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Abstract

Iris is an established biometric modality with many practical applications. Its

performance is influenced by noise, database size, and feature representation. This

thesis focusses on mitigating these challenges by efficiently characterising iris texture,

developing multi-unit iris recognition, reducing the search space of large iris databases,

and investigating if iris pattern change over time.

To suitably characterise texture features of iris, Scale Invariant Feature

Transform (SIFT) is combined with Fourier transform to develop a keypoint descriptor-

F-SIFT. Proposed F-SIFT is invariant to transformation, illumination, and occlusion

along with strong texture description property. For pairing the keypoints from gallery

and probe iris images, Phase-Only Correlation (POC) function is used. The use of phase

information reduces the wrong matches generated using SIFT. Results demonstrate the

effectiveness of F-SIFT over existing keypoint descriptors.

To perform the multi-unit iris fusion, a novel classifier is proposed known

as Incremental Granular Relevance Vector Machine (iGRVM) that incorporates

incremental and granular learning into RVM. The proposed classifier by design is

scalable and unbiased which is particularly suitable for biometrics. The match scores

from individual units of iris are passed as an input to the corresponding iGRVM

classifier, and the posterior probabilities are combined using weighted sum rule.

Experimentally, it is shown that the performance of multi-unit iris recognition improves

over single unit iris.

For search space reduction, local feature based indexing approaches are developed

using multi-dimensional trees. Such features extracted from annular iris images are

used to index the database using k-d tree. To handle the scalability issue of k-d tree,

k-d-b tree based indexing approach is proposed. Another indexing approach using

R-tree is developed to minimise the indexing errors. For retrieval, hybrid coarse-to-fine

search strategy is proposed. It is inferred from the results that unification of hybrid

search with R-tree significantly improves the identification performance.

Iris is assumed to be stable over time. Recently, researchers have reported that false

rejections increase over the period of time which in turn degrades the performance. An

empirical investigation has been made on standard iris aging databases to find whether

iris patterns change over time. From the results, it is found that the rejections are

primarily due to the presence of other covariates such as blur, noise, occlusion, pupil

dilation, and not due to aging.

Keywords: F-SIFT, SIFT, POC, iGRVM, Multi-unit Fusion, k-d tree, k-d-b tree, R-tree,

Hybrid retrieval, Iris Aging.
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Chapter 1

Introduction

Biometrics is an automated method of authenticating an individual based on

physiological and behavioral characteristics [1]. The advantage of biometrics over token

based (smart cards) and knowledge based (password) approaches is that, it cannot

be misplaced or forged. The characteristics are distinct and can distinguish between

the genuine person and the imposter. The physical presence of the subject makes it

very difficult to spoof the biometric system. The authentication is performed using

various biometric traits like face, fingerprint, iris, ear, etc. The choice of a biological

measurement to qualify as a biometric trait is based on the following properties [1, 2]:

• universality : every individual should possess the characteristic/trait.

• uniqueness : no two persons should have the same characteristic.

• permanence: the chosen characteristic should not change over a period of time.

• collectability : refers to the ease of acquiring a biometric trait.

• performance: refers to the accuracy achieved.

• acceptability : indicates the acceptance of a particular biometric trait by the

community.

• circumvention: shows how easy it is to spoof a biometric trait.

The comparison of various biometric traits based on these characteristics is shown

in Table 1.1. Iris is an established biometric modality due to its high universality,

uniqueness, stability over time, performance, and ability to counteract spoof

attacks (refer Table 1.1). An iris recognition system operates by mathematical analysis

of texture patterns that are imaged at certain distance from the eye [3]. Recently, iris

biometric has evolved as a mainstream field of biometric applications adverting to its
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1.1 Automated Iris Biometric System Introduction

performance. Such systems are deployed at United Arab Emirates (UAE) linking 27 air,

land, and sea-ports of entry [4]. In India, a large-scale project Aadhaar [5] is undertaken

to issue unique identification number to everyone across the country using fingerprint,

face, and iris. Though in sufficiently matured stage, iris still needs considerable

attention by the researchers. The transition of iris from laboratory technology to real

time deployment has highlighted some interesting research challenges. For instance,

exhaustively searching country-sized iris database, recognition under scenarios when

iris data is either noisy or unavailable, and effect of aging on iris [6]. In this thesis,

an effort has been made to re-investigate the performance of iris biometric under the

aforesaid real-time challenges and identify the measures to mitigate the shortcomings,

if any.

Before exploring research issues in iris, it is recommended to consider its anatomical

structure in detail. Iris is a thin circular disk in the eye with dark circular opening

in the center known as the pupil as shown in Figure 1.1. The texture pattern in iris

comprises two tissues: the front pigmented fibrovascular tissue is known as a stroma

and, beneath the stroma, pigmented epithelial cells. The stroma is connected to a

sphincter muscle, which constricts the pupil in a circular motion, and a set of dilator

muscles, which pulls the iris radially to enlarge the pupil [7]. The constriction and

dilation of pupil controls the amount of light entering the eye. The flowery pattern

surrounding the pupil, commonly referred as iris, is unique and used for personnel

identification.

Figure 1.1: Illustration of the front pigmented fibrovascular tissue known as a stroma
from high quality eye images [8].

1.1 Automated Iris Biometric System

An iris biometric system is typically a pattern recognition system that acquires the

iris image of an individual, extracts features (represented in the form of a template),

2



1.1 Automated Iris Biometric System Introduction

Table 1.1: Comparison of different biometric modalities based on their characteristics
(H: High, M: Medium, and L: Low) [9].
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Face H L M H L H L

Fingerprint M H H M H M H

Hand Geometry M M M H M M M

Keystrokes - - L M L M M

Hand Vein M M M M M M H

Iris H H H M H L H

Retinal Scan H H M L H L H

Signature L L L H L H L

Voice Print M L L M L H L

F. Thermogram H H L H M H H

Odor H H H L L M L

DNA H H H L H L L

Gait M L L H L H M

Ear M M H M M H H

and compares this feature set against the feature set(s) stored in the database. The

input biometric template (commonly referred to as gallery template) is stored in the

database during enrollment. The template which is presented to the biometric system

for claiming the identity is known as probe. A generic iris biometric system has four

major modules:

a. Image acquisition module requires an iris biometric scanner to acquire images.

The acquisition setup plays a crucial role on the performance of any biometric

system. For instance, iris images acquired loosely (without any restriction on the

user) may pose serious challenges.

b. Preprocessing module extracts the region of interest from the input iris

image. Preprocessing is performed to localise the inner pupil and the outer iris

boundary. The annular ring between pupil and iris boundary are transformed

from Cartesian space to polar space using homogeneous rubber sheet model [10].

This transformation generates the normalised iris image which facilitates the feature

extraction process.

c. Feature module extracts significant details from the normalised iris image using

mathematical models. The extracted features should be unique and must achieve
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1.2 Fusion in Biometrics Introduction

invariance to transformations between the gallery and probe iris images.

d. Matching module find the correspondences between the two feature sets using an

appropriate matcher. The matcher either validates the identity of an individual by

performing one to one comparison or to generates a ranked list of identities for one

to many comparisons [1]. Figure 1.2 illustrates different modules of an automated

iris biometric system.

Input Image Localization Normalisation Feature Extraction Matching

Preprocessing

Figure 1.2: Different modules of an automated iris recognition system.

Depending upon the application context, a biometric system operates in

verification (also known as recognition) or identification modes as shown in Figure 1.3.

In verification mode, the system authenticates the identity claimed by an individual by

comparing his template with an already stored template in the database. Identification

mode, in contrast, finds the identity of the probe template by searching all gallery

templates present in the database.

1.2 Fusion in Biometrics

Biometric system that requires single source of evidence to perform authentication

is known as unimodal systems. However, a single biometric trait is not expected to

meet all the requirements such as accuracy, cost, availability, etc. [1]. There are some

challenges which in general, affects the performance of any biometric system:

• The acquired biometric image may change over time or may be affected by noise.

For instance, facial features are subject to age over a period of time. Similarly,

fingerprint effected by scar or voice effected by cold may pose vulnerabilities to

a biometric system.

• The biometric data may be unavailable for a subset of population. The presence

of cuts and bruises on the fingerprint brings down the system performance.

Similarly, it is difficult to acquire iris images with some pathological problem

in the eye.
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1.2 Fusion in Biometrics Introduction

Figure 1.3: Different modes of operation of a generic biometric system.

• Circumvention is easy with a single biometric trait. Some traits such as fingerprint

can be spoofed by showing a fake fingerprint structure on a synthetic material.

Multimodal biometric fusion utilises more than one source of evidence for

authentication. Fusion is very useful to overcome the limitations inherent to unimodal

approaches. Depending upon the nature of evidence available, the fusion algorithm

can be multi-sensor, multi-algorithm, multi-instance, multi-unit, and multi-modal as

shown in Figure 1.4. The multi-sensor system utilises more than one sensor to capture

single biometric trait of an individual. In multi-algorithm system, for a single biometric

trait, multiple feature extraction algorithms or multiple matchers are combined. The

multiple images of the same biometric trait are acquired from a single biometric sensor

in multi-instance systems. In multi-unit system, multiple units of the same modality

are used to perform authentication. For instance, information from left and right iris or

fingerprint images can be combined to improve the performance. The multi-unit fusion

approaches improve the recognition accuracy without incurring any additional hardware

cost. The combination of more than one biometric trait generates a multi-modal

system [1]. For example, combining iris with the face improves the performance of

“on the move” type of recognition systems.

Based on the level of fusion, the approaches can be further categorised into sensor

level, feature level, match score level, and decision level as shown in Figure 1.5. In
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Sensor 1

Sensor 2 Iris 2

FU

Multi-sensor

Multi-algorithm

Iris 1

Multi-instance

Instance 2

Instance 1 FU

Algorithm 1

Algorithm 2

FU

Iris 

Left Iris

Right Iris

FU

Multi-unit

Multi-modal

Face

Iris

FU

Fusion

FU Fusion Unit

Figure 1.4: Categorisation of fusion approaches depending upon the nature of evidence.

sensor level fusion, the raw biometric data from multiple sensors (multi-sensor) or

multiple instances of a biometric from the same sensor (multi-instance) are fused.

Feature level fusion involves integrating more than one feature set from different

biometric algorithms (multi-algorithm) into a single feature set. In match score level

fusion, the match scores generated from multiple biometric matchers are combined

to generate a consolidated score value. In decision level fusion, the final recognition

decisions are combined to develop a multimodal biometric system.

1.3 Performance Measures

Biometric seldom compares two same templates of a user originating from same

biometric trait. There is the difference between two templates due to scanning

conditions, change in characteristics with respect to aging, change in acquisition

scenarios, etc. Therefore, feature sets originating from the same individual need not

always be the same. When two different biometric templates originating from the

same individual are different then it is known as intra-class variations. However,

variations that occur between templates originating from two different individuals are

known as inter-class variations [11]. The degree of similarity between two feature
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Sensor 1

Sensor 2

Input Image 1

Input Image 2

FM

FM

MM 

MM

DM

DM

FU Fusion Unit 
FM Feature Extraction Module MM Matching Module 

DM Decision Module 

FU

MM

DM

FM

Sensor Level

A/R

FU MM

DM

Feature Level

A/R

FU DM

Score Level 

A/R

FU

Decision  
Level 

A/R

A/R Decision: Accept/Reject 

Figure 1.5: Various levels of fusion in multimodal biometric.

sets is indicated by the matching score. A genuine score is the result of matching two

samples of the same individual. If comparison involves matching two biometric samples

originating from different individuals then it is termed as an imposter score.

1.3.1 Recognition Performance

The error rate equations for system operating in recognition mode are discussed as

follows:

• False Acceptance Rate (FAR) or False Match Rate (FMR) is defined as

percentage of imposters incorrectly matched to the non-matching template.

• False Rejection Rate (FRR) or False Non Match Rate (FNMR) is the

percentage of genuine people incorrectly rejected by the system.

• Equal Error Rate (EER) is the point where FAR equals FRR. In general,

lower the equal error rate value, higher the accuracy of the biometric system.

• Genuine Acceptance Rate (GAR) is the percentage of genuine scores being

correctly accepted and is defined as GAR = 1 − FRR. A hypothetical score

distribution curve is shown in Figure 1.6. This curve graphically demonstrates

the performance measures used in recognition mode.
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• Receiver Operating Characteristic (ROC) curve is a comprehensive way to

analyse the performance of a biometric system. It depicts the dependence of

FAR with GAR for change in the value of threshold. The curve can be plotted

using linear, logarithmic or semi-logarithmic scale.

Figure 1.6: A hypothetical curve demonstrating the performance measures used during
recognition mode.

1.3.2 Identification Performance

During identification, the gallery space is partitioned into bins for search time reduction.

The error rate equations of systems operating in identification mode [11] are:

• Penetration Rate (PR). The portion of total database to be scanned on an

average against each probe search is called penetration rate, which can be defined

as

PR =
E

N
(1.1)

where E is the expected number of comparisons required for single probe search

and N is the total number of images enrolled in the database. On encountering

a match, the search does not stop but continues through the entire partition [11].

• Bin Miss Rate (BM). This error rate occurs when the search attempt is made

in the bin which is not the correct bin. BM occurs due to inconsistencies in the

binning process.
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• To mark the tradeoff between performance and speed, an error measure γ [12] is

empirically defined as

γ =
√

(1− PR)× (1− BM) (1.2)

γ can be considered as a supportive but not conclusive measure of identification.

• Cumulative Match Characteristic (CMC) Curve. The rank-k

identification indicates the number of correct identities that occur in top k

matches. Let Rk denote the number of elements of probe set in top k, then the

probability of identification is given by pi = Rk

N
. Cumulative Match Characteristic

curve represents the probability of identification pi at various ranks k.

• Correct Recognition Rate (CRR) measures the rank-1 accuracy, defined as

CRR =
R1

N
(1.3)

where R1 is the number of correct identities at rank-1.

1.4 Research Challenges

Though iris is an established biometric modality, there still exist some open research

challenges that need to be addressed. Some of these challenges are discussed as follows:

1. The error rates of iris increase, especially the false rejections, when images are

acquired on the move. Such acquisition systems are particularly suitable for

video surveillance and criminal identification. In such applications, the variation

in capturing distance and illumination determines the size of the pupil which in

turn controls the area enclosing iris. In order to perform recognition under such

variations, traditional approaches transform iris from Cartesian to polar space.

This transformation introduces the effect of aliasing in iris images [13].

2. Traditional iris recognition approaches are severely affected by the quality of the

input data. Further, some medical conditions such as accidental damage may

tamper the patterns and degrade the performance of unimodal systems.

3. Deployment of iris for many real time applications have led to the creation of

many large scale databases [5, 14]. On such large biometric databases, probe

identification with limited computation resources is very challenging. Performing

an exhaustive search on the country sized databases (N individuals enrolled)

demands unacceptably long response time to find the identity of an individual.
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4. Maltoni et al. [9] have further stated that during identification, the probability of

falsely non-matching the template is same as recognition whereas the probability

of false match increases linearly with the database size. If FMR signifies the false

matches for the verification system, then the false matches during identification

are given by

FMRN = 1− (1− FMR)N (1.4)

where N is the number of templates enrolled in the database. In Equation (1.4),

the expression (1−FMR) defines the probability that the probe does not match

falsely with a single biometric template [9], and (1 − FMR)N is the probability

that the probe does not match falsely with any of the database entries. If FMR

is very small then Equation (1.4) can be re-written as

FMRN � N × FMR (1.5)

This shows that the probability of false match increases with the database size.

5. Daugman in his research finding has stated that iris patterns are stable over

the lifetime of an individual [15]. Thereafter this fact is globally accepted by

the research community as the universal claim without any experimental proofs

thereof. Recently Prof. Kevin Bowyer from University of Notre Dame [16]

has claimed that iris patterns are subject to age. The effect of aging in iris

is questionable and needs careful investigation.

1.5 Research Objectives

The aforementioned research challenges are addressed to improve the performance of

iris biometric system in practical scenarios. The research objectives are—

1. to develop a feature descriptor for iris, which precisely characterises the texture

pattern directly from the annular iris image without transformation from

Cartesian to polar space.

2. to combine the left and right iris units of an individual to perform recognition.

The absence of data from one unit is compensated by the other unit.

3. to reduce the search time during identification by logically partitioning the

database into bins. The false matches also improve on dividing N by penetration

rate (PR). Substituting the value of N in Equation (1.4) generates

FMRN = 1− (1− FMR)
N
PR
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�
N

PR
× FMR (1.6)

4. to investigate if iris patterns change over time and affect the performance.

1.6 Thesis Organisation

This thesis is organised into seven chapters where each chapter portrays the

contributions specific to a domain. The layout of this thesis is given below.

Chapter 2: Literature Review

The existing literature is explored covering four major domains of biometrics:

(a) feature representation, (b) fusion, (c) identification, and (d) effect of aging in iris.

For brevity, the tabular comparison of various approaches are presented along with the

reported performance.

Chapter 3: F-SIFT based Keypoint Descriptor for Iris

A keypoint descriptor, F-SIFT is presented in this chapter that detects the interest

points using Scale Invariant Feature Transform (SIFT) and describes each keypoint

using Fourier transform. F-SIFT extracts rich texture details from iris that are invariant

to transformations, illumination, and occlusion.

Chapter 4: iGRVM for Multi-unit Iris Fusion

A novel classifier, iGRVM is developed, which incorporates incremental and granular

learning into RVM. The proposed classifier is evaluated in context of multimodal

biometric score classification, and results are found to be encouraging. Another

proposition is to design a fusion framework for multi-unit iris recognition. iGRVM

is used to find the class probabilities of individual scores obtained from left and right

iris. These probabilities are combined using sum rule to generate a unified decision

value.

Chapter 5: Multi-dimensional Tree based Iris Indexing

This chapter proposes efficient indexing schemes for large iris databases using

multi-dimensional trees. In this work, indices are generated using local features

extracted directly from the annular iris image. The keypoint descriptors are clustered

using k-means approach. These cluster centers are used to insert a node into k-d tree.

However, k-d tree is not dynamic to the order of insertion of records. The challenges

of k-d trees are addressed using k-d-b tree, which is dynamic and considers paging
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of secondary memory. Biometrics databases are modeled as spatiotemporal and an

efficient data structure R-tree is used for indexing. The tree structure is dynamic,

height balanced, considers paging, and is designed to work with data ranges. For

efficient retrieval, hybrid coarse-to-fine searching strategy is proposed. The combination

of R-tree with coarse-to-fine retrieval approach outperforms existing local feature based

indexing approaches.

Chapter 6: Effect of Aging on Iris Performance

This chapter presents an experimental investigation of aging in iris. Template

aging databases collected at University of Notre Dame [16] are used to perform the

experiments. The matching is performed across years using commercial VeriEye

SDK [17] and false non-match cases are obtained at 0% false matches. These cases

are studied to find if rejections are attributable to aging or some other covariates are

involved.

Chapter 7: Conclusions

This chapter presents the conclusions derived from the proposed work with more

emphasis on achievements and limitations. The scope for future research is highlighted

at the end.
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Chapter 2

Literature Review

Daugman has proposed the first operational iris recognition system in 1993 [10]. This

landmark proposition has established iris as a potential biometric modality with many

real-time applications [5, 18]. In the recent years, the researchers are trying to reduce

the challenges that occur in real-time applications of iris. In this thesis, contributions

are made to feature representation, match score level fusion, indexing, and study the

effect of aging in iris. Since literature in each direction is independent of the other, the

state-of-the-art approaches are explored for each category. The existing literature is

explored covering four major domains of biometrics as shown in Figure 2.1. Section 2.1

summarises some well-known feature representation approaches for iris. Different match

score based fusion approaches are discussed in Section 2.2. In Section 2.3, biometric

indexing approaches are presented for search space reduction. The literature on iris

aging is given in Section 2.4. The inferences derived from the literature are discussed

at the end.

Figure 2.1: Categorisation of literature explored in biometrics into four domains.
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2.1 Feature Representation

The randomness in iris patterns is quite high which promotes the research on different

ways of representing the iris texture patterns. The existing approaches for iris

recognition can be broadly classified into four categories as given in Table 2.1.

2.1.1 Phase-based

Phase information is more popularly used to represent iris texture patterns independent

of contrast and illumination. Daugman proposed the first commercially available iris

recognition system using phase features [3, 15, 10]. The texture pattern of iris is encoded

into a sequence of 2-D Gabor wavelet coefficients whose most significant bits comprise

256 byte iris code. Miyazawa et al. [19] proposed a recognition system using the phase

components of 2-D Discrete Fourier Transform (DFT). The phase based image matching

is performed using the Phase-Only Correlation (POC) function. Another approach for

iris recognition is based on Gabor phase-correlation particularly designed to work for

degraded iris images [20]. This approach relies on two important aspects. The first is

the combination of local and global information extracted by the correlation measure,

and the second one is the joint consideration of correlation peak amplitude and position

of the matching score measured in a local manner.

2.1.2 Texture-based

The texture analysis of spatial patterns in iris is used to extract features. Wildes et

al. [23] applied Laplacian of Gaussian (LoG) filters to the iris image at multiple scales

and Laplacian pyramid is constructed. The iris recognition system proposed in [24] is

based on multi-channel Gabor filtering. For filtering, the authors have used 20 Gabor

filters corresponding to different frequencies and orientations. Each iris image is divided

into eight sub-images after normalisation. This makes total of 160 (8×20) output

images from which the iris features are extracted. Ma et al. [25] utilised a Circular

Symmetric Filter (CSF) which are based on Gabor filter. The difference between

Gabor filter and circular symmetric filter lies in modulating the sinusoidal functions.

The authors in [26] defines a bank of spatial filters whose kernels are suitable to clearly

discriminate iris texture patterns. The Gabor filter provides image features at certain

orientation whereas the spatial filters consider information from different orientations.

This marks the superiority of spatial filters over Gabor filter for recognition. Tan et

al. [27] proposed an iris recognition algorithm using texture of iris which is regarded

as a kind of transient signals and uses the wavelet transform to process such signals.
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Table 2.1: Feature representation approaches for iris recognition.
Year First Author Approach Database Results

Phase-based

1993 Daugman [10] 2-D Gabor wavelet

Iris images from
Ophthalmology Associates
of Connecticut, Massachusetts
and Cambridgeshire

FR: 1 in
128000, FA: 1
in 151000

2008 Miyazawa [19]
2-D Discrete Fourier
Transform and POC

CASIA [21] EER: 0.18%
ICE [22] EER: 0.54%

2009 Krichen [20] Gabor phase-correlation ICE [22] FRR: 2%

Texture-based
1997 Wildes [23] Laplacian of Gaussian filters – –

2000 Zhu [24] Multichannel Gabor filtering Self captured (25 subjects) Acc: 99.09%

2002 Ma [25] Circular symmetric filters Self captured (109 subjects) CRR: 99.85%

2003 Ma [26] Bank of spatial filters CASIA [21] CRR: 99.43%

2004 Tan [27] Dyadic wavelet transform CASIA [21] CRR: 100%

2009 Sun [28] Multilobe differential filters
BATH [29]

FRR: 0.94%CASIAV3 [21]
ICE [22]

2012 Zhang [30]
Perturbation-enhanced feature
correlation filter

CASIAV3 [21] EER: 0.37%
CASIA-Iris-Thousand [21] EER: 0.40%
ICE [22] EER: 0.24%

Zero-Crossing
1998 Boles [31] Wavelet transform – –

2002 Sanchez-Avila [32] Dyadic wavelet transform Self acquired (20 subjects) Acc: 97.9%

2005 Sanchez-Avila [33]
Dyadic wavelet transform on
an annular region

Self captured (50 subjects) Acc : 99.6%

2007 Monro [34] Discrete Cosine Transform
CASIA [21]

CRR: 100%
BATH [29]

2012 Ahamed [35] Curvelet transform
CASIA [21]

CRR: 99.3%UBIRIS.vl [36]
UPOL [37]

Keypoint Descriptor

2009 Belcher [38] Region-based SIFT
ICE [22] EER: 5.57%
WVU [39] EER: 8.28%

2009 Mehrotra [40] Harris Corner and Entropy
BATH [29] Acc: 87.42%
CASIAV3 [21] Acc: 92.78%

2009 Mehrotra [41] SURF
BATH [29] Acc: 95.48%
CASIAV3 [21] Acc: 95.77%

2010 Du [42] Gabor and SIFT ICE [22] EER: 0.026%

2011 Zhang [43] Deformable DAISY Matcher
CASIA-Iris-Thousand [21] EER: 0.21%
CASIAV3 [21] EER: 0.59%

2013 Sun [44] SIFT Self acquired (18 subjects) Acc: 98.15%

The sharp variations, considered as good indicators of important image structures, are

extracted from the set of intensity signals to form discriminating features. The authors

in [28] proposed an iris recognition system using ordinal measures for characterising the

qualitative relationships between the iris regions rather than precise measurements of its

structures. The multilobe differential filters are developed to compute ordinal measures

with flexible intralobe and interlobe parameters such as location, scale, orientation,

and distance. Zhang et al. [30] proposed a Perturbation-enhanced Feature Correlation

Filter (PFCF) for iris recognition. The authors have applied the filters in Gabor feature

domain to combine the advantages of Gabor images and correlation filters. This method

encodes both local and global iris features for reliable identity verification.
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2.1.3 Zero Crossing

Zero crossing approaches seek out those places in the image signal that passes through

0 value and marks them as edge points. Boles et al. [31] presented an algorithm for

recognising iris based on the Wavelet transform. This approach makes use of zero

crossings of the wavelet transform computed over concentric circles of iris and the

resultant 1-D signals are compared with the model features. Wavelet based approach is

invariant to translation and rotation of an image. Authors in [32] developed an approach

using dyadic wavelet transform. The wavelet function used for feature extraction is the

first derivative of cubic spline. The advantage of using this function is that it has

smaller number of coefficients compared to second derivative of a smoothing function.

