1: precision sound level meter, intended for laboratory use or for field use where
accurate measurements are required;
Class 2: general-purpose sound level meter, intended for general field use and for record-
ing

Most sound level meters have output terminals so that accessories can be attached.
These accessories include impact-noise meters, octave-band and octave-band filter sets,
graphic recorders etc. Self-contained analyzers are also available, with all components
housed in a single unit; that often have variable width settings. Table 2.4 represents the
instrument specifications of B&K 2236 sound level meter [18,19,24].

Table 2.4: Details of B & K 2236 Sound Level Meter with Octave analyzer [source: B&K
2236 Manual]

Parameter Speciation
Model 2236-C
Measuring range 30-140 dB
Frequency weighting A, B, C, D and Linear
Filter (only available with Types 2236 C and

2236 D):
Band-pass Filters: Nine 1/1-octave filters at 1/1-
octave intervals (base 10)
Centre Frequencies: 31.5, 63, 125, 250,
500Hz, 1, 2, 4, 8kHz

Frequency Weighting Stan-
dards

Selected independently for RMS and Peak
RMS:
A, C according to IEC651 Type 1
L: flat from 10Hz to 20 kHz (± 2 dB) with Type 1
tolerances
Peak:
C according to IEC651 Type 1
L: flat from 10Hz to 20 kHz (± 2 dB) with Type 1
tolerances

Time Response Slow, Fast and Impulse
Measuring Mode Instantaneous ,Max Hold and Leq

Output AC and DC
Power Supply Rechargeable Batteries with Display Facility for their

Charge
Operating Temperature
Range

0-500

Display LCD
Physical Characteristics: Size: 257 × 97 × 41mm

Weight: 460g (including batteries)
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2.7 Noise Measurement

Figure 2.5: Sound Level Meter (B & K 2236) and its Function.

Microphone
Assembly

Measuring Amplifier (may include weighting network and connect to external filter)

Frequency Analyzer (includes weighting networks and filters for frequency analysis)

Sound Level Meter

Microphone

Preamplifier Attenuator Amplifier Attenuator Amplifier Rectifier Meter

DC

AC
Outputs to

Recorders etc.

External or Internal Filter

Figure 2.6: Block diagram of the elements of a sound level meter. [17]
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2.8 Noise Survey in Mines

Noise survey is conducted in mines to determine:

• Ambient noise condition in and around mining complex in 4 cardinal directions.

• Noise levels generated at different locations and from different equipment.

• Systemic octave band analysis for equipment where noise level (Leq) exceeds 90dBA
and to know how sound energy is distributed as a function of time.

• Audiometry to know the hearing acuity of workers in the mine (Director General
Mines and Safety (DGMS) Circular (Tech.) No.18/1975, No.5, 1990, Circular No.3,
2007)

Noise level should be measured:

• Whenever speech intelligibility is impaired at 0.5m or less. It can be done at the
level of the workers head in his ordinary working posture.

• With the microphone 1 m away from the workers head in this position and on both
sides.

• It shall be measured when workers complain that they are subjected to uncomfort-
able noise level.

Marking of risk areas and equipment shall be done do:

• Indicate clearly equipment producing > 85 dB (A)

• Display suitably by sign forbidding entry to all except those wearing appropriate
hearing protectors [1].

According to DGMS Technical Circular No. 18 of 1975 and No.5 of 1990 on “Protection
of Workers against noise” it is brought to the knowledge of all concerned that Noise is
emerging as an important and challenging health hazard for mine workers. In surveys
conducted by the DGMS and some other studies, it was found that noise levels in major-
ity of the mining operations were higher than the recommended limit of 90 dB (A) [35].

Utley [36] discussed about the different noise sources available in opencast mines. He
stated that in opencast mines, the noise was generated from overburden and coal exca-
vation sites. He concluded that there was insufficient information available to enable a
scheme covering all aspects of noise control to be produced.

Singh [37] discussed the environmental impact assessment in mining areas and ex-
plained that noise generation from machineries in mines has adverse impacts. The im-
pacts are occupational health hazards, damage to structures, disruption in wild life etc.
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He recommended that, due to adverse effect, control of noise in mines is necessary.
Singh [38] discussed on environmental issues with best management practices of re-

sponsible mining and gave report on the impact of noise in mining areas. As per his study,
the availability of large diameter, high capacity pneumatic drills, blasting of hundreds of
tonnes of explosive etc. were identified as noise prone activities. In-pit crushing system
with mobile crusher and large capacity materials handling plants were being installed to
facilitate speedy handling of large quantities. All these activities were the major sources
of noise and vibrations in and around the mining complexes.

Pal and Mitra [39] monitored different noise sources in various opencast mines. They
divided noise sources in three classes in open cast project (OCP):(a) operations of heavy
machineries/equipment for scraping, dozing, drilling, loading and hauling of the coal and
over burden (b) workshop / erection yard activities; and (c) CHP (crusher) operation.
They studied the noise level (Leq) in day time at OCP. They also illustrated the noise
profile of the open cast project and CHP.

Ghose [40] studied the noise pollution in coal mining areas. He discussed about noise
mapping, noise measurement and noise analysis. He briefly mentioned noise control in
mines.

Bhattacharya et al. [41] did noise survey in Meghatuburu iron ore mine (MIOM) and
Sayal coal mine. They monitored the noise levels of equipment used in MIOM and found
that the noise level from secondary crusher and drill machines were high. Leq varied
between 101 to 106 dB(A) and Lmax varied between 106 to 110 dBA in frequency range
of 250 and 1000 Hz. They also reported the frequency analysis of machineries at two
locations of MIOM.

Tripathy and Patnaik [2]reported the effects of noise pollution in an opencast lime
stone mine in Orissa. According to them, the audiometric survey at the mine revealed
that the employees working more than 21 years developed mild to moderate hearing loss.
The following Tables 2.5 - 2.6, show the average threshold level of mine workers in dB in
relation to their trade /job.

Khuntia et al. [42] measured noise levels in SAIL mines. They determined the noise
dose for different operators in different mines as presented in Table 2.7. The effect of
noise on some mine workers of SAIL with age wise, service wise, grade wise, and job wise
are illustrated in Tables 2.8-2.11.

Pal and Mitra [43]studied noise pollution in mines and discussed the monitoring pro-
cedure and causes of noise pollution in underground mines. According to their report
in underground mines the most significant noise sources were the exhaust fan, winding
operations, tippler operation and pay loader operations etc. They measured the sound
level in mining area (surface) in four directions of each source at different distances such
as 5m, 15m, 25 m and so on. They found that in both surface and underground mines,
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Table 2.5: Average hearing threshold level of mine workers in dB(A) in relation to their
trade/job [2].

Trade/Job Hearing Threshold
in Speech frequency

Hearing Threshold
in High frequency

Hearing level at
4000 Hz

Lt. ear Rt. Ear Lt. ear Rt. Ear Lt. ear Rt. Ear

1.Dozer operator 22 34 21 24 35 35

2. Dumper operator 23 25 24 28 40 45

3. Shovel operator 34 27 43 41 45 45

4. Crusher operator 26 29 44 46 54 57

5. Screen attendant 32 34 40 39 47 47

6. Drill(J/H) operator 47 32 63 54 68 68

7. Compressor operator 28 29 45 44 48 53

Table 2.6: Average hearing threshold level of mining workers with respect to their period
of service (Mine-P) [2]

Period of service
level (years)

Avg. hearing
threshold level in
speech frequency

Avg. hearing
threshold level in
high frequency

Avg. hearing
threshold at 4000
Hz

Lt. ear Rt. ear Lt. ear Rt. ear Lt. ear Rt. ear

0-10 24 24 25 20 38 25

11-20 30 33 39 41 46 49

21-30 28 28 43 42 51 53

> 31 44 30 61 51 70 65

the sound pressure level was high and noise control was required in those areas. They
proposed some noise control strategies for the noisy sources in mines area.

Pathak et al. [44] described that surface mining noise involved evaluation of sound
power levels of the sources and the determination of different attenuation of the acoustic
wave during propagation. To evaluate the noise sources within a mine the experimental
method developed by them emphasized the determination, of the following:

• Equivalent acoustic centre of different work zones within the mine.

• Ground absorption of sound energy by the type of ground in and around the mines.

• Pit slope attenuation for the prevailing slope conditions within the mine.

• Air absorption of sound during propagation under the predominant meteorological
condition.

Mukhopadhyay and Dey [45] in their comprehensive analysis of noise pollution in
mines described the ‘spherical’ and ‘hemispherical’ propagation of sound. The spherical
propagation sound was expressed as Lw = Lp + 10 log (4π.r2 ) and the hemispherical
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Table 2.7: Calculated noise dose for different operators [42]

Operations Mine A Mine C Mine D Mine E
(1) (2) (1) (2) (1) (2) (1) (2)

Dumper 120 91.5 58 86.2 78 88 72 87.5

Drill 450 100.8 90 89.2 95 89.2 64 87.1

Dozer — — — — 82 88.5 120 91.4

Shovel — — 70 87.2 50 85 65 86.7

Crusher 68 86.2 68 86.2 — — 61 86.5

Screen 180 94 260 96.8 — — 115 91.2

(1) Stands for calculated 8hrs. dose
(2) Stands for equivalent noise exposure level

Table 2.8: Hearing loss of employees (age wise) [42]

Age group Mine A Mine B Mine C Mine D
(1) (2) (1) (2) (1) (2) (1) (2)

< 30 years 1 1/– – – 1 2/0 – –

30-39 years 2 1/1 1 1/0 6 4/3 2 1/1

40-49 years 2 1/1 4 3/1 3 2/1 9 5/4

50-58 years 5 2/3 14 11/3 – – 14 8/6

(1) No. of employees examined
(2) Degree of hearing loss-slight/mild

propagation of sound was Lw = Lp + 10 log (2π.r2) where ‘r’ was the radius of the sphere.
According to them, the noise can be controlled in mines if the residential colonies and
townships could be located reasonably away from the mining premises. Suitable green
belt around the mines can attenuate the noise problem. They emphasized that the per-
sons responsible for monitoring noise in the mining environment should be given proper
training.

Pal and Saxena [46] reported noise status in some coal mining complexes of Moonidih,
Block II and Muraidih mining complex of Bharat Coking Coal Ltd. (BCCL) in Jharia
Coalfield, Jamadoda and Sijua group of collieries of (TISCO), North Karanpura and
Bhurkunda mining complexes of Central Coalfield Ltd.(CCL) and Godavari Khani com-
plex of Singareni Collieries Company Ltd.(SCCL). The studies included workplace and
ambient noise level monitoring, analysis of noise quality and impact assessment (noise
indices). Systematic monitoring of noise was carried out in the above mentioned areas
using B& K Modular Precision Sound Level Meter (Type-2231) and the noise parame-
ters such as: MaxP, MaxL, MinL, Leq ,and Ldnwere measured /calculated. They found
that the ambient noise levels were observed to be exceeding the permissible limits of the
day and night times in the residential areas. The Noise Impact Index (NII) for North
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Table 2.9: Hearing loss of employees (service wise) [42]

Age group Mine A Mine B Mine C Mine D
(1) (2) (1) (2) (1) (2) (1) (2)

< 1 years 2 2/0 0 0/0 5 5/0 0 0/0

10-319 years 3 1/1 3 2/1 4 2/2 4 2/2

20-29 years – – 5 5/0 2 1/1 16 9/7

30 years & above 5 2/3 11 8/3 – 0/0 5 3/2

(1) No. of employees examined
(2) Degree of hearing loss-slight/mild

Table 2.10: Hearing loss of employees (grade wise) [42]

Grade of em-
ployees

Mine A Mine B Mine C Mine D

(1) (2) (1) (2) (1) (2) (1) (2)

Non-Skilled 1 1/0 1 1/0 8 6/2 1 1/0

Skilled 3 2/1 0 0/0 2 2/0 18 10/8

High-Skilled 6 2/4 16 12/4 1 0/1 6 3/3

(1) No. of employees examined
(2) Degree of hearing loss-slight/mild

Karanpura and Block II/ Muraidih residential complexes were found to be higher than
the indicative permissible limits. The investigations have also indicated that the provi-
sions of suitable barriers between the residential areas and the work zones can help in
minimizing the noise levels significantly. They also specified the desired width of the
green belts for attenuation of noise levels in different locations of coal mining complexes.
Most of the mining equipment in the study areas, were observed to be generating noise
exceeding the danger limit of 90 dB(A) set by DGMS. Frequency spectrum analysis re-
vealed low frequency dominant noise status for almost all-mining equipment. The noise
dose of the operators handling noisy equipment e.g. dozers , dumpers, drills, pay loaders,
vibrating/desliming screens, mine exhaust fans, compressors, etc. were observed to be
quite high. They also inferred that the status of noise indices of the mining equipment is
either poor (Noise index: >0.17-0.34) or very poor (Noise index: 0.0-0.17). Noise index
values were considered to be ranging from 0 to 1 with 0 representing very poor i.e. very
high nuisance level; where as 1 representing excellent, i.e. zero nuisance level.

Sinha et al. [47] studied noise pollution due to mining activities in Bijolia quarrying
site in Rajasthan, India. They carried out noise pollution studies. They found that the
noise level was comparatively high in the active zones in the sandstone quarries due to
drilling, blasting and the mine service stations. It was found to be in the range of 96 to
125 dB(A). These were much above the limits of 75 dB(A) prescribed by WHO for day
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Table 2.11: Hearing loss of employees (job-wise) [42]

Operators Mine A Mine B Mine C Mine D
(1) (2) (1) (2) (1) (2) (1) (2)

Dumper 1 0/1 – – 1 0/1 2 1/1

Dozer 1 0/1 2 2/0 1 1/0 5 2/3

Shovel 1 1/0 1 0/1 2 2/0 5 4/1

Drill 1 0/1 1 0/1 5 3/3 11 6/5

Crusher 4 4/0 3 3/0 1 1/0 – –

Screen 2 0/2 3 3/0 – – – –

(1) No. of employees examined
(2) Degree of hearing loss-slight/mild

time in industrial areas. They also stated that, in the sandstone quarries the exposure
for long periods to these high levels of noise was likely to affect the ear diaphragms of
the workers.

United Nations Environment Program [48] discussed the effect and control of noise in
Potash mines. According to this report, beneficiation processes generate high levels of
noise and vibration, especially during crushing and grinding.

Durr et al. studied on evolution of noise controls of continuous miner conveyer system.
For their study, they had chosen Joy 14CM9 continuous miner. The major noise sources
on a Joy 14CM9 continuous miner, used for testing, were identified by testing each identi-
fied noise source independently. As per their study, they found that the conveyor was the
dominant source of noise. The noise level due to the conveyor was affected by the tension
in the chain, with higher tensions resulting in higher noise levels. It was also determined
that running the conveyor in wet conditions reduced the sound level significantly. They
have used urethane coating to treat the conveyor flight bars in order to reduce the impact
noise as the bars passed around the conveyor deck. From their study, they concluded
that PO#650 urethane coating is the best solution for noise reduction in the continuous
miner conveyor system in comparison to the PO#652 urethane coating [49].

Yantek et al. investigated engineering noise controls to reduce sound levels in cabs on
air rotary drill rigs at National Institute for Occupational Safety and Health (NIOSH). Ac-
cording to them, the investigation revealed that some drillers are exposed to A-weighted
sound levels exceeding 85 dB even though a cab was used. They studied the in-cab
sound levels of one such rig. First, preliminary tests were conducted in a controlled en-
vironment using accelerometers and microphones with spectral analysis to identify the
dominant noise sources for in-cab sound levels. The results indicated that the vibration
transmitted from multiple hydraulic pumps to the control panel produced a dominant
spike in the sound level spectrum in the 400 Hz 1/3-octave band. Next, field tests were
performed in a production environment to evaluate noise controls to reduce in-cab sound
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levels. They found that utilizing hydraulic noise suppressors reduced the structure borne
noise transmitted to the control panel. Further, they concluded that using hydraulic noise
suppressors and enhancing soundproofing reduced the in-cab A-weighted sound levels by
as much as 4 dB [50].

Gorai and Pal studied noise impact assessment in an iron ore mining residential com-
plex. They have studied in Bailadila iron ore mine, which is situated in the Kirandul
village of district Dantewada, India. As per their result, the Ldn values for almost all the
residential, commercial and sensitive areas were found exceeding the noise standards. In
the mining complex, the type IV Double storied colony near "tertiary crushing plant"
revealed maximum percentage of highly dissatisfied person (45.71 percent) with maxi-
mum Ldn values [69.7 dB(A)]. According to them similarly, Nehru colony was found to
have minimum percentage of dissatisfied population (8.61 percent) with minimum Ldn

values [54.8 dB(A)]. The noise impact assessment was carried out by comparing the ex-
isting index with the indicative index value. The existing index and indicative index
were calculated on the basis of the existing noise levels and the permissible noise levels
respectively. They had found that the noise stress of the settlements appeared to be quite
high as the existing noise impact index (0.19) was found much higher than that of the
indicative noise impact index (0.083) [51].

Vipperman et al. studied noise surveys in coal preparation plants. Their study areas
were located in the states of Pennsylvania, Kentucky, Virginia, Illinois, and West Vir-
ginia. Their research work consisted of worker dose monitoring, task observations, and
equipment noise profiling. The study was covered in eight separate preparation plants.
Worker dose monitoring was conducted for three shifts in most cases. Workers experi-
encing higher than allowable doses were task-observed for one full shift to correlate dose
to noise sources. They had also studied noise levels on all floors, and in lunch rooms and
control rooms and characterized them. Their results indicated the only workers who rou-
tinely spent a significant portion of their shift in the plants away from the control rooms
were susceptible to overexposure from noise. Certain pieces of equipment screens, cen-
trifuges and sieve bends are the loudest primary noise sources responsible for the worker
noise exposures. As per their study, noise levels and worker noise exposures in eight coal
preparation plants were assessed as part of a cross-sectional survey of noise in the mining
industry being conducted by NIOSH. Assessment techniques included noise dosimetry,
task observations, contour mapping of noise fields, and reverberation time measurements.
According to their result, overall noise levels were found to range from 75.9 to 115 dBA
throughout the plant. The open construction of the plant provided many direct paths
for noise to propagate between floors. Most areas of the plant except control rooms,
electrical rooms, and motor control centers were found to have noise levels in excess of
90 dBA, suggesting the noise overexposure will occur if a full 8 h shift was spent within
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the plant [52].
Camargo et al. [53] studied the noise source identification on a horizontal vibrating

screen at NIOSH. According to their study, a cross-sectional survey conducted by the Na-
tional Institute for Occupational Safety and Health (NIOSH), 43.5 % of coal preparation
plant employees are exposed to noise levels that exceed the permissible exposure level
(PEL). Furthermore, this study identified the vibrating screen (VS) machines used to
separate coal from refuse and water as the main noise contributors in these plants. Their
research work presented the results of a study conducted by NIOSH in collaboration with
the Acoustical and Vibrations Engineering Consultants Inc, USA. The main goal of their
experiments was to identify the dominant noise sources at low frequencies, i.e., from 250
to 1,000 Hz.

Spencer [54] studied the assessment of equipment operators’ noise exposure in western
underground gold and silver mines in US. According to his study, an assessment of U.S.
western hard-rock miners’ noise exposures was conducted as part of a multi-year National
Institute for Occupational Safety and Health (NIOSH) survey of noise exposures in each
sector of the mining industry. His study found high levels of hazardous noise exposure to
be common at the sampled U.S. western hard-rock mines, where noise generated by some
of the larger hard-rock mining equipment was measured to be in excess of 113 dB(A).
Noise from selected mining equipment and operator noise exposures were measured, an-
alyzed, and tabulated for dissemination to the participating sites and were being used to
direct NIOSH research and interventions to address the greatest noise hazards. As per his
study, eighty-two noise dosimeter measurements were obtained, along with time-motion
studies as the miners operated hard-rock mining machines. Ninety-six percent of the op-
erators had daily noise doses that exceeded the Mine Safety and Health Administration’s
permissible exposure level. The average gold miner dosages while operating the following
equipment were: haul trucks - 261%, load-haul-dumps (LHDs) - 235%, single boom drills
- 221%, bolters - 214%, and dual boom drills - 163%. The worst exposure level was of a
silver miner with a daily dose of 873%.

Roul et al. [55] studied the work place noise status of NALCO Bauxite ore processing
plant and found that the level was very high near the secondary crusher operation (98.4
dB(A)) and crusher operation of coal handling plant (104.5 dB(A)). They also found that
the Leq levels in all the control room of processing plant were found comfortable where
as the same for other locations exceeded the permissible limit. They concluded that the
noise control measures were needed to be under taken in order to reduce the emitted
sound pressure level of the alarming sound frequencies of each of the noisy equipment.

Pal et al. [56] studied effect of noise on hearing acuity of workers of coal washeries
and conducted audiometric analysis. According to them, audiometric analysis serves the
following purpose: (a) determining auditory acuity of individuals (b) independent testing
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of both right and left ears and (c) ascertaining prevailing hearing range from -10 to +90
dB of each subject in different frequency range (from 500 Hz to 8000Hz). They also re-
ported that from the limited audiometric analysis enough conclusion may not be possible
to draw, but the nature and magnitude of the problem is really alarming.

Byrne [57] studied hearing loss prevention for mining workers. He evaluated practical
technological advances in hearing protective devices for use in different mining environ-
ments. According to him, the miners experienced a greater severity of hearing loss than
would be expected for non-occupational noise-exposed person of the same age and sex.

Bauer [58] studied noise exposure patterns/sources in various coal mines. According
to his study, every day 80% of the miners went to work in an environment where time
weighted average (TWA) noise level exceeded 85 dBA and 25% of the miners were ex-
posed to TWA noise level exceeding 90 dBA. He recommended that research was needed
to identify mine worker dosage and characterizing of the noisiest equipment and worker
activities.

Byrne [59] designed a model hearing conservation program for coal miners, that in-
cluded both traditional and novel approaches towards hearing loss prevention. The ob-
jectives were to design a model HCP (hearing Conservation Program) over 5 year period
to demonstrate its efficacy in preventing hearing loss, and transfer finding to the coal
mining industry(and others) as quickly and thoroughly as possible.

Kovalchik [60] developed a strategy and implementation plan for utilization of noise
controls in mining to reduce noise induced hearing loss (NIHL) among mine workers. Ac-
cording to him, NIOSH analysis of a large sample of audiograms showed that by age 51
about 90% of coal miners and 49% of metal/non metal miners had a hearing impairment.
By contrast, only 10% of the non-occupational noise exposed population had a hearing
impairment by age 51 and most miners had hearing loss by the time they retired. So
he stated that NIHL is the most common occupational disease that is especially acute
among miners.

Philips et al. [61] studied the prevention programme for noise and vibration in South
African mining industry. Their project included the implemenatation and evaluation of
a hearing conservation programme, follow-up of cases of Hand-Arm Vibration Syndrome
(HAVS) , development of a rapid diagnostic screening tool for HAVS, investigation of
HAVS in a cool mining environment, comparison of the noise and vibration emissions of
rock drills, development of best pratice guidelines for whole body vibration and review of
the effectiveness of anti-vibration gloves. They also mentioned that the outputs of their
projects were designed to assist the industry in achieving the Mine Health Safety Council
for a long term SIMRAC programme to reduce NIHL in the work place.

Edwards et al. [62]studied noise exposure levels in South African mining industries.
Their noise exposure survey focussed on the large-scale sector of mines (gold, plat-
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inum and coal mines) and the small- to medium-scale sector mines (Readymix concrete,
sand and aggregate, small and large opencast diamond and large underground diamond
mines).Their study achieved the aims of assessing the current noise exposure levels of
employees in the mining industries of South Africa, thereby providing a baseline for the
evaluation of any future control methods and the facilitation of the prioritizing of nec-
essary control strategies. From their study, they recommended the following: firstly, an
integrated and multidisciplinary prevention strategies be implemented to provide a model
for individual stake-holders in the industry that could use the information gained from
their study as a baseline to measure the success of such prevention strategies. Secondly,
it recommended a priori establishment and maintenance of a national database of per-
sonal noise exposure that could be accessed from the public domain and by the industry
stake-holders.

Kerketta et al. [63]conducted noise monitoring in a Chromite mine, Sukinda Valley,
Jajpur District, Odisha, India. They made statistical analysis and found that Leq had
greater effect in the evening at the workshop and similarly, the Leq at the air field had
greatest effect in the afternoon at 1% level of significance attributed primarily to the
heavy traffic density. They concluded that the equivalent noise levels were not the same
with respect to the time of day and also at the ambient air quality stations. The Leq

level at the workshop , the industrial area, had the greatest effect in the evening. The
Leq levels during the time of monitoring did not exceed the prescribed limits at all the
locations. They also recommended the following recommendations:

• Because the workshop was one of the most affected industrial areas, the older
workers should be regularly changed to work in the less influenced areas to avoid
occupational hearing loss.

• Ear protective devices should be worn by all the workers in the work zone areas.
In particular, ear protective devices should be required for those working in the
workshop.

• For those who primarily work in the work shop, regular use of ear protective devices
should be practiced in general and should be mandatory in the evening.

Smith and Sapko [64] determined the extent of the hearing loss hazard from intense noise
sources and developed the basic knowledge required to reduce the hazard through ef-
fective control technology and training. According to them, impulse noise sources exist
throughout the mining and construction industries. There is very little data on blasting
in underground complexes, e.g., tunnels and mines. They stated that impulse noise from
blasting in an underground mine differs from that on the surface and is strongly influ-
enced by mine geometry, openings, and wall roughness. As per their conclusion, in a mine
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Table 2.12: Noise level at survey sites in the mines [65]

Site Average noise level
(dBA)

PIT(drilling ma-
chine)

98

Processing area 95

Analytical laborato-
ries

88

Bore hole area 86

Mess area 82

entry, the peak intensity is higher at a given distance than for the same explosive mass
detonated on the surface, with the added complication that significant low frequency
acoustic oscillations remain for several seconds after the passage of the pioneer pressure
pulse. So the cumulative effect on workers associated with impulse noise exposure of low
frequencies remains unclear, although considerable anecdotal evidence suggests that the
effect is pronounced.

Amedofu [65] studied the hearing loss of the African gold mine workers. His study
determined the impact of hazardous noise on workers and was conducted in a surface gold
mining company in Ghana during May-June 2002. The methods used included noise sur-
vey, case history, otoscopy and conventional pure-tone audiometry. Five main areas were
surveyed for hazardous noise; namely, the pit, processing, the analytical laboratory, the
borehole and the mess areas. The results showed that noise levels above 85 dBA occurred
in all the above areas except the mess. A total of 252 workers were seen, and out of this
number, 59 (23%) had the classical noise-induced hearing loss (NIHL). In addition, NIHL
increased as a function of age at 4 kHz and as the duration of exposure increased. It
was also noted that out of 81 workers with a pre-employment history of noise exposure,
41 (51%) had NIHL. NIHL varied with regard to job location. 14 (6%) workers had
hearing loss greater than 25 dB at the frequencies of speech. Thus, factors not under
the control of the company may affect the hearing of an employee. He concluded that
the hearing loss varied with the duration of exposure. As such, employees who engage
in noisy hobbies or who held noisy second jobs should be encouraged to use effective
hearing protection devices during their noise exposure. Company sponsored education
programmes should stress the importance of good hearing conservation practices on and
off the job, and should also inform employees about other diseases that may affect their
hearing. The details of the study are presented in the Tables 2.12-2.14.

Vardhan et al. [3] described the hearing loss of retired mine persons and compared it
with hearing of the normal people. They described that those exposed to overall levels
of 100 to 120 dB(A) suffered from permanent hearing loss with in a period of several
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Table 2.13: Age duration among workers with occupational noise-induced hearing loss [65]

Worker’s age No.Tested No.with NIHL Percent

20-29 70 4 6

30-39 116 25 22

40-49 57 23 40

50+ 9 7 78

All age 252 59 23

Table 2.14: Relationship between duration of noise exposure and noise induced hearing
loss (NIHL) (< 25dB HL) [65]

Duration of exposure
(years)

No.Tested No.with NIHL Percent

1-5 161 29 18

6-10 54 17 31

11-15 27 9 33

16-20 10 4 40

All age 252 59 23

months. The hearing thresholds of retired miners were observed to be higher than the
general population.

Johnson et al. [66]used Extended Parallel Process Model (EPPM) to prevent noise in-
duced hearing loss (NIHL) in Appalachia. According to them, using the theoretical model
EPPM, when individuals perceive the health threat to serious or severe, they attend to
the message and follow the recommended responses. Although the miners recognized
hearing loss of perceived susceptibility. Specially those in the mines more than 25 years
were not sure whether they could lose more of their hearing (as so much had already been
lost). Those with fewer years in the mines, however, were more concerned about hearing
protection The Figure 2.7 shows the EPPM model.

Hermanus [67] studied the Occupational Health and Safety (OHS) performance of
South African mining sector against the back drop of changes in the composition of the
sector, international trends in OHS performance, and the agreement on OHS milestones
and targets by mining stake holders at the Mine Health and Safety Summit of 2003.
According to him, available data for noise exposure for South African miners suggested
that nearly half of these workers more than 10% work in zones in which noise exceeds 85
dB(A) time weighted average, with 11% working in zones in which the noise levels were
even higher. There were approximately 4000 cases of noise induced hearing loss in 2004
and approximately 75 million dollars were paid in compensation. As noise levels remain
high in the sector and noise abatement interventions were still under development, PPE
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Figure 2.7: Extended Parallel Process Model (EPPM) [66].

(Personal Protective Equipments) were very important in preventing hearing loss . In
some working areas, noise levels associated with unlicensed pneumatic drills were so high
(in excess of 115 dB) that PPE could also not provide adequate protection.

Joy and Middendorf [68] studied the patterns and trends in noise exposure documented
in data collected by Mine Safety and Health Administration inspectors at U.S. coal mines
from 1987 through 2004. During this period, MSHA issued a new regulation on occupa-
tional noise exposure that changed the regulatory requirements and enforcement policies.
The data were examined to identify potential impacts from these changes. The overall
annual median noise dose declined 67 % for surface coal mining and 24 % for underground
coal mining and the reduction in each group accelerated after promulgation of the new
noise rule. According to them the exposure reduction was accompanied by an increase of
shift length as represented by dosimeter sample duration. For coal miners exposed above
the permissible exposure level, use of hearing protection devices increased from 61 % to
89 % during this period. Participation of miners exposed at or above the action level in
hearing conservation programs rapidly reached 86 % following the effective date of the
noise rule. Based on the inspection data, the occupational noise regulation appeared to
have a strong positive impact on the hearing conservation by reducing exposures and
increasing the use of hearing protection devices and medical surveillance.

Kovalchik et al. [69] studied the application of prevention through design for hearing
loss in the mining industry. According to their study, National Institute for Occupational
Safety and Health (NIOSH) has recognized Noise Induced Hearing Loss (NIHL) as one of
the ten leading work-related diseases and injuries in the United States, and has empha-
sized its importance as one of the critical areas expressed in the National Occupational
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Research Agenda. One of the most serious noise problems in the goods producing indus-
tries is the operation of continuous mining machines during underground coal mining. In
order to minimize occupational hearing loss, noise hazards are "designed out" early in
the design process. NIOSH is leading a national initiative called Prevention through De-
sign (PTD) to promote this concept. Their research article described the quiet-by-design
approach of a noise control that reduced noise exposures of continuous mining machine
operators by 3dB(A) using the four functional areas of PTD, namely Practice, Policy,
Research, and Education .Table 2.15 summarized the findings of the research work cov-
ered by them.

Table 2.15: Coal miner hearing conservation program enrollment [69]

Action Level Dose range (%) Enrollment in HCP
2000 (%) 2001 (%) 2002 (%) 2003 (%) 2004 (%)

0-49 9 68 76 76 77

50-49 7 74 84 85 85

100-149 7 81 91 89 88

150-199 3 77 90 91 89

> 199 5 70 87 85 82

Subtotal ≥ 50 6 76 87 86 86

Total 7 73 82 82 82

Edwards et al. [70] investigated the feasibility of noise induced hearing loss using
Distortion Product Otoacoustic Emission (DPOAE) testing as an adjunct to pure-tone
screening audiometry in the annual medical surveillance environment commonly found in
the South African platinum mining industry. Signal-to-noise (S/N) ratios of the DPOAE
test results conducted at two venues by a trained technician, the degree of hearing loss
in platinum employees, the correlation between screening audiometry hearing threshold
levels (HTLs) and DPOAE levels, and the ability of the DPOAE test to identify early
NIHL in these employees were evaluated. The results of their pilot study provided the
scientific evidence that DPOAE testing was feasible for use in a screening audiometry
setting by a reasonably trained person. It appeared that the DPOAE testing could pro-
vide more information about the actual damage that was occurring in the cochlea if this
test format became a regular part of annual medical surveillance testing.

Onder et al. [71] studied Noise Induced Hearing Loss (NIHL)in mines at Turkey. They
had applied statistical analysis (hierarchical log-linear) of the data. Data were collected
from a quarry and stone crushing screening plant. The mines were located in the eastern
part of the Turkey. According to their study, the risky occupation job group of the places
surveyed were the drivers and this job group had high possibility of exposure to 70-79
dB(A) noise levels. The drivers, especially of the 46-54 years age group, had experienced
NIHL. When the important interactions in the analyses were evaluated, it was found
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out that 4-11 years experienced crusher workers working in the stone crushing-screening
plants had high probability of NIHL because of high exposure to 90-99 dB(A) noise level.
Table 2.16 represents their study.

Table 2.16: Information about worker working in the quarry and stone crushing-screening
plant [71]

Worker Age Experience Occupation Noise level Hearing loss

1 53 15 Driver 70 dB(A) Yes

2 40 25 Crusher worker 92 dB(A) Yes

3 37 18 Mining machine operator 79 dB(A) Yes

4 19 4 Mining machine operator 108 dB(A) Yes

5 31 15 Driver 70 dB(A) Yes

6 53 31 Driver 70 dB(A) Yes

7 51 31 Driver 70 dB(A) Yes

8 29 10 Crusher worker 92 dB(A) Yes

9 43 6 Driver 70 dB(A) Yes

10 44 27 Drilling operator 95 dB(A) Yes

11 48 35 Crusher worker 92 dB(A) Yes

12 24 5 Crusher worker 92 dB(A) Yes

13 44 3 Cook 58 dB(A) Yes

14 18 1 Weigher 52 dB(A) No

15 39 3 Driver 70 dB(A) No

16 18 1 Crusher worker 92 dB(A) No

17 25 2 Worksite chief 54 dB(A) No

18 29 6 Mining machine operator 88 dB(A) No

19 23 1 Crusher worker 92 dB(A) No

20 22 1 Mining machine operator 88 dB(A) No

21 25 4 Driver 70 dB(A) No

22 26 12 Mining machine operator 79 dB(A) No

23 26 4 Drilling operator 83 dB(A) No

Landen et al. [6] made studies to describe workplace noise exposures, risk factors for
hearing loss, and hearing levels among sand and gravel miners, and in order to deter-
mine whether full shift noise exposures resulted in changes in hearing thresholds from
baseline values. They interviewed almost 317 sand and gravel miners regarding medical
history, leisure time and occupational noise exposure, other occupational exposures, and
use of hearing protection. They conducted audiometric tests performed both before the
work shift (following a 12-hour noise free interval) and immediately following the work
shift. Full shift noise dosimetry was also conducted. They concluded that, the hearing
protection usage was slow, with 48% of subjects reporting that they never used hearing
protection. Hearing impairment, as defined by NIOSH was present among 37% of 275
subjects with valid audiograms .

Davies [72] studied the rock drill noise and its effect in trackless mines in South Africa.
Trackless mining was first introduced in South Africa in the 1960s in hardrock base-metal
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mining, mainly at Prieska. In his study, he explained that the manufacturers of rock-
drilling equipment had been testing the noise characteristics of their equipment for a
considerable time, especially since noise had become a matter for concern. He conducted
his tests according to a recognized code, one of which is the CAGI-NEUROP test code3
(Compressed Air and Gas Institute, (USA) and the European Committee of Manufac-
turers of Compressed Air Equipment).

Pal and Mitra [73] studied the noise pollution and its effects in mines. They found that
the noise affected the health of workers and decreased the performance of the workers.
The effects of noise in mining industry were expressed in the following manner:

• The main effect of noise on human health is the noise-induced hearing loss or noise
deafness. The noise deafness was brought about by the progressive degeneration
of the sound sensitive cells of the inner ear. The louder the noise and more often
it is repeated, the greater was the damage of hearing. Intermittent noise was
more harmful than continuous noise and single very loud noise could damage the
ears immediately. Sensitivity of noise varied greatly from person to person. Noise
deafness started with the higher frequencies. At first, the worker were unaware of
it. They gradually notice their loss of hearing when it begins to involve the lower
frequencies. As per NIOSH (National Institute for Occupational Safety and Health,
USA) audiometric testing was conducted with respect to the frequencies 1000, 2000
and 3000 Hz (because these were important frequencies for speech perception). As
per their study, noise was a function of age, by age 30, about 10% had a hearing
loss in excess of 25dB and about 7% exceeding 40dB ; where as by age 50, these
figures were much higher, about 50% and about 30% respectively.

• The effect of noise on the efficiency of workers under noisy environment heavily
depended on the nature of the task being performed. The more cognitively de-
manding a task, the more likely it is that noise will adversely affect performance.
Table 2.17 shows the effect of noise on performance at various noise level.

They also discussed the permissible noise exposure level as per ISO (International Stan-
dard Organization) and OSHA (Occupational Safety and Health Act) standard. Table
2.18 shows the permissible noise standard as per both the standards. In India, the Di-
rector General of Mines and Safety (DGMS), in circular no DG (Tech)/18 of 1975, has
prescribed the dangerous noise level in mining occupations for workers, from eight hour
shift with unprotected ear, as 90 dBA. DGMS also has recommended 115 dB(A) as the
noise level at above which an unprotected ear may run a risk of hearing impairment and
appropriate ear protective device should be used and 115 dB(A) as the noise level where
no workers should enter even with ear protection [73].

Pal and Mitra [74] studied noise pollution status in mines and its effects on the health
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Table 2.17: Effect of noise on performance [73]

Noise
level
(dB)

Consequence

100 Serious reduction in alertness, Attention lapses occur, although attention duration is usually not af-
fected. Temporary hearing loss occurs if no protection is provided in the region 600-1200 Hz. Most
peoples will consider this level unacceptable, and 8 hour is the maximum duration they will accept.

95 Considered to the upper acceptance level for occupied areas where people expect the environment be
noisy. Temporary hearing loss often occurs in the range of 300-1200 Hz. Speech will be extremely
difficult, and people will be required to shout, even through they may be talking directly in to a
listener’s ear.

90 At least half of the people in any given group will judge the environment as being too noisy, even
through they expected a noisy environment. Some temporary hearing loss in the range of 300-1200 Hz
occurs. Skill errors and mental decrements will be frequent. The annoyance factor is high and certain
physiological changes often occur.

85 The upper acceptance level (noise expected) in the range of 150-1200 Hz. Some hearing loss occurs
in the range of 300-1200 Hz. This is considered the upper comfort level, although some cognitive
performance decrement can be expected, especially where decision making is necessary.

80 Conservation is difficult i.e. people have to converse in a loud voice less than 30cm (1ft) apart. It is
difficult to think clearly after about 1 hour. There may be some stomach contraction and an increase in
metabolic rate. Strong complains can be expected from those exposed to this level is confined spaces,
and 8h is the maximum duration acceptable within the frequency range 1200-4800 Hz.

75 To noisy for adequate telephone conservation. A raised voice is required for conversation from 60 cm
(2ft) apart. Most people will still judge the environment as being too noisy.

70 The upper levels for normal conversation, even when conversation are close together (at a distance of
1.83m (6ft) people will have to shout). Although persons such as industrial workers and shipboard
personnel who are used to working in a noisy environment will accept that this noise level, unprotect
telephone conversation will be difficult (upper telephone level is 68dB).

65 The acceptance level when people expect a generally noisy environment. Intermittent personal con-
versation is acceptable. About half of the people in a given population will experience difficulty in
sleeping.

60 The upper limit for spaces used for dining, social conversation, and sedentary recreational activities.
Most people will rate the environment as ‘good’ for general daytime living conditions.

55 The upper acceptance level for spaces where quite is expected (150-2400 Hz.). People will have to raise
their voices slightly to converse over distances greater than 2.44 m. (8ft.). This level of noise will
awaken about half of the given population about half of the time. It is still annoying to people who are
especially sensitive to noise.

50 Acceptable to most people where quiet is expected. About 25% will be awakened or delayed in falling
sleep. Normal conversation is possible all distances up to 2.44 m.

40 Very acceptable to all. The recommended upper level for quite living spaces, although a few people
may still have sleeping problems.

30 Necessary for specialized listening tasks (e.g., threshold signal detection).

Below
30

Introduces additional problem, i.e., low-level intermittent sounds become disturbing. Some people have
difficulty getting used to the extreme quite and a few may become physiologically disturbed.
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Table 2.18: Permissible noise levels adopted by ISO and OSHA [73]

Maximum Exposure
Noise level

Time per Working ISO Code OSHA code
Day, h

8 90 90

4 93 95

2 96 100

1 99 105

0.5 102 110

0.25 105 115

of the workers. According to them, with the increased mechanization in mining indus-
try, noise was an integral part of the mining environment. As equipment became more
powerful, noise level generally increased and it had important implications for the worker
population. The obvious implication was of course the potential for noise induced hear-
ing loss. In addition, noise produced other health effects like annoyance, fatigue and
distraction. These health effects reduced the performance of the workers.

Pal et al. [75]studied the noise status in coal washeries (Eastern region of Jharia coal
filed, India) and found that the noise level in side the washeries often exceeded 90dB(A)
and occasionally exceeded 100dB(A) which was well above the statutory norms setup
by the DGMS and other regulatory agency (ISO code . Thus it carried potential risk
of hearing loss to the washery workers. They also identified the noise sources in coal
washeies as screen, scraper conveyor , ball mill, crusher, heavy media pump, vacuum
pump , rotary breaker and raw coal feeder etc.

