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Abstract

The problem of protein superfamily classification is a challenging research

area in Bioinformatics and has its major application in drug discovery. If

a newly discovered protein which is responsible for the cause of new disease

gets correctly classified to its superfamily, then the task of the drug analyst

becomes much easier. The analyst can perform molecular docking to find

the correct relative orientation of ligand for the protein. The ligand database

can be searched for all possible orientations and conformations of the protein

belonging to that superfamily paired with the ligand. Thus, the search space

is reduced enormously as the protein-ligand pair is searched for a particular

protein superfamily. Therefore, correct classification of proteins becomes a very

challenging task as it guides the analysts to discover appropriate drugs. In this

thesis, Neural Networks (NN), Multiobjective Genetic Algorithm (MOGA),

and Support Vector Machine (SVM) are applied to perform the classification

task.

Adaptive MultiObjective Genetic Algorithm (AMOGA), which is a varia-

tion of MOGA is implemented for the structure optimization of Radial Basis

Function Network (RBFN). The modification to MOGA is done based on the

two key controlling parameters such as probability of crossover and probability

of mutation. These values are adaptively varied based upon the performance of

the algorithm, i.e., based upon the percentage of the total population present

in the best non-domination level. The problem of finding the number of hidden

centers remains a critical issue for the design of RBFN. The most optimal RBF

network with good generalization ability can be derived from the pareto opti-

mal set. Therefore, every solution of the pareto optimal set gives information

regarding the specific samples to be chosen as hidden centers as well as the

update weight matrix connecting the hidden and output layer. Principal Com-

ponent Analysis (PCA) has been used for dimension reduction and significant

feature extraction from long feature vector of amino acid sequences.

In two-stage approach for protein superfamily classification, feature extrac-

tion process is carried in the first stage and design of the classifier has been

proposed in the second stage with an overall objective to maximize the perfor-

mance accuracy of the classifier. In the feature extraction phase, Genetic Al-

gorithm (GA) based wrapper approach is used to select few eigen vectors from

the PCA space which are encoded as binary strings in the chromosome. Us-

ing PCA-NSGA-II (non-dominated sorting GA), the non-dominated solutions

obtained from the pareto front solves the trade-off problem by compromising

between the number of eigen vectors selected and the accuracy obtained by the

classifier. In the second stage, Recursive Orthogonal Least Square Algorithm

(ROLSA) is used for training RBFN. ROLSA selects the optimal number of



hidden centres as well as updates the output layer weighting matrix. This

approach can be applied to large data set with much lower requirements of

computer memory. Thus, very small architecture having few numbers of hid-

den centres are obtained showing higher level of performance accuracy.

As neural networks suffer from two major drawbacks such as getting stuck

in local minima and over fitting, so Support vector machine (SVM) is then ap-

plied for classification. MOGA selects the optimal number of significant eigen

vectors from the eigen space as well as optimize the hyper-parameters of SVM.

Using GA based wrapper approach for feature subset selection; the eigen vec-

tors and hyper-parameters of SVM are encoded in the chromosome. SVM clas-

sifier is wrapped with every chromosome for evaluating the fitness value. Us-

ing MOGA-SVM, the non-dominated solutions obtained from the pareto front

solves the trade-off problem by compromising between the number of eigen

vectors selected and the accuracy obtained by the classifier. Thus, MOGA-

SVM finds a solution between two conflicting objectives of SVM such as model

complexity and accuracy. To fasten the convergence process, AMOGA-SVM

was implemented and a comparison between MOGA-SVM and AMOGA-SVM

was studied.

Each of the proposed work is evaluated separately and their performances

are analysed in terms of sensitivity, specificity and accuracy and compared

with existing techniques.

Keywords: MOGA, pareto front, non-domination level, probabilities of crossover

and mutation, n-gram feature extraction, orthogonal least square algorithm,

eigen vector, kernel function, hyper-parameters.
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Chapter 1

Introduction

1.1 Introduction

Bioinformatics is one of the leading research areas which integrates various

fields such as advanced computer science and informatics, biology, statistics,

applied mathematics, artificial intelligence, etc. to solve the biological prob-

lems at the molecular level. Application of advanced statistical and data min-

ing techniques in the area of bioinformatics help to organize, analyse and inter-

pret biological data and thereby discover previously unknown patterns. The

major areas of Bioinformatics concern primary genome sequence, protein struc-

ture, micro-array and gene regulatory networks. The genome provides only

static information whereas the gene expression patterns produced from the

micro-array experiments provide dynamic information about cell function [1].

Analysis and interpretation of biological sequence data are fundamental

task in bioinformatics. Classification and prediction techniques are one way

to deal with such a task [2]. The problem of protein superfamily classification

is a major research area of bioinformatics. Proteins are the building blocks

of all living organisms. These are macro molecules which consists of carbon,

1



Chapter 1 Introduction

DNA

Replication

DNA-DNA
DNA Polymerase

RNA Protein
RNA

Polymerase
Ribosome

RNA → Protein
Translation

DNA → RNA

Figure 1.1: Schematic representation of Central Dogma of Life

hydrogen, oxygen, nitrogen, and sulphur atoms. The 20 different amino acids

linked through peptide bonds are arranged in various combinations to generate

a huge number of proteins. Some important functions of proteins include en-

zymes, hormones, antibodies etc. The Central Dogma of Life clearly describes

the formation of protein inside a living organism. This is shown in Figure 1.1.

The Central Dogma consists of three main phases:

1. Replication: Deoxyribonucleic acid (DNA) gets duplicated by a process

called replication prior to the occurrence of cell division. The replica-

tion of DNA allows each daughter cell to contain a full complement of

chromosomes.

2. Transcription: This is the process of conversion of DNA of chromosome

to form Ribonucleic acid (RNA). RNA contains ribose sugar where as

DNA contains deoxyribose sugar. In addition, RNA lacks the base T.

It is replaced, instead, with the base U, which is complementary to A

(as T is complementary to A in DNA) ( A = adenine, C = cytosine, T

= thymine, G = guanine and U = uracil). The RNA formed acts as a

messenger, which passes from the nucleus into the cytoplasm of the cell.

So, this type of RNA is often called messenger RNA or mRNA.

3. Translation: The information now in the RNA sequence is decoded to

form protein. This process is called translation.

The application of computational intelligence techniques to the field of

bioinformatics can handle huge amounts of biological data and retrieve valu-

2



Chapter 1 Introduction

able knowledge from it. The majority of problems in bioinformatics are com-

putationally hard in nature, and soft computing techniques offer promising

approach to find solutions to these type of problems. The general problems in

area of bioinformatics involve gene finding and promoter identification in DNA

sequences, Gene regulatory network identification, DNA and RNA structure

prediction, Protein structure and function prediction by superfamily classifi-

cation, Gene mapping on chromosomes, etc.

Computational intelligence is a combination of three main paradigms such

as Neural Networks, Genetic Algorithm and Fuzzy Logic. Evolutionary com-

putation, swarm intelligence, probabilistic reasoning, etc. are few techniques

integrated with computational intelligence techniques. Researchers have in-

vestigated that integration of various techniques such as neuro-fuzzy systems,

evolutionary-fuzzy systems, evolutionary neural networks, evolutionary neuro-

fuzzy systems, etc. have shown promising results in many real-life applications.

This is due to their ability of tolerance for imprecision, uncertainty, approxi-

mate reasoning and partial truth. These intelligent techniques possess the real

challenge to handle and manipulate the biological data as they are quite adap-

tive to changing environment. Besides that, the biological data have many

missing and noisy samples, and the intelligent techniques are highly robust to

handle these sort of data. Intensive work in the direction of protein secondary

prediction using NN, protein functional prediction using SVM, protein ter-

tiary structure prediction using NN, GA and SVM; protein docking using GA,

etc. have already been implemented by researchers [1]. Their results are quite

promising, which prove the phenomenal performance of intelligent techniques

in the area of application to bioinformatics.

Identifying the structure and function of new proteins is the primary ob-

jective of the researchers working in the area of proteomics. Proteomics is the

study of proteomes that includes determining 3D shapes of proteins, their role

inside cells, the molecules with which they interact and defining which cate-

gory of proteins are present and how much of each are present at given time. A

3



Chapter 1 Introduction

proteome is the complete collection of proteins within a cell or tissue or organ-

ism at a particular time [3]. Proteins are long strings of amino acid sequences,

and the occurrence and combination of amino acids contributes for the correct

prediction of structure and function of a newly discovered protein. Proteins

are grouped into different families with significant sequence similarity showing

30% or greater common evolutionary relationship. Proteins are grouped into

superfamily having low sequence similarity but possessing structural and func-

tional features suggesting a common evolutionary origin. As the total number

of sequenced proteins increases, and interest expands in proteome analysis,

there is an ongoing effort to organize proteins into families and predict their

family membership. Correct prediction of unknown protein or newly discov-

ered protein mainly concerns the researchers and practitioners for prediction of

molecular function, drug discovery, medical diagnosis, genetic engineering, etc.

Protein classification can be done by classifying a new protein to a given family

with previously known characteristics. The aim of classification is to predict

target classes for given input protein. There are many approaches available

for classification tasks, such as statistical techniques, decision trees and neural

networks.

1.2 Data Mining in Proteomics using Intelli-

gent Techniques

Data mining is defined as, exploration and analysis by automatic and semi-

automatic means of large quantities of data, in order to discover meaningful

patterns and rules. The data mining techniques combine the study from var-

ious areas such as statistics, database, machine learning, pattern recognition

and optimization techniques. The application of data mining techniques has

manifold tasks in the area of proteomics. The applications of various intelli-

gent techniques offer promising solutions to the various problems in the area
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of proteomics.

Classification of newly discovered protein to their superfamily for struc-

ture and function prediction is an important task in the area of proteomics.

Fuzzy ARTMap classifiers, ANN, SVM and Extreme Learning Machine (ELM)

are implemented for protein superfamily classification. The protein structure

prediction involves predicting the secondary structure state for each amino

acid residue. The secondary structure of protein has three regular forms

such as alpha helix, beta sheet and loop. The accuracy index used here is

Paccuracy =
(Pα+Pβ+Ploop)

T
∗ 100, where T is the total number of residues, Pα

is the number of correctly predicted residues in α helix, Pβ is the number of

correctly predicted residues in β sheet and Ploop is the number of correctly

predicted residues in loops [4]. ANN, Neuro-GA and SVM are successfully im-

plemented for protein secondary structure prediction. The tertiary structure of

protein is the stable 3-D structure that forms a polypeptide, and the function

of a protein is determined from its 3-D shape or fold or conformation. The

determination of an optimal 3-D conformation of a protein corresponds to fold-

ing, and has manifold implications to drug design [1]. ANN, GA and SVM are

implemented for protein tertiary structure prediction and GA, Evolutionary

Programming (EP) and SVM are used for protein fold detection.

Motif is a sequence of amino acids or nucleotides that performs a particular

function and is often conserved in particular region. ANN, Neuro-Fuzzy, and

Genetic Programming are implemented for motif identification and classifica-

tion. Docking is frequently used to predict the binding orientation of small

molecule drug candidates to their protein targets in order to predict the affin-

ity and activity of the small molecule. Hence docking plays an important role

in the rational design of drugs [5]. Drugs are ligands or enzymes that bind

to an active site of protein. Docking can be categorized as: 1) rigid docking:

both ligand and protein are rigid; 2) flexible-ligand docking: ligand flexible

and protein rigid; and 3) flexible-protein docking: both ligand and protein are

flexible. GA is applied for prediction of active sites in docking [1].
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Phylogenetic analysis is performed to trace the evolutionary relationship

of genes, proteins or species. NN and GA are used to predict the common

evolutionary relationship. Protein homology detection is used to classify pro-

teins into functional or structural classes by homologies. Detecting homologies

at low levels of sequence similarity is remote homology detection. SVM is

implemented for homology detection [6, 7].

1.3 Protein Superfamily Classification and its

Importance

The problem of protein superfamily classification can be stated as, given a

newly discovered amino acid sequence, responsible for the cause of a disease,

the main task of the biologist is to classify the sequence to an existing super-

family. This helps in predicting the protein function and/or structure of the

unknown sequence; thus avoiding the expensive biological (wet) experiments

at the laboratory. Once a particular sequence S, causing disease D, is classified

to a superfamily Fi, the researchers can design some new drugs by trying some

combination of existing drugs for family Fi. Thus, this classification problem

helps the researchers for treatment of diseases by discovering new drugs [8].

The major application of protein superfamily classification is in the area

of drug discovery. If a newly discovered protein, responsible for the cause of a

disease gets correctly classified to its superfamily, the task of the drug analyst

becomes simpler. The analyst can perform molecular docking, which can be

thought of as a problem of lock-and-key, where one is interested in finding the

correct relative orientation of the key which will open up the lock. Here, the

protein can be thought of as the lock and the ligand as a key [9]. The ligand

database can be searched for all possible orientations and conformations of the

protein belonging to that superfamily paired with the ligand. Thus, the search

space is reduced enormously as the protein in the given protein-ligand pair is
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searched under a particular protein superfamily.

1.4 Protein Superfamily Classification as a Prob-

lem of Pattern Classification

The problem of protein superfamily classification can be mapped as a pattern

classification problem. The long strings of amino acid sequence represent a

pattern from which many global and local features are extracted. The features

selected or extracted using filter and wrapper approaches help in classification

of protein to their superfamily for structure and function prediction. Pattern

classification refers to the task of placing some object to correct class based

upon the measurement about the object [10]. The main task in building a pat-

tern recognition system is to automate a machine using some machine learning

techniques so that it can receive patterns as input and correctly classify them

into respective classes. Tom Mitchell defined machine learning as, a computer

program that is said to learn from experiment E with respect to some task

T and some performance measure P, if its performance on T, as measured

by P, improves with experience E [11]. The four best-known approaches for

pattern recognition are: 1) Template matching, 2) Statistical classification, 3)

Syntactic structural matching and 4) Neural networks. In template matching,

the pattern to be classified is matched against the stored template, whereas

in statistical classification, each pattern is represented in terms of ‘d’ features

and a discriminant analysis based approach is used for classification. In syn-

tactic approach, a formal analogy is drawn between the structure of patterns

and the syntax of a language and in neural networks based classification, the

network learns the complex input-output relationships and converges to meet

a certain threshold mean square error value [12]. The major steps of a pattern

classification system are shown in Figure 1.2.

7



Chapter 1 Introduction

1.4.1 Basic Steps of Pattern Classification System
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Figure 1.2: Basic steps of a pattern classification system

• Data acquisition and preprocessing

The first step of a pattern classification system is data acquisition in

which the raw data are derived or collected from the source such as from

sensors, cameras, databases, etc. The data so derived may be incom-

plete, noisy (containing errors and outlier values that deviate from the

expected) and inconsistent (containing discrepancies). In data prepro-

cessing, the data having missing values are filled, smoothing of noisy data

are done, outliers are removed and inconsistencies are resolved.

• Feature selection and feature extraction

The main objective of feature selection or extraction is to select a subset

of ‘m’ features out of ‘d’ number of features while maintaining an optimal

level of classification accuracy. In feature selection, a subset of features

are selected based on some measures where as in feature extraction, ‘d’
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dimension feature vector is reduced to ‘n’ dimension using some lin-

ear or non-linear transformation techniques. The linear transformation

techniques mostly used are PCA, Singular Value Decomposition (SVD),

Independent Component Analysis (ICA), Linear Discriminant Analysis

(LDA), etc. Feature extraction techniques for non-linearly distributed

data are Kernel PCA (KPCA), Multidimensional scaling (MDS), Gaus-

sian process latent variable models, etc.

• Learning of the classifier (Machine learning)

Machine learning techniques can be of three types in which the machine

learns and gets adapted to the training patterns. In supervised learning,

the data in the training patterns are associated with a class label or target

vector, and learning continues with an objective to reduce sum of mean

square error (MSE) costs over the training patterns. In unsupervised

learning or clustering, learning takes place with unlabelled data. The

system learns of its own forming clusters or natural grouping based on the

commonality of features in the data. The third category is reinforcement

learning or learning with a critic, in which no desired category symbol is

given, instead; the only teaching feedback is that the tentative category

is right or wrong.

• Optimization

Optimization is combined in almost all the stages of a pattern recog-

nition system. In preprocessing, optimization guarantees that the best

quality input features are derived by removing noise from the background

source of the input. In feature selection and feature extraction stage, se-

lection of an optimal number of distinguishing features greatly affects

the performance of the classifier. In the classifier design phase, structure

optimization of the network is considered and in the learning phase, op-

timization of synaptic weights and other parameters are done with an

overall objective to decrease the mean error rate value.
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• Performance evaluation of the classifier

To measure the performance of the classifier; classification accuracy is

evaluated, which gives the total number of samples correctly classified

with respect to the total number of test samples. Based on specific appli-

cations, some other parameters, such as Sensitivity, Specificity, Receiver

operating characteristic (ROC) Curve, False acceptance rate (FAR), False

reject rate (FRR), etc. are evaluated.