Authors in [33] have also extracted zero-crossing representation of the dyadic wavelet

transform from two different iris signatures: one based on a single virtual circle of the

iris; the other one based on an annular region. From the experiments it is found that the

performance of recognition system improves using annular region. Another approach

presented in [34] investigates the method of 1-D Discrete Cosine Transform (DCT)

as a means of feature extraction. The DCT series of averaged overlapping angular

patches are taken from the normalised iris image to form the feature vector. A low

complexity iris recognition system is proposed based on Curvelet transform [35]. The

zero crossings of curvelet coefficients from the approximation subbands are used as

features. Experimental results report that DCT based approach has low computational

complexity and high accuracy compared to other approaches.

2.1.4 Keypoint Descriptors

The keypoint descriptors are based on the appearance of an object at particular

interest points and are invariant to image scale and rotation. They are also robust

to changes in illumination, noise, and minor changes in viewpoint. Scale Invariant

Feature Transform is a well known keypoint descriptor for object recognition [45].

SIFT is applied to regions of iris which does not require polar transformation [38].

The idea is to develop a keypoint descriptor that is capable of performing well for

iris textures. Mehrotra et al. [40] proposed an iris recognition technique using interest

point pairing. The feature set comprises spatial location of each corner point (detected

using Harris) and entropy information of window around the corner. The corner points

are paired using dual stage approach. At the first stage, the potential corners are

obtained by finding Euclidean distance between spatial coordinates. These potential

corners are used to find actual corners based on their affinity around a window, which

is measured using Mutual Information (MI). The authors in [41] have developed an
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iris recognition system by applying Speeded Up Robust Features (SURF) directly on

annular iris images. This system performs well for iris because of its capability to

distinguish significant texture features from the background. Du et al. [42] proposed

an iris recognition system by combining Gabor wavelet with SIFT to generate Gabor

descriptor. Both phase and magnitude of Gabor wavelet values are used as features.

The Gabor feature descriptor is invariant to scale, deformation, rotation, and contrast

of two iris images. This approach performs well for frontal and off-angle iris images

taken under non-cooperative scenarios. It is assumed that the rich texture pattern of

iris undergoes non-linear deformation due to pupil contraction and dilation. Zhang

et al. [43] proposed deformable DAISY matcher for robust iris feature matching.

The dense DAISY descriptors are extracted from the normalised iris image for low

computational cost. The set of keypoints are localised on the feature map to match

using deformation tolerant matching strategy. Sun et al. [44] proposed a recognition

system using bovine iris images captured from non-cooperative audiences. The pupil

and iris circles are localised using active counters and features are extracted using SIFT.

After removing keypoints from pupil region, the keypoint descriptor is generated using

bag-of-features and then distance of histogram representations is adopted for matching.

Local feature based approaches have shown to improve the iris recognition performance.

2.2 Score Level Fusion

Score level fusion is preferred over other fusion approaches due to the information

content and ease of combining scores from different matchers [46]. Nandakumar et

al. [47] have mentioned that match score level fusion is challenging because the scores

of different matchers may follow different distributions. For instance the scores from

two different matchers may be non-homogenous where one represents distance values

and other represents similarity scores as shown in Figure 2.2. Existing match score

fusion approaches are designed to handle this ambiguity and perform fusion. The score

level fusion approaches are divided into following three categories [47]

2.2.1 Transformation-based

As matching scores generated from different modalities are heterogenous, score

normalisation is required to transform them to a common domain [48]. In

transformation based approaches, the matching scores from different modalities

are normalised and then integrated to generate a combined score. Brunelli and

Falavigna [49] proposed an integration system which combines acoustic and visual cues
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for recognition. The multi-classifier system operates in two steps. In the first step,

the input scores are normalised using robust estimators of location and scale. In the

second step, the scores are integrated using weighted geometric average. The authors

in [50] have proposed a multivariate polynomial model to overcome the tedious recursive

learning problems. Kittler et al. [51] developed a theoretical framework for combining

the classifiers which includes product rule, sum rule, max rule, min rule, median rule,

and majority voting. The most interesting inference from his study is that the sum

rule outperforms other combination approaches. Jain et al. [52] used logistic transform

to combine scores from three different fingerprint matching algorithms. Experiments

performed using large fingerprint database confirms the effectiveness of the integrated

system. The performance of multimodal biometric systems are further improved

by integrating face and fingerprint modalities using state-of-the-art Commercial

Off-The-Shelf (COTS) matchers [53]. Some new normalisation and fusion approaches

are proposed and it is found that the combination of Quadric-Line-Quadric (QLQ)

normalisation and User Weighting (UW) fusion generates minimum error rates. Jain

et al. [48] have studied the performance of various score normalisation approaches and

fusion rules using face, fingerprint, and hand-geometry images of a person. The authors

also support the study of Kittler et al. [51] that simple sum rule based fusion performs

better compared to other approaches.

2.2.2 Classifier-based

In classifier based approaches, the d-dimensional score vector is taken as input

to the classifier and a binary decision regarding acceptance or rejection is

taken. Yacoub et al. [56] have evaluated different biometric classifiers like

Figure 2.2: Illustrating non-homogenous characteristics in match scores from
NIST-Face score set database [54] (this graph is taken from [47]).
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Table 2.2: Score level fusion approaches in biometrics.
Year First Author Approach Modality Database Results

Transformation-based

1995 Brunelli [49] HyperBF networks
Speech and
face

Self acquired database Acc: 98%

1999 Jain [52] Logistic transform Fingerprint
Self acquired (167
subjects)

GAR: ≈ 89%

2004 Toh [50]
Multivariate
polynomial model

Fingerprint,
speech, and
hand-geometry

–
EER:
improved
by 50%

2005 Snelick [53]

Normalisation:
Quadric-Line-Quadric
(QLQ) and Fusion:
User Weighting (UW)

Face and
fingerprint

FERET [55] EER: 0.63%

2005 Jain [48]
Normalisation: tanh
and Fusion: Sum Rule

Face,
fingerprint,
and hand
-geometry

Self acquired Acc: 98.5%

Classifier-based

1999 Yacoub [56]

SVM, Bayesian
classifier, Decision
trees, MLP, Fisher
Linear Discriminant

Face and voice XM2VTS [57] EER: 1.00%

2000 Gutschoven [58] SVM Face and voice M2VTS [59]
FRR: 2.70%,
FAR: 0.00%

2003 Lu [60] RBF Network Face
ORL [61]

Acc: 90.2%Yale [62]
AR [63]

2009 Vatsa [64]
Adaptive unification
using 2ν-GSVM

Fingerprint
Law enforcement
agency

GAR: 98.81%

Density-based

2002 Prabhakar [65] Likelihood Ratio Fingerprint
Self acquired (167
subjects)

EER: 1.4%

2008 Nandakumar [47]
Likelihood Ratio with
GMM

Multimodal
NIST Match Score [54] GAR: 99.1%
XM2VTS [66] GAR: 98.7%

2010 Vatsa [67]
Likelihood Ratio and
SVM

Face Heterogenous [67] GAR: 94.98%

2013 Tao [68]
Naive Likelihood Ratio
via ROC

Face FRGC [69] EER: ≈1.75%

Support Vector Machine (SVM), multilayer perceptron, decision trees, Fisher Linear

Discriminant (FLD), and Bayesian classifier for combining match scores. From

experimental results it is found that SVM and Bayesian classifier outperforms other

approaches. Gutschoven et al. [58] have formulated the fusion problem as classification

problem and proposed to solve this problem using SVM. This further substantiates

the use of SVM for combining scores from different sources. In [60], the authors have

combined three different face matchers using RBF network. The fusion results of RBF

network are also compared with traditional sum rule. Vatsa et al. [64] proposed two

unification frameworks that dynamically selects most appropriate fusion algorithm.

The first framework is rule based approach in which evidence theoretic sum rule or

Dezert Smarandache (DSm) function is applied depending upon the scenario. The

second unification uses intelligent 2ν-Granular Support Vector Machine (2ν-GSVM)

classification to dynamically select the fusion approach.
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2.2.3 Density-based

In density based approaches based on Likelihood Ratio (LR) test, the genuine and

imposter score densities are computed. These approaches improve the performance

provided that densities are estimated carefully. Likelihood ratio fusion is preferred

over other approaches like sum rule and SVM. The latter requires careful selection of

parameters for instance finding an appropriate normalisation and integration approach

in sum rule and choice of kernel and its associated parameters in SVM. Authors in [65]

compute LR, which declares a person to be imposter for large values of LR and genuine

for small values of LR. This ratio is used to combine four different fingerprint matching

algorithms to improve the accuracy of fingerprint verification system. Nandakumar

et al. [47] have combined the match scores using likelihood ratio test. The genuine

and imposter match score distributions are modelled as finite Gaussian Mixture

Model (GMM). The authors have also combined the quality scores within the fusion

framework to further improve the performance of multimodal biometrics system. This

approach need not care about the density parameters, which are estimated using

GMM. A sequential fusion algorithm is proposed in [67] that combines likelihood ratio

with support vector machine. Further a dynamic selection algorithm is designed that

combines constituent matchers and fusion approaches to optimise the accuracy and

computational time. Recently Tao et al. [68] proposed a fusion approach by estimating

likelihood ratios of the fused biometric scores through individual ROC curves which

construct Naive Bayes classifier. The value of matching scores, generated from an

individual matcher, are integrated to find the ratio without explicit computation of

densities. This fusion approach reduces the overhead of modeling the distributions and

demonstrates higher fusion performance in comparison to SVM and GMM on a small

sample size. Table 2.2 summarises various score based fusion approaches.

2.3 Indexing

The search space reduction approaches in biometrics are broadly classified into

classification and indexing as shown in Figure 2.3. There exist very little research on

classification as the search space is partitioned disproportionately. Existing indexing

approaches are categorised into feature based and match score based depending upon

the index design. Feature based indexing approaches are further classified into local,

global, and hybrid categories based on the type of features used. Based on the feature

value, global feature approaches are further sub-divided into real and binary categories.

These indexing approaches are discussed in detail in the following sections.
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2.3.1 Feature Based Indexing Approaches

These approaches are more reliable as the amount of information required to represent

each biometric image is abundant. The biometric features are broadly classified into

global and local categories [4]. Some approaches that combine both local and global

features for indexing are discussed under hybrid category.

Global Features

In these schemes, the features are extracted without distinguishing an object from the

background. This is particularly suitable under scenarios when the complete image

describes potential features that can be used for identification. Indexing approaches

in primitive stages are developed using global features. Ratha et al. [70] in early 90’s

proposed a multi-level indexing approach for fingerprint database which unifies the

features such as pattern class and ridge density at higher level with elastic structural

based matching at lower levels. This approach accelerated the research on indexing

using global features as shown in Table 2.3. The global feature based approaches are

further sub-divided based on the type of features being used. These approaches are

discussed as follows:

Real Valued Features: Orientation or directional field is widely used for fingerprint

indexing. Lumini et al. [71] proposed an indexing approach where directional image

is registered with reference to its core point. The multi-dimensional feature vector is

Identification
Approaches

Classification
Indexing

(Index Design)

Match score
based

Feature based
(Types of features)

Global
(Feature value)

Real valued Binary

Local Hybrid

Figure 2.3: Proposed categorisation of indexing approaches that exist in literature.
The text in blue indicates the basis of categorisation.
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indexed using grid file approach. Some approaches use clustering to group features

generated from a biometric trait. Mhatre et al. [72] have proposed a multimodal

binning approach using hand geometry and signature biometrics. Liu et al [73] proposed

modified form of k-means algorithm to partition the orientation feature space into

clusters. For each cluster, the database is further divided into bins using Average Ridge

Distance (ARD). The authors in [74] make use of two approaches for iris indexing. In

the first approach, the features are extracted using Gabor wavelet [15] to generate the

IrisCode. The second approach is based on statistical analysis of pixel intensities and

positions of blocks in the iris texture.

Multi-dimensional tree based indexing approaches have gained significant attention

recently due to its suitability to biometrics [75, 76]. Some iris specific schemes are

developed for search space reduction using eye color [77]. In [78], the authors have

proposed an indexing scheme using eye color for noisy iris images. The RGB color

image is converted to Y CbCr color space to generate an index for traversing the tree.

Hashing is also used for searching records based on a key value. In [79], the authors

have used hashing concept for indexing. They have reported several characteristics

inherent to hashing. If collision free hash index is independent of database size then

this could be directly used to find person’s identity without any underlying algorithm.

The hash function is generated from iris code and Kaurnaugh map is constructed for

n-bit hashes. The drawback of existing global feature based approaches is that they

use high dimensional data which is computationally costly. Dey et al. [80] reduces

computational time by extracting Gabor energy features from an iris image at different

scale and orientations.

Binary Valued Features: The features extracted from the biometric image are

binarised to further speed up searching. An indexing approach for large fuzzy databases

is explored by Feng et al. [83] using Beacon Guided Search (BGS). Despite of random

bit errors, the iris codes from similar iris pattern are more likely to collide with same

beacons. Gadde et al. [12] proposed an indexing approach using Burrows Wheeler

Transform (BWT). Their indexing scheme is based on count of occurrence of n-bit

binary patterns in normalised iris image.

Local Features

Local features are those patches of an image that differ from its neighborhood.

They are extracted around special points or keypoints. The features extracted

around each detected keypoint are stored as descriptor. Local features find correct

correspondence between the gallery and probe images irrespective of large variations
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Table 2.3: Chronological listing of global feature based indexing approaches.
Year First Author Approach Modality Database Results

1996 Ratha [70]

Pattern class,
ridge density
and elastic
structures

Fingerprint NIST-9 [81]

Pattern class:
Reduced to 25%
and Ridge density:
Reduces by another
50%

1997 Lumini [71]

Directional
features
reduced using
KL transform
and grid files
for indexing

Fingerprint NIST-4 [82]
PR: 6.90% with BM :
0.00%.

2005 Mhatre [72]

Binning
features
using vector
quantisation

Signature
and hand
geometry

Self captured PR: 5%, BM : 0%

2007 Liu [73]
Orientation
field, ARD and
k-means

Fingerprint NIST-4 [82] PR: 29.7%, ER: 2.9%

2008 Feng [83]
Beacon Guided
Search (BGS)

Iris UAE database
FAR: 0%, FRR:
0.55%, PR: 0.14%

2008 Mukherjee [74]
IrisCode and
SPLDH

Iris
CASIA Version 3.0
(CASIAV3) [21]

IrisCode PR: 17%,
HR: 80%,
Texture analysis PR:
30%, HR: 84%.

2008 Puhan [78] Iris color Iris UBIRIS [36] HR: 97%, PR: < 25%

2010 Rathgeb [79]
Hashing and
k-map

Iris CASIA Version 3.0 [21]
PR : ≈ 3%, PG :
89.57%

2010 Gadde [12]
Burrows
Wheeler
Transform

Iris CASIA Version 3.0 [21]
HR: 99.83%, PR:
17.23%, γ : 90.90%

2012 Dey [80]
Gabor energy
features

Iris

Bath Database [29]

PR: 14.5%, HR:
91.1%

CASIA Version 3.0
Interval [21]
CASIA Version 4.0
Thousand [21]
Multimedia
University (MMU1) [84]
West Virginia
University [39]

in transformation, occlusion, and illumination. These features have shown good

performance for biometrics recognition [41]. Due to the superiority of these features

for recognition, an attempt has been made to apply them for indexing. Chronological

listing of various local feature based indexing approaches are shown in Table 2.4.

Local feature based approaches are initially applied to fingerprint biometrics.

Minutiae points are extracted from an input fingerprint image and an index is generated

using minutiae triplet [85]. Flash approach proposed by Germain et al. [85] uses

invariant properties of the minutiae to generate higher dimensional index. This

approach has several limitations like triangle length is susceptible to distortions, ridge

count, angle is dependent upon the image quality, and the minutiae locations may

change. Another work proposed by Bhanu and Tan [87] is an extension of work done

by Germain et al. [85]. This scheme generates an index using H (αmin, αmed, φ, γ, η, λ)

where triangle’s angles (αmin, αmed), triangle’s handedness (φ), type based on types of
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Table 2.4: Chronological listing of local feature based indexing approaches.
Year First Author Approach Modality Database Results

1997 Germain [85]

Flash approach
with triangle
parameters to
generate index

Fingerprint

Self constructed
reference database
of 97, 492 inked dab
images

Average query time is 7
microseconds

1999 Bebis [86]

Delaunay
triangles from
minutiae
triplets

Fingerprint
Self captured 300
images (30 persons)

CIP :a 93.16%

2003 Bhanu [87]
Parameters
from triplets of
minutiae

Fingerprint
Self acquired (100
individuals)

CIP : 50%, PR :
0.33%

NIST-4 [82]

2005 Mhatre [88]
Pyramid
technique

Hand
geometry

Self captured images PR : 8.86%, FRR : 0%

2010 Mehrotra [89]
SIFT and
Geometric
hashing

Iris

UBIRIS.v1 [36]

PR = BM : 24%
BATH [29]
CASIAV3 [21]
IITK [90]

2011 Cappelli [91]

Minutiae
cylinder codes
and locality
sensitive
hashing

Fingerprint

NIST-4 [82] PR: 1.59%, Error
rate: ≈ 6.5% on
NIST-4

NIST-4 (Natural) [82]
NIST-14 [92]
FVC2000 DB2 [93]
FVC2000 DB3 [93]
FVC2002 DB1 [94]

2011 Jayaraman [95]
SURF and
enhanced
geometric
hashing

Ear and iris
IITK Ear database [90]

HR: 100% for top 5
ranks

UPOL Iris
database [37]

2012 Gago-Alonso [96]
Extended
Delaunay
triangles

Fingerprint

NIST-4 [82]

CIP : 99%, PR: 1%
on FVC 2002 DB1

NIST-4 (Natural) [82]
NIST-14 [92]
FVC2000 DB2 [93]
FVC2000 DB3 [93]
FVC2002 DB1 [94]

2013 Briseo [97]

Extended
triplet and
Delaunay
triangles

Fingerprint

NIST-4 [82]

CIP : 98.5%, PR: 1%
on FVC 2002 DB1

NIST-4 (Natural) [82]
NIST-14 (reduced) [92]
FVC2000 DB3 [93]
FVC2002 DB1 [94]

aCorrect Index Power

minutiae (γ), direction of triangle (η), and maximum side (λ) are derived from the

triangle formed using non-collinear minutiae points. Bebis et al. [86] proposed another

approach for fingerprint identification which is based on the use of Delaunay triangles.

For n number of minutiae, the number of Delaunay triangles produced is O(n) in

comparison to the number of all possible triangles considered which is O(n3) [85].

The existing indexing approaches are not capable enough to deal with spurious or

missing minutiae and the available approaches are insufficient to handle the effect of

noise. Another identification system using minutiae triplets and Delaunay triangles

is proposed in [97]. This approach uses new representation of fingerprint based on

the extension of Delaunay triangles. Further, a strategy is proposed to dismiss bad

quality minutiae triplets which is found to be robust to distortions. In [96], a novel set
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of features are introduced based on Delaunay triangles and triangular hulls which are

robust to noise. Database indexes are generated using fingerprint features such as ridge

contours, minutiae directions and triangle sign. During retrieval, the recommendation

score is calculated and an approach to deal with noise is defined. This system performs

better in comparison to existing Delaunay triangularisation based indexing approach.

Mhatre et al. [88] have used pyramid technique for indexing biometric databases.

The d dimensional data space is divided into 2× d number of pyramids each having a

common tip point and a (d− 1) dimensional base. The height and pyramid number is

used to form key for indexing the B+ tree. The pyramid technique is specially designed

to work with higher dimensional data and is invariant to order of insertion and scalable.

Recently, Cappelli et al. [91] have proposed an indexing scheme using Minutiae Cylinder

Codes (MCC). MCC features are invariant to translation, rotation, and robust against

skin distortions. For index creation, Locality Sensitive Hashing (LSH) scheme is used.

Geometric Hashing is an indexing technique for model based object recognition.

This is ab initio applied to biometrics by Mehrotra et al. [89]. The authors developed

an indexing approach for iris using geometric hashing of SIFT keypoints. This approach

is invariant to all possible transformations, occlusion, and non-uniform illumination.

During iris retrieval, geometric hashed location from query iris image are obtained to

access appropriate bin of the hash table and top matches are retrieved by majority

voting as shown in Figure 2.4. An enhanced geometric hashing approach is proposed

in [95]. In this approach, to handle all possible rotations each object is aligned using

principal components of the feature points. Thus, each keypoint is inserted exactly once

into the hash table. This reduces the space and time required to compute geometric

invariants using basis pair [89].

Hybrid Approaches

Some approaches for indexing are developed that combines the merits of both global as

well as local features. Since local and global features select independent characteristics,

in certain cases it is advisable to perform indexing by combining both the features.

This is done to belittle the limitations of either feature extraction approaches and

simultaneously combine the merits of both. Hybrid approaches for indexing are listed

in Table 2.5. Boer et al. [98] proposed an indexing approach using three features

i.e., directional field estimate, fingercode, and minutiae triplets. In [99], a fingerprint

retrieval approach is developed that combines the level-1 features (local ridge line

orientation and frequencies) with level-2 features (minutiae). Li et al. [100] proposes

palmprint retrieval approach using a layered scheme to filter the database where global
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(a) Detected keypoints (b) Select basis pair (c) Keypoints after transformation (d) After
(n
2

)
transformations

(e) Hash table occupancy (f) Hash table after rehashing

Figure 2.4: Geometric hashing based indexing approach using SIFT features [89].

Table 2.5: Hybrid feature based indexing approaches.
Year First Author Approach Modality Database Results

2001 Boer [98]

Directional
field estimate,
fingercode and
minutiae triplets

Fingerprint FVC2000 DB2 [93] PR: 18%, HR: 100%

2005 Li [100]
Texture energy
features

Palmprint Self acquired Acc: 94.5%

2012 Cappelli [99]
Level-1 and
Level-2 features

Fingerprint

NIST-4 [82]

PR: 20%, BM : 0.1%

NIST-4 (Natural) [82]
NIST-14 [92]
FVC2000 DB2 [93]
FVC2000 DB3 [93]
FVC2002 DB1 [94]

features are used for filtering at coarse level followed by matching using local features

at fine level.

2.3.2 Match Score based Indexing Approaches

Several approaches exist to biometrics database indexing using features. However, very

little literature exist on indexing the biometrics database using match scores. This is

primarily due to the need to generate and process score matrices which may increase an

additional overhead. Match score based approaches on the other hand avoids the need

to develop a trait specific feature extraction routine. The first attempt for database

indexing using match score is proposed by Maeda et al [101]. This technique stores the

matrix of all scores and is updated on addition of a new user. The main drawback of
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Table 2.6: Match score based indexing approaches.
Year First Author Approach Modality Database Results

2007 Gupta [102]
Wavelet transform and
B+ Tree

Ear IITK [90] HR: 95.8%, PR: 34%

2009 Gyaourova [103]
Reference image and
union fusion rule

Multimodal
FERET face
database [55] PR: 3%, HR: 99%
WVU
Multimodal [39]

2010 Paliwal [104] SURF and VA+ file Palmprint PolyU [105] HR: 98.01%

this approach is working with database of million users can be prohibitive. To reduce

the dimensionality of features required for matching, anchor model based indexing

approaches are proposed. Gupta et al. [102] proposed a scheme with only four match

score values. The coefficients are generated from preprocessed biometric image using

wavelet transform. The binarised approximation coefficients at second level is divided

into four equal sized quadrants and Hamming Distance (HD) for each quadrant with

respect to reference template of all ones is measured. This HD value is used to traverse

the B+ tree for indexing. In [103], the modality specific index code is generated by

computing match scores between the biometric image and fixed set of reference images

as shown in Figure 2.5. During identification, the index code of probe image is compared

against the enrolled identities. The output of potential matches are fused to further

narrow down the list and increase the hit rate. Vector Approximation (VA+) file is

used to index high dimensional match score database in [104]. The match score vectors

are obtained by comparing each image in the database with all images in the training

set. The match scores of all images in the database are indexed using VA+ file. This

approach is found to be the most powerful match score based indexing approach. The

summary of various match score based indexing approaches are shown in Table 2.6.

