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Abstract

With ever changing world, visual surveillance once a distinctive issue has now became

an indispensable component of surveillance system and multi-camera network are

the most suited way to achieve them. Even though multi-camera network has

manifold advantage over single camera based surveillance, still it adds overheads

towards processing, memory requirement, energy consumption, installation costs

and complex handling of the system.

This thesis explores different challenges in the domain of multi-camera network

and surveys the issue of camera calibration and localization. The survey presents an

in-depth study of evolution of camera localization over the time. This study helps in

realizing the complexity as well as necessity of camera localization in multi-camera

network.

This thesis proposes smart visual surveillance model that study phases of

multi-camera network development model and proposes algorithms at the level of

camera placement and camera control. It proposes camera placement technique

for gait pattern recognition and a smart camera control governed by occlusion

determination algorithm that leads to reducing the number of active camera thus

eradicating many overheads yet not compromising with the standards of surveillance.

The proposed camera placement technique has been tested over self-acquired

data from corridor of Vikram Sarabhai Hall of Residence, NIT Rourkela. The

proposed algorithm provides probable places for camera placement in terms of 3D

plot depicting the suitability of camera placement for gait pattern recognition.

The control flow between cameras is governed by a three step algorithm that

works on direction and apparent speed estimation of moving subjects to determine

the chances of occlusion between them. The algorithms are tested over self-acquired

as well as existing gait database CASIA Dataset A for direction determination as

well as occlusion estimation.

Keywords: Visual surveillance, Multi-camera network, Multi-camera localization, Gait

biometric and camera placement, Height based identification, Perspective view analysis, Occlusion

determination algorithm, Motion direction estimation.
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Chapter 1

Introduction

Vision is an ideal sensing mechanism and since the evolution of cameras, image

processing are perceived as solution of many complex real world problems.

Processing of images first require that they should be represented in proper format

for which the one dimensional signal has up-scaled its dimension to image and

thereby increasing its processing complexity. The complexity has further uplifted

in video processing with an additional dimension. Complexity in video processing

is also compounded by inter frame and intra frame processing. The wide scope of

image and video processing find its implementation in almost every walk of life, be it

medicine or engineering, space or mining, agriculture or weather forecast, image and

video processing are omnipresent. In recent days, visual surveillance has became

an important issue that has been greatly deciphered through video processing. An

important application of video processing is visual surveillance. As the demand of

sophisticated visual surveillance mechanism prevailed, so is the research over the

constraint of earlier surveillance systems are much discussed and it resulted in a

paradigm shift toward visual surveillance through multi-camera network.

Multi camera network (MCN) overcomes many limitations of single camera

surveillance systems like restricted field of view, no options for best view synthesis,

partial and full occlusion of subject during tracking. Multi-camera based surveillance

although considered as the solution to overcome these limitations of single camera
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Chapter 1 Introduction

based surveillance but are more complex. They require higher installation cost and

complex algorithm for handling as well. This thesis concentrates on understanding

research challenges in multi-camera based visual surveillance and presents survey,

proposals, experiments and results towards development of smart multi-camera

network based surveillance system.

Next section discusses various research challenges in MCN. Some of the research

challenges are extensively studied and discussed in Section 1.2. The organization of

the thesis is presented in the last section.

1.1 Research Challenges in MCN

As the demand for fool-proof tracking algorithm prevailed, so is the paradigm shifted

from single to multi-camera network model. These systems are more useful for

tracking in crowded places and highly protected areas. This can be equipped with

a variety of cameras and distributed processors to even amend the functionality of

tracking. Here are a few reasons that made the mode of surveillance to change from

single camera to MCN:

(i) Growing importance of visual surveillance

(ii) Coverage area becoming larger and more complex.

(iii) Occurrences of occlusion can be avoided.

(iv) Best view synthesis algorithms can be applied when multiple views of the same

scene are available.

(v) Decreased cost of sensors and other hardware in recent years.

(vi) Can be made smart and interactive with variety of cameras, distributed

processors, and state of the art software.

A multi-camera system can avoid occlusion and can provide robust tracking but

are not as simple and energy-efficient as single camera systems. Although a camera

2



Chapter 1 Introduction

system installed in master-slave mode [9], has the energy efficiency but the entire

region under coverage should come under master camera’s view. Towards making

the multi-camera model efficient, few other works have also been proposed. Kulkarni

et al. have proposed an approach for efficient use of multiple cameras by devising

multi-tier camera network called SensEye [1, 2]. This approach is energy efficient

although it has a complex hardware architecture and diverse software requirement.

Even though surveillance through MCN has many advantages over single camera

system, yet it has some bottlenecks that restrict the use of MCN to serve only some

vital requirements. Some of the limitations are:

(i) Need additional processing.

(ii) Require extra memory.

(iii) Consume superfluous energy.

(iv) Have higher installation cost.

(v) Demand complex handling and implementation.

(vi) Obligate localization and calibration.

(vii) Need suitable camera placement.

Some of the key research challenges are identified as in Figure 1.1 and are briefly

discussed here.

Camera and Camera Network When many cameras are allied via a network,

so that they can interact among them, they form a camera network. Deciding

the type of camera network is one of the major issue in MCN. Based on

inter-sensor communication, a camera network may follow centralized, decentralized,

or distributed architecture for interconnection. Figure 1.2 shows the diagrammatic

representation of centralized, decentralized, and distributed camera network. In

centralized network, a single node receives raw information from all the cameras

3



Chapter 1 Introduction

Multi Camera Network

Architectural 

Design of

Camera Network 

Object

Identification

Object

Tracking and 

Detection

Camera Calibration

and Localization

Camera

Placement
Camera

Control

Survey on Camera

Localization and

Calibration

Efficient Camera 

Placement Algorithm

for Gait Pattern

Recognition

Occlusion Handling

Algorithm for

Smart Camera Control

Figure 1.1: Research challenges in MCN. Rectangular blocks states the contribution

made in the thesis.

and processes them at a central place. This architecture is although not suitable for

real time implementation and larger networks due to lack of scalability, high energy

inefficiency, and amount of data transfer at the central processor. In decentralized

network, cameras are clustered and member of each cluster communicate to their

local centres. Here communication overhead is reduced and higher scalability is

achieved. To even uplift the scalability, and reduce communication cost; distributed

camera network is castoff, which does operate without local fusion centres. In

distributed camera network, small processing units are assembled with each camera

unit that enables them to process their acquired information in distributed way and

hence the system makes a smart and efficient usage of bandwidth. They are ideal

for complex utilities like intricate surveillance and coverage of outdoor games, as

they provide faster communication and also the bandwidth and computations are

distributed and shared.
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Identification In MCN based surveillance, identification is an important task. A

surveillance system is expected to identify objects, people or an event and should

be smart enough to analyse the identification results and draw conclusions. Event

recognition is a challenging task and finds challenges at the levels of acquisition,

training of the system and analysis. People identification suffers from acquisition

challenges, occlusion, and low resolution imaging. Face identification, visual tagging,

and gait based identification are perceived as solution of identification.

Object Tracking Object tracking is achieved by estimating the trajectory of an

object in an image plane as it moves around a scene. Regions, contour, feature points

and templates are used in different methods of object tracking. In visual surveillance

using MCN, object tracking is a famous research issue. The cost associated with

computing and communication in MCN depends on the amount of co-operation

performed among cameras for information gathering, sharing and processing for

decision making and towards reducing estimation error. With different camera

networks, the number of data fusion centres for the network varies and hence with

different camera networks, different challenges are introduced.

Camera Calibration and Localization The position and orientation of a

camera plays an important role in the performance of MCN. A well calibrated and

localized camera network reduces the overheads at the level of acquisition as well as

processing. A detailed survey has been presented in the next section that discusses

the evolution of camera localization in detail.

Camera Placement Placement of camera is also one of the major research issue

in MCN based surveillance. Most of the early camera placement techniques are

developed for minimizing number of field cameras or maximizing the the coverage

areas. However, with advancement in research towards surveillance issues task

specific camera placement has been also studied. A study over camera placement

has been presented in the next section.
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(a) Centralized Camera Network

(b) Decentralized Camera Network

(c) Distributed Camera Network

Figure 1.2: Images of Different camera network.

Camera Control In MCN based surveillance the flow of control among the camera

is very crucial in order to exploit its architecture. An algorithm of camera control

determines condition or set of conditions that trigger the control from one camera to

another. In the next section a study has been presented where occlusion avoidance

is the issue of camera control.

6
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1.2 Literature Survey

In order to understand the challenges identified at different levels of MCN

based surveillance, study has been performed on different domain of MCN based

surveillance.

Section 1.2.1 presents an extensive survey on camera calibration and localization

that portrays the diversity in the approach of achieving camera localization. The

survey explores evolution of camera localization, different approaches of camera

localizations and comparison among different localization methods. Section 1.2.2

highlights the need of camera placement in MCN based surveillance. Task specific

camera placement has been explored for different task and a study on camera

placement with gait pattern recognition as test case has been presented. Section

1.2.3 presents a study over camera control in MCN for occlusion avoidance. Various

approaches where camera control is governed by occlusion avoidance mechanism are

discussed in the context of single camera as well as multi-camera based surveillance.

1.2.1 Camera Localization and Calibration

Location of camera in an MCN plays important role in its performance. These

locations are given by certain number of parameters, which define its position

in global frame. These parameters help in achieving view interpretation and

multi-camera communication in MCN and are called camera calibration parameters.

Camera calibration parameters include a set of intrinsic constraints i.e. focal range,

principal point, scale factors, and lens distortion and a set of extrinsic calibration

parameters like camera position and its orientation. Intrinsic calibration parameters

are very much dependent on camera make and are valuable in deciding the suitability

of camera for a typical purpose. On the other hand, extrinsic parameter give the

camera pose (position and orientation) and decides the position of camera as well

as the subject in global frame. These extrinsic calibrations in a network of multiple

cameras are also called as camera localization. This section presents an in-depth
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Chapter 1 Introduction

study on camera localization, exploring the advent of localization techniques with

gradually increasing complexity of MCN.

For the operation of multi-camera network, information of location of other

cameras is the pre-requisite for each camera. This process of establishing a relation

among the camera coordinates is termed as camera localization. Manual localization

methods of multi-camera network failed to handle large number of cameras in

network. Automation of the localization process started gaining importance to

ascertain accuracy and real-time localization. One of the primitive automated

solutions to localization has been through GPS [3]. However, it has failed mostly due

to the poor resolution. Efforts have also been made towards developing localization

algorithms on single processor after collecting images from all the networked cameras

in a single room [4,5]. But in practical scenario, large number of cameras producing

high volume of images and video data makes the analysis time-consuming on single

processor. The subsequent attempts of developing localization algorithms deploy

more than one processor concurrently to achieve real-time localization. These

approaches differ in variety of coverage areas, assumptions made on deployment

of the nodes, and the way sensors work [6].

Pioneer works

Early automated localization techniques for static sensors, viz. non-camera equipped

networks have used ultra-sound, radio, or acoustic signals [7]. Likewise, moving

sensors like robots have exploited LED based techniques for their localization.

However all the methods proposed have been based on heuristic approaches and

lagged theoretical foundation of network localization until Aspnes et al. [8] have

identified specific problems and solved them theoretically. This work, motivated by

previous work of Eren et al. [9], have attempted to give systematic answer to the

following questions:

(i) conditions for unique network localizability.

8
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(ii) computational complexity of network localization.

(iii) complexity of localization in typical network deployment scenario.

The authors have established the localization problem in sparse graphs to be

NP -hard unless P = NP . For dense graphs, localization has been shown to be

possible as explained by Biswas and Ye [10].

The notion of centralized processing has been predominant in early camera sensor

localization techniques. Authors of [4] have analyzed human action in a closed

environment. Stereoscopic reconstruction of virtual world based on depth calculation

from multiple real scenes captured through multiple cameras have been attempted

in [5]. Aforementioned experiments revealed the importance of proper positioning

and orientation of cameras for best coverage of view area. Various researches have

attempted to solve the pose (location and orientation) of cameras in the network.

Funiak et al. [11] have proposed a novel approach of relative over-parameterization

(ROP) of the camera pose. However, some approaches have been successful to

calculate relative locations only, but failed to estimate orientation of each camera.