Eston et al. [7] studied noise status in Brazilian mining industry. The research work
has been conducted by LACASEMIN (Laboratory of Mine Safety and Environmental
Control of the Mining Engineering Department of the University of São Paulo). In their
article, they discussed some International Standards for occupational health issues and
mentioned the following:

• In the USA, noise control in the mineral industry effectively started with the Fed-
eral Coal Mine Safety and Health Act in 1969. Standards followed the Walsh-
Healy criteria summarized in Table 2.19. Such criteria were considered later in the
"Federal Metal and Nonmetallic Mine Safety Act".

• In 1977 the Federal Coal Mine Safety and health act defined new standards and
rules for metallic and coal mines. Current standards were described in the American
code of Federal regulations. Tables 2.20, 2.21 and 2.22 show values by some selected
organization.
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• Brazilian occupational standard are presented in the "Norma Regulamentadora 15,
Anexos 1 e 2", and defined by "Portaria" 3 214 of 08/July/1978. Table 2.23 shows
the threshold limit values considered for continuous noise. These values are for
general industrial activities and not specifically mining operation.

Table 2.19: Criteria for occupational safety according to the "Walsh-Healy Public Con-
tracts Act" [7]

Maximum noise level Lp

(dBA)
Maximum time exposure
(hours)

90 8
95 4
100 2
105 1
110 0.5
115 0.25

Table 2.20: Occupational Safety and Health Administration - OSHA/USA exposure time
for continuous noise. Known as 5 (dBA) rule [7]

Exposure time (hours) Maximum level (dBA)
8 90
6 92
4 95
2 100
1 105
0.5 110
0.25 115

Table 2.21: ISO exposure time recommendations for continuous noise. Limits are followed
by several European countries. Known as the 3 dB(A) rule [7]

Exposure time (hours) Maximum level (dBA)

8 90

4 93

2 96

1 99

0.5 102

0.25 105

Murthy et al. [76] studied some noise control techniques for the machineries used in
mining industry. They suggested that, noise controls are necessary for the machineries
that generate noise level more than 90 dBA because prolonged exposure to excessive noise
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Table 2.22: Work place noise levels recommended by OIT- Organization Internationale
du Travail. Values are for continuous noise [7]

alert limit level : 85 dBA
danger limit level: 90 dBA
maximum level without ear protection:
115 dBA
maximum intermittent noise level : 120
dBA
maximum level with protection: 140 dBA

Table 2.23: Brazilian exposure times according to norm NR 15 from the Labor Depart-
ment [7]

Exposure time (hours) Maximum level (dBA)

8 85

6 87

4 90

2 95

1 100

0.5 105

0.25 110

could cause permanent damage to hearing. As per their study, there were, two basic rules
that must be observed if noise control was to be economic and effective. The first one
was to treat the most intense source or component first, since it dominated the overall
noise level. Second one is, if a number of sources or components are equally significant,
they must all be treated before any reduction was apparent.

Sharma et.al [77] studied the noise status of different machineries that were used in
coal industry. They conducted noise survey of different machineries used in opencast,
underground mines, coal washeries and coal preparation plant and found that the noise
levels were high when compared to accepted limits for occupational noise exposure. Table
2.24, 2.25 and 2.26 show the average noise level outputs of machineries used in coal
washeries, coal preparation plants, opencast and underground mines.

They estimated the noise levels of machines used in opencast mining using the following
mathematical relationship. In the opencast mining area, noise of different machines could
be expressed as:

Lp = 20 log(HP ) +KdB (2.16)

where HP is the horse power of the machine, K is a factor which depends on the type
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Table 2.24: Noise level output of machines in coal washeries and coal preparation plant
[77]

Source Noise level (dB)

Primary crusher 94

Secondary crusher 92

Roller crusher 102

Screening 99

Ball mill 96

Jig blower 104

Coal conveying 98

Magnetic separator 96

Magnetic grinding 96

Vacuum filer 110

Vibrator 103

Centrifuge 103

Tippling 92

Suction pump 96

Table 2.25: Average noise level of machines in opencast mining [77]

Source Noise level dB(A)
Idling Fully accelerated

Shovel 80 97

Dumper 75 92

Bulldozer 84 100

Pay loader 82 100

Drill 85 90

Scraper 85 101

Air compressor - 96

Table 2.26: Average noise level of machines in underground mining [77]

Source Noise level (dBA)

Chain and belt conveyor 88

Drum shearer 91

Road header 90

Surface haulage 94

Transport movement and power loading 100

Jack hammer drill 104

Water pump 97
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and age of the machine and Lp is the maximum noise level at a distance of 1.5 m from the
machine. It is also observed that various types of machines showed higher noise output
levels for hours of run. The K factor can be represented by the relation:

K = K0 + 0.00046(NHR)dB (2.17)

where NHR is the number of hours run by the machines and K0 has a value of 49.
Similar estimate of the maximum noise levels of various machines used in opencast min-
ing could be made based on their horse power and specific number of hours run. The
maximum noise level output could be deduced from:

Lp = 20 log[0.01x+ 104.67]dB (2.18)

where x was the product of machine horse power and number of hours run by machine.
As free field condition prevails in open cast mining area, the maximum noise level at any
distance from machine could be worked out using the relation:

Lw = Lp − 10 log(Q/4πr2)dB (2.19)

where Lw is the sound power level, Lp is average sound pressure level, r is distance of
measurement in meter and Q is the directivity factor of the machine. They concluded
from their study that the noise level output of machines in opencast mining can be analyt-
ically evaluated and the estimated noise level could be in error up to 6dB. This represents
a noise error of a factor of 2. There is increase in the noise output of a machine due to
higher number of run. The average noise power output of the machines work out to be
113 ± 3 dB, wherein it is assumed that the machines radiate noise energy uniformly.

Pal et al. [78] studied the role of green belt in noise attenuation in mines. The noise
attenuation studies were conducted at two different plantation sites in Singareni Coal
field. They concluded that a green belt of more than 30m width was found to be effective
for noise attenuation of the order of 5 to 10 dB(A). Vegetation characteristics played an
important role. The higher frequencies get attenuated more as compared to the lower
frequencies .

Pal and Saxena [79] studied noise impact assessment for coal mining residential com-
plexes. They studied noise impact index in the residential complexes of North Karanpura
area, CCL and Block II and Muraidih area of BCCL. They followed the Fractional Impact
method which was developed by Schultz in 1982 [80]. This method is based on social sur-
vey which leads to the assessment of Sound Level Weighted Population (SLWP), which
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measures the total number of people expected to be highly dissatisfied by the noise among
the entire population. It is expressed as:

SLWP = Σ[P (Ldn)i ×W (Ldn)i] (2.20)

Where, P (Ldn)i = Population distribution functionW (Ldn)i = weighting function that
characterized the severity of the noise impact as a function of day-night sound level (Ldn).
This also takes into account the adverse reaction of the people to noise, which includes
speech interference, frustration of the desires for a tranquil environment; and the ability
to use telephone, radio and television satisfactorily. Noise impact index (NII) is defined
as the SLWP divided by the total population under consideration.

NII =
SLWP

Ptotal

=
Σ[P (Ldn)i ×W (Ldn)i]

P (Ldn)i

(2.21)

Applying the expressions 2.20 and 2.21 they found that the status of noise for North
Karanpura and Block II/Muraidih residential complexes were found to be higher.

Manoj and Prasannakumar [81] studied the environmental impact assessment of min-
ing activities in magnesite and dunite mine of South-India. In their study, they explained
that noise emitted by machines in a mine during drilling, blasting, crushing and loading
ranged from 64 dBA to 115 dBA.

Sinha et al. [82] studied noise impact assessment in TISCO mining complexes in Jharia
coalfield. The ranking and relative weighting of five important effects of noise exposure
were established by them. They also determined the relationship between these parame-
ters and Noise Environment Quality (NEQ) value and accordingly value-function curves
for each parameter were developed through Statistical Package (SPSS) for Social Sci-
ences. Then, the resultant NEQ was evaluated for all the residential, commercial and
other sensitive areas of the Jamadoba and Sijua complexes of TISCO.

Burger et al. [83] developed a low noise blast hole drilling system to limit the risk of
noise-induced hearing impairment in mining operations. In their study they explained
that maximum mining workers were exposed with high noise and suffered with hearing
loss, and hence this motivated them to design a low noise rock drill for South-African
mines. Table 2.27 shows the medical records submitted by South African mines to the
Chief Inspector of Mines for the period 1/10/1999 to 30/9/2000. According to their
study, the system had to be designed, manufactured, tested and demonstrated in a sim-
ulated underground mining environment. The specification required noise levels below
90 dBA. Other important design considerations were ease of manual transport, setting
up and operation. The following Tables (2.28, 2.29 and 2.30 )show the details of their
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study.They concluded that the low noise rock drill developed in this project achieved the
noise level specifications required to enable compliance with the applicable legislation.

Table 2.27: Medical records submitted by 189 South African mines to the Chief Inspector
of Mines for the period 1/10/1999 to 30/9/2000 [83]

Disease Number of cases reported

Tuberculosis 3737

Hearing loss 3506

Silicosis 1769

Obstructive airway
disease

161

Asbestosis and pneu-
moconiosis

131

Table 2.28: Permissible time exposed to various noise level [83]

Noise level Maximum exposure per
day (hours)

Maximum exposure per
week (hours)

85 8 40

88 4 20

91 2 10

94 1 5

97 0.5 2.5

100 15 minutes 75 minutes

Vardhan et al. [84] studied machine generated noise in opencast mines and found that
the noise analysis at different operating conditions of the machine and related that the
operators were exposed to high noise level in the frequency range 25Hz to 500Hz when
the dumper was moving with load up the gradient and without load down the gradient
and the peak noise level occurred at 40 Hz. In case of dozers, the operator’s exposure
to high noise level occurred at almost all frequencies for operating conditions of the ma-
chine. All the drills showed high noise level between 125 Hz and 2000 Hz frequencies
and peak noise level at 200Hz and 400Hz frequencies at 3m from the engine (supervisor’s
position). The excavator showed high noise level at very low frequency, i.e., 25 Hz to 40
Hz. They also explained that there was not much variation in the sound pressure level
emitted by machines at 300h, 500h and 700h of maintenance and maximum fluctuation
in noise level was obtained at 1000h of maintenance schedule in the frequency range of
25 Hz to 3000Hz for dumpers. The fluctuations could be attributed to two reasons (i)at
one thousand hourly maintenance the major noise producing component of the machines
were maintained; and (ii) at one thousand hourly maintenance both the three hundred

44



2.8 Noise Survey in Mines

Table 2.29: Primary noise sources on a rock drill [83]

Source Level

Valve 101.5 dBA

Exhaust 122.5 dBA

Percussion 109 dBA

Penetration 114.5 dBA

Pawis 82.5 dBA

Mounting 113.5 dBA

Rifle bar 109.5 dBA

Total 123.5 dBA

hourly and five hundred hourly maintenance were repeated. This showed that proper
maintenance of machines could bring the noise level low considerably there by reducing
the operator’s exposure to noise.

Vardhan et al. [85] studied the pressure insertion loss of heavy earth moving machin-
ery cabins in opencast mines. The pressure insertion loss of a cabin is defined as the
logarithmic ratio between the sound pressure, Psource in a point at a certain distance
from an acoustic source and the sound pressure Pcabin in that same point, when it is
enclosed by the cabin, while the acoustic source remains at its same position outside the
cabin i.e. Insertion loss = 20 log (Psource/ Pcabin). The insertion loss is independent of
the position of the measurement point in the lower frequency range (<50 Hz), while at
higher frequencies, the insertion loss becomes position dependent.

Gorai et al. [86] studied the workplace noise status of Kotah stone mining complex
and found that noise level exceeded 100dB(A) during operating dozer and drilling. Both
35T dumper and shovel (Bucket capacity: 3.2 m3, Diesel Engine:400/330 HP, L & T 300
Front end) operators position were observed on the border line/ slightly exceeded the
permissible level of 90 dB (A).

Pal and Saxena [87] studied the societal cost of noise pollution. According to them
most of the industrial and developmental activities are supposed to have built-in pollution
control and mitigative measures. The society has to essentially bear the cost of various
degradation and pollution, directly as well as indirectly. Direct cost being those which
the society bears on its own account and the indirect costs are those that the society
pays through various taxes, cess. Similarly, noise pollution is supposed to be associated
with the following costs :

• Cost of the Health Impacts of the Noise- Exposure to excessive ambient noise levels
can cause various health related problems, e.g. sleeplessness, irritation; loss of
hearing etc. Taking care of these problems and associated loss in working efficiency
puts an extra burden on the society.
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Table 2.30: Summary of design parameters for low noise rock drill [83]

Design Parameter Value

Drilling speed (40 mm drill bit) > 370 mm / min

Maximum air consumption,
drill and peripherals

60 l / min

Supplied air pressure

Maximum
Maximum

500 kPa
300 kPa

Maximum water consumption 11 l / min

Water pressure > 300 kPa

Maximum sound power level 90 dBA

Percussion rate 40 Hz

Thrust needed for drilling 1570 N

Drill steel length 1.2 - 1.6 m

Maximum mass of system 60 kg

Maximum diameter of system 240 mm

Colour Bright

Robust Drop 1 m onto 50 mm
diameter steel rod -
drill must still be
functional

• Cost of the Ambient Noise Management in various situations, including sound
proofing is directly or indirectly by the society.

Pandey et al. [88] studied dumper operators exposure to noise. The observations
indicated that:

• The dumper operators are exposed to occupational noise levels ranging from 85 to
94 dBA during their 8hr daily working shift.

• About 100% dumper operators are exposed to the warning level i.e. 85 dBA.

• More than 46% dumper operators have hearing problems to interfere with their
occupational and social activities.

• Dumper operators who had spent more than 9 years in noisy occupations were
mostly suffering from hearing loss.

• None of the dumper operators were using hearing protectors. This is probably the
most serious reason of noise related hearing loss, fatigue and absenteeism among
the dumper operators.

Vardhan et al. [89, 90] studied the noise analysis of heavy earth moving machinery
deployed in opencast mines and development of suitable maintenance guidelines for its
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attenuation. According to them the mining industry in India is facing serious problem of
noise due to increasing demand for minerals for which large capacity machines are being
deployed producing high noise levels. They studied the daily noise dose and/or noise
exposure level of the operators of various types of heavy earth moving machinery and its
assessment, noise characteristics at different operating conditions of the machine.

Vardhan et al. [91] investigated the principal sources of sound from heavy earth-moving
machinery, namely a bulldozer and a front-end loader. They have found that the major
sound sources were the exhaust and air inlet for the engines and the engine cooling fan
on the bulldozer. Sound from the exhaust was an important source at nominal one-
third-octave midband frequencies from 25 Hz to 250 Hz; sound from the air inlet was a
significant contributor in the range of midband frequencies from 25 Hz to 500 Hz. Cooling
fan noise for the bulldozer was important in the frequency range from 315 Hz to 3150 Hz.
According to them, for the front-end loader, the enclosed cab in which the operator sits
provided good noise reduction at frequencies greater than 400 Hz up to 20 kHz. Exam-
ination of the spectrum of the sound produced by these and other heavy earth-moving
machines can indicate the need for maintenance efforts to restore noise-control capabili-
ties that were originally installed or which should be installed.

Gorai et al. [92] studied the status of workplace noise in the Bailadila iron ore mining
complex, India. They found that the high workplace noise situation cause severe harmful
consequences to the exposed workers in long run. The noisy equipment/installations in
the mine are the operations of Ingersoll-Rand and Wagon drill machine, dozer, dumper-
shovel combination, crushing plant, etc.

Ramlu [93]discussed the occupational noise exposure and hearing damage in mining
industries. According to him use of various noisy equipments used in industrial plants
particularly in heavy industries like mining, civil construction, iron and steel, and wide
range of other engineering industries, the workers can run the risk of hearing damage.
He reported that the OSHA rule i.e. the permissible noise exposure 90 dB for 8-hours
workday with an exchange of 5dBA is being replaced and currently, permissible noise
exposure limit of 85dBA with 3dBA exchange rate was adopted and expected that it
may considerably reduce the noise-induced hearing loss of the industrial workers.

Vardhan et al. [94]studied on the assessment of heavy earth-moving machinery noise
vis-à-vis routine maintenance in Indian mining industry. According to their report, expo-
sure to noise from various types of equipment/machinery has been identified as a critical
health hazard for personnel working in the Indian mining industry. Heavy Earth Moving
Machinery (HEMM) used in mines have been identified as major sources of noise and
several earlier investigators have proposed various types of retrofit measures on these ma-
chines to reduce noise. They evaluated the noise generation characteristics of HEMM as
influenced by periodic maintenance. Detailed noise measurements were carried out in a
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large open pit coal mine located in India. The effect of maintenance on noise production
was assessed for ten dumpers and three dozers by measuring the A-weighted one-third-
octave band sound pressure levels after the machines had been subjected to maintenance
at the end of 300 hours, 500 hours, 750 hours and 1000 hours of use. They have also
taken measurements to assess the effect of maintaining specific HEMM systems noise
characteristics at 1000 hours. As per their study, the assessment of sound pressure lev-
els at each periodic maintenance revealed major sound level reductions with 1000 hours
maintenance. Their experimental data also identified the major noise generating systems
in HEMM as air systems, exhaust systems, cooling systems and fuel systems .

Pal et al. [95] studied the noise status in Kotah stone mines and discussed recent noise
control methods applied to machineries that were used for production. They conducted
noise measurement by using Modular Precision Sound Level Meter (B & K Type 2331)
and Modular Precision Sound Analyzer (B & K Type 2260). According to their study,
they found that the average noise levels of 99.2 to 100.6 dB (A) were observed during
the cutting operation and from spectrum analysis, the results are discussed below:

1. All the activities except during idling operation of a Jhiri Machine produced high
frequency (2 kHz to 4 kHz).

2. Idling operation produced mid frequency as well as high frequency (250Hz, 500Hz,
and 1 kHz) dominant noise. It also showed a minimum deviation for considerable
range of frequencies above 250 Hz.

They also pointed that noise control is required in Kotah stone mines and for this they
recommended use of wet sacks on the rock floor to control noise. The sacks are to be
placed near to the machine in such way that they do not hinder the smooth operation of
the machine as well as do not affect the mobility of the personnel. However, sack laying
area is to be determined after a thorough study of noise emission from rock interface by
trial and error method.

Rylander [96] studied about noise, stress and annoyance and discussed about the ef-
fect of noise on human health. According to him, the energy related noise levels are poor
predictions for the reactions in man as noise is always interpreted in the central nervous
system, generating secondary and tertiary reactions that are not controlled by the brain
cortex. The simulation of these reaction pathways in acute situations lead to involuntary
reflexes and feelings of fright and despair. In chronic exposure situations a give-up stage
may develop with reduced corporal and mental functions. in the acoustical panorama
peak level noises usually cause the most pronounced effects as they stimulate reactions
of fear and flight.

Pandey et al. [97] studied the environmental problems due to generation of noise from
haul truck in mining industry. In their report, they mentioned the noise exposure limit
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for industrial workers as per CPCB (Central Pollution Control Board, New Delhi. The
Central Pollution Control Board, India has recommended certain guidelines for the max-
imum permissible exposure to different intensities of sound with regard to occupational
health and safety of the industrial workers. For a full shift of 8-hours work is permissible
if the noise level is 90dB or less. For higher noise levels, there should be a 50% reduction
in maximum permissible working time for every 3dB increase in noise level over a range
of 90-114 dB, as shown in Table 2.31.

Table 2.31: Noise exposure limits for industrial workers (CPCB), 2000 [97]

Exposure time (hours/day) Limit in dBA

8 90

4 93

2 96

1 99

1/2 102

1/4 105

1/8 108

1/16 111

1/32 or less 114

Followings are some important conclusions of their research study:

• The haul truck operators are exposed to occupational noise level (TWA) ranging
from 88.2 to 99.21 dBA during 8 hr daily work shift.

• 71% truck operators are exposed to occupational noise exceeding the maximum
permissible level i.e. 90dBA.

• All (100%) truck operators are exposed to occupational noise exceeding the warning
level i.e. 85dBA.

• On an average a truck operator is exposed to occupational noise level (TWA(8)) of
90.032 dBA during 8hr daily work shift.

• Daily noise dose received by the subjects ranges from 78 to 136 % with a mean of
105 %.

• Operator onboard time during work shift ranges from 386 to 435 minutes with a
mean of 413 minutes.

• Average noise dose received by the subjects during off board time is 15%.

• The subjects are exposed to average noise level of 88 dBA during of haul truck,
having the range of 80 to 90 dBA.
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• Noise level during unloading of haul truck varies from 97 to 108 dBA with an
average of 102.5 dBA.

• Average noise level during travel of loaded haul truck is 96 dBA where as, that of
empty truck is 87.7 dBA.

• Average noise level during uphill travel of loaded haul truck is 103 dBA where as,
that of empty truck is 95 dBA.

• It was found that average noise level during loaded travel uphill was maximum
among all variables namely, during loading , unloading , load travel , empty travel,
loaded travel uphill and travel uphill. average noise level can be arranged in de-
scending order as follows :

Table 2.32: Average noise level of haul truck with different activity [97]

Activity Average noise level (Lavg)

Loaded travel uphill 103.292 dBA

Unloading 102.500 dBA

Loaded travel 96.021 dBA

Empty travel uphill 95.104 dBA

Loading 88.396 dBA

Empty travel 87.750 dBA

Phillips et al. [98] studied the noise and vibration levels of rock drill in South-African
gold mines. They have studied the noise and vibration levels of three hand-held rock
drills (pneumatic, hydraulic and electric) those were currently used in South African
mines, and a prototype acoustically shielded self-propelled rock drill. All four drills emit-
ted noise exceeding 85 dB (A). The pneumatic drill reached levels of up to 114 dB (A),
while the shielded self-propelled drill almost complied with the 85 dB(A) 8 h exposure
limit. Vibration levels of up to 31 m/s2 were recorded. These levels greatly exceed rec-
ommended and legislated levels. The following Tables (2.33 and 2.34 ) show the details
of their study. Significant engineering advances will need to be made in the manufacture
of rock drills to impact on noise induced hearing loss and hand arm vibration syndrome.
Isolating the operator from the drill, as for the self-propelled drill, addresses the problems
of both vibration and noise exposure, and is a possible direction for future development.

Spencer and Reeves [99] of National Institute for Occupational Safety and Health
(NIOSH) conducted an investigation to quantify sound levels and to determine the
amount of sound reduction provided by engineering noise controls installed in a talc pro-
cessing plant. Baseline sound level and sound intensity measurements were performed at
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Table 2.33: Drill penetration rates for the six configurations of rock drills [98]

Configuration Penetration
rate (mm
min−1)

Self-propelled drill with
standard drill steel

300-400

Self-propelled drill with
cladded drill steel

300

Pneumatic drill: standard
configuration

350

Pneumatic drill: muffled
configuration

395

Hydraulic drill 600

Electric drill 130

Table 2.34: Sound pressure levels at the three grid positions [98]

Configuration Behind operator
[dB(A)]

Right of the
operator [dB(A)]

Right further
back [dB(A)]

Self-propelled drill with
standard drill steel

88.7 84.9 82.9

Self-propelled drill with
cladded drill steel

84.1 86.1 84.1

Pneumatic drill: standard
configuration

104.4 107.9 104.2

Pneumatic drill: muffled
configuration

100.5 103.8 98.1

Hydraulic drill 98.9 103.4 98.1

Electric drill 92.4 94.7 94.6

the plant and the measurement locations were recorded for comparison to post-control
measurements. Follow-up measurements were then made at the same locations after the
initial noise controls were installed. Fig. 2.8 represents the installation of noise control at
the talc processing plant.The plant subsequently decided to implement additional noise
controls and the researchers returned to conduct measurements for a final analysis of all
noise controls. They concluded that the most significant results showed a sound level
reduction in the main mill area from a range of 93-104 dB(A) down to 90-94 dB(A).

Bealko [100] studied mining haul truck cab noise. Mining haul trucks comprise the
majority of the equipment used in underground limestone mining operations and are
known to emit high levels of noise. A previous study conducted by the National Institute
for Occupational Safety and Health (NIOSH) indicates that 70-90 percent of all miners
have a noise-induced hearing loss (NIHL) great enough to be classified as a hearing dis-
ability by retirement age. His experimental results demonstrate the public health need
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(a) Curtains around FEM fans (b) Curtains around Jeffery crusher

Figure 2.8: Noise controls at a Talc processing plant [99]

to protect the hearing of workers in the mining industry, including haul truck drivers .
Gorai and Pal [101] studied noise environmental quality in residential/commercial/

sensitive areas situated near the industrial (iron ore mining) complex. Their study is near
one of the largest iron ore mine in India (Bailadila Iron Ore-Mining Complex). Bailadila
Iron Ore Mine is situated at Kirandul village in the district of Dantewada (Chattisgarh).
Accroding to their study, noise environmental qualities (NEQ) for each locality were
determined from value function curves developed for each noise impact parameters iden-
tified. The study reveals that almost all the areas register noise stress situations as the
observed resultant noise environmental quality [NEQ(R)] at all the locations exceeding
the desirable noise environmental quality [NEQ(R)] of the corresponding locations. They
getting concluded that the noise stress of almost all the residential areas (except Nehru
colony) and sensitive areas are high as the evaluated NEQ(R) of the areas were less in
comparison to the desirable limit of indicative permissible value.

Kivade et al. [102] studied the noise status of jackhammer drill machine in laboratory.
As per their study, it is concluded that the penetration rate and sound level is increased
by an increase in applied thrust up to an optimum point after which penetration rate
and sound level decreases until the drill eventually stalls. Based on their study, they
concluded that low applied trusts results in very low penetration rates and sound levels
and excessive bounce of the drill resulting in an early bit wear. Increase in applied thrust
improves the penetration rate and sound level up to an optimum thrust level due to
better contact time between the bit and the rock and good transfer of energy from the
drill to the rock.
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2.9 Noise Impact Assessment

The six generic steps associated with noise environment impacts are (1) identification
of levels of noise emissions and impact concerns related to the construction and oper-
ation of the development project (2) description of the environmental setting in terms
of existing noise levels and noise sources, along with land use information and unique
receptors in the projected areas. (3) procurement of relevant laws, regulations or criteria
related to noise levels, land- use compatibility , and noise emission standards (4) con-
duction of impact prediction activities including the use of simple noise source specific
models, comprehensive mathematical models, and/or qualitative prediction techniques
based on the examination of case studies and the exercise of professional judgment (5)
use of pertinent information from step 3, along with professional judgment and public
input, to assess the significance of anticipated beneficial and detrimental impacts and (6)
identification, development and incorporation of appropriate mitigation measures for the
adverse impacts.These six steps are shown in Fig. 2.9:

Figure 2.9: Conceptual approach for study focused on noise impact assessment. [79]

2.10 Noise Modelling and Prediction

Marsh [103] discussed the experience of the oil industry in specifying noise limits for new
plants using the procedure published by the Oil Companies Materials Association. In his
research study, he explained about the procedure of OCMA noise prediction model. The
procedure defines a calculation method for predicting the noise in neighbouring areas
due to a plant, which includes curves for deriving the excess attenuation due to ground
effects. Long-term measurements, covering a period of one month to several years, have
been made around four refineries and the median noise levels have been compared with
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predicted noise levels. In conclusion, he explained that the OCMA procedure is broadly
correct.

Deeprose [104] predicted the noise level of some industrial pump and fan. They used
the following formulae for predicting the sound pressure levels of fan as given below:

Lw = 27.5 + 8 log10Q+ 24 log10 P (2.22)

Lw = 91 + 10 log10(QP ) + 30 log10M/M20 (2.23)

where Lw = sound power level re 10−12 watts, Q = flow rate m3/sec, P = pressure, M =
match number and M20 = match number at 200 C.

Erskine [105] predicted the noise level of pumps and fans. They modified the predicted
formula of fans as :

Lw = K1 + 91 + 10 log10(kW ) + 30 log10M/M20 (2.24)

Where Lw = sound power level in dB re 10−12 watts, kW = fan absorbed power, K1 =
octave band correction (Table 2.35), M = match no at gas temperature and M20 = match
no. at 200C. The pump noise predicted formula is given below:

Table 2.35: Octave band correction [105]

Octave band center
frequency, Hz

63 125 250 500 1000 2000 4000 8000

K1 -4 -5 -6 -9 -12 -16 -20 -24

Lw = K2 + 70 + 10 log kW (2.25)

Where, Lw = sound power level in dB re 10−12 watts, kW = pump shaft power and K1

= octave band correction (Table 2.36).

Table 2.36: Octave band correction [105]

Octave band center
frequency, Hz

31.5 63 125 250 500 1000 2000 4000 8000

K1 -6 -6 -6 -8 -98 -10 -15 -20 -20

Shield [106] developed a computer program which calculated the noise levels in facto-
ries. The collection of data for input to the program, formulae used in the calculation
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of noise levels and output from the program were described in his research article. The
program was tested using data collected in a variety of workshops and factories. The
results of two of these case studies were discussed, together with overall results for all
cases considered, which showed that the program could predict sound levels with a high
degree of accuracy. An interactive version of the program which enables a user to see
immediately how certain changes to the data will affect noise levels was also described
in the article. He used IBM 1130 machine and FORTRAN programming software for
writing the program code of his computer based noise prediction model.

Marsh [107] discussed the new proposals for measuring the sound-power levels of in-
dustrial equipment. These are mentioned in the Noise Procedure Specification NWG-1,
issued by the Oil Companies Materials Association, and are intended for use in the
petroleum and petrochemical industries, but it is suggested that they could have wider
applications in other industries. The shortcomings of the ISO engineering methods for
determining sound-power level are discussed and compared with the proposed test meth-
ods. Basically in his study, he described about ISO 3744 (Determination of sound power
levels of noise sources using sound pressure) and OCMA noise prediction model.

Manning [8] and his associates developed CONCAWE noise prediction model. The
entire report was described on CONCAWE noise prediction model and the procedure
how to apply the model in industry. In this report, calculation of all the attenuation
factors was also discussed.

Marsh [108] discussed a propagation model (CONCAWE) for calculating neighborhood-
noise from open-air industrial plants such as oil refineries and petrochemical plants. The
model was developed from a preliminary model derived from a comprehensive survey of
the literature on noise propagation. His research aim was to develop a model which used
parameters and procedures available to engineers engaged in plant design. An experi-
mental programme of measurements was carried out around three industrial plants over
a period of about one year and this was used to modify the original model. The final
model is based on six meteorological categories and contains separate attenuation values
for spherical spreading, atmospheric absorption, ground effects, meteorological category,
source/receiver height, and barrier effects. They were given as a function of frequency
and distance, either as graphs or as polynomial equations for computer calculations. A
statistical assessment was made to establish the confidence limits of the predictions in
dB(A) and in octave bands from 63 Hz to 4 kHz. They were compared with the confi-
dence limits of predictions by two other propagation models frequently used in Europe
(OCMA and VDI) and were found to be significantly better. The CONCAWE noise
prediction model was described in the following manner.

Lp = LW +D −
∑

i

Ki (2.26)
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where Lp is the sound-pressure level at the receiving location (dB), LW is the sound
power level of the source (dB), D is the directivity of the source toward the receiver
(dB) and Ki is an attenuation factor. The various attenuation parameters, Ki, can be
attributed to a number of mechanisms and the following are considered to be the most
important:

K1 : loss due to spherical spreading (inverse-square law),

K2 : loss due to atmospheric absorption,

K3 : loss due to the presence of the ground,

K4 : loss due to meteorological effects (wind, lapse rate),

K5 : loss due to heights of source and receiver in relation to the topography,

K6 : loss due to barriers and

K7 : loss due to in-plant screening by other equipment.

International review of work area noise regulations on CONCAWE noise prediction
model was declared in 1982. In this report, need of the CONCAWE noise prediction
model was discussed. [109].

Now-a-days researchers use different software for the noise modeling which are summa-
rized in Table 2.37. The most popular noise modeling software is ENM (Environmental
Noise Model). It is developed by RTA Technology, released in DOS Version in 1986 and
sold world wide. ENM simulates outdoor sound propagation and predicts noise levels
from known attenuation due to noise source enclosures and other noise control measures.

Tonin [9] studied the environmental noise impact in petrochemical plants, mines and
industrial complexes in Australia. He used various noise models such as OCMA, VDI,
ENM, CONCAWE etc., for estimating the noise levels. He found that the above men-
tioned environmental noise models developed over the last decade were becoming more
complex in their use of theoretical algorithms.

International Standard Organization (ISO) published the standard on atmospheric
absorption of outdoor sound propagation in 1993 [10]. In that standard , the calculation
of atmospheric absorption at each octave band was clearly described. The standard was
named as ISO-9613-1(93). In 1996, ISO developed another standard on calculation of all
the attenuations of outdoor propagation [11]. The empirical noise prediction model was
expressed in the following equation

LfT (DW ) = LW + Dc − A (2.27)
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where LW is the octave-band power level, in decibels, produced by the point source
relative to a reference sound power of one picowatt (1 pW); Dc is the directive correction.
A is the octave-band attenuation, in decibels, that occurs during propagation from the
point sound source to the receiver. The attenuation term A in equation 2.27 is given by
equation 2.28;

A = Adiv + Aatm + Agr + Abar + Amisc (2.28)

where Adiv is the attenuation due to geometrical divergence. Aatm is the attenuation
due to atmosphere and it was calculated from ISO 9613-1 (1993) standard [10]. Agr is
the attenuation due to ground effect. Abar is the attenuation due to barrier. Amisc is the
attenuation due to other miscellaneous effects.

Pal et al. [110] described the importance of noise prediction models in mining in-
dustry. They explained that, now-a-days numbers of noise prediction models are used
in mining industry to predict the noise status before going for noise control. The three
principal noise forecasting models used extensively in Europe are those of the Oil compa-
nies Materials Association (OCMA), the Oil Companies International Study Group for
Conservation of Clean Air and Water Environment (CONCAWE) and the German Draft
Standard VDI-2714 “Outdoor Sound Propagation”, of which the first and the second re-
late to noise from petrochemical complexes, which can be used equally well to predict
noise from mines and industrial complexes. The algorithms used in these models rely for
greater part of on interpolation of experimental data which is a valid and useful tech-
nique, but their application are limited to sites which are more or less similar to those
for which the experimental data was assimilated.

Australian state pollution control commission has developed a computerized noise
propagation model, ENM, where real noise sources are substituted by an equivalent
monopole point, line or plane source.

The basic features of these models are:

i) Determination of source power levels , LW

ii) Computation of total atmospheric scenario by calculating the individual attenuation
components Kj as follows :

• Geometric spreading, K1

• Source directivity, K2

• Enclosure, K3

• Building topography , K4

• Air absorption , K5
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• Wind and temperature gradients, K6

• Ground attenuation, K7

iii) Computation of the resultant sound pressure level at an environmental point is done
by equation 2.29.

Lp = Σlog
allsources[Lw − (Kj)] (2.29)

They also discussed the methods for development of the noise model and that are as
follows

* All the noise sources are considered as point sources which radiate sound energy in all
directions as if the sources in free field.

* The attenuation due to enclosure has been accounted while assessing sound power
being emitted from the sources.

* The attenuation due to geometric spreading for spherical radiation has been considered
to be in accordance with equation 2.30.

Attenuation(pointsource) = 10 log(4πR2) (2.30)

Where R is the distance from the source to receiver, (m).

* Attenuation due to meteorological effects

Pathak et al. [111] developed the Activity Accounting Technique (AAT) for predicting
far field noise levels due to operation of specific set of mining machinery. The technique
is based on the breaking down of the mining operations in to number of activities and
establishing their duration and location. According to them, by estimating the noise
levels due to those activities, the overall noise field near a surface mine can be predicted.
Finally, they concluded that the Activity Accounting Technique has the scope of elaborate
application for prediction of environmental noise near mining sites. In a system where the
activities involved and their duration can be estimated, one can develop noise prediction
model based on near field spectrum. However, this method will be much helpful if an
acoustic database can be evolved for all the possible activities for different alternative
equipment system. They expected that this technique can be used as a tool in surface
mine design and planning for testing noise impacts of the alternative mining system.

Sean [113] developed a computer model for predicting noise spectrum of an engine
cooling fan. In that model, he considered the effects of fan shroud radiator, condenser
and engine compartment on the resulting narrow band and broad band sounds. His
computer model obtained is validated experimentally with two completely different fan
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Table 2.37: Different models of sound pressure level prediction [112]

Sl. Name of the Model Basic equation

1. Oil Companies Materials As-

sociation (OCMA, UK, 1972)

model

Lp = Σlog
allsources(Lw − K1 − K2)

Lw is the sound power level, K1is the attenuation due to spreading and

soil type, K2is the attenuation due to ground and meteorological effects.

2. VDI 2714/VDI (German Draft

Standard, 1976)

Lp = Lw + DI + K0 − DS − DL − DBM − DD − DG − De

Lw is the ground power level , DI is the directivity index, K0 is the solid

angle reflection Index, DS is the air absorption factor, DBM is the ground

and meteorological attenuation, DD is the attenuation due to vegetation,

DG is the attenuation due to built-up areas, Deis the attenuation due to

barriers.

3. Oil Companies’ International

Study Group For Conservation

of Clean Air and Water (CON-

CAWE, UK, 1981) model

Lp = Σlog
allsourcesLw + D + K1 − K2 − K3 − K4 − K5 − K6 − K7

Lw is the sound power level, D is the directivity index of the source, K1

is the attenuation due to clean air and water to geometric spreading. K2

is the atmospheric absorption, K3 is the attenuation due to ground effect,

K4 is the attenuation due to meteorological effects, K5 is the correction

for source height above ground, K6 is the barrier shielding and K7 is the

in-plant screening.

4. BBN/EEI (Bolt Beranek and

Newman Inc. Ltd./Edision

Electric Institute.)

Lp = Lw + D − 10 log(4πd2) − [ d
100

(am) + d
100

(aa)] − [−3]

Lwis the sound power level, D is directivity index of source, d is the

distance from the acoustic centre of a point source to receiver am is the

molecular absorption rate in dB per 100m, aa is the anomalous excess

attenuation rate in dB per 100 m.

5. NORDFORSK Noise Model

(by Lydteknisk Laboratorium,

Denmark., 1982)

Lp = Lw + △LφΣ △ L

The Second term accounts for the directivity and the third terms accounts

for various types of attenuation.

6. ENM (Environmental Noise

Model by RTA Technology Pty.

Ltd., Australia, 1985)

Lp = Σlog
allsourcesLw + D − A1 − A2 − A3 − A4 − A5

LW is the sound power level; D is the directivity index of source. A1is

geometric spreading, A2 is barrier attenuation, A3is air absorption,A4is

wind and temperature effects and A5is ground attenuation.
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assemblies. The calculated noise spectrum compared well with the measured data under
the same working condition. The following Fig.2.10 shows the model description.

Figure 2.10: Flow chart for calculating noise spectrum of an engine cooling fan assembly
[113]

Pathak et al. [114] developed an air attenuation model for noise prediction in surface
mines and quarries. They have adopted the methodology developed by Sutherland et al.
(1974) and developed model to predict attenuation due to absorption in air considering
temperature and relative humidity. Table 2.38 shows the attenuation due to atmospheric
absorption. The developed model is described in the following manner:

LP = LW − As − Ag − Aa − Ab +Dc −Rc (2.31)

where LP =sound pressure level at the receiver’s location; LW =sound power level of
the equivalent acoustic centre of the work zones; As = attenuation due to spreading; Ag

= attenuation due to ground absorption; Aa= attenuation due to air absorption; Ab =
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Table 2.38: Attenuation due to atmospheric absorption(after Sutherland et al. 1974) [18]

Humidity %
Temperature
(0C)

α dB per 1000m

63Hz 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz 8000Hz

25 15 0.2 0.6 1.3 2.4 5.9 19.3 66.9 198.0
20 0.2 0.6 1.5 2.6 5.4 15.5 53.7 180.5
25 0.2 0.6 1.6 3.1 5.6 13.5 43.6 153.4
30 0.1 0.5 1.7 3.7 6.5 13.0 37.0 128.2

50 15 0.1 0.4 1.2 2.4 4.3 10.3 33.2 118.4
20 0.1 0.4 1.2 2.8 5.0 10.0 28.1 97.4
25 0.1 0.3 1.2 3.2 6.2 10.8 25.6 82.2
30 0.1 0.3 1.1 3.4 7.4 12.8 25.4 72.4

75 15 0.1 0.3 1.0 2.4 4.5 8.7 23.7 81.6
20 0.1 0.3 0.9 2.7 5.5 9.6 22.0 69.1
25 0.1 0.2 0.9 2.8 6.5 11.5 22.4 61.5
30 0.1 0.2 0.8 2.7 7.4 14.2 24.0 58.4

attenuation due to pit slopes; Dc = directivity corrections; Rc = reflection correction.
They have also developed a computer module for use in determining the radii of

curvature of ray paths in order to provide the statistical basis for deciding upon the base
period of noise prediction in surface mines.

Mohalik and Pal [115] developed a noise model for mining complex with the help of
ENM. According to them, the ENM model helps us to develop noise counter/profile of
the mining complex. As such, it is possible to have an estimate of the noise levels of
the exposed workers at different locations within the complex. In the case of new mines
or reorganization/renovation of existing mine, this model helps in equipment/activity
planning so as to have minimum noise exposure to the workers.

Rabeiy et al. [116] studied noise status of machineries in mining and industrial plants
by using SL-130 and Bruel & Kajor type 1625 sound level meter. They also predicted
noise in EI-Gedida mines and Assiut Cement Quarry by using VDI-2714 and ISO(1996)
prediction algorithms. From their study, they found that in EI-Gedida mines, the sound
pressure levels were greater than the acceptable level (90dBA) and also get similar result
as in case of Assiut Cement Quarry. The noise status of different machineries used in
EI-Gedida mines and Assiut Cement Quarry are mentioned in Tables(2.39-2.40).