Matching

Matching Scores

Input Image x1 x2 x3 ... xnReference 
Images

Index Codes

Figure 2.5: Index code generation using match scores [103].

27



2.4 Effect of Aging in Iris Literature Review

2.4 Effect of Aging in Iris

Daugman mentioned that iris is well protected from the environment and stable over

time [3, 106]. This fact is also supported with the case study of Sharbat Gula1, the

Afghan girl whose iris templates were matched after the age difference of 18 years.

Owing to these characteristics of iris recognition, it is now used for authentication in

several large scale government identification projects [5, 14]. However, recent research

has claimed that iris recognition accuracy degrades over time [107, 108, 109, 110, 111].

Tome-Gonzalez et al. [107] studied the effect of time on the BiosecureID database with

time lapse of maximum four months. The authors used Masek’s iris matcher [112] to

investigate the effect of aging and analysed that the intra-class variability increased

over time with very little change in the impostor distribution. However, the time lapse

considered for this study is very short (four months) and it is not justifiable to attribute

aging to be the cause of performance reduction. Baker et al. [113] analysed aging in iris

recognition for multi-year time lapse. 6,797 iris images of 23 subjects were captured

using the LG2200 iris camera. To evaluate the FNMR across time, images were collected

from the same subjects first at an interval of less than 120 days and then at an interval of

more than 1200 days. The images used in this study were manually screened for quality

checks. The performance was evaluated using Neurotechnology VeriEye SDK [17] along

with two other matchers. The authors inferred that factors such as pupil dilation,

contact lens, occlusion, and sensor aging could not account for increase in false non

match rates. Fairhurst et al. [114] studied aging on 79 users with 632 images. They

modified Masek’s iris segmentation to reduce the segmentation errors and improve iris

recognition accuracy. The authors concluded that dilation decreases with age and

thus matching performance also reduces over time. Fenker and Bowyer [111, 16, 115]

performed experiments with images pertaining to 322 subjects captured over a period

of three years. They concluded that false non-match rate increases with time because

of template aging.

Ellavarason and Rathgeb [116] re-investigated the two year time lapse database

used by Fenker and Bowyer [109] with six different iris feature extraction algorithms.

They also observed that change in FNMR from short to long time lapse is attributable

to template aging. Sazonova et al. [117] examined the effect of elapsed time on iris

recognition utilising 7628 images from 244 subjects acquired over time lapse of 2 years

at Clarkson university. The authors also considered the impact of quality factors such

as local contrast, illumination, blur, and noise on the iris recognition performance.

The modified Masek’s algorithm and VeriEye SDK were used for generating match

1Afghan Girl. http://en.wikipedia.org/wiki/Afghan Girl
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Table 2.7: Existing literature that supports aging in iris.
Year First Author Approach Database Time Lapse
2008 Gonzalez [107] Masek [112] BiosecureID 4 months

2011 Fairhurst [114] Modified Masek [112]
79 subjects (632
images)

3 months

2012 Fenker [16, 111, 115] VeriEye SDK [17] 322 subjects 3 years

2012 Sazonova [117]
Modified Masek’s
algorithm [112] and VeriEye
SDK [17]

244 subjects (7628
images)

2 years

2012 Rankin [110] Local and non-local operators 119 subjects 6 months

2013 Baker [113] VeriEye SDK [17]
23 subjects (6,797
images)

4 years

2013 Ellavarason [116] 6 different matchers 86 subjects 2 years

2013 Czajka [118] 3 different matchers
58 subjects (571
images)

8 years

scores and the significance of quality factors for recognition were also demonstrated.

They observed that the performance of both the matchers degrade with time. One

recent research on aging by Czajka [118] used dataset of 571 images collected from

58 eyes with up to eight years of time lapse acquired from 2003 to 2011. The results

obtained using three different matchers and genuine scores exhibit template aging. The

authors claimed that more accurate matchers are highly vulnerable to aging. Rankin

et al. [110] performed another study for aging using visible spectrum images in which

the images were acquired from both the eyes of 119 subjects. Even for a short time

difference of six months, 32 out of 156 comparisons resulted in false rejections. This

performance was obtained by applying both local and non-local operators. These

error rates are very high compared to other studies. The brief description of existing

literature on iris aging is listed in Table 2.7. In response to Rankin et al. [110],

Daugman and Downing [119] pointed out that their error rates were constant at all

points in time studied, namely about 20%, showing no change in recognition accuracy

over time. Recently, on two time-lapse datasets collected by law enforcement agencies,

National Institute of Standards and Technology (NIST) IREX report [120] suggests

that population-averaged recognition metrics are stable, consistent with the absence of

iris ageing.

2.5 Observations

The existing literature has offered new insights into the domain of iris. Some key

observations from the existing literature are:

• Several feature representation approaches of iris characterises the texture pattern

using global features. Few approaches are developed using local features like SIFT

and SURF. These approaches have shown to yield good results with the scope
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for improvement.

• The transformation based fusion approaches fail to achieve accurate separation

for the conflicting cases [51].

• The classifier based fusion approaches becomes biased towards the imposter

class which is generally overpopulated. Performing fusion using density based

approaches require careful estimation of the density parameters [47].

• Indexing approaches developed using global features fail to possess invariance to

transformations [75, 76]. The local feature based indexing approach proposed

in [89] performs with high bin miss rate of 24%.

• The match score based indexing approaches are independent of the modality.

However, there is a need to generate and process score matrices which may

increase an additional overhead [103].

• Researchers do not have a consensus on iris template aging. A proper analysis is

required to understand the impact of aging on iris.

In this thesis, an endeavour has been made to address the aforementioned issues.

The contributions span across different domains of iris biometrics as shown in

Figure 2.6. To characterise iris pattern using local features, a keypoint descriptor

is proposed that suitably describes texture. Further, a classifier is proposed for the

fusion of left and right units of iris. The proposed classifier is designed to handle class

imbalance in the training data. Local feature based indexing approaches are developed

using multi-dimensional trees. The idea is to reduce the bin miss rate and penetration

rate during the search process. Finally, an investigation is made to study the effect of

aging in iris. The propositions of this thesis are discussed in detail in the subsequent

chapters.
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Chapter 3

F-SIFT based Keypoint Descriptor
for Iris

Traditional iris biometric systems perform recognition under controlled imaging

scenarios where the subject is asked to gaze at the camera to acquire iris images

illuminated with infrared light source [121]. Several real-time iris recognition systems

like UIDAI [5] and UAE [18] also acquire images using the controlled setup. Traditional

approaches have shown to yield good performance on real-time iris databases. However,

existing feature representations suffer from few challenges like:

1. The texture patterns in iris are subject to change due to expansion and

constriction of pupil for varying illumination as shown in Figure 3.1. This change

in pattern can be visualised from the normalised iris images on the right. Once

the pupil constricts (refer Figure 3.1(a)), the iris patterns are rendered more

clearly whereas these patterns contract when iris image is dilated as shown in

Figure 3.1(b). Such deformations in texture degrades the performance of iris.

2. The relative position of iris patterns change due to cyclotorsion which cannot

be mapped to the same location in the polar coordinates. The change in gaze

also deforms the pattern along its own axis which in turn transforms the texture

pattern of iris as shown in Figure 3.2.

3. As reported in [13], the transformation of iris from Cartesian to polar space

introduces aliasing artifacts.

The idea is to extract features directly from the annular iris image. Existing global

feature extraction approaches cannot be applied directly to annular iris image. Local

features find correct correspondences between the gallery and probe images irrespective

of large variations. The well-known keypoint descriptors for local feature extraction

are SIFT [45] and SURF [122]. The performance of these keypoint descriptors are

32



F-SIFT for Iris

(a) Pupil constriction

(b) Pupil dilation

Figure 3.1: Effect of illumination on iris texture.

found to be encouraging as reported in [123]. The only limitation of existing keypoint

descriptors is that, sometimes they wrongly pair two different regions of iris that possess

texture similarity as shown in Figure 3.3. In this chapter, an endeavour has been

made to develop a keypoint descriptor coined Fourier SIFT (F-SIFT) which combines

the attributes of Fourier transform and SIFT. The input iris image is preprocessed

to extract features directly from annular region of iris as explained in Section 3.1.

(a) 

(b) 

Figure 3.2: Iris images of a subject for change in gaze. The normalized iris images the
demonstrate deformation of texture pattern.
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Local feature extraction using F-SIFT is explained in Section 3.2. The keypoints

described using Fourier transform are paired using Phase-Only Correlation (POC).

The combination of SIFT with Fourier transform for feature extraction, and matching

using Phase-Only Correlation performs better compared to state-of-the-art approaches

as substantiated by the experimental results given in Section 3.3.

Figure 3.3: Sample impairments using SIFT due to texture similarity.

3.1 Preprocessing

The input iris image is preprocessed to detect annular region of iris for feature

extraction. In the proposed approach, iris segmentation is performed using

non-parametric spectrum image approach based on image morphology. This approach

is preferred over existing segmentation approaches due to its simplicity, accuracy, and

speed. The input iris image is binarised using adaptive threshold. Further, the pupil

boundary is localised using spectrum image approach and iris circle is delineated using

circular summation of intensities. For feature extraction, annular region underlying

pupil and iris boundaries are considered after removing eyelids. The block diagram of

proposed preprocessing approach is given in Figure 3.4.

Figure 3.4: Block diagram of proposed preprocessing approach.
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3.1 Preprocessing F-SIFT for Iris

3.1.1 Adaptive Thresholding

Static value of threshold may fail for different images acquired under varying

illumination conditions [124]. To find an adaptive threshold, the binary images are

obtained for the range of thresholds (τ) which are further considered for removing

specular highlights (holes). Morphological region filling approach is used to fill holes

in the image. Each hole filled image is used to find the number of connected

components (η) that changes for the change in value of threshold (τ). The value

of τ corresponding to minimum non-zero η is chosen as adaptive value of threshold for

binarisation [125].

3.1.2 Pupil Detection

A fast approach is used to find pupil circle without any pre-estimation of radius range

as input unlike Circular Hough Transform [126]. The binary image is re-complemented

to form the spectrum image [127]. The distance of every pixel in the binary image

is obtained with nearest non-zero pixel. By computing the distance between non-zero

pixels, the spectrum showing the largest filled circle can be formed within the set of

foreground pixels. Since pupil is the largest filled circle in an iris image the overall

intensity of the spectrum peaks in the center as shown in Figure 3.5.

3.1.3 Iris Detection

The contrast enhanced image is used to find the outer iris boundary by drawing

concentric circles of different radii from the pupil center and the intensities lying over

the perimeter of the circle are summed up. Among the candidate iris circles, the circle

having maximum change in intensity with respect to the previous drawn circle is the

outer iris boundary.

3.1.4 Sector based Annular Iris

Hugo et al. [13] have raised the problem of aliasing that occurs during transformation

of iris from Cartesian to polar space. In this thesis, the problem of aliasing is addressed

by directly considering the annular region of iris without normalisation. Further, the

annular region contains noise due to eyelids and eyelashes that should be detected

and removed. In a normal gaze, the edge of the upper eyelid intersects the sclera

and approximately half of the upper iris circle whereas lower eyelid covers one-fourth

of the lower iris circle. However, the left and the right regions are independent of
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3.2 Proposed Fourier-SIFT F-SIFT for Iris

such occlusions. The proposed sector based approach consider these regions free from

occlusions [89] [123].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Steps involved in proposed preprocessing approach. (a) input iris
image, (b) spectrum image, (c) edge detected image with center, (d) pupil localised
image, (e) concentric circles of different radii, (f) iris localised image, (g) geometrical
representation of sectors, and (h) noise independent annular iris.

3.2 Proposed Fourier-SIFT

The impairments in SIFT pairing can be minimised by extracting features suitable

to iris texture. Fourier transform has the property of describing periodic function

such as texture that contains repetitive patterns [128]. Further, SIFT is robust to

various possible transformations, occlusion, and illumination. This motivates the

unique combination of SIFT with Fourier transform for efficient iris recognition. In the

proposed F-SIFT approach, the keypoints are detected using SIFT and each keypoint

is described using Fourier transform. The pairing of keypoints using phase information

of Fourier transform further improves the performance. The block diagram of proposed

F-SIFT approach is shown in Figure 3.6. The steps involved in iris recognition using

F-SIFT are explained in the sequel.

3.2.1 Keypoint Detection using SIFT

The first step is to find potential keypoints that are invariant to scale and orientation.

For each detected keypoint a detailed model is fit to determine location and scale. The
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Figure 3.6: Block diagram of proposed F-SIFT approach.

orientation is assigned to each location based on image gradients. The steps involved

in keypoint detection are explained in this section.

Detection of Scale Space Extrema For keypoint detection, there is a need to

identify stable locations that can be assigned with change in viewpoint and scale. Such

locations, invariant to scale change, can be found by searching stable features across all

possible scales using a continuous function known as scale space [45]. The only possible

scale space function is Gaussian function. Therefore, scale space of an image is defined

as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1)

where I(x, y) is an input image and ∗ is the convolution operation.

G(x, y, σ) =
1

2πσ2
e−

(x−y)2

2σ2 (3.2)

To detect stable keypoint locations in the scale space, Difference of Gaussian (DOG)

function is convolved with the image. The DOG for two nearby scales of an iris image

I is computed as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ) (3.3)

where k is a constant multiplicative factor used for changing the scale. This scale

invariant technique is found to be suitable for annular iris image because the size of

37



3.2 Proposed Fourier-SIFT F-SIFT for Iris

iris texture changes due to expansion and contraction of pupil as shown in Figure 3.1.

Keypoint Localisation DOG images are used to detect interest points with the

help of local maxima and minima across different scales. Each pixel in DOG image

is compared to 8 neighbours in the same scale and 9 neighbours in the neighbouring

scales. The pixel is selected as a candidate keypoint if it is local maxima or minima

in 3×3×3 region as shown in Figure 3.7(a). Once the keypoints are detected the next

step is to perform the detailed fit to the nearby data for location, scale, and ratio of

principal curvature. The basic idea is to reject keypoints with low contrast. In [45]

it is stated that keypoints with low contrast are sensitive to noise or poorly localised,

hence they should not be considered. The stable set of keypoints detected using SIFT,

are essentially required for matching iris images with non-centered gaze as shown in

Figure 3.2.

Orientation Assignment Orientation is assigned to each keypoint location to

achieve invariance to image rotations as the descriptor can be represented relative

to orientation. To determine keypoint orientation, a gradient orientation histogram is

computed in the neighbourhood of keypoint. The scale of the keypoint is used to select

Gaussian smoothed image L. For each Gaussian smoothed image L(x, y), magnitude

(m(x, y)) and orientation (θ(x, y)) are computed as

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.4)

θ(x, y) = tan−1

(
(L(x, y + 1)− L(x, y − 1))

(L(x+ 1, y)− L(x− 1, y))

)
(3.5)

Orientation histogram is then formed for gradient orientation around each keypoint.

The histogram has 36 bins for 360 orientations, and each sample is weighted by gradient

magnitude and Gaussian weighted circular window with σ of 1.5 times of scale of the

keypoint before adding it to the histogram. Peaks in the histogram correspond to

orientation and any other local peak within 80% of the largest peak is used to create

keypoint with the computed orientation. This is done to increase stability during

matching [45].

3.2.2 Keypoint Descriptor using Fourier Transform

The descriptor vector is formed by taking a window (W ×W ) around each detected

keypoint centered at (x, y) relative to the direction of orientation (θ). The local

descriptor is defined for each keyblock (refer Figure 3.7(b)) using Fourier transform. As
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3.2 Proposed Fourier-SIFT F-SIFT for Iris

(a) (b)

Figure 3.7: Application of SIFT on annular iris image (a) detected keypoints, (b)
feature descriptor.

iris has abundant texture information, the Fourier transform efficiently describes the

global frequency content of each block. The basic idea is to use phase information of

the Fourier transform to robustly define texture pattern. Descriptor of each keyblock

is obtained using

Ki(u, v) =
1

W 2

(x+W
2
)∑

n1=(x−W
2
)

(y+W
2
)∑

n2=(y−W
2
)

I(n1, n2)e
−i2π(

n1u

W
+

n2v

W
)

= A(u, v)eiθ(u,v) (3.6)

where u > 0 and (x − W
2
) ≤ u ≤ (x + W

2
), v > 0 and (y − W

2
) ≤ v ≤ (y + W

2
).

Here A(u, v) are the amplitude components of each keyblock and θ(u, v) are the phase

components for each keyblock.

3.2.3 Keypoint Pairing using POC

The keypoints are paired between gallery and probe iris images using phase based image

matching. The phase information between ith keyblock in the probe image is paired to

jth keyblock in gallery image using Phase-Only Correlation (POC) function [129]. This

approach has already been applied to normalised iris image and its subregions [19].

In this chapter, the local descriptors of two keypoints are paired using POC. Let,

Ai(u, v) and θi(u, v) be the amplitude and phase components of Fourier transform from

ith keyblock. Similarly, Aj(u, v) and θj(u, v) be the amplitude and phase components

from jth keyblock. Thus, cross phase spectrum between Ki and Kj is obtained using

Rij(u, v) =
Ki(u, v)Kj(u, v)

|Ki(u, v)Kj(u, v)| (3.7)
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Figure 3.8: Phase-Only Correlation between (a) similar and (b) dissimilar keyblocks
from iris.

= ei{θi(u,v)−θj(u,v)}

where Kj(u, v) denotes the complex conjugate. The POC function (Pij) is the inverse

Fourier transform of cross phase spectrum (Rij) which is defined as

Pij(n1, n2) =
1

W 2

(x+W
2
)∑

u=(x−W
2
)

(y+W
2
)∑

v=(y−W
2
)

Rij(u, v)e
i2π(

n1u
W

+
n2v
W

) (3.8)

This POC function helps to define the similarity between two keyblocks. If keyblocks

are from similar texture regions of iris, their POC function gives a distinct sharp peak

as shown in Figure 3.8(a). However, if keyblocks (i, j) are taken from two dissimilar

regions of iris the peak drops significantly (refer Figure 3.8(b)). The height of the peak

can be taken as a good similarity measure for pairing the keyblocks. If the peak in Pij

is greater than the threshold, the corresponding keyblocks (i, j) are paired and removed

from the list of keypoints left to be paired. This process is iterated for the remaining

keypoints in the probe set. Here, the value of threshold is empirically chosen to attain

the highest performance.

3.3 Experimental Results

The experiments are performed to compare the proposed F-SIFT descriptor with

existing SIFT and SURF descriptors [123]. Table 3.1 shows the accuracy values along

with error rates for the different approaches. From the accuracy values it can be

observed that F-SIFT performs better than the traditional SIFT on annular iris image.

The traditional SIFT is performing with an accuracy of 92.08% and 85.19% on BATH
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and CASIAV3 databases. The accuracy using F-SIFT improves to 97.13% and 97.95%

for BATH and CASIAV3 databases respectively. F-SIFT is also capable of achieving

FNMR of 0.0% on CASIAV3 database. F-SIFT performs comparable to SURF on

BATH database whereas, it outperforms SIFT and SURF on CASIAV3 databases. The

texture discrimination is quite high for CASIAV3 database which results in enhanced

performance using F-SIFT. This supports the use of texture features for iris to improve

recognition accuracy. The ROC curves for BATH and CASIAV3 databases are shown

in Figure 3.9(a) and Figure 3.9(b) respectively. The distribution of genuine and

imposters matching scores using various keypoint descriptors are shown in Figure 3.10

and Figure 3.11 for BATH and CASIAV3 databases respectively. From the histogram

plot of F-SIFT for CASIAV3 it is graphically evident that no genuine individual is

rejected by the system (refer Table 3.1).

Table 3.1: Recognition performance (in %) for SIFT, SURF, and F-SIFT.
Database → BATH CASIAV3
Approach ↓ ACC FMR FNMR ACC FMR FNMR

SIFT 92.08 7.01 8.82 88.76 8.80 13.67
SURF 98.24 1.44 2.06 96.52 2.16 4.78
F-SIFT 97.13 0.72 5.00 97.95 4.09 0.00

41



3.4 Summary F-SIFT for Iris

10
−2

10
−1

10
0

10
1

10
2

30

40

50

60

70

80

90

100

False Acceptance Rate

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e

 

 

SIFT
SURF
F−SIFT

(a) BATH

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

False Acceptance Rate

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e

 

 

SIFT
SURF
F−SIFT

(b) CASIAV3

Figure 3.9: Receiver operating characteristic curves comparing SIFT, SURF, and
F-SIFT approaches.

3.4 Summary

In this chapter, a keypoint descriptor is proposed that effectively describes the iris

texture. The keypoints are detected from annular iris image using conventional SIFT.

Each keypoint is described using Fourier transform. The phase information of Fourier

transform is used for pairing the keypoints. This helps to minimise the impairments

that occur due to SIFT. As iris has abundant texture details hence characterising
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Figure 3.10: Distribution of genuine and imposter scores on BATH database.
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Figure 3.11: Distribution of genuine and imposter scores on CASIAV3 database.
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iris using Fourier transform enhances the performance. Empirically it is found that

the proposed approach outperforms other keypoint descriptors on CASIAV3 database

whereas the performance is comparable to SURF on BATH iris database.
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Chapter 4

iGRVM for Multi-unit Iris Fusion

Iris recognition using single instance may suffer from various challenges such as noisy

sensor data, mis-localisation, occlusion due to eyelids, effect of disease like cataract,

and spoof attacks. Figure 4.1 shows instances where the use of only one iris may cause

incorrect classification whereas the use of both the iris images may provide correct and

improved classification performance. In the first row, the iris boundary of left unit is

incorrectly detected due to the presence of reflection. The left image in the second row

could not be segmented but the right image is segmented properly. Similar observation

can be made in the third row with the effect of dilation and occlusion in the right iris

image. These limitations are addressed by combining left and right units of iris which

is useful when data from one unit is noisy or unavailable.

In this chapter, classifier-based match score level fusion approaches are developed

due to its suitability to biometrics [47, 58, 130]. Generally, a classical pattern

recognition application relies on a classifier which predicts the class label of the probe

data. For example, in a two class biometrics verification (class labels being genuine

and imposter), match scores generated by matching gallery and probe images has to

be classified correctly. Generally, it is assumed that the representative training data is

available during the development stage and in such cases, the trained classifier yields

high classification accuracy. There are certain limitations to this assumption:

• there exists the possibility that the entire training data is not available

simultaneously. For example, in the case of India’s Aadhaar project [5] or

US-VISIT program [131], users are enrolled on a continuous basis. In such a

scenario, training data is available only in an incremental manner. Training the

classifiers in batch mode with every incremental update can be computationally

expensive.

• training databases can be highly unbalanced where data from one class is
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Figure 4.1: Sample instances where authentication using single iris may fail, however
using both the irises can solve the problem.

over-populated compared to other class(es). In biometrics, the number of genuine

scores available for training is under-represented in comparison to impostor scores.

• some classifiers are inherently computationally expensive, they perform well if

the training size is small but on large training data they may require significant

time or become intractable.

Different classifiers such as linear threshold, Bayesian network, and Support Vector

Machine [132] require labeled training data to learn the decision boundary. Support

Vector Machine has shown to yield good results in several pattern classification

problems including biometrics. It avoids overfitting and leads to good generalisation

by finding the separating hyperplane that maximises the margin width. The subset of

training data points used to represent the hyperplane are denoted as support vectors.

However, SVM suffers from the following limitations [133]:

1. the number of support vectors required for classification is relatively large,

2. in classical SVM, there is a need to tune the regularisation parameter during the

training phase,

3. the kernel function must satisfy the Mercer condition.
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Relevance Vector Machine (RVM) [133], on the other hand, is a fully probabilistic

classifier which introduces a prior over each weight governed by the set of

hyper-parameters. RVM is a sparse linearly parameterised model like SVM and it

has been shown that the generalisation performance of RVM is comparable to that

of SVM with significantly fewer relevance vectors [133]. Lower number of relevance

vectors leads to reduced testing time. Further, RVM requires very few parameters to

be optimised for training the classifier. However, RVM has the following challenges

owing to which it has not been well explored particularly in biometrics.