GPS based approaches Hartley and Zisserman [3] have been successful in finding

approximate relative location of cameras however the reasons of its failure are:

(i) inability to resolve camera orientation.

(ii) low resolution results.

(iii) costly hardware requirement.

(iv) high power consumption.

Work in [12] proposes a protocol that utilizes GPS and LED based localization.

But this protocol needed human-assistance, which failed for large number of cameras

deployed in a wide coverage area. Hence several distributed computing algorithms

[11, 13–15] have come into play to produce accurate and real-time localization

solution to large number of networked cameras.

9
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Vision-based localization

A stringent requirement of vision-based approach has been foreseen by the

researchers as localization through GPS was neither accurate nor able to provide

orientation. The necessity of vision-based localization is only image data. However,

vision based localization algorithms impose a deployment constraint that there

must be an overlap between view of cameras in the network. This constraint is

analogous to the constraint in general transreceiver sensor network. Inspired by

the graph theoretic representation [16] of connectivity among sensors (Figure 1.3),

vision graph [13] with M networked cameras is introduced to be G(V,E) defined on

V = {Vi|i = 1, . . . ,M}, and E = {Eij |Eij ∈ {0, 1}; i, j = 1, . . . ,M} representing

cameras as vertices and vision overlap as edges respectively. [17] introduced the

concept of weighted vision graph, where each eij has been assigned a weight wij

corresponding to the number of common points between ith and jth cameras. To

serve the purpose of realigning all camera pose to a single network-wide coordinate

frame, some researchers have come up with solutions that require triple-wise camera

overlaps [13, 18], implying the need of densely deployed network, where as some

researchers have proposed to position a camera in the network such that it is in

view-overlap with all other cameras in the network [19]. Some researchers have

used an LED-lit rod of known length to be placed at a position visible from all

cameras to establish consistent scale [17, 20]. As the densely deployed network

is not cost-optimized, researchers have come up with localization solution for

relatively sparsely deployed network [17, 21], and subsequently also for networks

with non-overlap [22, 23]. The following paragraphs explain visible and invisible

LED based techniques, and the formation of epipolar geometry behind resolving

view-overlap.

LED based approaches to minimise view-overlap Techniques based on LED

(emitting visible or infrared spectrum) have reduced the view overlap leading to

relatively sparsely deployed network. Use of LED reduces the view-overlap to be

10
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(a) Transreceiver range overlap of sensors (b) Sensor connectivity graph

(c) View overlap of networked cameras (d) Vision graph

Figure 1.3: Analogy between formation of sensor connectivity graph and vision graph

pair wise. A few recent works based on epipolar geometry have been reported to

reduce the density of overlap while maintaining the localizability of each camera.

In some other reported literature, two LED markers are placed on both ends of a

fixed metal rod of known length. The time synchronized detection of LED provides

correlated feature points [17,20]. From the known length of the rod, unknown scale

factor has been resolved. Authors in [24,25] have also exploited LEDs for modulated

emission.

Depth measurement is required for 3D localization. Since a camera cannot fetch

depth information from a perspective view, hence an explicit distance measurement

11
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technique is essential. Authors in [19] have used three LED markers to form a

triangle to estimate distance measurement needed for 3D localization. Authors

in [24] have experimentally verified that three LEDs in a triangle with known

dimensions can avoid explicit distance measurement. Earlier, explicit distance

measurement had been in common practice [26, 27]. In another work, global

co-ordinates are taken from GPS-based calibration device for computing pose of

camera, while image coordinates are calculated from LED of the camera [12].

While most of the research in this direction employ visible LEDs to mark

location and general cameras to sense the LEDs, techniques for localization through

invisible markers (sensed with IR sensors) also gained its importance as invisibility

of markers do not impair the scenery. The invisible markers are made of translucent

retro-reflectors which are visible only in IR illumination [28]. Localization techniques

through invisible markers are costlier than localization through visible markers as

they employ extra IR sensor along with general cameras that are intended to be

localized [29]. Early invisible marker techniques have used infrared markers for

estimating positions while orientations have been estimated through gyro meter

only [30, 31]. However, later the known geometry of the invisible markers has been

exploited to estimate both the position and orientation of the markers from its view

projection [32].

Epipolar geometry to resolve view-overlap Epipolar geometry [33, 34]

provides a 3 × 3 singular matrix describing the relation between two perspective

images of the same rigid object from two cameras. Epipole is the line connecting any

two cameras seeing the same object (Figure 1.4). The point where epipole meets the

camera frame is epipolar point and hence epipole can also be realized as a collection

of epipolar points between corresponding frames of two cameras (Figure 1.4(a)).

Epipolar geometry has the basis that any object (in 3D coordinate) observed by

two cameras and their projections are co-planar [3] (Figure 1.4(b)). The essential

matrix formulated from epipolar geometry is further used for localization and camera
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(a) Epipole as a collection of epipolar points

(b) Epipole and epipolar plane

Figure 1.4: Formation of epipolar geometry

calibration [17,35]. Kurillo et al. and Medeiros et al. [17,20] have employed Epipolar

geometry to resolve point correspondence problem [36] and unknown scale factor [37].

In decentralized and distributed communication paradigm of multi-camera

network, point correspondence problem can be solved through:

(i) measurement correspondence (where features of an object seen from different

cameras are wrapped into a common view prior to state estimation).

13
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(ii) trajectory correspondence (where state estimates are computed independently

in each view) [38, 39].

A recent work of Bulusu et al. [40] exploits correspondence among trajectories

estimated by Kalman filter to recover poses of non-overlapping cameras. Table 1.1

summarizes few landmark researches towards solving point correspondence problem.

Authors in [17] have used it for camera position and orientation. Researchers

in [13,40] have also used epipolar geometry for camera localization. Authors in [19]

have proposed sensor assisted camera localization and have examined Measured

Epipoles (ME) [41] and Estimated Epipoles (EE) [3]. They have also formulated

a more constrained optimization problem, Optimized Estimated Epipole (OEE) to

reduce the error in noisy Estimated Epipoles.

Table 1.1: Different approaches to solve point correspondence problem

Year Author Approaches

2004 Mantzel et al. [13] Time-synchronization correlation of feature points

(extracted by tracked motion)

2005 Lymberopoulos

et al. [19]

Deploying nodes with self-identifying lights (fails in bright

or specular-filled environment)

2006 Devarajan et al.

[42]

Scale Invariant Feature Transform (SIFT) based feature

point correlation

2008 Medeiros et al.

[20]

Time-synchronization correlation of feature points (using

LED rod) + Recursion on fundamental matrix to refine

camera positions

2008 Kurillo et al. [17] Time-synchronization correlation of feature points (using

LED rod) + Bundle adjustment to refine camera positions

2010 Kassebaum et al.

[43]

3D Target of known geometry and pairwise projection

matrix estimation for point correspondence

Consensus and Belief Propagation-based Localization

A consensus algorithm is an interaction rule that specifies the information exchange

between an agent and all of its neighbours on the network. Consensus algorithms
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are used in many situations, viz. distributed formation control, synchronization,

rendezvous in space, distributed fusion in sensor, flocking theory [44].

Consensus algorithms are used for getting global pose of a camera in a network,

and have been used for localization with range measurements [45, 46]. Tron and

Vidal [47] have generalized the consensus algorithm for estimating pose of each node

from noisy and inconsistent measurements.

On contrary to this, notion of belief propagation have also been proposed for

establishing localization [14]. Belief propagation is a message passing technique

for graphical network model which have been applied for scene estimation, shape

finding, image segmentation, restoration, and tracking [48–52]. Belief propagation

has originally been developed for trees. When applied for graphs with cycles,

inferences (belief) might not converge, and even if convergence occurs, density is not

guaranteed [53, 54]. The non-convergent form of belief propagation (Loopy Belief

Propagation (LBP)) [53] is used in sharing localization parameters in multi-camera

localization.

Authors in [55] have presented a more robust algorithm than belief propagation

in several aspects. This approach has been extended by researchers in [56] for

localization of robot in multi-camera scenario (SLAM: Simultaneous Localization

And Mapping) [57] where a robot observes all the landmarks and estimates its

location and position of the landmarks. A similar concept has been proposed by

Funiak et al. [11] for camera localization (SLAT: Simultaneous Localization And

Tracking), where the camera replaces the landmarks and robot is replaced by a

moving object. Robot observes the landmarks in SLAM (Figure 1.5(a)), whereas

cameras observe the object in SLAT (Figure 1.5(b)). Funiak et al. [11] has also

proposed Relative Over-Parameterization (ROP) to represent the distribution in

SLAT problem using single Gaussian.

There had been efforts to find the trajectory of object and pose of camera

simultaneously [11, 58]. In particular, Rekleitis et al.. have addressed the issue of
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localization in hybrid context of robot-camera network system [59], where object

localization takes place along with camera localization (SPLAM: Simultaneous

Planning Localization And Mapping) (Figure 1.5(c)). Here Robot can localize itself

treating cameras as its landmarks (similar to SLAM). Likewise, cameras can localize

themselves treating the robot as moving object (similar to SLAT). Estimation, local

planned behavior, and data fusion are done for effective collaboration of camera

network and robot in SPLAM.

(a) Simultaneous Localization

And Mapping (SLAM)

(b) Simultaneous Localization

And Tracking (SLAT)

(c) Simultaneous Planning

Localization And Mapping

(SPLAM)

Figure 1.5: Simultaneous localization techniques

Wireless and 3D Localization

With increasing coverage area and number of cameras in a network, wireless mode

of communication has grown its significance. Even though some research have been

performed over wireless sensor network, their localization algorithms [60–67] do not

hold good for camera network due to two main reasons:

(i) they do not achieve required accuracy for computer vision tasks.

(ii) they do not provide orientation of a sensor.

Lee and Aghajan [58] have proposed a wireless camera (connected by IEEE

208.11b protocol) localization algorithm capable of estimating both camera pose
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and trajectory of the object. This work has been experimented in 2D plane with

only five cameras, while authors in [20] have proposed four different localization

approaches simulated in a 20 × 20 × 20m3 3D region with 50 randomly placed

cameras. The system developed in [20] can perform in fully-distributed scenario,

and does not require anchor-nodes. This approach employs feature-based object

trajectory estimation, and hence performs depending on robustness of the used

feature-extraction algorithm.

3D image reconstruction has remained an active research area in computer vision

for many years. Tomassi and Kanade [68] have used matrix factorization as a way

for reconstructing a scene, as well as to estimate camera parameters and frame point

localization. This work has employed orthographic projection whereas authors in [69]

have used perspective projection to serve the same. Sturm and Triggs [27] has also

proposed more complete solution for measuring camera depth. Rahimi et al. [23]

have pre-computed the homographies between image plane of each camera, and a

common ground plane leading to 3D localization of cameras.

Lymberopoulos et al. [19] have proposed an algorithm that combines a sparse

set of distance measurements with image information of each camera. It uses three

LED triangles of known geometry for depth measurement. Tron and Vidal [47] have

taken the work to distributed level by applying consensus algorithm and thereby

enhancing the work of [6] and have generalized it from 2D to 3D.

Latest works on 3D camera localization include the work of [43]. Kassebaum et

al. [43] have used 3D target. This is similar to the 2D targets like checker boards

used earlier in [70, 71]. The advantage of 3D target is that in one frame it provides

all the feature points needed by a camera to determine its position and orientation

relative to the target. On detected feature points, DLT [72] is used to estimate

projection matrix. The algorithm reduces the cost of feature point detection, number

of overlaps and eliminates the unknown scale factor problem. Kassebaum et al. [43]

have experimented with error less than 1in when 3D target feature point fills only
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2.9% of the frame.