Rabeiy et al. [117] studied noise status in Assuit Cement Plant (CEMEX). Their study
was conducted in the limestone quarry and cement plant. Noise levels were predicted
using the prediction model (ISO-9613-2-1996). Also, noise levels were calculated based
on the machine data. Measurements were carried out using Bruel & Kjaer, sound level
meter Type 2230 at different distances from the noise sources. Their study proved that

61



2.10 Noise Modelling and Prediction

Table 2.39: Distance of measurements from each sources in EI-Gedida mine [116]

Noise Sources Sound Pressure
Level (dBA)

Distance (m)

Power Shovel No. 216 102.4 4

Power Shovel No. 215 113.7 4

Power Shovel No. 209 105.63 4

Power Shovel No. 203 107.1 4

Power Shovel No. 211 104.35 4

Power Shovel No. 271 99.4 4

High power drill No. 504 100.82 1

Low power drill No. 541 94.63 1

Compressor 102.8 1

Low power drill 89.63 1

Compressor 96.13 1

Generator 95.92 1

Truck (caterpillar) 98.42 2

Bulldozer 103.3 2

• The highest noise levels in Assiut Limestone Quarry is generated from Hydraulic
Hammer (102.22 dBA) and crushing operations (100.1 dBA), are greater than the
standard values; and the lowest noise levels are from the Belt drive (63.71 dBA)
and the Belt conveyor (61.40 dBA)

• The worker’s camp in Assiut Limestone Quarry is subjected to a noise level of
(63.71 dBA) which is greater than the acceptable levels

• The management building in the quarry is subjected to a noise level of (69.17 dBA)
which is higher than the acceptable limit.

• The safe distance from the quarry was found to be 1250 m.

• The management buildings in the plant are protected from high levels.

• The predicted noise levels can be used to evaluate the noise problem in the planning
stage of new projects, in order to keep the working and ambient environment safe.

The sound pressure levels (Lp) at 1.5 m from the machines can be calculated based
on horsepower and running time using the following equation:

Lp = 20 log (HP ) +K, dBA (2.32)

where, Lp = Maximum sound pressure level at a distance of 1.5 m from the machine.
HP = Horsepower of the machine. K= Factor depends on type and the machine age and
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Table 2.40: Sound pressure level of noise sources at Assiut Cement Quarry [116]

Noise sources
Distance
(m)

Octave band center frequency (Hz) dBA

63 125 250 500 1000 2000 4000 8000

Power shovel 8 90.82 83.57 81.31 78.47 79.38 75.72 74.97 66.95 83.85

Russian crusher 3 88.28 89.68 86.07 88.43 87.28 84.67 78.83 71.97 91.58

Breaking hummer 4 68.24 90.89 87.28 88.57 87.28 81.61 88.75 84.61 93.71

Loader 8 83.64 85.00 82.30 83.11 77.68 74.67 71.14 67.28 83.95

Belt conveyor 4 64.49 67.32 63.52 59.89 58.50 52.20 50.59 41.62 61.40

Belt drive 4 73.23 79.29 75.16 70.50 67.08 60.72 58.47 56.20 63.71

Compressor 1 84.09 84.33 82.17 81.71 78.12 78.10 74.83 71.01 84.73

Truck 1 63.71 65.27 70.99 79.46 82.10 82.63 81.65 64.73 87.94

Bulldozer 1 90.28 92.15 85.33 89.90 87.96 83.94 81.87 72.19 92.25

Drill 1 76.70 77.98 84.94 88.58 91.52 94.96 93.67 88.92 99.69

Roman crusher 5 88.90 89.67 87.72 85.76 90.67 88.20 82.65 76.69 94.06

can be represented by the following relation.

K = K0 + 0.00046(NHR), dBA (2.33)

where, NHR=Machine running time in hours. K0 = constant.
Harper and O’Brien [118] developed an empirical noise prediction model for the pre-

diction of the composite sound pressure level and the equivalent noise exposure levels of
groups of individuals from machines, used single and in combination in an underground
environment based on the sound pressure level determined according to SABS-ISO 3744
under free field conditions. Basically their prediction model is used only for prediction
of rock-drill noise. The methodology includes provision for the consideration of the ef-
fect of hearing protection devices and the use of multiple machines in combination and
provides an indication of the potential costs of hearing compensation. Fig.2.11 shows
the methodology of the designed model. The empirical noise prediction model predicted
sound pressure level (SPL) at locations (i and j) and that can be calculated as follows:

Lpi,j = 10 log

NDrills∑
S=1

100.1Lps0

(
1−0.178

√
x2

s+y2
s

)
(2.34)

where: Lpi,j is the sound pressure level (dB or dBA) at location (i,j) Lps0 is the sound
pressure level of the sth source xs is the lateral displacement from the sth source ys is
the horizontal displacement from the sth source NDrills is the total number of sources.
They concluded that the current model was specific to stoping operations and would
require further calibration for application to other underground environments such as
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2.10 Noise Modelling and Prediction

Figure 2.11: Flow chart of the model [118]

development ends and shaft sinking. While the model has been developed specifically
for rock drills it could be used to evaluate the SPL of other stoping equipment such as
pneumatic chain saws.

Sensogut and Cinar [119] developed an empirical model for noise propagation in
opencast mines. In their case study, the data obtained from 312 measurement stations
of sound propagation in panel 48 of the Tuncbilek open cast mine, Western Lignite
Corporation, Turkey have been used to create an empirical model for such propagation.
As well as the noise level recorded at these stations, atmospheric conditions were recorded
also by the meteorological station located at the same panel. A total of 95,000 noise values
were recorded at these stations. In addition the distances of the measurement stations to
the effective source of noise and to the working slope, the meteorological effects and the
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2.11 Application of Soft-Computing Techniques in Noise Prediction

number of noise sources were defined for each of 312 measurement stations. Using these
data, the proposed model was tested against the noise measurements. Tables (2.41 and
2.42) shows the details of their study . Their empirical model for the A-weighted noise
levels were follows:

Lt = Leq − Lm + Ly + La + Ln (2.35)

where Lt represents the estimated noise level. The parameter Ly is included only
when the distance between the source of noise and the working surface is around 30 m
as the effect of reflected waves was not determined beyond this distance. The parameter
Ln is included only when the distance between two sources of noise is less than 10 m.

Table 2.41: The equivalent noise levels at the haul road [119]

Haul roads Number of measure-
ments

Leq (dB)

1st haul road 394 71.2

2nd haul road 376 69.4

Shared roads 418 72.3

Table 2.42: A-weighted noise levels to which truck drivers are exposed [119]

Position Average time (s) Window
closed
(dB)

Window
open
(dB)

Pre-waiting 51 66.0 85.5

Manoeuvre beside the shovel 48 72.3 89.7

Waiting beside the shovel 111 70.3 82.8

Loading instant 138 72.5 86.1

Haulage when loaded 82 77.1 95.7

Manoeuvre at the spoil area 36 74.0 90.8

Dumping 30 76.0 94.2

Haulage when empty 98 77.8 94.7

The equivalent noise level for one
cycle (Leq)

73.3 89.2

2.11 Application of Soft-Computing Techniques in Noise
Prediction

Soft computing techniques viz. ANN (Artificial Neural Network), FUZZY logic, Genetic
Algorithm etc are widely used for prediction of the air quality, soil and water quality in
environmental science and engineering. However, there have been limited use of these
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techniques in noise prediction so far.
Cammarata et al. [120] proposed a neural approach to filter the data provided by

acoustic measurement. The model was based on the use of a Kohonen Self-Organizing
Map network which, in the learning phase recevies correct acoustic measurements.Their
study present a strategy based on neural networks for the automatic recognition of acous-
tic measurements affected by errors. In their proposed model, Back Propagation network
is used to extract the functional relationship between particular road parameters (num-
ber of vehicles, average height of buildings, road width) and the level of sound pressure.
They concluded that, the proposed model confirms correct extraction of the functional
relationship by the BPN model.

Fortuna et al. [121] developed a Neuro-Fuzzy model for prediction of urban traffic
noise. In their paper, they described a Neuro-Fuzzy approach to obtain the relation-
ships between the parameters involved in the characterization of noise pollution in urban
traffic . A Fuzzy Neural Network which implements a fuzzy reasoning with constant con-
sequences has been chosen. They concluded that their developed model could overcome
some difficulties which appear both in neural and fuzzy modelling and gives a satisfactory
performances with a reasonable computational cost .

Cammarata et al. [122] proposed neural network architecture for noise prediction in
traffic place. They used BPN (Back propagation network) and LVQ (learning vector
quantization network) for predicting noise and they found that it gave better prediction
than the older statistical model. They used BPN for predicting the noise by use of an
LVQ network as a filter of wrong measurements.

Caponetto et al. [123] developed a adaptive fuzzy model for noise prediction based on
Genetic algorithm (GA). In their proposed model, Takagi-Sugeno approach was adopted
applying a genetic algorithm during the optimization phase. They took the genetic al-
gorithm parameters such as crossover probability (0.06), mutation probability (0.003),
population size (30), number of generation (20) and chromosome length (14 bits per pa-
rameter). From their study, they concluded that , the GA based fuzzy model gave result
with less computational value .

Verkeyn et al. [124] developed a fuzzy model for predicting noise annoyance. They
presented a fuzzy rule based model for the prediction of traffic noise annoyance. Several
inference schemes were compared for their performance in prediction capabilities as well
as in speed. They concluded that the designed model showed that the fastest implemen-
tation does an equally good job, after optimization of certainty degrees attached to the
rules. For this optimization, a genetic algorithm is applied in their model.

Stoeckle et al. [125] used neural networks for classification of urban environmental
sound sources. The overall aim of their research was to provide new strategies for acous-
tic monitoring of complex urban environments. The specific aim of their research was to
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determine features of sound from commonly existing sources to enable automated source
recognition. Their paper reported the use of Fast Fourier Transforms in order to produce
spectral data of sounds from different sources for the classification using neural networks.

Botteldooren et al. [126] used fuzzy rule based engine to predict noise annoyance. They
predicted noise annoyance that was reported by individuals in a social survey. They ex-
plained in their article, that the rules proposed by the human expert and are based in
linguistic variables. The approach then adapts the sufficiency degree or certainty of a
rule to tune the model to a particular survey. Although all possible relations between
exposure, attitudinal, emotional, personal, environmental and social variables were not
included in the model as yet, the benefits of the new approach were clearly demonstrated.
They also reported that the major limitation that remains was the varying theoretical
and empirical basis of the expert for different subset of annoyance determinants.

Zaheeruddin et al. [127] developed a neuro-fuzzy model for predicting the effects of
noise pollution on human work efficiency as a function of noise level, type of task, and
exposure time. Their model results revealed that the work efficiency depends to a large
extent on the nature of task in addition to exposure time and noise level.

Zaheeruddin and Jain [128] developed a fuzzy model for noise induced hearing loss. In
that model they took three inputs as noise level, duration of exposure (years), frequency
and one output as hearing loss. They used fuzzy logic to interpreted the inputs and
outputs with IF-THEN rules and Mamdani approach. Their model was developed on
the basis of field surveys of WHO & EPA. The model was based on the assumption that
the hearing loss is a function of noise level, duration of exposure and frequency. The
hearing loss is not appreciable below 1 kHz and becomes pronounced between 3-5 kHz
for 80-95dBA noise level.

Zaheeruddin and Jain [129] developed a fuzzy model for determining the work effi-
ciency of humans as a function of noise level, exposure time, and the type of task. Their
modelling technique was based on the concept of fuzzy logic, which offers a convenient
way of representing the relationships between the inputs and outputs of a system in the
form of IF-THEN rules. The model was established on the basis of surveys that the
impact of noise on work efficiency depends to a large extent on the type of tasks. They
explained in their article that the complex tasks got significantly affected even at much
lower noise levels whereas the simple tasks remain unaffected up to very high noise levels.
In their model, they have taken the duration of noise exposure as an important factor
in determining the work efficiency. Finally, they have compared their model results with
the deduction based on the criterion of Safe Exposure Limit recommended for industrial
workers.

Zaheerudin et al. [130] gave a fuzzy model for predicting noise induced annoyance. The
fuzzy model approach offers a convenient way of representing the relationships between
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the inputs and outputs of their system in the form of simple IF-THEN rules. Annoyance
in this model is considered as a function of noise level, its duration of occurrence and the
socio-economic status of a person. The proposed model was implemented on the fuzzy
logic toolbox of MATLAB, using both Mamdani and Sugeno techniques.

Zaheeruddin and Garima [131] developed a neuro-fuzzy model for predicting the ef-
fects of noise pollution on human work efficiency as a function of noise level, type of task,
and exposure time. Their model was based on Fuzzy logic toolbox of MATLAB© using
ANFIS.

Zaheerudin and Jain [132] proposed fuzzy expert system to find noise-induced sleep
disturbance.They have represented the relationships between inputs and outputs of the
proposed system in the form of IF-THEN rules. Noise induced sleep disturbance is con-
sidered as annoyance is generally considered as a function of noise level, its duration
of occurrence and the socio-economic status of a person and it contains high vague-
ness.Hence their proposed fuzzy model easily approximated the system.

Parbat and Nagarnaik [133] developed an artificial neural network model for predicting
the road traffic noise. Their paper illustrated the study on feasibility of ANN modeling
for road traffic noise prediction at Yavatmal city, district place of Vidarbha region in
Maharashtra state. Sixteen locations were identified at uninterrupted and interrupted
traffic flow conditions for conducting field studies Traffic volume study (composition &

classified traffic volume) and noise level study were carried out simultaneously. They
used Artificial Neural Network software (Elite ANN) for traffic noise prediction. In their
model, the network used feed forward back propagation algorithm.

Zaheerudin and Jain [134] developed an expert system using fuzzy approach to in-
vestigate the effects of noise pollution on speech interference. The speech interference
measured in terms of speech intelligibility was considered to be a function of noise level,
distance between speaker and listener, and the age of the listener. The main source of
model development is the reports of World Health Organization (WHO) and field sur-
veys conducted by various researchers. They developed their models by using Fuzzy
Logic Toolbox of MATLAB using both Mamdani and Sugeno techniques. The results
were found to be in good agreement with the findings of World Health Organization
(WHO) and U.S. Environmental Protection Agency (EPA). The study reveals that for
good communication at normal distances (’short’ and ’medium’) encountered in ambient
environment, the noise level should not exceed 65 dB(A) for ’young’ and ’middle aged’,
and 55 dB(A) for ’old’ persons. Their developed models established the usefulness of the
fuzzy technique in studying the environmental problems where the cause-effect relation-
ships are inherently fuzzy in nature.

Golmohammadi et al. [135] developed fuzzy logic based model for assessment of noise
exposure risk in an industrial workplace (Glass Factory) in Hamadan, west of Iran. Their
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work proposes an exposure assessment method of occupational noise based on Fuzzy sets.
The noise assessment by Fuzzy logic method involves the primary investigation of the
workplace, determined inputs and output variables, Fuzzification, Fuzzy rules, Fuzzy in-
ference method and Defuzzification. Their devloped fuzzy method assist to obtain a clear
and integrated approach to risk assessment of noise exposure.

Torija et al. [136] used back-propagation neural networks to predict the short-term
(5-min as integration period) sound pressure level and both temporal structure and spec-
tral composition of the sound-pressure level of urban environments. The proposed ANN
affords noteworthy precision in predicting the descriptors used here, proving much more
effective than the use of Multi Linear Regression (MLR).

Kumar et al. [137] studied the application of neural networks in traffic noise predic-
tion. Modeling and prediction of traffic noise by means of classical approaches is a very
complex and nonlinear process, due to involvement of several factors on which noise level
depends. As per their study, to overcome these above said problems, researchers and
acoustical engineers have applied the artificial neural network in the field of traffic noise
prediction. They concluded that ANN based models were capable of predicting traffic
noise more accurately and effectively as compared to deterministic and statistical models.

2.12 Conclusion

Noise is a dangerous form of environmental pollution. Increased mechanization of open-
cast and underground mines to augment high production and productivity, has accentu-
ated the noise problem to alarming levels. Prolonged exposure of miners to high doses
of noise causes NIHL temporarily /permanently and several other health hazards. Of
late, in view of its associated adverse physiological impacts, it has received significant
public attention and necessitated the government to promulgate, The Noise Rules,2000
and 2010.

Systematic monitoring of various noise sources as well as exposure risk of miners
should be taken up before formulating appropriate control measures to minimize noise
induced risks. Since 1990s, a number of studies have been carried out on noise pol-
lution in Indian mines to assess noise level generated by equipments used in opencast
and underground mines and beneficiation plants, 1/1 and 1/3 octave band analysis and
hearing acuity of miners. There has been limited documentation in mining companies on
hearing loss of miners. In India, as per DGMS guidelines (Circular No. 18 of 1975 and
No.5 of 1990), it is mandatory for every mine to conduct noise level survey, engineering
and administrative controls of noise at workplace, audiometric examinations of workers
and conducting hearing conservation programme. It is also observed that noise levels
in majority of the mining operations are higher than the recommended limit of 90 dB
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(A). Hence the present research work highlights the importance of prediction of opencast
mining machineries noise.Most of the models are environmental and takes into account
the meteorological effects and other attenuation factors which help in estimating accurate
sound power level from the field measurements.

A number of software is available in the market to predict noise in mines. Particularly
in mining industry, some statistical models were used, however, due to complexity of
these models and due to the non-user friendly environment, very less applications were
found. Therefore, Soft-Computing applications may play a major role to overcome these
difficulties. In comparison to mathematical models, soft-computing based models were
successfully implemented in prediction of traffic noise, prediction of noise annoyance
and noise-induced hearing loss, where no such applications of soft-computing models in
opencast mining machineries noise prediction were found. It is expected that in future,
soft computing techniques will be increasingly used for noise modeling.
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CHAPTER 3

NOISE PREDICTION IN MINING
INDUSTRY USING MATHEMATICAL

MODELS

3.1 Introduction

With increasing mechanization of mining operations and the use of heavy earthmoving
machineries in opencast mines, the noise level have increased over the years. To maintain
the good working environment in mines, appropriate noise survey of machineries should
be conducted. The measured sound pressure level (SPL) for the equipments by sound
measuring devices are considered inaccurate due to instrumental error, attenuation due
to geometrical aberration, atmospheric absorption etc. In this chapter, different noise
prediction models (frequency and non-frequency)have been discussed and contour map
of noise sources in a bauxite mine is illustrated.Noise measurements, carried out in the
field are prone to various measurement errors e.g. Instrumental error, meteorological
effect and other attenuation factors. These corrective factors must be applied to the
measured noise to get the accurate value. Most of the noise prediction models use the
empirical equations to compute sound power level from measured sound pressure level.
Based on the computed measurements suitable noise control measures can be adopted.
Details of the studies have been discussed in Chapter 3 (subsection 3.2.1 to 3.2.4).

3.2 Outdoor Noise Prediction

The sound pressure level (SPL, Lp) at an observation point may be defined as the sum of
sound power level (Lw) of the source; a geometric spreading factor, K, which is dependent
upon the type of source and accounts for geometrical spreading as the sound propagates
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away from the source; a directivity index, DIM , which accounts for directional properties
of the source, including influences of reflections other than those in the ground plane;
and an excess attenuation factor, AE.The excess attenuation factor in turn is the sum of
terms including ground reflection, atmospheric effects, etc. The general noise prediction
model is written as the following [18,25]:

Lp = Lw −K +DIM − AE (3.1)

For N sources, the sound pressure level may be computed as the sum of contribution as
in the following equation:

Lp = 10 log10

N∑
i=1

10
Lpi/10 (3.2)

Where Lpi is the sound pressure level due to the ith source.There are many noise pre-
diction models available in the literature. These prediction models are basically of two
types, octave band frequency independent and octave band frequency dependent. The
following sections represent octave band frequency independent model (Verein Deutscher
Ingenieur(VDI)-2714) and octave band frequency dependent models viz. CONCAWE
(Conservation of Clean Air and Water in Europe), ISO(International Standard Organization)-
9613-2, ENM (Environmental Noise Model) etc.Octave band independent model (VDI-
2714) is generally based on the average octave band results. All the calculations of
attenuation factors are determined in dB (A) only. In frequency independent model, it
assumes that all the results have equal impact at all frequencies. To study the actual
effect of SPL in all frequency bands, to study the individual characteristics of attenu-
ation factors in all frequency bands, frequency dependent noise prediction models were
required.

3.2.1 VDI-2714 Noise Prediction Model

In 1976, the VDI (Verein Deutscher Ingenieur) draft code 2714 on Outdoor Sound Prop-
agation was issued by the VDI Committee on Noise Reduction [9]. The sound pressure
level at an environmental point is calculated from the following equation :

LpdB(A) = Σlog
allsources[LW +K1−10 log(4ΠR2)+3dB−K2−K3−K4−K5−K6−K7] (3.3)

where,
Lw = source power level re 10−12 watts
K1 = source directivity index
−10log(4ΠR2)+3dB = geometric spreading term including infinite hard

plane coinciding with the source
R = source to receiver distance
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K2 = atmospheric attenuation = 10 log(1 + 0.0015R)dB(A)

K3 = attenuation due to meteorological conditions
= [(12.5/R2) + 0.2]−1 dB(A)

K4 = ground effects = 10 log[3 + (R/160)]−K2 −K3dB(A)

K5 = barrier value (0-10) = 10log(3 + 20d) dB(A)
d = barrier path difference
K6 = attenuation due to woodland areas
K7 = attenuation due to built-up areas.The above calculations are per-

formed in units of dB(A) only, not in octaves for the OCMA (Oil Companies Materials
Association) and other models such as (VDI-2720, ISO-9613-2, CONCAWE etc.) [9].VDI-
2714 model is a frequency independent model. Using the equation (3.3), results can be
calculated easily. This is very simple and widely used model. As this model output was
used to develop soft computing based prediction models, the details of VDI-2714 were
presented in Chapter 5.

3.2.2 CONCAWE NOISE PREDICTION MODEL

In 1977, CONCAWE (Conservation of Clean Air and Water in Europe) contracted Acous-
tic Technology Ltd of Southampton to review the available literature to date on sound
propagation in the atmosphere and to update the algorithms used in the petroleum
consortium’s OCMA (Oil Companies Material Association) scheme, 1972. The sound
pressure level received at a point remote from the noise source is a function of the acous-
tic power of the source and the various mechanism of attenuation. It is possible to
separate the dominant factors affecting the attenuation of sound and examine the con-
tribution of each individually. The major attenuation mechanism could be defined as
[8, 18,25,107–109]:

• geometrical spreading

• atmospheric absorption

• ground effects

• meteorological effects

• barriers

• in-plant screening.

Thus, in a simplified form the sound pressure level at a remote point can be related to
the source sound power level by the expression:

LP = LW +D −
∑

K(dB) (3.4)
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where LP is the sound-pressure level (dB re 20 µPa), LW is the sound-power level
(dB re 10−12W), D is the directivity index of the source in dB and

∑
K is the sum of the

losses defined above.
The CONCAWE scheme requires octave band analysis. Meteorological corrections in

this scheme are based on analysis of Parkin and Scholes’ data together with measurements
made at several industrial sites. The excess attenuation in each octave band for each
category tends to approach asymptotic limits with increasing distance.

3.2.2.1 Geometrical Spreading (K1)

K1 = 10 log 4πd.2 (3.5)

where d is the source-receiver distance. the formula implies spherical propagation away
from the source. Any reflecting areas, including the ground surface, are taken into account
in the factors K3 −K7.

3.2.2.2 Atmospheric Absorption(K2)

Values of the atmosphere attenuation may be obtained from tables in CONCAWE docu-
ment for the relevant values of temperature and relative humidity. For octave band width
considerations the values corresponding to the lower 1/3rd octave band centre frequency
should be chosen. For pure tone considerations values of the atmospheric absorption
at the particular frequency should be used, making linear interpolation between tabu-
lated values where necessary. Table 3.1 represents the atmospheric absorption values at
different frequencies at 300C.

Table 3.1: Atmospheric Absorption Values, dB km−1, at 300C

Frequency
(Hz)

Relative Humidity, %

55 60 65 70 75 80 85 90 95 100
63 0.1 0.1 0.1 0.1 0 0 0 0 0 0
125 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
250 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.6
500 3.2 3.1 2.9 2.9 2.7 2.6 2.5 2.4 2.3 2.2
1000 7.4 7.5 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8
2000 12.9 13.2 13.5 13.8 14.1 14.3 14.5 14.7 14.8 14.9
4000 24.7 24.5 24.4 24.5 24.6 24.8 25.1 25.4 25.7 26.0
8000 67.5 64.2 61.6 59.5 57.9 56.6 55.5 54.7 54.1 53.6

3.2.2.3 Ground Attenuation(K3)

For acoustically ’hard’ surfaces, such as concrete or water: K3=-3 dB for all frequencies
and distances. For all other surfaces K3 may be determined as a function of frequency
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and distance from the graphs given in Figure 3.1. Where the propagation is partially over
an acoustically ’hard’surface and partially over a surface of finite acoustic impendence,
values for K3 may be obtained by using only the distance traversed across the ’soft’
ground and obtaining the appropriate value from Figure 3.1. Table 3.2 represents the
equations for ground effects at different frequencies.

Figure 3.1: Ground Attenuation curve

Table 3.2: Equations for ground effects at different frequencies

Frequency (Hz) Equation for Ground effects
63 33.4 - 35.04 (log d) + 9.159 (log d)2 - 0.3508 (log d)3

125 8.96 - 35.8 (log d) + 20.4 (log d)2 - 2.85 (log d)3

250 -64.2 + 48.6 (log d) - 9.53 (log d)2 + 0.634 (log d)3

500 -74.9 + 82.23 (log d) - 26.921 (log d)2 + 2.9258 (log d)3

1000 -100.1 + 104.68 (log d) - 34.693 (log d)2 + 3.8068
(log d)3

2000 -7.0 + 3.5 (log d)
4000 -16.9 + 6.7 (log d)

3.2.2.4 Meteorological Correction (K4)

The attenuation due to meteorological factors are function of frequency, distance and
meteorological category as defined in Tables 3.3 and 3.4. For meteorological category
4 the correction is zero in all cases. The correction due to refractions by wind and
temperature gradients is given in Table 3.5.

3.2.2.5 Source and / or receiver Height Correction (K5)

The decrease in excess attenuation due to source height, where this is greater than 2
meter may be obtained from the following relationship:
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Table 3.3: Pasquill (meteorological) stability categories

Wind
Speed
m/s *

Day time Incoming Solar
Radiation mW/Cm2

1 hour before
Sunset or af-
ter Sunrise

Night-time Cloud
Cover (octas)

> 60 30-60 < 30 Overcast 0-3 4-7 8
≤ 1.5 A A-B B C D F or G ** F D
2.0 - 2.5 A-B B C C D F E D
3.0 - 4.5 B B-C C C D E D D
5.0 - 6 C C-D D D D D D D
> 6 D D D D D D D D
* Wind speed is measured to the nearest 0.5 m/s
** Category G is restricted to night-time with less than 1 octa of cloud and wind speed of less than

0.5 m/s

Table 3.4: Pasquill (meteorological) stability categories

Meteorological
category

Pasquill stability category and wind
speed (m/s) (positive is towards receiver)
A,B C,D,E F,G

1 v <- 3.0 – –
2 -3.0 <v<- 0.5 v <- 3.0 –
3 -0.5 <v<+ 0.5 -3.0 <v<- 0.5 v <- 3.0
4* +0.5 <v<+3.0 -0.5 <v<+ 0.5 -3.0 <v<-0.5
5 v >+3.0 +0.5<v<+3.0 -0.5 <v<+ 0.5
6 – v >+3.0 +0.5<v<+3.0
* Category with assumed zero meteorological influences

For (K3 + K4) > - 3 dB

K5= (K3 + K4 + 3) ( γ - 1) dB
γ is obtained from the graph as a function of grazing angle ψ, where

ψ = tan−1[
hs + hr

d
] (3.6)

and hs and hr are the source and receiver heights respectively. when (K3 + K4) < -
3 dB, K5 = 0
The model had been validated for a receiver height of 1.2 m. Sound levels for greater
elevations may be calculated using the above formula.

3.2.2.6 Barrier Shielding(K6)

The attenuation due to barriers is calculated using the method of Maekawa but modi-
fied to account for wind and temperature gradients using the approach of De Jong and
Stusnick. The presence of a discrete barrier may reduce ground effects and it is proposed
that this be covered by recalculating K5 based on the barrier height and barrier-receiver
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3.2 Outdoor Noise Prediction

distance. The barrier attenuation is based on the calculation of a Fresnel number, N
derived from diffraction theory and given by

N = ± path length difference
λ
2

(3.7)

where N is the familiar Fresnel number, and λ is the wavelength.

−0.3 ≤ N < −0.02 K6 = 5.65 + 66N + 244N2 + 287N3

−0.02 ≤ N < 1.0 K6 = 5.02 + 21.1N + 19.9N2 + 6.69N3

1.0 ≤ N < 18.0 K6 = 10 logN + 13

N ≥ 18.0 K6 = 25

(3.8)

3.2.2.7 In-Plant Shielding(K7)

It can be concluded that, in CONCAWE model, shielding of sources by typical plant
found in refineries is negligible and hence K7 should be set to zero. Of course this may
not be true close to the plant nor for large solid shielding obstacles which may then be
classed as barriers.

As the formulas use third order polygons with large constants, their border value
for the distance 0 meters would be constant. There fore the formulas are only valid for
distances greater than or equal to 100 meters. As there is no guarantee that the formulas
are not used at smaller distances, here we extrapolate the formulas for the area between
zero and 100 meters. the value at the distance is set to zero and the value at 100 meter
is calculated using the formulas. Values between 0 and 100 meters was calculated with
linear interpolation.

3.2.3 ISO-9613-2 NOISE PREDICTION MODEL

In this model, the equivalent continuous downwind octave-band sound pressure level at
a receiver, LfT , shall be calculated for each point source, and its image sources, and for
the eight octave bands with octave band center frequencies varying from 63 Hz to 8 kHz,
using Eqns. 3.9 and 3.10:

Lft(DW ) = Lw +Dc − A (3.9)

In Eqns (3.9) and (3.10), Lw is the octave-band sound power level, in decibels, produced
by the point sound source relative to a reference sound power of one picowatt (1pW). Dc

is the directivity correction, in decibels and A is the octave-band attenuation, in decibels,
that occurs during propagation from the point sound source to the receiver.

The equivalent continuous A-weighted downwind sound pressure level may be ob-
tained by summing the contributing time-mean-square sound pressures calculated ac-
cording to Eqn. 3.9. For each point source, for each of their image sources, and for each
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3.2 Outdoor Noise Prediction

octave band, as specified by the following equation [10,11,18,25].

LAT (DW ) = 10 log

{
n∑

i=1

[
8∑

j=1

100.1[Lft(ij)+Af (j)]

]}
(3.10)

where n is the number of contributions i (sources and paths), j is an index indicating
the eight standard octave- band mid-band frequencies from 63 Hz to 8 kHz; Af denotes
the standard A-weighting.

The long-term average A-weighted sound pressure level

LAT (LT ) = LAT (DW ) − Cmet (3.11)

Where Cmet is the meteorological correction.The attenuation term A in equation is
given by

A = Adiv + Aatm + Agr + Abar + Amisc (3.12)

where Adiv is the attenuation due to geometrical divergence, Aatm is attenuation due
to atmospheric absorption, Agr is attenuation due to ground condition, Cmet is meteo-
rological correction, Abar is attenuation due to barrier and Amisc is the attenuation due
to miscellaneous other effects (attenuation due to vegetation and attenuation due to
industrial sites and attenuations due to housing etc.). These attenuations factors were
calculated as per the standard guidelines. Following are the attenuation factors calculated
in the ISO-9613-2 model

3.2.3.1 Geometrical Divergence

For a point source of a spherical wave the geometrical divergence is predicted by

Adiv = [ 20 log(d/d0) + 11] (3.13)

Where d is the distance from the source to receiver, in meters; d is the reference distance
(=1m).

3.2.3.2 Atmospheric Absorption

The attenuation due to atmospheric absorption Aatm, in decibels, during propagation
through a distance d, in meters, is given by following equation:

Aatm = α d/1000 (3.14)

Where α is the atmospheric attenuation coefficient, in decibels per kilometer, for each
octave band at the midband frequency. The frequency-dependent atmospheric attenua-
tion is predicted using expressions detailed in ISO-9613-1.
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3.2 Outdoor Noise Prediction

3.2.3.3 Ground Attenuation

Ground attenuation results from the interference between sound reflected from the ground
surface and the sound propagating directly between the source and receiver. ISO-9613-2
specifies three distinct regions for ground attenuation (see Fig. 3.2).

Figure 3.2: On the calculation of the ground attenuation in ISO 9613-2

The source region stretching over a distance 30hs < dp from the source towards the
receiver

The receiver region, stretching over a distance 30hr < dp.
A middle region, stretching over the distance between the source and receiver regions.

If dp < (30hr + 30hs), the source and receiver regions will overlap, and there is no middle
region.

The acoustic properties of each ground region are specified by a ground factor G.
Three categories of reflecting surface are specified:

• hard ground (G=0): paving, water, ice, concrete and other surfaces with low poros-
ity

• porous ground (G = 1): grassland, trees, vegetation, farm land

• mixed ground ( 0 < G < 1): mixture of hard and porous ground.

The combined ground effect is calculated by

Agr = As + Ar + Am (3.15)

where As, Ar and Am are the source, receiver and middle region components of the
attenuation with corresponding ground factors Gs, Gr and Gm. These values are defined
using the expressions provided ISO-9613-2.

Alternatively, for some specific conditions when much of the ground is porous and the
sound is not a pure tone, the ground attenuation can be calculated by the formula

Agr = 4.8− (2hm/d)(17 + 300/d), dB (3.16)
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3.2 Outdoor Noise Prediction

where hm is the mean height of the propagation path above the ground. In this case
the directivity correction is given by:

D = 10 log{1 + [d2
p + (hs − hr)

2]/[d2
p + (hs + hr)

2]}dB (3.17)

Where dp is the distance between source and receiver, hs is the height of the source
and hr is the height of the receiver. This directivity correction accounts for the increase
in sound power level of the source due to reflections from the ground near the source.

3.2.3.4 Meteorological Correction

A long-term average A-weighted sound pressure level requires to include the effect of
a variety of meteorological conditions, which can be favorable or unfavorable for sound
propagation. This is accounted for by the meteorological correction term whose value is
predicted from

Cmet = 0 if dp ≤ 10 (hs + hr) (3.18)

Cmet = C0 [1− 10 (hs + hr)/dp] if dp > 10 (hs + hr) (3.19)

Where hs is the source height, in meters, hr is the receiver height, in meters and dp is
the distance between the source and receiver projected to the horizontal ground plane,
in metres. C0 is a factor, in decibels, which depends on local meteorological statistics for
wind speed and direction, and temperature gradients. Typical values are 0 ≤ C0 ≤ 5.

NORDFORSK [138] noise model (developed by Lydteknisk Laboratorium of Denmark
(now it is changed to DELTA ACOUSTIC and VIBRATION) in 1982 for the Danish
Environmental Protection Agency) and VDI-2720 [139] (Extended version of VDI-2714
developed by Verein Deutscher Ingenieur, Germany in 1986)are similar to ISO-9613-2.
Calculation of all attenuation factors of both the models were similar to ISO-9613-2,
except the calculation of atmospheric attenuation in NORDFORSK model. For NORD-
FORSK model, the calculation of atmospheric attenuation was calculated as per ANSI
S1.26 - 1978. For VDI-2720, the atmospheric attenuation was calculated as per ISO-
9613-1.

3.2.4 ENM - ENVIRONMENTAL NOISE MODEL

The Environmental Noise Model (ENM) was developed by RTA Technology Pty Ltd. in
1985 [9, 18,140]. The basic format of calculation is as follows;

Lp =

log∑
all sources

(Lw +D − A1 − A2 − A3 − A4 − A5) (3.20)

where, Lw= sound power level dB re 10−12 watts,
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3.2 Outdoor Noise Prediction

D= source directivity,
A1 = geometric spreading,
A2= barrier attenuation
A3 = air absorption
A4 = wind and temperature effects
A5 = ground attenuation
ENM follows generally the methods used in CONCAWE. Where the two models devi-

ate is in the extent of usage of theory ENM being a relatively new model takes advantage
of recent developments in the theory of ground effect and the effect of meteorology. The
other notable difference is that ENM was produced as a computer program rather than
a descriptive set of algorithms. ENM works in both 1/3rdoctave and 1/1 octave format
from 25Hz to 20kHz.

3.2.4.1 Sound Power Level (Lw)

The ENM program allows sources to be enclosed or unenclosed. If the source is unenclosed
then the sound power level is specified in the normal way. If the source (or a group of
sources) is enclosed then one needs to specify both the sound power levels of the sources
and the acoustic properties of the enclosure walls. Enclosures are defined as a collection
of rectangular surfaces with an absorptive face on the side nearest the source and having
a sound transmission loss. The total sound pressure level inside the enclosure and close
to the surface is:

Lp,inside = LW,totatl + 10 log

[
Q

4πr2
+

4

Abs

]
(3.21)

where Q
4πr2 is the directed field term and is approximately the reciprocal of the sum of

all the surface areas comprising the enclosure and Abs is the total absorption within
the enclosure and is obtained by summing the absorption of all surfaces comprising the
enclosure.

3.2.4.2 Directivity Correction

A frequency independent directivity correction term is included in the ENM model and
is based on either user-selected angles or array co-ordinates recommended in ISO 3745-
1977. These co-ordinates are points on the surface of a hypothetical sphere whose center
coincides with the acoustic center of the source. The program interpolates values for
directions of source to receiver which do not coincide with these array co-ordinates.

3.2.4.3 Geometric Spreading (A1)

All sources are considered first in the absence of the ground, that is, as if they were
suspended in a free field. Sources are of three types: point, line and plane.
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3.2 Outdoor Noise Prediction

For point sources, the attenuation due to geometric spreading is that for spherical
radiation.

Apoint
1 = 10 log

(
4πR2

)
(3.22)

For line sources, the attenuation due to geometric spreading is that source of length L is

Aline
1 = 10 log (4πal/α) (3.23)

Where, L is the source length , a is the perpendicular separation of the receiver from
the line source axis and, α is the subtended angle in radians. For plane sources, the
sound pressure resulting from monopole radiation of a rectangular source of area A is

p2 =

∫∫
A

(Wρc/A).
{
1/
(
4πR2

)}
dxdy (3.24)

Where, W the total source power and ρc is the characteristic impedance of air measured
at a point which is a distance R from the source acoustic center. The integration was
performed numerically for different sized sources and for different angles subtended with
the plane. Variation of pressure with angle and plane aspect ratio was shown not to
vary significantly for most situations and so the results were condensed into a single
non-dimensionalised curve shown in ENM literature. The attenuation for plane sources
is then calculated by determining the value of C and hence,

Apoint
1 = 10 log

(
4πR2

)
+ C (3.25)

3.2.4.4 Barrier Attenuation (A2)

In ENM noise prediction model, the Maekawa theory is commonly used for predicting
noise reduction from barriers. Similar procedure was followed in CONCAWE noise pre-
diction model.

3.2.4.5 Air Absorption (A3)

The algorithm for the calculation of air absorption is based on ANSI (American National
Standards Institute) S1.26.17. The same standard was used in CONCAWE model. ENM
program calculates the value of air absorption in octave band frequencies.

3.2.4.6 Wind and Temperature Effects (A4)

The effects of refraction of sound in the atmosphere can best be thought of in terms
of sound ray propagation. Curvature of sound ray paths is a result of variations in the
speed of sound with height. Sound speed variations can either be caused by changes
in air density due to temperature or simply by the movement of the air medium itself.
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3.3 Study Area

Intuitively, one would expect that sonic speed variations caused by a combination of these
two effects would be additive. Examination of measurements conducted by Parkin and
Scholes shows there is some evidence to support this theory. This principle is assumed
in the CONCAWE model as well. Table 3.6 shows the value of attenuation so obtained
for two source-receiver distances.

Table 3.6: Excess Attenuation due to Wind and Temperature Effect

VALUES OF EXCESS ATTENUATION A4 DUE TO WIND AND
TEMPERATURE EFFECTS

TOTAL VER-
TICAL SONIC
GRADIENT

FREQUENCY

31.5 63 125 250 500 1k 2k 4k 8k 16k
110 metres
+0.075 -2 -2 -0.5 3 -2 -5 -2 -2 -2 -2
-0.075 1 1 2.5 0 2 6 10 6 6 6
616 metres
+0.075 -5 -5 -2 0 -9 -9 -6 -7 -7 -7
-0.075 5 5 6 4 7 7 7 6 6 6

3.2.4.7 Ground Attenuation (A5)

Propagation of sound from a source placed above a semi-infinite ground plane has been
extensively reviewed. The expression of the plane wave reflection coefficient Rp may be
written as:

Rp =

[
sin ϕ−

(
ρc
Zg

)]
[
sin ϕ+

(
ρc
Zg

)] (3.26)

where ρc is the characteristic impendence of air, 407 MKS Rayls and Zg is the impendence
of the ground surface and is given by

Zg = ρc

[
1 + 0.0571

(
ρf

ϕ

)−0.754

− i0.087

(
ρf

ϕ

)−0.732
]

(3.27)

where f is the frequency and ϕ is the ground surface flow resistivity.

3.3 Study Area

For this present study two mines (Balram Opencast Coal Mine, Talcher and Panchpat-
mali Bauxite Mine, NALCO, Koraput) were chosen from Odisha. Fig. 3.3 represents
geographical map of Odisha with the location map (District wise) of Balram Opencast
Coal Mine (Talcher Coal Field, Talcher, Angul District) and Panchpatmali Bauxite Mine
(Nalco, Damonjodi, Koraput District).
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3.3.1 Balram Opencast Coal Mine

The Balram Opencast Project (previously known as Kalinga OCP) was operated first on
27th January, 1991. The mine is situated near Danara village of Angul District in Odisha
and located in South Central part of Talcher Coalfields. It’s Longitude is 85°02′52′′E
and Latitude of 20°56′02′′N to 20°58′28′′N. Figure 3.4 represents the geographical map of
Talcher coalfield, and Fig. 3.5 shows the map of Balram Opencast mines.

Geological exploration has been done by drilling in an area of 23.78 sq kms. The block
is geotechnically complicated, as 21 normal faults have traversed the area. The total coal
reserve in the entire block is estimated at 980 MT. However the present Balram east
block amounts to only 168 MT. of coal occurring in seam II, III & IV. In general the
strike of the bed is East West and the beds dip gently 20 to 90 in northerly direction.
Due to presence of a number of splits and variable parting thickness, shovel and dumper
combination is proved suitable for removal of overburden (OB) and coal. At present 10
m3 shovels with 85 T dumpers are used for OB removal. Pay loader with 10 wheeler
tippers are deployed for coal production. Fig. 3.6 represents the selected machineries for
the current study.