1.5 Motivation

Proteins are the cause of many diseases. If a newly discovered protein gets

correctly classified to its superfamily, then the task becomes easy for the drug

analyst to discover new drugs. The analyst may re-combine some existing drugs

or start searching the ligand database paired with that protein superfamily.

In this way, the analyst may be successful in finding out the right ligand for

the new protein. Therefore, correct classification of proteins becomes a very

challenging task as it guides the analysts to discover appropriate drugs. But as

the protein sequence is of high dimension, and also contain missing and noisy

samples, soft computing techniques can be correctly applied for the problem of

protein superfamily classification. The soft computing techniques are robust,

and possess the ability of tolerance for noise, imprecision, uncertainty and

approximate reasoning.

1.6 Objective

The main objective of the present work is to develop an efficient classifier

showing high level of performance accuracy. Since the selection of significant

features has a great impact on the performance of the classifier, efforts are

made to extract optimal number of distinguishing features. The main focus

given in this thesis work are on two main aspects namely feature extraction

10
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and classifier design. These two aspects are implemented using different com-

putational intelligence techniques such as neural network, genetic algorithm

and support vector machine.

1.7 Contributions

In order to proceed with the task of protein superfamily classification, a de-

tailed investigation was done on various features extracted from amino acid

sequence and the various classifiers implemented by earlier researchers. SVD

and PCA were implemented for dimension reduction of long feature vector de-

rived from every amino acid sequence. As the performance of PCA was better

than SVD, so in subsequent chapters PCA and some modification to PCA

were used for feature extraction. From the implementation of standard neural

networks, it was observed that FFNN and PNN have some shortcomings. So,

RBFN was preferred over FFNN and PNN.

Though RBFN was selected to perform classification task, the major focus

was given for structure optimization and improvement of performance accu-

racy of RBFN. A variation to the concept of MOGA i.e., Adaptive MOGA

(AMOGA) was proposed for improving the convergence rate of MOGA. The

optimized structure of RBFN was derived from the pareto optimal set obtained

after the implementation of AMOGA.

The next contribution of the thesis was on significant feature extraction us-

ing the proposed algorithm PCA-NSGA-II. This algorithm searches the eigen

space and selects the eigen vectors which have a great impact on the perfor-

mance of the classifier. To derive the most parsimonious architecture of RBFN

having high performance accuracy, RBFN-ROLSA was implemented.

Neural networks suffer from major drawbacks like problem of local minima,

high computational burden and over-fitting. So, SVM was preferred to perform

classification. The subsequent contribution of the thesis is the implementation

of MOGA-SVM, which optimizes the number of eigen vectors as well as the
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hyper-parameters of SVM model. To improve the convergence rate of MOGA,

AMOGA-SVM is implemented. Keeping the stopping criteria constant for

both approach, a comparative study was performed.

1.8 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides insight on the state-of-art of various techniques ap-

plied for protein superfamily classification problem. The review has been done

in two broad parts with respect to the objectives. First part describes the

various methods of feature extraction and feature selection from amino acid

sequences. Second part describes the design of classifier for classifying proteins

to their superfamily. The subsequent section describes the various performance

measures used for the task of protein superfamily classification. Some existing

techniques are implemented and the results of few numerical simulations are

shown. Dimension reduction techniques, classification using standard neural

networks and few evolutionary optimization techniques applied for optimizing

the structure of feed-forward neural networks are implemented in this chapter.

Chapter 3 describes the steps for implementation of PCA for dimension

reduction and significant features extraction from long feature vector of amino

acid sequences. AMOGA a variation of MOGA is applied for the structure

optimization of RBFN. The detailed steps of AMOGA is described in this

chapter. A comparison between both the approaches i.e., MOGA and AMOGA

are done by performing numerical simulations. The performance of RBFN-

MOGA and RBFN-AMOGA are compared with standard neural networks.

Chapter 4 describes the two stage approach for protein superfamily clas-

sification. In the first stage, optimal number of features are extracted using

PCA-NSGA-II (non-dominated sorting GA) and in the second stage, Recursive

Orthogonal Least Square Algorithm (ROLSA) in used to train RBFN. ROLSA

is used for structure optimization of RBFN as well as derives the optimal value
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of the weight matrix connecting the hidden and the output layer. The detailed

steps of PCA-NSGA-II and RBFN-ROLSA are described in this chapter. The

experimental details and the results obtained from numerical simulations are

discussed here.

Chapter 5 describes the MOGA approach to select the optimal num-

ber of significant eigen vectors from the eigen space as well as optimize the

hyper-parameters of SVM. MOGA-SVM, selects the non-dominated solutions

obtained from the pareto front to solve the trade-off problem between the num-

ber of eigen vectors selected and the accuracy obtained by the SVM classifier.

The steps of MOGA-SVM are shown in flow chart and the detailed steps are

outlined in the algorithm. To improve the convergence rate of MOGA-SVM,

AMOGA-SVM is implemented and a comparative study between MOGA-SVM

and AMOGA-SVM is performed.

Chapter 6 concludes the thesis. In this chapter, the work done is sum-

marised, the contributions are highlighted and suggestion for the future work

has been discussed.
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Chapter 2

Related Work

This chapter focusses on the state-of-art of various techniques applied by

the researchers for protein superfamily classification problem. The review has

been done in two broad parts with respect to the objectives of the thesis. First

part describes the various methods of feature extraction and selection from

amino acid sequences. Second part describes the design of classifier. In the

subsequent section, the various parameters used for measuring the performance

of the classifier are listed.

2.1 Introduction

Although, many trivial alignment methods are already developed by earlier

researchers, but the present trend demands the application of computational

intelligent techniques to perform the task of protein superfamily classification.

Earlier approaches used sequence similarity concept for protein superfamily

classification. These includes Smith Waterman [1981], FASTA [Pearson, 1990],

BLAST [Altschul et al., 1997], PSI-BLAST [Altschul et al., 1997]. In these ap-

proaches, two protein sequences are taken as input and the similarity measure

is calculated between them. BLOSUM [Henikoff, 1992], PAM [Dayhoff et al.,
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1978], are most commonly used scoring matrices which are used to derive

alphabet weighted similarity. Classification based on motifs and domains as-

sume, domains form the building blocks of proteins. Motifs are composed of

sub-strings occurring in local regions of a sequence. PROSITE [Falquet et al.,

2002] is the oldest motif-based method of classification of proteins. Other than

PROSITE, some more classification systems developed are BLOCKS [Henikiff

et al., 2000], PFAM [Bateman et al., 2000] based on Hidden Markov Model

(HMM), PRODOM [Corpet et al.,2000], EMOTIF [Atwood et al., 2002], etc.

The two major drawbacks of domain based classification are; many proteins

may have several domain appearances and there may be some protein which

may don’t have any domain. The software systems already developed based on

full protein sequence includes PROTOMAP [Yona et al., 2000], PROTONET

[Sasson et al., 2003], PIRALN [Srinivasrao et al., 1999]. Classification system

based on phylogeny was developed in 2001 COGS [Tatusov et al.] performed

clustering of proteins. The structure rather than sequence has a greater influ-

ence in predicting the functional properties of proteins. SCOP [LoConte et al.,

2002] is structural classification of proteins which classifies proteins into four

levels of hierarchy such as Family, Superfamily, Fold and Class. CATH [Orengo

et al., 1999], FSSP [Holm and Sander, 1998], etc. are few classification systems

based on protein structure. The main aim of protein superfamily classification

is functional annotation and functional prediction of newly discovered protein

sequence.

2.2 Feature Selection from Amino Acid Se-

quence

Choosing an appropriate set of relevant features is a critical issue for any

pattern classification problem. The main objective of feature selection is to

select ‘m’ number of distinguishing features out of total ‘n’ number of features
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such thatm≪ n. For any feature subset selection method, the most important

factors need to be considered are evaluation measure and the search strategy

[13]. The primary goal of feature selection are reduction of cost of extracting

features and improving the performance of the classifier. Typical evaluation

measures for feature subset selection can be divided into filter and wrapper

based approaches. Feature subset evaluation using a learning algorithm by

implementing a classifier is wrapper based approach whereas evaluating the

goodness of selected features using certain criteria is filter based approach [14].

A survey on evaluation functions used in inductive algorithm is shown in

Ben-Basset’s survey in [15].

2.2.1 Global Feature Selection from Amino Acid Se-

quence:

The frequency occurrence of 2-gram or bi-grams of any two amino acids oc-

curring consecutively and also the consecutive occurrence of any two exchange

groups are derived as global features from amino acid sequence. The exchange

groups statistically describes the probability of one amino acid replacing an-

other over time representing high evolutionary similarity [16]. The second most

vital global feature is the correlation coefficient which measures the global cor-

relation structure of the given sequence compared to the sequence belonging

to the target family.

The two gram features represent the majority of the protein features. Two

grams have the advantages of being length invariant, insertion/deletion in-

variant, not requiring motif finding and allowing classification based on local

similarity [17].

Bi-gram feature value

The i-th bi-gram feature value vi is calculated as :

vi =
fi

| S | −1 (2.1)
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where 1 ≤ i ≤ 436 (400 represents 2-gram features derived from twenty

amino acid bases and 36 denotes the 2-gram feature derived from six exchange

groups). Here the denominator denotes the number of bi-grams possible in a

sequence of length | S | and vi denotes the proportional frequency of occurrence

of i-th bigram feature (fi).

Mean and standard deviation

Mean(v̄i) =

∑N
j=1 vij

N
(2.2)

The standard deviation can be calculated as :

Std. Dev.(si) =

√

∑N
j=1(vij − v̄i)2

N − 1
(2.3)

If v̄i denotes the mean feature value of i-th bi-gram feature, then for 436

features, 436 mean feature values are obtained such as v̄1, v̄2 · · · ¯v436 and vij

denotes feature value at index (i,j). This concept is implemented in [16, 18].

Correlation coefficient measure

The correlation coefficient measure denoted as CC(Sj) compensates for the

loss of information for not considering all the bi-gram features as inputs to the

classifier [16, 18]. It is calculated as:

CC(Sj) =
436

∑436
i=1 vij v̄i − 436

∑436
i=1 vij

∑436
i=1 v̄i

√

(436
∑436

i=1 v
2
ij − (

∑436
i=1 vij)

2)(436
∑436

i=1 v̄i
2 − (

∑436
i=1 v̄i

2))
(2.4)

Position specific encoding

Wu et al. had proved that the encoding method has a great impact on the

performance of the classifier in [19,20]. For every n-gram feature, the frequency

of occurrence (count) and position can be obtained. The order of occurrence

is mostly not taken into consideration. Thus, each n-gram pattern can be

represented in either of three ways: such as, count vector only, position vector

only or concatenation of both vectors.
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2.2.2 Feature Selection using Hydropathy Content

Shakir Mohamed et al. considered the hydropathy properties of every amino

acid sequence and derived 18 features as a measure of this property [21]. The

hydropathy property describes amino acids to be either of three types such as

hydrophobic, hydrophilic (polar) or neutral. The Chothia and Finkelstein [22]

calculates three descriptors for hydropathy classification such as hydropathy

composition(C), the hydropathy transmission(T) and the hydropathy distri-

bution(D). The composition value(C) gives three values which is calculated as

the frequency of hydrophobic, hydrophilic (polar) and neutral amino acids in

the sequence. The transmission value(T) gives three values where the num-

ber of times a polar molecule is followed by a neutral molecule or vice-versa,

similarly for hydrophobic followed by hydrophilic and vice-versa and neutral

followed by hydrophobic and vice-versa. The hydropathy distribution(D) is

calculated as the frequency of hydrophobic, hydrophilic and neutral molecules

at each interval of 25%, 50%, 75% and 100% of the amino acid sequence. This

results in 12 features, 4 features for each of the three hydropathy groups. Be-

sides these 12 features, other six features (3 for C and 3 for T values) are also

calculated, thereby resulting a total of 18 features.

2.2.3 Feature Subset Selection using Relative Entropy

Feature selection using relative entropy measure for eight protein superfamilies

is described in [23].

If Xj is the feature and cij be the occurrence number of the feature Xj in

the sequence Si then the frequency fj for feature Xj can be defined as:

fj =

∑N
i=1 cij

∑N
i=1

∑436
j=1 cij

(2.5)

where N is the total number of sequences in the target or the non-target

class.

Let P (x | t) denotes the class conditional density functions for feature X, over
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the target class

P (x | nt) denotes the class conditional density functions for feature X, over

the non-target class.

Let W(x) is the relative entropy function between P (x | t) and P (x | nt).
W(x) may be evaluated as:

W (x) = −
∑

P (x | t)logP (x | t)−
∑

P (x | nt)logP (x | nt)

+
∑

P (x | t)logP (x | nt) +
∑

P (x | nt)logP (x | t)

Smaller W(x) values indicates greater distinction between the two classes.

2.2.4 Feature Subset Selection using Distance Measures

and Feature Ranking

In order to select subset of features out of long feature vector, the distance

measure is used to derive features having maximal discrimination power [24].

It can be calculated as :

D(vi) =
(v̄i+ − v̄i−)

2

s2i+ + s2i−
(2.6)

where (.)+ and (.)− refer to values of the measure calculated over the positive

and negative training data sets respectively. v̄i and si are the mean and stan-

dard deviations of the i-th feature in the feature vector. The bi-gram features

having highest D(vi) values are selected. The D(vi) values are sorted in de-

scending order and the best features are selected based on their rank. This

technique is otherwise known as Feature Ranking Algorithm which is imple-

mented by Mansoori et al. D(vi) = max(D1, · · · , Dj · · · , DM−1). The first E’

out of E features are selected from the ranked list denoted as (f1 · · ·fE′) where

f1 ≥ · · · ≥ fi ≥ · · · ≥ fE and fi is a unique feature label in 1, . . . , E.
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2.2.5 Feature Subset Selection using Statistical Profiles

S. Bandyopadhyay proposed a new technique for protein feature extraction

using statistical profile which is based on the concept of inheriting features by

primary structure of proteins from their ancestors [25]. A statistical profile is

constructed using a 20×lmax probability matrix where, lmax is the maximum

length of a sequence belonging to a particular superfamily. The position (i,j)

indicates the probability of occurrence of the i-th amino acid in position j

of the sequence. From the statistical profile, position specific weight of any

amino acid in a given sequence can be obtained, by adding the occurrence

of the amino acid at a particular place and the respective probability of the

occurrence of that amino acid in that place for the entire family.

2.2.6 Feature Subset Selection using Genetic Algorithm

Genetic Algorithm (GA) is a randomized evolutionary heuristic search tech-

nique which have been successfully applied for selecting optimal number of

significant features. A novel approach for optimizing features and training of

RBFN is implemented using GA [26]. This approach has outperformed ear-

lier approach of BLAST and the HMMer for protein sequence classification

obtained from Protein Information Resource (PIR) database.

The two critical issues of GA are: encoding of chromosome and designing of

the fitness function. The chromosome is an initial probable guess for a solution

to the problem which should be encoded correctly. For feature selection, it is

generally encoded as strings of 0’s and 1’s where 1 represents inclusion of the

feature and 0 indicates the discard of the feature as shown in Figure 2.1.

The two main objectives of this classification problem are, to maximize the

classification accuracy of the classifier and minimize the number of features.

The trade-off between the two objectives can be mapped into a single objective

function representing a weighted sum of objectives such as:

f(x) = w1 ∗ f1(x) + w2 ∗ f2(x), where, w1 and w2 are weight coefficients and
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Figure 2.1: Representation of chromosome for feature selection

f1(x) is the recognition rate and f2(x) is the number of features removed from

the feature set.

Zhao et al. have demonstrated the application of GA for selection of the

eigen vectors from the covariance matrix in [27]. GA selects the best reduced

global and local features from composition and motif content and optimizes

the regularization parameter of SVM simultaneously. After feature extraction,

SVM is used as a classifier and this approach has proven effective for protein

superfamily classification. A detailed description of dimensionality reduction

using GA is shown in Figure 2.2. The numerical simulation using the above

technique on various data sets is shown in [28].

2.2.7 Local Features Selection using Motif Content

Motifs are local features or the conserved region in the amino acid sequence

which signifies structural and functional biological properties. Based on the

local interactions of amino acids and exchange groups, the local features can

be extracted from the sequence. Blekas et al. applied a unsupervised motif

discovery algorithm for class dependent and class independent motifs to iden-

tify the probabilistic motifs in [8]. The discovered motifs are then converted

to a real valued input vector which is given as input to the feedforward neural

network. Wang et al. derived the local similarity measure (LS) from the motif

content of the amino acid sequence in [18].
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Figure 2.2: Feature extraction using Genetic Algorithm

2.2.8 Features Directly Extracted from Amino Acid (Based

on the Properties)

The features directly extracted from amino acid based on the properties is

shown in [29].