Concluding Remarks

Networked communication in early days used to exploit sound, radio and other

acoustic signals for localization of static sensors. However, with the development

of multi-camera network, it gradually became stringent to localize the nodes for

initialization of a camera-network. There are several method devised depending

on different types of coverage area, different strength of cameras in network,

different types of camera used, and different purpose of the camera-network. The

variation has been as wide as ranging from the work of Mantzel et al. [13] using 2D

object (checkerboard) to be feature for localization till latest work of Kassebaum

et al. [43] employing 3D target with error less than 2.9% and with decreased

cost of feature point detection. Table 1.2 illustrates and compares few landmark

researches to portray the variety of algorithms used, assumptions, experimental

setups and results thus obtained. There has also been change in application

domain of camera-localization and hence the need of precise localization. 3D

localization addresses the issue of localizing more number of unknown parameters,

whereas previous 2D localization dealt with less number of unknown parameters

considering few parameters to be known. Sensing the availability of low-cost

cameras, parallel research is going to make the localization algorithms distributed

rather than centralized. Researches have also been perceived in the direction of

accurate localization in presence of noisy environments, e.g. less number of available

feature points, feature points on the visual boundaries of the cameras etc. These kind

of algorithms are useful when number of cameras in a network is very high. However,

scope for future research lies in achieving precision towards 3D pose calculation of

camera.
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Table 1.2: Review of related researches on multi-camera localization

Approaches Algorithm Assumption Experimental Setup Constraints Results

Mantzel

et al.

(2004) [13]

DALT (localization through

triangulation, refinement

through re-triangulation of

3D points through iterations

Assumes at least

2 or more cameras

to be pre-localized

Not experimented practically; simulated

using 20 actual views of checker board

pattern with 156 corners (as feature

points)

Each camera linked

to 8 to 16 other

cameras; cameras were

pre-localized

0.25% of planarity error;

14mm error in 3m scale

Lymberpou-

los

et al.(2005)

[19]

Pairwise view overlap and

epipolar geometry based

estimation; ME and EE are

evaluated to propose OEE;

refinement through iteration

Coordinate

transformations

to distribute

rotation and

transformation

between camera

pairs

Indoor setup: 2 camera, 16 non camera

nodes; Outdoor setup: 80 nodes. Each

camera node consists of COTS OV7649

camera module having motion detection

and LED identification; all nodes carry

Lumex CCI-CRS10SR omnidirectional

LED

Resolutions used:

640 × 480 (VGA),

352 × 288 (CIF),

240×180, and 128×96

(SQCIF); cameras can

observe LEDs up to

4m.

Indoor experiment: error of

2− 7cm in a 6× 6m2 room;

outdoor experiment: error

of 20 − 80cm in an area

of 30 × 30m2; maximum

error at lowest resolution is

3.32cm

Funiak

et al.

(2006) [11]

Complex distribution of

SLAT is represented using

novel approach of single

Gaussian model ROP

(Relative Over positioning);

Quality of the solution is

represented explicitly by

uncertainty in estimate of

camera poses

Out of 3 position

parameters and 3

angles, paper

focuses on

3 parameters

(x, y, θ) assuming

rest to be known

Simulated in square area with 44

side-facing cameras tilted down about

35° and 50 downward-facing cameras

with pose estimation within 95%

confidence intervals; Experimented

practically in real network of 25 overhead

cameras, and a remote controlled toy-car

carrying a color marker moving around.

The subject is made to

move in a circular path

within the square area

Results of camera

placements are shown

in diagram for simulation

as well as experiment in the

article.

Continued on next page . . .
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Table 1.2 – continued from previous page . . .

Approaches Algorithm Assumption Experimental Setup Constraints Results

Rekleitis

et al.

(2006) [59]

SPLAM for both target and

camera localization; uses

3D markers over moving

robots as feature points;

information propagation

among cameras using

extended Kalman filter

The moving object

is a robot

7 camera nodes in a closed area consisted

with rectangular loop triangular loop

and a hall way of around 50m length;

robot traversed 3 times covering more

than 360m with 5 different movement

patterns to perform 10 trials each

Automated detection

and calibration system

allows 50 trials

and 1500 pattern

detections; occurred in

3 hours using 3.2 GHz

processor and Linux

4 different paths:

Stationary, 2 panel

translation, rotation,

and square are compared;

Standard deviation of

MSE in square pattern is

maximum as ux and uy

are 2.4 and 13.9 while in

2 panel translation it is

minimum as 3.6 and 5.0

respectively

Sweeney

et al.

(2006) [24]

Based on OEE as an

enhanced version of

direct epipole observation

(Measured Epipole) and

Extracting epipole from

fundamental matrix

(Estimated Epipole); LED

triangle of known geometry

for depth measurement

Pair wise

view overlap;

modulated

LED emission

for unique

identification

Camera used: imot2 nodes with COTS

camera; 2 camera nodes and 16

non-camera nodes with blinking LEDs;

indoor experiment in 6 × 6m2 area and

outdoor experiment in 30× 30m2 area

Cameras can see LEDs

up to 4m in test

condition; node to

node distance is taken

as 85cm (in indoor

condition) and 297cm

(in outdoor condition)

Indoor Experiment: OEE

7cm and ME 2cm with

probability 90%; Outdoor

Experiment: OEE 60cm

and ME 20cm with

probability 90%

Continued on next page . . .
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Table 1.2 – continued from previous page . . .

Approaches Algorithm Assumption Experimental Setup Constraints Results

Taylor

et al.(2006)

[7]

Camera with controllable

light source for signalling its

position to other cameras

for determining epipolar

geometry; triangulation

to determine the pose

of non-camera nodes;

refinement of pose values

through bundle adjustment.

At least 2 camera

nodes with

light sources

are required;

rest of the node

poses can be

estimated using

triangulation

Algorithm is only proposed; no

simulations and practical experiment

Not simulated or

experimented; hence

no experimental setup

Only algorithm is proposed;

hence no experimental

results

Farrell

et al.

(2007) [25]

Localizes both camera and

target; initially PTZ cameras

are used for localization,

then motes are localized

using magnetometers (a

non-imaging sensor); The

algorithm can perform

in centralized as well as

distributed scenario

PTZ cameras

are used initially

for localization

of nodes, once

localized,

non-imaging

sensors are used

further.

Simulated with 100 nodes distributed

randomly in 100 × 100m2 area; a subset

of 5, 10, 20 and 50 nodes are taken for

simulation; Experimented with 12 MicaZ

motes with omnidirectional LEDs and 2

PTZ cameras (each with 3 position and

3 DOF rotation parameters); a subset of

6 motes is considered

For each node many

PTZ parameters

are obtained, their

average is used for

final location; noise is

modelled synthetically

to match observed

noise

Simulation with different

subsets of 100 nodes are

taken, that shows the MSE

is minimum of 11.73cm with

a subset of 50 nodes and

maximum (96.25m) with a

subset of 5 nodes

Kurillo

et al.

(2008) [17]

Pairwise view overlap

is considered; Epipolar

geometry employed to

calculate essential matrix for

pose estimation; scale factor

determined by markers on

calibration bar; bundle

adjustment for refinement

All cameras are

pre calibrated and

synchronized

Simulated with 5 cameras.While

experimenting practically cameras are

internally calibrated using 10 × 15

checker board; 12 dragonfly firewire

cameras with resolution 640× 480 pixels

are used in 4.0m× 4.0m × 2.5m area

Two of the cameras

(7th & 11th) are

installed with 4mm

lens and rest with

6mm lenses. In vision

graph, camera # 3

is chosen as reference

camera

Simulation errors are below

0.2% for noise levels of

0.6 pixels and less; in

practical experiment image

re-projection error varies

from 0.0417 to 0.6750 as

noise level changes from 0.0

to 0.7

Continued on next page . . .
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Table 1.2 – continued from previous page . . .

Approaches Algorithm Assumption Experimental Setup Constraints Results

Medeiros

et al.

(2008) [20]

Pairwise view-overlap and

epipolar geometry based

estimation used; LED bars

used for feature point

detection and iterative

refinement; Four different

centralized and distributed

approaches are introduced

Cameras are

pre-calibrated

Not experimented practically, simulated

in an environment with the dimension of

the area is 20×20×20m3 ; 50 cameras on

side planes and top plane are randomly

placed; Single target moves randomly in

the area to calibrate the cameras

Bundle adjustment or

any such refinement

process is not applied

to keep it portable to

wireless setup; 8 ×

log2 k bits are required

for estimation of each

parameter, where k is

the number of objects

used for calibration

Translation error < 60mm

and converges to around

30mm when simulated for

longer time; Rotation error

< 1.20 and converges to

around 0.50 when simulated

for longer time.

Piovan

et al.

(2008) [6]

Node orientation calculated

using least square estimate

in a ring topology based on

angle of arrival sensing;

iterative estimation

algorithm to reduce the

effect of noise

A reference frame

is assumed to be

attached with

each of the node,

the first node

is labelled as

reference node

Simulated using complete graph with 10

points (as 10 different nodes) making

36 independent cycles; not experimented

practically.

The graph

representation of

camera-nodes is

considered to be

planner; noise between

a pair of nodes in

both the directions is

assumed to be different

Orientation localizability

error (shown as Mean

Square Error) reduces with

more iterations. As the

number of independent

cycle increases from

10 to 21 to 36, MSE

reduces from 0.08 to 0.03

to approximately 0.025

respectively

Continued on next page . . .
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Table 1.2 – continued from previous page . . .

Approaches Algorithm Assumption Experimental Setup Constraints Results

Tron and

Vidal

(2009) [47]

Consensus algorithm is

generalized for estimating

pose of camera nodes;

optimization of translation

and rotation through

iterations

Each camera

extracts a set

of 2D points

from each image;

Neighbouring

cameras can

have point

correspondence

between them;

All cameras are

synchronized;

communication

among cameras is

lossless

7 cameras each of focal length 1 are

distributed roughly in a circle of radius

8f ; Cameras connected as 4 regular

graph; 30 randomly distributed feature

points in a cubic area of 4.5f are

taken; 8 point algorithm used for point

correspondence problem; optimization of

rotation with 600 iteration, optimization

of translation with 3000 iteration and

optimization of overall variables with 100

iterations; experiment repeated for 100

times for each level of noise

Error in rotation

and translation with

zero-mean Gaussian

noise and standard

deviation of 0, 1,

2, and 3 pixels in

1000 × 1000 pixels

Error in rotation reduces

from 4.809% (initial) to

0.393% (after iterations)

when the image is

corrupted with zero-mean

Gaussian and 3pixel

standard deviation; error

in translation reduces from

0.291% (initial) to 0.331%

(after iterations) when the

image is corrupted with

zero-mean Gaussian and

3pixel standard deviation;

scale error remained

between 1.000% to 1.005%

as the deviation ranges

from 0 to 3 pixels

Kassebaum

et al.

(2010) [43]

Localization through

feature point detection

of a 3D target moved

through the network; DLT

method used for estimating

projection matrix, further

decomposed to get position

and orientation parameters

Connected vision

graph for pairwise

view overlap

A 3D target moved for feature point

collection; 5 smart cameras, other

nodes are COTS webcams of 640 ×

480 pixel resolution; simulated with

5 intrinsic parameters and 14 lens

distortion parameters (estimated using

Zhang’s algorithm)

Experimented 3 times

with feature points

occupying less than

3% of frame area; 16,

24, or 32 out of 48

available feature points

per grid are considered

Position error < 1inch

when the 3D target feature

points fill only 2.9% of the

frame

Continued on next page . . .
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Table 1.2 – continued from previous page . . .

Approaches Algorithm Assumption Experimental Setup Constraints Results

Anjum

(2011) [73]

Camera Localization Using

Trajectory Estimation

(CLUTE) is proposed;

Works on distributed

network of non-overlapping

cameras; Uses Kalman filter

to recover pose of camera

Known intrinsic

parameters

of cameras;

Cameras aligned

with respect

to presumed

reference

camera during

registration

Simulated with 4 and 8 camera network,

experimented with 4 camera networks;

To analyse in noisy environment, 5%

Gaussian noise is introduced in the field

of view of cameras

4 cameras used in real

time experiment with

cameras placed 3− 4m

apart; Field of view of

cameras are limited to

square region of 1.5m2

coverage area

Through simulation,

minimum translation error:

0.13unit and rotation error:

1.29°; Through experiment

with real data: minimum

translation error: 0.7unit

and rotation error: 10.33°
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1.2.2 Camera Placement for Gait Based Identification

Since the evolution of MCN; and with the increasing affordability and adaptability

of the system, many novel applications of MCN are developed. Sensing rooms,

assisted living for old age or disabled people, immersive conference rooms, coverage

and telecast of games and diverse applications in visual surveillance are to name

a few. With difference in priority of coverage, types and numbers of camera

and geographical conditions of coverage area, the placement of camera becomes

an important issue of research. Moreover, as the number of camera in such

system grows, the development of automatic camera placement technique becomes

very essential. Optimizing the placement of camera not only reduces the cost of

installation, but also increases the suitability of the system for specific task, thus

increasing its performance efficiency.