3.3.2 Panchpatmali Bauxite Mine

Panchpatmali bauxite mine is situated in village Damanjodi, in Koraput district of
Odisha, India. The Alumina refinery at Damanjodi is situated at about 16 km from
Panchpatmali Bauxite mines. Damanjodi is about 12 km. Its the Latitude of 18°51′0′′N
and Longitude of 83°1′6′′E. The Panchpatmali bauxite deposit is a high level lateritic de-
posit situated in the Eastern Ghats, at an altitude of 1300 m above M.S.L. on a plateau
covering 17 sq.km area. This plateau rises 300m-400m above the plane of the surrounding
hilly terrain of undulating topography. Panchpatmali bauxite deposit is the one amongst
a series of bauxite deposits which were discovered in the east coast region of India in early
1960s to put India in the 5th position in the world’s bauxite map with a total bauxite re-
serves of over 2 billion tonnes. The current annual production is about 4.8 million tonnes
which is now under expansion to 6.3 MT. Considering its vast deposit containing over
300 million tonnes of reserve, Panchpatmali bauxite deposit under the name of NALCO
Ltd., was picked up by Govt. of India as a front-runner for the bauxite exploitation in the
eastern region of India.Fig.3.7 represent the satellite map of Panchpatmali Bauxite Mine,
where as Fig. 3.8 depicts the working map.Fig. 3.9 represents the selected machineries
used in the mine.
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3.3 Study Area

(a) Grader (220 hp) (b) Dumper (85T)

(c) Shovel (10 m3 bucket capacity) (d) Tipper (10T-160hp)

(e) Dozer (410hp)

Figure 3.6: Machineries used in Balram opencast coal mine
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N

LEGEND
MP-1 (Central Store)
MP-2  (Central Workshop)
MP-3  (Crusher)
MP-4  (Dump-Central Road)

MP-11 (North Block)

MP-5  (TDS Building)
MP-6  (FMG)
MP-7  (MRS Road)
MP-8 (North Block OB Road-1)
MP-9 (North Block-OB)
MP-10 (North Block)

Workshop

Crusher

Central Store

Central Road

Dump-Central Road

FMG

TDS Building

MRS Road

North Block -OB-Road-1

North Block-OB

North Block

North Block

Figure 3.7: Panchpatmali bauxite mine,NALCO [141].
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Figure 3.8: Working Map of Panchpatmali bauxite mine, NALCO
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(a) Percussive Drill (324 hp) (b) Dozer (416 hp)

(c) Dumper (50T) (d) Pay-Loader(555hp)

(e) Rock-breaker (120 hp) (f) Shovel (3m3 bucket capacity, 320 hp)

Figure 3.9: Machineries used in Panchpatmali bauxite mine, NALCO
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3.4 Machinery Noise Prediction in Opencast Mines

In the present work, statistical noise prediction models viz. VDI-2714, CONCAWE, ISO-
9613-2, VDI-2720, NORDFORSK and ENM etc. were used to predict noise of opencast
mining machineries.

VDI-2714 is used to predict Balram opencast mining machineries noise. For Balram
opencast mine, shovel (10 m3 bucket capacity), dozer (410hp), tipper (10T-160hp), grader
(220 hp) and dumper (85T) were selected for this work.

Other frequency dependent prediction models (CONCAWE, ISO-9613-2 etc.) are dis-
cussed in this section. For Panchpatmali bauxite mine, dozer (416 hp), shovel (3m3

bucket capacity, 320 hp), pay-loader (555hp), dumper (50T), rock-breaker (120 hp), ro-
tary percussive drill (324 hp), double roll toothed crusher were selected. Three major
frequency dependent models (CONCAWE, ISO-9613-2 and ENM) were used to predict
Panchpatmali bauxite mining machineries noise for 50 m, 100 m and 150 m distances.
The calculation and prediction results are described as follows:

3.4.1 Application of ISO-9613-2 Noise Prediction Model

Using the Equation 3.9, ISO-9613-2 model was applied to predict the machineries noise
of Panchaptmali opencast bauxite mine, NALCO. For ISO-9613-2, all the calculations
were made in the frequency range between 63 Hz to 8000 Hz. Attenuation factors, DI
(Directive Index), K1(Geometrical divergence), K2(atmospheric absorption), K3 (ground
condition) , K4 (meteorological correction) are calculated as per the standard. As this
mine is covered with hilly area, with the geographical condition of mines and as per the
standard, K5 (barrier attenuation) and K6 (attenuation due to miscellaneous effects) are
considered as zero. All the attenuation factors were calculated as per the standard and
finally the predicted SPL was calculated in dB(A) using A-weighting correction. Table
3.7 represents the ISO-9613-2 prediction results for dozer (416 hp) at 50 m, 100 m and
150 m , where as Fig.3.10 represents the spectrum analysis. Table 3.8 to Table 3.13
represents the prediction results (ISO-9613-2) of other selected machineries at 50 m, 100
m and 150 m. Figure 3.11 to 3.16 represents sound spectrum analysis of all the selected
machineries with ISO-9613-2 prediction assessment. After getting the prediction results,
contour plots was generated and represented in Fig. 3.17. From the contour plot, noise
mapping is possible to study.
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3.4 Machinery Noise Prediction in Opencast Mines
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Figure 3.10: Spectrum analysis of Dozer noise at 50 m, 100 m and 150 m with ISO-9613-2
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Figure 3.11: Spectrum analysis of Shovel noise at 50 m, 100 m and 150 m with ISO-9613-2
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3.4 Machinery Noise Prediction in Opencast Mines
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Figure 3.12: Spectrum analysis of Dumper noise at 50 m, 100 m and 150 m with ISO-
9613-2
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Figure 3.13: Spectrum analysis of Pay-Loader noise at 50 m, 100 m and 150 m with
ISO-9613-2 102



3.4 Machinery Noise Prediction in Opencast Mines
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Figure 3.14: Spectrum Analysis of Rock-Breaker Noise at 50 m, 100 m and 150 m with
ISO-9613-2
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Figure 3.15: Spectrum analysis of Drill noise at 50 m, 100 m and 150 m with ISO-9613-2
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3.4 Machinery Noise Prediction in Opencast Mines
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Figure 3.16: Spectrum analysis of Crusher noise at 50 m, 100 m and 150 m with ISO-
9613-2
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3.4 Machinery Noise Prediction in Opencast Mines

Figure 3.17: Contour plot of ISO-9613-2 noise prediction for Damonjodi bauxite mine,
NALCO
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3.4 Machinery Noise Prediction in Opencast Mines

3.4.2 Application of CONCAWE Noise Prediction Model

CONCAWE noise prediction model (Equation 3.4)is essentially empirical and was applied
for predicting machineries noise in NALCO bauxite mine. The CONCAWE method is
especially suited for assessments where prevailing winds and meteorological conditions do
not fit normal conditions as in the other standards. CONCAWE is the only standard that
allows the meteorological influence to be assessed. For this prediction model, all the cal-
culations were made in the frequency ranges from 63 Hz to 4000 Hz. Attenuation factors
K1( Geometrical Divergence), K2 (Atmospheric Absorption), K3 (Ground Topography),
K4 (Meteorological Correction), K5 (Source Height Effect). Attenuation due to barrier
is taken as zero as there is no barrier present in the selected mine. All the attenuation
factors are calculated as per the standard.As the formulas use third order polygons with
large constants, their border value for the distance 0 m would be constant. Therefore
the formulas are only valid for distances greater than 100 m. Hence, the value at the
distance is set to zero and the value at 100 m is calculated using the formulas. Values
between 0 and 100 m are calculated with linear interpolation. Table 3.14 to Table 3.20
represents the prediction results (CONCAWE) of all selected machineries with 50 m, 100
m and 150 m. Figure 3.18 to 3.24 represents sound spectrum analysis of all the selected
machineries with CONCAWE prediction assessment. After getting the prediction results,
contour plot was generated and represented in Fig. 3.25.

3.4.3 Application of ENM Noise Prediction Model

ENM model (Equation 3.20) was applied to predict noise in NALCO bauxite mine. The
calculation procedure of ENM is quite similar to CONCAWE model in calculation of the
attenuation due to absorption. For ENM model, all the calculations were made in the
frequency ranges from 31.5 Hz to 8000 Hz. Attenuation factors K1( Geometrical Diver-
gence), K2 (Atmospheric Absorption), K3 (Ground Topography)and K4 (Meteorological
Correction). Attenuation due to barrier is taken as zero here. All the attenuation factors
are calculated as per the standard. Table 3.21 to Table 3.27 represents the prediction
result (ENM) of all selected machineries at 50 meter, 100 m and 150 m. Figure 3.26 to
3.32 represents sound spectrum analysis of all the selected machineries with ENM pre-
diction result.Contour plot is generated using ENM prediction results and represented in
Fig. 3.33.
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3.4 Machinery Noise Prediction in Opencast Mines

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
66

68

70

72

74

76

78

80

82

84

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Dozer noise at 50 meter of distance

 

 

Leq 77.8 dB(A) (Measured)

Leq 77.3 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(a)

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
60

62

64

66

68

70

72

74

76

78

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Dozer noise at 100 meter of distance

 

 

Leq 72 dB(A) (Measured)

Leq 72.3 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(b)

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
54

56

58

60

62

64

66

68

70

72

74

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Dozer noise at 150 meter of distance

 

 

Leq 66.2 dB(A) (Measured)

Leq 65.6 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(c)

Figure 3.18: Spectrum analysis of Dozer noise at 50 m, 100 m and 150 m with CONCAWE

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
66

68

70

72

74

76

78

80

82

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Shovel noise at 50 meter of distance

 

 

Leq 77.0 dB(A) (Measured)Leq 76.4 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(a)

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
62

64

66

68

70

72

74

76

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Shovel noise at 100 meter of distance

 

 

Leq 70.9 dB(A) (Measured) Leq 72.3 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(b)

63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
56

58

60

62

64

66

68

70

72

Frequency in Hz

SP
L 

in
 d

B

Spectrum Analysis of Shovel noise at 150 meter of distance

 

 

Leq 65.9 dB(A) (Measured)

Leq 66.2 dB(A) (Predicted)

 Measured
 Predicted (CONCAWE)

(c)

Figure 3.19: Spectrum analysis of Shovel noise at 50 m, 100 m and 150 m with CON-
CAWE
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Figure 3.20: Spectrum analysis of Dumper noise at 50 m, 100 m and 150 m with CON-
CAWE
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Figure 3.21: Spectrum analysis of Pay-Loader noise at 50 m, 100 m and 150 m with
CONCAWE 116



3.4 Machinery Noise Prediction in Opencast Mines
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Figure 3.22: Spectrum analysis of Rock-Breaker noise at 50 m, 100 m and 150 m with
CONCAWE
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Figure 3.23: Spectrum analysis of Drill noise at 50 m, 100 m and 150 m with CONCAWE
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Figure 3.24: Spectrum analysis of Crusher noise at 50 m, 100 m and 150 m with CON-
CAWE
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3.4 Machinery Noise Prediction in Opencast Mines

Figure 3.25: Contour plot of CONCAWE noise prediction for Damonjodi bauxite mine,
NALCO
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B

Spectrum Analysis of Dozer noise at 50 meter of distance

 

 

Leq 77.8 dB(A) (Measured)

Leq 80.3 dB(A) (Predicted)

 Measured
 Predicted (ENM)

(a)
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Spectrum Analysis of Dozer noise at 100 meter of distance

 

 

Leq 72.0 dB(A) (Measured)
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Figure 3.26: Spectrum Analysis of Dozer Noise at 50 m, 100 m and 150 m with ENM
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Figure 3.27: Spectrum analysis of Shovel noise at 50 m, 100 m and 150 m with ENM
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Figure 3.28: Spectrum analysis of Dumper noise at 50 m, 100 m and 150 m with ENM
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Figure 3.29: Spectrum analysis of Pay-Loader noise at 50 m, 100 m and 150 m with ENM
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Figure 3.30: Spectrum Analysis of Rock-Breaker Noise at 50 m, 100 m and 150 m with
ENM
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Figure 3.31: Spectrum analysis of Drill noise at 50 m, 100 m and 150 m with ENM
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Figure 3.32: Spectrum analysis of Crusher noise at 50 m, 100 m and 150 m with ENM
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3.4 Machinery Noise Prediction in Opencast Mines

Figure 3.33: Contour plot of ENM noise prediction for Damonjodi bauxite mine,NALCO
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3.5 Conclusion

3.5 Conclusion

Noise surveys of different machineries of different opencast mines were conducted. From
the survey, it was concluded that shovel and drill produces noise levels exceeding the
permissible level (90 dB(A)) in NALCO Damanjodi bauxite mine,where shovel, dumper
and grader produces noise levels exceeding the permissible level (90 dB(A)) in Talcher,
Balram opencast mine. All types of noise prediction models (both frequency and non
frequency based noise prediction models) were used to predict appropriate noise status
of the selected machineries with calculating all attenuation factors. Both the frequency
and non-frequency based noise prediction models had given appropriate prediction results
with intervals of distance from the source. At each interval of distance, sound pressure
level of machineries was predicted by calculating all attenuation factors. This type of
studies helped mining engineers to adopt administrative noise control strategies at work
place. However, it was observed that noise prediction models are mathematically com-
plex; took more CPU time to get result and all the calculations were repeated with every
new data set. Hence intelligent system viz. fuzzy, neural network, radial basis function
etc. based applications were required for developing intelligent noise prediction models.
Noise contours were plotted for an opencast mine and it could be useful for noise zoning
and mapping to minimize workers exposure as per statutory prescribed limits.

In ISO-9613-2, frequency band of 63 Hz - 8 kHz was used. From the model result, it
was seen that for all the machineries, ISO-9613-2 model gave an overestimate value up
to 50 m, whereas an underestimate result at 100 m and 150 m. For CONCAWE model,
frequency band of 63 Hz-4 kHz was used and was found that CONCAWE model provided
an underestimate value for all the selected machineries. For ENM model, frequency band
of 31.5 Hz-8 kHz was used and provided an underestimate result for all the selected ma-
chineries.

Out of different models, it was observed that only ISO-9613-2 gave marginally over-
estimate results, whereas other models (ENM and CONCAWE) provided slightly under-
estimate value. Since all the methods except ISO-9613-2 were showing under estimate
values beyond 50 m distance with marginal error, selectively models can be used for noise
prediction based on the topographical and mining conditions.
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CHAPTER 4

INTRODUCTION TO SOFT-COMPUTING
TECHNIQUES

4.1 Introduction

Soft computing is considered as an emerging approach to computing, which parallels the
remarkable ability of human mind to reason and learn in a circumstance of uncertainty
and imprecision. The pioneer of soft computing, Lotfi A. Zadeh [142], has pointed hat,
the guiding principle of soft computing was to exploit the tolerance for imprecision, un-
certainty, and partial truth to achieve tractability, robustness, low solution cost, better
rapport with reality. In contrast with hard computing methods that only deal with preci-
sion, certainty, and rigor, soft computing is effective in acquiring imprecise or sub-optimal
but economical and competitive solutions. It takes advantage of intuition, which implies
the human mind-based intuitive and subjective thinking. The motivation of applying
the human intuition is that a large number of real-world problems cannot be solved by
hard computing methods, due to the fact either they are too complex to handle or they
cannot be described or catalogued by any analytical and exact models. However, in most
cases, human experts are marvelously successful in dealing with these problems, e.g.,
face recognition in a noisy background. Zadeh also emphasizes precise measurement and
control approaches are not always effective in coping with such difficult problems, but
perception can often help. Therefore, the goal of soft computing is to exploit the impre-
cision and uncertainty in human decision making procedure, and achieve simple, reliable
and low-cost solutions. Because of the aforementioned unique features, soft computing
has drawn increasing research attention from people in different communities [143].

In general, soft computing differs from conventional (hard) computing in that, unlike
hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approxima-
tion. In effect, the role model for soft computing is the human mind. The principal
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4.1 Introduction

constituents of soft computing (SC) are: Fuzzy Logic (FL), Neural Computing (NC),
Evolutionary Computation (EC), Machine Learning (ML) and Probabilistic Reasoning
(PR). That is, it is evolving the above relevant techniques together with the important
advances in other new computing methods, such as artificial immune systems, common-
sense reasoning, probabilistic reasoning, intelligent agents and chaos theory. The principal
constituent methodologies in soft computing are complementary rather than competitive.
Furthermore, soft computing may be viewed as a foundation component for the emerging
field of conceptual intelligence [144].

Associated of the symbiotic relationship between FL, NC, EC and PR is the growing
visibility of information/ intelligent systems which employ the constituent methodologies
of soft computing in combination rather than separation. Table 4.1 lists three method-
ologies (FL, NC, EC) and their advantages. More specifically, it is advantageous to
utilize artificial neural networks, fuzzy systems, and evolutionary algorithms in combi-
nation instead of isolation absolutely. A typical example to support this argument is
the popular Neuro-Fuzzy or Adaptive Network Based Fuzzy Inference System (ANFIS)
network model, which takes advantage of the capabilities of both fuzzy logic and neural
networks. The Neuro-Fuzzy or ANFIS network is usually constructed to merge the fuzzy
inference mechanism and neural networks into an integrated structure so that their indi-
vidual weaknesses are overcome. The neuro-fuzzy technique can have the same topology
with the feedforward neural network, i.e., nodes and layers. On the other hand, the input
and output node functions inside are replaced with fuzzy membership functions. Regular
back-propagation learning algorithm is applied to train the parameters of these fuzzy
membership functions. It has been deployed in such many prospects as image processing
and speech recognition [145]. .

Table 4.1: Soft Computing Constituents [145]

Methodology Advantage

Artificial Neural Network Learning and Approximation

Fuzzy systems Approximate reasoning

Evolutionary algorithms Systematic random search

The primary contribution of Soft Computing is the machinery of probability theory
and the subsidiary techniques for decision-making under uncertainty, belief networks,
cluster analysis and analysis of stochastic systems. During the past decades, the applica-
tion of soft computing has covered a variety of areas. Besides control and instrumentation,
other important fields include speech recognition, signal processing, telecommunications,
power electronics systems, and system diagnosis. Soft computing has, in fact, shown a
superior performance to the hard computing-based solutions in manipulating these real-
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4.2 Fuzzy logic System

world problems. With the rapid development of hardware platforms, e.g., digital signal
processing (DSP) and neural networks/fuzzy logic chips, it is becoming more and more
feasible to apply soft computing methods into practice[146,147].

4.2 Fuzzy logic System

The fuzzy inference system is a popular computing framework based on the concepts of
fuzzy set theory, fuzzy-if-then rules and fuzzy reasoning. It has found successful appli-
cations in a wide variety of fields, such as automatic control, data classification, decision
analysis, expert systems, time series prediction, robotics, and pattern recognition[148–
153]. Because of its multidisciplinary nature, the fuzzy inference system is known by nu-
merous other names, such as fuzzy-rule-based system, fuzzy expert system, fuzzy model,
fuzzy associate memory, fuzzy controller and simply fuzzy system.

Fuzzy expert system based on fuzzy set theory was introduced in 1965 by Lofti
Zadeh [142] as a new way to represent vagueness in everyday life. It is a truth that
most of the world’s understanding is uncertain and unfocussed; hence, all the real system
intrinsically contains incomplete and imprecise information. In order to be in agreement
with the real system, the fuzzy systems work on the concept of vagueness through a set of
rules called the rule base. The detailed analysis of fuzzy systems are widely available in
technical literature [142,144,154–162].The main structure of a fuzzy rule based system is
the fuzzy algorithm the fundamental concepts of which are derived from fuzzy logic. The
generalized structure of a fuzzy system is presented in Fig.4.1. Fuzzy system comprises
of four blocks viz: fuzzifier, knowledge base, inference engine and defuzzifier [142,154].

Figure 4.1: Structure of fuzzy rule based system.

4.2.1 Fuzzifier

The real world input to the fuzzy system is applied to the fuzzzifier. In fuzzy litera-
ture, this input is called crisp input since it contains precise information the parameter.
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4.2 Fuzzy logic System

The fuzzifier converts this precise quantity to the form of imprecise quantity like ‘large’,
‘medium’, ‘high’ etc. with a degree of belongingness to it. Typically, the value ranges
between [0, 1].

Fuzziness in a fuzzy set is characterized by its membership functions. It classifies the
element in the set, whether it is discrete or continuous. The membership functions can
also be formed by graphical representations. The graphical representations may include
different shapes.There are different methods to form membership functions. From liter-
ature [142,156,157,159] it was clearly noted that, a fuzzy set is completely characterized
by its membership function (MF). Theoretically, a fuzzy set F of universe of discourse X
= {x} is defined as a mapping, µF (x) : X→ [0, α] , by which each x is assigned a number
in the range [0, α], indicating the extent to which x has the attribute F. Thus, if x is the
number of vehicles in a queue, “small” may be considered as a particular value of the fuzzy
variable “queue” and each x is assigned a number in the range from 0 to ∞, µsmall(x) ∈
[0, α], that indicates the extent to which that x is considered to be small: µsmall(x) ∈ [0,
α] is called a membership function. Various types of membership functions, along with
their function and characteristics are presented in Table 4.2 and graphical representation
of desired membership functions are represented in Figure 4.2.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

Gr
ad

es

(a) Triangular MF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

Gr
ad

es

(b) Trapezoidal MF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

Gr
ad

es

(c) Gaussian MF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

Gr
ad

es

(d) Generalized Bell MF

Figure 4.2: Examples of four classes of parameterized MFs: (a) triangle (x; 20,60,80); (b)
trapezoid (x; 10,20,60,95); (c) Gaussian (x; 50,20) ; (d) bell (x; 20,4,50).
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4.2 Fuzzy logic System

4.2.2 Knowledge base

Knowledge base: The main part of the fuzzy system is knowledge base in which both rule
base and database are jointly referred. The database defines the membership functions
of the fuzzy sets used in the fuzzy rules where as the rule base contains a number of fuzzy
if-then rules. The formation of rule-base is discussed in the following manner:

Let X be the universe of discourse and x is the elements of X. A fuzzy set A in a
universe of discourse X is characterized by a membership function µA(x) which has a
value ranging from 0 to 1. If there were ‘n’, fuzzy sets associated with a given input x,
then fuzzifier would produce ‘n’ fuzzy sets as A1(x), A2(x). . . An(x) with ‘n’ number of
membership functionµAi

(x), i =1, 2. . . n. This process is called the fuzzification. After
fuzzification, the information goes to knowledge base, which comprises a database and
rule base. Membership functions of the fuzzy sets are contained in the database. The
rule base is a set of linguistic statements in the appearance of IF-THEN rules with an-
tecedents and consequents, correspondingly, with AND or OR operators. In general, a
fuzzy model, with multi-input multi-output (MIMO) system can be represented by the
fuzzy IF-THEN rules connected by the AND operator with r antecedents, s consequents
and m rules as:

IF X1 is B11 AND X2 is B12 AND . . ... AND Xr is B1r

THEN Y1 is D11 AND Y2 is D12 AND . . . AND Ys isD1s

ALSO. . ..
ALSO
IF X1 is Bm1 AND X2 is Bm2 AND . . . .. AND Xr is Bmr

THEN Y1 is Dm1 AND Y2 is Dm2 AND . . . AND Ys is Dms

(4.1)

Where X1, X2. . . Xr are the input variables and Y1, Y2. . . . . . Ys are the output
variables, Bij (i=1. . . .m; j=1. . . .r) and Di (i=1,. . . .s) are the linguistic labels defined as
reference fuzzy sets over the input space X1, X2. . . Xrand output space Y1, Y2. . . . . . Ys

of the MIMO system. Conceptually, a MIMO fuzzy system can be decomposed into
several multi-inputs single-output (MISO) system. Hence, in a system with s outputs,
each multi-consequent rule is broken into s single-consequent rules. If the outputs Y1,
Y2. . . . . . Ysare independent variables, then the MIMO system can be decomposed into a
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4.2 Fuzzy logic System

collection of s MISO system as following manner[163–166]:

IFX1 is B11 AND X2 is B12 AND . . ... AND Xr is B1r THEN Y1 is D1

ALSO . . ..

ALSO
IF X1 is Bm1 AND X2 is Bm2 AND . . ... AND Xr is Bmr THEN Ys is Ds

(4.2)

After formation of rule base, the last block defuzzifier converts the fuzzy output obtained
by inference engine into a non-fuzzy output real number domain and this process is called
defuzzification. Among several methods of defuzzification, the Center of Area (COA) is
the most widely used method [167–169].

4.2.3 Inference engine

The inference system or the decision-making unit performs the inference operations on
the rules. It handles the way in which the rules are combined. It provides the process
in which the system should behave to different inputs. Basically Inference Engine is a
composition between fuzzy set. Widely Max-Min or Max-Product compositions are used.
It is described as follows:

Let R be relation that relates elements from universe X to universe Y . Let S be the
relation that relates elements from universe Y to universe Z . Let T relate the same ele-
ment in universe that R contains to the same elements in the universe Z that S contains.
The Max-Min complication is defined by the set-theoretic and membership function-
theoretic expressions:

T = R ◦ S
XT (x, z) =

∨
y∈Y (XR(x, y)

∧
XS(y, z))

(4.3)

The max-product composition is defined by the set-theoretic and membership function-
theoretic expressions

T = R ◦ S
XT (x, z) =

∨
y∈Y (XR(x, y) •XS(y, z))

(4.4)

Using Max-Min and Max-Product compositations,Inference engine is built up with rule
base. Let A fuzzy system with two non-interactive inputs x1 and x2 (antecedents) and
a single output y (consequent) is described by a collection of “r” number of IF−THEN
rules:

IF x1 is A1
k and x2 is A2

k THEN yk is Bk, for k = 1, 2, ...r (4.5)
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4.2 Fuzzy logic System

where A1
k and A2

k are the fuzzy set representing kth antecedent pairs and Bk is the fuzzy
set representing kth consequent. The Max-Min Inference will be:

µBk =
max

k
[min[µAk

1
(x1), µAk

2
(x2)]] (4.6)

The Max-Product Inference will be:

µBk =
max

k
[µAk

1
(x1) • µAk

2
(x2)]] (4.7)

4.2.4 Defuzzifier

The output generated by the inference block is always fuzzy in nature. A real world
system will always require the output of the fuzzy system to the crisp or in the form of
real world input. The job of the defuzzifier is to receive the fuzzy input and provide real
world output. In operation, it works opposite to the input fuzzifier block.

Defuzzification is the process of converting the fuzzy variables to crisp value. The fuzzy
results generated cannot be used directly, hence it is necessary to convert the fuzzy quan-
tities into crisp quantities for further processing. This is achieved by using defuzzification
process. In general, there are five methods for defuzzifying a fuzzy set A of a universe
of discourse Z. This is as shown in Figure 4.3.A brief explanation of each defuzzification
strategy is given below:

Figure 4.3: Various defuzzification schemes for obtaining a crisp output.

• Centroid of area or Center of gravity :

zCOA =

∫
Z
µA (z)zdz∫

Z
µA (z)dz

(4.8)
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4.3 Types of Fuzzy Logic System

Where µA(z) is the aggregated output membership function. This is the most
widely adopted defuzzification strategy, which is reminiscent of the calculation of
expected values of probability distributions.

• Bisector of area or Center of average:∫ zBOA

α

µA(z) dz =

∫ β

zBOA

µA(z) dz (4.9)

Where α = min{z|z ∈ Z} and β = max{z|z ∈ Z }. That is, the vertical line z=zBOA
partitions the region between z = α, z=β, y=0 and y = µA(z) into two regions with
the same area.

• Mean of Maximum: zMOM is the average of the maximining z at with the
membership function each a maximum µ∗. In symbols,

zMOM =

∫
Z′ z dz∫
Z′ dz

(4.10)

Where Z′ min{z|µA(z) = µ∗ }. The mean of maximum is the defuzzification strategy
employed in Mamdani’s fuzzy logic controllers [170,171].

• Smallest of maximum: zSOM is the minimum of the maximizing z.

• Largest of maximum: zLOM is the maximum of the maximizing z. Because
of their obvious bias zSOM and zLOM are not used as often as the other three
defuzzification methods.

4.3 Types of Fuzzy Logic System

Two commonly used inference systems are i.e. Mamdani fuzzy model and Sugeno fuzzy
model. Mamdani fuzzy model [170] is based on the collections of IF-THEN rules with
both fuzzy antecedent and consequent parameters. The benefit of this model is that an
expert generally provides the rule base and hence to a certain degree it is translucent to
explanation and study. Because of its ease, Mamdani model is still most commonly used
technique for solving many real world problems. Takagi and Sugeno proposed Sugeno
fuzzy model [172]; Sugeno and Kang [173] in an attempt to build up a methodical ap-
proach to generating fuzzy rules from a given input-output data. These models are built
with if-then rules that have fuzzy antecedent and functional consequent. Typically, the
consequent is a polynomial function of the desired input variables. When the order of
the polynomial function is of first order, then the resulting fuzzy expert system is called
the first order Sugeno or TSK fuzzy model, which was originally, purposed by Takagi
and Sugeno [172]; Sugeno and Kang [173]. When the order of the polynomial function
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4.3 Types of Fuzzy Logic System

is zero or the consequent part is constant, then the system is called zero order Sugeno
and TSK fuzzy model, in which each rule’s consequent, is specified by a single value. To
represent this constant output, a single spike is used, which is also known as singleton
output membership function. The main advantage of the TSK model is its computa-
tional simplicity. There is another fuzzy model was available and named as Tsukamoto
fuzzy inference system but it was not famous due to its high computational cost and poor
performance [146].

4.3.1 Mamdani Fuzzy System

Mamdani’s fuzzy inference method is the most commonly seen fuzzy methodology. Mam-
dani’s method was among the first control systems built using fuzzy set theory. It was
proposed by Mamdani [170] as an attempt to control a steam engine and boiler combi-
nation by synthesizing a set of linguistic control rules obtained from experienced human
operators. Mamdani’s effort was based on Zadeh’s [154] paper on fuzzy algorithms for
complex systems and decision processes. The inference engine and rule base in Mamdani
Fuzzy System is represented as follows:

If x is A1 and y is B1 then Z is c1
If x is A2 and y is B2 then Z is c2

(where A and B are linguistic values defined by fuzzy sets on universe of discourse X
and Y). A rule is also called a fuzzy implication, “x is A” and “y is B”are called the
antecedent or premise and “z is C” is called the consequence or conclusion.Fig. 4.4.
represents a two-rule based Mamdani fuzzy inference system, where overall output z is
derived when subjected to two crisp inputs x and y. This figure represents a min-max
inference system[170,171].

4.3.2 Takagi Sugeno Kang (TSK) Fuzzy Model

The sugeno fuzzy model which is also known as the TSK fuzzy model was proposed by
Takagi, Sugeno and Kang [172, 173] in an effort to develop a systematic approach to
generating fuzzy rules from a given input-output data set. A typically first order TSK
fuzzy rule can be represented as
If x is A1 and y is B1 then z = a1x+ b1y + c1 .

If x is A2 and y is B2 then z = a2x+ b2y + c2 .

.
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4.3 Types of Fuzzy Logic System

Figure 4.4: The Mamdani Fuzzy inference system using min-max operators.

.
If x is An and y is Bn then z = anx+ b2y + cn .

Where A and B are fuzzy sets in the antecedent, while z=f (x,y) is a crisp function in the
consequent. Usually f (x,y) is polynomial of the input variables x and y, but it can be any
function as long as it can appropriately describe the output of the model within the fuzzy
region specified by the antecedent of the rule. When f (x,y) is a first-order polynomial,
the resulting fuzzy inference system is called a first-order Sugeno fuzzy model, which was
originally proposed [172,173]. When f is constant, then the system is a zero-order Sugeno
fuzzy model, which can be viewed either as a special case of Mamdani fuzzy inference
system, in which each rule’s consequent is specified by a fuzzy singleton. Figure 4.5 shows
the fuzzy reasoning procedure for a first-order Sugeno fuzzy model. Since each rule has
a crisp output, the overall output is obtained via weighted average, thus avoiding the
time-consuming process of defuzzification . In practice, the weighted average operator is
sometimes replaced with the weighted sum operator (that is, z = w1z1 + w2z2) to reduce
computation further, especially in the training of a fuzzy inference system. Since the
only fuzzy part of a Sugeno fuzzy model is in its antecedent, it is easy to demonstrate
the distinction between a set of fuzzy rules and nonfuzzy ones.

4.3.3 Comparison Between Sugeno and Mamdani Method

The main difference between Mamdani and Sugeno is that the Sugeno output membership
functions are either linear or constant. Also the difference lies in the consequents of their
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Figure 4.5: The Sugeno fuzzy model.

fuzzy rules, and thus their aggregation and defuzzification procedures differ significantly.
The number of the input fuzzy sets and fuzzy rules needed by the Sugeno fuzzy systems
depend on the number and locations of the extrema of the function to be approximated. In
Sugeno method a large number of fuzzy rules must be employed to approximate periodic
or highly oscillatory functions. The minimal configuration of the TS fuzzy systems can be
reduced and becomes smaller than that of the Mamdani fuzzy systems if nontrapezoidal
or nontriangular input fuzzy sets are used. Sugeno controllers usually have far more
adjustable parameters in the rule consequent and the number of the parameters grows
exponentially with the increase of the number of input variables. Far fewer mathematical
results exist for TS fuzzy controllers than do for Mamdani fuzzy controllers, notably those
on TS fuzzy control system stability. Mamdani is easy to form compared to Sugeno
method [174]. Fuzzy Inference system is the most important modeling tool based on
fuzzy set theory. The FISs are built by the domain experts and are used in automatic
control, decision analysis and various other experts systems [144,153,175].

4.4 Artificial Neural Network (ANN)

An artificial neural network is motivated by the theory of operation of biological neu-
rons. Neural Network (NN) represents an important paradigm for classifying patterns or
approximating complex non-linear process dynamics. These properties indicate that NN
exhibit some intelligent behavior and are good candidate models for non-linear processes,
for which no perfect mathematical model is available. Every artificial neural network
model is designed as per the learning process and in general, the learning can be broadly
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4.4 Artificial Neural Network (ANN)

classified into three categories: supervised learning, unsupervised learning and reinforce-
ment learning. Supervised learning requires a trainer, who supplies the input–output
training instances. The learning system adapts its parameters by using algorithms that
generate the desired output patterns for a given input pattern. In the absence of trainers,
the desired output for a given input instance is not known and consequently the learner
has to adapt its parameters autonomously. Such type of learning is termed “unsuper-
vised learning”. The third type called the reinforcement learning bridges a gap between
supervised and unsupervised categories. In reinforcement learning, the learner does not
explicitly know the input–output instances, but it receives some form of feedback from its
environment. The feedback signals help the learner to decide whether its action on the
environment is rewarding or punishable. Thus, the learner adapts its parameters based
on the states (rewarding/punishable) of its actions[176–179].

A neural network is a collection of small individually interconnected processing units.
Information is passed through these units along interconnections. An incoming connec-
tion has two values associated with it, an input value and a weight. The output of the
unit is a function of the weighted sum. ANNs implemented on computers are not pro-
grammed to perform specific tasks. Instead, they are trained with respect to data sets
until they learn patterns used as inputs. Once trained, new patterns may be presented to
them for prediction or classification. ANNs can automatically learn to recognize patterns
in data from real systems or from physical models, computer programs, or other sources.
An ANN can handle many inputs and produce answers that are in a form suitable for
designers [178,180]. ANNs can be considered as simplified mathematical models of brain-
like systems and they function as parallel-distributed computing networks. However, in
contrast to conventional computers, which are programmed to perform specific task, most
neural networks must be taught or trained. They can learn new associations, new func-
tional dependencies and new patterns. Neural networks obviate the need to use complex
mathematically explicit formulas, computer models and impractical and costly physical
models. Some of the characteristics that support the success of ANNs and distinguish
them from the conventional computational techniques are [180,181]:

All neural network models, proposed over the years, share a common building block,
known as a neuron and a networked interconnection structure [178, 180, 182]. The most
widely used neuron model is based on McCulloch and Pitts’ work [178] and is illustrated
in Fig.4.6. The neuron consists of two parts: the net function and the activation function.
The net function provides weighted linear combination.

z =
N∑

i=1

wixi + θ (4.11)

Parameters { wi:1≤ i≤ N } are known as synaptic weights. The quantity θ is called
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Figure 4.6: The basic neuron

the bias (or threshold) and is used to model the threshold. In literature, many other types
of network input combination methods have been proposed. These are summarized in
Table 4.3

Table 4.3: Summary of net function

Net Function Formula Comments

Linear z =
N∑

i=1

wixi + θ Most Commonly used

Higher Order z =
N∑

i=1

N∑
j=1

wijxixk + θ xi is a weighted linear com-
bination of their order poly-
nomial terms.

Delta (
∑

,
∏

) z =
N∏

i=1

wixi Seldom used for the in-
put variables. The num-
ber of input terms equal Nd,
where d is the order of the
polynomial.

The output of the neuron, denoted by yi is related to the network input xi via a
linear or nonlinear transformation called the activation function; y = f (z). In various
neural network models, different activation functions have been proposed. The most
commonly used activation functions are summarized in Table 4.4. Table 4.4 lists both
the activation functions as well as MATLAB function. In a neural network, multiple
neurons are interconnected to form a network to facilitate distributed computing.Neural
networks have been a powerful tool for different engineering applications more than last
two decades [183–192]. Different types of artificial neural network models are discussed
in the following sections:
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Table 4.4: Transfer or Activation Functions

Name Input/Output Relation MATLAB Func-
tion

Hard Limit
a = 0 n < 0

a = 1 n ≥ 0
hardlim

Symmetrical Hard
Limit

a = −1 n < 0

a = +1 n ≥ 0
hardlims

Linear a = n purelin

Saturating Linear
a = 0 n < 0

a = n 0 ≤ n ≤ 1

a = 1 n > 1

satlin

Symmetric Saturat-
ing Linear

a = −1 n < −1

a = n − 1 ≤ n ≤ 1

a = 1 n > 1

satlins

Log-Sigmoid a = 1
1+e−n logsig

Hyperbolic Tangent
Sigmoid

a = en−e−n

en+e−n tansig

Positive Linear
a = 0 n < 0

a = n 0 ≤ n
poslin

Competitive a =1 neuron with max n

a =0 all other neurons
compet

4.4.1 Multilayer Perceptron

Multilayer perceptron (feed-forward) networks consist of units arranged in layers with
only forward connections to units in subsequent layers [180]. The connections have
weights associated with them. Each signal traveling along the link is multiplied by a
connection weight. The first layer is the input layer, and the input units distribute the
inputs to units in subsequent layers. In subsequent layers, each unit sums its inputs, adds
a bias or threshold term to the sum and nonlinearly transforms the sum to produce an
output. This nonlinear transformation is called the activation function of the unit. The
output layer units often have linear activations. In the remainder of this section, linear
output layer activations are assumed. The layers sandwiched between the input layer and
output layer are called hidden layers and units in hidden layers are called hidden units
[179–181, 193–199]. Such a network is shown in Fig. 4.7. The training data set consists
of N training patterns {xp, tp}, where p is the pattern number. The input vector xp

and desired output vector tp have dimensions N and M0 respectively; yp is the network
output vector for the pth pattern. The thresholds are handled by augmenting the input
vector with an element xp(N + 1) and setting it equal to one.

For the jth hidden unit, the net input netp(j) and the output activation Op(j) for the
pth training pattern are:

netp(j) =
N+1∑
i=1

w(j, i)xp(i) (4.12)
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Figure 4.7: Feed-forward neural network

Where 1 ≤ j ≤ Nh

Op(j) = f(netp(j)) (4.13)

where w(j, i) denotes the weight connecting the ith input unit to the jth hidden unit. For
MLP networks, a typical activation function f is the sigmoid, given by

f

(
netp(j) =

1

1 + exp(−netp(j))

)
(4.14)

For trigonometric networks, the activations can be the sine and cosine functions. The
kth output for the pth training pattern is ypk and is given by

ypk =
N+1∑
i=1

wi0(k, i)xp(i) +

Nh∑
j=1

wh0(k, j)Op(j) (4.15)

Where 1 ≤ k ≤ M where wio(k, i) denotes the output weight connecting the ith input
unit to the kth output unit and who(k, j) denotes the output weight connecting the jth

hidden unit to the kth output unit. The mapping error for the pth pattern is

Ep =

NP∑
k=1

(tpk − ypk)
2 (4.16)
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where tpk denotes the kth element of the pth desired output vector. In order to train a
neural network in batch mode, the mapping error for the kth output unit is defined as

E(k) =
1

Nv

Nv∑
p=1

(tpk − ypk)
2 (4.17)

The overall performance of an MLP neural network, measured as mean square error
(MSE), can be written as

E =
M∑

k=1

E(k) =
1

Np

Nv∑
p=1

Ep (4.18)

The key distinguishing characteristic of the multilayer feed-forward neural networks
(MFNN) with the backpropagation learning algorithm is that it forms a nonlinear map-
ping from a set of input stimuli to a set of outputs using features extracted from the input
patterns. The neural network can be designed and trained to accomplish a wide variety
of nonlinear mappings, some of which are very complex. This is because the neural units
in the neural network learn to respond to features found in the input. By applying the set
of formulations of the BP algorithm obtained in the previous sub-section, a calculation
procedure of such a learning process is summarized as follows[180,181,193,194]:
Given a finite length input pattern x1(k), x2(k) . . . . xn(k) ∈ R (1≤ k ≤ K)

Step 1: Select the total number of layers M , the number ni(i =1,2, . . . , N -1) of
the neurons in each hidden layer, and an error tolerance parameter ε > 0.

Step 2: Randomly select the initial value of the weight vectors W (i)
aj for I= 1,2, . .

. Mand j =1,2, . . . ,ni.

Step 3: Initialization W (i)
aj ← W (i)

aj (0), and k ← 1.
Step 4: Calculate the neural outputs: S

(i)
j =

(
W

(i)
aj

)T

X
(i−1)
a

X
(i)
j = σ (S

(i)
j )

for I= 1,2, . . . ,Mand j =1,2, . . . ,ni.

Step 5: Calculate the output error ej = dj −X(M)
j for j =1,2, . . . ,m.