• Atomic composition: Counts the Carbon, Hydrogen, Nitrogen, Oxy-

gen and Sulphur atoms in the amino acid sequence.

• Molecular weight: Mass of a molecule of a substance IS based on 12,

as the atomic weight of carbon is 12. It is calculated in practice by

summing the atomic weights of the atoms making up the substance’s

molecular formula.

• Isoelectric point: The isoelectric point (pI) is the pH at which a partic-

ular molecule or surface carries no net electrical charge. The net charge

on the molecule is affected by pH of their surrounding environment and

can become more positively or negatively charged due to the loss or gain

of protons (H+). At a pH below their pI, proteins carry a net positive
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charge and above their pI they carry a net negative charge. Proteins can

thus be separated according to their isoelectric point (overall charge).

• Length of amino acid sequence: There are twenty standard amino

acid bases for a protein sequence. The sum of individual frequency of

occurrence of every amino acid base gives the length of the protein se-

quence.

• Average Mass of Protein Sequence: The average mass of a molecule

is obtained by summing the average atomic masses of the constituent

elements. For example, the average mass of natural water with formula

H2O is 1.00794 + 1.00794 + 15.9994 = 18.01528.

• Nominal Mass of Protein Sequence: The nominal mass of an ion or

molecule is calculated using the integer mass (ignoring the mass defect)

of the most abundant isotope of each element. This is equivalent to

summing the mass numbers of all constituent atoms. For example H =

1, C = 12, O = 16, etc. The nominal mass of water is 18, for example.

2.3 Feature Extraction using Dimension Re-

duction

Feature extraction algorithms are the methods or techniques that create new

features based on transformations or combinations of the original feature set.

In other words, given a n×d pattern matrix A (n points in a d-dimensional

space), a n×m pattern matrix B is being derived, such that m << d where

B = AH and H is a d×m transformation matrix [28].
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2.3.1 Feature Extraction using Singular Value Decom-

position (SVD)

Singular value decomposition (SVD) technique was used to reduce the dimen-

sion of large sparse n-gram feature matrix, implemented by Cathy Wu et al.

in [17]. SVD reduced the size of feature vector showing an overall performance

of 90% sensitivity value. PCA, SVD etc. are most commonly used techniques

for multivariate data such as Gene, Microarray, Protein, etc.

2.3.2 Feature Extraction using Principal Component Anal-

ysis (PCA)

The concept of PCA was developed by Karl Pearson in 1901. Principal com-

ponent analysis (PCA) is a statistical technique used to transform a feature

space of high dimension into a feature space of lower dimension having the

most significant features. The implementation of PCA for feature extraction

is implemented in [30].

To investigate the performance of SVD and PCA, a comparative study of

SVD and PCA was performed on protein data using PNN as classifier. The

three superfamilies considered in experiment are Esterase (145), Lipase(155),

Cytochrome(140) from UNIPROT database (http://www.uniprot.org/). From

each family, 70% of total data set formed the training set and the remaining

30% formed the test set. The comparison results obtained from numerical sim-

ulations are shown in graph (Figure 2.3). It was observed that, PCA performed

better in comparison to SVD.
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Figure 2.3: Performance of PCA and SVD using PNN as classifier.

2.4 Design of Classifiers

2.4.1 Design of Classifier using Neural Networks

Feedforward Neural Networks

In a typical multi-layered feedforward neural network (FFNN), neurons are

organized into three layers (shown in Figure 2.4). The input layer is composed

of neurons, which consists of the values in a data record, and that constitutes

inputs to the next layer of neurons. The next layer is called hidden layer

and there may be more than one hidden layer. The final layer is the output

layer, where every node represents a class. A single sweep forward through

the network results in the assignment of a value to each output node, and the

given test input is assigned to that class node whose neural network output is

very close to the target value. Multilayer feedforward networks are generally

trained using the Backpropagation (BP) learning algorithm.

Backpropagation (BP) algorithm FFNN using BP training algorithm for

protein superfamily classification is implemented in [17, 30]. In BP al-
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Input layer Hidden layer

Output layer

Figure 2.4: A typical multi-layered feedforward neural network

gorithm, functional signals flows in forward direction and error signals

propagate in backward direction. That’s why it is called Error Back-

propagation or shortly backpropagation network. The activation func-

tion that can be differentiated (such as sigmoidal activation function) is

chosen for hidden and output layer computational neurons. The major

drawback of BP algorithm is, it takes long and uncertain training time

and may get trapped in local minima. The rule for changing values of

synaptic weights follows generalized delta rule but they are limited to

searching for a suitable set of weights in an a priori fixed network topol-

ogy. This mandates the selection of an appropriate optimized synaptic

weight for the learning problem on hand. Many evolutionary optimiza-

tion techniques can be applied to fasten the training process of the FFNN

by deriving the optimal values of synaptic weights.

To investigate the performance of evolutionary algorithms, numerical

simulations were performed on protein data set (The experiment details

are same as described in Section 2.2.2).

• Genetic Algorithm (GA): GA is a stochastic based global searching

technique which may be used to find out the optimized synaptic

weight. Thus, a hybrid method combining GA-BP is implemented
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and the predictive accuracy is calculated.

• Adaptive Genetic Algorithm (AGA)-BP: To overcome the limita-

tions of GA such as premature convergence due to local optima and

low convergence speed, an attempt has been made towards the im-

provement of parameters such as crossover probability and mutation

probability. The probabilities of crossover and mutation are adap-

tively varied to protect the high fitness solutions from disruption as

described in [31]. After implementation, it was observed that AGA-

BP gave better result in comparison to GA-BP and traditional BP

in terms of speed, predictive accuracy, and precision of convergence.

• Particle Swarm Optimization (PSO)-BP: PSO-BP encodes the pa-

rameters of neural networks as particles and the population of par-

ticles are referred as Swarm. The bias neuron is not included in the

encoding of the particles. Here, the synaptic weights of the neural

network are initialized as particles and the PSO is applied to obtain

the optimized set of synaptic weights.

• Modified Particle Swarm Optimization (MPSO)-BP: In MPSO-BP,

the probability of mutation is considered as 0.05 and the randomly

generated particles undergo mutation. The training process is same

as the PSO-BP, but a mutation phase is incorporated just before

the completion of one generation.

• Differential Evolution (DE)-BP: It is a robust stochastic based search

algorithm, for real parameter optimization. DE uses parameter vec-

tors as individuals in a population. The key element distinguishing

DE from other population based techniques is the use of differential

mutation operator and trial parameter vectors.

From the graphs obtained from simulations (Figure 2.5(a) Mean Fitness

vs. No. of Gens. and Figure 2.5(b) Accuracy vs. No. of Gens.),

it is observed that AGA-BP has outperformed all other evolutionary
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Figure 2.5: Mean Fitness vs. No. of Gens.
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Figure 2.6: Accuracy vs. No. of Gens.

optimization techniques in terms of convergence rate and performance

accuracy.

FFNN Trained using Kohonen’s Unsupervised Learning Algorithm

In 1982, Teuvo Kohonen, developed Self-organizing map(SOM) which is

a type of neural network. SOM are so named because the network under-

goes unsupervised competitive learning to map the weights to the given
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input data. This approach is based on Winner takes all (WTA) and

Winner takes most (WTM) concept. When input pattern is presented,

a distance to each neuron’s synaptic weight is calculated. The neuron

whose weights are most correlated to the current input vector is declared

as the winner.

E.A Ferran et al. implemented ANN trained using Kohonen’s unsuper-

vised learning algorithm to cluster protein sequences into families in [30].

Bi-gram features extracted from 1758 protein sequences formed the input

pattern matrix given to the network. Each protein pattern is presented

as input to the network and the neuron having the closest synaptic vector

to the input pattern is the winner neuron.

FFNN Trained using Gauss-Newton Bayesian Regularization (GNBR)

In the Bayesian regularization framework, the objective function is for-

mulated as the weighted sum of two terms. They are:

1. the sum of squared error(Ex)

2. sum of squares of network weights

Using Bayes rule, the posterior probability distribution for the weights

W of the network, given a training set X can be written as:

P (W | X) =
P (X |W )P (W )

P (X)
(2.7)

By properly choosing the prior distribution P(W) and the likelihood func-

tion P (X | W ), the posterior distribution (Bishop, Foresec and Hagan)

can be calculated.

The GNBR algorithm follows a Gauss-Newton approximation method

implemented in [8] (Foresse and Hagan, 1997) for calculating the Hessian

matrix at the minimum point using the Levenberg-Marquardt optimiza-

tion algorithm.
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Bayesian Neural Network (BNN)

The Bayesian Neural Network (BNN) basically has three layers namely, input

layer, hidden layer and output layer. The number of nodes in input layer

depends on the size of input feature vector. There may be multiple number

of hidden nodes in the hidden layer and the output layer has a single output

node. The output node is based on the logistic activation function such as

f(a) = 1/(1 + e−a). BNN is fully connected between the three layers. The

architecture of BNN is shown in Figure 2.6.

N input 

features 
G hidden 

units 

H hidden  

units 

gk(xi) 
hl(xi) 

f(xi) 

ujk 

xij 

wl 

vkl 

Figure 2.7: Architecture of Bayesian Neural Network

The Bayesian learning process is a three level inference process which under-

goes iteration till the convergence criteria is met. The detail learning algorithm

and application to protein superfamily classification are described in [18].

Radial Basis Function Network (RBFN)

A RBF network consists of three layers, namely the input layer, the hidden

layer, and the output layer. The input layer broadcasts the coordinates of

the input vector to each of the units in the hidden layer. The architecture of

RBFN is shown in Figure 2.7.

In generalized RBFN, the supervised learning of the center location as well

as output layer weights and the Gaussian spread (σ) are performed based

on error correction learning rule using a gradient descent procedure. Protein
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Figure 2.8: Architecture of Radial Basis Function Network

superfamily classification using modular RBFN with transition output fusion

is shown in [32] and RBFN trained using Genetic Algorithm is implemented

in [26]. An implementation of subtractive clustering in standard RBF and

modular RBF is shown in [33]. The proposed network based on subtractive

clustering has shown less training time compared to standard RBFN.

Probabilistic Neural Network

The concept of PNN was developed by Donald Specht in 1990 [34]. The concept

of PNN relies on Parzen Window classifier. In original Specht’s implementa-

tion, the basis function used as window is Gaussian Kernel which is given

by:

g(x) =
1

nσ

n
∑

k=1

exp
−(x−xk)2

σ2 (2.8)

where n= number of samples from a class

σ = smoothing parameter

x= unknown input

xk is the “kth” sample.

The PNN is a multilayer feedforward network having four layers namely:
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input layer, hidden or pattern layer, summation layer, output or decision layer

shown in Figure 2.8. The pattern layer has one pattern node for each training

sample. The summation node or unit receives the outputs from the pattern

nodes associated with a given class. It simply sums the outputs from the

pattern nodes that correspond to the category from which the training pattern

was selected. Thus, the number of nodes in the summation layer is same as

the number of classes in multi-class classification problem. The output node

takes the decision of classifying the unknown sample to its respective class.
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Figure 2.9: Architecture of Probabilistic Neural Network

The smoothing parameter value σ can be guessed, based on the knowledge

of the data or the value which can be estimated using some heuristic tech-

nique. To classify the family membership of unknown proteins using PNN as

a classifier is shown in [29].

To evaluate the performance of neural networks, a comparative study of

three neural networks was done and the results obtained from numerical sim-

ulation is shown in graph (Figure 2.9). The experiment details are same as

described in Section 2.2.2. It is observed that PNN has outperformed FFNN

and RBFN.
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Figure 2.10: Performance of FFNN, RBFN and PNN

Extreme Learning Machine

In 2005, Huang et al. proposed a new learning algorithm called Extreme Learn-

ing Machine (ELM) for single hidden layered feedforward network (SLFN) with

additive neurons and for kernel based radial basis function network. ELM does

not have any control parameters i.e, stopping criteria, learning rate, learning

epochs, etc. to be manually tuned and therefore it can be implemented eas-

ily. The application of ELM for protein sequence classification by Wang and

Huang is implemented in [35].

2.4.2 Design of Classifier using Fuzzy Rules

The concept of Fuzzy Logic (FL) was developed by Lotfi A. Zadeh in 1965. FL

is a multi- valued logic, that allows intermediate values to lie between 0 and 1.

The concept of FL is widely used in many complex industrial processes, expert

system, embedded system, electronics devices etc. The concept of FL is im-

plemented to design fuzzy rule based classifier which is efficiently implemented

for protein superfamily classification.
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Designing Fuzzy Rule Based Classifier

Mansoori et al. designed a fuzzy rule based classification system which gen-

erates simple and comprehensible set of fuzzy classification rules based on

distribution of amino acids from the training set [36].

A Steady State Genetic algorithm for Extracting Fuzzy Classification

Rules from Data (SGERD)

SGERD, a novel steady state genetic algorithm is implemented for extracting

compact set of simple and interpretable fuzzy classification rules from a dataset

of protein superfamily sequences [24]. The main objective of SGERD is to

generate a pre-specified number of Q rules per class (i.e., the best ones) in the

final population for an n-dimensional problem with M classes and m labelled

patterns.

Using ARTMAP

The implementation of Fuzzy ARTMAP is used as a classifier for protein su-

perfamily classification in [21]. This classifier is based on adaptive resonance

theory (ART). The learning system is built upon two fuzzy ART modules

which employs calculus based fuzzy operations. The two controlling param-

eters are ρ and β which represents the vigilance parameter and the learning

rate respectively. ρ represents the trade-off between classification accuracy and

incremental learning ability whereas β is the factor by which the hyper-boxes

are adjusted with each training pattern during the training phase. This ap-

proach is efficient for showing high accuracy, quick training time and ability

for incremental learning.

2.4.3 Design of Classifier using Neuro Fuzzy Technique

Wang, Lee and Dillon, implemented generalized radial basis function (GRBF)

neural network for extraction and optimization of fuzzy protein sequences clas-
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sification rules [37]. A typical GRBF architecture is shown in Figure 2.10.

Figure 2.11: Architecture of GRBF Network

The network consists of ‘m’ input features X = [x1, x2, · · · , xm]
T , M hidden

units and n output units in the decision layer. The activation function φ in

the hidden units are the Gaussian functions defined by:

φ(Xj) = exp[−d(Xj , Cj)] (2.9)

where Xj = [xj1, xj2, · · ·xjp]
T , jp ≤ m represents a subset or a projection of

X onto a subspace of the feature space, which is the contributory input vector

to the j-th hidden unit. If Cj is the corresponding cluster center of the unit,

d(Xj, Cj) represents the weighted Euclidean distance measure. It is calculated

as:

d(xj , Cj) =

p
∑

k=1

(xjk − cjk)
2/(σjk)

2 (2.10)

where (σjk) represents the variance of the Gaussian Kernel. A fuzzy T-norm

operator, namely fuzzy plus operator ⊕ defined by:

a⊕ b = a+ b− ab (2.11)

is applied as the activation function at the output layer of the GRBF network.
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2.4.4 Classifier using Support Vector Machine (SVM)

SVMs were developed by Cortes and Vapnik (1995) for supervised binary clas-

sification which is based on the well developed statistical learning theory. The

non-linear-SVM maps the non-linearly distributed input data into a high di-

mensional feature space H by using kernel mapping function φ(x). SVM finds a

hyperplane, which maximizes the margin, i.e., the distance between the hyper-

plane and the nearest data points of each class in the space H. The hyperplane

can be described by w.x+ b = 0 where:

• w is normal to the hyperplane.

• b
‖w‖

is the perpendicular distance from the hyperplane to the origin.

Support Vectors are the points closest to the separating hyperplane and

the aim of SVM is to orientate this hyperplane in such a way as to be as far

as possible from the closest members of both classes.

Figure 2.12: Representation of margin and support vectors in SVM

The mapping function φ(.) is implemented by a kernel function K(xi; xj)

which denotes an inner product in the space H. The most commonly used

kernel function are as follows:

• Polynomial Kernel: k(x, y) = (x.y)d
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• RBF kernel : k(x, y) = exp(−‖(x−y)‖2

2σ2 )

• Hyperbolic Tangent (Sigmoid Kernel) K(x, y) = tanh(α(x.y) + C)

SVM classifier is implemented to classify protein sequences into correspond-

ing families in [27] . From numerical simulation results it is observed that the

technique is really effective for protein superfamily classification. Features se-

lected based on relative entropy and SVM for classification is implemented

in [23].

2.4.5 Classifier using Principal Component Null Space

Analysis (PCNSA)

French et al. implemented PCNSA, a linear classifier for protein superfamily

classification in [38]. In the first step, principal component analysis (PCA)

was used on the entire training set for dimension reduction. In the second

step, a null space for each class was found, which was extracted by taking the

dimensions with the least variance of each class using eigenvalue decomposition

technique.