Approach towards achieving suitability in the camera placement depends on the

task MCN is intended for. Some of the strategies for camera placement with different

goals are:

(i) Minimizing the number of camera, to cover a given area.This type of constraint

helps in lowering the installation cost by reducing the number of camera.

(ii) Maximizing the coverage area with fixed number of camera. This type of

constraint helps in increasing coverage with fixed number of cameras thus

providing best coverage with given number and type of camera

(iii) Covering a human subject with maximum frontal view. This kind of

constraints gives better result in face identification, gesture recognition, and

visual tagging.

(iv) Covering for maximum orthogonal view. This kind of constraints are useful in

surveillance oriented task like identification through gait patterns, occlusion

handling while object tracking, height, and profile face based identification.
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(v) Covering for best view synthesis. Complex set of constraints like nearer view,

frontal view and/or larger view are used to achieve best view of a subject, such

constraints are required in covering games and identification oriented tasks.

Different Approaches for Suitability of Camera Placement

Different approaches have been employed to achieve optimality in camera placement,

viz. exact algorithms, heuristic algorithms, random selection and placement etc.

Exact algorithms are considered to be giving proper solution although it is complex

and time consuming. Such algorithms are preferred to solve strategies that involve

minimizing or maximizing a value, constraint to other variable. Aghajan and

Cavallaro [74] has discussed the cases where binary integer programming (BIP) is

used to achieve optimal camera placement. Some of the cases preferably solved by

BIP are :

(i) Maximizing the area under coverage with constraint to fixed number and

type of camera (having different sensor resolution and optics), different FOV

parameters and cost.

(ii) Minimizing the number of camera with constraint to fixed area under coverage,

different FOV and cost.

There are some scenario where mathematical modelling are rather complex and

hence exact solutions are time consuming. Such scenarios are solved by heuristic

approaches like Greedy search and Duel Sampling. There are some cases that are

solved with random selection and placement.

The problem targeted with BIP are mostly to cover maximum area or to minimize

the number of camera in camera array, however in many scenario, typically in

surveillance only covering a subject is not sufficient. Along with coverage of subject

its identification, gesture recognition, and occlusion avoidance are also necessary.
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Ercan and Yang [75] have proposed algorithm for optimal placement of camera

arrays so as to accurately localize a point object in camera co-ordinate. In case

of moving subjects Chen [76] has presented a camera placement algorithm that

concentrates on eradicating probability of occlusion while maintaining resolution.

This work has been further amended by Chen and Davis [77] for handling dynamic

occlusion. These solutions does not produce global optimum, however they are best

suited for the given constraints. Similar goals has been targeted by Ram et al. [78]

that has also considered orientation of the subject into account. This work has been

further enriched by Zhao et al. [79] for orientation and visual tagging of the subjects.

The work of Takashshi et al. [80] have also proposed optimal camera placement for

object recognition.

In case of large coverage area, linear programming based approaches are used

for determining minimum cost of sensor array for given area [81], however similar

work on visual sensors are used by Aghjan and Cavallaro [74] where coverage area

is divided into rectangular grids. The concept of divide and conquer are used to

approximate the optimal placement problem for large spaces, where each region is

divided into rectangular grids and the optimal solution for grids are merged for total

coverage space.

Optimal camera problem as such is a well studied problem and has close

resemblance with art gallery problem [82], however, it has some additional facts

like field of view of camera and camera pose. These camera placement problems are

further modelled to optimality problem with maximizing coverage area or minimizing

the number of cameras. These approaches provide a good job for view coverage of

an area. But this may not be appropriate for such problems where the purpose of

camera placement are task specific.Table 1.3 presents a few landmark research where

first two column are orthodox optimality problems and rest are application specific.

The table illustrates camera placement in different application domain to achieve

different objectives apart from optimality.
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The proposed multi-camera based surveillance model presented in this thesis has

the goal of subject identification and uninterrupted track of the subject. In chapter 3,

a divide and conquer based method for efficient camera placement has been presented

that finds suitable camera placement for gait pattern and height based identification.

It has been justified with a conducted experiment that orthogonal view of a camera

is best suited for height and gait pattern based identification. The large coverage

area is divided into rectangular grids and solution for each grid is merged to get final

camera placement.
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Table 1.3: Task specific optimal camera placement

Authors Application

Domain

Objective Basic Algorithm Assumptions Claims

O’Rourke

[82]

Art gallery problem Minimize number of guards

to cover an art gallery, with

variations like mobile guards,

exterior visibility and polygon

with holes

Triangulation All guards (cameras) have same

capability. No limitations of

resolution and sensor property

No or minimum camera view

overlap

Chakrabarty

et al. [81]

Minimum cost

sensor problem

Minimizing the overall cost of

sensors in the network, that

minimizes costs of camera setup

and operation

Integer Linear

Programming

and Divide and

Conquer

Circular range of sensors, hence

not directly applicable for visible

sensors

Unique identification of positions.

Minimum sensor cost.

Olague

and

Mohr

[83]

Camera network

design in

photogrammetry

Camera placement to reduce error

while 3D object reconstruction

Genetic Algorithm Pinhole camera assumptions.

Projective parameters are assumed

to be error free.

Proposed EPOCA system

produces two and three camera

network design successfully and

proposes a four camera design

Chen

and

Davis

[77]

Social surveillance

for dynamic

occlusion handling

Camera configuration for

handling dynamic occlusion

Triangulation Occlusion probability is

independent of spatial location.

Higher and lower quality

configurations for feature

capturing.

Zhao et

al. [79]

Visual tagging and

frontal face based

identification

Maintaining individual identity

through tagging and frontal face

coverage for face identification

Binary Integer

Programming and

Greedy Algorithm

All tags are in shape of square of

known length. All tags have same

height.

Camera placement for both self

and mutual motion. Greed

algorithm to compensate BIP.
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1.2.3 Camera Control for Occlusion Avoidance

For an MCN system that aims towards optimal usage of its resources, the efficient

handling and control of the system is as important as the localization and task

specific placement of camera. The previous sections of this chapter so far discuss

the developments in the mode of camera calibration in the form of an extensive

survey and discusses different approaches for finding suitable placement of cameras

in diverse contexts. This section presents a study on different approaches towards

handling occlusion in different camera models.

The efforts in technological growth have made way for the emergence of variety

of methodologies for tracking objects in diverse contexts. Different algorithms have

been designed for different requirements depending upon the mode of tracking,

location, significance and specific needs. The earlier tracking approaches have

implemented several image processing algorithms on the video output from a single

camera. Contour based tracking, background subtraction based tracking, Gaussian

based tracking, median filter based tracking, are some of the most studied and refined

technologies among them [84]. These algorithms are simple in implementation, fast

in processing and analysis. However, they are limited with constant field of view

and suffer from occlusion of the tracked subject.

As the demand for fool-proof tracking algorithm prevailed so is the paradigm

shifted from single to multi-camera model. These systems are more useful for

tracking in crowded places and highly protected areas. This can be equipped with

a variety of cameras and distributed processors to even amend the functionality

of tracking. But multi-camera systems have their complexities and trade-offs.

As compared with single camera tracking, multi-camera tracking needs additional

processing, extra memory requirement, superfluous energy consumption, higher

installation cost, and complex handling and implementation.

Occlusion handling is one of the major problems in single camera based tracking.

In the model proposed by Sinior et al. [85] background subtraction is used for object
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tracking and occlusion detection. It uses appearance based model to estimate the

centroid of the moving object more accurately. This technique is although reliable

but works with fixed background. Authors in [86, 87] have handled occlusion based

on measurement error for each pixel. Authors in [88] have devised a motion based

tracking algorithm that is adaptive with natural changes in appearance or variation

in 3D pose and hence remain robust with occlusion but does not resolve or predict

occlusion. In [89] two different approaches to cope occlusion are proposed; one

using evaluation of correlation error in templates and other using infra-red images

to detect occluded region by human hand. Authors in [90] have exploited contextual

information; it does better occlusion analysis but has tracking errors. It uses block

motion vectors for calculating object boundary to predict occlusion. Amizquita et

al. [91] have proposed an algorithm for auto detection of occlusion using motion

based prediction of objects movement during the stages of entering occlusion, full

occlusion, and exit occlusion.

On the other hand a multi-camera system can avoid occlusion and can provide

robust tracking but are not as simple and energy-efficient as single camera systems.

Although a camera system installed in master-slave mode [74], can achieve some level

of efficiency but the entire region under coverage should come under master cameras

view. Towards making the multi-camera model as an efficient approach a few other

works have also been proposed. Kulkarni et al. [1] have proposed an approach

for efficient use of multiple cameras by devising multi-tier camera network called

SensEye [2]. This approach is energy efficient although it has a complex hardware

architecture and diverse software requirement. It is observed from the literature that

single camera based object tracking is simple, energy efficient and has the ability to

predict occlusion. However, there is no scope for occlusion avoidance. To alleviate

the occlusion occurrence, a multi-camera model is necessary where the field of view

is tracked by multiple cameras. Generally, a multi-camera based approach utilizes

the cameras always in the active mode. But this leads to energy inefficiency and
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more processing requirement. Our approach, as discussed in chapter 3 has been

been designed to bridge the gap between single camera and multi-camera based

surveillance system.

1.3 Thesis Organization

The rest of the thesis is organised as:

Chapter 2: Study on Efficient Camera Placement Techniques Placement

of camera is a vital step while bringing efficiency in camera usage of MCN.

The camera placement techniques changes vastly depending on the deployment

conditions like limited number of cameras, constraint of area under cover, condition

of best view synthesis, 3D image reconstruction or condition of gait based

identification. This chapter studies the importance of camera placement in bringing

optimality in camera usage of MCN. An efficient camera placement algorithm has

been proposed taking gait based identification as test condition. Simulation has

been performed and results have been presented towards the proposed algorithm.

Chapter 3: Study on Smart Camera Control Camera control is a crucial

stage in MCN. It defines conditions that governs the control among the cameras

in an MCN. A resource efficient MCN based surveillance model has been presented

that is governed by proposed occlusion determination algorithm. The proposed

algorithm determines the chances of occlusion, position and time to occlusion in

prior so that necessary action can be taken towards its mitigation. The proposal has

been experimentally justified on self acquired as well as publicly available database.

Chapter 4: Conclusion This chapter provides the concluding remarks with a

stress on achievements and limitations of the proposed schemes. The scopes for

further research are outlined at the end.
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Study on Efficient Camera

Placement Techniques

Placement of camera is a vital issue towards development of multi-camera based

smart surveillance system. Previous chapter highlights the necessity of calibration

for efficient operation and smart handling of MCN. Camera placement along with

its calibration completes the infrastructure of Multi-Camera Network (MCN). An

MCN designed with the goal of surveillance must provide uninterrupted track and

prospect for subject’s identification. This chapter proposes a camera placement

technique with a task of capturing orthogonal view of the subject that creates the

prospect of identification based on gait, height and profile face of a subject for the

sake of surveillance. Placement of camera is very crucial in surveillance. A suitably

placed array of camera brings two way benefits for the system, cost optimization of

MCN and enhanced performance due to tailor made camera placement approach for

specific task.

In the proposed surveillance model presented in this thesis, efficiency at the

level of camera placement has been identified as an important measure for achieving
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the goal of optimal multi-camera set-up without compromising with standards of

surveillance. The proposed model is considered to be performing identification of

moving subject through its gait patterns, its height and profile face, and also ensuring

uninterrupted track of the subject. With these goals, cameras are proposed to be

placed in such a way that it finds the path of the moving subject orthogonal to

the view axis of the camera. Further sections discuss about the unique behavioural

biometric feature called gait; which is a special cyclic pattern an individual repeats

during a walk. It has been justified through conducting an experiment and also

through the support of some existing results that orthogonal view is suggested as best

view for capturing gait information. Further, a novel approach has been presented

for estimating the best place for camera placement in an open space, with maximum

chances of capturing subjects’ movement orthogonal to the walk direction. This

proposal is been experimentally conducted at Vikram Sarabhai Hall of Residence,

NIT Rourkela and the model has been justified with proper results.