1. Conventional RVM cannot work with very large training data as the formulation

requires expensive matrix inverse operation. Further, the amount of memory

required to store the product of basis functions limits its utilisation for

considerably large training databases.

2. RVM is trained in batch mode and if new batch of training data arrives, the

classifier has to be re-trained with new as well as old data. This is not feasible

for many real-time applications such as biometrics where it may be required to

continuously update the classifier to adjust the changes (in data and template)

that happen over time.

3. RVM may not be suitable to handle large class imbalance in the training data

and may get biased towards the class with more number of training samples.

In this chapter, incremental granular RVM is proposed that can be trained with large

unbalanced training data to perform efficient classification. As shown in Figure 4.2,

the learning process starts by considering batches of training data which are divided

into granules. The RVM is trained on each granule independently and the results are

amalgamated to obtain a robust boundary for classification. The knowledge from the

previous training is carried forward to the next learning batch. The major contributions

of this research are:

1. Incremental RVM (iRVM) is proposed which is scalable to new enrollments

and also reduces the training size.

2. Granular RVM (GRVM) handles the class imbalance problem by training the

classifier locally for each granule.

3. Incremental Granular RVM (iGRVM) combines the advantages of

incremental and granular learning into RVM.
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Figure 4.2: Block diagram of Incremental Granular Relevance Vector
Machine (iGRVM).

4. Efficient fusion approach for multi-unit iris recognition using proposed

iGRVM.

This chapter is organised as follows— Section 4.1 provides the formulation of

conventional RVM for classification. The description of proposed incremental granular

RVM is given in Section 4.2. The performance of iGRVM is evaluated using a case

study on multimodal biometrics with two classes (genuine and imposter) as given

in Section 4.3. The results obtained encouraging which promotes the application of

iGRVM for multi-unit iris fusion as presented in Section 4.4. Section 5.4.5 analyses the

results obtained on multi-unit iris databases.

4.1 Relevance Vector Machine for Classification

This section briefly discusses the formulation of RVM [133]. Let {xn, tn}Nn=1 be the

pair of input data (xn) with scalar valued target label (tn). RVM by design follows a

Bayesian probabilistic model for learning and the predictions are based on the function

y = ΩTΦ(x) (4.1)

where Ω = (ω0, ω1, ω2, . . . , ωN)
T is the weight matrix, Φ(x) =

[φ(x1), φ(x2), . . . , φ(xN)]
T is a set of basis functions, for φ(xn) =

[1, K(xn,x1), K(xn,x2), . . . , K(xn,xN)] with K(∗, ∗) is the kernel function which

can be of the form Gaussian, Euclidean, Laplacian, etc. The output of RVM (y) is

a linear combination of weighted basis functions. The weights (Ω) are computed

during training and the training samples corresponding to non-zero weights are

called relevance vectors (RVs). The objective of learning the classifier is to predict

the posterior probability of class membership for the given input x. The linear

model in Equation (4.1) is generalised by applying the logistic sigmoid link function

49



4.1 Relevance Vector Machine for Classification iGRVM for Fusion

σ(y) = 1/(1+e−y) to y and adopting the Bernoulli distribution to define the likelihood

as

P (t|Ω) =
N∏

n=1

σ{y(xn,Ω)}tn [1− σ{y(xn,Ω)}]1−tn (4.2)

To obtain the marginal likelihood analytically, Mackay’s iterative procedure [134] is

used which is based on the Laplace’s method. Let α be the vector of hyperparameters

and each individual α value is associated with every weight value. For the fixed values

of α, the most probable weights w are found, giving location of the mode of posterior

distribution [133]. Since

p(Ω|t, α) ∝ P (t|Ω)p(Ω|α), (4.3)

this is equivalent to finding the maximum of

(4.4)log{P (t|Ω)p(Ω|α)} =
N∑

n=1

[tn log yn + (1− tn) log(1− yn)]− 1

2
ΩTAΩ

over Ω, where yn = σ{y(xn,Ω)}. Equation (4.4) is differentiated twice to obtain

∇Ω∇Ω log p(Ω|t, α)|w= −(ΦTBΦ+A) (4.5)

where A = diag(α0, α1, α2, . . . , αN) and B = diag(β1, β2, . . . , βN) with βn =

σ{y(xn)}[1 − σ{y(xn)}]. The covariance matrix Σ and the posterior over weights

centered at (w) are defined as

Σ = (ΦTBΦ +A)−1 (4.6)

w = ΣΦTBt (4.7)

Using Σ and w, the hyper-parameters are updated using

αi =
γi
w2

i

(4.8)

where wi is the i
th posterior weight computed using Equation (4.7), γi ≡ 1−αiΣii and

Σii is the i
th diagonal element of Σ. Similarly, β is updated using

β =
N −∑

i γi
‖t− Φw‖2 (4.9)

The convergence criteria for the above iterative procedure is defined as

δ =
∑
i=1

αn+1
i − αn

i (4.10)
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Re-estimation stops when δ < δτ , where δτ is the threshold value for change of α

between iterations. The training samples corresponding to Ω 
= 0 are termed as

relevance vectors (R). The weights and relevance vectors obtained from Algorithm 1

are used to find an estimate of the target value pertaining to the new input x′

y′ = wTφ(x′) (4.11)

where y′ is the probabilistic class value predicted by the trained model. This

classification algorithm is provided in Algorithm 2.

Algorithm 1: RVM-Train

Input: x: Input matrix of N scores with dimension d, t: corresponding target
values

Output: R: model of relevance vectors, w: weight matrix
1 Generate Φ = [φ(x1), φ(x2), . . . , φ(xN)]
2 Initialise δτ // Threshold for convergence

3 Initialize α, β // Initialisation of hyper-parameters

4 repeat
5 A = diag(α),B = diag(β)
6 Σ = (ΦTBΦ+A)−1

7 w = ΣΦTBt
8 γi ≡ 1− αiΣii

9 αi =
γi
w2

i

10 β =
N−∑

i γi
‖t−Φw‖2

11 δ =
∑

i=1 α
n+1
i − αn

i

12 until δ < δτ
13 R = x(windex) // Training samples corresponding to non-zero weights

Algorithm 2: RVM-Classify

Input: x′: Test data for classification, R: Relevance vectors, w: Weight matrix
Output: y′: Predicted class membership

1 Generate φ(x′) using R
2 y′ = wTφ(x′)

4.2 Proposed Incremental Granular Relevance

Vector Machine

There is a need to handle frequent insertions in training samples that happen over

time. Further, for unbalanced dataset, there is a possibility for any classifier to
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become easily biased towards the majority class. A real-time classifier has to be

continuously updated to enrollments. Thus, RVM learning is modified to incorporate

imbalanced nature of large training databases. Incremental learning [135] and granular

computing [136] approaches are unified with RVM to design an efficient classifier. This

section describes the formulation of iGRVM for data classification. The classifier is

designed to incrementally update the decision boundary for new batch of training data.

Training RVM using data divided into granules may further boost the performance.

Our hypothesis is that this unique combination of granulation and incremental learning

when applied to RVM, can improve the performance. The proposed variant of RVM is

more focussed towards developing an adaptive and unbiased learning framework.

4.2.1 Incremental Relevance Vector Machine (iRVM)

For many real-time applications, since the data arrives in batches, it is

important to introduce incremental learning strategies. Traditional RVM performs

training in offline (batch) mode. Further, training RVM requires matrix inverse

operation (Equation (4.6)) that performs O(N3) computations [133], where N is the

size of training data. Therefore, RVM is not suitable for learning if the size of N is

very large.

Researchers have proposed some modifications to train RVM classifier for large

number of training data. Tipping proposed to reduce the training time of traditional

RVM using fast marginal likelihood maximisation [137]. This learning approach helps

to achieve speed-up by considering an empty model and sequentially adding basis vector

to increase marginal likelihood. Tzikas et al. proposed a modification to fast marginal

likelihood maximisation approach which also learns the location and scale parameters

of kernel during training [138]. These approaches [137, 138] focus on dynamically

adding or deleting the relevance vectors from the complete batch of training data.

However, as mentioned earlier in many real-time applications, the complete training

samples are not available simultaneously [135]. Very large scale biometric applications

such as UIDAI [5] of India and US-VISIT [131] programs continuously enroll new

subjects and new training data is obtained incrementally. In this research, traditional

RVM is extended to make it scalable to new enrollments via incremental learning on

encountering every new batch of data. Incrementally learning a classifier helps to keep

memory and time computations (Hessian inverse) simple. This also facilitates updating

the classifier with the availability of new enrollment data.

The proposed incremental RVM (iRVM) considers only relevance vectors from the

previous training batch with a new batch of data for re-training. This approach is
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based on the assumption that only RVs are essential for making predictions and all

other training samples pertaining to the previous batches can be safely removed. This

concept is similar to Tipping’s constructive training approach [133] which reduces the

total number of basis functions and the computational complexity. The steps involved

in iRVM learning are:

Step 1: Initial training data (T1) is provided as input to the RVM and relevance

vectors (R1) are obtained for the first batch.

Step 2: RVM is re-trained using the new batch of training data (Ti) along with the

relevance vectors from the previous iteration (Ri−1). RVM-Train(Ti ⊕ Ri−1)

on the aggregated set generates the new relevance vectors Ri along with the

weights (wi), where ⊕ denotes the concatenation operation.

Step 3: The previous step is repeated on encountering new training samples in Ti for

i = 2, 3, 4, . . . , m, where m is the number of incremental training batches.

The learning strategy of iRVM is given in Algorithm 3. The relevance vectors from

the last iteration (Rm) are finally considered for making predictions until the new batch

of training data arrives as shown in Figure 4.3. The formulation of iRVM is given by

y = wTΦ(Tm ⊕Rm−1) (4.12)

The classification algorithm for iRVM is same as RVM-Classify (Algorithm 2). It is

interesting to note that, on encountering every new batch of data, the objective of the

proposed iRVM is to adapt to new enrollments via incremental learning. Therefore, it

can be viewed as a classical example of lifelong machine learning approach [139].

Algorithm 3: iRVM-Train

Input: Tm: Training data, tm: Equivalent target values.
Output: Rm: Relevance vectors, wm: Most probable weight matrix

1 foreach Batch m of training do
2 Tm ← Tm ⊕Rm−1 // combine training data with RVs from the last

iteration

3 [Rm,wm] = RVM-Train(Tm, tm)

4 end

4.2.2 Granular Relevance Vector Machine (GRVM)

In several applications, training is performed with highly imbalanced data. For

instance in biometric applications, positive/genuine class contains lesser samples
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Figure 4.3: Training of Incremental Relevance Vector Machine (iRVM). The relevance
vectors from the last iteration (Ri−1) are used to perform training with new batch of
data (Ti).

and negative/impostor class contains large number of samples. This imbalance

problem can be handled by considering various strategies such as oversampling the

genuine scores (minority class) and undersampling the imposter scores (majority class).

However, random data sampling may lead to information loss, for instance some

informative samples may be lost. An alternative approach is to split the training

data into segments and train the classifier on each segment locally; i.e., in granulation

manner. Granular computing [140] solves the problem in each information granule

locally while not compromising global generalisation. There are two approaches to

granular computing: the first approach performs granule split using divide and conquer

strategy whereas the second approach is based on granule shrink. In this thesis, two

variants of granular RVM are studied each using the split and shrink approaches.

Granular RVM using Repetitive Undersampling (GRVM-ru)

Tang et al. [141] have applied repetitive undersampling (granule shrink) approach

to SVM to address the class imbalance problem. The results obtained are

encouraging [141] which motivates the application of this undersampling approach

to RVM. As already stated that for classification, only relevance/support vectors are

required for making predictions. In this work, only RVs are used to sample the data

without loss of information. The process of learning granular RVM based on repetitive

undersampling (henceforth termed as GRVM-ru for convenience) is shown in Figure 4.4.

The steps involved in this undersampling approach are

Step 1: From the initial training data (T1), all the training samples pertaining to
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Figure 4.4: Training of Granular Relevance Vector Machine using repetitive
undersampling (GRVM-ru). Here⊕ denotes the concatenation and denotes removing
data from the set.

the genuine class (T+
1 ) are considered informative and hence form the positive

information granule.

Step 2: Since the number of samples in the imposter class is very large only the

relevance vectors from the imposter class (R−
1 ) form the negative information

granule.

Step 3: To generate another negative granule, RVM is retrained on the training

data (T1) after removing negative relevance vectors from the previous

iteration (R−
1 ). This reduces the training data to T2 = T1  R−

1 by granule

shrink, where  denotes removing elements from the set.

Step 4: On training (T2), the relevance vectors from the negative class (R−
2 ) are the

ones which were left undetected at the very first training of RVM. These RVs

are considered important and form the second negative granule. The process of

granulation terminates on meeting the convergence criteria.

Step 5: Negative granules are combined with the positive granule using the

aggregation operation (T+
1 ⊕R−

1 ⊕R−
2 ⊕ . . .⊕R−

l ).
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Step 6: The aggregation set is initialised to positive class (T+
1 ). At the outset, the

classifier is assumed to classify every score as negative.

Step 7: A new negative granule is extracted and combined with the aggregation set.

RVM is trained on this aggregated set, and if the classification performance

improves, next negative granule is extracted otherwise the undersampling process

stops.

The relevance vectors (R+
f ,R

−
f ) obtained from the final aggregation set is used to

predict the class label of the probe sample. The formulation of GRVM-ru is given by

y = wTΦ(T+
1 ⊕R−

1 ⊕R−
2 ⊕ . . .⊕R−

l ) (4.13)

where l is the number of iterations used until GRVM-ru converges. The initial learning

of GRVM-ru requires complete training data. In RVM, the Hessian matrix becomes

ill-conditioned for large values of N [142]. Thus, the problem to train highly unbalanced

data still remains unaddressed.

Granular RVM using 3σ rule (GRVM-3σ)

As mentioned earlier, the data from positive (under-represented) class is small and

hence considered without sampling. However, the negative class has to be divided

into granules using the granule split before applying RVM. It has been observed that

imposter scores in biometrics follow Gaussian distribution. According to the 3σ rule

of Gaussian distribution, approximately 99.73% values lie within the data covered by

±3σ as shown in Figure 4.5. Let x be the samples from the population that follow a

Gaussian distribution with mean μ and standard deviation σ. The percentage of data

covered can be given by

p (μ− σ ≤ x ≤ μ+ σ) ≈ 0.6827

p (μ− 2σ ≤ x ≤ μ+ 2σ) ≈ 0.9545 (4.14)

p (μ− 3σ ≤ x ≤ μ+ 3σ) ≈ 0.9973

This statistical property of Gaussian distribution is adopted to subsample the data

of majority class. Figure 4.6 illustrates the steps involved in the proposed granular

approach using 3σ subsampling which is explained below.

Step 1: This approach assumes positive (minority) class to be all informative and

hence form the positive granule (T+).
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Figure 4.5: An example showing that impostor score distribution in biometrics follows
Gaussian. This figure shows the percentage of data covered using the 3σ rule. This
graph is generated using NIST BSSR Face Matcher 2 [54].

Step 2: All the data from the negative class is represented by T− with mean μ and

standard deviation σ.

Step 3: The first negative granule (NG1) is formed by considering only those samples

from the negative (majority) class that are covered by

NG1 =
{
T−|T− ∈ μ± σ} (4.15)

This covers approximately 68% of the values. For large class imbalance there

may be further difficulty in training RVM with 68% of the negative samples.

This issue is further resolved by randomly undersampling the data from each

negative granule. The sampling is performed in the ratio of 1 : 2 : 3 : 4 for

μ ± σ : μ± 2σ : μ ± 3σ : > μ ± 3σ respectively. This choice of ratios is made to

handle the class imbalance problem by selecting equal amount of data from each

negative granule. This ensures that the relevance vectors are not biased towards

any one part of the negative class.

Step 4: RVM (RVM1) is then trained using the positive granule and the first negative

granule (NG1). To find the training accuracy with this model, RVM1 is tested
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on all the negative data prior to undersampling that is covered within μ ± σ.

The misclassifications (M1) that arise out of RVM1 training are taken further to

improve the performance of the classifier.

Step 5: The second negative granule (NG2) is formed by considering those samples

that fall outside μ± σ but within μ± 2σ. This can be given by the values of T−

that fall in the range of

NG2 =
{
T−|T− ∈ (μ± 2σ) & T− /∈ (μ± σ)} (4.16)

However, as mentioned earlier only 20% of the samples in this bracket are

selected for RVM training. NG2 is further combined with the negative relevance

vectors (R−
1 ) from RVM1 and the mis-classifications from the last iteration (M1).

The combined NG2 with positive granule is used to train RVM2.

Step 6: This process is repeated for NG3 that contains negative samples as shown

in Equation (4.17). Subsampled NG3 along with the misclassifications of

RVM2 (M2) and R−
2 are used to train RVM3.

NG3 =
{
T−|T− ∈ (μ± 3σ) & T− /∈ (μ± 2σ)

}
. (4.17)

Step 7: The final negative granule (NG4) contains all the remaining 0.3% of the

samples that lie outside the range of μ±3σ. Thus, a final RVM (RVM4) is trained

on positive granule with NG4, misclassifications (M3) and negative relevance

vectors (R−
3 ) of RVM3.

Algorithm 4 outlines the steps involved in training granular RVM using 3σ

rule (GRVM-3σ). The model trained with this data is finally used to perform

classification. The formulation of GRVM-3σ is given by

y = wTΦ(T+ ⊕NG4 ⊕R−
3 ⊕M3) (4.18)

The proposed granular RVM (GRVM-3σ) is capable of training highly imbalanced

data. Note that the mis-classifications that arise from the previous iteration are carried

forward to re-train RVM with improved decision boundary. At the same time, use

of RVs helps to avoid over-fitting. Unlike repetitive undersampling, 3σ approach is

relatively faster as RVM is trained using a smaller size of data. Also, assuming that

the negative samples can be approximated with Gaussian distribution does not impact

the performance of the training algorithm because essentially, all the training data is

either validated or included during learning.
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Figure 4.6: Steps involved in training Granular Relevance Vector Machine using 3σ
rule (GRVM-3σ). Here ⇓ denotes the subsampling operation.

4.2.3 Incremental Granular Relevance Vector
Machine (iGRVM-3σ)

The previous two sections propose algorithms to address the problem of large data

and class imbalance individually. However, they cannot solve both the problems

together. Therefore this section proposes the Incremental Granular Relevance Vector

Machine (iGRVM-3σ) to address both the problems using a single classifier.

Incremental RVM (iRVM) and granular RVM (GRVM-3σ) are fused hierarchically

to generate a novel classifier- iGRVM-3σ. This classifier is robust to updates and

handles large class imbalance problem as well. iGRVM-3σ functions hierarchically

where for each new batch of training data, granular RVM is used to find the relevance

vectors. Here experiments are performed using both GRVM variants but GRVM-3σ is

preferred due to its ability to handle large unbalanced training data. The steps involved

in iGRVM-3σ are:

Step 1: The process starts with incremental learning of the initial batch of training

data (T1). The negative granule (NG11) is generated by retaining samples from

μ± σ.

Step 2: RVM is trained with the positive granule (T+
1 ) and the subsampled negative
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Algorithm 4: GRVM-3σ-Train

Input: T: Training data, t: Equivalent target values.
Output: R: Relevance vectors, w: Most probable weight matrix

1 T+ = {T|T ∈ positive class}
2 T− = {T|T ∈ negative class}
3 n← |T+|
4 PC ← 0 // Percentage of data covered

5 μ← mean(T−)
6 σ ← sigma(T−)
7 i← 1
8 while PC < 1 do
9 s← n× i

10

10 li ←random(s)
11 T−

i = {T−|T− ∈ μ± iσ}
12 if i == 1 then
13 NGi ← T−

i (li) // Undersampling negative granule

14 else
15 NGi ←

[
R−

i−1 ⊕Mi−1 ⊕ (T−
i T−

i−1)(li)
]

16 end
17 Ti ← T+ ⊕NGi

18 [Ri,wi] = RVM-Train(Ti, ti)
19 T′ ← T+ ⊕T−

i

20 y =RVM-Classify(T′,Ri,wi)
21 Mi = y 
= t′

22 R−
i = {Ri|Ri ∈ negative class}

23 PC ← |T−
i |/|T−|

24 i← i+ 1

25 end

granule (NG11). The trained model is used to check for mis-classifications (M11)

that arise after learning.

Step 3: The next negative granule (NG12) covers data in the range of μ±2σ exclusive

of values from μ± σ. The RVM is trained with T+
1 along with R−

11 and M11.

Step 4: This process is iterated until the complete impostor training data is covered.

Step 5: The relevance vectors (R+
1f ,R

−
1f) after final training from T1 are taken as

input to the next batch of training (T2) to learn incrementally. The new training

batch is thus represented as T2 = T2 ⊕R+
1f ⊕R−

1f .

Step 6: RVM is re-trained with this new unified training set (T2). The learning

process of iGRVM-3σ is iterated for i = 2, 3, . . . , m until the new batch for

training arrives.
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Step 7: The RVs from the latest enrolled batch of iGRVM-3σ (R+
mf ,R

−
mf) are finally

used to make predictions using Equation (4.11).

iGRVM-3σ provides the stable set of relevance vectors with significantly reduced

training time. The steps involved in training the proposed iGRVM-3σ approach are

summarised in Figure 4.7 and Algorithm 5. The formulation of iGRVM-3σ can also be

shown using the following equation1

y = wTΦ
(
Tm ⊕R+

(m−1)f ⊕R−
(m−1)f

)
(4.19)

The proposed iGRVM-3σ has the following attributes

1. Sparse: It holds the property of RVM which has been proved to be a relatively

sparser model with generalisation capability in accordance with SVM [133]. The

number of relevance vectors required for classification are considerably less in

comparison to SVM.

2. Scalable: iGRVM-3σ performs re-training on encountering a new batch of

training data. Hence the classifier is adaptive to environmental dynamics, which

makes it scalable to new enrollments as well.

3. Faster: RVM requires matrix inverse operation for covariance

computation (Equation 4.6) which is a costly operation for very large training

databases. iGRVM-3σ performs training recurrently on subsampled granules,

thus the learning is faster compared to conventional RVM.

4. Unbiased: iGRVM-3σ handles class imbalance problem by subsampling the data

from the over-populated class using granular computing. The model trained on

the positive and subsampled negative data is unbiased in nature.

Algorithm 5: iGRVM-3σ-Train

Input: Tm: Training data, tm: equivalent target values.
Output: Rm: relevance vectors, wm: most probable weight matrix

1 foreach Batch m of training do
2 Tm ← Tm ⊕Rm−1

3 [Rm,wm] = GRVM-3σ-Train(Tm, tm)

4 end

1As the training of each RVM variant is different so the weight matrix (w) is also different.
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Figure 4.7: Steps involved in training of iGRVM-3σ.

4.3 iGRVM-3σ Case Study: Multimodal Biometric

Match Score Classification

The proposed incremental granular RVM learning algorithm is applied for biometric

score classification and the results highlight that it can be used as an effective alternative

that can optimise computational time. The steps involved in d-dimensional biometric

score vector classification using iGRVM-3σ are:

• Training iGRVM-3σ: The training set (x, t) consists of {xi1, xi2, . . . , xid, ti}Ni=1 for

N scores from d different sources with the corresponding class labels in ti. The

objective is to apply a function to x that provides a clear separation between

the genuine and impostor classes. The proposed iGRVM-3σ-Train(x, t) is called

for training score vectors to generate the most probable weights w along with

relevance vectors (R).

• Classification: The trained iGRVM-3σ model is used to predict the class of

d-dimensional probe multimodal score vector given by x′ using Equation (4.11).

The output from iGRVM-3σ is a probabilistic value which is used to make final

decision.

4.3.1 Databases and Algorithms

The databases utilised for this case study are standard and commonly used for testing

the classifiers [47]. NIST Biometrics Score Set - Release 1 (BSSR1) [54] and Biosecure

DS2 [143] are used to perform experiments. BSSR1 and Biosecure DS2 are match

score database, so no feature extraction approach is required. The match scores from
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Table 4.1: Databases used to perform iGRVM-3σ case study.
Database Modalities Subjects Scores

Genuine Imposter
BSSR1 (Set 1) Face, Finger 517 517 266772
BSSR1 (Set 2) Fingerprint 6000 6000 35994000
BSSR1 (Set 3) Face 3000 6000 17994000
Biosecure DS2 Face, Finger, Iris 51 Sessions 1 and 2

BSSR1 are normalised using min-max approach and used for classification. Table 4.1

summarises the details of the databases used. The proposed iGRVM-3σ is compared

to some existing classification approaches that have already been applied to biometrics

fusion. A brief description of each of the approaches are given below:

• Likelihood ratio [47]. In this approach, match scores are classified using the

likelihood ratio (LR) test. The distribution of genuine and imposter scores are

modeled using Gaussian Mixture Model (GMM).