2.4.6 Classifier using Nearest Neighbour Rule

The nearest neighbour method is one of the simplest classifier to predict the

class membership of unknown test sample. This method is based on the dis-

tance metric between testing and training samples. The basic concept of this

approach is based on the distance measure i.e., one training sample ‘t’ is found

for each test sample ‘s’, with most similar expression value. The distance met-

ric can be any similarity measure based on attribute values, e.g., the Pearson’s

correlation coefficient, the Euclidean distance function, etc.

Let E(x) represents expected value of vector x.

Var(x) represents variance of vector x.
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s: represents test sample vector.

t: represents training sample vector.

The Pearson’s correlation coefficient can be calculated as:

P (s, t) =
E((si −E(s))(ti −E(t)))

√

var(s)var(t)
(2.12)

The class label of ‘t’ is assigned to ‘s’ by the nearest neighbour classifier

expressed as :

class(t, s) = class(argmaxi P (s, ti)) where class returns the class of training

sample that has highest P value.

S. Bandyopadhyay implemented nearest neighbour rule to classify an un-

known protein sequence into a particular superfamily based on the proximity

to the prototype evolved using the genetic fuzzy clustering technique [25]. The

time requirement as shown by the author is significantly less as compared to

BLAST as well as shows better performance in classification.

2.5 Parameters used for Measuring the Effi-

ciency of Classifier

For any classification problem, the outcomes of the data are always labelled

i.e either positive (p) or negative (n). Based on the two outcomes there may

be various combinations of outputs. If the outcome from a classifier is p and

the actual outcome value is also p, then it is called as true positive. If the

classifier output is p and the actual outcome is n, then it is false positive.

Conversely, if the actual output and the classifier are both n, then it is called

true negative, and if the classifier output is n and the actual value is p it is

referred as false negative. The measures used by most of the researchers to

evaluate the performance of classifier are:

1. Precision = [ TP+TN
TP+FP+TN+FN

] ∗ 100%
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2. Sensitivity (or True Positive Rate) = TP
TP+FN

∗ 100%

3. Specificity (or True Negative Rate) = TN
TN+FP

∗ 100%

4. Unclassifiedp = Nup

Npo
∗ 100%

5. Unclassifiedn = Nun

Nng
∗ 100%

where TP = number of true positive samples

TN = number of true negative samples

FP = number of false positive samples

FN = number of false negative samples

Nup = total number of positive test sequences

Nun = total number of negative test sequences

Nng = total number of negative test sequences

Npo = total number of positive test sequences

6. Receiver Operating Characteristic (ROC) Curve:

ROC analysis investigates and employs the relationship between sensi-

tivity and specificity of a binary classifier. Sensitivity or true positive

rate measures the proportion of positives correctly classified; specificity

or true negative rate measures the proportion of negatives correctly clas-

sified. The best possible prediction method would yield a point in the

upper left corner or coordinate (0, 1) of the ROC space, representing

100% sensitivity (no false negatives) and 100% specificity (no false posi-

tives). The (0,1) point is also called a perfect classification.

7. Mean Square Error (MSE) and Number of Epochs: The number of epochs

is the successive number of iteration, the neural network undergoes to

meet the convergence criteria. The convergence criteria is fixed by as-

signing a threshold value to MSE. MSE is defined as :
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Figure 2.13: Representation of ROC curve

MSE =
1

2

n
∑

k=1

q
∑

i=1

[ti(k)− oi(k)]
2 (2.13)

The above equation gives the vectorial difference between the k-th target

output vector t(k) and the k-th actual vector o(k) of the network. ‘n’

denotes the number of training patterns presented to the network for

learning purposes and ‘q’ denotes the number of nodes in the output

layer. The learning of neural network stops when the MSE value falls

below the pre-specified threshold value.

8. CPU Execution Time: The actual time required by the algorithm to

meet the convergence criteria.

9. Mean, Variance and Standard Deviation: To measure the performance

of randomized algorithms, the standard deviation is calculated over n

number of observations. This can be calculated as :

µx = X̄ =
1

n

n
∑

i=1

Xi (2.14)

where µx denotes the mean over ‘n’ number of observations. To ob-

tain the measure of the variability of the data, the statistics most often
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used are the standard deviation σx =
√

(σx)2 and variance (σx)
2 . The

standard deviation can be calculated as:

(σx) =

√

∑n
i=1(Xi − µx)2

n
(2.15)

2.6 Conclusion

The application of various computational intelligence techniques applied by

earlier researchers to the problem of protein superfamily classification is dis-

cussed in this chapter. The review has been done under two broad parts, such

as feature extraction and selection, and design of the classifier. The various

parameters used to measure the performance of the classifier are also discussed.

The various approaches for global and local feature selection from amino acid

sequence; as well as the dimension reduction techniques for feature extraction

are discussed. Efficient design of the classifier is a key issue for any classifica-

tion problem. Various soft computing techniques already implemented by the

researchers for the design of classifier are reviewed. The results obtained from

numerical simulations of some existing techniques are shown. It can be con-

cluded that, the intelligent techniques possess the real challenge to handle the

biological data as they possess the ability to exploit the tolerance for impre-

cision, uncertainty and partial truth thereby achieving tractability, robustness

and low solution cost. Biological data are typically very large, complex, prone

to noise, and change with time. The computational intelligent techniques of-

fers a promising solution to handle and manipulate these type of data.

In the next chapter, the proposed method for Protein Superfamily Clas-

sification using Adaptive Evolutionary Radial Basis Function Network is dis-

cussed.
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Protein Superfamily

Classification using Adaptive

Evolutionary Radial Basis

Function Network

In this chapter, the concept of Adaptive Multiobjective Genetic Algorithm

(AMOGA) is applied for the structure optimization of radial basis function

network (RBFN).

The modification to the earlier approach of Multiobjective Genetic Algo-

rithm (MOGA) is done based on the two key controlling parameters such as

probability of crossover and probability of mutation. These values are adap-

tively varied based on the performance of the algorithm i.e. based on the

percentage of total population present in the best non domination level. PCA

is used for dimension reduction and significant features are extracted from long

feature vector of amino acid sequences.
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Protein Superfamily Classification using Adaptive Evolutionary Radial Basis

Function Network

3.1 Introduction

The problem of protein superfamily classification can be mapped as a pat-

tern classification problem. For any pattern classification, the first step is

retrieval of input patterns from any publicly available database, or from any

reliable source. In case of retrieving biological data, UNIPROT, PIR, NCBI

etc. databases are referred for retrieving gene and protein data. The data

so derived may be incomplete, noisy (containing errors, or outlier values that

deviate from the expected), and inconsistent (e.g., containing discrepancies).

So after the inputs are retrieved, the next step is data pre-processing, where

the data having missing values are filled following certain techniques. In this

step, smoothing of noisy data are done; outliers are identified and removed;

and inconsistencies are resolved.

In Feature measurement the dimension or number of attributes of every

sample is measured. The number of samples collected from every class are also

taken into account. The next step is feature selection, where subset of distin-

guishing features are selected from the original feature set as they have a high

impact on the performance accuracy of the classifier. In feature extraction,

‘D’ dimension feature vector is reduced to ‘m’ (m≪ D) dimension using some

linear or non-linear transformation techniques.

After the reduced feature vector is obtained, the entire data set is divided

into training and test set. The training set is used for the learning (or training)

of the classifier in which the classifier learns and gets adapted to the training

patterns. The neural networks undergoes supervised learning, where every data

in the training pattern are associated with a class label or target. The learning

continues with an objective to reduce sum of costs for the training patterns.

Once trained, the efficiency of the classifier is measured on the test data set

(untrained patterns) in terms of generalization error or performance accuracy.
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Protein Superfamily Classification using Adaptive Evolutionary Radial Basis

Function Network

3.2 Basic Concept and Architecture of RBFN

A RBF network consists of three layers, namely the input layer, the hidden

layer, and the output layer. The input layer broadcasts the coordinates of

the input vector to each of the units in the hidden layer. The inputs of hid-

den layer are the linear combinations of scalar weights and the input vector

[x1, x2, · · ·xn]
T where the scalar weights are usually assigned unity values. Each

unit in the hidden layer then produces an activation based on the associated

radial basis function. The output layer yields a vector [y1, y2, · · · ym]T for m

outputs by linear combination of the outputs of the hidden nodes to produce

the final output.

y = f(x) =
k
∑

i=1

wiφi(x) (3.1)

where f(x) is the final output, φi(x) denotes the radial basis function of the ith

hidden node, wi denotes the hidden to output weight corresponding to the ith

hidden node, and k is the total number of hidden nodes. The architecture of

RBFN is shown in Figure 3.1. A normalized Gaussian function is usually used

as the radial basis function, that is

φi(x) =

(

−‖ x− ci ‖2
2(σi)2

)

(3.2)

where [x1, x2, · · ·xn]
T denotes the input vector, [c1, c2, · · · cm]T denotes the ith

center vector and (σi)
2 represents the width parameter of the radial basis

function.

RBFN are an effective tool for pattern classification problem as they have

good generalization and approximation ability with a simple network struc-

ture. In generalized RBF, the supervised learning of the center location as well

as output layer weights and the Gaussian spread (σ) are performed based on

error correction learning rule using a gradient descent procedure [39].
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Figure 3.1: Architecture of Radial Basis Function Network

3.2.1 RBFN as an efficient classifier

Neural networks are efficient tool for pattern classification. From the im-

plementation of FFNN trained using BP algorithm, PNN and RBFN, it is

observed that PNN had outperformed the other two networks (as shown in

Figure 2.9). From simulations it was observed that, as the size of the training

set increases, the FFNN trained using BP algorithm, takes too long time to

converge so as to reach at a predefined MSE value. As BP algorithm is an iter-

ative process, the functional signals flows in forward direction and error signals

propagate in backward direction to update the connecting synaptic weights.

The two major drawbacks of BP algorithm are: very slow computing speed and

the possibility of getting trapped in local minima. Although PNN performed

well, but, the major drawback of PNN is that, it performs well when the train-

ing data set is small in size. But as the size of training data set increases,

the architecture of PNN becomes very large and complex. This is because

every node in the pattern layer represents a training sample. Practically it

is observed that, there is an exponential growth in size of protein database

as many newly discovered protein samples are added into the database. So,

PNN cannot be the right choice for an efficient classifier to solve the practical

problems. For these reasons, RBFN is preferred to perform classification task,
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to classify amino acid sequences to their superfamily.

RBFN randomly selects subset of training samples to form the nodes of

the hidden layer which contradicts the concept of formation of nodes of the

pattern layer in PNN. The hidden layer controls the complexity and general-

ization ability of the network. These hidden centers are often randomly chosen

as subset from training data points or K-means clustering algorithm may be

used to cluster data points where every cluster center represents a node in the

hidden layer. The problem of finding the optimal number of hidden centres

remains a critical issue in the design of RBFN. Many evolutionary approaches

are suggested to optimize the structure of RBFN. A modification to the ear-

lier approach of MOGA is implemented here, which adaptively manipulates

the probabilities of crossover and mutation based on the number of solutions

present in the best non-domination level. The main objective is to derive the

optimal structure of RBFN from the pareto optimal set and then apply it

for protein superfamily classification problem. The effectiveness of the two

approach i.e., MOGA and AMOGA are measured in terms of accuracy and

convergence rate.

3.3 Related Work on Structure Optimization

of RBFN using Evolutionary Techniques

Many evolutionary optimization techniques were successfully implemented for

structure optimization of RBFN. Yen and Liu implemented Hierarchical Rank

Density Genetic Algorithm (HRDGA) to evolve the neural network topology

and parameters [40]. The rank-density based fitness assignment technique was

used to optimize the performance and topology of the evolved neural network

to solve the two conflicting multi objectives such as training performance and

network complexity. Oliver Buchtala et al. used an evolutionary algorithm

(EA) that performed feature and model selection simultaneously for RBFN. It
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was validated in the area of intrusion detection in computer networks, biomet-

ric signature verification, customer acquisition with direct marketing methods,

and optimization of chemical production processes [41]. Differential Evolu-

tion (DE) algorithm, a new promising evolutionary technique was proposed to

train RBFN related to automatic configuration of network architecture. Clas-

sification tasks on data sets such as: Iris, Wine, New-thyroid, and Glass were

conducted to measure the performance of neural networks [42]. Multiobjec-

tive Optimization (MOO) using rank method such as Fonsecas ranking, was

implemented in [43], to optimize the structure of RBFN and thereby solving

the trade-off between architecture and performance of classifier. Ensemble of

RBF networks was obtained using the evolutionary multi-objective optimiza-

tion method [44]. In this method, the RBF network structure was encoded in

the NSGA-II chromosome based on two evaluation criteria, i.e. the accuracy

and complexity of the model. Particle Swarm optimization (PSO) based mul-

tiobjective training was implemented in [45] for simultaneous optimization of

architectures and connection weights.

Implementation of GA for structure optimization of RBFN is shown in [46]

where each network is coded as a variable length string with distinct integers

and both the single objective and multiobjective functions have been proposed

to evaluate network fitness. LinGuo et al. used GA to optimize the parameters

of RBFN and a hybrid learning algorithm further adjusts the parameter val-

ues [47]. J.Gonzalez et al. implemented Multiobjective evolutionary algorithm

(MOEA) in which global mutation operators based on matrix transformation

such as SVD and orthogonal least square (OLS)have been used [48]. Multi-

objective structure selection method using MOGA is shown in [49], where the

structure of RBFN is encoded as chromosome of GA and the pareto optimal

solutions are obtained from the pareto optimal fronts which solves the trade-off

problem between model accuracy and complexity. GA with hybrid learning al-

gorithm (HLA) have outperformed GA, ROLSA and K-means clustering with

HLA. HLA mostly adjusts the centres and the widths [50]. Multiobjective
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PSO (MOPSO) is implemented to simultaneously optimize the architecture

and the connection weights of RBFN. The RBF networks are encoded as par-

ticles in PSO and the particle evolves towards pareto optimal front to solve

the trade-off problem between model accuracy and complexity [51]. A two

level learning method for designing an optimal RBFN using adaptive velocity

update relaxation PSO (AVURPSO) and OLS is implemented in [52].

3.4 Brief Overview of the Entire Process

Choosing an appropriate set of relevant features is a very critical task for

any classification problem. Too many features may include redundant and

noisy values which may increase the computational complexity of the classifier.

Similarly, too less number of features may reduce the generalization ability of

the classifier. Therefore, selecting optimal number of distinguishing features is

highly necessary for maintaining a high level of performance accuracy of the

classifier.

Feature selection selects a subset of finite number of features but feature

extraction creates new feature based on transformation of the original feature

set using some dimension reduction techniques. Here, bi-gram measure is used

for feature selection which in turn gives rise to large redundant sparse matrix.

To reduce the dimension, PCA is used, which derives significant patterns by

rotating the feature vector across the highest variance principal components

derived from the covariance matrix. RBFN obtained from the pareto optimal

set of MOGA and AMOGA are used as classifier. To evaluate the performance

of two approaches, convergence rate and predictive accuracy of the classifier

are taken into account. Gaussian spread (σ) of the radial basis function is

the controlling parameter and the algorithm was run many times by varying

various (σ) values. The overall process of the experiment is shown in Figure

3.2.
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Figure 3.2: Brief overview of the entire process

3.5 Feature Extraction from Amino Acid Se-

quence

In general, the genetic code specifies 20 standard amino acids (described in

Annexure I) such as:

Σ = (A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y )

The schematic representation of feature extraction is shown in Figure 3.3.

For protein feature selection, the two gram features such as [(AA, AC · · ·
AY), (CA, CC · · · CY), · · · (YA, YC · · · YY)] are selected. The total number

of possible bigrams from a set of 20 amino acids is 202, that is, 400. The two

gram features represent the majority of the protein features. Two grams have

the advantages of being length invariant, insertion/deletion invariant, not re-

quiring motif finding and allowing classification based on local similarity [17].

Apart from this, bi-grams reflecting the pattern of substitution of amino acids
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Figure 3.3: Schematic representation of feature extraction from amino acid

sequence

are also extracted. For this purpose, equivalence classes of amino acids that

substitute for one another are derived from the percent accepted mutation ma-

trix (PAM) [16]. Exchange grams are similar but are based on a many to one

translation of the amino acid alphabet into a six letter alphabet that repre-

sents six groups of amino acids, which represent high evolutionary similarity.

Generally the exchange groups used are:

e1 = {H,R,K}, e2 = {D,E,N,Q}, e3 = {C}

e4 = {S, T, P, A,G}, e5 = {M, I, L, V }, e6 = {F, Y,W}

The exchange groups statistically describes the probability of one amino

acid replacing another over time. The total number of possible bi-grams on

these six substitution groups is 62, that is 36. Thus, the overall bi-gram fea-

tures extracted computes to 436 values, 400 corresponding to the consecutive

pairs of amino acids and 36 corresponding to the consecutive pairs of substi-

tution groups. Besides that, the amino acid distribution (20), exchange group

distribution (6) and some other features are also taken into account.