Step 6: Calculate the output delta’s

δ
(M)
j = ej σ

′
(S

(M)
j )
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Step 7: Recursively calculate the propagation errors of the hidden neurons:

e
(i)
j =

ni+1∑
l=1

δ
(i+1)
l W

(i+1)
lj

from the layer M -1, M -2, . . . .. to layer 1.

Step 8: Recursively calculate the hidden delta values:

δ
(i)
l = e

(i)
l σ

′
(S

(i)
l )

Step 9: Update weight vector:

W (i)
aj

= W (i)
aj

+ ηδ
(i)
j X(i−1)

a

Step 10: Calculate the error function

E = E +
1

k

m∑
j

e2j

Step 11: if k = Kthen go to step 12; otherwise k ← k+1 and go to step 4.
Step 12: if E ≤ ε then go to step 13; otherwise go to step 3.
Step 13: Learning is completed. Output the weights.

In the procedure listed above, several learning factors such as the initial weights, the
learning rate, the number of the hidden neural layers and the number of neurons in each
layer, may be reselected if the iterative earning process does not converge quickly to
the desired point. Although, the BP learning algorithm provides a method for train-
ing MFNNs to accomplish a specified task in terms of the internal nonlinear mapping
representations.

4.4.2 Radial Basis Function Network (RBFN)

The structure of Radial Basis Function Network (RBFN) is presented in Figure 4.8.
It consists of three layers viz: the input layer, the non-linear hidden layer and linear
output layer. The hidden layer computes a non-linear function of input and the output
layer provides linear combination of hidden layer. A RBFN [200–205] is linear in its
parameters, therefore once suitable basis function parameters have been chosen, it can
be trained using a linear supervised training scheme.
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Figure 4.8: Radial Basis Function Network

A RBFN with M kernels, or hidden units, has the overall response function given by:

f(x(n)) =
M∑
i=1

wiϕi (n) (4.19)

where x (n) is a vector in the input space of the RBFN, ϕi(n) is the response function of the
ith kernel, and wi is the weight associated with the ith kernel. The most common nonlinear
kernel function used in RBFNs is the Gaussian function, which can be represented as

ϕi (n) = exp

[
−∥x(n) − ci∥2

2σ2
i

]
i = 1, 2,. . . , M (4.20)

where || . || is the Euclidean distance1 measure, ci is the position of the ith kernel’s centre
in the input space of the RBFN, and σi is known as the width of the ith kernel. The type
of nonlinear kernel function is not crucial for the performance of the RBFN [180].

Training of RBF includes setting the centers, fixing spread parameters and the asso-
ciated weights. The three most popular training methods are [180,202]:

1Euclidean Distance: Let P= (P1, P2, . . . Pn) and Q = (Q1, Q2, . . . Qn) are the data points, then

Euclidean distance will be

√
n∑

i=1

(Pi−Qi)2
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• Fixed centers selected at random

• Self-organized selection of centers (K-mean)

• Supervised selection of centers

A universal kernel width can be used (i.e. the same width for each kernel): σi = σ; i
= 1,2,. . . M. The following equation is used to calculate the width σ:

σ =
dME√
2M

(4.21)

where dME is the maximum Euclidean distance between any two centers, and M is the
number of kernels. Such a choice for σ in RBFN ensures that the Gaussian kernel
functions are neither too peaked nor too flat [180]. Once the centers and widths of the M
kernel functions have been selected, the M output layer weights wi; i = 1, 2, . . . M, can be
trained using a supervised linear least-squares technique (LMS). In many literature, the
centers of the RBF network are chosen using K-mean clustering [206,207].Fuzzy c-mean
clustering also may be used for selecting centers for RBF.

4.4.2.1 The K-means Algorithm

K-means is one of the simplest unsupervised learning algorithms that solve the well known
clustering problem. The procedure follows a simple and easy way to classify a given data
set through a certain number of clusters (assume k clusters) fixed a priori. The main
idea is to define k centroid, one for each cluster. This algorithm aims at minimizing an
objective function, in this case a squared error function [206,207]. The objective function
is:

J =
k∑

j=1

n∑
i=1

∥∥xj
i − cj

∥∥2

(4.22)

where
∥∥xj

i − cj
∥∥2

is a chosen distance measure between a data point x(j)
i and the cluster

centre cj, is an indicator of the distance of the n data points from their respective cluster
centers. The algorithm is composed of the following steps:

Suppose there is ‘n’ number sample feature vectors x1, x2, ..., xn all from the same
class, and they fall into k compact clusters, k < n. Let mi be the mean of the vectors
in cluster i. If the clusters are well separated, a minimum-distance classifier is used to
separate them. It can be said that x is in cluster i if || x - mi|| is the minimum of all the
k distances. The following procedure for finding the k means is suggested:

• Make initial guesses for the means m1, m2, ..., mk

• Until there are no changes in any mean
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4.4 Artificial Neural Network (ANN)

⋆ Use the estimated means to classify the samples into clusters

⋆ For i from 1 to k

∗ Replace mi with the mean of all of the samples for cluster i

⋆ end_for

• end_until

4.4.2.2 Algorithm for Radial Basis Function Network

Step 1: The centers (Mi, i=1, 2, 3,..n) are chosen randomly and updated by applying K-
mean clustering algorithm and an error tolerance parameter ε (0.01) > 0. This algorithm
(K-mean) aims at minimizing an objective function, in this case a squared error function.
The objective function is:

J =
k∑

j=1

n∑
i=1

(∥∥Xj
i − Cj

∥∥2
)

(4.23)

where
∥∥xj

i − cj
∥∥2

is a chosen distance measure between a data point x(j)
i and the cluster

centrecj, is an indicator of the distance of the n data points from their respective cluster
centers.
Step 2: Initial values of the weight is selected at random. wi,j , for i=1, 2,. . . Mi, are
chosen.
Step 3: Initialization All the weights wm

i,j are initialized to random number and given
as wm

i,j (0)

wi,j ← wi,j(0) (4.24)

Step 4: Calculation of the RBFN outputs
After selecting centers, intializing weights, Gaussian radial functions are used to deter-
mine the network output and are given by:

yj =
k∑

j=1

wi,j × ϕ
(∥∥Xj

i − Cj

∥∥) (4.25)

Where yj is the output of RBF model and K is the training samples.

ui = ϕ
(∥∥Xj

i − Cj

∥∥) =
M∑
i=1

exp

(∥∥Xj
i − Cj

∥∥
2σ2

i

)
(4.26)

Step 5: Calculation of the output error
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4.5 Adaptive Network based Fuzzy Inference System (ANFIS)

The error is calculated as follows:

E =
K∑

j=1

(dj − yj)
2

= ej
∼= dj − yj

= dj −
K∑

j=1

M∑
i=1

wi,j × exp
(

∥Xi −Ci∥
2σ2

i

) (4.27)

Where dj is the desired output and yj is the output of RBF model.
Step 6: Updating the weight vectors
The weight matrices are updated next using the following relationship

wnew
i,j = wold

i,j + ηuiej (4.28)

Step 7: If error ≤ ε (0.01) then go to Step 8, otherwise go to Step 3.
Step 8: After the learning is complete, the weights are fixed and the network can be
used for testing.

After training the weights are fixed for testing the model. If the testing results are not
perfect, then the training process is continued until the desired performance measure is
achieved.

4.5 Adaptive Network based Fuzzy Inference System
(ANFIS)

The ANFIS has proven to be an excellent function approximation tool. The ANFIS
structure was proposed by Jang in 1993 [208].Figure 4.9 shows a typical ANFIS structure
with two inputs (x and y) and one output f . ANFIS implements a first-order Sugeno-
style fuzzy system [175,209,210].
Layer 1: Every node of this layer is a square node expressed with node function;

O1,i = µAi(x), i = 1, 2 (4.29)

O1,i = µB(i−2)(y), i = 3, 4 (4.30)

µAi
(x) =

1

1 +

[(
x−ci

ai

)2
]bi

(4.31)

Where x1 or x2 is input of the node, Ai (or B(i−2)) is the language variable correlated with
this node function value. O1,j is the degree of membership function (MF) of A (A=A1,
A2 B1 B2). Usually in ANFIS, bell shaped membership is selected. The membership
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4.5 Adaptive Network based Fuzzy Inference System (ANFIS)

Figure 4.9: Architecture of ANFIS

function µAi(x) with maximum equal to 1 and minimum equal to 0, such as

µAi
(x) = exp

{
−
(
x− ci
ai

)2
}

(4.32)

Where {aibi, ci} is the parameters set that changes the shape of the MF which are re-
ferred to as premise parameters.

Layer 2: Every node of this layer is a circle node labeled
∏

which multiplies the incoming
signals and send to output. For instance

O2,i = wi = µAi
(x) × µBi

(y), i = 1, 2 (4.33)

Each node output represents the firing strength of rule.

Layer 3: Every node of this layer is a circle node labled N, the ith node calculates
the ratio of the ith rule’s firing strength to the sum of all rules firing strengths:

O3,i = wifi =
wi

w1 + w2

, i = 1, 2 (4.34)

For convenience, outputs of this layer are called normalized firing strengths.

Layer 4: Every node i in this layer is adaptive node, and the output is

O4,i = wifi = wi(pix + qiy + ri) i = 1, 2 (4.35)

Where {piqi, ri} is the parameter set which are refered to as consequent parameters.

Layer 5: Every node of this layer is a fixed node labeled
∑

that computes the overall
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output as the summation of all the input signals

O5,i =
∑

i

wifi =

∑
i wifi∑

i wi

(4.36)

The similar network structures were also proposed independently by Lin and Lee and
Wang and Mendel [208].

4.6 Conclusion

Soft-Computing techniques such as Fuzy Logic, Neural Network etc. are computational
systems that do not require programming in a conventional sense, but can learn and gen-
eralize from training examples. Soft-Computing is therefore potentially simple to apply
and has generated a great deal of interest in engineering. Soft-computing based models
were successfully implemented in prediction of traffic noise, prediction of noise annoyance
and noise-induced hearing loss. However, no such applications of soft-computing mod-
els were found in opencast mining machineries noise prediction. However, it was found
that mathematical models had poor performance in non-stationary problem, where Soft
Computing models have better performance. Therefore Soft-Computing methods are
suitable replacements of mathematical noise prediction models as the data set collected
or measured from machineries were purely non-stationary in nature. The next chapter
highlights the application of Soft-Computing methods for prediction of opencast mining
machineries noise.
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CHAPTER 5

SOFT COMPUTING TECHNIQUES FOR
NOISE PREDICTION IN OPENCAST

MINES

5.1 Introduction

Noise is generated from almost all opencast mining operations. Noise is generated from
different fixed, mobile and impulsive sources; thereby becoming an integral part of the
mining environment. With increased mechanization, the problem of noise has got accen-
tuated in opencast mines. Prolonged exposure of miners to the high levels of noise causes
noise induced hearing loss besides several non-auditory health effects [3]. The impact of
noise in opencast mines depends on the sound power level of the noise generators, prevail-
ing geo-mining conditions and the meteorological parameters of the mines [108,111,115].
The noise levels need to be studied as an integrated effect of the above parameters. In
mining scenario, the equipment conditions and environment continuously change as the
mining activity progresses. Depending on their placement, the overall mining noise ema-
nating from the mines varies in quality and level. Thus for environmental noise prediction
modeling, the noise level at any receiver point needs to be resultant sound pressure level
of all the observation locations.

The need for accurately predicting the level of sound emitted in opencast mines is well
established. Some of the noise forecasting models used extensively in Europe are those of
the German Draft Standard VDI-2714, Outdoor Sound Propagation and Environmental
Noise Model (ENM) of Australia [9]. These models are generally used to predict noise in
petrochemical complexes and mines. The algorithm used in these models rely to a great
extent on interpolation of experimental data. But their applications are limited to sites
which are more or less similar to those for which the experimental data were assimilated.
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5.1 Introduction

A number of models were developed and extensively used for the assessment of sound
pressure level and their attenuation around industrial complexes. Generally in Indian
mining industry, Environmental Noise Model developed by RTA (Renzo Tonin & Asso-
ciates Pty Ltd) group, Australia is mostly used to predict noise [110, 115]. ENM was
used to predict sound pressure level in mining complexes at Moonidih Project in Jharia
Coalfield, Dhanbad, India [110]. The applied model output was represented as noise
contours. The application of different noise prediction models was studied for various
mines and petrochemical complexes and it was reported that VDI2714 model was the
simplest and least complex model vis-à-vis other models [9]. VDI2714 and ISO (1996)
noise prediction models were used in Assiut cement plant, Assiut cement quarry and El-
Gedida mine at El-Baharia oasis of Egypt to predict noise. From the study, it was seen
that the prediction models could be used to identify the safe zones with respect to the
noise level in mining and industrial plants. It was also inferred that the VDI2714 model
is the simplest model for prediction of noise in mining complexes and workplace [116].
Air attenuation model was developed for noise prediction in limestone quarry and mines
of Ireland and was applied to predict attenuation in air due to absorption [114].

In the empirical models, all influences are taken into account regardless of whether
or not they can be separately recognized. This is the main advantage of these models.
However, the accuracy of these models depends on the accuracy of the measurements,
similarities between the conditions where the noise attenuation is analyzed and the con-
ditions where the measurements are carried out, and the statistical method that is used
to make the empirical model. The deterministic models are based on the principles of
physics of sound and therefore, can be applied in different conditions without affecting
the accuracy. But their implementation usually requires a great database of meteorolog-
ical characteristics such as atmospheric temperature, humidity, wind and so on, which is
nearly difficult to obtain. Hence, the implementation of the noise prediction models is
usually restricted to the special area where the meteorological data are available.

All the noise models treat noise as a function of distance, sound power level, different
form of attenuations such as geometrical absorptions, barrier effects, ground topography
etc. Generally these parameters are measured in the mines and best fitting models
are applied to predict noise. Mathematical models are generally complex and cannot be
implemented in real time systems. Additionally they fail to predict the future parameters
from current and past measurements. It has been seen that noise prediction is a non-
stationary process and soft-computing techniques like Fuzzy system, Adaptive network
based fuzzy inference system (ANFIS) or (Neuro-Fuzzy), Neural Network etc. have been
tested for non-stationary time-series prediction for a long time.

The data assembled through surveys, measurement or knowledge to predict sound
pressure level in mines is often imprecise or speculative. Since soft computing methods
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5.2 Soft Computing Models for non frequency based noise prediction

(fuzzy logic systems, artificial neural network, radial basis network etc )are good tools for
prediction of imprecise and uncertainty information, therefore soft computing approach
would be the very appropriate technique for modeling the prediction of sound pressure
level in opencast mines.

5.2 Soft Computing Models for non frequency based
noise prediction

In this study, frequency and non-frequency based statistical or mathematical noise pre-
diction models were used to predict opencast mining machineries noise. Hence Soft-
Computing models were also applied for both frequency or non-frequency based models.
In this section, application of soft computing models for non-frequency based noise pre-
diction model is discussed. Fig 5.1 represents the system diagram for application of
soft computing for non-frequency based (VDI-2714) noise prediction model.The follow-
ing sections represent the application of different types of soft computing models for
non-frequency noise prediction models.

Figure 5.1: Application of Soft Computing for non-frequency based models .

5.2.1 Application of Fuzzy Logic Systems for VDI-2714

Mamdani and TSK fuzzy systems were used to predict or estimate the sound pressure
level for machineries in an opencast coal mine. With availability of set of measured data
as input, the fuzzy system would be able to predict the output for any given input even
if a specific input condition has not been covered in the building stage. The given model
can be considered as multi input and single output (MISO) model. The methodology for
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5.2 Soft Computing Models for non frequency based noise prediction

development of fuzzy based sound pressure level prediction model involves the following
steps:

1. Selection of input and output variables and Selection of membership function for
input and output variables,

2. Formation of linguistic rule base,

3. Defuzzification, and

4. Parameter optimization.

5.2.1.1 Selection of input and output variables and Selection of membership
function for input and output variables

The first step in system modeling was the identification of input and output variables
called the system’s variables. Only those inputs that affect the output to a large extent
were selected. The two important input variables were sound power level (SWL) and
distance from the source (R). Different forms of fuzzifier have been discussed in Sec-
tion 4.2.1, Chapter 4. Different fuzzy parameters with their linguistic values for input
and output are presented in Table 5.1. For getting better performance, with both the
Mamdani and T-S-K fuzzy system, seven membership functions were chosen for SWL
and five membership functions were chosen for distance. For this application, triangular
and trapezoidal membership functions are used. Figure 5.2(a) and 5.2(b) showed the
graphical representation of membership functions of the input parameters. For Mamdani
fuzzy system, it was also needed to convert the linguistic values of output to a range of 0
to 1. In the proposed model, for Mamdani Fuzzy system, the output variable had seven
membership functions (Table 5.1) and were represented in Figure 5.2(c).

5.2.1.2 Formation of linguistic rule-base

The relationship between input and the output was represented in the from of IF-THEN
rules. Let the 1st input (Sound power level) be taken as X, the 2nd input (Distance from
the source) as Y and the output (sound pressure level) be taken as Z. As per the fuzzy
systems, both the inputs ’X’ and Y had five membership functions. Therefore 25 rules
were made. In Mamdani fuzzy model, Max-Min inference was applied. The rules of the
Mamdani fuzzy system were generated in the following ways:

R1 : IF X is X1 = “Low”AND Y is Y1 = “Very Low” THEN sound pressure level(Z)
is Z = Z1 = “Very Low”;

159



5.2 Soft Computing Models for non frequency based noise prediction

Table 5.1: Inputs and output with their fuzzy and fuzzy intervals

Sl.No. System’s linguistic
variable

Variables Linguistic values Fuzzy interval

1

Inputs

SWL

Low 80-100 dBA
Medium 90-110 dBA
High 100-120 dBA
Very High 110-130 dBA
Extreme 120-140 dBA

2 Distance

Very Low 1-10 meter
Low 5-15 meter
Medium 8-20 meter
Long 15-25 meter
Very Long 20-30 meter

3 Output SPL

Very Low 70-80 dBA
Low 80-90 dBA
Medium 85-95 dBA
High 90-100 dBA
Very High 95-105 dBA
Extreme 100-110 dBA
Extremely High 105-115 dBA

R2 : IF X is X2 = “Medium” AND Y is Y2 = “Low” THEN sound pressure level(Z) is
Z = Z2 = “Low”;

.

.

.
R25 : IF X is X5 = “Extreme” AND Y is Y5 = “Very Long” THEN sound pressure
level(Z) is Z = Z7 = “Extremely High”;

where X1, X2,. . .X 5;Y1, Y2,. . .Y 5 are the linguistic parameters or membership func-
tions of the inputs (X & Y) and Z1, Z2,. . . .Z 7 are the membership function of output(Z).
The generation of rule base in TSK fuzzy system was same as Mamdani fuzzy system. In
TSK fuzzy system product inference was applied and the number of rules was 25. The
rules were generated in the following ways:

R1 : IF X is X1 = “Low” AND Y is Y1 = “Very Low” THENsound pressure level(Z) is
Z = a1×X + b1 × Y + c1 ;

R2 : IF X is X2 = “Medium” AND Y is Y2 =“Low” THEN sound pressure level(Z)
is Z =a2× X + b2 × Y + c2 ;

.

.

.
R25 : IF X is X5 = “Extreme” AND Y is Y5 = “Very Long”THEN sound pressure
level(Z) is Z = a25 × X + b25 × Y + c25 ;

where a1, b1,. . . a25, b25 are the coefficients or tune parameters and c1, c2,. . . c25 are the
bias associated with the output.
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Figure 5.2: Membership function of Inputs and output of Mamdani fuzzy system

5.2.1.3 Defuzzification

In the proposed model, Centroid of area (COA) method of defuzzification is used. The
details of defuzzification are already discussed in Section (4.2.4), Chapter 4.

5.2.1.4 Parameter optimization

Following defuzzification process, T-S-K fuzzy system makes prediction the output. The
parameters (coefficients) of T-S-K fuzzy system were adjusted (a1, b1, c1. . . a25,b25, c25)
repeatedly by trial and error, so that the error could be minimized. The coefficients were
fixed when the average error in the whole range of input is below 5 %. This section was
only meant for Takagi Sugeno Kang model.

5.2.1.5 Performance study of Mamdani and T-S-K fuzzy system

For calculation of the performance of both the systems, the shovel noise was taken as an
example.
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Example: for 1 meter distance (input 1), the measured sound pressure level was 102.3
dB (A) i.e. sound power level was120 dB (A) (input 2). It was estimated from VDI-2714
that the predicted SPL was 95.6919 dB by considering all the attenuations. SPL could
be determined using the fuzzy models as discussed below:

5.2.1.6 Mamdani fuzzy system

For 1 meter distance, the membership value was 1 i.e. µd1 (‘Low’) =1 and for sound
power level (swl) of 120 dB, the membership value (µswl4 (‘Very High’)) was 1. Mathe-
matical representation of the Mamdani fuzzy system based noise prediction model could
be discussed in the following manner (Table 5.2).

Table 5.2: Mathematical representation of Mamdani fuzzy system based noise prediction
model

Rules Input 1 Input 2
Inference Engine

Defuzzification or OutputMin Max

Rule 1 Distance
1m.

µd1 =1

SWL 120
dB

µSWL4

=1

W1=min (µd1,
µSWL4)

µmin1=min(w1,
µSPL,Low)=[0.1,

0.2,. . . ..0.9]

µMAX=
max[µmin1 . . .

. . µmin25]

∑ µMAX × SPL
µMAX

=
25∑

i=1

µz × z
µz

= 94.9999 dB(A)
∼= 95 dB(A)

. . . .

. . . .

. . . .

Rule 25 µd1 = 0 µSWL4 =
0

W25= min(µd1 ,
µSWL4)

µmin25=min(w25,
µSPL,High)=[0]

The error of the system was found as 0.4789 %. If the error of the system was high,
then the output of Mamdani fuzzy system could be improved by increasing the rule base.

5.2.1.7 T-S-K fuzzy system

Mathematical representation of the T-S-K fuzzy system based noise prediction model
could be discussed in the following manner (Table 5.3).

The error of the T-S-K system was found to be 0.0380 %. If the error was high, then
the output of Sugeno fuzzy system could be emphasized by following the steps:

1. Modification of the tune parameters (a1,b1,C1. . . a25,b25,C25).

2. Increasing the membership function or increase the rule base.

Due to the functional relation between input and output, the T-S-K fuzzy model was
more robust than Mamdani fuzzy system and adaptation was easily done in T-S-K fuzzy
system.
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Table 5.3: Mathematical representation of T-S-K fuzzy system based noise prediction
model

Rules Input 1 Input 2
Inference Engine Functional Link

of the system
Defuzzification or
Output

Product
Rule 1 Distance

1m.
µd1 =1

SWL
120 dB
µSWL4

=1

W1 = µd1 ×
µSWL4

= 1

F1=
a1X+b1Y+C1

= 1× 1 + 0.7 ×
120 + 22

F1 × w1 +F2 × w2 +...F25 × w25
w1 +w2+...+w25

=
25∑

i=1

Fi × wi
wi

=
25∑

i=1

µz × z
µz

=95.8868 dB A

. . . . .

. . . . .

. . . . .
Rule
25

µd1 = 0 µSWL4

= 0
W25 = µd1 ×
µSWL4

= 0

F25=
a25X+b25Y+C25

=0.5 × 1 + 0.3 ×
120 + 10

5.2.1.8 Simulation results and discussion

The proposed system models for noise prediction were validated using simulation studies.
The studies were carried out by using MATLAB simulation environment. For validation
of the models, the noise data was collected from Balaram opencast coal mine of Ma-
hanadi Coalfields Limited (MCL), Talcher (Orissa, India). The test data was measured
using Brüel & Kjaer 2239 (Denmark) precession sound level meter. From the measured
parameter, VDI-2714 gives prediction by calculating all the sound attenuations in ‘dB
(A)’ not in octave frequency band. SPL of the different machineries from the above mine
was collected. These machineries include Shovel (10m3 bucket capacity), Dozer (410hp),
Tipper (10T-160hp), Grader (220 hp) and Dumper (85T).

The fuzzy parameters were suitably chosen to enhance the performance of the designed
model. For Mamdani fuzzy inference system (FIS), the number of rules and for T-S-K
FIS, the coefficients were the fuzzy parameters. The plot of predicted sound pressure
level (SPL) using Mamdani FIS for different values of sound power level (SWL) and dis-
tance were plotted in Figure 5.3. The plot shows a complex relationship in the form of a
surface. The similar plot for T-S-K fuzzy model was presented in Figure 5.4.

Table 5.4 summarizes the results for noise prediction by proposed models and com-
pares it with standard VDI-2714 noise prediction model for shovel. From the table, it
can be seen that the proposed Mamdani and T-S-K models provided average percentage
error of 3.9562 and 2.2705 respectively. Similar results for dumper, grader, tipper and
dozer were shown in Table 5.5 to 5.8. From the simulation studies, it was observed that
the average percentage error of T-S-K fuzzy model was lower than the Mamdani fuzzy
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Figure 5.3: Surface plot of Mamdani fuzzy system
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Figure 5.4: Surface plot of T-S-K fuzzy system

164



5.2 Soft Computing Models for non frequency based noise prediction

5.2.2 Application of Neural Network Models in Noise Prediction

In this proposed model, two types of artificial neural networks has been applied to predict
mining machinery noise. These include: Multi-Layer Perceptron (MLP) and Radial Basis
Function (RBF). Supervised learning methods were applied in both the MLP and RBF
system. Iterative based training methods were adopted in both the architectures.

5.2.2.1 Advantages of Artificial Neural Network Models

Some of the advantages of the ANN models are enumerated below:

• Neural networks can provide several advantages over conventional regression models
for noise prediction such as VDI-2714, CONCAWE etc. They are claimed to possess
the property to learn from a set of data without the need for a full specification
of the decision model; they are believed to automatically provide any needed data
transformations.

• ANN models are considered to be universal approximator. Here, in this applica-
tion, MLP and RBF have been used to predict SPL, when parameters like, SWL,
distance, wind etc. are given. From the simulation result it was seen that ANN
models were able to predict large variety of prediction models with arbitrary accu-
racy. The results of ISO-9613-2, CONCAWE, ENM, Nordforsk, VDI-2720 models
have been presented in this chapter from Section 5.3.1 to Section 5.3.3.

• While using statistical models, the calculation differs from model to model. In ANN
based predictor, the structure of the network remains the same. When the network
is trained with VDI-2714 data, it behaves like VDI-2714 model. On the other hand
when trained with CONCAWE, it behaves like a CONCAWE model. Hence neural
network based predictors can predict SPL for variety of models simply by changing
the data set.

5.2.2.2 MLP and RBF based Noise Prediction Models:

The ANN based noise prediction models consist of two input constituting sound power
level (xk) and distance (yk). The inputs patterns are x1(k), x2(k), x3(k) . . . xn(k) ∈ R,
y1(k), y2(k), y3(k) . . . yn(k)) and the desired output patterns are: d1(k), d2(k), d3(k)
. . . dn(k) ∈ R. During training period the desired network output was calculated with
VDI-2714 noise prediction model.

5.2.2.3 Algorithm for training MLP based Noise prediction model

Step 1: Select the total number of layers m, the number ni (i=1,2,. . . , m -1) of the
neurons in each hidden layer and an error tolerance parameter ε > 0.
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5.2 Soft Computing Models for non frequency based noise prediction

Table 5.8: Simulation study of Dozer noise

Distance
from
the
source
(meters)

Measured
field
data
(dBA)

Prediction result
(dBA)

Average percent-
age error (dBA)

VDI Mamdani TSK Mamdani TSK
1 100.5000 93.8919 94.9999 97.3575
2 100.2000 93.5828 94.9999 93.2148
3 98.2000 91.5738 94.9999 92.2951
4 97.5000 90.8648 94.6008 91.5038
5 96.7000 90.0559 93.6217 92.4096
6 95.4000 88.7469 90.8220 91.0959
7 94.8000 88.1380 89.4250 90.0106
8 94.2000 87.5291 88.7007 88.6678
9 93.6000 86.9202 88.4321 87.2363
10 92.5000 85.8113 89.5960 85.6165
11 91.8000 85.1025 89.2974 85.3730
12 89.6000 82.8937 90.3719 87.3442
13 89.3000 82.5848 89.3400 87.5931
14 88.8000 82.0760 88.3243 88.1647
15 88.2000 81.4672 86.8423 89.0615 3.9739 2.6800
16 87.9000 81.1585 85.6396 85.4448
17 87.4000 80.6497 83.2004 83.1966
18 86.6000 79.8410 80.8065 81.4083
19 85.5000 78.7323 77.9947 78.7163
20 85.5000 78.7236 73.8578 75.9922
21 84.8000 78.0149 73.4352 75.2970
22 84.3000 77.5063 73.6837 75.0161
23 84.2000 77.3976 73.7173 74.9314
24 83.8000 76.9890 73.4574 74.6731
25 83.5000 76.6804 73.4690 74.4158
26 83.5000 76.6718 73.5058 74.9125
27 82.8000 75.9632 73.4574 75.6460
28 82.5000 75.6547 73.4574 76.2385
29 82.4000 75.5461 73.4809 76.7563
30 82.4000 75.5376 73.5188 77.2258

Step 2: Randomly select the initial values of the weight vectors wm
i,j , for i=1, 2,. . . ni

and m=2 (number of layers).
Step 3: Initialization All the weights wm

i,j were initialized to random number and given
as wm

i,j (0)

wm
i,j ← wm

i,j(0)

Step 4: Calculation of the neural outputs{
am

i,j = (w1
i,j)

T × XK

yj = (w2
i,j)

T × am
j

Where am
i,j was the output of the hidden layer (m=1) and yj is the output of the output

layer. w1
i,j is the weight associated for hidden layer and w2

i,j is the weight associated for
output layer. In the model, the weights associated with the hidden layer were basically
ni × 2 matrix as two inputs were selected and the weight associated with the output
layer is 1 × ni as this model is a MISO (Multi input and single output) system.
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5.2 Soft Computing Models for non frequency based noise prediction

Step 5: Calculation of the output error The error was calculated as ej = dj − yj.
It may be seen that the network produces a scalar output.

Step 6: Calculation of the derivative of network output of each layer
For hidden layer (m=1)
The derivative of activation function of hidden layer can be represented as

f ˙1(n1) = d
dn

[
1

1+ exp−n

]
=
[
1− 1

1+ exp−n

] [
1

1+ exp−n

]
= (1− am

i,j) (am
i,j)

For output layer (m=2)
The derivative of activation function of output layer can be represented as

f ˙2(n2) = d
dn

(n) = 1

Where n is the output of each neuron of the hidden and output layer.

Step 7: Backpropagation of error by sensitivities at each layer
Backpropagation of error by sensitivities at each layer was calculated as follows:
For output layer (m=2)

s2
j = −2

.

F 2(n2) (dj − yj) = −2
.

f 2(n2) (ej)

For hidden layer (m=1)

s1
j =

.

F 1(n1)(w2
i,j)

T s2
j

=


(1− a1

1,j) (a1
1,j) 0 . . . 0

0 (1− a1
2,j) (a1

2,j) . . . 0
...

...
...

0 0 · · · (1− a1
ni,j

) (a1
ni,j

)

 × (w2
i,j)

T s2
j

Step 8: Updating the weight vectors
The weight matrices are updated next using the following relationship

w2
i,j(new) = w2

i,j(old) + η s2
j(a

1
i,j)

T

w1
i,j(new) = w1

i,j(old) + η s1
j

Where η is the momentum parameter or tuning parameter of the system.

Step 9: If error ≤ ε (0.01) then go to Step 10, otherwise go to Step 3.
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Step 10: After the learning is completed, the weights were fixed and the network can
be used for testing

Algorithm for RBF based Noise prediction model
Step 1: The centers (Mi, i=1, 2, 3,..n) were chosen randomly and updated by applying
K-mean clustering algorithm and an error tolerance parameter ε (0.01) > 0.

This algorithm (K-mean) aims at minimizing an objective function, in this case a
squared error function. The objective function was:

J =
k∑

j=1

n∑
i=1

(∥xj
i − cj∥2)

where ∥xj
i −cj∥2is a chosen distance measure between a data point x(j)

i and the cluster
centrecj, is an indicator of the distance of the n data points from their respective cluster
centers.
Step 2: Random selection of the initial values of the weight vector wi,j , for i=1, 2,. . .
Mi, were chosen.
Step 3: Initialization
All the weights wm

i,j were initialized to random number and given as wm
i,j (0)

wi,j ← wi,j(0)

Step 4: Calculation of the RBFN outputs
After selecting centers, Gaussian radial functions were used to find the output and that
was calculated as follows:

yj =
k∑

j=1

wi,j × ϕ(∥Xj − Ci∥)

Where yj is the output of RBF model and K is the training samples.

ui = ϕ(∥Xj − Ci∥) =
m∑

i=1

exp

(
∥Xj − Ci∥

2σ2
i

)
Step 5: Calculation of the output error
The error was calculated as follows:

E =
K∑

j=1

(dj − yj)
2 = ej

∼= dj − yj = dj −
K∑

j=1

M∑
i=1

wi,j × exp

(
∥Xj − Ci∥

2σ2
i

)
Where dj is the desired output (here sound pressure level) and yj is the output of
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RBF model.

Step 6: Updating the weight vectors
The weight matrices are updated next using the following relationship

wnew
i,j = wold

i,j + ηuiej

Where η is the momentum parameter or tuning parameter of the system.
Step 7: If error ≤ ε (0.01) then go to Step 8, otherwise go to Step 3.

Step 8: After the learning is complete, the weights were fixed and the network can
be used for testing. After training was complete the weights were fixed for testing the
model. If the testing results were not perfect, then the training process is continued until
the desired performance measure was achieved.

5.2.2.4 Simulation Result and Performance Analysis

To validate the performance of MLP and RBF for SPL prediction, simulation studies
were carried out by using MATLAB. A set of 3200 data points were first generated as per
the VDI-2714 noise prediction model (Eqn. (4.19)), for this the input parameter were
distance and sound power level (SWL). The parameters were varied over the range of
1 to 30 m and 80 to 140 dB (A) respectively. Using these input parameters, SPL was
calculated. This data set was the basis for training and evaluating or testing the MLP
and RBF prediction models. Out of this set of 3200 points, 3000 were used as training
data and 200 were used as testing data. For MLP, Back propagation (BP) algorithm was
used for training the network. In RBF, the centers were trained using K-mean clustering
and weights were trained using LMS algorithm. The spread parameter was set as per the
equation 4.21 ( Section 4.4.2,Chapter 4). The root mean square error (RMSE) was used
as the performance index, it was calculated as

RMSE =

√
N∑

i=1
(V DIi −Estimatedi)2

N

RMSE(dB) = 20 log10 (RMSE)

(5.1)

The performance of MLP network is discussed first. A three layer MLP was used for the
SPL prediction. The input layer consists of model input i.e. SWL and distance. The
output layer consists of only one node representing the SPL. The log-sigmoid activation
was used in hidden layer and linear activation function was used in output layer. The
number of neurons in the hidden layer was varied between 2 to 10 and the performance of
the network was determined. The results obtained are presented in Table 5.9. The first
column of the Table 5.9 represented the number of hidden nodes in the MLP network;
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the second column represented the RMSE of the network during the training period.
Considering the model, the output of the VDI-2714 model was scaled between 0 to 1.
The error was calculated as per the equation 5.1. Since the output of the MLP is in the
form of an absolute quantity, the SPL calculated from VDI-2714 model was scaled. The
highest value of output (VDI-2714) was 1 and remaining SPL value was scaled with this
value. The slope of the linear activation function was adjusted, so that the maximum
output of the MLP model is 1. Fig. 5.5 represented the performance of MLP model
for 100 testing samples. The performance of predicting the SPL using MLP by varying
the number of nodes is presented in Fig.5.6 where, it can be seen that a MLP with five
hidden nodes provides the best performance.

Table 5.9: Comparison of RMS Errors from Different MLP Network Topologies

Description of MLP net-
work topology

Training set RMS Error
(3000 samples) in dB

Testing set RMS Error
(200 samples) in dB

1 hidden layer, 2 nodes 8.9333 9.5174
1 hidden layer, 4 nodes 8.0614 8.5886
1 hidden layer, 5 nodes 7.7322 8.2511
1 hidden layer, 6 nodes 10.4705 10.5981
1 hidden layer, 10 nodes 20.6594 20.5794

The RBF network was similar to the MLP system. The structure of RBF system has
an input layer, hidden layer with centers and one node in output layer. The number of
centers in the hidden layer was varied from 5 to 500 and the performance of the net-
work was determined. Gaussian basis function was used in hidden layer, for which the
centers were determined by K-mean clustering. The results were obtained and presented
in Table 5.10. The first column of the Table 5.10 represents the number of centers; the
second column represented the RMSE of the network during training period. For proper
comparison, the output of the VDI model was scaled between 0 to 1. The error was cal-
culated as similar to MLP model. Figure 5.7 represented the performance of RBF model
for 100 testing samples. The performance of RBF against number of centers is presented
in Fig.5.8. From this figure it can be seen that a RBF network with sixty centers provide
the best performance.

Further the the performance of both the prediction models for small number of training
samples were investigated. The number of training samples was varied and the perfor-
mances of both networks were investigated. Following the prediction of the proposed
models using VDI-2714 model, a realistic implication for SPL prediction was considered.
For the machineries e.g. Shovel (10m3 bucket capacity), Dozer (410hp), Tipper (10T-
160hp), Grader (220 hp) and Dumper (85T) were selected to predict the sound pressure
level (SPL). The validation data was collected from Balaram opencast coal mines, Ma-
hanadi Coalfield Limited (MCL), Talcher (Orissa, India). The test data or the field data
was measured using Bruel & Kjaer 2236. The experimental data were collected for these
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Figure 5.5: Prediction performance of MLP network for 100 samples.

machineries in the range of distance (1 to 30 meter) and SWL (80 to 140 dB (A)). The
MLP and RBF weights were frozen on completion of the experiment in first part. SPL
was predicted using MLP and RBF for each of these machineries and was compared with
the VDI-2714 model. The results are presented in Table 5.11 to 5.13 and also repre-
sented graphically in Fig.5.9. It may be noted that the performance of RBF model is
much better than the performance of MLP model (considering average percentage error
as performance index).

The performance of the proposed models was investigated when number of training
samples was less. Table 5.14 represented the performance of RBF and MLP systems
with different training samples varying from 3000 to 500. After training, the weights
of both the models were fixed to test the performance of the models. For finding the
performance of these models, shovel noise was taken as an example. Fig 5.10 represents
the performance of best RBF system (sixty centers) at different training and testing
samples for shovel noise prediction. In this figure, the performance of the RBF model (
sixty centers) which was trained with 3000 to 500 training samples were compared with
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(a) 1 hidden layer with 2 nodes
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(b) 1 hidden layer with 4 nodes
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(c) 1 hidden layer with 5 nodes

0 500 1000 1500 2000 2500 3000

−80

−60

−40

−20

0

20

Number of iterations

S
q

u
ar

ed
 E

rr
o

r 
in

 d
B

(d) 1 hidden layer with 10 nodes

Figure 5.6: Square error (in dB) of Multi Layer Perceptron (MLP) with different hidden
nodes

the best MLP network (five hidden node) which was trained with only 3000 samples. The
comparisons were based on shovel noise prediction. It was clear from Fig.5.10 that the
performance of RBF system with smaller set of training samples (500 training samples)
was better than the best MLP architecture (5 hidden nodes). Similarly, representation
for MLP system was shown in Fig 5.11. It was observed that the performance of MLP
system with less training samples was not better than the RBF system.