• Support Vector Machine for classification [132]. It takes vector of scores as input

which are classified to generate a binary decision. The experiments for SVM are

performed using Matlab version of LIBSVM library2.

• Relevance Vector Machine [133] is used to classify the d-dimensional vector of

scores into one of the two classes.

4.3.2 Protocol

Two case studies are performed with three times random cross validation to study the

performance of iGRVM-3σ under different scenarios.

• Case Study 1 is performed to study the performance of iGRVM-3σ over other

classifiers such as LR, SVM, and RVM. In this experiment all three sets of BSSR1

database are used. Table 4.2 shows the number of training samples used from

each class for learning the classifiers. From the complete batch of training data,

10% of the genuine and imposter scores are used for incrementally learning the

classifier in batches.

• Biometrics databases are generally unbalanced and not all the classifiers yield

good results for such databases. Case Study 2 is used to study the performance

2LIBSVM - A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
The Matlab code uses mex files to provide an interface between C and Matlab.
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Table 4.2: Experimental protocol for Case Study 1 and 2.
Case Study 1 Case Study 2

Database Training Testing Training Testing
Genuine Imposter Genuine Imposter Genuine Imposter Genuine Imposter

BSSR1 (Set 1) 52 2668 465 264104 52 26677 465 240095
BSSR1 (Set 2) 600 3599 5400 35990401 600 3599400 5400 32394600
BSSR1 (Set 3) 600 3599 5400 17990401 600 1799400 5400 16194600
Biosecure DS2 - - - - 51 21012 102 21012

of iGRVM-3σ for highly unbalanced training datasets. Table 4.2 shows the

experimental protocol followed for this imbalance study. The databases used

in this case study are BSSR1 and Biosecure DS2. Biosecure DS2 by design is

highly unbalanced, whereas for BSSR1, the datasets are partitioned to showcase

the unbalanced nature and classification performance.

4.3.3 Case Study 1: iGRVM-3σ Performance

This experiment is performed to measure the performance of the proposed classifier

as well as LR, SVM and RVM classification. The classifiers are trained using

the experimental protocol mentioned in Table 4.2. The Receiver Operating

Characteristic (ROC) curve for Case Study 1 is shown in Figure 4.8. Table 4.3

illustrates Genuine Acceptance Rate (GAR) at 0.01% False Acceptance Rate (FAR).

The key results and observations are

• For BSSR1 (all three sets), the proposed GRVM-3σ and iGRVM-3σ classifier

yields comparable results as other classifiers (LR and SVM) in terms of

accuracy (Table 4.3). GRVM-3σ divides the database into granules following

the statistical property of Gaussian distribution. As imposter scores from

biometric database are assumed to be Gaussian, this confirms the effectiveness of

GRVM-3σ over GRVM-ru. Further, GRVM-ru requires the complete database for

initial training, so problems inherent to large training persist whereas GRVM-3σ

performs training on such large data using the divide and conquer approach. The

amalgamation operation is performed at each stage of granulation so the training

errors are considered simultaneously which further improves the performance in

comparison to GRVM-ru.

• RVM training is costly since it requires matrix inversion operation. Training SVM

requires minimum time for all the databases as shown in Table 4.43. As stated by

3The testing time reported in this chapter is for complete testing samples as given in experimental
protocol (Table 4.2).
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Tipping and Faul [137], SVM is a C implementation whereas RVM is written using

Matlab, so a comparison of time across platforms is not reasonable. In practical

applications, there is always an effort to minimise testing time as training is an

offline process. Table 4.4 shows the number of SVs/RVs required by individual

classifiers. Testing time is directly proportional to the number of non-zero vectors

used for making predictions. RVM generates significantly reduced number of

relevance vectors and hence preferred over SVM due to sparsity. However,

iGRVM-3σ performs iterative training to minimise the training error. RVs

generated using GRVM-3σ are more compared to RVM but significantly less

compared to SVM. As shown in Table 4.4, the testing time on the entire testing

set of the proposed variants of RVM are significantly less compared to SVM. While

one can argue that the performance should also be compared with online SVM, the

objective of this research is not to showcase superiority of the proposed algorithm

over SVM but to show that the modification over RVM makes it applicable to

biometrics.

• All incremental variants of RVM performs equivalent to its offline/batch mode.

The incremental learning approaches facilitates to learn very large training set

in batches which cannot otherwise be enrolled in offline mode. Therefore,

incremental variants provide added advantage that can be useful in biometrics.

Table 4.3: Genuine acceptance rate at 0.01% false acceptance rate for Case Study 1.

Algorithm
NIST BSSR1

Set 1 Set 2 Set 3
Face Matcher 1 74.27 - 71.22
Face Matcher 2 68.28 - 64.06
Finger Left 77.18 75.52 -
Finger Right 85.30 83.13 -
LR 98.06 90.26 76.39
SVM 98.92 91.05 74.58
RVM 98.70 89.74 75.85
iRVM 98.27 90.77 75.89
GRVM-ru 98.49 89.74 73.38
iGRVM-ru 98.92 90.78 75.61
GRVM-3σ 99.35 91.10 75.21
iGRVM-3σ 99.14 90.98 75.70
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Figure 4.8: Performance of various classifiers on (a) NIST Multimodal (Set 1), (b)
NIST Fingerprint (Set 2), and (c) NIST Face (Set 3) under Case Study 1.

Table 4.4: Time taken (in seconds) by various learning based approaches on complete
training and testing samples from BSSR1 for Case Study 1.

Approach
Set 1 Set 2 Set 3

Training Testing # SV/RV Training Testing # SV/RV Training Testing # SV/RV
LR 0.81 0.72 G:3, I:3 0.45 69.78 G:3, I:3 1.48 50.42 G:2, I:5
SVM 0.02 0.23 54 0.27 1068.77 1200 0.94 242.44 576
RVM 84.46 0.09 4 425.19 471.43 4 361.54 138.47 10
iRVM 2.92 0.05 4 149.76 8.74 4 22.75 147.77 20
GRVM-ru 350.16 0.06 3 405.22 358.17 4 1101.70 118.24 4
iGRVM-ru 9.82 0.13 4 253.72 441.54 14 113.13 77.52 4
GRVM-3σ 6.90 0.20 22 554.21 673.41 48 7.27 121.31 9
iGRVM-3σ 2.48 0.34 19 31.07 374.08 10 11.23 126.14 4
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4.3.4 Case Study 2: Unbalanced Databases

This case study is performed to understand the nature of these classifiers on highly

unbalanced databases. The experimental protocol followed for highly unbalanced

database is shown in Table 4.2. As mentioned previously for incremental learning

10% of training data is used. The ROC plots for unbalanced database is shown in

Figure 4.9. The key observations from this study are:

• Table 4.5 shows the accuracy of different classifiers on highly imbalanced data. LR

outperforms other approaches in this study. In most of the cases, LR is designed

to handle imbalance in the training database [47]. The performance of GRVM−3σ
and iGRVM-3σ is comparable to LR. Classification accuracy improves for more

data but the performance of some classifiers such as iRVM and iGRVM-ru reduces

due to biased distribution of data.

• The training database is very large so some offline classifiers such as RVM and

GRVM-ru cannot not be trained. As explained earlier, these approaches require

complete data for initial training. If training database is large enough as given

in Table 4.2, RVM and GRVM-ru generates memory error and classifier fails to

learn.

• In almost all the experiments of unbalanced nature it is observed that the

proposed GRVM-3σ performs comparable to LR and SVM. This approach

samples the database following the statistical property of Gaussian and is

preferred over random data sampling. The information loss is minimal and hence

the classifier performs well for highly unbalanced biometric databases.

• Testing time required by iGRVM-3σ is less compared to SVM (Table 4.6).

Thus, iGRVM-3σ is comparable to other existing classifiers in terms of time and

performance. This approach can be taken as an alternative to existing learning

based approaches.

• Biosecure DS2 is the most challenging database in terms of class imbalance. This

database is utilised to study the performance of iGRVM-3σ under such large

variations. Table 4.5 shows that iGRVM-3σ performs as good as LR and SVM

with an accuracy of 94.12%. However, it requires minimum testing time on this

database due to significantly reduced number of relevance vectors.
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Figure 4.9: Performance of various classifiers on highly skewed training data (Case
Study 2) for (a) NIST Multimodal, (b) NIST Fingerprint, (c) NIST Face, and (d)
Biosecure DS2 databases.

Table 4.5: Genuine acceptance rate (GAR) at 0.01% false acceptance rate (FAR) for
highly skewed databases.

Algorithm
Databases

Set 1 Set 2 Set 3 Biosecure DS2
LR 99.14 91.54 75.76 94.12
SVM 98.92 91.10 75.50 94.12
iRVM 98.28 90.74 62.15 90.20
iGRVM-ru 98.92 80.33 32.07 89.22
GRVM-3σ 99.14 91.11 71.30 92.36
iGRVM-3σ 98.71 90.71 75.59 94.12
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Table 4.6: Training and testing time taken (in seconds) by various learning based
classification approaches for highly unbalanced data.

Approach
Set 1 Set 2

Training Testing #SV/RV Training Testing #SV/RV
LR 3.40 0.75 G:3, I:10 227.96 24.84 G:3, I:3
SVM 0.06 0.41 58 391.75 1552.39 1200
iRVM 51.25 0.12 4 16395.50 411.44 7
iGRVM-ru 167.49 0.09 3 72409.20 250.48 4
GRVM-3σ 11.31 0.13 4 251.70 426.01 378
iGRVM-3σ 18.66 0.06 3 298.51 203.36 11

Approach
Set 3 Biosecure DS2

Training Testing #SV/RV Training Testing #SV/RV
LR 122.97 10.88 G:3, I:5 4.50 0.03 G:2, I:2
SVM 1113.71 546.30 1200 0.06 0.03 46
iRVM 27.25 100.84 5 235.19 0.01 8
iGRVM-ru 6650.31 71.49 10 2568.83 0.03 20
GRVM-3σ 23.86 151.40 39 2.09 0.003 5
iGRVM-3σ 24.39 82.47 55 6.49 0.006 3

4.4 iGRVM-3σ for Multi-unit Iris Recognition

The performance of proposed iGRVM-3σ classifier motivates its application for

multi-unit iris recognition. The left and right iris images are combined to improve the

performance without adding any extra hardware cost to the existing iris recognition

system. As discussed earlier, recognition using single unit (left/right) may not perform

well for iris images acquired under noisy conditions or failure to capture cases. In this

chapter, an effort has been made to develop a multiple unit iris recognition system

that performs fusion at match score level. Kittler et al. [51] have shown that the

fusion of match scores from one or more classifier gives better performance over a

single classifier. In the proposed fusion framework, the match scores from individual

modalities are passed as an input to the classifiers and the posterior probabilities are

combined using sum rule. The training set consists of {xn1, xn2, . . . , xnd, tn}Nn=1 for N

scores from d different sources with the corresponding class labels in tn, where d denotes

the number of modalities, units or algorithms used. A classifier is trained using match

scores from an independent modality along with the corresponding class labels. This

process is iterated d times which generates d sets of relevance vectors and weights.

The match scores (SLeft and SRight) are obtained from left and right units of iris

using SIFT (please refer Chapter 5). The classifier is used to find the probabilistic

values of the scores obtained. The left scores from N iris images are used to train

the classifier. Similarly training is done using scores from the right iris images. This
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generates two sets of relevance vectors and weights as defined by

{Rd,wd} = Train(Sd, t) (4.20)

where d ∈ {Left, Right} denotes the left and right iris images respectively. Training

of the proposed fusion approach is explained in Algorithm 6. Each set of relevance

vectors and weights are used to approximate the corresponding output values for the

multi-unit probe score xd.

yd = Classify(Rd,wd, xd) (4.21)

The proposed unification approach is a variant of classification approaches discussed

earlier and performs fusion over classification of scores generated from individual

classifiers. Finally, the fusion of the outputs are done using weighted sum rule given by

yfinal =
1

d

d∑
j=1

yj (4.22)

where yj is a probabilistic value whose weighted sum ranges between 0 and 1. The

block diagram of proposed fusion framework for multi-unit iris recognition is shown in

Figure 4.10.

Algorithm 6: Train-Fusion

Input: T: Training data, t: Equivalent target values.
Output: Rd: Relevance vectors for d sources, wd: Most probable weight

matrices
1 for i=1 to d do
2 Si ← Ti // Match scores for d dimension

3 {Ri,wi} = Train(Si, t)

4 end

4.5 Experimental Results

The case study on match score databases is encouraging which supports the application

of iGRVM-3σ to improve the iris recognition performance. From the total number of

genuine scores available 10% scores are taken to form the training set and remaining

90% scores are assigned to the test set. The imposter scores are partitioned into 1% and

99% to generate train and test sets respectively. The first experiment is performed to

evaluate the classifier performance on the available iris recognition databases followed

by fusion in the second experiment.
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Figure 4.10: Steps involved in multi-unit iris recognition algorithm using the the
proposed fusion approach.

4.5.1 Experiment 1: Classification

In this experiment, the performance of various classifiers are evaluated. ROC curves

are shown in Figure 4.11(a) and Figure 4.11(b) for BATH and CASIAV3 databases

respectively. Following inferences are made from the results obtained:

• The accuracy of proposed iGRVM-3σ is relatively high for BATH database as

shown in Table 4.7. The performance is comparable to SVM with significant

improvement in testing time (Table 4.8). As discussed earlier, the testing time is

dependent upon number of relevant/support vectors used for making predictions.

The number of support vectors required are considerably high for SVM in
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comparison to iGRVM-3σ which in turn reduces the testing time (Table 4.8).

• For CASIAV3 database, GRVM-3σ outperforms existing classifiers. The time

required to perform classification is lowest among its contenders. This is

particularly useful when iris is deployed for real-time identification applications.

• The number of relevance vectors required by iGRVM-3σ increases due to data

distribution with an equivalent increase in time for CASIAV3 database as shown

in Table 4.8. The testing time increases in comparison to other RVM variants.

However, the testing time is significantly low compared to SVM and comparable

to LR.
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Figure 4.11: Performance of various classifiers on (a) BATH and (b) CASIAV3
databases.

Table 4.7: Genuine acceptance rate at 0.01% false acceptance rate for BATH and
CASIAV3 databases using different classifiers.

.

Algorithm BATH CASIAV3

Left 26.32 07.74
Right 30.79 07.12
LR 45.95 16.35
SVM 47.22 15.98
RVM 46.01 16.14
iRVM 32.80 12.27
GRVM-ru 43.94 15.30
iGRVM-ru 45.77 14.92
GRVM-3σ 47.51 17.28
iGRVM-3σ 47.83 14.02
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Table 4.8: Training and testing time taken (in seconds) by various learning based
classification approaches on BATH and CASIAV3 databases.

Approach
BATH CASIAV3

Training Testing #SV/RV Training Testing #SV/RV

LR 0.24 0.08 G:3, I:3 0.24 0.12 G:3, I:3
SVM 0.19 1.88 488 0.09 4.51 662
RVM 307.44 0.03 9 167.44 0.04 8
iRVM 9.07 0.02 2 13.44 0.03 4
GRVM-ru 1467.24 0.02 3 621.44 0.03 5
iGRVM-ru 13.13 0.02 2 65.96 0.03 4
GRVM-3σ 3.29 0.02 7 2.11 0.01 3
iGRVM-3σ 9.35 0.06 2 10.27 0.15 22

4.5.2 Experiment 2: Fusion

In this experiment, the proposed fusion approach is used to combine the probabilistic

decision values obtained after classifying individual scores. These scores are combined

using weighted sum rule. The key observations of the proposed model are:

• Figure 4.12 shows the ROC curves of different fusion approaches. Using the

proposed fusion framework, GRVM-3σ outperforms other classifiers. However,

iGRVM-3σ fails to achieve the desired performance for single unit of iris and

hence the fusion results after combination are not promising.

• Table 4.9 highlights the improvement in fusion accuracy over classification. A

single classifier may not be appropriate to perform fusion for conflicting cases [67].

Thus the accuracy improves after combining the classification results using linear

sum rule.

• The testing time also reduces significantly using GRVM-3σ based

fusion (Table 4.10). This is particularly due to less number of vectors

required for making predictions.
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Figure 4.12: Performance of various fusion approaches for (a) BATH and (b) CASIAV3
databases.

Table 4.9: Genuine acceptance rate at 0.01% false acceptance rate for BATH and
CASIAV3 databases using different fusion approaches.

Algorithm BATH CASIAV3

Sum Rule 47.44 16.96
PLR 47.72 15.62
SVM 47.29 16.20
RVM 47.49 16.02
iRVM 43.72 15.14
GRVM-ru 34.48 07.08
iGRVM-ru 46.44 15.11
GRVM-3σ 50.55 18.07
iGRVM-3σ 48.41 14.90

Table 4.10: Training and testing time taken (in seconds) by various fusion approaches
on BATH and CASIAV3 databases.

Approach
BATH CASIAV3

Training Testing
#SV/RV

Training Testing
#SV/RV

Left Right Left Right

PLR 0.65 0.10 G:3 I:5 0.35 0.12 3 3
SVM 0.21 4.44 616 612 0.23 10.59 838 794
RVM 80.49 0.03 2 3 321.99 0.47 6 62
iRVM 36.90 0.03 2 3 51.80 0.29 2 39
GRVM-ru 226.60 0.04 3 3 542.97 0.14 2 17
iGRVM-ru 89.61 0.03 3 2 145.92 0.05 3 4
GRVM-3σ 4.51 0.008 2 2 10.53 0.009 2 2
iGRVM-3σ 7.16 0.11 4 6 15.61 0.06 4 8
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4.6 Summary

The main contribution of this chapter is to propose incremental and granular learning

into RVM and develop a novel classifier- iGRVM. The proposed classifier not only

preserves the sparse property of original RVM, but it is also scalable, faster, and

can be trained with unbalanced large data. The case study on biometric match

score classification highlights that iGRVM outperforms original RVM classifier and

is comparable to LR and SVM. The key advantage of the proposed classifier comes

from testing time which is significantly reduced compared to SVM. This case study

motivates the application of iGRVM for boosting the performance of iris recognition

systems. The 2-dimensional scores from left and right units of iris are classified using

proposed iGRVM classifier. The results showcase an improvement in performance using

multi-unit iris over recognition using single unit.

The second contribution is an efficient fusion approach that combines the decisions

from different biometric classifiers using iGRVM. The probabilistic decision from

individual classifiers are combined using sum rule. Iris recognition performance further

improves using the proposed fusion framework. The results of fusion are obtained

using different classifiers like LR, SVM, and RVM. From the experiments it is inferred

that the proposed iGRVM can be considered as an attractive alternative to well-known

classifiers such as LR and SVM.
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Chapter 5

Multi-dimensional Tree based Iris
Indexing

Recent deployment of biometrics for various real time applications has led to the

creation of some large biometric databases. FBI database (IAFIS) is one of the largest

biometric database in the world [144]. This database includes criminal histories of more

than 66 million subjects in the criminal master file with 25 million fingerprints from

civilians. UAE has launched a national border crossing security initiative. Presently

27 land, air, and sea ports of entry are equipped with this system [4]. In India, a

large scale project Aadhaar [5] is undertaken to issue unique identification number

to each individual across the country using face, fingerprint and iris [5]. In UK, Iris

Recognition Immigration System (IRIS) is used to enter through automated barriers

at certain airports [14].

On such large biometric databases, identifying an individual with limited

computation resource becomes challenging. Performing an exhaustive search against

the already enrolled templates in the database is not pragmatic. As discussed earlier,

the size of the database has severe implications on speed as well as performance [88].

Logically partitioning the database reduces the number of comparisons required to find

the identity of the probe. Databases can be partitioned using classification or indexing

approaches. Classification schemes partition the database into some supervised classes.

For instance classifying the face database into male and female classes having unbiased

distribution, reduces the search space by approximately half. However, the performance

of classification approaches is greatly affected by the number of classes (ascertained

priori). Further, classification reduces the size of search database disproportionately

which results in unbalanced distribution of identities [103].

The aforementioned issues are resolved by continuous classification approaches

also known as indexing. Indexing logically partitions the database such that images
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Figure 5.1: Illustrating search space reduction using indexing.

possessing similar characteristics share the similar index as shown in Figure 5.1.

In indexing, each image is characterised by a numerical vector. Based on

similarity preserving transformation, similar biometric images fall in close proximity

of the multi-dimensional space. In continuous classification approaches, the system

performance can be enhanced by regulating the number of neighbors considered.

The main objective of indexing is to significantly reduce the number of candidates

to be considered by the underlying matching algorithm. Tan et al. [145], have

performed an empirical investigation to compare the performance of classification over

indexing. Experimentally it is found that at specific GAR during identification, only

5% of the database is searched by indexing whereas classification may need to search

approximately 20% of the entire search space. This substantiates the application of

continuous classification (indexing) approaches for biometrics.

Indexing biometric databases is not simple as data is unstructured and cannot be

easily sorted into alphabetical or numerical order [72]. An ideal biometric indexing

approach must satisfy the following characteristics:

i. Scalable to new insertion, as many real time biometric applications like Aadhaar [5]

continuously enroll the data. The cost of re-indexing the entire database for each

new enrollment is not pragmatic.

ii. The index space should be balanced and insertion order invariant. On arrival of

sorted data, the index structure generally becomes skewed. However, an ideal

indexing approach avoids such imbalance.

iii. The index generated should possess invariance to various possible transformations

that happen due to change in acquisition setup, environmental dynamics etc.

iv. The index should be multi-dimensional by design. As biometric features are

multi-dimensional in nature so the indexing approach should be designed to handle

multi-dimensional features.
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Figure 5.2: Block diagram of proposed indexing approaches.

Spatial data structures are popularly used for indexing multi-dimensional

databases [146]. The primary objective is to design an index which is scalable, balanced,

invariant to transformations, and multi-dimensional in nature. In this chapter,

an effort has been made to index iris biometric database using multi-dimensional

trees. The features extracted using SIFT are clustered into m groups as discussed

in Section 5.1. Clustered features are used to index the database using k-d tree

as given in Section 5.2 (please refer Figure 5.2). Some issues specific to k-d tree

supports the application of k-d-b tree for indexing iris databases as discussed in

Section 5.3. Application of R-tree for iris database indexing (refer Section 5.4)

improves performance compared to other two proposed approaches. For R-tree

retrieval, hybrid coarse-to-fine searching strategy is proposed that combines the merits

of local as well as global features. The detailed description of proposed indexing

approaches are explained in sequel.

5.1 Clustering Keypoint Descriptors

The number of SIFT keypoints (n) vary across iris images in the database of size

N . The traditional approaches to database indexing becomes unsuitable for change

in value of n. K-means clustering is used to group the number of keypoints sharing

similar descriptor property. The idea is to have transformation from variable number of

keypoints (n) to fixed number of clusters (m), already ascertained. Clustering is done

by representing each keypoint descriptor in k-dimensional (k=128) space. To begin

with k-means clustering, centroids are chosen analytically at equal intervals from the

descriptor set. The choice of centers can be randomised but this may lead to variation

in results. The process starts with assigning each keypoint i to jth cluster center with
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minimum squared error given by

edj = ||Di − cj||2 (5.1)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m, D is the keypoint descriptor matrix of size (n × k)
and c stores the cluster centers. The keypoints sharing similar descriptor properties

are grouped together and cluster centers are re-calculated to obtain new centers. After

m new centers are calculated, the re-association is done between the original keypoints

and the nearest new centroid using Equation (5.1). This process is iterated until cluster

centers gets fixed. The clustered keypoints are shown in Figure 5.3 for change in value

of m, marked using colors. The choice of m is crucial and ascertained experimentally.

Algorithm 7 outlines the steps involved in k-means clustering approach.