Therefore, for every amino acid sequence, 470 features were processed to

build the fixed dimension feature vector as follows:
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X(1), X(2), · · · , X(5) = atomic composition

X(6) = molecular weight

X(7) = isoelectric point

X(8) = average mass of protein sequence

X(9), X(8), · · ·X(28) = amino acid distribution

X(29), X(30), · · ·X(428) = two gram distribution

X(429), X(430), · · ·X(434) = exchange group distribution

X(435), X(434), · · ·X(470) = two gram exchange group distribution

If total ‘n’ number of instances is assumed, then the matrix size becomes

n×470 which is a matrix having large number of sparse entries. PCA, a very

powerful statistical technique for dimension reduction is used to retrieve sig-

nificant patterns by projecting data into lower dimension. The projection is

basically done by selecting the eigen vectors (or PC’s) from covariance matrix

showing cumulative variance upto level of 99%. A sample of input matrix is

shown in (Annexure II).

3.6 PCA for Dimension Reduction

The concept of PCA was developed by Karl Pearson in 1901. PCA is a statis-

tical technique used to transform a data space of high dimension into a feature

space of lower dimension having the most significant features. PCA rigidly

rotates the axes of the p-dimensional space to new positions (principal axes)

such that principal axis 1 has the highest variance, axis 2 has the next highest

variance and so on. The covariance among each pair of the principal axes is

zero so the principal axes are uncorrelated [53]. The implementation of PCA

for feature extraction is implemented in [30].

First, the covariance matrix S is computed and eigenvalues are found. The

eigenvalues are sorted in a decreasing order and let they are denoted as λ1 ≥
λ2 ≥ · · ·λM . Let the corresponding eigen vectors be denoted as a1, a2, · · ·aM .
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The first d eigen vectors are selected from M vectors such as d≪M . Finally,

the data set is projected into lower dimension as given by:

G← [a1a2, · · ·ad] where d≪M .

if x is a test point

x ǫ RM → x G ε Rd (3.3)

The detailed steps of PCA is described in Algorithm 1.

Algorithm 1 PCA( )

Algo: PCA for dimension reduction.

Input: n×m feature matrix X where n represents number of samples and m

represents the number of features.

Output: n×k reduced feature matrix (k << m).

Step 1: Normalize the matrix X to ensure zero mean of each feature value.

Let training set = x1, x2 · · ·xm

Evaluate µj =
1
n

∑n
i=1 x

j
i vary j for all feature values i.e 1 to m

Replace xj with (xj − µj) vary xj across all samples i.e from 1 to n

Step 2: Compute covariance matrix of the normalized matrix.
∑

(sigma) = 1
m
(XTX)

Step 3: Compute the eigen vectors of matrix using MATLAB command as:

eign = eig(sigma)
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Step 4: Choose the first k number of principal components from the covari-

ance matrix using the following criteria:

for (every eigen vector i = 1 to m ) do

Evaluate cumvar =
∑k

i=1 λii∑m
i=1 λii

{cumvar denotes cumulative variance and λ represents eigen values

sorted in descending order.}
if (cumvar ≥ 0.99)or(1− cumvar ≤ 0.01) then

return k {99% of variance is retained.}
end if

end for

Step 5: Reduce the matrix dimension, taking the first k columns (1 to k)

of eign matrix as eign(:,1:k) and assign to eignred.

Step 6: Evaluate Z = X ∗ eignred where Z is the new matrix with reduced

feature dimension retaining 99% of the variance.

STOP.

3.7 Multiobjective Optimization

In single objective optimization problem, there is one global optimal solution

and the solution having higher level of information is chosen. But as most of

the real world problems are complex, in the sense, they may be non-linear,

multi modal and stochastic, there may be more than one parameters which

need either to be minimized or maximized. These type of problems are re-

ferred to as multi objective optimization problem which can be solved by var-

ious approaches. A survey of various multi objective evolutionary techniques

is described in [54]. The most simple method among all approaches is, to form

a composite objective function as the weighted sum of various objectives and

weight value is assigned as per the priority of individual objective. This tech-

nique is otherwise referred as preference based multi objective optimization in
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which the multiobjective problem is mapped into a single objective problem

which is a composite of more than one objective.

F = w1f1 + w2 + f2 + · · ·+ wnfn (3.4)

The multi-objective evolutionary algorithms (MOEAs) can be broadly classi-

fied into two broad categories namely elitist and non-elitist. In multi-objective

optimization problems there may exist some cases where the objectives are

conflicting to each other. Generally, these problems can be solved by making a

pair wise comparison and arranging them in several non domination fronts (or

pareto fronts) based on their rank. The two main goals for any pareto optimal

solutions are :

• The solution should converge as close as possible to the true pareto op-

timal front.

• The solutions should be as widely spread as possible on the best pareto

front.

The crossover (or the recombination) and the mutation operator controls the

evolution process by bringing diversity in the solution space. As evolution takes

place, it is observed that the local pareto optimal fronts converges towards the

global pareto optimal front. The schematic representation of pareto optimality

and dominated points is shown in Figure 3.4.

Thus, a multi objective optimization problem (MOP) has a number of

objective functions which are either to be minimized or maximized. The ob-

jective functions may be conflicting to each other and are subjected to some

constraints.

3.8 Basic concept of Adaptive MOGA (AMOGA)

AMOGA strictly follows the concept of “survival of fittest” where very good

solutions having high fitness values are well protected and the solutions with
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Figure 3.4: Schematic representation of pareto optimality and dominated

points

poor fitness values are eliminated. The basic idea behind the implementation

of AMOGA (with non-dominated sorting (NSGA − II) as suggested by Deb

et al. in [55–57])is that, the probabilities of crossover and probabilities of

mutation (Pc and Pm)are varied based on the number of solutions present in

the best non domination level. Though, GA is a randomized search technique,

still the search in MOGA progresses in the direction of convergence of solutions

to the global pareto front. If the Pc and Pm values are kept constant, it may

so happen that, as the generation progresses towards global optima, the good

solutions may get disrupted and may move to other higher fronts by which

the process may take too long time to converge. The exploration of search

space and exploitation of non-dominated solutions are greatly controlled by

the values of Pc and Pm. The number of solutions in the best non-domination

level is the yardstick to adaptively control and manipulate the values of Pc

and Pm. In other words, when the obtained pareto front merges towards the

true global pareto front, Pc and Pm values are adaptively decreased to prevent

disruption of very good solutions. The detailed steps of AMOGA are described

in Algorithm 2.
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Algorithm 2 AMOGA( )

Let population size = N

Probability of crossover = Pc

Probability of mutation = Pm

Let Fitness function be denoted as : f1, f2 · · · fn
Let Pareto fronts be denoted as : F1, F2 · · ·Fm

No. of solutions in the first pareto front = l

Step 1: initialize population P0 ;

Step 2: evaluate fitness function based on objective functions;

Step 3: perform non dominated sorting and generate pareto optimal fronts;

Step 4: calculate the crowding distance of all solution points;

Step 5: select the best (N/2) solutions based on their fronts and crowding

distance. Let these solutions denote the new parents Pt.

Step 6: perform tournament selection by selecting N random pairs from Pt.

Use the crowded comparison operator (�c) to select the most widely spread

solutions which are the winners of the tournament.

Step 7: perform pairwise crossover and bit wise mutation to create new

offspring. Let the new population be denoted as Pt+1.

Step 8: now evaluate the fitness of new population Pt+1.

Step 9: let number of solutions in F1 be denoted as |F1| = l

Step 10:

if (l ≥ (n/N)%){check l with respect to n, 2n, 3n, · · · } then
Pc = Pc − constant step factor

Pm = Pm − constant step factor

end if

Step 11:

if (l ≥ (predefined)%) {termination condition met} then
exit

else

goto step 2

end if 56
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3.9 Structure Optimization of RBFN using AMOGA

The problem of finding the number of hidden centres remains a critical issue

in the design of RBFN. The number of basis function controls the complexity

and generalization ability of the network. If more number of training sam-

ples are selected as hidden centres, this may include redundant samples which

results in large network structure. Thus, the computational overhead is too

high when an unknown pattern is classified. The network will also have poor

generalization capability as it becomes over sensitive to the training data and

thereby recognizes the noisy samples as patterns. On the contrary, very few

number of hidden centers in the hidden layer may lower the classification ac-

curacy of the trained network. Thus, a trade-off between the accuracy and

the computational complexity arises which can be solved by selecting optimal

number of hidden centres from the pareto optimal set. Besides the number of

hidden centers, the weight matrix connecting the hidden and output layer also

affects the accuracy of the classifier.

In the implementation of RBFN-AMOGA, every chromosome has two parts.

The first part is encoded as binary string which either selects or discards a sam-

ple for being the hidden center. The second part encodes numeric values which

are converted to decimal values using weight extraction formula. As generation

evolves, the pareto fronts generated using NSGA− II can solve the trade-off

problem for designing an optimal structure of RBFN showing good perfor-

mance in terms of classification accuracy. The percentage of total number of

solutions in the best non-domination level is the yardstick to manipulate the

pc and pm values. The most optimal RBF network with good generalization

ability can be derived from the pareto optimal set. Therefore, every solution

of the pareto optimal set gives information regarding the specific samples to

be chosen as hidden centers as well as the update weight matrix connecting

the hidden and output layer.
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3.10 Experiment Details and Simulation Re-

sults

3.10.1 Input Details:

The amino acid sequences are downloaded in FASTA format from UNIPROT

repository. The four super-families considered for numerical simulations are

Globin, Kinase, Ribitol dehydrogenase and Ligase from Uniprot repository.

(http://www.uniprot.org/).

3.10.2 Details of using AMOGA

1. Initialization of chromosome: The population size was fixed at N=40.

Pc=0.8

Pm=0.008

The genotype of the chromosome consists of two parts. The first part is

binary encoded which controls the topology of the network by choosing

the optimal number of relevant basis functions. The second part encodes

the synaptic weight which gets optimized as the generation evolves, to

improve the generalization ability of the network. The schematic repre-

sentation of chromosome is shown in Figure 3.5.

Here, each weight is represented as a five digit number and the weights

are extracted using the following weight extraction formula:

Let g1, g2, ..gd, ..gl represent a chromosome where g(d) represent a gene of

the chromosome. Let gkd+1, ..gkd+2..gk+1d represent the k-th gene (k ≥ 0)

in the chromosome. The actual weight Wk is given by :

Wk =







+
gkd+210

d−2+gkd+310
d−3+·g(k+1)d

10d−2 if( 5 ≤ gkd+1 ≤ 9)

−gkd+210
d−2+gkd+310

d−3+·g(k+1)d

10d−2 if (0 ≤ gkd+1 ≤ 5).
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Figure 3.5: Representation of chromosome

The second part of chromosome has variable number of genes as it de-

pends on the number of 1’s present in the first part of chromosome.

2. Evaluation of fitness function: The first objective function

( f1): is to minimize the number of hidden centers.

The second objective function:

(f2): is to minimize the MSE which is the difference between the neural

network output and the target output.

The fitness function may be defined as follows:

f2 = minimize(R) (3.5)

where,

R =
1

2

L
∑

l=1

J
∑

j=1

(ej)
2(n) (3.6)

where J is the total number of neurons in output layer, L is the number of

training samples, ej(n) represents the error signal which is the difference

between desired output d and the output obtained.
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3. Assignment of rank based on fitness values: Based on two objective func-

tions, there are two fitness values f1 and f2 for every chromosome. The

non-dominated sorting (NSGA− II) gave a rank to every solution and

based on rank values many non dominated fronts were obtained.

4. Crowding distance assignment and Binary tournament selection:

Crowding distance (CD) was assigned to every solution and few randomly

chosen (N/2) number of individuals from the best non domination levels

were sent to the mating pool. The crowding distance values guides to

select subset of solutions from a pareto front so as to fill (N/2) of the

population size.

Crowding distance estimation: The boundary solutions lying on the

pareto front are assigned infinity values. The crowding distance for in-

termediate solutions in the pareto are estimated as :

dmIj = dmIj +
f
(Imj+1)
m − f

(Imj−1)
m

fmax
m − fmin

m

(3.7)

The index Ij denotes the solution index of the jth member in the sorted

list. Thus for any objective, I1 and Il denotes the lowest and highest ob-

jective function values respectively, which are assigned to infinity. f
(Imj+1)
m

and f
(Imj−1)
m denotes objective function values between two neighbouring

solutions on either side of solution Ij . f
max
m and fmin

m are the maximum

and minimum population values for the mth objective function. N num-

ber of random pairs were selected for the tournament and the winner

from the two individuals were decided based on the crowded comparison

operator (�c). The crowded comparison operator (�c) guides the selec-

tion process at the various stage of the algorithm towards a uniformly

spread out pareto optimal front.

case 1: i ≤ j i.e., solution i has a better rank, if (irank < jrank )

or
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case 2: if ( irank = jrank ) then (idistance > jdistance)

where irank shows non-domination rank and idistance is the crowding dis-

tance of the i − th individual. The first condition selects individual on

better non dominated front where as the second condition resolves the

tie by choosing the solution having higher crowding distance.

5. Adaptive crossover and mutation:

The Pc and Pm values were adaptively varied when the intermediate

criteria were met. While performing the simulation, the following as-

sumptions were made:

if ( |F1| ≥ 25%)

{
Pc = Pc − 0.2; (n = 25%, 2n = 50% · · · )
Pm = Pm − 0.002;

}
The probability values were updated when |F1| was more than 50% , 75%

and 90% respectively.

6. Stopping criteria: The AMOGA process terminates when 90% or more

number of solutions are in the best non domination level.

3.10.3 RBFN Details:

The number of nodes in the input layer was decided on the basis of reduced

feature vector dimension obtained after the implementation of PCA. The num-

ber of hidden nodes were selected from the pareto optimal front and the target

vector constituted the output nodes in the output layer which is required for

the evaluation of MSE.
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Target vector for the four protein superfamilies are as follows:

M =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















3.10.4 Parameters used for Measuring the Efficiency of

Classifier:

The parameters used for measuring the efficiency of two approaches are con-

vergence rate and predictive accuracy.

The concept of TP, TN, FP, FN are described in section 2.4.

Predictive accuracy = TP+TN
TP+FP+TN+FN

Where TP=true positive TN=true negative FP=false positive FN=false

negative.

3.11 Results and Discussion

After PCA was applied for significant feature extraction, 99% of the variance

was retrieved by the first 57 principal components. The first ten PC’s extracted

are shown below in Table 3.1. The top 57 PC’s were projected to map the

original feature matrix to lower dimension. The reduced feature vector are

given as input to RBFN and then implementation of MOGA and AMOGA

were carried out.

The graphs obtained from numerical simulations, shows the better perfor-

mance of AMOGA over MOGA for protein super family classification problem.

So, if the probability values are kept constant, the better fitness solutions get

disrupted and it may take longer time to converge. But varying the probabil-

ities adaptively, the good solutions of the feasible search space are protected
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Table 3.1: Variances and cumulative variances across first ten PCs

Principal Components % of variances. Cumulative % of Variance

PC1 66.9942 66.9942

PC2 5.2062 71.2004

PC3 4.0826 75.2830

PC4 3.6389 78.9219

PC5 3.4684 82.3903

PC6 2.8422 85.2325

PC7 2.6957 87.9282

PC8 2.3590 90.2872

PC9 2.0720 92.3592

PC10 1.6404 93.9996

and the algorithm converges faster to the global optima. For various ensem-

bles of RBFN derived from pareto front, the comparative results shows the

effectiveness of AMOGA over MOGA. The algorithms were run several times

by varying various values of the Gaussian spread (σ) and it was observed that

good ensembles of RBFN were derived when (σ = 0.5). The pareto fronts

obtained after implementing AMOGA and MOGA by varying the σ values (σ

= 0.3, 0.5 and 0.7) are shown in Figure 3.6, 3.7 and 3.8 respectively.

Tables 3.2 and 3.3 shows few solutions from the pareto optimal set obtained

from the top, mid and lower region of the pareto front of MOGA and AMOGA

(when σ = 0.5) respectively. MOGA converged after 1019 generations whereas

AMOGA converged after 338 generations to meet the same stopping criteria.

It can be concluded that, the adaptive nature of MOGA (AMOGA) helps in

faster convergence of the evolution process. The number of correctly classified

samples from individual superfamily are shown in the Tables 3.4 and 3.5. From

the pareto front generated after simulations, it was observed that, when very
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few centers are selected, misclassification error was high where as when more

number of centers are selected, the misclassification error was low. The optimal

number of centers were selected from the mid region of the pareto front which

solves the trade-off problem between network complexity and accuracy. The

specific centers to be selected in the design of RBFN were obtained from the

first part of chromosome and the final updated output weight matrix were

obtained from the second part of the chromosome.