RBF uses sixty centers where as MLP uses five hidden nodes. Hence computational
complexity of RBF is much higher than MLP. The summary of computational complexity
has been presented in Table 5.15. From this it can be inferred that RBF provides better
performance but its computational complexity is approximately 1.65 times higher (as
considering CPU time as performance index).
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Table 5.10: Comparison of RMS Errors from Different Radial Basis Function Network
Topologies

Description of radial
basis function network
topology

Training set RMS Er-
ror (3000 samples) in
dB

Testing set RMS Error
(200 samples) in dB

1 hidden layer, 5 centers 13.9646 14.8898
1 hidden layer, 10 centers 6.2237 8.1991
1 hidden layer, 20 centers 3.4346 9.3171
1 hidden layer, 30 centers 4.4462 8.0317
1 hidden layer, 40 centers 4.9614 8.5504
1 hidden layer, 50 centers 4.8771 7.0430
1 hidden layer, 60 centers 0.4531 2.1226
1 hidden layer, 70 centers 2.0752 2.4048
1 hidden layer, 80 centers 1.3948 2.8905
1 hidden layer, 90 centers 3.7877 2.4798
1 hidden layer, 100 centers 3.0436 2.5578
1 hidden layer, 500 centers 6.4361 2.1794
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Figure 5.7: Prediction performance of RBF network for 100 samples.
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(b) 60 Centers
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(c) 100 Centers
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(d) 500 Centers

Figure 5.8: Square error (in dB) of Radial Basis Function Network (RBF) with different
centers
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Table 5.11: Simulation Study of Shovel and Dumper Noise

Distance
from the
source
(meters)

Shovel Noise Dumper Noise

Measured
field
data
(dBA)

Prediction
result (dBA)

Measured
field
data
(dBA)

Prediction
result (dBA)

VDI-
2714

RBF MLP VDI-
2714

RBF MLP

1 102.3 95.6919 92.3078 85.7903 102.4 95.7919 92.3633 85.8940
2 102.1 95.4828 95.5873 90.9482 101.3 94.6828 94.4882 90.1167
3 98.6 91.9738 93.7972 90.0823 98.2 91.5738 93.1882 89.6666
4 98.2 91.5648 94.3546 91.3763 97.7 91.0648 93.9011 90.8573
5 97.5 90.8559 93.1299 91.7783 97.2 90.5559 92.9960 91.4673
6 97.5 90.8469 91.5242 92.5402 96.8 90.1469 91.4121 91.8153
7 96.7 90.0380 89.9430 92.2228 94.2 87.5380 88.7933 89.6314
8 95.2 88.5291 88.5802 90.9979 94.1 87.4291 87.9761 89.8576
9 93.3 86.6202 87.1077 89.2192 93.6 86.9202 87.3386 89.5301
10 92.4 85.7113 86.4361 88.3689 93.2 86.5113 87.0544 89.1976
11 91.5 84.8025 85.7208 87.4323 93.2 86.5025 86.8859 89.1920
12 91.5 84.7937 85.3878 87.3558 92.5 85.7937 86.0047 88.3902
13 91.3 84.5848 84.5221 87.0131 92.2 85.4848 85.1403 87.9432
14 90.4 83.6760 83.1573 85.8987 90.6 83.8760 83.3071 86.1048
15 88.8 82.0672 81.4089 84.0265 89.7 82.9672 82.1316 84.9504
16 88.4 81.6585 80.8275 83.3544 88.3 81.5585 80.7406 83.2522
17 87.9 81.1497 80.3713 82.5508 88.2 81.4497 80.6614 82.8567
18 87.1 80.3410 79.7126 81.4186 87.6 80.8410 80.2182 81.9259
19 86.7 79.9323 79.4773 80.6724 87.1 80.3323 79.8922 81.0765
20 86.3 79.5236 79.2419 79.9085 86.8 80.0236 79.7563 80.4114
21 85.7 78.9149 78.7721 78.9300 86.5 79.7149 79.5527 79.7304
22 85.2 78.4063 78.3322 78.0408 86.2 79.4063 79.2455 79.0358
23 85.3 78.4976 78.3340 77.7354 85.8 78.9976 78.7625 78.2306
24 85.5 78.6890 78.3527 77.5159 85.6 78.7890 78.4349 77.6146
25 85.5 78.6804 78.2682 77.0882 84.8 77.9804 77.6857 76.4021
26 85.3 78.4718 78.1564 76.4558 84.2 77.3718 77.2048 75.3855
27 84.7 77.8632 77.7931 75.4297 84.2 77.3632 77.3386 74.9467
28 84.2 77.3547 77.5051 74.5013 83.7 76.8547 77.0091 74.0227
29 83.8 76.9461 77.1810 73.6694 83.4 76.5461 76.7363 73.2898
30 82.7 75.8376 75.7551 72.1815 82.8 75.9376 75.8772 72.2751
Average percentage
error (dBA)

0.7664 2.5193 0.8212 2.5213
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Table 5.12: Simulation Study of Grader and Tipper Noise

Distance
from the
source
(meters)

Grader Noise Tipper Noise

Measured
field
data
(dBA)

Prediction
result (dBA)

Measured
field
data
(dBA)

Prediction
result (dBA)

VDI-
2714

RBF MLP VDI-
2714

RBF MLP

1 105.3 98.6919 94.0268 88.9065 100.9 94.2919 91.2754 84.3419
2 103.4 96.7828 96.9975 92.2982 99.7 93.0828 92.2709 88.4532
3 101.2 94.5738 96.3909 92.7810 98.6 91.9738 93.7972 90.0823
4 98.7 92.0648 94.6979 91.8950 97.5 90.8648 93.6886 90.6496
5 97.2 90.5559 92.9960 91.4673 96.5 89.8559 92.5382 90.7410
6 95.5 88.8469 90.8301 90.4672 96.2 89.5469 91.2174 91.1933
7 94.3 87.6380 88.8770 89.7352 95.8 89.1380 89.7181 91.2906
8 94.1 87.4291 87.9761 89.8576 94.8 88.1291 88.3980 90.5833
9 93.7 87.0202 87.4095 89.6338 94.3 87.6202 87.7763 90.2556
10 93.2 86.5113 87.0544 89.1976 93.7 87.0113 87.3530 89.7156
11 92.6 85.9025 86.5454 88.5707 92.8 86.1025 86.6658 88.7778
12 91.8 85.0937 85.5836 87.6660 90.6 83.8937 84.7092 86.4260
13 90.4 83.6848 83.9103 86.0842 89.5 82.8848 83.2216 85.1568
14 88.6 81.8760 81.2510 84.0477 88.4 81.6760 81.6390 83.8426
15 88.5 81.7672 81.1717 83.7191 86.8 80.0672 79.7086 81.9832
16 88.2 81.4585 80.6541 83.1500 86.2 79.4585 78.8924 81.1147
17 87.9 81.1497 80.3713 82.5508 85.8 79.0497 78.4450 80.4209
18 87.3 80.5410 79.9121 81.6213 85.2 78.4410 77.9348 79.5020
19 86.5 79.7323 79.2756 80.4707 85.2 78.4323 78.0403 79.1646
20 85.8 79.0236 78.7479 79.4069 84.7 77.9236 77.7211 78.3086
21 85.4 78.6149 78.4872 78.6308 84.5 77.7149 77.6518 77.7366
22 85.1 78.3063 78.2408 77.9417 83.8 77.0063 77.0382 76.6588
23 84.6 77.7976 77.7167 77.0447 83.5 76.6976 76.6790 75.9663
24 84.2 77.3890 77.2371 76.2393 83.5 76.6890 76.5699 75.5568
25 83.8 76.9804 76.8027 75.4281 83.2 76.3804 76.2186 74.8473
26 83.2 76.3718 76.2767 74.4206 82.8 75.9718 75.8755 74.0369
27 82.9 76.0632 76.1047 73.7001 82.6 75.7632 75.8018 73.4144
28 82.5 75.6547 75.7844 72.8826 82.2 75.3547 75.4690 72.5995
29 82.1 75.2461 75.2927 72.0656 82.2 75.3461 75.4032 72.1593
30 81.8 74.9376 74.6891 71.3431 82.2 75.3376 75.1552 72.2751
Average percentage
error (dBA)

0.8676 2.4878 0.7369 2.5284
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Table 5.13: Simulation Study of Dozer Noise

Distance
from the
source
(meters)

Dozer Noise

Measured
field
data
(dBA)

Prediction result
(dBA)

VDI-2714 RBF MLP
1 100.5 93.8919 90.8870 83.9290
2 100.2 93.5828 92.9206 88.9730
3 98.2 91.5738 93.1882 89.6666
4 97.5 90.8648 93.6886 90.6496
5 96.7 90.0559 92.6908 90.9486
6 95.4 88.7469 90.7589 90.3635
7 94.8 88.1380 89.2404 90.2538
8 94.2 87.5291 88.0452 89.9613
9 93.6 86.9202 87.3386 89.5301
10 92.5 85.8113 86.5237 88.4725
11 91.8 85.1025 85.9760 87.7427
12 89.6 82.8937 83.7450 85.3945
13 89.3 82.5848 83.0509 84.9510
14 88.8 82.0760 81.9665 84.2529
15 88.2 81.4672 80.9320 83.4120
16 87.9 81.1585 80.3964 82.8437
17 87.4 80.6497 79.9024 82.0419
18 86.6 79.8410 79.2278 80.9124
19 85.5 78.7323 78.3156 79.4651
20 85.5 78.7236 78.4604 79.1067
21 84.8 78.0149 77.9274 78.0341
22 84.3 77.5063 77.5048 77.1508
23 84.2 77.3976 77.3501 76.6516
24 83.8 76.9890 76.8629 75.8488
25 83.5 76.6804 76.5165 75.1374
26 83.5 76.6718 76.5658 74.7093
27 82.8 75.9632 76.0046 73.6048
28 82.5 75.6547 75.7844 72.8826
29 82.4 75.5461 75.6248 72.3468
30 82.4 75.5376 75.3929 71.9012
Average percentage
error (dBA)

0.8414 2.5285

Table 5.14: Performance of RBF and MLP based Models at Different Training Samples

Number of Training Samples Number of Testing
Samples

RMSE (dB) of MLP
Networks

RMSE (dB) of RBF
Networks

3000 200 7.7322 0.4531
2000 1200 9.5615 1.0479
1000 2200 9.7839 4.47706
500 2700 24.5037 7.2205

Table 5.15: Complexity Analysis of RBF and MLP Noise Prediction Model

Complexity
Analysis

RBF (2-60-1) MLP (2-5-1)

Multiplication / Di-
vision

120 15

Addition / Subtrac-
tion

60 15

Exponential 60 5
CPU-time (in sec) 7.2660 3.8120
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Figure 5.9: Artificial neural network noise prediction for different machineries in the
study area
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Figure 5.10: Performance of RBF noise prediction model with different training data set
for shovel noise prediction
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Figure 5.11: Performance of MLP noise prediction model with different training data set
for shovel noise prediction
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5.2.3 Application of Adaptive Network based Fuzzy Inference
System (ANFIS) for Machinery Noise Prediction

In this present study, an attempt has been made to use adaptive fuzzy model (ANFIS)
or Neuro-Fuzzy model to predict sound pressure level by using sound power level and
distance as input parameters. This study is similar to Mamdani and T-S-K fuzzy appli-
cation as discussed in previous section. According to Fig. 5.1, the soft computing model
is ANFIS and LMS based updating algorithm is adopted. The system architecture of
the adaptive fuzzy system based prediction model is analyzed and represented in Fig.
5.12. The methodology for the development of the adaptive fuzzy noise prediction model
involves the following steps:

1. Selection of input and output variables;

2. Selection of membership functions;

3. Formation of linguistic rule base;

4. Defuzzification and

5. Training of parameters of the fuzzy model.

Figure 5.12: Adaptive fuzzy system architecture for noise prediction

In the proposed model ( Fig. 5.12), the two inputs are sound power level (LW ) and
distance from the source (R) respectively. Each input has five membership functions e.g.
L

(1)
W , L

(2)
W ...L

(5)
W corresponding to (LW ) and R(1), R(2)...R(5) for R. The process of fuzzifi-

cation of input (LW ) and R is done with triangular membership function. The mem-
bership functions are represented as ”L

(1)
W = low (80− 100 dB)”,”L(2)

W = medium (90−
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5.2 Soft Computing Models for non frequency based noise prediction

110 dB)”...”L(5)
W = veryhigh (120− 140 dB)” for the input LW . The membership func-

tions corresponding to this input variables are µL1 , µL2 , ...µL5 . Similarly the member-
ship functions for R are represented as ”R(1) = medium low(0 − 10 meter)”,”R(2) =

low (1−15 meter)”...”R(5) = high (20−30 meter)” for the input R and the membership
corresponding to these input variables are µR1 , µR2 , ...µR5 respectively. Graphical repre-
sentation of membership function of input parameters((LW ) and R) was depicted in Fig.
5.2(a) and (b) in earlier as discussed in section 5.2.1.

5.2.3.1 Formation of linguistic rule-base for ANFIS system

The relationship between input and the output are represented in the from of IF-THEN
rules. The membership function L(1)

W , L
(2)
W ...L

(5)
W and R(1), R(2)...R(5) are the inputs to the

rule-base. Let the output, Sound pressure level is expressed as Z. Since there are two
inputs and each input has five possible fuzzy sets. The system can have at most 52 =25
rules. In the proposed model, product inference was considered. Each of these rules
receive the membership from each of input variable fuzzy sets. Hence rules are formed
in following manner;

R1 : IF LW is L
(1)
W ANDR is R(1) THEN sound pressure level (Z)

is Z = (µL1(L
(1)
W )×µR1(R

(1))×w1;

R2 : IF LW is L
(1)
W ANDR is R(2) THEN sound pressure level (Z)

is Z = (µL1(L
(1)
W )×µR2(R

(2))×w2;
.

.

.

R25 : IF LW is L
(5)
W ANDR is R(5) THEN sound pressure level (Z)

is Z = (µL5(L
(5)
W )×µR5(R

(5))×w25;

Since the system has 25 rules, each rule is associated with a weight. The rules R1, R2...R25

are associated with weights (w1, w2...w25) respectively. These weights are initialized to
random values at the beginning. Since this model was structured with product inference
engine, therefore the fuzzy system can be considered as Takagi-Sugeno-Kang (TSK) fuzzy
system.

5.2.3.2 Defuzzification

In general ANFIS structure is similar to T-S-K fuzzy model. Hence Centroid of area
(COA) method of defuzzification has been used for determining the output. The esti-
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mated output is determined as

ŷ =

∑25
i=1wi × ψi∑25

i=1wi

(5.2)

where ψi= µLk×µRm. where k = 1,..5 , m = 1,..5 corresponding to number of fuzzy sets
in Lw and R.

5.2.3.3 Training of parameters of the fuzzy model.

In the model presented at Fig. 5.12, weights wi, (i = 1, 2, ...25) are unknown. These are
initialized to random values at the beginning. Subsequently these weights are updated
using LMS algorithm which was first proposed by Widrow and McCool in 1976 [211].
This is similar to the adaption used by Patra and Mulgrew [169]. The weights can be
updated iteratively by;

e(k) = y(k)− ŷ(k) (5.3)

W (k + 1) = W (k) + 2αe(k)ψ(k) (5.4)

Where k is the time index, W(k+1)refers to the new weights of the system and W(k) is
the existing weight. W=[(w1, w2...w25)]

T is the weight vector and ψ = [(ψ1, ψ2...ψ25)] is
the output of the inference engine.

5.2.3.4 Simulation Result and Discussion

The proposed model is simulated using MATLAB software. The flowchart for the ANFIS
system is shown in Fig.5.13.

The training data set was derived from the VDI-2714 noise prediction model (Eq.(3.3)).
A set of 3200 data set was generated for different values of input parameters LW and
R.Using these data in VDI-2714 model SPL was determined. This constituted y for
training . The fuzzy network was trained with 3000 sets out of the total data generated.
Remaining 200 data set was used for testing the model. The performance of training
was validated using mean square error(MSE) as performance index. The efficiency and
simplicity of the fuzzy system was validated using the CPU time. Fig.5.14 shows the
error update curve during training of the system. Fig.5.15 shows the performance of the
system with 200 samples and it was observed that the mean square error for prediction
is 2.73 %. The adaptive fuzzy algorithm took CPU time of 0.0625 sec approximately as
compared to 0.5 sec for the VDI-2714 model.

To test the stability of the model, validation data is essential. The validation data is
collected from Balaram Opencast coal mines, Mahanadi Coalfield Limited (MCL), Talcher
(Orissa, India). The test data or the field data was measured using Bruel & Kjaer 2236
(Denmark) sound level meter. From the measured parameter, VDI-2714 gives prediction
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Figure 5.13: Flowchart of the adaptive fuzzy noise prediction model
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by calculating all the sound attenuations in ’dB (A)’ not in octave frequency band. In
general, numerous machineries are used in opencast mines for production, so it is difficult
to show the noise prediction of all the machineries using the proposed model here. The
machineries ex. Shovel (10m3 bucket capacity), Dozer (410HP), Tipper (10T-160HP),
Grader (220 HP) and Dumper (85T) were selected to predict the sound pressure level
(SPL) by using VDI2714 and adaptive fuzzy system. Prediction results of the two mod-
els (VDI-2714 and ANFIS) for Dozer machine were graphically represented in Fig. 5.16
(a). These models were compared by using measured distance (R) and sound power level
(SWL). The prediction results were also represented in Table 5.16. Similar plot for other
machineries were represented in Figs. 5.16 (b), (c), (d) and (e) respectively. Table 5.16
shows the measured field data (validation data) and prediction results of the two models
(VDI-2714 and ANFIS) of all the selected machineries. It is seen that the ANFIS noise
prediction model closely matches with VDI-2714 model results in noise prediction.
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Figure 5.14: Square error of the adaptive fuzzy system

5.2.3.5 Advantages of neuro-fuzzy model

From the present research study, it is found that the Neuro-Fuzzy or ANFIS model takes
0.0625 sec CPU time vis-a-vis 0.5 sec CPU time for VDI-2714 noise prediction model.
Some of the advantages of the model are enumerated below:
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Figure 5.15: Prediction performance of adaptive fuzzy system (ANFIS)for 200 samples

• The noise generated from industrial machineries is generally represented by mathe-
matical models. One such model is VDI-2714 . In this model, the input parameters
are distance (R) and sound power level (SWL (LW )); the model predicts the sound
pressure level (SPL (LP )). Sound pressure level (SPL) was determined for each set
of measured distance (R) and Sound power level (SWL). The process has to be
repeated for each machinery. The calculation was complex. The fuzzy models need
to be trained once for any specific machinery. Once the fuzzy model was trained,
SPL can be determined for any input condition. The model predicts SPL with
very little CPU time (12%) compared to VDI-2714. In general, the network can be
trained to work for any standard model. The prediction would correspond to the
model for which it was trained.

• The model of ANFIS remains fixed as long as input and output remain the same.
This can be implemented as a fixed hardware. The training data is based on actual
measurement. This information can be used to train the network. Hence same
network with different training sets can provide approximate result for different
mines/working conditions.

• ANFIS model can be built using DSP hardware available in market. This can be
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Figure 5.16: ANFIS noise prediction for machineries in the study area
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used in instrument for measurement owing to low CPU time. Higher CPU time of
VDI2714 model will prohibit its usage in portable instrument.

• The ANFIS model can be used to predict noise of machineries for other models
also. This can be done by using a different training data sheet. In an instrument,
this can be implemented easily, where the instrument can provide prediction for
different models.

5.3 Soft Computing Models for Frequency based Noise
Prediction

For validation of the models (Frequency dependent soft computing based noise predic-
tion models), the noise data was collected from Panchpatmali Bauxite Mine, (NALCO),
Damanjodi (Koraput, Odisha, India).The test data was measured using Brüel & Kjaer
2236 (Denmark) precision sound level meter. From the measured parameter, ISO-9613-2
gives prediction by calculating all the sound attenuations. SPL of the different machiner-
ies from the above mine was collected. These machineries include Dozer (416 hp), Shovel
(3m3 bucket capacity, 320 hp), Pay-Loader (555hp), Dumper (50T), Rock-breaker (120
hp), Rotary Percussive Drill (324 hp), Double Roll Toothed Crusher. The experimental
data were collected for these machineries in the range of distance (5 to 150 m) , SWL
(100 to 140 dB (A)), wind speed (2-7 m/sec), relative humidity(55-62%) and tempera-
ture (28-320C). The detailed input parameters used for frequency based noise models are
represented in Table 5.17.

5.3.1 Application of Fuzzy Logic System for Frequency based
Noise Prediction

In the present study, an attempt has been made to use fuzzy system to predict or esti-
mate the sound pressure level of machineries used in an opencast bauxite mine. With
availability of set of measured data input and output of the fuzzy system, it would be
able to predict the output for any given input even if a specific input condition had not
been covered in the building stage. The given model was a MISO (Multi Input and Single
Output) model. All the procedure for Mamdani and T-S-K fuzzy system is same as per
VDI-2714 and discussed earlier. The input and output selection for both fuzzy system
was represented as follows:

5.3.1.1 Selection of input and output variables

The first step in system modeling was the identification of input and output variables
called the system’s variables. Only those inputs that affected the output to a large
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.17: The input parameters with possible range for frequency based noise prediction
model.

Input parameters Possible ranges for
frequency based noise
prediction model

Distance 5 to 150 meter
Sound power level
(SWL)

100 to 140 dB (A)

Wind speed 2-7 m/sec
Relative humidity 55-62 %
Temperature 28-320C

extent were selected. The five important input variables were sound power level (SWL),
distance, wind speed, temperature and relative humidity. Inclusion of more number of
inputs to the system requires more number of rules and hence the complexity increases.
The universe of discourse was also decided on the basis of the physical nature of the
problem. In the selection procedure, the above mentioned inputs and the output were
taken in the form of linguistic format which displayed an important role in the application
of fuzzy logic.

Table 5.18 shows the linguistic variables, their values, and associated fuzzy intervals.In
the proposed model, membership function of distance (input 1) is represented in trape-
zoidal membership function and for better performance it has six membership variables
viz. ( low, medium, medium high, high, very high , extreme). Similar to first input, the
second input (SWL) had five triangular membership variables viz.(low, medium, medium
high, high, very high), and the remaining inputs have three triangular membership func-
tions as ( low, medium, high . The graphical representation of membership functions
of the inputs as similar to Figure 5.2 shown in section 5.2.1.1. For Mamdani fuzzy sys-
tem,the output variables had seven membership variables viz. (very low, low, medium,
high, very high, extreme). This is also presented in Table 5.18.

Modeling of fuzzy logic system for frequency based noise prediction was implemented
similar to the earlier implementation as discussed in section 5.2.1 . The details of im-
plementation using different forms of fuzzy systems is presented in table 5.19. In this
study, Centroid of area (COA) method of defuzzification is used. After defuzzication ,
the fuzzy models were tuned to minimize the error. The coefficients were set by trial
and error basis and when the predictive value matched with the desired value with in
the error limits, the coefficients were fixed. This treatment is quite different from other
mathematical models or statistical model.

5.3.1.2 Simulation results and discussion

The proposed models for noise prediction was validated using simulation studies. The
studies were carried out by using MATLAB simulation environment. For validation of
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.18: Inputs and output variables and their fuzzy intervals

Sl.No. System’s linguistic variable Variables Linguistic values Fuzzy interval

1

Inputs

SWL

Low 80-100 dBA
Medium 90-110 dBA
Medium High 100-120 dBA
High 110-130 dBA
Very High 120-140 dBA

2 Distance

Low 5-40 meter
Medium 35-70 meter
Medium High 65-100 meter
High 95-130 meter
Very High 125-150 meter
Extreme 145-160 meter

3 Wind
Low 1-5 meter/sec
Medium 4-7 meter/sec
High 6-10 meter/sec

4 Temperature
Low 10-35 0C
Medium 30-45 0C
High 40-60 0C

5 Relative Humidity
Low 10-45 %
Medium 40-60 %
High 55-100 %

1 Output SPL

Very Low 55-75 dBA
Low 70-85 dBA
Medium 80-90 dBA
Medium High 85-95 dBA
High 90-100 dBA
Very High 95-105 dBA
Extreme 100-115 dBA

the models, the noise data was collected from Panchpatmali Bauxite Mine, National Alu-
minium Company Limited (NALCO), Damanjodi (Koraput, Odisha, India).The test data
was measured using Brüel & Kjaer 2236 (Denmark) sound level meter. From the mea-
sured parameter, ISO-9613-2 gives prediction by calculating all the sound attenuations.
SPL of the different machineries from the above mine was collected.

Fuzzy systems were applied for five frequency based noise prediction models. The
classical noise prediction models are ISO-9613-2, CONCAWE, ENM, NORDFORSK and
VDI-2720 standard was used as reference. Machinery noise prediction results were cal-
culated as per the standards as discussed in Chapter 3 (Section 3.4.1 - 3.4.3). Fuzzy
Inference Systems were applied to all frequency based noise prediction models. Perfor-
mance of fuzzy system based noise prediction models for ISO-9613-2 model is discussed
first. A set of 224 data points were first generated as per the ISO-9613-2 noise predic-
tion model using (3.9). For this, the input parameters were distance, sound power level
(SWL), wind speed, relative humidity and temperature. Using these input parameters,
SPL was calculated. The root mean square error (RMSE) was used as the performance
index, which was calculated as follows:

RMSE =

√√√√√ N∑
i=1

((ISO − 9613− 2)i − Estimatedi)2

N
(5.5)
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.20 summarizes the results for noise prediction by proposed models and com-
pares it with ISO-9613-2 noise prediction model for all selected opencast machineries.
From the table it can be seen that the proposed Mamdani and T-S-K models provided
RMSE of 3.4836 and 3.4671 respectively for Dozer. For Shovel, Dumper, Pay-loader,
Rock-breaker, Rotary percussive drill and Roll crusher, the RMSE were 3.6473, 3.5829,
4.8581, 4.1440, 5.1335, 4.0297, 4.3098, 3.5386, 5.3392, 5.2970, 4.2653 and 4.6467 respec-
tively. Similar study for other frequency based noise prediction models were investigated
in this study. Comparison results of other frequency based noise prediction models with
Mamdani and T-S-K were represented in Table 5.21 to 5.24. Table 5.21 represented the
comparison result of CONCAWE noise prediction model, Table 5.22 represented the re-
sult of ENM model, Table 5.23 represented the result of NORDFORSK model and the
Table 5.24 represented the comparison result of VDI-2720 model with Mamdani and T-
S-K fuzzy inference system based noise prediction model. From the simulation studies, it
was observed that the RMSE of Sugeno fuzzy model was lower than the Mamdani fuzzy
model.

Anderson-Darling (AD) normality test results are shown in Figure 5.17 and Figure
5.18 for respective SPL residue. The test is done between the prediction results of Fuzzy
systems (Mamdani and T-S-K) and frequency dependent model results. Figure 5.17 rep-
resented AD normality test for Mamdani fuzzy system, where Figure 5.18 represented the
AD normality test for T-S-K fuzzy system. Since p-value of the normality plots are found
to be above 0.05, it signifies that residue follows normal distribution. Small percentage
of error proves the suitability of above models for practical engineering applications.

5.3.2 Application of Artificial Neural Network for Frequency based
Noise Prediction

ANN models were used for implementing frequency based noise prediction for opencast
mining machineries. Neural Network (MLP and RBFN) based prediction was imple-
mented for ISO-9613-2, CONCAWE, ENM, NORDFORSK and VDI-2720 models. The
selection of input and output for ANN model is same as fuzzy model as discussed in sec-
tion 5.3.1 . The stepwise procedure, algorithm are similar to execution of ANN models
for VDI-2714 discussed in section 5.2.2 . Table 5.25 represents the ANN procedure for
all the frequency dependent models.

5.3.2.1 Simulation Result and Discussion

ANN based frequency dependent noise prediction model was evaluated using,the same
inputs as tested for Fuzzy system. In this study, ANN model was applied for five fre-
quency based noise prediction models which include ISO-9613-2, VDI-2720, CONCAWE,
NORDFORSK and ENM. Machinery noise was first calculated as per the prescribed
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(a) (b)

(c) (d)

(e)

Figure 5.17: Statistical performance study of Mamdani Fuzzy Inference System based
noise prediction(a)CONCAWE, (b)ISO-9613-2, (c) ENM, (d) NORDFORSK (e) VDI-
2720

standards (Section 3.4.1 - 3.4.3, Chapter 3). Performance of ANN system based noise
prediction models for ISO-9613-2 model is discussed first. For ANN system, 175 data
samples were used as training data and 49 number of data samples were used as test-
ing samples.Both MLP and RBF were used for developing noise prediction models. The
ANN based noise prediction model result was compared with ISO-9613-2. In MLP based
model, back propagation method was used to minimize the system error. MLP based
noise prediction model gave good and appropriate result with five hidden nodes in hidden
layer and this procedure was similar to MLP based model for VDI-2714 as discussed in
previous section (5.2.2). The mean square error (MSE)of MLP model for 100 epochs
is represented in Figure 5.19(a) and the performance of the MLP model for 49 testing
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(a) (b)

(c) (d)

(e)

Figure 5.18: Statistical performance study of T-S-K Fuzzy Inference System based noise
prediction(a)CONCAWE, (b)ISO-9613-2, (c) ENM, (d) NORDFORSK (e) VDI-2720

samples or validation samples is presented in Figure 5.19(b) . MSE plot of MLP for 100
epochs for CONCAWE model is represented in Fig 5.20 (a) and Fig. 5.20 (b) represented
performance of MLP model for CONCAWE model prediction. Similarly Fig. 5.21(a) and
5.21(b) represented for ENM, Fig 5.22(a) and 5.22(b) represented for NORDFORSK and
Fig 5.23(a) and 5.23(b) represented VDI-2720 model respectively.
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Figure 5.19: (a) Mean square error plot of MLP system for 100 epochs (b) Prediction
performance of MLP network for 49 samples for ISO-9613-2 noise prediction model
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Figure 5.20: (a) Mean square error plot of MLP system for 100 epochs (b) Prediction
performance of MLP network for 49 samples for CONCAWE noise prediction model
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Figure 5.21: (a) Mean square error plot of MLP system for 100 epochs (b) Prediction
performance of MLP network for 49 samples for ENM noise prediction model
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Table 5.20: Comparative study between ISO-9613-2 and Fuzzy System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
ISO-
9613-2
in
dB(A)

Mamdani
Pre-
dicted
SPL in
dB(A)

T-S-K
Predicted
SPL in
dB(A)

Root mean
square error

Mamdani TSK
1 DOZER 5 114.5 89.5 90.8 90 85.4

3.4836 3.4671

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 90 89.4
(Temp. : 280C) 50 122.7 77.8 77.7 77.5 77.1
(Relative humidity: 57 %) 75 123.9 75.4 74.0 77.5 74.4

100 123.0 72.0 69.8 65.1 66.4
125 122.1 69.1 66.5 65.1 66.2
150 120.8 66.3 63.3 63.9 61.8

2 SHOVEL 5 115.4 90.4 91.7 90 85.5

3.6473 3.5829

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 90 87.2
(Temp. : 270C) 50 122.1 77.2 77.4 77.5 77.1
(Relative humidity: 59 %) 75 122.3 73.8 72.6 77.5 74.1

100 122.0 71.0 69.0 65.6 63.7
125 121.4 68.4 65.9 64.9 66.4
150 120.4 65.9 62.9 63.5 62.2

3 DUMPER 5 113.9 88.9 90.2 90.1 83.8

4.8581 4.1440

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 90 85.3
(Temp. : 290C) 50 120.0 75.1 75.3 77.5 76.9
(Relative humidity: 58 %) 75 121.6 73.1 72.5 77.4 74.2

100 122.9 71.9 70.4 67.3 65.8
125 120.7 67.7 65.5 64.7 67.1
150 115.9 61.4 58.6 63.9 63.4

4 PAYLOADER 5 111.7 86.7 87.9 90.1 85.2

5.1335 4.0297

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 90.1 85.2
(Temp. : 300C) 50 122.4 77.5 77.7 77.4 77.9
(Relative humidity: 58 %) 75 121.7 73.2 72.3 77.5 74.6

100 121.0 70.0 68.4 65.2 64.8
125 118.6 65.6 63.3 67.4 67.8
150 114.3 59.8 57.0 63.8 64.2

5 ROCK-BREAKER 5 112.5 87.5 88.7 84.5 85

4.3098 3.5386

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 84.4 85.8
(Temp. : 290C) 50 119.0 74.1 74.6 77.3 74.9
(Relative humidity: 61 %) 75 119.1 70.6 69.6 77.4 69.2

100 119.4 68.4 66.5 63.5 66.4
125 118.8 65.8 63.3 63.4 69.0
150 117.7 63.2 60.3 63.5 60.8

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 90.1 85.9

5.3392 5.2970

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 90.1 80.3
(Temp. : 300C) 50 120.8 75.9 76.1 77.4 77.4
(Relative humidity: 59 %) 75 121.3 72.8 72.8 77.4 74.5

100 123.8 72.8 72.5 66.1 63.6
125 118.7 65.7 65.1 66.9 67.6
150 116.1 61.6 60.5 63.8 63.7

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.9 81.7

4.2653 4.6467

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 84.9 80.3
(Temp. : 320C) 50 118.7 73.8 74.2 77.5 77.6
(Relative humidity: 58 %) 75 118.4 69.9 69.9 77.5 73.7

100 117.5 66.5 66.2 64.1 69.5
125 116.2 63.2 62.6 64.1 71.7
150 114.7 60.2 58.9 64.1 62.1
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.21: Comparative study between CONCAWE and Fuzzy System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
CON-
CAWE
in
dB(A)

Mamdani
Pre-
dicted
SPL in
dB(A)

T-S-K
Predicted
SPL in
dB(A)

Root mean
square error

Mamdani TSK
1 DOZER 5 114.6 89.3 89.2 90 85.9458

4.5245 2.9640

(Wind Speed: 2.5 m/sec) 25 121.2 82.2 81.9 90 84.0496
(Temp. : 280C) 50 122.7 77.8 77.3 77.5 77.1314
(Relative humidity: 57 %) 75 123.9 75.4 74.7 77.5 74.3980

100 123 72.0 72.3 65.1 66.6877
125 122.1 69.1 68.9 65.1 68.3056
150 120.5 66.2 65.6 63.9 61.8165

2 SHOVEL 5 113.4 90.2 90 90 86.0127

4.8481 3.3688

(Wind Speed: 3.2 m/sec). 25 120.9 81.9 81.6 90 82.0
(Temp. : 270C) 50 121.9 77.0 76.4 77.5 77.1314
(Relative humidity: 59 %) 75 122.2 73.7 72.8 77.5 74.1080

100 121.9 70.9 72.3 65.6 65.7353
125 121.4 68.4 69.2 64.9 67.7346
150 120.4 65.9 66.2 63.5 62.2130

3 DUMPER 5 113.6 88.6 88.5 90.1 86.3118

5.5001 3.9837

(Wind Speed: 2.91 m/sec) 25 118.2 79.1 78.8 90 86.4441
(Temp. : 290C) 50 119.8 74.9 74.3 77.5 76.8592
(Relative humidity: 58 %) 75 121.5 73 72.2 77.4 74.2500

100 122.8 71.8 72.7 67.3 66.9626
125 120.6 67.6 68.1 64.7 67.6264
150 115.8 61.3 61.5 63.9 63.4934

4 PAYLOADER 5 111.5 86.5 86.4 90.1 86.3128

5.1296 3.6107

(Wind Speed: 3 m/sec) 25 119.5 80.5 80.2 90.1 86.5972
(Temp. : 300C) 50 122.3 77.4 77.0 77.4 77.9114
(Relative humidity: 58 %) 75 121.7 73.2 72.5 77.5 74.6280

100 121.0 70.0 71.0 65.2 65.8240
125 118.6 65.6 66.2 67.4 67.8261
150 114.2 59.7 60.3 63.8 64.2414

5 ROCK-BREAKER 5 112.4 87.4 87.3 84.5 87.6906

4.4597 3.2217

(Wind Speed: 7.1 m/sec) 25 117.5 78.5 78.2 84.4 85.1172
(Temp. : 290C) 50 119.0 74.1 73.5 77.3 74.9012
(Relative humidity: 61 %) 75 119.1 70.6 69.7 77.4 69.2778

100 117.3 66.3 67.4 63.5 66.6576
125 116.6 63.6 64.6 63.4 69.2491
150 115.6 61.1 61.9 63.5 62.4914

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 94.3 90.1 86.8671

6.0083 4.7017

(Wind Speed: 2 m/sec) 25 118.4 79.4 79.1 90.1 85.3398
(Temp. : 300C) 50 120.5 75.6 75.0 77.4 77.3714
(Relative humidity: 59 %) 75 121.3 72.8 72.0 77.4 74.4980

100 123.7 72.7 74.9 66.1 67.9427
125 118.7 65.7 68.2 66.9 67.6717
150 116.0 61.5 63.9 63.8 63.8014

7 ROLL CRUSHER 5 109.9 84.9 84.8 84.9 83.1829

4.6354 5.0831

(Wind Speed: 7 m/sec) 25 118.2 79.2 78.9 84.9 81.4471
(Temp. : 320C) 50 118.6 73.7 73.3 77.5 77.6060
(Relative humidity: 58 %) 75 118.3 69.8 69.2 77.5 73.6933

100 114.2 63.2 65.8 64.1 68.8856
125 112.9 59.9 62.4 64.1 71.1211
150 111.6 57.1 59.4 64.1 66.2888
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.22: Comparative study between ENM and Fuzzy System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
ENM in
dB(A)

Mamdani
Pre-
dicted
SPL in
dB(A)

T-S-K
Predicted
SPL in
dB(A)

Root mean
square error

Mamdani TSK
1 DOZER 5 114.5 89.5 92.4 90 87.4918

6.0617 4.8810

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 85.0 90 83.3035
(Temp. : 280C) 50 122.7 77.8 80.3 77.5 77.1314
(Relative humidity: 57 %) 75 123.9 75.4 77.7 77.5 74.3980

100 123.0 72.0 74.2 65.1 67.8642
125 122.1 69.1 74.1 65.1 69.4167
150 120.8 66.3 71.3 63.9 63.7647

2 SHOVEL 5 115.4 90.4 93.3 90 88.6543

5.4883 4.3663

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 84.7 90 82.0790
(Temp. : 270C) 50 122.1 77.2 79.6 77.5 77.1914
(Relative humidity: 59 %) 75 122.3 73.8 75.9 77.5 74.1380

100 122.0 71.0 72.9 65.6 66.9277
125 121.4 68.4 72.9 64.9 68.2484
150 120.4 65.9 70.4 63.5 64.1722

3 DUMPER 5 113.9 88.9 91.7 90.1 86.7552

4.9989 3.6270

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 82.1 90 86.5752
(Temp. : 290C) 50 120.0 75.1 77.5 77.5 76.9034
(Relative humidity: 58 %) 75 121.6 73.1 75.3 77.4 74.2800

100 122.9 71.9 73.8 67.3 68.2181
125 120.7 67.7 72.4 64.7 68.7295
150 115.9 61.4 65.9 63.9 64.6434

4 PAYLOADER 5 111.7 86.7 89.6 90.1 83.2782

4.0839 3.5934

(Wind Speed: 3 m/sec) 25 119.6 80.6 83.3 90.1 86.7782
(Temp. : 300C) 50 122.4 77.5 80.0 77.4 77.9414
(Relative humidity: 58 %) 75 121.7 73.2 75.5 77.5 74.6280

100 121.0 70.0 72.3 65.2 66.8766
125 118.6 65.6 70.4 67.4 68.6761
150 114.3 59.8 64.1 63.8 65.0714

5 ROCK-BREAKER 5 112.5 87.5 90.4 84.5 85.6139

4.3298 3.5420

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 81.2 84.4 86.6795
(Temp. : 290C) 50 119.0 74.1 76.5 77.3 75.8112
(Relative humidity: 61 %) 75 119.1 70.6 72.7 77.4 71.0978

100 119.4 68.4 70.3 63.5 66.4476
125 118.8 65.8 67.4 63.4 69.0291
150 117.7 63.2 64.6 63.5 60.8114

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 97.3 90.1 95.8939

5.4103 2.5743

(Wind Speed: 2 m/sec) 25 118.8 79.8 82.3 90.1 85.7453
(Temp. : 300C) 50 120.8 75.9 78.2 77.4 77.4614
(Relative humidity: 59 %) 75 121.3 72.8 75.0 77.4 74.4980

100 123.8 72.8 74.7 66.1 69.2691
125 118.7 65.7 70.0 66.9 68.5317
150 116.1 61.6 65.3 63.8 64.9914

7 ROLL CRUSHER 5 110.0 85.0 87.9 84.9 90.4948

3.2300 2.2435

(Wind Speed: 7 m/sec) 25 118.2 79.2 81.9 84.9 83.3035
(Temp. : 320C) 50 118.7 73.8 76.4 77.5 77.1314
(Relative humidity: 58 %) 75 118.4 69.9 72.3 77.5 74.3980

100 117.5 66.5 68.7 64.1 67.8642
125 116.2 63.2 65.2 64.1 69.4167
150 114.7 60.2 62.0 64.1 63.7647
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.23: Comparative study between NORDFORSK and Fuzzy System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
NORD-
FORSK
WE in
dB(A)

Mamdani
Pre-
dicted
SPL in
dB(A)

T-S-K
Predicted
SPL in
dB(A)

Root mean
square error

Mamdani TSK
1 DOZER 5 114.5 89.5 90.8 84.9999 89.7118

4.1206 1.5150

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 84.9999 82.1869
(Temp. : 280C) 50 122.7 77.8 78.0 77.4998 77.1314
(Relative humidity: 57 %) 75 123.9 75.4 75.1 77.4998 74.3980

100 123.0 72.0 71.4 64.0183 69.5465
125 122.1 69.1 68.4 64.0183 70.9944
150 120.8 66.3 65.4 64.0183 67.0231

2 SHOVEL 5 115.4 90.4 91.7 84.9999 91.0223

4.1556 1.8345

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 84.9999 81.7000
(Temp. : 270C) 50 122.1 77.2 77.3 77.4998 77.1914
(Relative humidity: 59 %) 75 122.3 73.8 73.6 77.4998 74.1380

100 122.0 71.0 70.5 64.0183 68.8610
125 121.4 68.4 67.6 64.0183 70.6875
150 120.4 65.9 64.8 64.0183 67.8947

3 DUMPER 5 113.9 88.9 90.2 84.9999 89.1212

4.6220 3.6512

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 84.9999 85.9032
(Temp. : 290C) 50 120.0 75.1 75.3 77.4998 76.9034
(Relative humidity: 58 %) 75 121.6 73.1 73.1 77.4998 74.2800

100 122.9 71.9 71.2 64.0183 70.0555
125 120.7 67.7 67.0 64.0183 70.3728
150 115.9 61.4 60.3 64.0183 66.7674

4 PAYLOADER 5 111.7 86.7 87.9 84.9999 85.7762

3.8080 4.0316

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 84.9999 86.0102
(Temp. : 300C) 50 122.4 77.5 77.7 77.4998 77.9414
(Relative humidity: 58 %) 75 121.7 73.2 73.1 77.4998 74.6280

100 121.0 70.0 69.7 64.0183 68.5503
125 118.6 65.6 64.9 64.0183 70.0361
150 114.3 59.8 58.9 64.0183 66.3854

5 ROCK-BREAKER 5 112.5 87.5 88.7 84.9999 86.6139

4.1745 3.2414

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 84.9999 85.9195
(Temp. : 290C) 50 119.0 74.1 74.5 77.4998 76.7212
(Relative humidity: 61 %) 75 119.1 70.6 70.6 77.4998 72.0078

100 119.4 68.4 68.0 64.0183 66.4476
125 118.8 65.8 65.1 64.0183 69.0291
150 117.7 63.2 62.2 64.0183 60.8114

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 84.9999 97.9539

5.8568 3.7554

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 84.9999 85.3933
(Temp. : 300C) 50 120.8 75.9 76.1 77.4998 77.4614
(Relative humidity: 59 %) 75 121.3 72.8 72.8 77.4998 74.4980

100 123.8 72.8 72.5 64.0183 71.3506
125 118.7 65.7 65.1 64.0183 70.0797
150 116.1 61.6 61.0 64.0183 67.3094

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.9999 82.0372

4.1938 5.3202

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 84.9999 81.8688
(Temp. : 320C) 50 118.7 73.8 74.1 77.4998 78.0635
(Relative humidity: 58 %) 75 118.4 69.9 69.9 77.4998 74.3554

100 117.5 66.5 66.2 64.0183 69.5362
125 116.2 63.2 62.6 64.0183 71.7717
150 114.7 60.2 59.4 64.0183 66.1837
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.24: Comparative study between VDI-2720 and Fuzzy System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
VDI-
2720 in
dB(A)

Mamdani
Pre-
dicted
SPL in
dB(A)

T-S-K
Predicted
SPL in
dB(A)

Root mean
square error

Mamdani TSK
1 DOZER 5 114.5 89.5 90.8 84.9999 89.7118

4.1206 1.5150

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 84.9999 82.1869
(Temp. : 280C) 50 122.7 77.8 78.0 77.4998 77.1314
(Relative humidity: 57 %) 75 123.9 75.4 75.2 77.4998 74.3980

100 123.0 72.0 71.4 64.0183 69.5465
125 122.1 69.1 68.4 64.0183 70.9944
150 120.8 66.3 65.4 64.0183 67.0231

2 SHOVEL 5 115.4 90.4 91.7 84.9999 91.0223

4.1556 1.8345

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 84.9999 81.7000
(Temp. : 270C) 50 122.1 77.2 77.4 77.4998 77.1914
(Relative humidity: 59 %) 75 122.3 73.8 73.6 77.4998 74.1380

100 122.0 71.0 70.5 64.0183 68.8610
125 121.4 68.4 67.7 64.0183 70.6875
150 120.4 65.9 64.9 64.0183 67.8947

3 DUMPER 5 113.9 88.9 90.2 84.9999 89.1212

4.6220 3.6512

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 84.9999 85.9032
(Temp. : 290C) 50 120.0 75.1 75.3 77.4998 76.9034
(Relative humidity: 58 %) 75 121.6 73.1 73.1 77.4998 74.2800

100 122.9 71.9 71.6 64.0183 70.0555
125 120.7 67.7 67.0 64.0183 70.3728
150 115.9 61.4 60.4 64.0183 66.7674

4 PAYLOADER 5 111.7 86.7 87.9 84.9999 85.7762

3.8080 4.0316

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 84.9999 86.0102
(Temp. : 300C) 50 122.4 77.5 77.7 77.4998 77.9414
(Relative humidity: 58 %) 75 121.7 73.2 73.1 77.4998 74.6280

100 121.0 70.0 69.7 64.0183 68.5503
125 118.6 65.6 65.0 64.0183 70.0361
150 114.3 59.8 58.9 64.0183 66.3854

5 ROCK-BREAKER 5 112.5 87.5 88.7 84.9999 86.6139

4.1745 3.2414

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 84.9999 85.9195
(Temp. : 290C) 50 119.0 74.1 74.6 77.4998 76.7212
(Relative humidity: 61 %) 75 119.1 70.6 70.6 77.4998 72.0078

100 119.4 68.4 68.0 64.0183 66.4476
125 118.8 65.8 65.1 64.0183 69.0291
150 117.7 63.2 62.3 64.0183 60.8114

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 84.9999 97.9539

5.8568 3.7554

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 84.9999 85.3933
(Temp. : 300C) 50 120.8 75.9 76.1 77.4998 77.4614
(Relative humidity: 59 %) 75 121.3 72.8 72.8 77.4998 74.4980

100 123.8 72.8 72.5 64.0183 71.3506
125 118.7 65.7 65.1 64.0183 70.0797
150 116.1 61.6 61.0 64.0183 67.3094

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.9999 82.0372

4.1938 5.3202

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 84.9999 81.8688
(Temp. : 320C) 50 118.7 73.8 74.2 77.4998 78.0635
(Relative humidity: 58 %) 75 118.4 69.9 69.9 77.4998 74.3554

100 117.5 66.5 66.2 64.0183 69.5362
125 116.2 63.2 62.6 64.0183 71.7717
150 114.7 60.2 59.4 64.0183 66.1837
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5.3 Soft Computing Models for Frequency based Noise Prediction

Ta
bl

e
5.