Algorithm 7: K-means

Input: D: Keypoint descriptor matrix of size (n× k)
Output: c: Cluster centroids of size (m× k)

1 Initialise cluster centers [c1; c2; . . . cm] at uniform intervals
2 repeat
3 foreach keypoint descriptor i do
4 foreach cluster center j do
5 edj = ||Di − cj ||2
6 end
7 Assign each keypoint i to the cluster j that has minimum ed

8 end
9 foreach cluster j do

10 Recompute centers cj
11 end

12 until cluster centers gets fixed

5.2 K-d Tree

K-d tree is a multi-dimensional binary search tree for indexing higher dimensional

databases [147]. The application of k-d tree for indexing various large scale real-time

databases is promising [146]. In this thesis, local feature based indexing approach

is proposed using k-d trees. The merits of proposed indexing approach over existing

indexing approaches are outlined as follows:

1. The approach in [75] constructs a single k-d tree using global features whereas

the proposed indexing constructs multiple k-d trees (m) using local features.
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Figure 5.3: Clustered keypoint descriptors using k-means for change in value of m.

2. Local feature based indexing approach proposed in [89] is invariant to

various possible transformations. However, the time required for single probe

identification is high which is reduced significantly using the proposed k-d tree

based indexing approach.

The cluster centers obtained using k-means are used to construct k-d tree as

explained in Section 5.2.2. For m cluster centers, m such k-d trees are constructed.

During retrieval, cluster centers are obtained for probe iris image. The k-d tree

corresponding to probe cluster center is traversed and K Nearest Neighbors (KNN)

are retrieved as explained in Section 5.2.3. The nearest neighbors from m trees are

combined using union operation to form a candidate set. The block diagram of proposed

indexing approach is given in Figure 5.4. To summarise, the keypoints are clustered

using k-means. The clustered keypoints are inserted into k-d tree during indexing and

retrieved using knn approach. Thus, there is a need to have an in depth study of the

parameter k used by clustering, indexing and retrieval modules. For the sake of clarity,

few conventions are renamed and used subsequently in this thesis. These notations are

defined as:

Approach
Convention

Description
Original Used

k-means k m m is the number of clusters
k-d tree k k k is the data dimensionality
KNN k p p is the number of nearest neighbors
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Figure 5.4: Block diagram of the proposed k-d tree based indexing approach.

5.2.1 Structure of k-d tree

Each node is represented as k-dimensional (k is dimensionality of each node) point

(P ) in the tree. The k-dimensional features of node P are denoted as {k0(P ), k1(P )
. . . kk−1(P )}. Each node in the tree has two pointers, left(P) and right(P). During tree

construction, the discriminator that is used for partitioning the feature space is given

by split-dim(P). Let, j ← split-dim(P), then for any point Q in left(P ), kj(Q) < kj(P ).

Similarly for any point R stored as a node in right(P ), kj(R) > kj(P ). All nodes in

the same level have same split dimension. The root node has discriminator 0 and

its immediate level has discriminator 1. The discriminator at level i is calculated as

split − dim(P ) = i mod k. The planar graph representation for 2-d tree is shown in

Figure 5.5(a). The operation performed along split dimension j are defined as j-median

which finds the median along the jth dimension among all the records. The 2-d space

representation of k-d tree is shown in Figure 5.5(b). Here non-leaf nodes are represented

as circles (�) and leaf nodes are represented as squares (�). Each node is bounded by

a rectangle to define its geometric range.

5.2.2 Indexing

In k-d tree indexing, the space representing points are partitioned into two subspaces.

Following the concept of binary search trees, each record should have equal probability

of being on either side. The split value for each level is chosen to be the median value of

marginal distribution of features for a particular dimension. Points on the left subtree

are less than the split value and points on the right are greater than the split value. In

this approach, iris database is indexed using k-d trees constructed from cluster centers.
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Figure 5.5: 2-d tree representations of sample points. In (b) � represents non-leaf node
and � represents leaf node.

Cluster center 1 Cluster center 2 Cluster center 3 . . . Cluster center m

Iris 1 C11 C12 C13 . . . C1m

Iris 2 C21 C22 C23 . . . C2m
...

...
...

... . . .
...

Iris N CN1 CN2 CN3 . . . CNm

tree tree1 tree2 tree3 . . . treem

Figure 5.6: Proposed k-d tree structure for N iris images.

Each cluster center from an iris image is denoted by Cxy for 1 ≤ x ≤ N and 1 ≤ y ≤ m

where N is the total number of iris images and m being the number of cluster centers

for each image. A group (Gy) is build for yth cluster center from all iris images in

the gallery set. An independent k-d tree is constructed (denoted as ty) for group Gy

using Algorithm 8. Thus, m such k-d trees are constructed for m cluster centers. The

mapping of cluster centers for k-d tree construction is shown in Figure 5.6. The k-d

tree construction starts by finding the j-median element of Gy for the jth discriminator.

This median element is used to create a node P , which is root of the tree. Further,

those elements in Gy which are j-less than P are stored in GL (left subtree). Similarly,

elements of Gy which are j-greater than P are stored in GR (right subtree). The tree

construction process is iterated with two new lists GR and GL. The left(P ) is pointer

to subtree generated using GL and right(P ) is the pointer to subtree generated using

GR. The split dimension for the next level is found by (j + 1) mod k. The k-d tree

construction is a recursive process and stops when the lists are empty.
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Algorithm 8: k-d Insert

Input: Gy: Group of yth cluster centers, j: discriminator
Output: Ty: k-d tree from yth group

1 if Gy = φ then
2 return NULL
3 end
4 P = j-median element of Gy

5 GL = {a ∈ Gy|a is j-less than P}
6 GR = {b ∈ Gy|b is j-greater than P}
7 split− dim(P ) = j
8 M = (j + 1) mod k
9 left(P ) = k-d Insert(GL,M)

10 right(P ) = k-d Insert(GR,M)
11 return P

5.2.3 KNN Retrieval

The gallery iris images that have close proximity with probe iris are retrieved using k

nearest neighbor (KNN) search algorithm [148] . KNN is defined by taking a circle of

radius r centered at query node (Q) and finding all nearest neighbors (p) that must

lie within the circle. The search process begins by traversing the k-d tree in depth

first order to reach the leaf node depending upon the value at split dimension. After

encountering the leaf node, the distance of Q is obtained with the leaf. A priority

queue (QD) is maintained in non-increasing order of distance values and the image

identifier (id) corresponding to the tree node are stored in form of a list (List). The

radius (r) of circle is equal to distance of pth closest element from Q. For illustration,

let us consider k-d tree in Figure 5.5(a). To retrieve 3nn corresponding to query Q(1, 1),

the tree is traversed in depth first order and distance of Q is obtained with leaf node

as shown in Figure 5.7(a). Whenever an element of tree node in the active partition is

found to be more closer than pth distant element of priority queue (stored at QD[1]),

the {List, QD} is updated as shown in Figure 5.7(b). If the node under investigation

is non-leaf node, the recursive procedure is called for the node on same side of the

partition as Q. However, if the number of elements in List is less than p then the

other side of the partition is explored. In case the size of List is equal to p then a

decision is taken to search parent’s other child to find more closer neighbors. If the

circle centered at Q intersects with geometric boundaries of the other subtree then the

partition is considered on the other side as shown in Figure 5.7(a-b). The side opposite

to active partition is considered to further find the neighbors based on distance from

Q. However, if the geometric boundaries do not overlap, then the opposite subtree
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is left unexplored as marked by gray colored nodes in Figure 5.7(b-c). Figure 5.7(c)

highlights final neighbors in green color after traversing the k-d tree using KNN. The

2-d space representation of query and its three nearest neighbors marked by green ∗
are shown in Figure 5.7(d).

Due to the algorithmic efficiency and applicability to k-d tree [148], KNN is used

to retrieve p nearest neighbors corresponding to the probe iris template. The keypoint

descriptors from probe iris are divided into m clusters and the yth cluster center is

used to traverse corresponding tree (ty) for finding p neighbors. The algorithm for

finding nearest neighbor for probe cluster (Qy) is given in Algorithm 9. For m cluster

centers, (m × p) neighbors are obtained. The set union operation is used to combine

the neighbors into a comprehensive candidate list. At refined stage, the probe feature

descriptor is compared with each element of the candidate list to rank the retrieved

identities. Top S matches are taken to claim the identity of probe, where {S ⊆ (m×p)}.

5.2.4 Experimental Results

In this section, the efficiency of proposed indexing approach is measured experimentally.

The results are obtained for change in number of clusters (m) and nearest neighbors (p).

The optimal choice of these parameters is obtained experimentally.

Databases Used

The experiments in this thesis are performed using two publicly available databases:

• BATH Iris (BATH) [29]: This database comprises images from 50 subjects.

For each subject both left and right iris images are acquired (100 eyes), each

containing 20 images of the respective eyes. This makes total of 1000 iris images

to perform experiments.

• CASIA Iris Version 3 (CASIAV3) [21]: This database is acquired in an in-door

environment. The images have been captured in two sessions, with an interval of

at least one month. The database comprises 249 subjects (498 irises) with total

of 2655 images from the left and right eyes.

To measure the identification accuracy, each database is divided into mutually

exclusive gallery and probe sets. In order to reduce the response time during

identification, the gallery set is partitioned into bins. This reduces the number of

comparisons required to find the identity of the probe.
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Figure 5.7: Query retrieval using KNN from 2-d tree, (a)-(c) illustrates search process
of KNN and (d) spatial representation of tree where query node and its retrieved
neighbors are marked by green ∗.

Design of Experiments

The experiments are carried out for change in two significant parameters as discussed

earlier. The first and most influential parameter is decision regarding number of cluster

centers m and the second is number of nearest neighbors p. The choice of m and p are

dependent upon rank-k identification. Thus, results are obtained by varying values of
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Algorithm 9: KNN Search

Input: Q: yth cluster center from probe features, T : yth k-d tree
Output: List: List of gallery ids for p best matches

1 d = split− dim(T )
2 p = T [datad] // Data value of tree node at dth dimension

3 if T is leaf then
4 {List, QD} = Update List(Q, T ) // QD is priority queue of p

distances

5 return List

6 end
7 if Q[d] ≤ p then
8 List = KNN Search(Q, T (left))
9 else

10 List = KNN Search(Q, T (right))
11 end
12 if length(List) < p then
13 flag = true
14 else
15 flag = Search Otherside(Q,QD, T )
16 end
17 if flag then
18 {List, QD} = Update List(Q, T )
19 if Q[d] ≤ p then
20 List = KNN Search(Q, T (right))
21 else
22 List = KNN Search(Q, T (left))
23 end

24 end
25 return List

m and p. CMC curves for change in m are shown in Figure 5.9(a) and Figure 5.9(b) for

BATH and CASIAV3 databases respectively. Each sub-figure shows curves for some

selected nearest neighbors {5, 10, 20, 40, 50}. The reason for showing selected curves

of p is to achieve visual clarity in graphs. Table 5.1 and Table 5.2 shows the values of

pi for change in m and p on BATH and CASIAV3 databases respectively. From the

results it is evident that as the number of nearest neighbors increases, pi improves.

The reason for increase in pi with p is that the number of neighbors increases which

in turn increases probability of finding the correct match. The penetration rate for

the proposed system is a monotonically increasing function of p and m. Thus, PR is

obtained using

PR =
m× p
N

(5.2)
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Algorithm 10: Update List(Q, T )

Input: Q: yth cluster center from probe, T : yth Tree
Output: List: List of gallery ids for p best matches, QD: Priority queue of p

closest distances encountered
1 point = T [data]

2 distance =
√∑k

i=1(Q[i]− point[i])2
3 if length(List) = p and QD[1] > distance then
4 QD[1] = distance
5 List[1] = T [id] // image id corresponding to tree node

6 else if length(List) < p then
7 shift elements of {List, QD} one to right
8 QD[1] = distance
9 List[1] = T [id]

10 sort {List, QD} in non-increasing order

11 return {List, QD}

Algorithm 11: Search Otherside(Q, QD, T )

Input: Q: yth cluster center from probe, QD: Priority queue of p distances, T :
yth tree

Output: flag: Logical value to determine if the boundaries overlap
1 sum = 0
2 LB = lower boundary of T // defined during node creation

3 UB = upper boundary of T
4 r = QD[1] // distance of pth nearest neighbor

5 flag = true
6 for d = 1 to k do
7 if Q[d] < LB[d] then

8 sum = sum+
√
(Q[d]− LB[d])2

9 if sum > r then
10 flag = false
11 break

12 end

13 end
14 else if Q[d] > UB[d] then

15 sum = sum+
√
(Q[d]− UB[d])2

16 if sum > r then
17 flag = false
18 break

19 end

20 end

21 end
22 return flag
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Table 5.1: Probability of identification for change in m and p at different values of R
for BATH database using k-d tree based indexing.

m = 2 m = 3 m = 4
R ↓ p → 5 10 20 40 50 5 10 20 40 50 5 10 20 40 50

1 0.70 0.74 0.70 0.81 0.83 0.74 0.78 0.83 0.83 0.83 0.79 0.75 0.79 0.83 0.83
2 0.77 0.79 0.77 0.85 0.85 0.78 0.80 0.85 0.87 0.87 0.79 0.83 0.83 0.92 0.92
5 0.77 0.81 0.81 0.89 0.87 0.83 0.83 0.91 0.89 0.91 0.79 0.88 0.92 0.92 0.92
10 0.81 0.83 0.81 0.91 0.91 0.85 0.89 0.91 0.91 0.93 0.79 0.88 0.92 0.92 0.92
20 0.81 0.83 0.83 0.91 0.96 0.87 0.89 0.98 0.96 0.96 0.79 0.88 0.92 0.92 0.92
40 0.81 0.83 0.85 0.94 0.98 0.87 0.91 0.98 1.00 1.00 0.79 0.88 0.96 0.92 0.92
80 0.81 0.83 0.85 0.96 0.98 0.87 0.91 0.98 1.00 1.00 0.79 0.88 0.96 0.96 0.96
100 0.81 0.83 0.85 0.96 0.98 0.87 0.91 0.98 1.00 1.00 0.79 0.88 0.96 0.96 0.96

m = 5 m = 6 m = 7
R ↓ p → 5 10 20 40 50 5 10 20 40 50 5 10 20 40 50

1 0.81 0.88 0.94 0.94 0.94 0.85 0.88 0.91 0.91 0.91 0.89 0.89 0.96 0.96 0.96
2 0.84 0.94 1.00 0.97 0.94 0.88 0.91 0.94 0.94 0.94 0.93 0.89 0.96 0.96 0.96
5 0.91 0.94 1.00 1.00 1.00 0.91 0.94 0.94 0.94 0.94 0.96 0.93 0.96 0.96 0.96
10 0.94 0.97 1.00 1.00 1.00 0.91 0.94 0.97 0.97 0.97 0.96 0.93 0.96 0.96 0.96
20 0.94 0.97 1.00 1.00 1.00 0.97 0.94 0.97 1.00 1.00 0.96 0.96 1.00 0.96 0.96
40 0.94 0.97 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 0.96 0.96 1.00 1.00 1.00
80 0.94 0.97 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 0.96 0.96 1.00 1.00 1.00
100 0.94 0.97 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 0.96 0.96 1.00 1.00 1.00

m = 8 m = 9 m = 10
R ↓ p → 5 10 20 40 50 5 10 20 40 50 5 10 20 40 50

1 0.93 1.00 0.96 0.96 0.96 0.93 0.96 1.00 1.00 1.00 0.91 0.95 0.95 1.00 1.00
2 0.93 1.00 0.96 1.00 1.00 0.93 1.00 1.00 1.00 1.00 0.95 0.95 0.95 1.00 1.00
5 0.96 1.00 0.96 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
10 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
20 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
40 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
80 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
100 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00

Here m is chosen carefully as the number of clusters is influential in obtaining γ.

Table 5.3 shows the values of γ for change in value of p and m on BATH database.

Similar observations are made for CASIAV3 database as shown in Table 5.4.

Bin miss rate for change in p is shown in Figure 5.8(c). The curves are plotted for

different values of m. The accuracy of an identification system is usually measured in

terms of bin miss rate. From the graph it is evident that as the number of clusters

increases, the bin miss rate reduces. The theoretical value of PR (Figure 5.8(a)) is

slightly different from the actual implementation as shown in Figure 5.8(b). The

difference is due to variation in probe and gallery templates that leads to false rejections.

The plot of γ is shown in Figure 5.8(d). The relationship between PR and BM is shown

in Figure 5.8(e). Thus, in this research m is selected where γ obtained is maximum

with reduced penetration rate and lowest bin miss rate. In brief, the value of m and

p are chosen where the value of γ is maximum for highest probability of identification.

It has been observed through experiments that the value of γ varies with the size of

the database. The proposed system is rank-10 based identification system for BATH

database. The value of m = 9 and p = 5 gives significantly high γ of 0.98 with

considerably low PR of 0.03 for no bin miss. For CASIAV3 database, pi = 0.96 is

achieved for rank-200. These value are selected at m = 5 and p = 50 which gives
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(a) PR using equation (5.2)
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(b) PR through experiments
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(e) PR vs. BM
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Figure 5.8: Performance measures for change in values of p and m using k-d tree based
indexing.
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Figure 5.9: CMC curves of k-d tree based indexing for different clusters each with
change in value of p.
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Table 5.2: Showing pi for change in m, p, and R on CASIAV3 database using k-d tree.
m = 2 m = 3

R ↓ p → 5 10 20 40 50 5 10 20 40 50
1 0.62 0.69 0.76 0.78 0.79 0.60 0.64 0.67 0.67 0.69
2 0.65 0.71 0.80 0.84 0.84 0.64 0.70 0.75 0.79 0.81
5 0.65 0.73 0.84 0.89 0.90 0.64 0.71 0.76 0.81 0.83
10 0.65 0.73 0.85 0.90 0.90 0.65 0.72 0.76 0.82 0.84
20 0.65 0.73 0.85 0.90 0.91 0.65 0.72 0.77 0.82 0.85
30 0.65 0.73 0.85 0.90 0.91 0.65 0.72 0.77 0.83 0.85
50 0.65 0.73 0.85 0.90 0.91 0.65 0.72 0.77 0.84 0.85
100 0.65 0.73 0.85 0.90 0.91 0.65 0.72 0.77 0.84 0.86
200 0.65 0.73 0.85 0.90 0.91 0.65 0.72 0.77 0.84 0.86

m = 4 m = 5
R ↓ p → 5 10 20 40 50 5 10 20 40 50

1 0.57 0.61 0.67 0.70 0.70 0.61 0.70 0.71 0.74 0.76
2 0.59 0.63 0.74 0.75 0.77 0.66 0.76 0.79 0.81 0.83
5 0.59 0.67 0.78 0.83 0.84 0.69 0.79 0.83 0.88 0.88
10 0.59 0.67 0.78 0.84 0.85 0.70 0.81 0.83 0.90 0.93
20 0.59 0.67 0.81 0.85 0.87 0.71 0.81 0.85 0.91 0.94
30 0.59 0.67 0.81 0.86 0.88 0.71 0.81 0.85 0.91 0.94
50 0.59 0.67 0.82 0.86 0.88 0.71 0.81 0.85 0.91 0.94
100 0.59 0.67 0.82 0.87 0.88 0.71 0.81 0.85 0.91 0.94
200 0.59 0.67 0.82 0.87 0.88 0.71 0.81 0.85 0.92 0.96

γ = 0.83 for PR = 0.28 and BM = 0.04. From the experimental analysis it is found

that γ cannot be taken as a conclusive performance measure but is considered as a

good compromise between accuracy and time.

5.3 K-d-b Tree

It has been observed that the proposed k-d tree based indexing achieves good

performance for iris. However, k-d tree by design suffers from the following two issues:

i. The conventional approach for k-d tree construction finds the median element from

the features. This approach is static and requires re-construction of the tree on

encountering a new batch of data during enrollment. Biometrics applications are

continuously confronted with new data and re-constructing the tree for each new

enrollment is not acceptable.

ii. k-d tree based indexing does not take paging of secondary memory into

consideration. The time required to read the records from the disk far exceeds

the time required to compare the records once available, after searching k-d tree.
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Table 5.3: γ, PR,BM for change in m and p on BATH database using k-d tree.
m→ 2 3 4
p ↓ γ PR BM γ PR BM γ PR BM
5 0.89 0.01 0.19 0.93 0.02 0.13 0.94 0.01 0.11
10 0.90 0.02 0.17 0.94 0.03 0.09 0.96 0.02 0.06
20 0.90 0.04 0.15 0.96 0.06 0.02 0.97 0.05 0.02
40 0.93 0.09 0.04 0.94 0.12 0.00 0.95 0.09 0.02
50 0.93 0.11 0.02 0.92 0.15 0.00 0.94 0.11 0.02
m→ 5 6 7
p ↓ γ PR BM γ PR BM γ PR BM
5 0.97 0.02 0.04 0.98 0.03 0.02 0.98 0.02 0.02
10 0.97 0.04 0.02 0.96 0.05 0.02 0.97 0.05 0.02
20 0.96 0.08 0.00 0.95 0.09 0.00 0.96 0.09 0.00
40 0.92 0.14 0.00 0.92 0.16 0.00 0.92 0.16 0.00
50 0.91 0.17 0.00 0.90 0.19 0.00 0.90 0.18 0.00
m→ 8 9 10
p ↓ γ PR BM γ PR BM γ PR BM
5 0.98 0.03 0.02 0.98 0.03 0.00 0.97 0.03 0.02
10 0.97 0.05 0.00 0.97 0.06 0.00 0.97 0.06 0.00
20 0.95 0.10 0.00 0.94 0.11 0.00 0.95 0.11 0.00
40 0.91 0.18 0.00 0.90 0.19 0.00 0.90 0.18 0.00
50 0.89 0.21 0.00 0.88 0.22 0.00 0.89 0.21 0.00

Table 5.4: γ, PR,BM for change in m and p on CASIAV3 database using k-d tree.
m→ 2 3
p ↓ γ PR BM γ PR BM
5 0.80 0.01 0.35 0.80 0.02 0.35
10 0.84 0.03 0.27 0.83 0.04 0.28
20 0.90 0.05 0.15 0.85 0.07 0.23
40 0.91 0.09 0.10 0.86 0.12 0.16
50 0.90 0.11 0.09 0.86 0.14 0.14
m→ 4 5
p ↓ γ PR BM γ PR BM
5 0.83 0.02 0.30 0.83 0.04 0.29
10 0.85 0.04 0.24 0.87 0.07 0.19
20 0.90 0.07 0.13 0.86 0.13 0.15
40 0.89 0.13 0.10 0.84 0.23 0.08
50 0.88 0.15 0.09 0.83 0.28 0.04

93



5.3 K-d-b Tree Multi-dimensional Tree based Iris Indexing

Due to multi-dimensional structure of nodes, balancing k-d trees needs precaution.

Thus, a variant of k-d tree is applied for iris database indexing to overcome the

aforementioned issues. In this thesis, a dynamic data structure coined k-d-b tree [149]

combines the multi-dimensional capability of k-d tree with organisation efficiency of

B-trees. The insertion of nodes is dynamic and avoids the tree to be reconstructed.

The k-d-b tree is height balanced data structure and takes paging of secondary memory

into consideration which improves disk access time. This is particularly due to high

fanouts (children) for each node which reduces number of input-output operations

required for searching.

5.3.1 Structure of k-d-b tree

This approach partitions the search space that consist of k-dimensional point(s)

represented as (k0, k1, . . . , kk−1) to be an element of domain0×domain1×. . . domaink−1

into mutually exclusive regions satisfying

mini ≤ ki < maxi, 0 ≤ i ≤ k − 1 (5.3)

where mini and maxi are the maximum and minimum values of all the elements in the

region along ith dimension. The k-d-b tree consist of two types of pages

• Region page: is the collection of regions and each region is represented by

storing (mini, maxi)

• Point page: is the collection of points represented by (k, irisID)

There are few properties that defines k-d-b tree. The region pages cannot contain null

pointer which implies that point pages are the leaf nodes of the tree. All the leaf nodes

are at the same level and contains pointer to the iris identifiers in the database. The

union of two disjoint regions in a region page makes a region. The structure of 2-D

k-d-b tree is shown in Figure 5.10 with point and region pages.

5.3.2 Indexing

For indexing iris database, the cluster centers are used to construct k-d-b trees. Similar

to k-d tree, in this approach, the yth cluster center is used to develop the corresponding

k-d-b tree. To perform insertion into k-d-b tree if root node of tree does not exist, then

a point page is created and the keypoint center with corresponding iris ID is inserted

in the point page. If root node exists, then the tree is traversed to reach the point page

for inserting (point, irisID) pair. If the page overflows then splitting is performed by
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Figure 5.10: Structure of k-d-b tree (k = 2). The shaded regions are not included in
region pages and point pages are leaf nodes of the tree.

finding a median (ki) of all the elements in the point page along ith dimension. Splitting

helps in balancing the k-d-b tree structure. This generates left and right children of

the point page. A point y lies on left of ki if yi < ki and otherwise on the right. A new

region page is created and marked as root node with left and right children assigned.