To show the efficiency of RBFN-AMOGA over standard neural networks,

the comparison process is further extended by implementing FFNN (trained

using BP algorithm), PNN and Standard RBFN (trained using supervised

gradient descent learning algorithm [39]). The learning rate (η) and momentum

(α) are the two main controlling parameters of BP algorithm. Keeping α =

0.3 fixed and varying (η) in the range of 0.1 to 1, variation in performance

accuracies were observed. The smoothing parameter (σ) is the controlling

parameter for PNN and RBFN. After deriving a particular ensemble of RBFN

from the pareto optimal set, various accuracies were observed by varying σ

values in the range of 0.1 to 1. The highest possible accuracies obtained by

the neural networks are shown in Table 3.6 and graph (Figure 3.9).
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Table 3.2: Pareto optimal subset of first pareto front of MOGA after 1019

Gens.

Sl.No. F1 (No. of centers) F2 (Misclassification error)

1 48 0.0109

2 57 0.0093

3 59 0.0088

**4 62 0.0079

5 67 0.0067

6 76 0.0019

7 81 0.0013

Table 3.3: Pareto optimal subset of first pareto front of AMOGA after 338

Gens.

Sl.No. F1 (No. of centers) F2 (Misclassification error)

1 46 0.0109

2 55 0.0106

3 59 0.009

4 60 0.008

** 5 61 0.0062

6 68 0.0025

7 77 0.001

(** RBFN ensemble chosen from pareto optimal set for protein superfamily classificn. )
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Table 3.4: Performance of MOGA

σ values No. of Gens. Pred. Accr. in %

0.3 787 94.79

0.5 1019 96.18

0.6 967 93.87

Table 3.5: Performance of AMOGA

σ values No. of Gens. Pred. Accr. in %

0.3 355 97.57

0.5 338 97.91

0.6 460 95.6

Table 3.6: Maximum performance accuracy achieved by neural networks

Sl.No. Neural Networks F2 Performance accuracy (in %)

1 FFN-BP 85.33

2 PNN 92.67

3 Standard-RBFN 84.13

4 RBFN-MOGA 96.18

5 RBFN-AMOGA 97.91
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Figure 3.6: Performance of AMOGA and MOGA when σ = 0.3
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Figure 3.7: Performance of AMOGA and MOGA when σ = 0.5
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Figure 3.8: Performance of AMOGA and MOGA when σ = 0.7
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3.12 Conclusion

From the numerical simulations, it can be concluded that AMOGA outper-

formed MOGA in terms of speed and accuracy by protecting the high fitness

solutions from getting disrupted in the search space. Although, many evo-

lutionary approaches are already suggested for optimizing the structure of

RBFN, but the approach of AMOGA has shown faster convergence to the

global pareto front thereby giving the optimized structure of RBFN. The

RBFN obtained from the pareto optimal set has shown good classification

accuracy in comparison to standard neural networks, which was validated by

performing classification considering four protein superfamilies. The results

obtained from RBFN-AMOGA are quite promising and this technique can be

implemented by drug analyst and researchers to correctly classify protein to

their superfamily.

In the next chapter, the proposed method of Two Stage Approach for

Protein Superfamily Classification is discussed.
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Two Stage Approach for Protein

Superfamily Classification

In this chapter, protein superfamily classification is done in two stages. In

the first stage, optimal number of features are extracted using PCA-NSGA-II

(non-dominated sorting GA) and in the second stage, Recursive Orthogonal

Least Square Algorithm (ROLSA) is used to train RBFN.

4.1 Introduction

In previous chapter, although the implementation of AMOGA gave the opti-

mized structure of RBFN showing a good level of performance accuracy, but

further improvement to the technique was done to derive the most parsimo-

nious structure of RBFN. Besides that, improving the classification accuracy

of the classifier is one of the primary objective of any classification problem.

RBFN-ROLSA is implemented for deriving the reduced structure of RBFN

thereby maintaining a good level of performance accuracy. The traditional

PCA algorithm selects the top few eigen vectors having large eigenvalues for

dimension reduction. But this method of selection of eigen vectors might not
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be the best choice always, as illustrated by Balci et al. [58] and Sun et al. [59].

The application of GA may guide to select a subset of eigenvectors encoding

important information about the target concept of interest. The efficiency of

GA-PCA approach is illustrated in [59] on two challenging applications such

as vehicle detection and face detection.

In this proposed work, the classification problem is solved in two major

stages. In the first stage, PCA-NSGA-II is implemented. This is a hybridized

approach which tries to solve the trade-off problem between selection of op-

timal number of significant eigen vectors and performance accuracy of the

inductive algorithm. The encoding of chromosome becomes a very difficult

task as feature vector extracted from amino acid sequence is too high. So to

overcome this problem, eigen vectors having non-zero eigen values are encoded

in the chromosome. GA helps in searching the eigen space to select the distin-

guishing eigen vectors. PNN is used as inductive algorithm and the evaluation

function used in this wrapper approach is, the minimization of the misclassi-

fication rate of PNN over the test samples. A detailed description of wrapper

approach and inductive algorithm is discussed in [14]. The implementation

of PCA-NSGA-II derives the optimal number of significant eigen vectors to

build the reduced feature matrix. After deriving the reduced feature matrix,

ROLSA is implemented for efficient design of RBFN in the second stage.

4.2 Feature Selection and Feature Extraction

Feature selection (also known as subset selection) is a process commonly used

in machine learning, where a subset of features are selected that lead to the

smallest classification error. The best subset contains the least number of

dimensions that mostly contribute to the target concept of interest. Langley

grouped different feature selection methods into two broad groups i.e., filter

and wrapper approach. This categorization is based on the dependence on the

inductive algorithm that finally uses the selected subset [60]. Filter methods
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are independent of the inductive algorithm, where as wrapper methods use the

inductive algorithm as the evaluation function.

The five main types of evaluation functions as suggested by [M. Dash and

H.Liu in [14]] are:

• distance measure (euclidean distance measure).

• information content (entropy, information gain, etc.)

• dependency measure (correlation coefficient).

• consistency measure (min-features bias).

• classifier error rate (the classifier themselves).

The first four are the evaluation functions for the filter approach and the

last measure is for wrapper approach.

 

Subset  

Generation 

Subset  

Evaluation 

 

Result 

Validation 
Stopping 

Criterion

NO 

Original 

Set Subset

Goodness of 

Subset 

YES 

Figure 4.1: Feature selection process with validation

Anil Jain et al. had clearly distinguished the concept of feature selection

from feature extraction [12]. Feature selection refers to some algorithm or tech-

nique which selects best subset of features from the original feature set. But,
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feature extraction refers to some technique which performs some transforma-

tion of the original feature matrix to create new feature matrix by discarding

the features having low discrimination ability.

4.3 Feature Extraction using PCA-NSGA II

Generally, traditional PCA selects the top few eigen vectors having higher

eigen values. But eigen vectors having large eigen values, may not always have

a great impact regarding the target concept of interest. This is validated in

face detection and vehicle detection experiments that, the eigen vectors having

low eigen values encode more lighting information and also encodes some spe-

cific local features [59]. GA is implemented which searches the eigen space to

select subset of eigen vectors. The two objectives such as selection of minimum

number of significant eigen vectors and minimization of classification error rate

are solved using weighted sum approach by giving proper weight values to the

objective functions. Zhao et al. applied the weighted sum approach for ex-

tracting features from motif content and protein content where support vector

machine (SVM) is used as an inductive algorithm [27]. Zhao et al. developed

a hybrid GA/RBFNN technique which selects features from protein sequences

and train the RBF neural network simultaneously. The weight factors are as-

sumed to be 40000 and 0.1 for the recognition rate and number of features

removed from the original feature set respectively [26].

In PCA-NSGA-II approach, PCA is hybridized with the elitist non-dominated

sorting GA or NSGA-II for feature subset selection from the eigen space. The

encoding of chromosome is done as string of 0’s and 1’s. The trade-off be-

tween the two objectives such as minimization of number of eigen vectors se-

lected and minimization of misclassification error rate are solved by generating

pareto fronts at various non-domination levels. The goodness of a chromo-

some is evaluated based on the number of 1’s in the chromosome string. In

the implementation, GA searches the eigen space comprising of top 63 eigen
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vectors having non-zero eigen values. The eigen vectors above 63 have very

small eigen values nearly equal to 0. So, the length of chromosome is fixed at

63. The transformation matrix is built on the basis of position of 1’s in the

chromosome. The original feature space is mapped to lower dimension matrix

using the transformation matrix. The reduced feature matrix is then given as

input to the PNN. PNN evaluates the second fitness value of chromosome i.e

the misclassification error rate obtained by the selected eigen vectors, over the

test sample.

PNN is the inductive algorithm which is wrapped with every chromosome

for the evaluation of second fitness value. The best solutions are derived from

the lowest level pareto front. The algorithm for implementing PCA-NSGA-

II is described in Algorithm 3 and the brief overview of the entire process is

shown in Figure. 4.2. The NSGA-II procedure, crowding distance metric and

crowded tournament selection are described as sub-functions.

The 470 features described in section (3.5) are extracted from every amino

acid sequence and PCA-NSGA-II is implemented for dimension reduction.

Algorithm 3 PCA−NSGA− II

Let population be denoted as N

Probability of crossover be denoted as Pc

Probability of mutation be denoted as Pm

Fitness function be denoted as f1, f2...fn

Pareto fronts be denoted as F1, F2, ...Fn

Gen = 0

repeat

Step 1. Gen = Gen+ 1.
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Step 2. Initialize population P0.

Initialize N number of chromosomes as random individuals which are en-

coded as strings of 0’s and 1’s in the chromosome. The length of chromo-

some depends on the total number of non-zero eigen vectors having non-zero

eigen values.

{1 indicates inclusion of the eigen vector in the covariance matrix and 0

represents discard of the eigen vector.}
Step 3. Evaluate fitness function (f1)= number of 1’s in the chromosome

string.

Step 4. Evaluate B = AH where A is the original matrix and H is

the transformation matrix. { Based on eigen values selected, map the fea-

ture matrix to lower dimension by multiplying the original matrix with the

transformation matrix.}
Step 5. Evaluate fitness f2 = misclassification error rate of the classifier

taking B as input matrix.

Step 6. Considering f1 and f2, perform non-dominated sorting using

NSGA-II( ) and generate pareto fronts such as F1, F2, · · · , Fn.

Step 7. Calculate the crowding distance of all solution points using the

crowding distance( ).

Step 8. Perform tournament selection by selecting N random pairs from

Pt.

Step 9. Use the crowded comparison operator( ) to select the most widely

spread solutions.

Step 10. Perform pairwise crossover and bitwise mutation to create new

offspring.

Step 11. Let the new population be denoted as Pt+1.

until (|F1| ≥ 90% of N)
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Algorithm 4 NSGA− II( )

Let ni denotes the domination count i.e the number of solutions which domi-

nates solution i.

Si denotes set of solutions which solution i dominates.

Initialize ni = 0 and Si = φ for every solution iεP.

for (∀j 6= i) and j ε p do

if i � j then

Update Sp = Sp ∪ j

else {j � i}
set ni = ni + 1.

end if

if ni = O then

P1 = P1 ∪ (i) where P1 denotes the first non-dominated front.

end if

set front count K=1.

end for

while Pk 6= φ do

initialize Q = φ for storing next non-dominated solutions.

for ∀ i ε Pk and ∀ j ε Si do

Update nj = nj − 1

if nj = 0 then

set Q = Q ∪ j

end if

end for

Set K= K+1 and Pk = φ

end while
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Algorithm 5 crowding distance( )

Let fronts be denoted as F1, F2 · · ·FR.

Let objective functions be denoted as M1,M2 · · ·MK .

Let solutions in a front be denoted as S1, S2 · · ·Si.

|Fj| = l denotes number of solutions in a front.

cdK denotes the crowding distance w.r.t Kth objective function.

X[i,k] represents i
th solution in the sorted list w.r.t K.

for every fornt j = 1 · · ·R do

for every objective function M1, M2, · · · ,Mk do

sort the solution in Fj in descending order.

Assign cdK(x[1.k]) = cdK(x[i.k]) =∞
for i = 2 to l do

assign cdK(x[i,k]) =
zk(x[i+1,k])−zk(x[i−1,k])

zmax
k

−zmin
k

end for

end for

end for

Total crowding distance of a solution CD(x) =
∑

K cdK(x) i.e sum of the

crowding distances with respect to every objective.

Algorithm 6 crowded tournament selection ( )

Let ri denotes rank of solution i and rj denotes rank of solution j.

if ri < rj then

select solution i.

else {ri = rj}
select solution i if CDi > CDj

end if
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Figure 4.2: Brief overview of PCA-NSGA-II
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4.4 Radial Basis Function Network as a Clas-

sifier

The basic concept and architecture of RBFN is described in section 3.2.

In generalized RBFN, the supervised learning of the center location as well

as output layer weights and the Gaussian spread (σ) are performed based on

error correction learning rule using a gradient descent procedure. R. Neruda

and P. Kudova presented three learning methods of RBFN such as gradient

based learning, three step unsupervised learning and evolutionary algorithms.

The algorithms were examined on few benchmark problems. It was observed

gradient based learning performed better in terms of error measured on both

the training and test data set. The three step learning was the fastest but the

convergence rate of GA was too high [61].

Besides evolutionary techniques, orthogonal decomposition method is used

to solve the least square problem to determine the update weight matrix con-

necting the hidden and output layer. In 1991, S.Chen et al., used orthogonal

least square (OLS) algorithm for the construction of RBFN and the forward

regression procedure provided a systematic approach for supervised selection of

centres in [62, 63]. Besides forward center selection, backward centre selection

is proposed on batch OLS where the centres are sequentially removed while

minimizing the network output error [64]. J.B.Gomm et al. have demonstrated

recursive version in contrast to batch OLS. The recursive version requires less

computer memory and also maintains robust property. ROLSA solves to find

the output layer weights and the approach is extended to select the minimum

number of centres of RBFN. The approach of ROLSA was validated on two

applications such as, non-linear time series and a real time multi-input and

multi-output (MIMO) chemical process [65, 66].

78



Chapter 4 Two Stage Approach for Protein Superfamily Classification

4.4.1 Training of RBFN using ROLSA (Pseudocode)

The backward center selection algorithm proposed by J.B.Gomm et al. in [66]

is implemented, to optimize the structure of RBFN. The pseudocode of ROLSA

is described in Algorithm 7. The final updated weight matrix connecting the

hidden and the output layer gave high performance accuracy when the network

is used as a classifier for protein superfamily classification problem. As the or-

thogonal decomposition is numerically robust for solving least square problem,

the final network so obtained is highly reliable with small architecture.

Algorithm 7 ROLSA()

Let N = number of training samples

nh= number of randomly chosen hidden centres.

Y=desired output matrix of size Nxp where p is the number of nodes in the

output layer.

Ŷ= neural network output matrix of size N X p.

φ = hidden layer output matrix of size NXnh

E= error matrix of size N X p.

Whp= connecting weight between the hidden and output layer of size nhXp.

Step1. Perform QR decomposition of φ matrix.

Step2. Evaluate QTY =





Ŷ

Ỹ



 where Ŷ is of size nh X p and ỹ is of size

(N − nh) X p.

Step3. Evaluate the loss function (V ) =
∥

∥

∥
Ỹ (N)

∥

∥

∥

2

F
/(N).

Step4. Evaluate the Akaike’s final prediction error (FPEV ) = 1+β(nh/N)
1−β(nh/N)

V .
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Step5. Remove each network center k and compute the loss functions.

remove− hidden( )

{

for every hidden node i = 1 to nh do

R(:, i) = [ ]

[Q′R′] = qr(R)

OP = Q′Ŷ

Ŷj = op(1 : nh − 1, :)

ỹj = op(nh, :)

ResK = ‖ỹj‖2F + V/(N)

ResCK(1, i) = ResK

end for

[minval,minind] = min(ResCK)

FPEK = FPE ∗minval

}

if (FPEK < FPEV ) then

R(:, minind) = [ ]

Ŷ (minind, :) = [ ]

V = minval

FPEK = FPEV

nh = nh − 1

call remove− hidden( )

else

Compute the final optimal weight matrix from the equation Rj ∗Wj = Ŷj

end if
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4.5 Experiment Details

4.5.1 Input Details

The amino acid sequences are downloaded in FASTA format from UNIPROT

repository (http://www.uniprot.org/). The four super-families considered

for numerical simulations are Globin, Kinase, Ribitol dehydrogenase and Lig-

ase.

4.5.2 Architecture of PNN as Inductive Algorithm

The basic architecture of PNN is shown in Figure 2.8. The number of nodes

of the input layer of PNN was fixed based on the reduced feature matrix

obtained from every chromosome. The pattern layer in the PNN architecture

was build using fifteen samples from every class to estimate the Gaussian PDF

(Probability Density Function) value for every test sample. The summation

layer has four nodes each representing an individual class. The single output

node of the PNN evaluates the maximum Gaussian PDF to classify a test

pattern. 50 randomly chosen samples from every class formed the test matrix.