Section 2.1 presents introduction to gait biometric. Section 2.2 proposes a novel

approach of camera placement for gait pattern based identification. The experiment

towards the proposed model has been presented in Section 2.3. A few conclusive

remarks based on the experiment are discussed towards the end in Section 2.4.

2.1 Gait Biometric

Locomotion of an individual which is repetitive with same frequency and carries a

temporal pattern is termed as gait [92]. Walk, trot, run, and to climb stairs are

among such locomotion in which an individual has a temporal pattern that repeats

with same frequency. This makes these activities candidates for being gait.

The earlier progress towards establishing gait as a biometric trait is successor

to the research of Johansson [93] where experiments have been performed to

differentiate among different human postures by examining 10-12 nodal points over
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Figure 2.1: A complete gait cycle

human body based on different sequence of biological motions done by the body and

hence by the points. In recent past, gait biometric has been commonly used in sport

biomechanics to study and rectify the posture and movement of an athlete. Gait

has been used in the medical field over the patients for rectification of ill-movement

of a part of the body. In both the above cases there are predefined ramp and

individuals are restricted to walk over that. Recently gait is used for identification

of an individual and is therefore employed as a part of surveillance system. In

such situation gait recognition is done in unconstrained scenarios. Since there is no

predefined path of movement, therefore there are no perfect camera positions and

there remains scope for minimizing the number of cameras, improving the position

of cameras, and to optimize their usage.

A few works have been done towards identification through gait where computer

vision techniques are not used. Mantyjarvi et al. [94] have used accelerometer and

does not rely on computer vision. However majority of the works further includes

camera-view for analysis and feature extraction of gait pattern. In [95], Teixeira et

al. have proposed a PEM-ID system using cameras and accelerometer to identify

and localize people through their gait pattern. Goffredo et al. [96] have proposed

gait identification through single camera to avoid the complexity of calibration of
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multiple cameras. Bouchrika et al. [97] have presented a new approach for tracking

and identification between different non-intersecting uncalibrated cameras based on

gait pattern analysis. Jeges et al. [98] have worked towards estimating human height

in calibrated cameras that can be used as a supportive feature for identification. This

justifies why camera placement plays a crucial role for gait analysis in unconstraint

scenario.

A camera can best capture the gait features when it is placed orthogonal with

respect to the motion of the subject. Such positions of camera also make tracking

easier and are best placed for height measurement. Our proposed model has an

overhead-camera that prepares a path-band, based on the locus of various subjects

traversed over a span of time. Other field-cameras are PTZ cameras that are

placed at such positions where they can get maximum orthogonal views. These

positions are estimated by overhead-camera using the proposed algorithm and

path-band information. Further camera set-up works in master-slave mode so that

overhead-camera guides field-cameras to track the target efficiently. Section 2 of

this chapter states the problem under consideration in detail. The subsequent steps

of proposed model towards the solution of the problem are illustrated in Section 3.

Section 4 presents the experiment conducted towards the proposed model. The result

of the experiment has been presented in Section 5. Finally, Section 6 concludes the

chapter along with stating the scope for future works towards the proposed model.

2.2 Proposed Model

When a camera network is set-up to identify a subject walking in a given area, the

locus of the subject is not known in prior. Hence best positions for camera placement

cannot be statically defined. If a most probable path can be estimated based on paths

traversed earlier, then camera placement can be done efficiently. Secondly, there can

be an effort to find the minimal number of cameras along with their poses to cover
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the path. However, minimum required number of cameras depends on the nature of

path traversed most frequently by the subjects. Number of cameras working together

generates large volume of recorded data, which is difficult for storage and processing

as well. Minimizing the number of cameras partially resolves the problem. Further

reduction in computation is achieved as the camera network works in master-slave

mode where awaking, sleeping, and panning of field-cameras is monitored by the

overhead-camera.

The proposed model is governed by the fact that the best view of a moving

subject for gait recognition, tracking, height measurement and profile face based

identification can be done when the line of sight of camera is orthogonal to the

movement of the subject. Experiments have been conducted to support the above

mentioned fact. The walking pattern of an individual is captured through different

cameras, and background subtraction is applied on all the video thus obtained.

Background subtraction method separates the moving subject from its stationary

background and puts a rectangular boundary over the moving subject. Figure 2.2

shows graphical plots representing the pattern of change in the width of bounding

box around the moving subject for three different camera views of the motion of same

subject. Figure 2.2(a) represents the plot when camera is capturing the frontal view

of the subject making an angle σ = 0 with the direction of motion, Figure 2.2(b)

represents the view captured at σ = π/4, and Figure 2.2(c) represents the view

captured at σ = π/2 i.e., camera placed orthogonal to the direction of motion. As

σ changes from 0 to π/2, gait cycles becomes gradually detectable. Two of the

major gages for gait pattern, heel-strike (when the legs of the moving subject are

maximally apart), and mid-swing instant (when the legs are crossing each other)

are clearly visible as the peaks and troughs in Figure2.2(c) and are occurring with

approximately same frequency. This justifies the necessity of orthogonal placement

of camera for capturing gait pattern. A complete gait cycle can be seen in Figure

2.1, that presents a complete gait cycle and subsequent phases in a gait cycle.
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(b) σ = π/4

10 20 30 40 50 60 70 80
50

60

70

80

90

100

110

120

130

140

150

160

Frame Number	

W
id

th
 o

f B
ou

nd
in

g 
B

ox

(c) σ = π/2

Figure 2.2: Change in width of bounding box of moving object with different camera

placement angle

The number of field-cameras depends on the curvature of obtained path-band,

area under surveillance, and resolution of the cameras used. Proposed model towards

solving the above mentioned problem is described in the following sections.

2.2.1 Locus Tracking of Subjects’ Movement

Movement of people in any area depends upon the type of area, obstacles around

the area, entrance point, exit point, shortest distance from entry to exit etc. Hence

there is no mechanism to predict the exact path to be travelled by a particular

individual. This model proposes to place an overhead camera capturing the top

view of the whole surveillance area, albeit of low resolution. It is so away from

people that individuals cannot be recognized from the low-resolution images, but

various loci of different individuals can be traced by background subtraction and

frame-wise connectivity check. This operation takes place during a sufficient span

of time to get enough data of the traced paths.

Each frame captured from the surveillance area is divided into grids of size 8× 8

pixels. The overhead-camera captures sufficient set of data of various paths, which

makes a visible pattern of movement of individuals in the surveillance region. Figure

2.3 shows the above mentioned scenario in an assumed area under surveillance.
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Figure 2.3: Loci of different subjects tracked by the overhead-camera

2.2.2 Direction Vector Calculation

In the further sequence of processing, direction of movement of each individual in

each grid is studied. The direction of movement is discretized into predefined angles

based on the pattern of the pixels of individual motion in each grid. Figure 2.4

shows the pixel patterns and the angle inferred from them. The angle of movement

ranges in [0, π]. The movement is not considered in [0, 2π] because the directions:

x and x + π produce same orthogonal. Histograms of the direction of angles of

different traces are plotted with bin-width of π/8 for each grid blocks. If a single bin

in the histogram contains number of traces above a threshold, it signifies existence

of prominent maxima indicating a unique direction of movement as shown in Figure

2.5 (a).

If all the bins in the histogram are below a threshold, it implies approximate

uniform distribution with no explicit maxima and the grid block is considered to

be a chaos region with no specific direction of movement of subjects (an example

is shown in Figure 2.5(b)). Hence these kinds of grid blocks are rejected, and no
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Figure 2.4: Inference of angles from discrete pixel patterns in 8× 8 grid

direction vectors are assigned to them. Direction vectors assigned in such a way

yields a collection of grid blocks with respective direction vectors. However, apart

from chaos regions and grids with specific direction vectors, there may exist grids

owing to such portions of surveillance area where no person traverses. These grids

comprise no locus, and hence not considered for further processing (an example is

sown in Figure 2.5 (c)).

2.2.3 Path-band Estimation

All such grid blocks with explicit maxima will be considered for path-band

estimation. Each such direction vector has its bin height (indicating the number

of individuals travelled along the particular direction in the grid) as the magnitude

of respective direction vectors. These magnitudes are compared and grid block with

highest magnitude of its direction vector will get selected first. If more than one
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magnitude is found to be the maximum then anyone can be selected randomly for

further processing. Generally such grid blocks are found at entry or exit points of

the surveillance area.

(a) (b) (c)

Figure 2.5: (a) Grid indicating unique direction of movement, (b) chaos region, (c)

grid with no locus

Further, immediate 8-connected neighbours of the selected grid blocks are

compared for contributing to the path band. A few blocks with low magnitude are

rejected for further iteration, and rest goes to further processing. Again immediate

neighbours of last iteration blocks are compared for rejection. As the iteration goes

until the edges are arrived in the grid view of surveillance area, a path-band is formed

as a collection of direction vectors. Figure 2.6(a) depicts formation of a path band.

When the number of walks are more, their vectors are high in number. Path-band

estimation in such scenario reduces the number of perpendiculars to be drawn, since

rather than drawing perpendicular from each vector, now perpendicular has to be

drawn only on the thinned path-band. However in the experiment section, with less

number of walks, this step has been avoided.

2.2.4 Finding Efficient Camera Placement

Perpendicular can be drawn on each direction vector and at each point of the path

band. There will be collection of points where more than a certain number of

perpendiculars intersect. Voting is done for each pixel of the surveillance region to
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find how many perpendiculars are passing through a particular point. Number of

perpendiculars passing through a point also depends on the number of traced paths

considered while training of overhead camera. Collection of these points will form a

few potential regions (depicted in Figure 2.6(b)). There may be physical constraints

as lack of place for installing cameras, which has to be considered to reject few

points from the potential region. Further, out of available points in a region, the

one with higher number of intersections may be chosen for camera placement. A

sample placement of camera is illustrated in Figure 2.6(c).

(a) Estimated path-band (b) voted regions for

camera-placement along

with thinned path-band

(c) sample placement of three

field-cameras

Figure 2.6: Finding efficient camera placement

2.2.5 Localization and Working of Camera Network

An overhead-camera of fixed type is already placed that has fetched the best probable

locations for placing PTZ cameras. PTZ cameras have the ability to pan, tilt and

zoom according to the way they are programmed to. Placing PTZ cameras at

such points can best utilize the location of its placement since it can pan with the

movement of the subject to be tracked, and to capture the gait pattern for longer

duration. Since the camera remains approximately orthogonal to the subject with a

high probability, it is best-positioned to estimate the height of the subject as well.
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Further camera set-up (overhead-camera of fixed type, and field-cameras of PTZ

type) can be made to work in master-slave mode [74]. For this, camera set-up

should be calibrated and localized. Overhead camera works in master mode and

PTZ cameras work in slave mode. Master camera analyses from its top-view that

which field camera should remain active and what should be the panning speed to

constantly track a subject. This lets the camera-network to be used pro-actively and

also optimizes the computational cost. Field-cameras which are not active may go

to sleep mode to reduce power consumption and to reduce complexity of calculation.

Hence the master camera efficiently manages the mode of slave cameras for optimized

use.

2.3 Experiment

To verify the proposed work of camera placement, experimental set-up has been

done at the corridor of Vikram Sarabhai Hall of Residence, NIT Rourkela. From the

top floor, camera has been attempted to be placed over the corridor to get top view

and video footages has been taken at different times of the day. Figure 2.7 shows

frame sequence of the video footage taken from the top floor of the corridor.

Figure 2.7: Corridor sequence
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Trace of The Subject

On the different acquired video footage, Horn and Shunk optical flow method [99] has

been applied to obtain optical flow of the subject’s movement. Further, binarization

of frame sequence and tracing the bottom of the silhouette has been performed over

the optical flow to get path-band as traces of all the subjects. Figure 2.8(a) shows

a frame of the video where two subjects are found to be walking in the corridor.