Similarly, if the region page overflows then the splitting is done along ki to generate the

left and right regions of the page. Let the region page be defined as I0× I1× . . . Ik−1, if

ki /∈ Ii the region remains unchanged by splitting otherwise let Ii = [mini maxi) and

splitting generates two regions

left region I0 × . . .× [mini ki)× . . .× Ik−1

right region I0 × . . .× [ki maxi)× . . .× Ik−1

(5.4)

To find the position of regions for ki /∈ Ii the following scheme is used

region =

{
ki < mini left

ki ≥ maxi right
(5.5)

If the region lies to the left of ki add (region, page id) to the left and otherwise to the

right. The representation of splitting for region and point pages is shown in Figure 5.11.

If splitting is done on root page then a new region page is created with the regions

(domain0× . . .× [mini ki)× . . .×domaink−1, left id) and (domain0× . . .× [ki maxi)×
. . .×domaink−1, right id). For splitting page other than root, replace in parent of page
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to be split (left region, left id) and (right region, right id). If this causes the parent

page to overflow then the same process is iterated. The description of steps involved

in insertion are given in Algorithm 12. The same process is repeated for m k-d-b

trees representing m cluster centers. This approach is dynamic and avoids re-indexing

the entire database on insertion of a new record. The proposed indexing structure is

balanced by design unlike k-d tree and considers paging. Thus, the major problems

specific to k-d tree based indexing approach are mitigated using k-d-b tree.

Algorithm 12: k-d-b Insert

Input: point: yth cluster center from an iris, irisID: Name of the iris image to
be indexed

Output: root: Pointer to the root node
1 if root = ∅ then
2 insert (point, irisID) in new point page
3 return

4 end
5 Do range search to reach the point page
6 if point is already in the point page then
7 return “duplicate record”
8 end
9 Add (point, irisID) to point page

10 if page does not overflow then
11 return
12 else
13 page = point page
14 ki = median element along ith dimension
15 split the page along ki
16 if page = root then
17 Goto 27
18 else
19 page = parent of the page
20 Replace its child by left and right pages obtained after splitting
21 if page overflows then
22 Goto 14
23 else
24 return
25 end

26 end
27 Create a new region page with left and right region and set it as root

28 end
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Figure 5.11: Splitting of point and region pages using k-d-b tree.

5.3.3 Range Query Retrieval

For retrieving gallery iris images corresponding to probe, range search is used [150].

The intersection of probe cluster center is found for each region on the page and those

regions whose intersection with the probe are non-null are considered further to reach

the point page(s). The image identifiers on the point page, referenced by query are

retrieved (denoted as List). The range search procedure is given in Algorithm 13. This

operation is repeated for m k-d-b trees and the identifiers retrieved are combined using

set union operation to generate the candidate list. Finally, top S matches are obtained

by individually comparing the probe feature descriptor with candidate irises.

5.3.4 Experimental Results

In this section, the performance of k-d-b tree is evaluated experimentally on BATH

and CASIAV3 databases.

Design of Experiments

In this section, the results are obtained for k-d-b tree based indexing using BATH

and CASIAV3 databases. Figure 5.12(a) shows CMC curves for change in number of
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Algorithm 13: Range Search

Input: Q: yth cluster center from probe iris, page: Pointer to root of yth k-d-b
tree

Output: List: List of gallery ids retrieved
1 if page = NULL then
2 return
3 end
4 if page = point page then
5 foreach (point, irisID) in page do
6 List = [List, irisID]
7 end

8 else
9 foreach region ∈ page do

10 I = {region | Q ∩ region 
= ∅}
11 end
12 foreach child ∈ I do
13 page = I → child
14 Range Search(Q, page)

15 end

16 end

clusters (m). The value of m is varied from 2 to 4 as BM becomes 0 following m = 3

for BATH database. Table 5.5 shows the values of pi for change in number of clusters

at different ranks. Precisely, the value of pi becomes 1.00 at rank-29 for m = 4 using

k-d-b tree. The pi of all ranks is not shown in the table due to space constraints.

Similar observations are made for CASIAV3 database. The CMC curves for k-d-b tree

on CASIAV3 database are shown in Figure 5.12(b). Here the value ofm is varied from 2

to 5. From the curves it is found that the proposed tree based indexing approaches fail

to achieve pi = 1 for CASIAV3 database. Table 5.5 shows identification probabilities

for change in ranks. The rank-k identification improves over k-d tree based indexing

for CASIAV3 database. However, there still remains the scope to further improve the

probability of identification. The number of parameters, to tune during retrieval, are

reduced using k-d-b tree based indexing in contrast to k-d tree. The range search

approach is non-parametric and hence preferred over KNN retrieval.

5.4 R-tree

The k-d-b tree approach discussed earlier is designed to work with point data. This

is not particularly suitable for many real time applications for instance biometrics

where probe features may change due to transformations, illumination, and occlusion.
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Figure 5.12: CMC curves for k-d-b tree with change in number of clusters.

Table 5.5: Probability of identification for k-d-b tree based indexing.
BATH CASIAV3

R ↓ m→ 2 3 4 2 3 4 5
1 0.68 0.70 0.83 0.76 0.68 0.75 0.78
2 0.72 0.85 0.87 0.78 0.79 0.80 0.84
5 0.78 0.92 0.94 0.81 0.88 0.86 0.89
10 0.85 0.92 0.94 0.83 0.91 0.95 0.90
20 0.91 0.94 0.96 0.83 0.91 0.95 0.94
50 0.94 0.96 1.00 0.83 0.92 0.95 0.94
100 0.94 0.98 1.00 0.83 0.94 0.96 0.95

In biometrics, the search is approximate and bears close resemblance to gallery

features rather than exact match. Hence, point based approaches may not generate

appropriate search results for biometric databases. In this thesis, an efficient spatial

data structure called R-tree [151] is used for indexing biometrics databases. The

tree structure is dynamic, height balanced, and considers paged data from the

secondary memory. R-tree by design handles data range rather than considering exact

point values. For indexing, R-tree is applied to enclose templates sharing similar

properties by a rectangle. The retrieval errors are relatively reduced compared to

other multi-dimensional trees. The proposed retrieval approach is based on hybrid

coarse-to-fine strategy. At the coarse level, the identities are retrieved using range

search to form the candidate list. The motivation behind using range search is

attributable to better performance with no parameters to tune during searching. At

the fine level, each identity in the candidate list is matched with the probe iris using

global features based on 1-D Log-Gabor wavelet [112]. The matching scores of the
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candidate individuals are weighted to rank the identities. Although, local features

extracted from an image are invariant to various possible transformations but global

features are still required for better class discrimination. Integrating local and global

features generates an efficient indexing approach particularly suitable for content based

image retrieval [152].

5.4.1 Structure of R-tree

R-trees are height balanced data structures for multi-dimensional indexing.

The structure of R-tree is similar to B-trees and is used for hierarchical

indexing of d-dimensional points represented as d-dimensional Minimum Bounding

Rectangles (MBR). This approach is dynamic and does not require periodic

re-organisation of the entire database on insertion. The maximum number of entries

for each node is denoted by F and the minimum number is given by f ≤ F
2
. R-tree of

order (f, F ) satisfies the following properties:

- The number of entries in each node, except the root, ranges from [f, F ].

- Each entry in the leaf node is represented as (mbr, id), wherembr is d-dimensional

rectangle that spatially surrounds the entry and id is the identifier of the

multi-dimensional point.

- Each entry in the intermediate nodes is of the form (mbr, child). Here child is the

pointer to the child node and mbr is the smallest rectangle that spatially contains

mbr of the child node.

- The root node contains at least two children unless it is a leaf.

Each mbr is d-dimensional rectangle where each dimension is represented in the

form of range given by [a, b]. This range specifies the extent of a point along the

particular dimension [151]. For each node R, R.mbr denotes the MBR of that node

and R.child is the pointer to the child node. In case of leaf R.id is the object identifier.

5.4.2 MBR Generation

For R-tree construction, each point is represented by a range denoted as [a, b] that

defines a rectangle (known as MBR) enclosing the point. The input to R-tree is yth

cluster center of an image which is mapped to set of range values. To generate the set of

ranges, each cluster center (Cxy) is represented by set of keys arranged in non-decreasing
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Range

Figure 5.13: An example showing generation of ranges, for α = 7 that generates η = 32
ranges using 128 dimensional SIFT features.

order and the values are selected at an increment of α. The predefined constant α

controls the number of values selected (η) as given by:

η = 2

⌊
k

(α+ 1)

⌋
(5.6)

where k is the dimensionality of each cluster center (128 in case of SIFT). These selected

values are stored in a vector (Dxy). Each non-overlapping range corresponding to Cxy

is generated by selecting two consecutive elements of Dxy. This computes total of⌊
η
2

⌋
number of ranges. This process is iterated for m cluster centers each having 128

dimensional data. An example for generation of ranges is shown in Figure 5.13.

5.4.3 Indexing

Insertion into R-tree is similar to B trees in which new entries are inserted at the leaves.

Nodes that overflow are split which propagates upward [151]. For indexing iris (I), each

cluster center is used to generate range (Dxy) and the consecutive elements are selected

to form MBR for I. The entry stored at the leaf node is of the form (I.mbr, I.id)

where I.mbr and I.id are the MBR and iris identifier of I respectively. For non-leaf

nodes, I.id is replaced by I.child which stores the pointer to the child node. The tree

is traversed to reach an appropriate leaf node (R) whose MBR is expanded minimum

to accommodate I.mbr. The new entry is inserted into R and MBR of all the nodes

in path from root to R are updated. If R is found to be full, the split operation is

performed to make room for I. To perform splitting, select two seeds ei and ej from

all entries that belongs to R (including I). Form a rectangle (J) that encloses ei and

ej . Compute the distance (d)

d = area(J)− area(ei)− area(ej) (5.7)

where area is the function to find the spatial extent of MBR. Choose ei and ej that

generates maximum value of d. Create two nodes Ri and Rj using ei and ej as entries.
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Allocate remaining members of R to Ri or Rj depending on minimum area enlargement

of their respective MBRs. If R is a root node then create a new node w with Ri and Rj

as its children; set w as root. If R is an intermediate node, then w points to parent of

R and child pointers of w are updated to accommodate Ri and Rj . The MBR of all the

nodes in path from root to w are updated. If w overflows then the splitting operation is

performed again. The split operation is iterated until the order of each node in the tree

is maintained. Insert_Rtree (Algorithm 14) is called to insert an element into R-tree

which in turn calls split_node (Algorithm 15), if the node overflows on insertion. The

insertion process is repeated for m cluster centers that generates m such R-trees.

Algorithm 14: Insert Rtree

Input: R: Tree node, I: Iris to be inserted
1 if R is leaf node then
2 if |R|< F then
3 insert I into R
4 Update all mbr in path from root to R to cover I.mbr
5 return

6 else
7 P ← split node(R)
8 Insert Rtree(P, I)

9 end

10 else
11 R← R.child // child with minimum increase in R.mbr to include

I.mbr
12 Insert Rtree(R, I)

13 end

5.4.4 Hybrid Coarse-to-fine Retrieval Approach

A coarse-to-fine retrieval approach is proposed that unifies local as well as global

features. At the coarse level, range search using local features generates candidate

comprehensive list. At the refined level, each element of candidate comprehensive list

is matched with the probe iris using global features. The elements of the candidate

list are ranked using weighted scores. The detailed description of steps involved in

proposed searching approach are given in sequel.

Candidate List Retrieval

The features extracted from probe iris image are clustered into m groups. These cluster

centers are used to traverse the corresponding R-tree. For m cluster centers, m such
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Algorithm 15: split node

Input: R: Tree node
Output: w: Updated node after splitting

1 foreach pair of elements ei and ej in node R do
2 Construct J that encloses ei and ej // MBR including ei and ej
3 dij = area(J)− area(ei)− area(ej) // Compute distance

4 end
5 Select seeds ei and ej for maximum value of d
6 Create nodes Ri and Rj using ei and ej
7 Assign remaining elements of R to Ri or Rj with minimum increase in their mbr
8 if R is root then
9 create new root node (w) with Ri and Rj as children

10 return

11 else
12 w ← parent of R
13 Update w with Ri and Rj as children
14 Update mbr of all nodes in path from root to w to accommodate Ri and Rj

15 if |w|> F then
16 split node(w)
17 end

18 end

trees are traversed and retrieval is performed at coarse level using range search [153] as

explained in Algorithm 13. The retrieved identities from each tree are combined into

a comprehensive candidate list (L) as given by

L = [l1 ∪ l2 ∪ . . . lm] (5.8)

where ly is the candidate list generated from the yth tree for 1 ≤ y ≤ m.

Weighted Rank based Top Matches

At the fine level, the candidate list elements are weighted to improve the identification

accuracy. For generating scores, a sophisticated matcher is required that is specifically

designed for iris. The choice of matcher is crucial as the retrieved irises possesses

close similarity to the probe iris with subtle discrimination. In the proposed approach,

global features are used to extract significant texture details from the iris whereas

not compromising the local significance during index generation. Global features are

particularly suitable for scenarios when the complete image describes potential features

that can be used for authentication. For global feature extraction, 1D Log-Gabor

wavelets [112] are used. The iris image corresponding to the retrieved iris identifier is
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used to extract global features. These features are phase quantised and matched using

Hamming distance. Sequentially comparing the probe (q) with each element (x) of L,

generates a distance score (βx). In order to further boost the performance, weights are

assigned to each identifier (id) in the list. The frequency of occurrence of each identifier

in the candidate list is obtained as,

ωid =
ψid

|L| (5.9)

where ψid represents frequency of occurrence of each id in the comprehensive list (L),

|·| denotes the cardinality of the set, and ωid is the corresponding value of weight. The

weighted score for iris (τx) is obtained by

τx = ωid(1− βx) (5.10)

where |id|≤ |L| as each id may occur more than once in L. The gallery iris most similar

to probe will have higher frequency of occurrence in comparison to other identifiers.

The list where each identifier occurs only once is a non-weighted list. The weighted list

is sorted in decreasing order and the top best matches are obtained.

5.4.5 Experimental Results

The unification of R-tree for indexing with hybrid retrieval approach is subsequently

referred as hybrid approach whereas R-tree based indexing uses conventional range

search for retrieval. Hybrid approach is compared with proposed multi-dimensional

tree based approaches and geometric hashing approach [89]. The experimental results

of various local feature based indexing approaches are discussed in this section.

Design of Experiments

Two sets of experiments are conducted to study the efficiency of various indexing

approaches. In Experiment 1, the hybrid approach is compared with proposed

multi-dimensional tree based indexing approaches. In Experiment 2, the performance

of tree based indexing approaches are compared to other local feature based indexes.

The description of these experiments are given as follows:

Experiment 1: Multi-dimensional Trees

In this experiment, the performance of various multi-dimensional tree based indexing

approaches are compared. The results are obtained for change in number of clusters.
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Table 5.6: Showing identification performance of various multi-dimensional tree based
indexing approaches on BATH database.

PR BM γ

m k-d k-d-b R-tree k-d k-d-b R-tree k-d k-d-b R-tree

2 0.01 0.03 0.005 0.19 0.06 0.15 0.90 0.95 0.92
3 0.02 0.04 0.006 0.13 0.00 0.13 0.92 0.98 0.93
4 0.01 0.05 0.007 0.11 0.00 0.02 0.94 0.97 0.99
5 0.02 - 0.009 0.04 - 0.00 0.97 - 1.00
6 0.03 - 0.010 0.02 - 0.00 0.98 - 1.00
7 0.02 - 0.011 0.02 - 0.00 0.98 - 1.00
8 0.03 - 0.012 0.02 - 0.00 0.98 - 0.99
9 0.03 - 0.012 0.00 - 0.00 0.99 - 0.99
10 0.03 - 0.013 0.02 - 0.00 0.98 - 0.99

The optimum cluster is chosen for minimum bin miss rate at relatively low penetration

rate with maximum probability of identification.

• Table 5.6 shows the values of PR, BM , and γ for change in number of clusters

using various multi-dimensional trees on BATH database. Here minimum BM

is obtained for the selected clusters i.e., m = {9}, m = {3, 4} and m =

{5, 6, 7, 8, 9, 10} for k-d tree, k-d-b tree, and R-tree approach1 respectively. The

optimum cluster is chosen from the selected ones with the highest probability

of identification. Table 5.7 shows pi for change in number of clusters on BATH

database2. For k-d tree, pi = 1 is obtained atm = 9. Thus, m = 9 is the optimum

choice of cluster which gives considerably low PR of 0.03 and maximum γ of 0.985.

In case of conflicting cases, where more than one selected clusters are chosen as

in case of hybrid approach (m = [5, . . . , 10]), pi can be taken as a conclusive

measure for finding the optimum cluster.

• If we obtain maximum pi for more than one cluster then a new parameter rank (R)

is introduced to generate the filtered list. For instance, Table 5.7 shows pi = 1

for all m ≥ 5 using the hybrid approach. The optimum cluster is ascertained

which achieves pi = 1 for minimum rank. In hybrid approach, m = {7, 9, 10}
generates pi = 1 for rank-1 in contrast to pi = 1 at rank-50 for m = {5, 6, 8} as
shown in Figure 5.15. However, still the conflict persists regarding the choice of

an optimum cluster from the filtered list.

• Finally, from the list of filtered clusters (m = {7, 9, 10}) the one with minimum

1The hybrid approach at coarse level uses range search of R-tree so the indexing results of hybrid
approach are not reported separately.

2R-tree indexing is tested using range search as well as hybrid search. The retrieval results are
reported for both the approaches.
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PR is considered as the optimum cluster. For hybrid approach, minimum PR =

0.011 is obtained at m = 7.

Table 5.7: Probability of identification (pi) of multi-dimensional tree based searching
approaches on BATH database.

k-d tree

R ↓ m→ 2 3 4 5 6 7 8 9 10

1 0.70 0.74 0.79 0.81 0.85 0.89 0.93 0.93 0.91
2 0.77 0.78 0.79 0.84 0.88 0.93 0.93 0.93 0.95
5 0.77 0.83 0.79 0.91 0.91 0.96 0.96 0.96 0.95
10 0.81 0.85 0.79 0.94 0.97 0.96 0.96 1.00 0.95
50 0.81 0.87 0.79 0.94 0.97 0.96 0.96 1.00 0.95

k-d-b tree

R ↓ m→ 2 3 4 5 6 7 8 9 10

1 0.68 0.70 0.83 - - - - - -
2 0.72 0.85 0.87 - - - - - -
5 0.78 0.92 0.94 - - - - - -
10 0.85 0.92 0.94 - - - - - -
50 0.94 0.96 1.00 - - - - - -

R-tree

R ↓ m→ 2 3 4 5 6 7 8 9 10

1 0.72 0.66 0.85 0.79 0.85 0.87 0.83 0.85 0.89
2 0.77 0.68 0.87 0.83 0.91 0.87 0.87 0.89 0.94
5 0.77 0.77 0.87 0.85 0.91 0.91 0.89 0.94 0.94
10 0.77 0.77 0.87 0.87 0.91 0.91 0.89 0.96 0.96
50 0.85 0.87 0.96 0.96 0.96 1.00 0.91 0.96 0.98

Hybrid

R ↓ m→ 2 3 4 5 6 7 8 9 10

1 0.85 0.87 0.94 0.96 0.96 1.00 0.98 1.00 1.00
2 0.85 0.87 0.94 0.96 0.96 1.00 0.98 1.00 1.00
5 0.85 0.87 0.94 0.96 0.98 1.00 0.98 1.00 1.00
10 0.85 0.87 0.96 0.98 0.98 1.00 0.98 1.00 1.00
50 0.85 0.87 0.96 1.00 1.00 1.00 1.00 1.00 1.00

• Comparing various tree based indexing approaches, k-d-b tree generates minimum

BM values for the initial choice of clusters (Figure 5.14) but PR needs further

improvement. The PR of the R-tree approach is relatively low and combined

with BM generates higher value of γ.

• The choice of clusters converge until γm ≥ γm−1, for m > 2. For certain cases,

though γm < γm−1 but the experiment is further taken if BMm ≤ BMm−1 for

BMm > 0. However, even for BMm = 0 the iterations do not converge if γm

improves, which signifies that PR is further getting reduced.
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Figure 5.14: Performance measures for change in number of clusters using
multi-dimensional tree based indexing approaches.
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• The identification accuracy of an indexing approach is not solely dependent on

BM . Though the candidate list contains an identity corresponding to the probe

image but the reliability of genuine identity coming to the top is dependent on

the performance of an underlying matcher. The value of pi becomes 1 for all

indexing approaches on BATH database. However, the comparison between the

approaches is the rank at which the value of pi becomes maximum. The k-d

tree based indexing is rank-10 approach, k-d-b tree approach is rank-50, R-tree is

rank-50, and the hybrid approach is rank-1 based identification system for BATH

database.

• Table 5.8 shows performance of these indexing approaches on CASIAV3 database.

The number of clusters ranges from 2 ≤ m ≤ 5. The PR of the hybrid approach

is high (for CASIAV3) compared to k-d-b tree but BM achieved is considerably

low compared to k-d and k-d-b trees. The γ achieved using the hybrid approach

reduces due to high PR. This clearly highlights that though γ achieved is low

compared to k-d-b tree but hybrid approach achieves BM = 0, which is 0.05 in

case of k-d-b tree. As stated earlier, γ cannot be taken as a conclusive measure

rather a supportive evidence of the performance. This further substantiates the

use of pi as shown Table 5.9 for the conflicting cases.

Table 5.8: Identification performance of various multi-dimensional tree based
approaches on CASIAV3 database.

PR BM γ

m k-d k-d-b R-tree k-d k-d-b R-tree k-d k-d-b R-tree

2 0.11 0.011 0.11 0.09 0.19 0.03 0.90 0.91 0.93
3 0.14 0.017 0.11 0.14 0.07 0.02 0.86 0.96 0.93
4 0.15 0.018 0.11 0.09 0.04 0.02 0.88 0.97 0.93
5 0.28 0.018 0.12 0.04 0.05 0.00 0.83 0.97 0.94

• CMC curves of R-tree based indexing approaches are shown in Figure 5.15. The

k-d tree based approach is rank-200 system with maximum pi = 0.96 (please refer

Table 5.9), k-d-b tree is rank-100 with pi = 0.96, R-tree approach gives pi = 1

for rank-30, and the hybrid approach gives pi = 1 for rank-5 which is lowest in

comparison to other approaches.

• The most remarkable property of the hybrid approach is zero bin miss which is not

achieved by other indexing approaches. Further, the proposed hybrid retrieval

strategy when combined with R-tree improves the rank of identification by using
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Table 5.9: Probability of identification of various multi-dimensional tree based searching
approaches on CASIAV3 database

k-d tree k-d-b tree

R ↓ m→ 2 3 4 5 2 3 4 5

1 0.79 0.69 0.7 0.76 0.76 0.68 0.75 0.78
2 0.84 0.81 0.77 0.83 0.78 0.79 0.8 0.84
5 0.89 0.83 0.84 0.88 0.81 0.88 0.86 0.89
10 0.89 0.84 0.85 0.93 0.83 0.91 0.95 0.90
20 0.91 0.85 0.87 0.94 0.83 0.91 0.95 0.94
30 0.91 0.85 0.88 0.94 0.83 0.91 0.95 0.94
50 0.91 0.85 0.88 0.94 0.83 0.92 0.95 0.94
100 0.91 0.85 0.88 0.94 0.83 0.94 0.96 0.95

R-tree Hybrid

R ↓ m→ 2 3 4 5 2 3 4 5

1 0.75 0.78 0.74 0.77 0.96 0.97 0.96 0.98
2 0.81 0.85 0.83 0.85 0.96 0.97 0.97 0.99
5 0.87 0.9 0.9 0.91 0.97 0.98 0.98 1.00
10 0.93 0.95 0.93 0.96 0.97 0.98 0.98 1.00
20 0.94 0.96 0.96 0.99 0.97 0.98 0.98 1.00
30 0.96 0.98 0.98 1.00 0.97 0.98 0.98 1.00
50 0.96 0.98 0.98 1.00 0.97 0.98 0.98 1.00
100 0.96 0.98 0.98 1.00 0.97 0.98 0.98 1.00

an efficient matcher and weight. For brevity, the performance values obtained for

optimal cluster are shown in Table 5.10.

Table 5.10: Performance results of proposed multi-dimensional tree based indexing
approaches obtained for optimal choice of m.