4.5.3 Parameter Details of PCA-NSGA-II

1. Initialization of chromosome:

The population was initialized by encoding the chromosomes as strings of

0’s and 1’s. The chromosome length was fixed on the basis of number of

eigen vectors having non-zero eigen values. In this implementation, the

chromosome string length was fixed at 63. Every one bit of chromosome

represents selection of the eigen vector and zero represents discard of the

eigen vector.

The population size was fixed at N=40.

Pc=0.7.
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Pm=0.005.

2. Evaluation of fitness function: The first objective function

( f1): is to minimize the number of eigen vectors.

f1 is computed as number of 1’s in the chromosome string.

The second objective function:

(f2): is to minimize the misclassification error by implementing PNN as

classifier. This is calculated as the number of misclassified samples with

respect to total number of samples.

Therefore, f2 = (No. of misclassified samples
200

)

3. Stopping criteria: The PCA-NSGA-II process terminates when 90% or

more number of solutions are in the best non domination level.

4.5.4 Parameter Details of RBFN-ROLSA

From the number of solutions obtained from the first pareto front (F1), twenty-

nine (29)number of eigen vectors showing a misclassification error of 0.57 are

selected. Twenty five (25) randomly chosen samples from every class of the

training matrix were selected as hidden centres to form the the hidden layer

of RBFN. The output layer consists of four nodes, each representing a class.

4.5.5 Parameters used for Measuring the Efficiency of

Classifier:

The parameters used for measuring the efficiency of the classifier are

1. Precision=[ TP+TN
TP+FP+TN+FN

] ∗ 100%

2. Sensitivity = TP
TP+FN

∗ 100%

3. Specificity = TN
TN+FP

∗ 100%

The concept of TP, TN, FP, FN are described in section 2.4.
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4.6 Results and Discussion

4.6.1 Results from First Stage

PCA-NSGA-II procedure took 2041 number of generations to meet the stop-

ping criteria, thereby generating three pareto fronts (F1, F2, F3) shown in

graph (Figure 4.3). Few solutions from the upper, lower and mid region of F1

are shown in the Table 4.1.

Figure 4.3: Pareto fronts generated after the Convergence of PCA-NSGA-II

Table 4.1: Pareto optimal solutions of first pareto front

Sl.No. F1 (No. of eigen vectors) F2 (Misclassification error)

1 6 0.93

2 16 0.85

3 26 0.64

4 29 0.57

5 57 0.21

6 63 0.08

7 66 0.06
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4.6.2 Results from Second Stage

The 29 selected eigen vectors (from stage 1) showing a misclassification error

rate of 0.57 are selected from the mid region of F1 which formed the reduced

feature matrix. The implementation of Backward center selection algorithm

(ROLSA) was implemented on (29 × 100 × 4) RBF network. The removal of

hidden centers continued till the termination criteria was met (as described

in ROLSA pseudocode). Finally, the implementation of ROLSA yielded in

(29 × 45 × 4) reduced architecture. The final optimal weight matrix of size

45× 4 on the reduced network architecture shows phenomenal performance in

accuracy when applied on the test data set.

The number of correctly classified samples with respect to individual su-

perfamily is shown in Table 4.2.

Table 4.2: No. of correctly classified samples from individual superfamily

Superfamily Sensitivity in % Specificity in %

Globin 98.21% 98.77%

Kinase 98.62% 98.61%

Rib.dehydro. 98.79% 98.54%

Ligase 98.89% 98.52%

n-fold cross validation technique

To measure the overall performance of the classifier, 10 fold cross validation

technique is implemented. The training set T is randomly partitioned into ten

equal disjoint sets: T1, T2, · · · , T10. The ten RBFN classifiers are trained on the

complement T̄i, and each classifier is then tested on the corresponding unseen

test set Ti . The final cross-validation recognition rate (R) is given by :

R =
1

10

10
∑

i=1

r(Ti, Ti) (4.1)
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where r(Ti; Ti) is the recognition rate on Ti using the RBFN classifier

trained on T̄i [27, 67].

To show the efficiency of RBFN-ROLSA over standard neural networks,

the comparison process is extended by implementing some standard neural net-

works. FFNN trained using BP algorithm, PNN and Standard RBFN (trained

using supervised gradient descent learning algorithm) are implemented. The

learning rate (η) and momentum (α) are the two main controlling parameters

of BP algorithm. Keeping α = 0.5 fixed and varying η in the range of 0.1 to 1,

variation in performance accuracies were observed. Similarly, the smoothing

parameter (σ) is the controlling parameter for PNN and RBFN which was var-

ied to derive various performance accuracies. In RBFN-MOGA, after deriving

the optimal ensemble of RBFN from the pareto optimal set, various accuracies

were observed by varying σ values in the range of 0.1 to 1. The highest possible

accuracies obtained by the neural networks are shown in Table 4.3.

Table 4.3: Maximum performance accuracy achieved by neural networks

Sl.No. Neural Networks Performance accuracy (in %)

1 FFN-BP 85.33

2 PNN 92.67

3 Standard-RBFN 84.13

4 RBFN-MOGA 96.18

5 RBFN-AMOGA 97.91

6 RBFN-ROLSA 98.61

4.7 Conclusion

From the above implementation of two stage approach, it can be concluded

that, PCA-NSGA-II gave the optimal number of significant features which
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was verified on PNN used as induction learning algorithm. The distinguish-

ing features were derived from the pareto front which was the input to the

RBFN. The backward center selection algorithm gave the most parsimonious

structure having a very high performance accuracy value of 98.61% obtained

from 10-fold cross-validation technique. This approach of structure optimiza-

tion using ROLSA is very reliable in comparison to randomized evolutionary

techniques. ROLSA has successfully trained RBFN to select optimal number

of hidden centres as well as update the output layer weighting matrix. The

RBFN so obtained is highly robust which works efficiently on large training

and test data set. This approach can be applied to large data set with much

lower requirements of computer memory. Thus, very small architecture having

few number of hidden centres are obtained showing higher level of performance

accuracy. Many pattern classification problems can be efficiently solved by im-

plementing RBFN with ROLSA as a classifier. Thus, the two stage approach

has efficiently minimized number of features and also derived the most parsi-

monious structure of RBFN.

In the next chapter, the proposed method of using Multiobjective Genetic

Algorithm and Support Vector Machine for Protein Superfamily Classification

is discussed.
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Protein Superfamily

Classification using

Multiobjective Genetic

Algorithm and Support Vector

Machine

In this chapter, Multiobjective genetic algorithm (MOGA) and Support

vector machine (SVM) are implemented for protein superfamily classification

problem. MOGA using non-dominated sorting NSGA-II is used to select the

optimal number of significant eigen vectors from the eigen space as well as

optimize the hyper-parameters of SVM. In this GA based wrapper approach,

the eigen vectors and the hyper-parameters of SVM are encoded in the chro-

mosome. SVM classifier is wrapped with every chromosome for evaluating the

fitness values. MOGA finds a solution to solve the trade-off problem between

two conflicting objectives of SVM such as model complexity and accuracy

of the classifier. To improve the convergence rate, AMOGA-SVM is imple-
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mented and a comparative study between MOGA-SVM and AMOGA-SVM is

performed.

5.1 Introduction

In previous chapters, the structure of RBFN is optimized using AMOGA and

ROLSA respectively. But, generally any neural network suffers from major

drawbacks [68], such as :

1. Greater computational burden.

2. Neural networks often converge on local minima rather than global min-

ima.

3. Neural networks are prone to often over-fitting, which means, if training

on a pattern goes on too long, then it may consider noise as part of

pattern.

SVM doesn’t suffer from either of these two drawbacks and have the fol-

lowing advantages over NN [69].

1. SVM have a regularization parameter as well as it is characterized by

the number of support vectors rather than the dimensionality of the

transformed space. So, SVM’s tend to be less prone to the problem of

over fitting.

2. SVMs provide a good out-of-sample generalization, if the parameters C

and γ (in the case of a Gaussian kernel) are appropriately chosen. This

means that, by choosing an appropriate generalization grade, SVMs can

be robust, even when the training sample has some bias.

3. SVMs deliver a unique solution, since the optimality problem is convex.

This is an advantage compared to neural networks, which give rise to
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multiple solutions associated with local minima and for this reason NNs

are not robust over different samples.

Thus, due to these advantages, SVM can be successfully implemented to

perform classification task.

5.2 Related Work on Multiobjective Analysis

of SVM

An introduction to SVM and multiple model estimation for non-linear classi-

fication are well described in [70,71]. The adaptation of kernel and regulariza-

tion parameters of SVM by means of evolutionary optimization techniques are

implemented in [72]. The SVM designed in this literature is evaluated on a

real world pattern recognition task such as real time pedestrians detection in

infra-red images for driver assistance systems. The two main objectives such

as minimization of error and minimization of number of support vectors are

casted as multi-objective problem for SVM model selection using RBF and

Sigmoid kernels [73]. The SVM parameters and features are simultaneously

optimized using genetic algorithm [74]. Real valued GA for optimizing the

hyper-parameters of SVM was efficiently implemented for bankruptcy predic-

tion, which was tested for the prediction of financial crisis [75]. The kernel

parameter, input selection, ǫ-tube optimal dimension were used as decision

variables of GA for SVM model construction which was then implemented for

level predictions at variable time horizons for groundwater modelling in [76].

The concept of Genetic Programming (GP) was used to evolve a kernel for

SVM classifier. The results were compared with standard SVM classifier us-

ing Polynomial, RBF and Sigmoid kernel with various parameter settings [77].

The combination of genetic algorithms (GAs) and all paired support vector ma-

chines (SVMs) for multi-class cancer identification was implemented in [78].

A robust gene selection approach based on a hybrid between GA and SVM is
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shown in [79]. GA wrapped with SVM, derived feature reduction, which im-

proved the hot method prediction accuracy. The technique of hot method pre-

diction based optimization was potentially used in selective optimization [80].

Feature selection from amino acid sequence based on low relative entropy val-

ues using SVM as classifier was implemented in [23].

5.3 Brief Overview of the Entire Process

The SVM model selection problem is mapped as a multiobjective optimization

problem, where the recognition rate and selection of number of eigen vectors

from amino acid sequence are defined as two main objectives.

MOGA-SVM is a hybridized approach which tries to solve the trade-off

problem by selecting optimal number of significant eigen vectors thereby main-

taining a good level of performance accuracy of SVM. The encoding of chro-

mosome becomes a very critical task as the size of feature vector extracted

from amino acid sequence is too high. So to overcome this problem, eigen

vectors having non-zero eigen values are encoded in the chromosome. Besides

that, the regularization parameter C and the kernel parameters together con-

stituting the hyper-parameters of SVM are also encoded in the chromosome.

MOGA-SVM searches the eigen space to select the distinguishing eigen vec-

tors. Based on the selected eigen vectors, the transformation matrix is built

to map the original feature space to lower dimension feature space. Thus, the

SVM model is constructed taking the input as the features from training data,

and the hyperparameter values. The fitness of every chromosome is evaluated

based on the mean recognition rate obtained from using 9 fold cross-validation

technique and number of selected eigen vectors. Wrapper based approach is

implemented to evaluate the quality of the selected eigenvectors by perform-

ing 9-fold cross-validation using the SVM model. After the construction of the

model, the generalization error is calculated over the test data set. The optimal

solutions are obtained from the pareto optimal set of the best non-dominated
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level. The overview of the entire process is shown in Figure 5.1.

5.4 Non-Linear SVM

The basic concept of SVM was developed from Statistical Learning Theory

and Structural Risk Minimization by Vapnik and Chervonenkis since the 1960s

[81,82]. SVM has shown good performance in many applications such as bioin-

formatics, pattern recognition, image classification, cancer prediction, etc. The

basic purpose to develop a SVM model is, to create a classifier by forming a lin-

ear separating hyperplane which maximizes the distance between two classes.

For non-linearly separable data, SVM adopts two basic methods. First, the

data are mapped into a rich feature space of high dimension using kernel func-

tion on non-linearly distributed data. Secondly, a soft margin hyperplane is

introduced which adds a penalty function for violation of constraints to the

optimization criterion. In other words, a hyperplane is constructed in the high

dimensional space so that all other equations of hard margin remains the same.

Thus, it is possible to find a linear optimal separating hyperplane in the new

feature space using kernel function φ. The mapping of non-linearly separable

data to higher dimension using kernel function is shown in Figure 5.2.

Suppose, the data is mapped to some other (possibly infinite dimensional)

Euclidean space H, using a mapping function call phi. Then of course the

training algorithm would only depend on the data through dot products in H,

i.e. on functions of the form φ(xi)·φ(xj). Now if there were a “kernel function”

K such that K(xi, xj) = φ(xi) · φ(xj), then it is only needed to use K in the

training algorithm, and it is never needed to explicitly even know what φ is.

The various kernel functions used for mapping are shown in Table 5.1.

First, the data is preprocessed by mapping the original non-linear input

space to high dimension feature space using kernel function φ (x → φ(x)).

After learning the mapping, the output becomes y: f(x) = w.φ(x) + b. The

width of the soft margin can be controlled by the penalty parameter C that
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Figure 5.1: Brief overview of the entire process
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Figure 5.2: Mapping of non-linearly separable data to higher dimension using

kernel function

Table 5.1: Various kernel functions used for mapping the non-linearly separable

data to high dimension

Kernel function description

Linear dot product kernel K(x, xi) = (xT .xi)

Polynomial kernel of degree d K(x, xi) = [(xTxi) + 1]d

Gaussian RBF Kernel K(x, xi) = exp(−γ ‖x− x′‖2)
Hyperbolic Tangent (Sigmoid Kernel) K(x, xi) = tanh(α(x.xi) + C)

Inverse multiquadric function K(x, xi) =
1√

‖x−xi‖
2+β

determines the trade-off between the training error and VC dimension (Vapnik

Chervonenkis dimension) of the model. Therefore, the equation becomes:

min
1

2
wTw + C(no. of misclassified data) (5.1)

where C is the penalty parameter, trading off the margin size (defined by

‖w‖ i.e by wTw) for the number of misclassified data points. The possible

solution is to measure the distances ξi of the points crossing the margin and

trade their sum for the margin size as given in Eqn. 5.2.
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Figure 5.3: Representation of margin and support vectors in SVM

min
1

2
wTw + C

l
∑

i=1

ξi (5.2)

subject to constraints :

yi[w
Txi + b] ≥ 1− ξi, i = 1, · · · l, ξ ≥ 0 (5.3)

i.e subject to :

[wTxi + b] ≥ +1− ξi, for yi = +1, ξi ≥ 0 (5.4)

[wTxi + b] ≤ −1 + ξi, for yi = −1, ξi ≥ 0 (5.5)

The optimal solution to the above equations can be obtained by maximizing

the variable α in the dual Lagrangian Ld(α) in the equation given below:

Ld(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjX
T
i Xj (5.6)

To find the optimal hyperplane, the dual Ld(α) has to be maximized with

respect to non-negative αi and it should be smaller than or equal to C.

C ≥ αi ≥ 0, i = 1, · · · , l (5.7)
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and under the constraints

l
∑

i=1

αiyi = 0 (5.8)

The penalty parameter C, is now the upper bound on αi, which is de-

termined by the user. The constant C is the regularization parameter which

determines the trade-off between the margin and sum of slack variables ξi (i =

1 · · · l).
In case of non-linearly separable data, the inner products in the dual La-

grangian Ld(α) is replaced by the Kernel functions. Therefore the non-linear

objective function becomes:

Maximize Ld(α) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj(K(Xi, Xj)) (5.9)

subject to C ≥ αi ≥ 0, i = 1, · · · , l and
∑l

i=1 αiyi = 0.

The decision hyper-surface d(x) and the indicator function iF for the non-

linear SVM classifier is given by Eqn. 5.10 and 5.11.

d(x) =
l
∑

i=1

yiαiK(Xi, Xj) + b (5.10)

iF = sign(d(x)) = sign(

l
∑

i=1

yiαiK(Xi, Xj) + b) (5.11)

The bias term b may be implicitly a part of the kernel function but for

Gaussian RBF kernel b is not required [75].

The regularization parameter C controls the trade-off between model com-

plexity and accuracy. The grid search method may be adopted to find the

optimal hyper-parameter values by varying with a fixed step size. But the

major drawback of this approach is, the computational complexity increases

when the number of parameters to be optimized are high. Multi-objective evo-

lutionary approach offers suitable solution for finding trade-off between several

objectives. The best SVM model can be obtained from the pareto optimal
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set obtained from the implementation of MOGA. Optimal values of hyper-

parameter as well as optimal number of best distinguishing input features to

the SVM model can be obtained by efficient exploration of the multi-modal

search space.

5.5 SVM Kernel Parameter Selection and Fea-

ture Subset Selection using MOGA

The basic concept of MOGA is described in section 3.7. The schematic repre-

sentation of pareto-optimality and dominated points is shown in Figure 3.2.