25
:

A
pp

lic
at

io
n

of
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

(A
N

N
)

m
od

el
s

fo
r

fr
eq

ue
nc

y
ba

se
d

no
is

e
pr

ed
ic

ti
on

m
od

el
s

In
pu

t
pa

ra
m

et
er

s
O

ut
pu

t
P
ar

am
et

er
Fr

eq
ue

nc
y

D
e-

pe
nd

en
t

M
od

el
s

M
L
P

(M
ul

ti
la

ye
r

P
er

ce
pt

ro
n)

R
B

F
(R

ad
ia

l
B

as
is

Fu
nc

ti
on

)
E

rr
or

U
pd

at
in

g
fo

r
M

L
P

an
d

R
B

F
In

pu
t-

hi
dd

en
-

ou
tp

ut
no

de
s

A
ct

iv
at

io
n

Fu
nc

ti
on

N
o.

of
C

en
te

rs
Fu

nc
ti
on

us
ed

fo
r
sy

s-
te

m
de

si
gn

1.
D

is
ta

nc
e

2.
So

un
d

P
ow

er
L
ev

el
3.

W
in

d
4.

R
el

at
iv

e
H

um
id

it
y

5.
T
em

pe
ra

tu
re

So
un

d
P

re
ss

ur
e

L
ev

el
(S

P
L
)

C
O

N
C

A
W

E
E

N
M

IS
O

-9
61

3-
2

V
D

I-
27

20
N

O
R

D
F
O

R
SK

O
ne

in
pu

t
la

ye
r,

on
e

hi
d-

de
n

an
d

on
e

ou
tp

ut
la

ye
r

F
iv

e
nu

m
be

r
of

hi
dd

en
un

it
s

ar
e

se
le

ct
ed

in
hi

dd
en

la
ye

r
fo

r
be

tt
er

pe
rf

or
m

an
ce

(5
-5

-1
)

L
og

si
gm

oi
d

A
ct

iv
at

io
n

fu
nc

ti
on

w
as

us
ed

fo
r

hi
dd

en
la

ye
r,

w
he

re
pu

re
-

lin
(l
in

ea
r)

ac
ti
va

ti
on

fu
nc

ti
on

w
as

us
ed

fo
r

ou
tp

ut
la

ye
r.

K
-m

ea
n

cl
us

te
r-

in
g

m
et

ho
d

w
as

us
ed

fo
r

se
le

ct
-

in
g

th
e

ce
nt

er
s.

In
th

is
sy

st
em

30
ce

nt
er

s
w

as
gi

ve
n

ve
ry

go
od

pe
rf

or
m

an
ce

co
m

pa
re

to
ot

he
rs

.

C
al

cu
la

te
th

e
R

B
F

N
et

w
or

k
O

u
tp

u
t

G
us

sa
in

fu
nc

ti
on

w
as

us
ed

to
ob

ta
in

ed
ou

tp
ut

of
R

B
F
N

ne
tw

or
k

L
ea

st
M

ea
n

Sq
au

re
M

et
ho

d
w

as
us

ed
fo

r
er

ro
r

up
da

ti
ng

.

203



5.3 Soft Computing Models for Frequency based Noise Prediction
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Figure 5.22: (a) Mean square error plot of MLP system for 100 epochs (b) Prediction
performance of MLP network for 49 samples for NORDFORSK noise prediction model
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Figure 5.23: (a) Mean square error plot of MLP system for 100 epochs (b) Prediction
performance of MLP network for 49 samples for VDI-2720 noise prediction model
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5.3 Soft Computing Models for Frequency based Noise Prediction

Similar to MLP prediction, RBFN based noise prediction model was also developed.
This model has an input layer, hidden layer was varied from 5 to 100. In this system,
thirty centers were selected for better performance of the model. Gaussian Function was
used in hidden layer, for which the centers were determined by K-mean clustering. For
proper comparison, the output of ISO-9613-2 model was scaled between 0 to 1. The all
procedures was also similar to development RBF noise prediction model for VDI-2714
(section). Similar to MLP model, the mean square (MSE) of RBF model for 100 epochs
was represented in Fig 5.24(a) and the performance of the RBF model for 49 testing
samples is represented in Fig. 5.24(b) . For both MLP and RBF, RMSE was used as
the performance index. MSE plot of RBF system for 100 epochs for CONCAWE model
is represented in Fig 5.25(a), Fig. 5.25(b) represented performance of RBF model for
CONCAWE. Similarly Fig. 5.26(a) and 5.26(b) represented for ENM, Fig 5.27(a) and
5.27(b) represented for NORDFORSK and Fig 5.28(a) and 5.28(b) represented the VDI-
2720 model performance.
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Figure 5.24: (a) Mean square error plot of RBF system for 100 epochs (b) Prediction
performance of RBF network for 49 samples for ISO-9613-2 noise prediction model

Table 5.26 summarizes the results for noise prediction by the developed models and
compares with ISO-9613-2 model for all selected machineries. From Table 5.26, it can be
seen that MLP and RBF models provided root mean square error of 1.7865 and 2.09.8 for
Dozer. For Shovel, the RMSE was 1.7716 and 2.9686, for Dumper, RMSE was 2.0213 and
1.4957, for Pay-Loader, RMSE was 1.2801 and 0.5490. For Rock-Breaker, RMSE of MLP
and RBF systems was 2.2567 and 0.9196, for Rotary Drill, RMSE was found as 3.9812
and 3.2518 , for Roll-Crusher, RMSE was found to be 1.6690 and 0.7635. respectively.
Comparative results of other frequency based noise prediction model with MLP and RBF
were represented in Table 5.27 to 5.30. Table 5.27 represented the comparison result of
CONCAWE noise prediction model, Table 5.28 represent the result of ENM model, Table
5.29 represent the result of NORDFORSK model where as Table 5.30 represented the
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Figure 5.25: (a) Mean square error plot of RBF system for 100 epochs (b) Prediction
performance of RBF network for 49 samples for CONCAWE noise prediction model

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Epochs

M
ea

n
 S

q
u

ar
e 

E
rr

o
r

MSE PLOT

(a)

0 5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100

Samples

S
P

L
 in

 d
B

Matching plot between desired and estimated (RBF)

 

 

desired output
estimated output

(b)

Figure 5.26: (a) Mean square error plot of RBF system for 100 epochs (b) Prediction
performance of RBF network for 49 samples for ENM noise prediction model
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Figure 5.27: (a) Mean square error plot of RBF system for 100 epochs (b) Prediction
performance of RBF network for 49 samples for NORDFORSK noise prediction model
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Figure 5.28: (a) Mean square error plot of RBF system for 100 epochs (b) Prediction
performance of RBF network for 49 samples for VDI-2720 noise prediction model

comparison result of VDI-2720 model with MLP and RBF system based noise prediction
model.

Anderson-Darling (AD) normality test results are shown in Figure 5.29 and Figure
5.30 for respective SPL residue. The test is done between the prediction results of ANN
systems (MLP and RBF) and frequency dependent model results. Figure 5.29 represent
AD normality test for MLP system, where Figure 5.30 represent the AD normality test
for RBF fuzzy system. Since p-value of the normality plots are found to be above 0.05,
it signifies that residue follows normal distribution. Small percentage of error proves the
suitability of above models for practical engineering applications.
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.26: Comparative study between ISO-9613-2 and ANN System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
SPL
ISO-
9613-2
in
dB(A)

MLP
Pre-
dicted
SPL in
dB(A)

RBF
Predicted
SPL in
dB(A)

RMSE error

MLP RBF
1 DOZER 5 114.5 89.5 90.8 87.1 85.4

1.7865 2.0908

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 84.1 83.6
(Temp. : 28C) 50 122.7 77.8 77.7 78.7 77.3
(Relative humidity: 57 %) 75 123.9 75.4 74.0 73.8 73.3

100 123.0 72.0 69.8 69.2 70.5
125 122.1 69.1 66.5 65.0 66.7
150 120.8 66.3 63.3 61.3 63.2

2 SHOVEL 5 115.4 90.4 91.7 87.4 83.9

1.7716 2.9686

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 83.2 83.2
(Temp. : 27C) 50 122.1 77.2 77.4 78.0 76.9
(Relative humidity: 59 %) 75 122.3 73.8 72.6 73.2 72.9

100 122.0 71.0 69.0 68.9 69.4
125 121.4 68.4 65.9 65.0 66.2
150 120.4 65.9 62.9 61.6 63.0

3 DUMPER 5 113.9 88.9 90.2 86.6 86.5

2.0213 1.4957

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 82.5 81.0
(Temp. : 29C) 50 120.0 75.1 75.3 77.2 74.8
(Relative humidity: 58 %) 75 121.6 73.1 72.5 72.6 72.6

100 122.9 71.9 70.4 68.5 70.4
125 120.7 67.7 65.5 64.4 65.8
150 115.9 61.4 58.6 59.8 59.5

4 PAYLOADER 5 111.7 86.7 87.9 85.7 87.7

1.2801 0.5490

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 81.9 81.6
(Temp. : 30C) 50 122.4 77.5 77.7 76.8 77.1
(Relative humidity: 58 %) 75 121.7 73.2 72.3 72.1 72.6

100 121.0 70.0 68.4 67.8 68.3
125 118.6 65.6 63.3 63.6 64.2
150 114.3 59.8 57.0 59.2 57.8

5 ROCK-BREAKER) 5 112.5 87.5 88.7 82.8 87.6

2.2567 0.9196

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 78.9 81.0
(Temp. : 29C) 50 119.0 74.1 74.6 74.3 73.8
(Relative humidity: 61 % 75 119.1 70.6 69.6 70.2 70.1

100 119.4 68.4 66.5 66.6 66.6
125 118.8 65.8 63.3 63.5 64.4
150 117.7 63.2 60.3 60.6 60.1

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 86.2 87.3

3.9812 3.2518

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 81.8 81.1
(Temp. : 30C) 50 120.8 75.9 76.1 76.7 75.7
(Relative humidity: 59 %) 75 121.3 72.8 72.8 72.1 72.4

100 123.8 72.8 72.5 68.4 71.3
125 118.7 65.7 65.1 63.9 64.3
150 116.1 61.6 60.5 60.1 59.6

7 ROLL CRUSHER 5 110.0 85.0 86.3 82.3 87.8

1.6690 0.7635

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 78.7 81.0
(Temp. : 32C) 50 118.7 73.8 74.2 73.9 73.6
(Relative humidity: 58 %) 75 118.4 69.9 69.9 69.5 69.7

100 117.5 66.5 66.2 65.5 66.3
125 116.2 63.2 62.6 61.8 62.0
150 114.7 60.2 58.9 58.5 58.4
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.27: Comparative study between CONCAWE and ANN System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
CON-
CAWE
in
dB(A)

MLP
Pre-
dicted
SPL in
dB(A)

RBF
Predicted
SPL in
dB(A)

RMSE error

MLP RBF
1 DOZER 5 114.6 89.3 89.2 85.9255 84.8003

1.6240 1.8896

(Wind Speed: 2.5 m/sec) 25 121.2 82.2 81.9 82.6077 83.1144
(Temp. : 280C) 50 122.7 77.8 77.3 78.7162 77.1816
(Relative humidity: 57 %) 75 123.9 75.4 74.7 74.9369 74.7608

100 123 72.0 72.3 71.2164 72.3297
125 122.1 69.1 68.9 67.6011 70.9270
150 120.5 66.2 65.6 64.0786 65.7866

2 SHOVEL 5 113.4 90.2 90 85.9079 85.8342

2.2164 1.7342

(Wind Speed: 3.2 m/sec) 25 120.9 81.9 81.6 82.7403 82.8065
(Temp. : 270C) 50 121.9 77.0 76.4 79.1367 76.4520
(Relative humidity: 59 %) 75 122.2 73.7 72.8 75.6010 73.3383

100 121.9 70.9 72.3 72.1155 71.4557
125 121.4 68.4 69.2 68.7010 70.2106
150 120.4 65.9 66.2 65.3498 65.7345

3 DUMPER 5 113.6 88.6 88.5 85.2253 85.6496

2.5810 1.3628

(Wind Speed: 2.91 m/sec) 25 118.2 79.1 78.8 81.8944 79.3408
(Temp. : 290C) 50 119.8 74.9 74.3 77.9546 74.2734
(Relative humidity: 58 %) 75 121.5 73 72.2 74.1525 72.7043

100 122.8 71.8 72.7 70.5321 72.1820
125 120.6 67.6 68.1 66.9308 69.4051
150 115.8 61.3 61.5 63.2595 63.0352

4 PAYLOADER 5 111.5 86.5 86.4 84.6968 87.5590

1.2667 0.8597

(Wind Speed: 3 m/sec) 25 119.5 80.5 80.2 81.1569 80.9330
(Temp. : 300C) 50 122.3 77.4 77.0 77.1546 76.8171
(Relative humidity: 58 %) 75 121.7 73.2 72.5 73.3550 72.8901

100 121.0 70.0 71.0 69.6660 70.6129
125 118.6 65.6 66.2 66.0658 67.5981
150 114.2 59.7 60.3 62.5052 61.3016

5 ROCK-BREAKER 5 112.4 87.4 87.3 82.6405 86.7646

2.5208 0.7497

(Wind Speed: 7.1 m/sec) 25 117.5 78.5 78.2 79.5557 78.8712
(Temp. : 290C) 50 119.0 74.1 73.5 76.0218 73.3736
(Relative humidity: 61 %) 75 119.1 70.6 69.7 72.6065 70.1189

100 117.3 66.3 67.4 69.2251 66.9607
125 116.6 63.6 64.6 65.9735 65.9874
150 115.6 61.1 61.9 62.8526 62.8421

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 94.3 85.1592 88.8777

4.2499 2.2341

(Wind Speed: 2 m/sec) 25 118.4 79.4 79.1 82.0850 79.5355
(Temp. : 300C) 50 120.5 75.6 75.0 78.1340 75.0565
(Relative humidity: 59 %) 75 121.3 72.8 72.0 74.3413 72.5141

100 123.7 72.7 74.9 70.7435 72.8151
125 118.7 65.7 68.2 67.0713 67.6814
150 116.0 61.5 63.9 63.5674 63.2179

7 ROLL CRUSHER 5 109.9 84.9 84.8 80.2790 88.7834

1.9313 1.5420

(Wind Speed: 7 m/sec) 25 118.2 79.2 78.9 76.6041 79.3408
(Temp. : 320C) 50 118.6 73.7 73.3 72.7224 72.9556
(Relative humidity: 58 %) 75 118.3 69.8 69.2 69.0443 69.1767

100 114.2 63.2 65.8 65.6149 65.1828
125 112.9 59.9 62.4 62.3505 62.6327
150 111.6 57.1 59.4 59.3437 59.2337
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Table 5.28: Comparative study between ENM and ANN System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
ENM in
dB(A)

MLP
Pre-
dicted
SPL in
dB(A)

RBF
Predicted
SPL in
dB(A)

RMSE error

MLP RBF
1 DOZER 5 114.5 89.5 92.4 90.8209 87.7659

2.0462 1.8122

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 85.0 87.0859 85.5331
(Temp. : 280C) 50 122.7 77.8 80.3 83.1724 80.5684
(Relative humidity: 57 %) 75 123.9 75.4 77.7 79.3563 76.9886

100 123.0 72.0 74.2 75.7683 74.9197
125 122.1 69.1 74.1 72.2745 74.3933
150 120.8 66.3 71.3 68.9172 71.0808

2 SHOVEL 5 115.4 90.4 93.3 89.6055 87.6117

2.3853 2.2165

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 84.7 86.0359 85.3242
(Temp. : 270C) 50 122.1 77.2 79.6 82.2567 79.8827
(Relative humidity: 59 %) 75 122.3 73.8 75.9 78.6338 76.0065

100 122.0 71.0 72.9 75.1359 73.9848
125 121.4 68.4 72.9 71.7581 73.4916
150 120.4 65.9 70.4 68.5133 70.5620

3 DUMPER 5 113.9 88.9 91.7 87.6697 88.0508

2.3554 1.6262

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 82.1 84.2089 82.8767
(Temp. : 290C) 50 120.0 75.1 77.5 80.3512 77.4232
(Relative humidity: 58 %) 75 121.6 73.1 75.3 76.6100 75.4600

100 122.9 71.9 73.8 73.0293 74.8387
125 120.7 67.7 72.4 69.7127 72.4766
150 115.9 61.4 65.9 66.5952 64.0355

4 PAYLOADER 5 111.7 86.7 89.6 86.1052 88.5459

1.7547 0.9745

(Wind Speed: 3 m/sec) 25 119.6 80.6 83.3 82.3930 84.1636
(Temp. : 300C) 50 122.4 77.5 80.0 78.5419 80.2279
(Relative humidity: 58 %) 75 121.7 73.2 75.5 75.0118 75.5422

100 121.0 70.0 72.3 71.5730 72.7856
125 118.6 65.6 70.4 68.2982 69.0284
150 114.3 59.8 64.1 65.1985 62.4814

5 ROCK-BREAKER 5 112.5 87.5 90.4 82.3431 88.4609

3.1758 1.2935

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 81.2 79.1937 81.9798
(Temp. : 290C) 50 119.0 74.1 76.5 75.8484 76.3476
(Relative humidity: 61 %) 75 119.1 70.6 72.7 72.7001 73.1636

100 119.4 68.4 70.3 69.6611 70.5026
125 118.8 65.8 67.4 66.7553 69.3622
150 117.7 63.2 64.6 63.9559 66.3928

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 97.3 84.5942 93.7360

5.1004 1.5187

(Wind Speed: 2 m/sec) 25 118.8 79.8 82.3 81.6873 83.3294
(Temp. : 300C) 50 120.8 75.9 78.2 77.9206 78.3539
(Relative humidity: 59 %) 75 121.3 72.8 75.0 74.3739 75.2060

100 123.8 72.8 74.7 70.9013 75.4694
125 118.7 65.7 70.0 67.7657 69.1950
150 116.1 61.6 65.3 64.6720 64.2617

7 ROLL CRUSHER 5 110.0 85.0 87.9 81.4398 88.5990

2.9570 0.6283

(Wind Speed: 7 m/sec) 25 118.2 79.2 81.9 78.0562 82.6471
(Temp. : 320C) 50 118.7 73.8 76.4 74.6098 76.0575
(Relative humidity: 58 %) 75 118.4 69.9 72.3 71.2840 72.5516

100 117.5 66.5 68.7 68.0667 67.8237
125 116.2 63.2 65.2 64.9592 65.4757
150 114.7 60.2 62.0 61.9723 62.8317
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Table 5.29: Comparative study between NORDFORSK and ANN System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
NORD-
FORSK
in
dB(A)

MLP
Pre-
dicted
SPL in
dB(A)

RBF
Predicted
SPL in
dB(A)

RMSE error

MLP RBF
1 DOZER 5 114.5 89.5 90.8 85.7092 84.2097

3.2150 2.5540

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 81.7281 83.1233
(Temp. : 280C) 50 122.7 77.8 78.0 77.1971 77.7647
(Relative humidity: 57 %) 75 123.9 75.4 75.1 72.9095 74.7744

100 123.0 72.0 71.4 68.7258 72.0176
125 122.1 69.1 68.4 64.7747 68.9931
150 120.8 66.3 65.4 61.0618 66.5547

2 SHOVEL 5 115.4 90.4 91.7 85.0177 84.4617

3.0658 2.8040

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 81.2625 82.7250
(Temp. : 270C) 50 122.1 77.2 77.3 76.9669 77.2364
(Relative humidity: 59 %) 75 122.3 73.8 73.6 72.8439 73.8356

100 122.0 71.0 70.5 68.8962 71.1880
125 121.4 68.4 67.6 65.1629 68.3584
150 120.4 65.9 64.8 61.6566 66.0393

3 DUMPER 5 113.9 88.9 90.2 84.2683 84.1108

2.7213 2.3713

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 80.4577 79.9611
(Temp. : 290C) 50 120.0 75.1 75.3 76.0949 74.8130
(Relative humidity: 58 %) 75 121.6 73.1 73.1 72.0437 73.3145

100 122.9 71.9 71.2 68.3160 71.9397
125 120.7 67.7 67.0 64.4702 67.7251
150 115.9 61.4 60.3 60.5459 61.2527

4 PAYLOADER 5 111.7 86.7 87.9 83.5677 84.0971

2.2108 1.5897

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 79.7172 80.9175
(Temp. : 300C) 50 122.4 77.5 77.7 75.5832 77.5146
(Relative humidity: 58 %) 75 121.7 73.2 73.1 71.5694 73.3933

100 121.0 70.0 69.7 67.7511 70.2303
125 118.6 65.6 64.9 63.9741 65.6850
150 114.3 59.8 58.9 60.2293 60.3594

5 ROCK-BREAKER( 5 112.5 87.5 88.7 80.4504 84.0492

3.3559 1.8351

Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 77.1148 79.7443
(Temp. : 290C) 50 119.0 74.1 74.5 73.4389 73.7086
(Relative humidity: 61 %) 75 119.1 70.6 70.6 69.9844 70.9056

100 119.4 68.4 68.0 66.8207 68.4107
125 118.8 65.8 65.1 63.8598 65.8877
150 117.7 63.2 62.2 61.1413 62.7609

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 82.9080 88.2583

5.1424 2.8372

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 79.5103 80.1946
(Temp. : 300C) 50 120.8 75.9 76.1 75.4890 75.7856
(Relative humidity: 59 %) 75 121.3 72.8 72.8 71.6362 73.0689

100 123.8 72.8 72.5 68.3350 72.6048
125 118.7 65.7 65.1 64.1163 65.7864
150 116.1 61.6 61.0 60.5055 61.3910

7 ROLL CRUSHER 5 110.0 85.0 86.3 80.3368 84.3354

2.7424 0.9582

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 76.4351 79.8768
(Temp. : 320C) 50 118.7 73.8 74.1 72.5941 73.4303
(Relative humidity: 58 %) 75 118.4 69.9 69.9 69.0310 70.1323

100 117.5 66.5 66.2 65.7372 66.1246
125 116.2 63.2 62.6 62.7308 63.4277
150 114.7 60.2 59.4 60.0320 60.5510
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Table 5.30: Comparative study between VDI-2720 and ANN System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
VDI-
2720 in
dB(A)

MLP
Pre-
dicted
SPL in
dB(A)

RBF
Predicted
SPL in
dB(A)

RMSE error

MLP RBF
1 DOZER 5 114.5 89.5 90.8 90.8237 88.1158

3.9915 3.5990

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 87.0506 84.0923
(Temp. : 280C) 50 122.7 77.8 78.0 83.0910 80.5626
(Relative humidity: 57 %) 75 123.9 75.4 75.2 79.4157 77.2042

100 123.0 72.0 71.4 75.8953 74.8262
125 122.1 69.1 68.4 72.5277 73.7387
150 120.8 66.3 65.4 69.2705 71.0264

2 SHOVEL 5 115.4 90.4 91.7 88.5038 88.0149

3.1298 3.7776

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 84.8131 83.6395
(Temp. : 270C) 50 122.1 77.2 77.4 80.9138 80.0476
(Relative humidity: 59 %) 75 122.3 73.8 73.6 77.2905 75.8892

100 122.0 71.0 70.5 73.8898 73.7761
125 121.4 68.4 67.7 70.6859 73.2047
150 120.4 65.9 64.9 67.6416 70.5696

3 DUMPER 5 113.9 88.9 90.2 87.7898 88.0133

3.7174 3.1245

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 84.1431 81.6824
(Temp. : 290C) 50 120.0 75.1 75.3 80.1061 77.8003
(Relative humidity: 58 %) 75 121.6 73.1 73.1 76.3893 75.2730

100 122.9 71.9 71.6 73.0046 74.7188
125 120.7 67.7 67.0 69.6057 72.5346
150 115.9 61.4 60.4 66.0478 63.5175

4 PAYLOADER 5 111.7 86.7 87.9 86.5594 86.6082

2.8156 2.8626

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 82.7263 81.8801
(Temp. : 300C) 50 122.4 77.5 77.7 78.7466 80.3171
(Relative humidity: 58 %) 75 121.7 73.2 73.1 75.0661 75.3628

100 121.0 70.0 69.7 71.5780 72.7251
125 118.6 65.6 65.0 68.1417 69.1529
150 114.3 59.8 58.9 64.6452 63.0065

5 ROCK-BREAKER 5 112.5 87.5 88.7 81.2833 87.2560

2.9089 2.8898

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 77.7000 82.2890
(Temp. : 290C) 50 119.0 74.1 74.6 74.1619 76.8694
(Relative humidity: 61 %) 75 119.1 70.6 70.6 71.0264 72.8215

100 119.4 68.4 68.0 68.1628 70.7370
125 118.8 65.8 65.1 65.5617 69.5572
150 117.7 63.2 62.3 63.1500 65.5529

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 85.0327 85.5189

4.4057 4.6527

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 81.7605 81.5818
(Temp. : 300C) 50 120.8 75.9 76.1 77.7730 78.6806
(Relative humidity: 59 %) 75 121.3 72.8 72.8 74.1002 74.9997

100 123.8 72.8 72.5 70.8514 75.7136
125 118.7 65.7 65.1 67.2596 69.3560
150 116.1 61.6 61.0 63.9770 63.6409

7 ROLL CRUSHER 5 110.0 85.0 86.3 82.0788 85.2904

2.2718 2.3381

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 78.1886 81.7892
(Temp. : 320C) 50 118.7 73.8 74.2 74.4487 76.6552
(Relative humidity: 58 %) 75 118.4 69.9 69.9 70.9934 72.0989

100 117.5 66.5 66.2 67.7724 67.8108
125 116.2 63.2 62.6 64.7502 65.3186
150 114.7 60.2 59.4 61.9105 63.0803
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(a) (b)

(c) (d)

(e)

Figure 5.29: Statistical performance study of MLP model based noise predic-
tion(a)CONCAWE, (b)ISO-9613-2, (c) ENM, (d) NORDFORSK (e) VDI-2720

5.3.3 Application of Adaptive Network Based Fuzzy Inference
System (ANFIS) for Frequency based Noise Prediction

Frequency based noise prediction was implemented using ANN as discussed in section
5.3.2. This section analyzes implementation of ANFIS for the same problem. ANFIS
has been applied for all frequency based noise prediction models viz. ISO-9613-2, CON-
CAWE, ENM etc. In section 5.2.3, the application of ANFIS for non-frequency model
(VDI-2714) was already discussed. Procedure for application of ANFIS for frequency
based noise prediction model is similar to non-frequency model VDI-2714. In this study,
the ANFIS based on T-S-K fuzzy model was used and the adaptation was made in the
rule base of the system.
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(a) (b)

(c) (d)

(e)

Figure 5.30: Statistical performance study of RBF model based noise predic-
tion(a)CONCAWE, (b)ISO-9613-2, (c) ENM, (d) NORDFORSK (e) VDI-2720

The selections of input variables , fuzzification process, rule base and defuzzification
are similar to T-S-K fuzzy system as discussed in previous section (5.2.1.7).

The details of implementation is presented in Table 5.31. With this it can be seen that
there are 810 rules and each rule is associated with a weight. The weights are initialized
to random values at the beginning. Subsequently these weights were updated using LMS
algorithm [211]. The weight update algorithm can be represented as

e(k) = y(k) − ∧
y(k) (5.6)

w(k + 1) = w(k) + 2α e(k)ψ(k) (5.7)

Where k is the time index, w(k+1) refers to the new weights of the system and w(k)
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5.3 Soft Computing Models for Frequency based Noise Prediction

is the existing weight. w=[(w1, w2 ...w810)]T is the weight vector and ψ = [(ψ1, ψ2 . .
.ψ810)] is the output of the inference engine.

5.3.3.1 Simulation Result and Discussion

The proposed system models for noise prediction were validated using simulation studies.
The studies were carried out by using simulation environment. The system was simulated
as per the flowchart of the ANFIS system represented in Fig 5.31. The fuzzy parameters
were suitably adjusted to enhance the performance of the designed model. ANFIS system
was applied for five frequency dependent models (ISO-9613-2, CONCAWE, ENM etc.).
ISO-9613-2 model is discussed first. A set of 224 data points were first generated as per the
ISO-9613-2 noise prediction model. For this, the input parameters were Distance, sound
power level (SWL), Wind speed, Relative humidity and Temperature. Using these input
parameters, SPL was calculated. This data set was the basis for training and evaluating or
testing the ANFIS prediction model. Out of the 224 data points, 175 were used as training
data and 49 were used as testing data. The ANFIS weights were freezed on completion of
the experiment in first part. SPL was predicted using ANFIS for each of these machineries
and was compared with the ISO-9613-2 model. For ANFIS, weights were trained using
LMS algorithm. The mean square error (MSE) of the ANFIS model for 200 epochs was
represented in Fig. 5.32(a) and the performance of the model for 49 testing samples or
validation samples was represented in Fig. 5.32(b). The root mean square error (RMSE)
was used as the performance index.MSE plot of ANFIS for 200 epochs for CONCAWE
model is represented in Fig. 5.33(a) and Fig. 5.33(b) represented performance of ANFIS
model for CONCAWE. Similarly Fig. 5.34(a) and 5.34(b) represented performance of
ENM, Fig 5.35(a) and 5.35(b) represented for NORDFORSK and Fig 5.36(a) and 5.36(b)
represented for VDI-2720 model.

Table 5.32 summarizes the results for noise prediction by proposed models and com-
pares it with standard ISO-9613-2 noise prediction model for all selected opencast ma-
chineries. From the table it can be seen that the proposed ANFIS models provided root
mean square error of 2.0503 for Dozer. For shovel, the root mean square error was 1.3764,
for Dumper, the RMSE was 2.8031, for Payloader, RMSE for ANFIS systems was 1.2121
respectively. The other machineries results were similar to the above result. For rock
breaker, root mean square errors was 1.4728, for rotary percussive drill, RMSE was found
as 1.8527 and for roll crusher, the RMSE was found as 1.3991 respectively. Comparative
results of other frequency based noise prediction model with ANFIS system were repre-
sented in Table 5.33 to 5.36. Table 5.33 represented the comparison result of CONCAWE
noise prediction model, Table 5.34 represent the result of ENM model,
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Figure 5.31: Flowchart for ANFIS System
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Figure 5.32: (a) Mean square error plot of ANFIS system for 200 epochs (b) Prediction
performance of ANFIS network for 49 samples for ISO-9613-2 noise prediction model
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Figure 5.33: (a) Mean square error plot of ANFIS system for 200 epochs (b) Prediction
performance of ANFIS network for 49 samples for CONCAWE noise prediction model
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Figure 5.34: (a) Mean square error plot of ANFIS system for 200 epochs (b) Prediction
performance of ANFIS network for 49 samples for ENM noise prediction model

218



5.3 Soft Computing Models for Frequency based Noise Prediction

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

Number of Epochs

M
ea

n
sq

u
ar

e 
er

ro
r

MSE PLOT

(a)

5 10 15 20 25 30 35 40 45
50

55

60

65

70

75

80

85

90

95

100

Samples

S
P

L
 in

 d
B

Matching plot between desired and estimated (Adaptive Fuzzy)

 

 

desired output
estimated output

(b)

Figure 5.35: (a) Mean square error plot of ANFIS system for 200 epochs (b) Prediction per-
formance of ANFIS network for 49 samples for NORDFORSK noise prediction model
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Figure 5.36: (a) Mean square error plot of ANFIS system for 200 epochs (b) Prediction per-
formance of ANFIS network for 49 samples for VDI-2720 noise prediction model

Table 5.35 represented the result of NORDFORSK model and Table 5.36 represented
the comparison result of VDI-2720 model with ANFIS system based noise prediction
models.

Anderson-Darling (AD) normality test results are shown in Figure 5.37 for respective
SPL residue. The test is done between the prediction results of ANFIS system and
frequency dependent model results. Since p-value of the normality plots are found to be
above 0.05, it signifies that the residue follows normal distribution. Small percentage of
error proves the suitability of above models for practical engineering applications.
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Table 5.32: Comparative study between ISO-9613-2 and ANFIS System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
ISO-
9613-2
in
dB(A)

ANFIS
Pre-
dicted
SPL in
dB(A)

RMSE
error

ANFIS
1 DOZER 5 114.5 89.5 90.8 86.1085

2.0503

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 81.1713
(Temp. : 280C) 50 122.7 77.8 77.7 76.8825
(Relative humidity: 57 %) 75 123.9 75.4 74.0 73.4198

100 123.0 72.0 69.8 68.2298
125 122.1 69.1 66.5 66.9626
150 120.8 66.3 63.3 63.1897

2 SHOVEL 5 115.4 90.4 91.7 90.1629

1.3764

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 82.9526
(Temp. : 270C) 50 122.1 77.2 77.4 76.3996
(Relative humidity: 59 %) 75 122.3 73.8 72.6 71.9780

100 122.0 71.0 69.0 68.6507
125 121.4 68.4 65.9 68.6931
150 120.4 65.9 62.9 61.6653

3 DUMPER 5 113.9 88.9 90.2 86.4146

2.8031

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 84.4753
(Temp. : 290C) 50 120.0 75.1 75.3 76.9335
(Relative humidity: 58 %) 75 121.6 73.1 72.5 72.0647

100 122.9 71.9 70.4 68.4483
125 120.7 67.7 65.5 69.3529
150 115.9 61.4 58.6 58.7323

4 PAYLOADER 5 111.7 86.7 87.9 87.3627

1.2121

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 83.9581
(Temp. : 300C) 50 122.4 77.5 77.7 76.7608
(Relative humidity: 58 %) 75 121.7 73.2 72.3 72.0478

100 121.0 70.0 68.4 69.2419
125 118.6 65.6 63.3 62.5727
150 114.3 59.8 57.0 56.5476

5 ROCK-BREAKER 5 112.5 87.5 88.7 86.0346

1.4728

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 78.5473
(Temp. : 290C) 50 119.0 74.1 74.6 74.3004
(Relative humidity: 61 %) 75 119.1 70.6 69.6 67.1520

100 119.4 68.4 66.5 65.5004
125 118.8 65.8 63.3 63.6601
150 117.7 63.2 60.3 59.9252

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 95.5379

1.8527

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 82.2316
(Temp. : 300C) 50 120.8 75.9 76.1 76.0297
(Relative humidity: 59 %) 75 121.3 72.8 72.8 72.0605

100 123.8 72.8 72.5 68.5047
125 118.7 65.7 65.1 62.9111
150 116.1 61.6 60.5 60.3135

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.8600

1.3991

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 82.9662
(Temp. : 320C) 50 118.7 73.8 74.2 73.2672
(Relative humidity: 58 %) 75 118.4 69.9 69.9 70.6211

100 117.5 66.5 66.2 66.7572
125 116.2 63.2 62.6 61.9483
150 114.7 60.2 58.9 57.7647
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Table 5.33: Comparative study between CONCAWE and ANFIS System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
CON-
CAWE
in
dB(A)

ANFIS
Pre-
dicted
SPL in
dB(A)

RMSE
error

ANFIS
1 DOZER 5 114.6 89.3 89.2 88.7085

0.5111

(Wind Speed: 2.5 m/sec) 25 121.2 82.2 81.9 81.8713
(Temp. : 280C) 50 122.7 77.8 77.3 77.5825
(Relative humidity: 57 %) 75 123.9 75.4 74.7 75.2198

100 123 72.0 72.3 71.2298
125 122.1 69.1 68.9 68.9826
150 120.5 66.2 65.6 65.8897

2 SHOVEL 5 113.4 90.2 90 90.2629

0.9658

(Wind Speed: 3.2 m/sec) 25 120.9 81.9 81.6 81.9526
(Temp. : 270C) 50 121.9 77.0 76.4 77.1996
(Relative humidity: 59 %) 75 122.2 73.7 72.8 73.6780

100 121.9 70.9 72.3 70.3507
125 121.4 68.4 69.2 68.1931
150 120.4 65.9 66.2 65.8653

3 DUMPER 5 113.6 88.6 88.5 87.6146

0.8969

(Wind Speed: 2.91 m/sec) 25 118.2 79.1 78.8 78.8753
(Temp. : 290C) 50 119.8 74.9 74.3 74.8335
(Relative humidity: 58 %) 75 121.5 73 72.2 73.0647

100 122.8 71.8 72.7 70.9483
125 120.6 67.6 68.1 67.4529
150 115.8 61.3 61.5 60.9323

4 PAYLOADER 5 111.5 86.5 86.4 86.6627

0.9383

(Wind Speed: 3 m/sec) 25 119.5 80.5 80.2 80.3581
(Temp. : 300C) 50 122.3 77.4 77.0 76.8608
(Relative humidity: 58 %) 75 121.7 73.2 72.5 73.1478

100 121.0 70.0 71.0 69.6419
125 118.6 65.6 66.2 65.1727
150 114.2 59.7 60.3 58.6476

5 ROCK-BREAKER 5 112.4 87.4 87.3 87.1346

0.5822

(Wind Speed: 7.1 m/sec) 25 117.5 78.5 78.2 78.5473
(Temp. : 290C) 50 119.0 74.1 73.5 74.0104
(Relative humidity: 61 %) 75 119.1 70.6 69.7 68.9520

100 117.3 66.3 67.4 67.6004
125 116.6 63.6 64.6 65.1601
150 115.6 61.1 61.9 62.9252

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 94.3 93.7379

2.0180

(Wind Speed: 2 m/sec) 25 118.4 79.4 79.1 79.2316
(Temp. : 300C) 50 120.5 75.6 75.0 75.8197
(Relative humidity: 59 %) 75 121.3 72.8 72.0 72.6405

100 123.7 72.7 74.9 71.6047
125 118.7 65.7 68.2 65.1111
150 116.0 61.5 63.9 61.3135

7 ROLL CRUSHER 5 109.9 84.9 84.8 84.7600

0.3947

(Wind Speed: 7 m/sec) 25 118.2 79.2 78.9 78.9662
(Temp. : 320C) 50 118.6 73.7 73.3 73.5672
(Relative humidity: 58 %) 75 118.3 69.8 69.2 69.6211

100 114.2 63.2 65.8 66.3572
125 112.9 59.9 62.4 62.9563
150 111.6 57.1 59.4 59.8647
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Table 5.34: Comparative study between ENM and ANFIS System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
ENM in
dB(A)

ANFIS
Predicted
SPL in
dB(A)

RMSE
error

ANFIS
1 DOZER 5 114.5 89.5 92.4 91.7085

0.6552

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 85.0 84.8713
(Temp. : 280C) 50 122.7 77.8 80.3 79.8252
(Relative humidity: 57 %) 75 123.9 75.4 77.7 76.2598

100 123.0 72.0 74.2 74.0298
125 122.1 69.1 74.1 73.9826
150 120.8 66.3 71.3 70.8897

2 SHOVEL 5 115.4 90.4 93.3 92.8627

0.8765

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 84.7 82.9525
(Temp. : 270C) 50 122.1 77.2 79.6 79.1196
(Relative humidity: 59 %) 75 122.3 73.8 75.9 75.7780

100 122.0 71.0 72.9 71.8507
125 121.4 68.4 72.9 72.1931
150 120.4 65.9 70.4 69.8653

3 DUMPER 5 113.9 88.9 91.7 90.7146

0.6496

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 82.1 81.8753
(Temp. : 290C) 50 120.0 75.1 77.5 77.1345
(Relative humidity: 58 %) 75 121.6 73.1 75.3 74.8877

100 122.9 71.9 73.8 72.9483
125 120.7 67.7 72.4 72.1519
150 115.9 61.4 65.9 64.9823

4 PAYLOADER 5 111.7 86.7 89.6 89.1327

0.3824

(Wind Speed: 3 m/sec) 25 119.6 80.6 83.3 82.8981
(Temp. : 300C) 50 122.4 77.5 80.0 79.8408
(Relative humidity: 58 %) 75 121.7 73.2 75.5 75.1178

100 121.0 70.0 72.3 71.8619
125 118.6 65.6 70.4 69.8927
150 114.3 59.8 64.1 63.9486

5 ROCK-BREAKER 5 112.5 87.5 90.4 89.8216

0.5956

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 81.2 80.7873
(Temp. : 290C) 50 119.0 74.1 76.5 75.9802
(Relative humidity: 61 %) 75 119.1 70.6 72.7 71.9931

100 119.4 68.4 70.3 69.6054
125 118.8 65.8 67.4 67.9681
150 117.7 63.2 64.6 63.9652

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 97.3 96.8379

0.8940

(Wind Speed: 2 m/sec) 25 118.8 79.8 82.3 81.7316
(Temp. : 300C) 50 120.8 75.9 78.2 76.8824
(Relative humidity: 59 %) 75 121.3 72.8 75.0 74.8805

100 123.8 72.8 74.7 73.8347
125 118.7 65.7 70.0 68.4111
150 116.1 61.6 65.3 65.1135

7 ROLL CRUSHER 5 110.0 85.0 87.9 87.1500

0.8304

(Wind Speed: 7 m/sec) 25 118.2 79.2 81.9 80.8262
(Temp. : 320C) 50 118.7 73.8 76.4 76.1672
(Relative humidity: 58 %) 75 118.4 69.9 72.3 70.8211

100 117.5 66.5 68.7 67.8562
125 116.2 63.2 65.2 64.9865
150 114.7 60.2 62.0 61.6647
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5.3 Soft Computing Models for Frequency based Noise Prediction

Table 5.35: Comparative study between NORDFORSK and ANFIS System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
NORD-
FORSK
in
dB(A)

ANFIS
Predicted
SPL in
dB(A)

RMSE
error

ANFIS
1 DOZER 5 114.5 89.5 90.8 88.1085

1.8161

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 81.1713
(Temp. : 280C) 50 122.7 77.8 78.0 76.8825
(Relative humidity: 57 %) 75 123.9 75.4 75.1 74.4198

100 123.0 72.0 71.4 68.2298
125 122.1 69.1 68.4 68.9626
150 120.8 66.3 65.4 65.1897

2 SHOVEL 5 115.4 90.4 91.7 90.1629

1.2290

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 82.9526
(Temp. : 270C) 50 122.1 77.2 77.3 76.3996
(Relative humidity: 59 %) 75 122.3 73.8 73.6 72.9780

100 122.0 71.0 70.5 68.3507
125 121.4 68.4 67.6 68.6931
150 120.4 65.9 64.8 65.8653

3 DUMPER 5 113.9 88.9 90.2 87.4146

1.3316

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 78.4753
(Temp. : 290C) 50 120.0 75.1 75.3 74.9335
(Relative humidity: 58 %) 75 121.6 73.1 73.1 73.0647

100 122.9 71.9 71.2 69.9483
125 120.7 67.7 67.0 67.3529
150 115.9 61.4 60.3 60.7323

4 PAYLOADER 5 111.7 86.7 87.9 86.5627

0.7236

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 80.4581
(Temp. : 300C) 50 122.4 77.5 77.7 76.7608
(Relative humidity: 58 %) 75 121.7 73.2 73.1 73.0478

100 121.0 70.0 69.7 69.2419
125 118.6 65.6 64.9 64.5727
150 114.3 59.8 58.9 58.5476

5 ROCK-BREAKER 5 112.5 87.5 88.7 86.9346

1.8024

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 78.5473
(Temp. : 290C) 50 119.0 74.1 74.5 74.3004
(Relative humidity: 61 %) 75 119.1 70.6 70.6 67.1520

100 119.4 68.4 68.0 65.5004
125 118.8 65.8 65.1 64.6601
150 117.7 63.2 62.2 62.9252

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 93.5379

1.1578

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 78.7316
(Temp. : 300C) 50 120.8 75.9 76.1 75.8297
(Relative humidity: 59 %) 75 121.3 72.8 72.8 72.6605

100 123.8 72.8 72.5 71.5047
125 118.7 65.7 65.1 64.9111
150 116.1 61.6 61.0 61.3135

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.8600

0.7565

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 78.9662
(Temp. : 320C) 50 118.7 73.8 74.1 73.6672
(Relative humidity: 58 %) 75 118.4 69.9 69.9 69.6211

100 117.5 66.5 66.2 66.5572
125 116.2 63.2 62.6 62.9483
150 114.7 60.2 59.4 59.7647
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Table 5.36: Comparative study between VDI-2720 and ANFIS System based models

Sl.
No.