Approaches
BATH CASIAV3

m BM PR γ pi R m BM PR γ pi R

k-d 9 0.00 0.03 0.99 1.00 10 5 0.04 0.28 0.83 0.96 200
k-d-b 4 0.00 0.05 0.97 1.00 50 4 0.04 0.018 0.97 0.96 100
R-tree 7 0.00 0.011 1.00 1.00 50 5 0.00 0.12 0.94 1.00 30
Hybrid 7 0.00 0.011 1.00 1.00 1 5 0.00 0.12 0.94 1.00 5

Experiment 2: Comparison with Local Feature based Indexing

The performance of various multi-dimensional tree based indexing

approaches (discussed in Experiment 1) are compared with geometric hashing [89]. In

this experiment, the results are also compared with exhaustive search to demonstrate

the merits of indexing biometric databases. The results of tree based approaches are

found at optimal cluster (m) as shown in Table 5.10. Comparative CMC curves of

various local feature based approaches are shown in Figure 5.16. The ROC curves
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Figure 5.15: Cumulative match characteristic curves of R-tree based searching
approaches.
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of various indexing approaches are shown in Figure 5.17. The accuracy of indexing

approaches are found at 0.01% FMR as shown in Table 5.11. The rank based

identification and recognition performance improves considerably using the hybrid

indexing approach. The experiments are performed using Matlab on Intel i5 machine

with 4GB RAM. Table 5.12 shows average retrieval time taken (in seconds) by various

indexing approaches. From the results it is found that the hybrid approach achieves

pi = 1 for low ranks. Though k-d tree performs retrieval in sufficiently less time

but hybrid retrieval approach exhibits considerable improvement in accuracy. The

penetration rate and hit rate (100-BM) are compared using other existing indexing

approaches on CASIAV3 database (please refer Table 5.13). From results it is found

that proposed k-d-b tree approach achieves PR of 1.8% which is significantly low

compared to state-of-the-art indexing approaches. The hybrid approach achieves 100%

hit rate for CASIAV3 database which is otherwise not achieved by other indexing

approaches.

Table 5.11: Identification and recognition accuracy of various local feature based
indexing approaches.

Correct Recognition Rate

Approach→
Database↓

Exhaustive Geometric
hashing

k-d k-d-b R-tree Hybrid

BATH 0.32 0.45 0.93 0.83 0.87 1.00
CASIAV3 0.58 0.82 0.76 0.75 0.77 0.99

GAR at 0.01% FMR

Approach→
Database↓

Exhaustive Geometric
hashing

k-d k-d-b R-tree Hybrid

BATH 2.70 0.37 31.623 25.82 40.03 77.61
CASIAV3 19.84 21.76 23.66 20.12 49.72 85.43

3The value of GAR is obtained at 0.05% FMR on BATH database for k-d tree based indexing.
ROC for k-d tree does not have representative values below 0.05% FMR.

Table 5.12: Average identification time (in seconds) taken by various local feature based
indexing approaches. The identification time reported in this table is the consolidated
time required to perform single retrieval and determine the rank of an individual.
Approach→
Database↓

Exhaustive Geometric
hashing

k-d k-d-b R-tree Hybrid

BATH 03.55 01.14 0.47 1.01 1.12 0.52
CASIAV3 19.44 09.22 0.32 1.04 2.25 1.09

111



5.4 R-tree Multi-dimensional Tree based Iris Indexing

1 10 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank (R)

P
ro

ba
bi

lit
y 

of
 Id

en
tif

ic
at

io
n 

(p
i)

 

 

Exhaustive Search
Geometric Hashing
k−d tree (m = 9)
k−d−b tree (m = 4)
R tree (m = 7)
Hybrid (m = 7)

1 10 100
0.5

0.6

0.7

0.8

0.9

1

Rank (R)

P
ro

ba
bi

lit
y 

of
 Id

en
tif

ic
at

io
n 

(p
i)

 

 

Exhaustive
Geometric Hashing
k−d (m=5)
k−d−b (m=4)
R trees (m=5)
Hybrid (m = 5)

(a) BATH (b) CASIAV3

Figure 5.16: Cumulative match characteristic curves of different local feature based
indexing approaches.
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Figure 5.17: Receiver operating characteristic curves of different local feature based
indexing approaches.

Table 5.13: Comparison of different indexing approaches on CASIAV3 database (in %).
PR denotes penetration rate and HR denotes hit rate.

Year Author PR HR

2008 Mukherjee [74] 30 84
2010 Mehrotra [89] 24 76
2012 Dey [80] 14 91
2013 k-d tree 28 96
2013 k-d-b tree 1.8 96
2013 R-tree 12 100
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5.5 Summary

This chapter proposes various multi-dimensional tree based indexing approaches using

local features. The application of k-d tree for biometrics is found to be encouraging

but k-d tree is not scalable to new enrollments and the index structure often becomes

skewed. These issues are addressed using k-d-b tree that improves the identification

performance. However, the proposed indexing approaches still leaves scope for

improvement of identification accuracy. R-tree is applied for indexing biometrics

databases to further improve the probability of identification. For retrieval, a hybrid

coarse-to-fine searching strategy is proposed. The performance of multi-dimensional

trees and some state-of-the-art indexing approaches are compared in identification and

recognition scenarios. During identification, hybrid approach achieves pi = 1 for initial

ranks compared to existing indexing approaches. Further, the recognition accuracy

of hybrid approach, also outperforms existing indexing approaches. Empirically, the

average time taken by hybrid approach to perform single probe search is more than k-d

tree which is due to an additional overhead required by the proposed retrieval approach

to perform weighted matching. It is experimentally shown that the unique combination

of local and global features for retrieval considerably improves the identification

performance.
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Chapter 6

Effect of Aging on Iris Performance

Human growth or aging from newborn to toddler to adult to elderly is a natural

phenomenon. This process leads to changes in different characteristics such as height,

weight, face, gait, and voice. Several of these characteristics are being used as biometric

identifiers. In literature, it is well established that over a long period of time, some

biometric modalities such as face and voice can change, thereby reducing the recognition

performance. On the other hand, iris is considered to be one of the most accurate and

stable biometric modalities [3].

The objective of this thesis is to improve the performance of iris recognition systems

under practical scenarios. Aging is one such factor that can degrade performance over

the period of time. Existing literature supports that the performance of iris degrades

over time due to aging [107, 108, 109, 110, 111, 116]. However, recent NIST report

suggests that iris patterns are stable and do not change due to aging [120]. The

researchers do not have a consensus on the effect of aging in iris. The motivation

of this study is to use the existing publicly available iris aging databases to understand

iris aging and reasons for degradation in performance. In the experiments, it is

observed that increase in false rejection is due to poor acquisition, presence of occlusion,

noise/blur, and not due to aging. The quality values of the falsely rejected gallery-probe

pairs further substantiate the fact that the quality of rejected iris images taken from

two different sessions are different in comparison to the genuinely accepted pairs. This

chapter is organised as follows—Section 6.1 discusses the databases and algorithms used

to study aging. In Section 6.2, three different experiments are performed to find the

reason for degradation in performance over time. The key observations and summary

are given in Section 6.3.
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6.1 Materials and Methods

This research re-investigates the challenge of iris aging [107, 108, 109, 110, 111, 116].

The databases and algorithms used in this research are briefly explained below.

6.1.1 Databases Used

Two publicly available iris aging databases are used to investigate the effect of aging

on iris with the time lapse of two years and four years1.

1. ND-Iris-Template-Aging-2008-2010 Database: The images in the

ND-Iris-Template-Aging-2008-2010 database [111] are acquired using the LG 4000

iris sensor during spring 2008, spring 2009, and spring 2010. This allows to

conduct two different one year template aging studies, i.e., for the year 2008-2009

and 2009-2010, and one two year template aging study for 2008-2010. The number

of subjects for the study are 88, 157, and 40 for 2008–2009, 2009–2010, and

2008–2010 sessions respectively.

2. ND-TimeLapseIris-2012 Database: The ND-TimeLapseIris-2012 database

[113] contains images acquired with the LG2200 iris camera located in the same

studio throughout all the acquisitions. A total of 6797 images are collected from

23 subjects (46 irises) in between 2004 to 2008. The age of these subjects ranges

from 22 to 56 years where 16 subjects are male and 7 are female.

6.1.2 Commercial Matcher

Iris recognition is performed using the commercial VeriEye SDK [17], that has shown

good performance in the state-of-art evaluations by NIST [154]. VeriEye contains

advanced segmentation, enrollment, and matching routines2. For segmentation,

VeriEye uses active shape models that accurately detect contours of the irises which

are not perfect circles. The enrollment and matching routines are fast and yield very

high matching performance/accuracy.

6.1.3 Experimental Protocol

The experimental protocol used to perform the experiments are explained below for

each database.

1BATH and CASIAV3 databases do not possess temporal information and hence cannot be used
to perform aging study.

2For evaluation, the commercial matcher which has shown to yield accurate results is chosen such
that degradation in performance over time should not arise due to weakness of the algorithm.
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1. ND-Iris-Template-Aging-2008-2010: The protocol followed for this database

is same as provided by Fenker and Bowyer [111]. All the possible genuine

comparisons are provided as part of the protocol. In the experiments, short

refers to images captured within the same year whereas long refers to comparisons

across years. The cross session irises for this particular study refers to the images

captured over a time lapse of one or two years.

2. ND-TimeLapseIris-2012: The protocol followed in this study consists of two sets

of image pairs [113]. The short time lapse set consists of image pairs with no

more than 120 days of time lapse between them. The long time lapse set consists

of image pairs with more than 1200 days of time lapse. An image instance can

participate in multiple short and long time lapse pairs. Each image instance has

several associated attributes such as date of acquisition, unit, color, glasses, and

contact lens. For a genuine comparison, the units of two iris images must match

along with the time lapse mentioned above. However, in the experiments, some

false acceptance cases with exceptionally high scores (almost close to genuine

acceptance) were observed. On carefully analysing these images, we observed

that there are ground truth errors in the database due to incorrect ID labels.

These incorrectly labeled instances belong to ids: 04870d1810 and 04888d395.

The cases associated with these incorrectly labeled ids were not considered in this

study.

6.2 Results

If the performance degradation is caused due to aging, then this should hold true for all

genuine comparisons pertaining to an individual across different sessions. Therefore,

three sets of experiments are performed to closely study the cause of rejections that

happen over time. The detailed description and analysis of each experiment are given

below.

6.2.1 Experiment 1: Performance Evaluation

The first experiment is performed to compute iris matching accuracy for both short and

long time lapses. Genuine and impostor scores are obtained using the VeriEye SDK

on the protocols explained in Section 6.1.3. Table 6.1 shows the GAR at 0.001% FMR

for both long and short time lapses on the ND-Iris-Template-Aging-2008-2010 and

ND-TimeLapseIris-2012 databases. The results show that we are able to reproduce

the accuracies reported by the researchers [111, 113]. The distribution of genuine and
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impostor scores are shown in Figure 6.1. There is no evident shift in the impostor scores

whereas the genuine scores show a shift towards the impostor scores for the long time

lapse. Further, ROC curves in Figure 6.2 show a slight variation between long and short

time lapses. The performance with the long time lapse is slightly lower than the short

time lapse. McNemar test [155] shows that at 95% confidence interval, these results

are statistically significant. This experiment shows that there is a reduction in the

verification results in the long time lapse. However, the cause of shift in distributions

or decrement in genuine accept rate cannot merely be attributed to aging. Therefore,

the next experiments focus on determining the cause for performance reduction.

Table 6.1: Verification results for Experiments 1 and 2 on the two databases using
VeriEye [17]. The GAR is computed at 0.001% FMR.

Database Time lapse
Experiment 1 Experiment 2
GAR (%) Genuine Accepts False Rejects

2008-2009 (Short) 99.96 5434 0
2008-2009 (Long) 99.88 14202 17

ND-Iris-Template- 2009-2010 (Short) 99.90 6720 4
Aging-2008-2010 2009-2010 (Long) 99.88 15230 28

2008-2010 (Short) 100.00 5434 0
2008-2010 (Long) 99.90 13425 19

ND-TimeLapseIris-2012
Short 99.44 128690 815
Long 99.08 128875 1280

6.2.2 Experiment 2: Common Subjects Over Time

It is our hypothesis that for a given subject, if aging exists and if the false rejections

can be attributed to aging, then all the iris images of this subject with the same or

more time lapse should be rejected. With this hypothesis, the false rejection cases are

analysed to understand if the rejections are occurring due to aging or any other factor.

In the ND-Iris-Template-Aging-2008-2010 database, the subjects that are common over

multiple years are selected. There are 34 subjects common to 2008, 2009, and 2010

sessions. These common subjects are chosen to carefully study the cases of rejection

and investigate the corresponding cases which are otherwise accepted. Table 6.1

illustrates the total number of genuine comparisons pertaining to these 34 subjects

along with the number of false rejects. Here, all the experiments are performed using a

threshold that produces the FMR of 0% in order to solely concentrate on the cause of

genuine rejections over a period of time. Similarly, the rejections at 0% FMR from the

ND-TimeLapseIris-2012 database are also obtained (all 23 subjects are present in both

short and long time lapses). The number of genuine matches and false rejections at 0%

FMR are shown in Table 6.1. It is our hypothesis that for a given subject, if iris aging
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Figure 6.1: Histogram plots for Experiment 1 on (a), (b), and (c)
ND-Iris-Template-Aging-2008-2010 database and (d) ND-TimeLapseIris-2012
database.

exists and if the false rejections can be attributed to iris aging, then all the images of

this subject with the same or more time lapse should be rejected. Some observations

from this experiment are:

• Figure 6.3 illustrates sample cases of false rejection on the

ND-Iris-Template-Aging-2008-2010 database. It is interesting to note that

for time lapse 2008-2009 (Long), all the false rejections are caused due to a single

probe instance (spring_2009/05379d624)3 which is actually blurred. The same

instance when compared with other irises in 2009, for short comparison, also

leads to rejections. For 2009-2010 (Long), 28 false rejections are observed, which

3Each image instance in the ND-Iris-Template-Aging-2008-2010 is labelled as
session year/instance id where instance id contains the subject id as the first five characters
followed by the iris instance number.
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Figure 6.2: ROC curves for Experiment 1 on the (a), (b), (c)
ND-Iris-Template-Aging-2008-2010 database and (d) ND-TimeLapseIris-2012
database.

is the maximum in any year. These cases are also studied in detail and after

careful investigation, it is found that all the rejections are either due to blurring,

occlusion, off-angle, or pupil dilation.

• For two year time lapse, i.e., 2008-2010 (Long), there are 19 false rejections. It

is observed that these rejections are also due to noisy gallery or noisy probe

instances. Similarly, as shown in Table 6.1, there are 1280 cases of false rejection

for the long time lapse in the ND-TimeLapseIris-2012 database. This number

is actually very small compared to the total number of genuine matches, i.e.,

128,875. Here also, it is observed that the cases are rejected primarily due to

variations in quality (quality aspect is discussed as part of Experiment 3).

• Figures 6.4 and 6.5 show cases from the gallery image captured in one session
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Gallery Probe

spring_2008/05379d214 spring_2009/05379d624
Blurred probe image.

spring_2009/05455d488 spring_2010/05455d984
Gallery occluded

spring_2008/04261d1029 spring_2010/04261d1572
Rotated probe and subject wearing contact lens

spring_2008/05432d139 spring_2010/05432d886
Pupil dilation in gallery

Figure 6.3: Cases of false non-match for variation in time on the
ND-Iris-Template-Aging-2008-2010 database. Here, the gallery and probe instances
are taken from cross sessions and the possible cause of rejection is mentioned as a
remark. The image labels are provided for reproducibility.

and probe images captured in session from another year. It is observed that some

probe images of the subject match whereas others from the same session and

same subject do not match. Thus, it can be inferred that aging is not the cause
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of false rejections and there are other covariates/challenges involved.

• The test of proportions at 95% confidence interval, where

proportions
(

False Rejects
Genuine Matches

)
are calculated between one year, two year,

and four year differences also show that the proportions are statistically

non-significant.

6.2.3 Experiment 3: Analysing Quality of Rejected Iris Pairs

From Experiment 2, it can be inferred that the performance reduction on the

ND-Iris-Template-Aging-2008-2010 and ND-TimeLapseIris-2012 databases is not due

to iris template aging. Therefore, to determine the actual cause of degradation, the

image quality of the gallery and probe pairs are obtained. The quality of iris images

is assessed using the quality assessment algorithm proposed by Kalka et al. [156]. It

computes quality metrics such as blur, rotation, off-angle, and occlusion to determine

a single composite quality score. The quality values of the gallery and probe images

are obtained for the falsely rejected and the corresponding genuinely accepted pairs of

these subjects over the long time lapse. Let q be the quality of an input iris image.

For a gallery and probe iris image pair i, the absolute difference, ci, is calculated as

ci = |qgallery−i − qprobe−i|. This absolute difference is calculated for all the selected

genuine accept and false reject cases and ∀i, q̃ = median{c1, c2, · · · , ci} is obtained.

Table 6.2 illustrates the median quality differences for the examined datasets. It can

be observed that q̃ for falsely rejected pairs is higher than genuinely accepted iris pairs.

This observation suggests that the pairs are falsely rejected because of the increased

difference in the quality of the gallery and probe image pairs.

The results of these three experiments put together suggest that the false rejections

on the two iris databases are due to occlusion, rotation, blurring, illumination and pupil

dilation or constriction and not because of iris template aging.

Table 6.2: Difference between the quality scores of the gallery and probe pairs (q̃) for
Experiment 3.

Database Time lapse
Quality Difference (Median)

Genuine Accepts False Rejects

2008-2009 (Long) 0.17 0.46
ND-Iris-Template-Aging-2008-2010 2009-2010 (Long) 0.26 0.36

2008-2010 (Long) 0.14 0.27
ND-TimeLapseIris-2012 Long 0.12 0.16
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Gallery Rejected Probe Accepted Probe

spring_2008/05379d194 spring_2009/05379d624 spring_2009/05379d567

Iris image from 2008 session when compared to a blurred iris image of the same person from
2009 session leads to false rejection whereas the same iris when compared to a good quality iris
image from 2009 session leads to genuine acceptance.

spring_2010/05379d1002 spring_2009/05379d624 spring_2009/05379d712

Iris images captured in 2009 and 2010 sessions. Rejected probe image is blurred.

spring_2008/04261d1029 spring_2010/04261d1572 spring_2010/04261d1540

Iris images compared across 2008 and 2010 sessions where probe image from rejected case
showcases larger head tilt relative to the accepted probe.

spring_2010/04261d1571 spring_2008/04261d1014 spring_2008/04261d1016

Comparison across 2008–2010 sessions for subject wearing contact lens.

Figure 6.4: Illustrating cross session iris comparisons for the
ND-Iris-Template-Aging-2008-2010 database. The gallery instance (1st column)
is compared to probe images (columns 2 and 3) that belong to the same session. While
one probe is rejected, the other probe image for the same session is accepted. The
cause of rejection is stated as remark below the images. These examples illustrate that
aging is not the key factor in performance degradation on this database rather other
factors affected the recognisability.
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Gallery Rejected Probe Accepted Probe

02463d1167 02463d3138 02463d1902
Pupil dilation of the rejected probe image.

04385d996 04385d1431 04385d1410
Rejected probe image is blurred.

05044d1395 05044d937 05044d710
Rejected probe image is occluded and blurred.

Figure 6.5: Cross session iris comparisons for the ND-TimeLapseIris-2012 database.
The accepted and rejected probes belong to the same session.

6.3 Summary

Recent results initiated the discussion on whether aging affects iris templates or not.

Several researchers used the ND iris template aging databases to establish the iris aging

effect. Contrary to the existing results, it is found that the reduced performance of iris

recognition may not be caused by aging but due to noise and differences in the quality

of gallery and probe pairs. Some key observations are:

• Though, for long time lapse, genuine score distributions demonstrate a shift

towards the impostor score distributions, empirical investigation suggests that

the rejections are caused by improper capture that leads to occlusion, rotation,

blurring, illumination, and pupil dilation or constriction in iris images.

• The analysis also suggests that had aging been the cause of rejections then this

should uniformly affect the performance. However, only few samples with time

difference are rejected and other samples of the same subject with similar time

difference are accepted.
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Chapter 7

Conclusions

A generic iris recognition system delineates iris from the acquired image, characterises

iris patterns using features and exhaustively search the database to claim the identity

of an individual. In this thesis, the propositions are made to develop feature extraction,

match score level fusion, and indexing approaches for iris biometrics. The experiments

are performed using publicly available BATH and CASIAV3 iris databases. Further,

an investigation has been made to study the effect of aging on the performance of iris

biometric system.

The input iris image is segmented to generate sector based annular iris image. In

Chapter 3, a feature descriptor (F-SIFT) is developed that combines the merits of

Fourier transform with SIFT. Fourier transform has the property of characterising the

repetitive patterns such as texture and SIFT possesses invariance to various possible

transformations, occlusion, and illumination. The unique combination of Fourier and

SIFT improves the recognition performance. From the experimental results, it is

found that on CASIAV3 database, F-SIFT performs better compared to other keypoint

descriptors like SIFT and SURF. The performance is comparable to SURF on BATH

database. The results highlight the efficiency of customised SIFT descriptor designed

for iris biometrics.

The matching scores from both the units of iris (left and right) are unified to improve

the performance of existing iris recognition system. For fusion, a novel classifier is

proposed in Chapter 4 that incorporates incremental and granular learning into RVM

to develop Incremental Granular Relevance Vector Machine (iGRVM). This classifier

is scalable, faster and can be trained with unbalanced large training samples. A case

study is performed for multi-biometric score classification using standard match score

databases. Results suggest that the proposed variant performs better than the original

RVM classifier and comparable to existing classifiers such as LR and SVM. iGRVM

significantly reduces the testing time compared to SVM.
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The results of proposed iGRVM are found to be encouraging, which motivates its

application for fusion. The scores from multiple units of iris are taken as d-dimensional

vectors, which are classified using the proposed iGRVM. The performance improves over

single unit iris recognition. Another proposition is to design a fusion framework where

the match scores from individual units of iris are passed as an input to the corresponding

iGRVM classifier and the posterior probabilities are combined using weighted sum rule.

The fusion approach further boosts the performance over classification of scores.

During identification, the search space of large biometric databases can be reduced

through indexing. In Chapter 5 various local feature based indexing approaches are

proposed using multi-dimensional trees. Local features are extracted directly from the

annular iris image using SIFT. The keypoints sharing similar descriptor property are

clustered, and the cluster centers are used to generate corresponding k-d trees. The

probe iris image is searched using KNN. Though k-d tree improves searching time,

but insertion into the tree is not dynamic. This is not suitable as biometric databases

are continuously updated to new enrollments. These issues are resolved by applying

another data structure known as k-d-b tree, which is scalable and height balanced. The

k-d-b tree reduces the search space to 5% and 1.8% on BATH and CASIAV3 databases

respectively.

The application of R-tree generates an indexing approach with no bin miss. To

further improve the rank of identification for R-tree indexing, a hybrid coarse-to-fine

searching strategy is proposed. The hybrid approach performs retrieval using range

search followed by weighted matching of global features. The unification of R-tree and

hybrid retrieval achieves CRR of 100% and 99% for BATH and CASIAV3 databases

respectively. The time required to claim identification is comparable to proposed k-d

tree based indexing.

Recently, some research investigations are done towards the effect of aging on iris

recognition performance [16, 110]. Motivated by these studies, an effort has been made

to find if aging effects the iris pattern over the period of time. Chapter 6 shows an

empirical study on ND Iris Template Aging databases acquired over the time lapse

of four years. The false rejections are found by fixing the false acceptances at 0%.

The rejection cases are studied individually to find if degradation in performance is

due to aging or some other covariates are involved. Further, the difference in quality

is found between the gallery and rejected probe iris images. Quality results showcase

that the rejections are mainly because of noisy gallery or probe iris instances. It has

been observed that the performance of iris recognition is not affected due to aging. If

aging causes rejection over time, then this should uniformly affect all the comparisons,
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which is not found to be true.

Scope for Future Work

The work described in this thesis unwraps some interesting research directions. During

feature extraction, the performance of proposed F-SIFT approach can be enhanced

by combining spatial and frequency information to generate the descriptor. The

performance of F-SIFT is encouraging during the recognition mode. The application of

F-SIFT for fusion and indexing is not explored in this thesis and can be considered for

future study. The proposed indexing approaches are implemented in serial architecture.

The retrieval time can be further reduced by searching the multi-dimensional trees in

parallel.

Iris template aging is an important research problem which requires a longitudinal

study; similar to face biometrics where 2-60 years time lapse are studied. To conduct

a proper study, a controlled iris database is required over a period of several years in

which the images should not be affected by other factors/covariates of iris recognition.
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