5.5.1 SVM Kernel Parameter Selection

SVM model selection involves the tuning of hyper-parameters which can be

efficiently done by exploring the parameter search space. Here, the number of

input features and the hyper-parameter values need to be optimized so as to

reduce the generalization error of SVM model. To map the non-linearly sep-

arable data to high dimension, Gaussian Radial Basis Function (RBF) kernel

is used, which is defined as:

K(x, xi) = exp(−γ ‖x− xi‖2) (5.12)

where γ is the variance of the Gaussian RBF kernel. The regularization

parameter C, determines the trade-off between the minimization of the fitting

error and the minimization of the model complexity. To develop an efficient

model C and γ need to be carefully determined.

5.5.2 Chromosome Design

Every chromosome has three parts. The first part represents the eigen vectors

in eigen space, the second part encodes the regularization parameter C and the

96



Chapter 5

Protein Superfamily Classification using Multiobjective Genetic Algorithm

and Support Vector Machine

third part encodes the variance of the Gaussian RBF Kernel γ. The schematic

representation of chromosome is shown in Figure 5.3. The entire chromosome

is binary encoded which consists of strings of 0’s and 1’s. The length of the

first part depends on the total number of eigen vectors having non-zero eigen

values. Binary bit 1 represents the selection of eigen vector and 0 represents

the discard of eigen vector. The presence or absence of eigen vector changes

as generation evolves. The number of bits in the second and third part i.e

nc, and nγ are calculated according to number of precision required which is

given in Eqn. 5.13.

(βi − αi) ∗ 10γ + 1 ≤ 2ni (5.13)

where βi = maximum range of the parameter.

αi= minimum range of the parameter.

γ= number of precision required after decimal point.

ni = number of bits in the chromosome string.

For the second and third part, the genotype to phenotype conversion is

obtained by the Eqn. 5.14.

p = minp +
maxp −minp

2l − 1
∗ d (5.14)

where p= phenotype of the string.

minp = minimum value of the parameter.

maxp = maximum value of the parameter.

d= decimal value of bit string.

l=length of the string.

5.5.3 Fitness Function

The evaluation function used here consists of two fitness functions, f1 and

f2. The first fitness function f1 is based on the minimization of number of

eigenvectors selected. The second fitness function f2 is evaluated to minimize
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Figure 5.4: Representation of chromosome

(1-R) where R denotes the mean recognition rate of the SVM models obtained

from 9-fold cross validation technique. The training set T is randomly parti-

tioned into nine equal disjoint sets: T1, T2, · · · , T9. The nine SVM classifiers

are trained on the complement Ti, and each classifier is then tested on the

corresponding unseen test set Ti [27]. The final cross-validation recognition

rate is given by:

R =
1

9

9
∑

i=1

r(Ti, T̄i) (5.15)

Based on two fitness values obtained for every chromosome, the non-dominated

sorting is performed to obtain pareto fronts at various levels.
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5.6 MOGA-SVM

MOGA-SVM aims to optimize the feature subset as well as the hyper-parameters

of SVM. The population size is fixed at N for every generation. The proba-

bilities of crossover and mutation are the two main controlling parameters of

MOGA. The evaluation of two fitness functions and the generation of pareto

fronts using non-dominated sorting is shown in Algorithm 9. The calculation

of crowding distance and tournament selection are shown as sub-functions.

Algorithm 8 MOGA− SVM

Let population be denoted as N

Probability of crossover be denoted as Pc

Probability of mutation be denoted as Pm

Fitness function be denoted as f1, f2...fn

Pareto fronts be denoted as F1, F2, ...Fm

Dataset = {Dtrain and Dtest}

Gen = 0

repeat

Step 1. Gen = Gen+ 1.

Step 2. Initialize population P0.

Initialize N number of chromosomes as random individuals which are en-

coded as binary strings. The chromosome is divided into three parts and

the length of the first part depends on the total number of eigen vectors

having non-zero eigen values.

{ 1 indicates inclusion of the eigen vector in the covariance matrix and 0 rep-

resents discard of the eigen vector}. The second part encodes regularization

parameter and the third part encodes variance of Gaussian RBF kernel.
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Step 3. Evaluate fitness function f1= minimize number of 1’s in the

chromosome string in the first part.

Step 4. Evaluate B = AH where A is the original matrix and H is

the transformation matrix. { Based on eigen values selected, map the fea-

ture matrix to lower dimension by multiplying the original matrix with the

transformation matrix.}
Step 5. For the second and third part of chromosome, convert genotype

to phenotype using the equation : p = minp +
maxp−minp

2l−1
∗ d

Step 6. Use the 9-fold cross-validation technique to build 9 SVM models

considering training set, Ti, i = 1, · · ·9. Evaluate mean recognition rate as,

R = 1
9

∑9
i=1 r(Ti, T̄i).

Step 7. Evaluate second fitness function as f2 = minimize (1− R).

Step 8. Considering f1 and f2, perform non-dominated sorting using

NSGA-II( ) and generate pareto fronts such as F1, F2, · · · , Fm.

Step 9. Calculate the crowding distance of all solution points using the

crowding distance( ).

Step 10. Perform tournament selection by selecting N random pairs from

Pt.

Step 11. Use the crowded comparison operator( ) to select the most

widely spread solutions.

Step 12.Perform pairwise crossover and bitwise mutation to create new

offspring.

Step 13.Let the new population be denoted as Pt+1.

until (|F1| ≥ 90% of N)
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Algorithm 9 NSGA− II( )

Let ni denotes the domination count i.e the number of solutions which domi-

nates solution i.

Si denotes set of solutions which solution i dominates.

Initialize ni = 0 and Si = φ for every solution iεP.

for (∀j 6= i) and j ε p do

if i � j then

Update Sp = Sp ∪ j

else {j � i}
set ni = ni + 1.

end if

if ni = O then

P1 = P1 ∪ (i) where P1 denotes the first non-dominated front.

end if

set front count K=1.

end for

while Pk 6= φ do

initialize Q = φ for storing next non-dominated solutions.

for ∀ i ε Pk and ∀ j ε Si do

Update nj = nj − 1

if nj = 0 then

set Q = Q ∪ j

end if

end for

Set K= K+1 and Pk = φ

end while
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Algorithm 10 crowding distance( )

Let fronts be denoted as F1, F2 · · ·FR.

Let objective functions be denoted as M1,M2 · · ·MK .

Let solutions in a front be denoted as S1, S2 · · ·Si.

|Fj| = l denotes number of solutions in a front.

cdK denotes the crowding distance w.r.t Kth objective function.

X[i,k] represents i
th solution in the sorted list w.r.t K.

for every fornt j = 1 · · ·R do

for every objective function M1, M2, · · · ,Mk do

sort the solution in Fj in descending order.

Assign cdK(x[1.k]) = cdK(x[i.k]) =∞
for i = 2 to l do

assign cdK(x[i,k]) =
zk(x[i+1,k])−zk(x[i−1,k])

zmax
k

−zmin
k

end for

end for

end for

Total crowding distance of a solution CD(x) =
∑

K cdK(x) i.e sum of the

crowding distances with respect to every objective.

Algorithm 11 crowded tournament selection ( )

Let ri denotes rank of solution i and rj denotes rank of solution j.

if ri < rj then

select solution i.

else {ri = rj}
select solution i if CDi > CDj

end if
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5.7 Experiment Details

5.7.1 Input Details

The amino acid sequences are downloaded in FASTA format from UNIPROT

repository (http://www.uniprot.org/). The four super-families considered

for numerical simulations are Globin, Kinase, Ribitol dehydrogenase and Lig-

ase.

5.7.2 Parameter Details of PCA-SVM-NSGA-II

Listed below are the descriptions for the parameters used in PCA-SVM-NSGA-

II.

1. Initialization of chromosome:

The population is initialized by encoding the chromosomes as strings of

0’s and 1’s. The first part of chromosome length is fixed on the basis of

number of eigen vectors having non-zero eigen values. In this experiment,

the chromosome string length is fixed at 63. Every one bit of chromosome

represents selection of the eigen vector and zero represents discard of the

eigen vector. The second part and third part have 10 bits each based on

the order of precision.

The population size was fixed at N=60.

Probability of Crossover (Pc=0.7).

Probability of Mutation (Pm=0.005).

nc and nγ = 10 bits each.

γ range is varied within 0 to 1 and order of precision is 3.

C range is varied within 1 to 10 and order of precision is 2.

2. Evaluation of fitness function:

The first fitness function:

( f1): is to minimize the number of eigen vectors.

103

http://www.uniprot.org/


Chapter 5

Protein Superfamily Classification using Multiobjective Genetic Algorithm

and Support Vector Machine

f1 is computed as number of 1’s in first part of the chromosome string.

The second fitness function:

(f2): is to minimize (1-R) where R denotes R = (1
9

∑9
i=1 r(Ti, T̄i))

3. Stopping criteria: AMOGA-SVM and MOGA-SVM are implemented to

obtain the best pareto front. Both the processes are run for 1000 gen-

erations.

5.8 Results and Discussion

AMOGA-SVM and MOGA-SVMwere run for 1000 generations and to evaluate

their performances graphs were plotted for both the algorithms. The graphs

obtained from numerical simulations shows that the number of scattered pareto

points gets slowly converge to the best non-domination level as evolution takes

place. But, number of scattered pareto points in MOGA is more in comparison

to AMOGA. The best pareto front obtained after 1000 generations gave rise to

number of solutions which are stored as pareto optimal set. Every solution in

the set resulted into various ensembles of SVM model which is formed based

on input feature set, C and γ values. The optimal solution can be selected

from the mid region of the pareto front, thereby solving the trade-off problem

between model complexity and accuracy. Four best solutions from the mid

region of pareto front obtained from MOGA and AMOGA were selected to

construct four different ensembles of SVM model. The number of correctly

classified samples from individual superfamily on the test data set are shown

in Table 5.2 and Table 5.3 respectively.
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Table 5.2: Pareto optimal subset from first pareto front of MOGA after 1000

generations

Sl. No. f1 (No. of Eigen vectors) C γ f2 = mean validation error Test accuracy in (%)

1 30 4.64 0.483 0.0230 97.5

2 25 4.42 0.612 0.0275 97.1

3 22 3.65 0.518 0.0290 96.4

4 18 4.75 0.672 0.0340 95.8

Table 5.3: Pareto optimal subset from first pareto front of AMOGA after 1000

generations

Sl. No. f1 (No. of Eigen vectors) C γ f2 = mean validation error Test accuracy in (%)

1 32 2.42 0.446 0.0120 98.8

2 25 3.85 0.582 0.0150 98.6

3 23 3.15 0.495 0.0180 97.4

4 17 2.75 0.510 0.0220 97.1

Table 5.4: Maximum performance accuracy achieved by neural networks

Sl.No. Neural Networks Performance accuracy (in %)

1 FFN-BP 85.33

2 PNN 92.67

3 Standard-RBFN 84.13

4 RBFN-MOGA 96.18

5 RBFN-AMOGA 97.91

6 RBFN-ROLSA 98.61

7 MOGA-SVM 97.5

8 AMOGA-SVM 98.8
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Figure 5.5: Performance of MOGA after 1000 Generations
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Figure 5.6: Performance of AMOGA after 1000 Generations
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5.9 Conclusion

From the above implementation of MOGA-SVM and AMOGA-SVM, it can be

concluded that the hyper-parameters of SVM and feature subset can be opti-

mized simultaneously. The selection of optimal number of significant features

affects the performance accuracy of the classifier. The MOGA based approach

using Gaussian RBF kernel has shown promising results by selecting very few

input features to the SVM model. Assuming the same stopping criteria for

both algorithms, it is observed that AMOGA converged faster than MOGA.

The maximum test accuracy reached upto 98.8%. using AMOGA-SVM and

97.5% using MOGS-SVM. Thus, the technique can be successfully applied for

the problem of protein superfamily classification.

The next chapter concludes the thesis and summarizes all our proposed

methods and also provides scope for further research.
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Protein superfamily classification problem is of great concern for drug ana-

lyst. If a newly discovered protein responsible for the cause of new disease gets

correctly classified to its superfamily, then the task of the drug analyst becomes

simpler. The analysts can recombine some existing drugs to discover new drugs

or else he may search the ligand database for finding out the ligand-protein

pair for that particular superfamily. Thus, the search process is enormously

reduced, as database is searched for one superfamily. So, correct classification

of protein, greatly matters for the discovery of appropriate drugs. The ap-

plication of computational intelligent techniques offers promising solutions to

handle and manipulate the long dimensional protein data as they are robust

and possess the ability of tolerance for imprecision, uncertainty, approximate

reasoning, and partial truth.

To start with, in this thesis, an elaborate survey on the literature avail-

able for the problem of protein superfamily classification has been done, under

three main phases. In the first phase, the various global and local features

extracted from amino acid sequence are reviewed and the dimension reduc-

tion techniques applied to reduce the long dimension vector are studied. SVD

and PCA algorithms are implemented and the efficiency is measured using
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PNN as classifier. In the second phase, an elaborate study on various clas-

sifiers implemented for the classification task was done. FNN trained using

BP algorithm was implemented as a classifier but the major drawback of BP

algorithm is that, it takes long and uncertain training time to converge and

may get stuck in local minima. To overcome the drawback, evolutionary opti-

mization techniques were applied to fasten the training process of FFNN. GA,

AGA, PSO, MOPSO, and DE were implemented and it was observed that,

AGA-BP outperformed the other evolutionary techniques. Besides that, three

standard neural networks such as FFNN, PNN and RBFN were implemented.

Although PNN performed well; but, the major drawback of PNN is that, it

performs well when the training data set is small in size. But as the size of

training data set increases, the architecture of PNN becomes very large and

complex, as every node in the pattern layer represents a training sample. So,

RBFN was the best choice among standard neural networks to perform the

classification task.

In case of RBFN, the problem of finding the number of hidden centers

is a very critical issue in the design of RBFN. The number of basis function

controls the complexity and generalization ability of the network. AMOGA,

a variation of MOGA, was implemented to derive the optimal architecture of

RBFN. The modification to the earlier approach of MOGA was done based

on the two key controlling parameters such as probability of crossover and

probability of mutation. These values were adaptively varied based on the

performance of the algorithm i.e., based on the percentage of total population

present in the best non-domination level. The RBFN obtained from the pareto

optimal set, has shown good classification accuracy in comparison to standard

neural networks. This was validated by performing classification considering

four protein superfamilies. AMOGA outperformed MOGA in terms of speed

and accuracy by protecting the high fitness solutions from getting disrupted

in the search space. PCA was used for dimension reduction of long feature

vectors.
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The approach of selecting top few eigen vectors (as in traditional PCA) may

not always be the right approach for feature extraction. The eigen vectors hav-

ing low eigen values may also have a good impact on the performance accuracy

of the classifier. So, the proposed algorithm PCA-NSGA-II searches the eigen

space to select the distinguishing eigen vectors. The non-dominated solutions

obtained from the pareto front solves the trade-off problem by compromising

between the number of eigen vectors selected and the accuracy obtained by

the classifier. For efficient design of classifier, although AMOGA performed

well in terms of convergence speed and accuracy, but it gave rise to optimized

structure of RBFN. To derive the most parsimonious structure of RBFN and

improve the performance accuracy, RBFN-ROLSA was implemented. Thus,

ROLSA derived very small architecture of RBFN having few number of hidden

centres showing high level of performance accuracy.

Generally, any neural network suffers from two major drawbacks. They

often converge in local minima rather than global minima. The problem of

over-fitting is possible in neural networks, which means, if training on a pat-

tern goes on for too long time, then it may consider noise as part of pattern.

To overcome these drawbacks, SVM was preferred to be implemented, for

classification. MOGA-SVM solved the trade-off problem between model com-

plexity and accuracy of the SVM model. To further improve the performance

of MOGA-SVM, AMOGA-SVM was implemented. It was observed from nu-

merical simulations that, AMOGA converged faster towards the global pareto

front. The AMOGA based approach using Gaussian RBF kernel has shown

promising results by selecting very few input features to the SVM model. The

method was cross-validated by performing numerical simulations considering

four protein superfamilies on nine different disjoint data sets. Therefore, from

above implementation it can be concluded that, the hyper-parameters of SVM

and feature subset can be optimized simultaneously.
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Scope for Further Research

The research findings made out of this thesis, has opened several auxiliary

research directions, which can be further investigated. Further research can be

carried out to develop concepts and techniques for optimal feature selection and

extraction from amino acid sequences. Some other evolutionary optimization

techniques can be applied for significant feature extraction. In this thesis,

RBFN and SVM models are used as the classifier. Some more investigation

on SVM model can be carried out to further improve its performance. The

work of protein superfamily classification can further be extended for disease

prediction and remote homology detection.
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Annexure - I

List of Amino Acids

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V
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Annexure II

Sample Input Feature Matrix (Protein Data)
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