Its optical flow and binary frame sequence are shown in Figure 2.8 (b) and (c)

respectively.

(a) Example Image Sequence (b) Optical flow of Subjects (c) Trace in a binary frame

sequence

Figure 2.8: Finding trace of the subjects by optical flow

Mapping on Grid-map

Traces, so far acquired are over camera image, but due to camera placement

limitations, overhead camera image is perspective in nature. Thus the method of

homography has been applied to achieve point correspondence of the traces over

grid-maps. Figure 2.9 shows traces over overhead camera view and corresponding

trace over grid-map.

Direction Vector Estimation

Each grid in the grid-map has 8× 8 pixels. After binning has been done for all the

traces in a grid, the bin with maximum height is compared with other bin heights.

If apart from nearest neighbour bins any other bin has height at least 0.8 times the
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(a) Traces of different subjects (b) Corresponding traces on grid-map

Figure 2.9: Plotting traces over grid-map from captured images by homography

height of highest bin, then the grid has more than one orientation and such grids

are considered to be chaos region. However, if the grid has a specific orientation,

that orientation is assigned to it. Performing this operation over the grids gives a

path-band of direction vectors. Figure 2.10 shows an example grid with 15 walks

and its corresponding plot where there is a proper orientation of subjects movement

and hence a direction is assigned to this grid.

(a) sample grid
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(b) graphs depicting proper orientation

Figure 2.10: Sample grid and histogram for orientation of movements in the grid
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Camera Placement Regions

An m × n matrix has been taken where m and n are number of rows and columns

of grids in the corridor. Further for each of the grids with proper orientation, an

increment of one is done in those corresponding cells in the matrix from where a

perpendicular to that orientation will pass. Thus the matrix will be updated for each

grid with proper orientation, and the grid from where most of the perpendicular lines

pass, their corresponding cell in the matrix will get higher value.

The matrix is finally plotted in a 3D mesh plot where x and y represents

the length and width of the corridor and z axis represents the observed number

of perpendicular lineson the path of moving subjects as shown in Figure 2.11.

The two humps in the plot represent regions with maximum intersection of

perpendiculars and hence two probable proximities for camera placement according

to this experiment. the result in this plot produces two regions for camera placement

and grid locations (4,4) and (5,18) produces highest score in their respective

proximity and hence are suggested for camera placement. With more number of

walks more precise places of camera can be achieved. In places with relatively less

significant walk pattern and fixed number of field cameras available for placement,

this algorithm can be inferred for best n places for camera placement, where n is

the available number of field cameras.

2.4 Concluding Remarks

As the number of subjects walk through the coverage area, there will be more number

of locus and hence more data for overhead-camera to refine its calculation. Hence

camera placement is refined over the time. At the time of path-band calculation,

only those grid blocks are considered where a good number of loci are passing

almost parallel, assuring that orthogonal to the direction vector of this block will

be orthogonal to most of the locus at this grid block. On the contrary, chaos region
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Figure 2.11: 3D mesh plot where two of the humps depicting probable places for

camera placement

would not contribute to path-band. This assures maximum orthogonal view of

camera from the subject’s locus. If the path-band turns out to be a consisting

very less curvature, then the region of camera placement is spread through both

the sideways of the band, indicating that all the points on both sides of the

band are equally potential for placing of field-cameras. Further each field-camera,

when calibrated and localized with overhead-camera, optimizes the usage of the

camera-network. The accuracy of finding the loci and hence performance of the

proposed model severely depends on the resolution of the cameras. Although there

are ample theoretic justifications of the model proposed and its simulated verification

the proposed model still awaits experimental deployment in some surveillance zones.
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Chapter 3

Study on Smart Camera Control

Once the cameras are well placed and calibrated in a surveillance zone for a specific

task, control flow among the cameras is a crucial stage toward development of a

smart MCN based surveillance system. This chapter proposes a smart MCN model

which uses the architecture of MCN but avoids its complexities and overheads, by

letting single camera to track the subject at any instant of time. The control flow

from one camera to another is governed by an occlusion determination algorithm

that determines the chances of occlusion, so that with prior knowledge of occlusion,

control can be forwarded to such camera that does not encounter any occlusion.

This way multiple track of the subject can be avoided (an overhead in MCN based

surveillance), at the same time uninterrupted track of the subject (a limitation in

single camera based surveillance) can be achieved.

The discussed multi-camera model for visual surveillance works on a single

camera which is a part of multi-camera system and instead of handling occlusion; it

pre-determines occlusion and avoids its occurrence. The proposed approach analyses

the change in the dimension of the subject in camera coordinates as it moves in the

3D world coordinate. It analyses the data to decide the direction of motion and
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apparent speed of the subject and further determines chances of occlusion and its

time and location of occlusion in the camera plane. Based on this, further decision

towards avoiding occlusion can be made.

Background subtraction is a reliable method for localization of a foreground with

respect to a fixed background. The results of background subtraction are used in

this approach for analysis. A few reasonable assumptions are made in our approach

while considering motion of subjects, such as eight possible directions of motion and

three levels of speed for any subject on move have been considered. This assumption

discritizes the approach at both the levels of direction as well as speed. The proposed

system can be well described by sub-dividing into following three steps:

(i) Motion analysis

(a) Direction of motion determination

(b) Apparent speed determination

(ii) Occlusion determination

(iii) Mitigation of occlusion

 Direction of 

Motion 

Determination

Apparent Speed 

Determination

Chances of Occlusion, 

Location and Time to 

Occlusion Calculation

 Towards Mitigation of 

Occlusion

 Input Video

LUT

Figure 3.1: Proposed camera control model governed by occlusion determination

algorithm

The above three steps are depicted in the form of block diagram in Figure 3.1.

Motion analysis of a subject is performed to determine the direction of motion as

well as speed of the subject as observed in the image plane. Variation of height
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and width with respect to frame number of a subject’s motion is been exploited to

determine the direction of motion. Subject’s speed as appear in camera frame vary

with distance of subject from camera and hence termed as apparent speed in this

context. Apparent speed is determined as displacement of centroid of the subject in

few frames. The information of direction and speed is forwarded to the next step for

determination of chances of occlusion, and its position and time to occlusion. These

two steps of the model have been preformed to achieve prior knowledge of occlusion in

a scene. A prior knowledge of occlusion is forwarded further and necessary measures

can be taken towards mitigation of occlusion.

Section 3.1 gives brief description of the database used for the experiment.

Section 3.2 discusses the motion analysis of the subject. The results of motion

analysis i.e. direction and speed information are further utilised for occlusion

determination which has been discussed in Section 3.3. Section 3.4 presents the

scope towards steps for mitigation of occlusion. Next section presents a few results

of occlusion as well as non occlusion. Finally, based on the proposed algorithm and

performed experiment, conclusive remarks are presented in Section 3.6.

3.1 Database Used

Experiments are performed over both publicly available as well as self acquired

databases. Initially experiments are conducted over a set of self acquired database.

In order to verify the algorithm over a globally available database, CASIA Dataset

A [100] gait database has been used. Since the data is intended for angle invariant

gait pattern based subject identification, they are not sufficient for the proposed

experiments. For the sake of direction determination, the database is modified and

mirror imaged.

CASIA Dataset A is intended for study of gait pattern of different subjects

moving at different angles of 0°, 45°, and 90°from the view axis of camera. For
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our experiments of determining discrete direction, the same database has been

modified and mirror image data have been generated to have enough video in all

eight directions as needed for this experiment.

The modified database contains 20 subjects making 2 walks in each direction,

thereby accumulating 40 videos in each direction, hence a total of 320 videos. These

videos have to be classified into 8 directions based on the analysis of pattern of

dimensional change in the bounding box of the subject.

Background subtraction method has been used for extracting foreground in

self acquired sample videos for system testing, however the investigation results

are generated on both self acquired and the CASIA database which is already

background separated and algorithm to remove unwanted blobs are subsequently

applied to them.

3.2 Motion analysis

Motion analysis of the subject gives information about the direction and apparent

speed of the subject’s movement. This section analyses the motion of the subject

to determine direction and speed and presents experimental steps, inferences and

results.

3.2.1 Determination of Direction of Motion

A subject in a plane is free to move in all the directions. Calculation of exact

direction of movement is neither a perceptive solution for real time execution nor

it is feasible with low resolution video footage. Since the prime motive of direction

calculation is to contribute towards occlusion mitigation, the possible direction of

subject’s motion has been reduced to eight discrete directions as encountered by the

camera. Figure 3.2 shows the direction vectors labelled from 1 to 8 with respect to

camera. These direction vectors are equidistant and hence distinguishable. However,
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Figure 3.2: Discrete directions of motion with respect to camera

increasing the number of direction vectors decreases the estimation result on low

resolution videos and decreasing the number of direction vectors, affects further

processing , hence the discretization of eight direction vector is quite justified.

Since the direction of motion has to be utilized for approximating the chances of

occlusion, discrete direction can be applied. The discrete direction will also provide

faster computation which is needed for real time processing. To realize the direction

of motion of a subject, change in the width, height, and location co-ordinates of

the bounding box of the subject is studied. The pattern change in the subsequent

frames of sample video during the motion in the perspective view of camera is shown

in Fig. 3.3. The change in the dimension as well as location in the camera frame

of a subject together make a unique pattern for each of the direction. Variations of

height and width with respect to frame number for four different direction of motion

of a subject are plotted in Figures 3.4 and 3.5. This gives the pattern based on

which the direction of motion can be explained.
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Figure 3.3: Pattern change in the dimension of subject

Study of Frames and Inferences

Fig. 3.4 and 3.5 show change of pattern in height and width of the subjects as it

moves along different directions. When the subject is moving orthogonal to the view

axis (i.e. along direction vector 3 or 6), the cyclic pattern is visible in regular interval

in the width graph, however height remains constant as can be seen in the height

graph. When the subject is moving along the view axis (i.e. along direction vector

1 or 5), then the subject appears to be growing in width and height from vanishing

point and vice versa for opposite motion. Hence it is very obvious that the width and

height has some pattern distinguishing them from another and a smart mechanism

is needed to identify them. Next section of this chapter presents various steps taken

towards direction estimation of moving subject and its further implementation.

Experiment

The aim of the experiment is to generate a phase or phase band of the graph that

represents the direction of motion of the subject.

53



Chapter 3 Study on Smart Camera Control

10 20 30 40 50 60 70 80
200

220

240

260

280

300

320

340

360

380

400

Frame Number	

H
ei

gh
t o

f B
ou

nd
in

g 
B

ox

 

 

direction 5
direction 6
direction 7
direction 4

Figure 3.4: Variation of height with respect to frame number for four different

direction of subject’s motion
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Figure 3.5: Plot of width for different direction

Challenges In order to generate a unique phase or phase band for motion in a

particular direction, a system is required to be robust towards many issues that has

been listed here:� Low resolution database.� Static occlusion causing foreground to be unavailable for few frames.
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Chapter 3 Study on Smart Camera Control� Improper segmentation.� Variable speed during the walk.� Direction of motions being approximate rather than exact.� Different distances of subject with respect to camera.� Different amount of distances covered or different number of gait cycles of walk

available for analysis.

In order to meet above mentioned challenges, following stages are performed towards

achieving a unique phase band for each direction. The following paragraphs

elucidates each of these stages in sequence.

(a) Frame Rectification and Removal of Undesired Blobs The frame

sequence provided in the database are segmented and are converted to binary

image sequences. Frame contains unwanted blobs due to improper segmentation,

presence of noise and partial occlusion. Unwanted foregrounds are deleted by

selecting of largest connected component. Optical flow based methods are applied

for rectification of improper segmentation. Figure 3.6 shows, few frames from two

video sequences and their rectified forms after unwanted blob removal.