Machineries Distance
in me-
ter

SWL
in dB
(A)

Measured
SPL in
dB(A)

Predicted
VDI-
2720 in
dB(A)

ANFIS
Predicted
SPL in
dB(A)

RMSE
error

ANFIS
1 DOZER 5 114.5 89.5 90.8 88.1085

1.8161

(Wind Speed: 2.5 m/sec) 25 121.3 82.3 83.1 81.1713
(Temp. : 280C) 50 122.7 77.8 78.0 76.8825
(Relative humidity: 57 %) 75 123.9 75.4 75.2 74.4198

100 123.0 72.0 71.4 68.2298
125 122.1 69.1 68.4 68.9626
150 120.8 66.3 65.4 65.1897

2 SHOVEL 5 115.4 90.4 91.7 90.1629

1.2290

(Wind Speed: 3.2 m/sec) 25 121.0 82.0 82.7 82.9526
(Temp. : 270C) 50 122.1 77.2 77.4 76.3996
(Relative humidity: 59 %) 75 122.3 73.8 73.6 72.9780

100 122.0 71.0 70.5 68.3507
125 121.4 68.4 67.7 68.6931
150 120.4 65.9 64.9 65.8653

3 DUMPER 5 113.9 88.9 90.2 87.4146

1.3316

(Wind Speed: 2.91 m/sec) 25 118.4 79.4 80.1 78.4753
(Temp. : 290C) 50 120.0 75.1 75.3 74.9335
(Relative humidity: 58 %) 75 121.6 73.1 73.1 73.0647

100 122.9 71.9 71.6 69.9483
125 120.7 67.7 67.0 67.3529
150 115.9 61.4 60.4 60.7323

4 PAYLOADER 5 111.7 86.7 87.9 86.5627

0.7236

(Wind Speed: 3 m/sec) 25 119.6 80.6 81.2 80.4581
(Temp. : 300C) 50 122.4 77.5 77.7 76.7608
(Relative humidity: 58 %) 75 121.7 73.2 73.1 73.0478

100 121.0 70.0 69.7 69.2419
125 118.6 65.6 65.0 64.5727
150 114.3 59.8 58.9 58.5476

5 ROCK-BREAKER 5 112.5 87.5 88.7 86.9346

1.8024

(Wind Speed: 7.1 m/sec) 25 117.6 78.6 79.4 78.5473
(Temp. : 290C) 50 119.0 74.1 74.6 74.3004
(Relative humidity: 61 %) 75 119.1 70.6 70.6 67.1520

100 119.4 68.4 68.0 65.5004
125 118.8 65.8 65.1 64.6601
150 117.7 63.2 62.3 62.9252

6 ROTARY PERCUSSIVE DRILL 5 119.4 94.4 95.7 93.5379

1.1578

(Wind Speed: 2 m/sec) 25 118.8 79.8 80.6 78.7316
(Temp. : 300C) 50 120.8 75.9 76.1 75.8297
(Relative humidity: 59 %) 75 121.3 72.8 72.8 72.6605

100 123.8 72.8 72.5 71.5047
125 118.7 65.7 65.1 64.9111
150 116.1 61.6 61.0 61.3135

7 ROLL CRUSHER 5 110.0 85.0 86.3 84.8600

0.7565

(Wind Speed: 7 m/sec) 25 118.2 79.2 80.1 78.9662
(Temp. : 320C) 50 118.7 73.8 74.2 73.6672
(Relative humidity: 58 %) 75 118.4 69.9 69.9 69.6211

100 117.5 66.5 66.2 66.5572
125 116.2 63.2 62.6 62.9483
150 114.7 60.2 59.4 59.7647
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5.3 Soft Computing Models for Frequency based Noise Prediction

(a) (b)

(c) (d)

(e)

Figure 5.37: Statistical performance study of ANFIS model based noise predic-
tion(a)CONCAWE, (b)ISO-9613-2, (c) ENM, (d) NORDFORSK (e) VDI-2720
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5.4 Conclusion

5.4 Conclusion

This chapter introduced the idea of designing noise prediction model for opencast min-
ing machineries using Mamdani, T-S-K, ANFIS fuzzy inference systems, MLP and RBF
architecture.Different soft computing techniques viz. Fuzzy Inference Systems, Multi-
layer Perceptron (MLP), Radial Basis Function Network (RBFN) and Adaptive Network
based Fuzzy Inference System (ANFIS) were applied for development of non-frequency
noise prediction model using VDI-2714. From the simulation result, it is observed that
ANFIS gives better noise prediction results as compared to other soft-computing tech-
niques, as it takes very less CPU time (0.0625 sec.) and can be easily implemented in
hardware. However, it can be noticed that the other techniques like Fuzzy Logic System,
MLP, and RBFN can be applied for non-frequency based noise prediction models. Also
Soft-computing techniques viz. Fuzzy Inference Systems, MLP, RBFN and ANFIS were
successfully applied for development of frequency dependent models. Soft-computing
models were applied to CONCAWE, ISO-9613, ENM etc. From the comparison of all soft-
computing models, Radial Basis Function Network and ANFIS results match closely with
the mathematical models with minimum Root Mean Square Error (RMSE).Comparing
the different techinques of soft computing models for both frequency and non-frequency
based noise situations, it was found that ANFIS provides better noise prediction results
compared to both frequency and non-frequency based noise prediction models with lower
RMSE.

From the simulation result, it was seen that the fuzzy and ANN system provided over-
estimate and underestimate of the parameters and there is no consistency with respect to
this with the input range. However, RBF system provided underestimate when any of the
inputs are at the extreme values and it provided overestimate for other ranges of input.
This can be attributed to the result that RBF systems are good local approximator [180],
whereas Neural Networks [176] and Fuzzy Systems were global approximator [158].
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CHAPTER 6

NOISE-INDUCED HEARING LOSS (NIHL)
MODELING USING FUZZY SYSTEM IN

MINING INDUSTRY

6.1 Introduction

At the present time, owing to the improvements in technology through superior energy
competence, higher labor output, continuous production methods, and operating flexi-
bility, automation has also advanced rapidly in open and underground pits together with
mineral processing plants. In parallel to this improvement, sources of noise and ambient
noise at work place in the mining industry have increased significantly. With increased
mechanization, the problem of noise has got accentuated in opencast mines. Prolonged
exposure of miners to the high levels of noise can cause noise-induced hearing loss be-
sides several non-auditory health effects. In general, noise can be described in terms
of intensity (perceived as loudness) and frequency. Both the intensity and the duration
of noise exposure determine the potential for damage to the hair cells of the inner ear.
Therefore, exposure to excessive noise is the major avoidable cause of permanent hearing
impairment. Noise-induced hearing loss (NIHL), can be defined as an impairment of
hearing, resulting from exposure to excessive noise that manifests over a number of years
and results in bilateral and symmetrical impairment of hearing. In mining industry, all
most all the opencast mining machineries produce noise levels exceeding the permissible
level (90dBA) and the workers are exposed to high noise levels that can cause hearing
impairment and other associated health hazards [2, 43,74].

Hearing loss can impair the quality of life through a reduction in the ability to com-
municate with each other. Overall, it affects the general health of the human beings
in accordance with the World Health Organization’s (WHO) definition of health [4, 5].
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6.1 Introduction

Hearing loss (HL) can be defined as “the decibel difference between a patient’s thresholds
of audibility and that for a person having normal hearing at a given frequency” [6]. In
mining industry, hearing loss or hearing damage is considered as a serious health prob-
lem, as reported by various health organizations like the U.S. Environmental Protection
Agency (USEPA), the National Institute for Occupational Safety and Health (NIOSH)
and the WHO etc. In 1976, a study carried out by the National Institute for Occupational
Safety and Health, for coal mining concluded that the coal miners had health conditions
worse than the national mean and the hearing damage to coal miners were serious [7].

Few studies on hearing loss have been carried out in the mining industry in India and
abroad are previously discussed in Chapter 2. In 1997, Prince et al. reported that the
hearing loss is significant at 90 dB (A) at 2-4 kHz for very long (40 years)exposure. They
also observed that the hearing loss is dependent on the exposure time, frequency and
the noise level [32]. Amedofu studied the hearing loss of the African gold mine workers
and found similar results. According to his study, 51% of the worker population, those
exposed in the noise level of 85dB had the noise induced hearing loss. He also reported
that the noise induced hearing loss (NIHL) increased as a function of age at 4 kHz with
increase in the duration of exposure [65]. The term ‘Hearing sensitivity’ is defined as
the threshold of hearing at different frequencies. In case of human being, the hearing
sensitivity is dip in the range of 2-5k Hz and peaks in the range of 3.5-4 kHz [26]. Hence,
it can be inferred that NIHL is a function of noise exposure, frequency and exposure
time. Fig. 6.1 represents the audiogram analysis of human ear.

Figure 6.1: Audiogram of normal ears and impaired ears [26].

The above cause-effect relationships obtained by the audiometric testing were reported
in the surveys, but the data assembled through surveys or knowledge given by human ex-
perts is often imprecise or speculative due to linguistic relationship between hearing loss
and its dependent parameters. For example, noise level, frequency, exposure time and
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

hearing loss may be represented by the words (low, medium, high, very high, extreme,
extremely high), (very low, low, medium, high, very high, extremely high),(very short,
short, medium, long, very long, extreme) and (not significant , slight, mild, mild, severe,
extreme) respectively. These linguistic variables cannot be precisely measured and inher-
ently contain imprecision, uncertainty and partial truth. This imprecision, vagueness can
be approximate by fuzzy logic system as proposed by Zadeh in 1965 [142]. He defined
that, by relying on the use of linguistic variables and fuzzy algorithms, the approach
provides an approximate and yet effective means of describing the behavior of systems,
which are too complex or too ill defined to admit by precise mathematical analysis [154].
It is difficult to make a mathematical or statistical model for hearing loss by considera-
tion of the above relationship, because the model will incur high computational cost [32].
Therefore, fuzzy logic seems to be the natural choice for developing a model to study
the noise induced hearing loss, which is an output of noise level, frequency and years of
exposure.

6.2 Application of Fuzzy System for Noise Induced Hear-
ing Loss Prediction

In this work, fuzzy logic systems were applied to predict noise induced hearing loss
of miners with different frequencies, different exposure time (in years) with different
noise level. Soft computing models e.g. ANN, RBFN, ANFIS etc are required large
number of training samples for giving better performance, but the Fuzzy logic system is
independent of the number of samples and provides better performance with less number
of data sets. As the availability of data was less, hence other soft computing models were
not applied. This chapter discusses the applications of fuzzy inference systems for noise
induced hearing loss prediction. Two types of Fuzzy systems, T-S-K and Mamdani fuzzy
inference systems were used.

6.2.1 TSK Fuzzy model for Noise Induced Hearing loss Predic-
tion

In the present study, an attempt was made to use sugeno fuzzy model to predict or
estimate the noise induced hearing loss given noise level, frequency and the years of ex-
posure as input parameters. With the availability of a set of measured data, an input
and output of the fuzzy system will be able to predict the output given any input even
if a specific input condition has not been covered in building stage. Figure.6.2 represents
the architecture of the TSK fuzzy expert system. As maintained in the figure, the in-
puts, noise level, frequency and exposure time are taken as X, Y and Z respectively. In
the first step, the three crisp inputs are being fuzzified through triangular membership

229



6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

function. Following the fuzzifier, product inference was applied. Since there are three
inputs and each input has six possible fuzzy sets, the system can have 63= 216 rules,
each corresponding to one of each fuzzy set. The coefficients a1, b1, c1, d1 . . . . . . a216,
b216, c216, d216 are appropriately selected so as to provide best possible accurate result.
After the generation of rule-base, the output would be produced by applying the centroid
defuzzification method as mentioned in section 4.2.4, Chapter 4. The model is a MISO
model. The methodology for the development of the noise induced hearing loss fuzzy
(TSK) model involves the following steps:

1. Selection of input and output variables;

2. Selection of membership functions for input and output variables;

3. Formation of linguistic rule base

4. Defuzzification

5. Parameter optimization

Step 1: Selection of input and output variables

The first step in system modeling is the identification of input and output variables
called the system’s variables. Only those inputs that affect the output largely have
been selected. The most important input variables are noise level, year of exposure and
frequency. Inclusion of more number of inputs to the system requires more number of
rules and hence the complexity increases. The universe of discourse is also decided based
on the physical nature of the problem. In the selection procedure, the above-mentioned
inputs and the output are also taken in the form of linguistic format that displays an
important role in the application of fuzzy logic. For example, noise level ={low, medium,
high, very high, extreme, extremely high}, frequency={very low, low, medium, high, very
high, extremely high} and exposure time= {very short, short, medium, long, very long,
extreme}.The output variables are similarly divided into hearing loss={not significant,
slight, mild, marked, severe, extreme}. Table 6.1 shows the linguistic variables, their
linguistic value, and associated fuzzy intervals.

Step 2: Selection of membership functions for input and output variables

Each input has six triangular membership functions as discussed in Table 4.2, Chapter
4. The membership function of input parameters are represented from Figure 6.3 to 6.5.
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

Figure 6.2: System model architecture.

Table 6.1: Inputs and output with their fuzzy and fuzzy intervals

S.
No.

System’s variable Linguistic variables Linguistic values Fuzzy interval

1

Inputs

Noise level

Low 80-90 dB
Medium 85-95 dB
High 90-100 dB
Very high 95-105 dB
Extreme 100-110 dB
Extremely high 105-115 dB

2 Frequency

Very low 500-1500 Hz
Low 1000-3000 Hz
Medium 2000-4000 Hz
High 3000-5000 Hz
Very high 4500-6500 Hz
Extremely high 6000-8000 Hz

3 Exposure time (years)

Very short 0-6 years
Short 5-11 years
Medium 10-25 years
Long 20-35 years
Very long 30-40 years
Extreme 35-45 years

4 Output Hearing loss

Not significant 0 to -25 dB
Slight -20 to -40 dB
Mild -35 to -55 dB
Marked -50 to -70 dB
Severe -65 to -85 dB
Extreme -80 to -90 dB
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Figure 6.3: Membership functions for noise levels.
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Figure 6.4: Membership functions for frequency.
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Figure 6.5: Membership functions for exposure time.
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

Step 3: Formation of linguistic rule base

The relationship between input and output are represented in the form of IF-THEN rules.
In the proposed model (Fig. 6.2), the 1st input (noise level) is taken as X, the 2nd input
(frequency) is taken as Y, the 3rd input (exposure time) is taken as Z where as the output
(hearing loss) is taken as T as per the TSK fuzzy system. The inputs X, Y, and Z have
been classified to six categories each. Hence, 216 rules have been made in this inference
system; the rules are generated in the following ways:

R1: IF X is ‘X(1)’ AND Y is ‘Y(1)’ AND Z is ‘Z(1)’ THEN hearing loss (T) is
T=a1.X+b1Y+c1.Z+d1;

R2: IF X is ‘X(4.19)’ AND Y is ‘Y(1)’ AND Z is ‘Z(1)’ THEN hearing loss (T) is
T=a2.X+b2Y+c2.Z+d2; . .

R216: IF X is ‘X(6)’ AND Y is ‘Y(6)’ AND Z is ‘Z(6)’ THEN hearing loss (T) is
T=a216.X+b216Y+c216.Z+d216

Here, X(1)
, X(2) . . . X(6), Y(1). . . Y(6), Z(1). . . . Z(6) are shown as the linguistic

parameters of the inputs (Table 6.1), where as a1, a2,. . . a216, b1,b2. . . .b216,c1,c2. . . c216

are shown as the coefficients or tune parameters and d1.d2. . . ..d216 are the bias associated
with the output. The output is mostly expressed by these tune parameters and biases,
which can be expressed in the following ways (expression-6.1):

T =



a1 b1 c1 d1 → R1

a2 b2 c2 d2 → R2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
a216 b216 c216 d216 → R216


(6.1)

Step 4: Defuzzification

Centriod of area (COA) method of defuzzification is used for determining the output as
discussed in Section 4.2.4, Chapter 4.

Step 5: Parameter optimization

After the defuzzification, the model gives the output and the error is minimizing by the
proper selection of coefficients. The coefficients are set by trial and error basis, when the
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

predictive value matches the desired value with in error limits, and then the coefficients
are fixed. This treatment is quite different from other mathematical or statistical models.

6.2.2 Simulation Results

In the proposed model, the simulation environment was built up with MATLAB using
Takagi-Sugeno-Kang inference techniques. The detailed flow chart of the proposed model
is outlined in the Figure.6.6. In the first step the inputs viz. noise level (X), frequency
(Y) and exposure time (Z) are fuzzified using triangular membership function. The rule
base has a significant role to design the system. After the formulation of rule-base,
the coefficients (ai, bi, ci, di: 1 ≤ i ≤ 216) are suitably selected. These coefficients are
multiplied with the inputs in the sequence to generate output as given in Figure 6.6.
Finally, the Center of Area (COA) method was used for getting the output. This process
is repeated until the prediction results are within the acceptable error limit.

Table 6.2: Comparison between the findings of NIOSH and model prediction for noise
levels at 90dB at different exposure and frequencies [32]

Sl.No. Exposure time (years)
Hearing loss (dB)
Finding of NIOSH at Model results at
500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

1 Very short
(0-6 years)

-10 -6 -5 -6 -8 -6 -6 -21 -5 -6 -8 -8

2 Short
(5-11 years)

-16 -12 -10 -15 -25 -15 -7 -22 -10 -15 -25 -17

3 Medium
(10-25years)

-16 -12 -14 -30 -35 -30 -7 -22 -14 -30 -35 -32

4 Long
(20-35years)

-20 -15 -14 -30 -40 -45 -10 -25 -14 -30 -40 -47

5 Very long
(30-40years)

-20 -18 -25 -50 -50 -55 -10 -25 -25 -50 -50 -57

6 Extreme
(35-45 years)

-25 -22 -35 -60 -65 -60 -13 -28 -35 -60 -65 -62

In the model, hearing loss is considered to be a function of noise level, frequency,
and exposure time (years). The model has been implemented using Sugeno inference
technique, which is able to predict the hearing loss with 5 % error limit. Simulation
results are summarized in contour plots and depicted in Figure 6.7. It shows the contour
plot of hearing loss as a function of noise level and frequencies at different years of
exposure. The counter plots have been plotted at -25 dB, -40 dB, -55 dB and -70 dB
hearing loss. As per AAOO criteria, hearing loss up to -40 dB has less significant effect.
Above -40dB hearing loss, the hearing losses starts to increase and beyond -70dB it will
be significant and hence, comes under the danger zone. As per Figure 6.7, the hearing
losses are “not significant (0 to -25 dB)”with increment of noise level (80-115 dB) at “very
low (500-1500 Hz)” and “low (1000-3000 Hz)” frequency at 10 years of exposure. When
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

Figure 6.6: Flow chart of the TSK fuzzy based noise induced hearing model.
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Table 6.3: Comparison between the findings of EPA and model prediction for noise at 85
dB at different exposure and frequencies [34] & [128]

Sl.No. Exposure time (years)
Hearing loss (dB)
Finding of EPA at Model results at
500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

8
kHz

500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

8
kHz

1 Very short
(0-6years)

-4 -6 -15 -22 -23 -16 -21 -4 -20 -13 -20 -21 -17 -23

2 Short
(5-11years)

-10 -10 -28 -34 -36 -32 -40 -5 -20 -26 -34 -34 -33 -42

3 Medium
(10-25years)

-10 -14 -30 -39 -46 -42 -44 -5 -20 -28 -37 -44 -43 -46

4 Long
(20-35 years)

-13 -14 -37 -48 -52 -50 -52 -8 -23 -35 -46 -50 -51 -54

5 Very long
(30-40 years)

-16 -20 -40 -50 -60 -52 -60 -8 -23 -38 -48 -58 -53 -62

frequency levels is “Extremely high (6000-8000 Hz)”, hearing loss is found “Slight (-20 to
-40 dB)” at the same year of exposure. Hearing loss is “not significant” at “very low”
frequency but “slight” at “low” frequency range with increase of noise level for medium
year (20 years) of exposure. At long year of exposure (30 years), hearing loss is “not
significant” at “very low” frequency , “slight” at “low” frequency and found “marked (-50
to -70 dB) at “very high (4500-6500 Hz)” & “extremely high” frequency with increase of
the noise level. When year of exposure is more, for example, at “extreme” exposure time
(40 years), hearing loss is “not significant” and “slight” at “very low” frequency but found
“marked” at “low” frequency. Hearing loss is found “severe (-65 to -85 dB)” at frequency
range “4000-8000 Hz” at the noise level of “95-115 dB” for 40 years of exposure.

To check the validation of the model, the model output compared with the survey
results of NIOSH and EPA. The survey finding from NIOSH contains different industrial
data including mining and the survey finding from EPA is from mining industry. The
comparison was at 90 dBA for NIOSH study. A comparison of the model results with
NIOSH is shown in Table 6.2. The comparison table shows that at ‘medium’ noise level
and at ‘very low’ (500-1000 Hz) frequency, hearing loss is ‘not significant’ (0-25 dB) at
different exposure time. At ‘High’ (1000-3000 Hz) frequency, hearing loss belongs to both
‘not significant’ & ‘slight’ (-20 to -40 dB) range at different exposure time. Further, it
is found that with the increase of frequency range, hearing loss also increases and can
reach up to ‘severe’ (-65 to -85 dB) range with ‘medium’ noise level . It is observed that,
at 4000 Hz frequency (‘high’), hearing loss is the highest, which satisfies the audiometric
study criteria. The results of NIOSH study closely matches with the model results up to
6000 Hz. It was observed that for 0-6 years of exposure, the hearing loss as per NIOSH
was between 0 -20 dB, where as it was between 0 -25 dB (not significant) as per AAOO.

A comparison of the model results with EPA is shown in Table 6.3. The results of EPA
study closely matches with model results. The comparison study is at lower noise level
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Figure 6.7: Hearing loss as a function of frequency and noise level for different years of
exposure

(85 dBA) than for the NIOSH study. The EPA comparison study is at 85 dBA exposure
level and the study closely matches with the model results up to 8000 Hz. The EPA model
does not include extreme exposure time for the workers. However, the fuzzy model takes
this account in prediction and gives constant output for the ‘extreme’ condition.

6.2.3 Mamdani Fuzzy Model for Noise Induced Hearing loss Pre-
diction

6.2.3.1 Methodology

In this model, the Noise-induced hearing loss (Y) is expressed as a function of noise level
(X1), frequency (X2) and exposure time (years) (X3) can be mathematically expressed as
given by eqn (6.2):

Y = f(X1, X2, X3) (6.2)
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

Taking in to account all these variables, the function ‘f ’ becomes very complex and
general physical model cannot be constructed. So the choice of input has to be restricted
to above three variables. In fuzzy modelling, the function ‘f ’ is replaced by the relation
R that describes fuzzy rules. The model development process comprises of the following
steps:

Step 1: Identification of input and output variables

The fuzzy system has three input variables: noise level, frequency and exposure time. The
output variable is the hearing loss. Figure 6.8, represents Block diagram of Mamdani’s
MISO (Multi input single output) model. The antecedent is typically a conjugative com-
bination of fuzzy proposition using the individual input variables, (Here 3 inputs) where
as the consequent part in a Mamdani’s MISO model is usually a single fuzzy proposition.

Noise level

Frequency

Exposure time

Mamdani's  Model Hearing loss

Figure 6.8: Block diagram of Mamdani’s MISO model.

Step 2: Selection of input and output variables: The inputs and output with
their linguistic values and fuzzy intervals are shown in Table 6.1.

Step 3: Determining the linguistic labels and membership function for various
input and output variables

The inputs variables have been divided in to the following set of terms i.e. noise
level ={low, medium, high, very high, extreme, extremely high}, frequency={very low,
low, medium, high, very high, extremely high} and exposure time= {very short, short,
medium, long, very long, extreme}. The triangular functions were selected due to their
simple formula and computational efficiency [168] as shown in Figures. 6.3 to 6.5. The
hearing loss output variable has been similarly divided in to hearing loss= {not signifi-
cant, slight, mild, marked, severe, extreme} using triangular function as shown in Figure
6.9.

238



6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

−90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

Hearing Loss in dB

De
gr

ee
 o

f m
em

be
rs

hi
p

Not SignificantSlightMildMarkedSevereExtreme

Figure 6.9: Membership functions for hearing loss.

Step 4: Formation of IF-THEN rules
The relationship between input and output are represented in the form of IF-THEN
rules. As per given inputs and output, a maximum of 216 rules were generated. Out
of which, three rules have been illustrated graphically as given in Figures 6.10, 6.11 and
6.12 respectively. The IF-THEN rules are generally represented in the following manner:

Rule 1: IF noise level is low, AND frequency is very low AND exposure time is very
short THEN hearing loss is not significant.

Figure 6.10: The graphical representation of rule 1

Rule 2: IF noise level is medium AND frequency is high AND exposure time is long
THEN hearing loss is mild.

Figure 6.11: The graphical representation of rule 2
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

Rule 3: IF noise level is very high AND frequency is very high AND exposure time
is very long, THEN hearing loss is marked.

Figure 6.12: The graphical representation of rule 3

Step 5: Defuzzification

Centriod of area (COA) method of defuzzification is used for determining the output.

6.2.4 Result and discussion

Hearing loss in the present model is considered to be a function of equipment noise
level, frequency and exposure time (years). The model has been implemented on fuzzy
logic toolbox of MATLAB [212] using Mamdani inference techniques. Figure 6.13, shows
plotting of hearing loss versus frequencies at different noise exposure levels based on
NIOSH data. It is clear that the hearing loss is ‘not significant’ (0 to-25dB) for ‘very
short’, ‘short’, ‘medium’, ‘long’, and ‘very long’ exposure times while it is ‘slight’ for
‘extreme’ exposure time at ‘very-low’ (500-1000Hz) frequency. At ‘low’ (1000-3000Hz)
frequency hearing loss is similar to ‘very-low’ frequency. When frequency is ‘medium’
(2000-4000Hz) hearing loss is ‘not significant’ for ‘very short’ and ‘short’ exposure times,
slight for medium and long exposure times and ‘mild’ (-35 to -55dB) for ‘very long’
and ‘extreme’ exposure times. At ‘high’ frequency (3000-5000Hz) hearing loss is ‘not
significant’ for ‘very short’ exposure time, ‘slight’ for ‘short’ exposure time, ‘mild’ for
‘medium’ and ‘long’ exposure time, ‘marked’ (-50 to -70dB) for ‘very long’ exposure time
and ‘severe’ (-65 to -85dB) for ‘extreme’ exposure time. When frequency is ‘very high’
(4500-6500Hz), it is ‘not significant’ for ‘very short’ and ‘short’ exposure times, ‘slight’
for ‘medium’ exposure time, ‘mild’ for ‘long’ exposure time and ‘marked’ for ‘very long’
and ‘extreme’ exposure times.

A comparison of the model results with NIOSH is shown in Table 6.4. The results of
NIOSH study closely matches with the model results up to 6000Hz. It was observed that
for 0 to 6 years of exposure, the hearing loss as per NIOSH was between 0 to -15 dB,
where as it was between 0 to -25 dB (not significant) as per AAOO. The model gives a
constant value for very short exposure time.

Figure 6.14 shows plotting of hearing loss versus frequencies at different noise exposure
levels based on EPA data. It is found from the figure that hearing loss is ‘not significant’
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6.2 Application of Fuzzy System for Noise Induced Hearing Loss Prediction

for ‘very short’ and ‘short’ exposure times while it is ‘slight’ for ‘medium’, ‘long’, ‘very
long’, and ‘extreme’ exposure times at ‘very low’ frequency. At ‘low’ frequency, it is ‘not
significant’ for ‘very short’ exposure time, ‘slight’ for ‘short’ and ‘medium’ exposure times,
‘mild’ for ‘long’ and ‘very long’ exposure times. When frequency is ‘medium’, hearing
loss is ‘slight’ for ‘very short’ and ‘short’ exposure times, ‘slight’ and ‘mild’ for ‘medium’
, ‘long’ and ‘very long’ exposure times. Hearing loss is ‘slight’ for ‘very short’ and ‘short’
exposure time, ‘mild’ for ‘medium’ and ‘long’ exposure time and ‘marked’ for ‘very long
exposure’ time when frequency is ‘very high’. When frequency is ‘high’, hearing loss is
‘slight’ for ‘very short’ exposure time, ‘mild’ for ‘short’ and ‘medium’ exposure time and
‘marked’ for ‘long’ and ‘very long’ exposure time. But when frequency is ‘extremely high’
(6000-8000 Hz) hearing loss is ‘slight’ for ‘very short’ and ‘short’ exposure times, ‘mild’
for ‘medium’ exposure time, ‘marked’ for ‘long’ and ‘very long’ exposure times.

A comparison of the model results with EPA is shown in Table 6.5. The results
of EPA study closely matches with model results. The EPA model does not include
extreme exposure time for the workers. However, the fuzzy model takes this into account
in prediction and gives constant output for the ‘extreme’ condition.

Table 6.4: Comparison between the findings of NIOSHand model prediction for noise
levels at 90 dB at different exposure and frequencies [32]

Sl.No. Exposure time (years)
Hearing loss (dB)
Finding of NIOSH at Model results at
500Hz1

kHz
2
kHz

3
kHz

4
kHz

6
kHz

500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

1 Very short -10 -6 -5 -6 -8 -6 -10 -10 -10 -10 -10 -10
2 Short -16 -12 -10 -15 -25 -15 -8 -9 -8 -10 -30 -10
3 Medium -16 -12 -14 -30 -35 -30 -8 -9 -8 -30 -45 -30
4 Long -20 -15 -14 -30 -40 -45 -30 -30 -10 -30 -45 -45
5 Very long -20 -18 -25 -50 -50 -55 -30 -30 -30 -60 -60 -60
6 Extreme -25 -22 -35 -60 -65 -60 -30 -30 -45 -60 -75 -60

Table 6.5: Comparison between the findings of EPA and model prediction for noise at 85
dB at different exposure and frequencies [34] & [128]

Sl.No. Exposure time (years)
Hearing loss (dB)
Finding of EPA at Model results at
500
Hz

1kHz 2
kHz

3
kHz

4
kHz

6
kHz

8
kHz

500
Hz

1
kHz

2
kHz

3
kHz

4
kHz

6
kHz

8
kHz

1 Very short -4 -6 -15 -22 -23 -16 -21 -10 -10 -11 -30 -30 -10 -30
2 Short -10 -10 -28 -34 -36 -32 -40 -10 -10 -30 -30 -45 -30 -45
3 Medium -10 -14 -30 -39 -46 -42 -44 -10 -10 -30 -45 -45 -45 -45
4 Long -13 -14 -37 -48 -52 -50 -52 -10 -10 -45 -45 -60 -45 -45
5 Very long -16 -20 -40 -50 -60 -52 -60 -10 -30 -45 -45 -60 -60 -60
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Figure 6.13: Hearing loss as a function of frequency for various exposure times at medium
noise level (NIOSH)

1000 2000 3000 4000 5000 6000 7000 8000
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency(Hz)

He
ar

in
g 

lo
ss

(d
B)

Very short
Short
Medium
Long
Very long

Figure 6.14: Hearing loss as a function of frequency for various exposure times at low
noise level (EPA)

6.3 Conclusion

The Takagi-Sugeno-Kang (TSK) fuzzy model has been developed based on field surveys
of EPA and NIOSH. The model clearly brings out the salient features of the surveys
concerning the variation of hearing loss with frequency for various duration of exposure
times, viz.; the hearing loss is not appreciable below 2 kHz. The model results closely
match with the NIOSH results in 2-6 kHz at 90 dBA and with the EPA results in 2-8
kHz at 85 dBA. It was observed that for 0-6 years of exposure, the hearing loss as per
NIOSH was between 0 -20 dB, where as it was between 0 -25 dB (not significant) as per
AAOO.

The Mamdani fuzzy model has been developed on the basis of field surveys of EPA
and NIOSH. From the model output,it was found that the hearing loss is not appreciable
below 2kHz and becomes pronounced between 2-4kHz in case of NIOSH and 3-5 kHz in
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6.3 Conclusion

case of EPA respectively. The model clearly reveals that the duration of exposure can
be used to infer the hearing loss for industrial workers of different age groups. From the
simulation results, it is observed that T-S-K fuzzy model gives better prediction result
compared to Mamdani fuzzy system. It is hoped that the developed models will be quite
useful in prediction of NIHL of miners.
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CHAPTER 7

CONCLUSION

In the thesis noise survey was conducted in two different mines and the frequency and non
frequency noise prediction models were developed to predict noise for opencast mining
machineries.After using the mathematical models, different soft-computing techniques
were used to develop suitable noise prediction models in opencast mines. From the
present investigations the following conclusions can be drawn:

• Different soft computing techniques viz. Fuzzy Inference Systems, Multi-layer
Perceptron (MLP), Radial Basis Function Network (RBFN) and Adaptive Net-
work based Fuzzy Inference System (ANFIS) were applied for development of non-
frequency noise prediction model using VDI-2714. From the simulation result, it
was observed that ANFIS gave better noise prediction results as compared to other
soft-computing techniques, as it takes very less CPU time (0.0625 sec.) and can
be easily implemented in hardware. However, it could be noticed that the other
techniques like Fuzzy Logic System, MLP, and RBFN can also be applicable for
non-frequency based noise prediction models.

• Soft-computing techniques viz. Fuzzy Inference Systems, MLP, RBFN and ANFIS
were successfully applied for development of frequency dependent models. Soft-
computing models were applied to CONCAWE, ISO-9613, ENM etc. From the
comparison of all soft-computing models, Radial Basis Function Network and AN-
FIS results match closely with the mathematical models with minimum Root Mean
Square Error (RMSE).

• Comparing the different techniques of soft computing models for both frequency
and non-frequency based noise situation, it was found that ANFIS gives very close
and better noise prediction results compared to both frequency and non-frequency
based noise prediction models with less RMSE.
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7.1 Contribution in the thesis

• Anderson-Darling (AD) normality test was carried out for all the soft computing
models. From the results, it was found that the p-value of the normality plots was
found above 0.05 for all the models. It signifies that the residue follows normal
distribution. Small percentage of error proved the suitability of the above models
for practical engineering applications.

• For prediction of Noise induced hearing loss (NIHL), fuzzy logic techniques like
Mamdani Fuzzy logic system and T-S-K fuzzy logic systems were used. No mathe-
matical models are available for predicting NIHL of industrial workers as yet.Among
the fuzzy techniques and from the simulation results, it was observed that the T-
S-K fuzzy logic system gives better prediction of NIHL vis-à-vis Mamdani fuzzy
system.

• Audiometry studies are carried out to assess the threshold of hearing of workers.
This helps in understanding the level of hearing loss of each ear at different fre-
quency levels. By knowing the results of the studies, it is possible to undertake
hearing conservation programs by providing hearing protection devices and limit-
ing workers exposure to high levels of machinery noise.

• Noise contours were plotted for an opencast mine and it can be useful for noise
zoning and mapping to minimize workers exposure as per statutory prescribed
limits.

7.1 Contribution in the thesis

Contribution of the thesis can be listed as under

• Predict noise in mining environments, is very complex task. Use of statistical
models, mathematical models such as CONCAWE, ISO-9613-2, VDI-2720, ENM
etc. are complex. Soft-Computing based model is very easy to use, in simple word,
it is very user friendly.

• With high uncertainty conditions, any statistical model cannot give appropriate
result, Soft-Computing based models, which are designed on a learning algorithm,
can predict good result at any complex situation or uncertainty condition.

• Cost of the software for predicting noise as per CONCAWE , ISO-9613-2 and ENM
model are high, hence it is not possible for small scale mines to use. Developed
model designed for both frequency or non-frequency based noise prediction model.
Hence, it will benefit for both small scale and big scale mines to predict noise
according to their need.
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7.2 Future Scope

• The developed soft computing based noise prediction model can predict noise with
any new set of input condition. It means, in any new mining environment condition,
there is no need to change the structure of the model, it can perform well with new
input set, where mathematical model do not perform well with new set of data.

• The developed model can be implemented in hardware.

• Once the mathematical model or statistical model developed, the model has fixed
with boundary value of the input parameters and never predict beyond the range
of the input parameters. Where as soft computing based model can predict beyond
the range of the input parameters, in mathematical word, it has good extrapolation
capability.

• For a particular mine, it was not possible earlier to predict noise as per various
standard or models. However, in this study all types of frequency dependent models,
CONCAWE, ENM, ISO-9613-2, NORDFORSK and VDI-2720 were applied with
soft computing techniques. Hence multiple options are available at any mine to use
according to their need.

• Fuzzy Logic System (Mamdani and Sugeno) based hearing loss model developed
work well with small training data set. Using this model, any industry can predict
noise induced hearing loss of their employees without any real time data or medical
checkup.

7.2 Future Scope

• The entire soft computing model can be developed by using GUI application.

• For updating the model error, Least Mean Square method was applied. The error
can be minimized by applying evolutionary algorithms.

• Complex hybrid architecture like Fuzzy-ANN-GA, Fuzzy-Rough-GA can be imple-
mented in future to develop advanced soft-computing model.

• Hardware implementation of the proposed methods can be taken up.

• Health risk assessment of mining workers using audiometry and dosimetry can be
carried out.
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