(b) Morphological Operations and Tracking the Subject On the rectified

frame sequence, moving subject is identified and rectangular bounding box is fitted

over them to get the track of the moving subject. Further, the subjects are tracked

where the pattern of change in the dimensions of the subject are recorded for further

reference. In the perspective view, the dimensions of the subject are varying, and

this fact has been exploited to differentiate between the subjects that are moving in

different directions. The pattern in the temporal change of width as well as height

are plotted, and different plots for height and width are obtained which have been

utilised for two way analysis for estimating the direction of motion of the subject
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(a) Frame sequence 1 with noise

(b) Frame sequence 1 after noise removal

(c) Frame sequence 2 with noise

(d) Frame sequence 2 after noise removal

Figure 3.6: Frame rectification and unwanted blob removal

under study. In the Fig. 3.7, a frame sequence with direction vector 6 is shown after

noise removal and morphological operations.

(c) Extrema Detection and Putting Envelop Over the Plot After getting

the plots of the frame sequence, next objective is to distinctively identify the plots

such that plots of same direction of motion should come under same identifier.

Subjects may be observed nearer or farther from the camera and hence the graph

in both the cases may look different although there may be similarity in the pattern

of the graph. Thus to achieve distance invariance, and to overcome a few of the
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(a) Frame sequence with bounding box

(b) Frame sequence with bounding box

Figure 3.7: Morphological operations and tracking of subject

improper segmentation, graphs have been proposed to be presented in terms of linear

regression of the extrema boundaries of the graph. This step has been elaborated

and divided into following sub-steps for better understanding:� Covering envelope over the plots The prime objective of finding the

envelope is to process the envelope further to boil down the graph into a

line of the form y = mx+ c,

However, the span of the envelope i.e. the difference between m1 and m2 (as

shown in Fig. 3.8 ) and the area covered by envelop, can be used to study

the distance of the subject from camera in particular cases as well. Higher the

area covered, closer the subject is from camera. Upper envelope has been made

from a set of local maxima points representing the maximum width or height

of the subject recorded in a gait cycle while capturing subject’s movement.� Soft Extrema Elimination The envelope has been made over local maxima

and minima points in the graph, but improper segmentation of videos has

resulted into some trough regions formed at upper fragment of the graph and

certain crests are formed at lower fragment of the graph. Due to this, a few

minima points exist in the maxima region and vice versa. This can be seen
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Figure 3.8: Envelop over the plot

in Fig. 3.9, which is a graph of a particular subject in CASIA Dataset A)

walking at an angle of 45° with respect to camera. Such misplaced extremas

are eliminated before calculation for putting envelop. A linear fitting is done

over the curve to decide whether an extrema is correctly placed or not.
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(a) Extrema points including soft extremas
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(b) Extrema points after excluding soft

extremas

Figure 3.9: Detection and removal of soft extremas

Linear regression is a statistical analysis for association between two variables.
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It is used to find the relation between them. In the context of the proposed

work, our objective is to eliminate erroneous data that could contribute in

constructing envelop over the graph. To identify such points, a linear regression

function has been cast-off, where 2-tuple variable point’s co-ordinates are,

(x, y) = (dimension, frame number) where dimension: length or width in

different graphs

The linear regression relationship between x and y is given in the

slope-intercept straight line equation form as:

y = mx+ c

where,

m =
n
∑

y − (
∑

x)(
∑

y)

n(
∑

x2 − (
∑

x)2)

and,

c =
(
∑

y)(
∑

x2)− (
∑

x)(
∑

xy)

n(
∑

x2)− (
∑

x)2

and, n = number of variable pairs to be regressed, in this case they are the

number of readings for each walk i.e. the number of frames in the video under

study.

The resulted regression line y = mx + c is plotted on both the graph types

i.e. width vs frame number and height vs frame number. Maxima points are

always expected to lie above this line and minima are below this line. Those

points that do not satisfy these criteria are named soft extremas in this context

and they have to be eliminated. After elimination of such points, the envelop

generated are represented by these two equations

y = m1x+ c1

y = m2x+ c2

Finally, a line as average of these two lines are plotted, which is represented as

y = mx+ c

where, m = (m1+m2)
2
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and, c = (c1+c2)
2

Fig. 3.10(a), shows envelop drawn by the regression lines of the extremas after

removal of soft extremas. Later, the average of the two lines has been taken

are drawn as phase and shown in Fig. 3.10(a)

(d) Study of Phase of the Line The line represented as y = mx+ c carries the

information of phase i.e. direction of motion of the subject and its distance from

the camera. Thus we have distance invariant, phase information of the motion of

the subject with respect to the studies of width and height of the subject.

Thus two different equations obtained from different graphs are

y = mh + ch from the study of change in height

y = mw + cw from the study of change in width

Where

mh : Phase representing subjects direction of motion with respect to height

mw : Phase representing subjects direction of motion with respect to width

cw : Representing subjects distance from camera with respect to width

Subjects may be moving nearer to or farther from the camera; however the phase

of the subject does not alter with the distance of the subject. Fig. 3.11(a) and

3.11(b) represent subject moving in the direction 3 but at different distances from

the camera. Distance from the camera affects the span of the graph generated,

however the phase of the subject in both the cases are nearly same thus bringing

distance invariance in the system.

(e) Plotting of Phase and Determination of Direction of Motion For each

sample video, we have its phase information with respect to height and width. All

these values are plotted and two separate graphs are obtained having all mh and

mw information. The mh and mw of the subjects moving in the same direction (i.e.

the in-phase videos) are shown as connected points in separate graphs in the next

section. Thus the phase information has been exploited to estimate the direction of
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(a) Regression line on extremas as envelop to

the graph
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(b) Average line depicting phase of the graph

Figure 3.10: Envelop and average line drawn based on envelop

motion of the subject.

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90

100

110

120

Frame Number

W
id

th
 o

f B
ou

nd
in

g 
B

ox
 (

in
 P

ix
el

s)

(a) Subject moving closer to the camera

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120

Frame Number

W
id

th
 o

f B
ou

nd
in

g 
B

ox
 (

in
 p

ix
el

s)

(b) Subject moving farther to the camera

Figure 3.11: Distance invariant direction of motion estimation through phase

Results

The direction of the subject has been estimated based on the height and width

information of the moving subject. Fig. 3.12 and 3.13 shows the results in graphical

representation where connected points in the graph represents the phase of the
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subject moving in the same direction. Out of 8 discrete directions, direction 2 & 8,

and 4 & 6 overlap, since the videos are mirror image and mod of slopes are plotted in

the graph. They are presented with different markers attached with them, as shown

in corresponding legend chart. Further best fitting linear separator is applied on the

curves to minimize misclassification and achieving best accuracy. The system has

an overall good estimation accuracy as follows:� height based accuracy is 93.75%� width based accuracy is 83.75%

Also, the algorithm copes well with diverse situations like presence of noise and

occlusion, variable speed, inexact direction of motion, variable distances of subject

and low resolution videos. However, with better segmentation the results can be

further improved.

Further, that algorithm has been run on 320 different videos for 400 times on a

system for estimating its suitability in terms of time consumption. The algorithm

has been tested over following simulation platform: It has Intel Xeon processor with

4 parallel processing core of frequency 2.4 GHz each and 8 threads. It has 8 GB of

RAM and 12 MB of cache memory and runs on 64 bit instruction set. The average

time taken for direction estimation is 1.04 sec. with a maximum and minimum time

consumptions of 1.97 sec and 0.62 sec.

3.2.2 Apparent Speed Determination

Determination of speed is done in parallel to direction calculation. The speed

calculated here is in terms of pixel displacement as observed after a fixed number of

frames. A subject closer to the camera may appear faster while the one which is far

from the camera may appear slower. Hence it is apparent speed and not the actual

speed. Like direction, speed is also discretized to three levels, high (v3), medium

(v2), and low (v1). Once the subjects are determined, their centroids are known,
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Figure 3.12: Direction estimation result based on height of the subject
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Figure 3.13: Direction estimation result based on width of the subject

and the displacement of these centroids are calculated in terms of pixels. Depending

upon the frame width of the frame sequence, a subject is assigned with any of these

speeds:

v3 : if p > 5% of width of frame

v2 : if 1% of width of frame < p ≤ 5% of width of frame

v1 : if p ≤ 1% of width of frame Where is p is the pixel displacement of the subject

in fixed number of frames.

Occlusion occurs due to mutual motion of the subject. With respect to

image sequence at 2D camera co-ordinate, the mutual motion gives two separate

information
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Chapter 3 Study on Smart Camera Control� Change in the dimension of the subject, that eventually gives the direction of

motion of subject� Change in the location of subject that gives the speed and present location of

the subject

Both of these information are already estimated by the approaches proposed in

the earlier section. Next section describes the application of these information in

determining the proximity of occlusion.

3.3 Occlusion Determination

Successful calculation of direction and apparent speed of a moving subject takes the

work to the next level where based on the above results, chances of occlusion of a

subject is determined. The direction of motion and speed informations are used in

lookup table generation. Further, based on the lookup table chances of occlusion

and its location and time to occlusion are calculated. This section presents some

pre-calculations, and steps for developing lookup table. Once the lookup table is

generated, it can be referenced for determination of chances of occlusion, and in

cases of occlusion determination of time and position of occlusion in camera frame.

Further, related calculations are presented in this section.

Pre-calculations : Given the first f frames

* Locations: Centroid of both the subjects Sp and Sq represented as their

locations as

L(Sp) : (xp, yp)

L(Sq) : (xq, yq).

* Deciding S1 and S2 : With the location information of both the subjects,

the one with lesser abscissa is said to be Subject 1 (S1) and the other subject

becomes Subject 2 (S2). This has been described in the algorithm 1.
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* Distance: Apparent distance between the subjects can be calculated in terms

of pixels as

d =
√

(x2 − x1)2 + (y2 − y1)2

* Directions: Direction of a subject S1

given by D(S1) is the discrete direction of a subject as determined in the

Section 3.2.1

Such that,

D(S1) ∈ {1, 2, 3, 4, 5, 6, 7, 8}

D(S2) ∈ {1, 2, 3, 4, 5, 6, 7, 8}

* Speeds: In the first f input frames, the pixel displacement of the subject’s

centroid gives apparent speed of the subject, which is categorized to three

levels as fast (V3), medium (V2) and slow (V1). This has been discussed in

Section 3.2.2. The speed is in terms of pixel displacement in f frames and

while calculations in the next section, V (S1) and V (S2) are presented as p1

and p2 respectively.

Such that,

V (S1) ∈ {V1, V2, V3}

V (S2) ∈ {V1, V2, V3}

3.3.1 Lookup table generation

The direction of mutual motion of the subjects mostly determines the chances of

occlusion, hence estimation is not only dependent on 8 discrete directions of a subject

but on the mutual combinations of motion of the subject. Hence, chances of occlusion

due to direction of motion of any pair of potential occluder are best represented

with an 8 × 8 matrix. Further, with each pair of direction of the subjects their
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Algorithm 1: Algorithm for deciding S1 and S2

Data: L(Sp) = (xp, yp)

L(Sq) = (xq, yq)

Result: S1 and S2

1 if xp = xq then

2 No different subjects identified

3 end

4 if xp ≤ xq then

5 S1 = Sp

6 else

7 S1 = Sq

8 end

three possible levels of speed, hence a two level lookup table is designed to infer the

chances of occlusion.

At the first level, the mutual direction of the subjects are exploited and an 8× 8

matrix depicting 64 possible mutual pair of directions are presented. Following

inferences can be made from the direction information of the subject:� If the subjects are approaching each other i.e. if (D(S1)=(1 || 2 || 3 || 4 || 5)

& D(S2)=(1 || 5 || 6 || 7 || 8))−(D(S1)=(1 || 5) & D(S2)=(1 || 5))

then, there must be an occlusion. These cases with certain occlusion are given

a value of 1 in the lookup table. Further, in such cases finding the proximity

of occlusion is the task i.e. finding the time and location of occlusion in the

frame. This has been elaborated in the next section.� If the subjects are departing or stationary with respect to each other i.e. if

D(S1)=(1 || 5 || 6 || 7 || 8) & D(S2)=(1 || 2 || 3 || 4 || 5)

Then, there are no chances of occlusion and no further calculation towards

occlusion handling is required. These cases with no occlusion are given a value
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0 in the lookup table.� If both the subjects are moving in the same direction i.e. if D(S1)=(2 || 3 || 4

) & D(S2)= ( 2 || 3 || 4 ) || D(S1)=(6 || 7 || 8) & D(S2)= (6 || 7 || 8)

In such situation direction information is not sufficient and the apparent

relative speed between the subjects is required. Speed dependent cases in

the first level of lookup table are detailed for three levels of speed in the

second level. At this level of lookup table, each 0 represents that either

subject’s apparent speeds are identical or the difference is very low to encounter

occlusion within the frame. However, in other cases, speed, direction of

motion and mutual distance is exploited to calculate whether occlusion will

be encountered within the frame or not. Table 3.1 represents lookup table,

where speed dependent occlusion cases are not presented. In Table 3.1 P (O|S)

presents the speed dependent cases. Each such cases can be further detailed

for three levels of speed represented with 3 × 3 matrix. If both the subjects

are moving in the direction (2||3||4), then Table 3.2 represents the matrix to

be substituted for each occurrence of P (O|S). If subjects are moving in the

direction (6||7||8), then Table 3.3 represents the same. Here Table 3.2 and

3.3 when substituted to Table 3.1 adds another dimension for speed in the

chances of occlusion calculation. The occurrence of C in the Table 3.2 and 3.3

represents that no analogical determination of chances of occlusion is possible

and the results can be drawn based on calculation as given in Equations 4.5

and 4.6.

3.3.2 Time and Location of Occlusion Calculation

Time and location of occlusion i.e. the location and time of occlusion is required to

be calculated in cases when occlusion between two subjects are certain. On the other

hand, there are other set of cases when both the subjects are moving in the same
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Table 3.1: Matrix for direction based occlusion probability estimation

D1 D2 D3 D4 D5 D6 D7 D8

D1 0 0 0 0 0 1 1 1

D2 1 P (O|S) P (O|S) P (O|S) 1 1 1 1

D3 1 P (O|S) P (O|S) P (O|S) 1 1 1 1

D4 1 P (O|S) P (O|S) P (O|S) 1 1 1 1

D5 0 0 0 0 0 1 1 1

D6 0 0 0 0 0 P (O|S) P (O|S) P (O|S)

D7 0 0 0 0 0 P (O|S) P (O|S) P (O|S)

D8 0 0 0 0 0 P (O|S) P (O|S) P (O|S)

Table 3.2: Matrix for speed based occlusion determination with directions

(Di, Dj)|(i, j) ∈ {2, 3, 4}

V1 V2 V3

V1 0 0 0

V2 C 0 0

V3 C C 0

Table 3.3: Matrix for speed based occlusion determination with directions

(Di, Dj)|(i, j) ∈ {6, 7, 8}

V1 V2 V3

V1 0 C C

V2 0 0 C

V3 0 0 0
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direction and whether their occlusion will be encountered in the current camera or

not is the issue. This section discusses the calculation involved in both the cases one

by one.

When the subjects are approaching each other Motion analysis of the

subject determines the direction of their movement, based on which lookup table

has been generated that indicates the chances of occlusion. If the subjects are found

to be approaching towards each other, then the occlusion is certain and next task is

to calculate its proximity i.e. its time and location of encountering occlusion. Let

p1 : apparent speed of S1

i.e. p1 pixels travelled in f frames (1 second)

p2 : apparent speed of S2

i.e. p2 pixels travelled in f frames (1 second)

if subjects are approaching each other

then, relative speed between subjects=(p1 + p2)

i.e.(p1 + p2) pixels would be covered in f frames

then, d pixels would be covered in d
p1+p2

seconds

therefore time to occlusion is given by

d

p1 + p2
(3.1)

and, frame number of occlusion is given by ( d
p1+p2

)× f

if (x, y) be the point of occlusion, then

equating the distance equation between two points and distance as product of time

and speed

(
dp1

p1 + p2
)2 = (D1)

2 = (x− x1)
2 + (y − y1)

2 (3.2)

(
dp2

p1 + p2
)2 = (D2)

2 = (x− x2)
2 + (y − y2)

2 (3.3)
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also, considering the relation between (x, y) and (x1, y1)

(y − y1)

(x− x1)
= m (3.4)

where m being the slope of motion direction of S1

Using Equations 3.2,3.3 and 3.4, the location of occlusion is given by

x =
2(mx1 − y1)(y1 − y2)− ((D1)

2 − (D2)
2) + ((x1)

2 − (x2)
2) + ((y1)

2 − (y2)
2)

2m(y1 − y2) + 2(x1 − x2)
(3.5)

and

y = −mx1 + y1 +mx (3.6)

The apparent location of occlusion is thus given by (x,y).

When the subjects are moving in the same direction Direction of motion

of the subjects are not sufficient to determine the chances of occlusion in some

cases. These are the cases when both the subjects are moving in the same direction

and any chance of occlusion depends upon the relative speed between the subjects.

Considering the same variables if subjects are departing each other,

relative speed between subjects=(|p1 − p2|)

d pixels would be covered in d
|p1−p2|

seconds

Now, using same distance Equations 3.2, 3.3 and 3.4, the co-ordinates of location

of occlusion can be determined. However, in this case if the co-ordinates (x, y)

are within the frame range, then occlusion will be encountered in the view of this

camera, otherwise no occlusion will be observed.
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3.4 Mitigation of Occlusion

Based on the direction of motion and speed of the subjects, their probability and

proximity of occlusion are determined. Up to this level, the system acts as a single

camera system. After a conclusion is drawn about the proximity of occlusion, then

steps towards mitigation of occlusion takes place. Multiple cameras in the systems

are precalibrated and localized. Hence the poses of cameras are known to each

other. In case of any possible occlusion, the active camera selects minimal number

of cameras in the network that is not expected to encounter occlusion at the same

time. This camera will awake those set of cameras and they start further tracking

of subject. This will not only let the continuous tracking of subjects possible but

also let the cameras to work efficiently in terms of energy and avoids processing

complexity.

To justify the proposed approach towards occlusion determination, different cases

are experimented. Sample videos are captured with various possible motions in

different directions depicting the scenario of occlusion and non-occlusion. CASIA

Dataset A database which contains gait pattern of different subjects and captured

from different camera angles are modified to get eight different directions of motion

and are added in such a way to get variety of cases of occlusion. During the motion,

subject may be nearer to or far from the camera and hence may appear larger or

smaller in size, but the characteristics of the graph remains unchanged irrespective

of its appearance (as seen in the Fig.3.11). The next section presents various cases of

encountering occlusion and the cases of non occlusion observed over CASIA database

as well as self acquired database.

3.5 Results

The earlier sections of this chapter presents our novel approach towards achieving

uninterrupted track of the subject in an MCN environment that optimally utilises
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the camera resources. In order to test the proposed approach, CASIA Dataset A

for gait patterns are used. Section 3.2 show the results of morphological operations,

tracking of the subject and direction determination in different paragraphs. Utilising

these results as input to the proposed algorithm, occlusion estimation tests has been

performed. The results are carried over modified CASIA database where the frames

from two different frame sequences are concatenated to achieve desired conditions

of occlusion and non occlusion.

The result of experiment over the modified and concatenated CASIA database

has been presented in the figure 3.14. Figure 3.14(a) and 3.14(b) shows the image

sequence from modified CASIA dataset with successful determination of chances of

occlusion where in first case subjects are moving in directions 3 and 7 respectively

with speeds v3 each. In another case the subjects are moving in the directions 3 and

6 with speeds v3 each.

(a) Occlusion predicted with subjects directions as 3 and 7 and speed levels as 3 and 3

(b) Occlusion predicted with subjects directions as 3 and 6 and speed levels as 3 and 3

Figure 3.14: Test cases depicting occlusion over CASIA Dataset A

Experiments conducted over self acquired databases also illustrates encouraging

results. Figure 3.15(a) and Figure 3.15(b) shows sequence of frames where the

directions of two subjects are estimated based on earlier mentioned method. On

that basis their chances of occlusion are successfully determined. However occlusion

also depends on subjects speed. Figure 3.15(c) and Figure 3.15(d) shows two frame

sequences in which the direction of subjects are same but Figure 3.15(c) resulting
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occlusion while Figure 3.15(d) avoids occlusion. The direction in both the cases is

found to be direction 3. The difference in the subject’s speed level is found zero in

Figure 3.15(c) resulting non-occlusion while the speed level difference is found to be

two in Figure 3.15(d) resulting occlusion.

(a) Occlusion predicted with subjects directions as 2 and 6

(b) Occlusion predicted with subjects directions as 3 and 7

(c) Occlusion predicted with subjects directions as 3 and 3 but speed levels as 3 and 1

(d) No occlusion predicted with subjects directions as 3 and 3 but speed levels as 1 and 1

Figure 3.15: Test cases depicting occlusion and non occlusion

3.6 Concluding Remarks

The proposed work shows efficient and effective way for determining occlusion and

avoiding it in a multi-camera network. The proposed camera network works in single

camera mode avoiding complexity and higher operation cost as long as tracking is
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possible from one camera. It awake one or more cameras in case of any occlusion and

does not compromise in losing the track of the subject. It finds its implementation

in places like dedicated roads, office corridor, passage in railway station, airports,

subways, shopping malls and other places where multiple cameras can be installed.
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Conclusion

With ever increasing demand of surveillance and rapidly advancing camera

technology, mankind has landed into the era of visual surveillance. Over the time,

dependency and necessity over visual surveillance is growing rapidly and so is the

research in the domain. The tracking and recognition over single camera has been

elaborated and the multi-camera network (MCN) has emerged as a solution to

overcome the limitations of single camera-based visual surveillance. This thesis

explores the trade-offs of single as well as multi-camera based surveillance and

attempts to optimize multi-camera set-up as in single camera system yet not

compromising the benefits of multi-camera based surveillance system.

With different chapters, different levels of multi-camera development model have

been explored, and survey, proposals, experiments and results are presented that

lead to a model for an efficient surveillance system.

The necessity and advancement of calibration and localization of multi-camera

network has been studied and presented in chapter 1. The chapter elaborates

the complexity as well as necessity of a calibrated multi-camera network. The

chapter explores different research challenges in the domain of multi-camera network.

Effective utilization of camera is a major issue in MCN, this has been resolved

with research on effective placement of camera. Chapter 2 discusses various camera
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placement techniques and presents a novel approach towards task specific efficient

placement of field cameras in the proposed model. With the aim of capturing gait

patterns of moving subjects, a novel camera placement technique has been proposed

that places the camera so as to stay orthogonal to the direction of movement of

the subject. The proposed model has been experimentally tested over a corridor

sequence taken at Vikram Sarabhai Hall of Residence at NIT Rourkela and based

on the number of walks of different subjects, suitable camera placement results are

presented. With cameras placed efficiently, the camera control is also an important

issue in MCN based surveillance. Chapter 3 presents research on camera control. To

justify the scope of the model, a brief comparison of single and multi-camera based

surveillance and their benefits and trade-offs are presented in chapter 1. A three

step model has been proposed that lets most of the cameras to stay in sleep mode

while minimal cameras are tracking the subject. Direction and apparent speed of the

subjects are determined and with their results, chances of occlusion are calculated.

In case of any chances of occlusion, the time and placement of occlusion is also

determined. A prior knowledge of occlusion will let the system to take necessary

action towards mitigation of occlusion. These experiments are performed on existing

database, CASIA Dataset A for gait and its modified versions.

Scope for future research

The experiment conducted towards the proposed model has produced motivating

results. It achieves good accuracy in challenging situations as� Changing speed of the subject within video.� Different velocity of subject in different video.� Different distances of the subject from the camera.� Presence of noise and partial occlusion.
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Conclusion� Direction of motion of subject being not accurate.� Varying direction of subject while motion.� Low resolution video.

Many challenges have been identified and expected. Even though ample

justification has been given towards the efficient placement of camera work, and

experimental results over self acquired data has been produced, it still awaits

experimental justification in complex surveillance zone. Further scope towards

implementation of the proposed work lies in developing algorithms that can decide

the control flow from one camera to another. Mitigation of occlusion can be done

when a robust algorithm can utilize the pose (position with orientation) information

of pre-localized and calibrated cameras, and based on these values, it can awake the

camera which does not encounter occlusion at all. Since the algorithm works in real

time environment and finds its implementation in vital issue as surveillance, fast

and optimized working along with high accuracy is a concern that can always be

explored.
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