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ABSTRACT

Electro Discharge Machining (EDM) is an extremely prominent machining process

among newly developed non -traditional machining techniques for “difficult to ma-

chine” conducting materials such as heat treated tool steels, composites, super alloys,

ceramics, hastelloys, nitralloy, nemonic alloys, carbides, heat resistant steels etc. In

EDM, the material removal of the electrode is achieved through high frequency sparks

between the tool and the work-piece immersed into the dielectric. The Material Re-

moval Rate (MRR), Tool Wear Rate (TWR) and surface integrity are some of the

important performance attributes of EDM process. The objective of EDM is to get

high MRR along with achieving reasonably good surface quality of machined compo-

nent. The machining parameters that achieve the highest MRR strongly depend on

the size of the machining surface i.e. the engaged electrode and work-piece surface.

With upcoming worldwide applications of AISI P20 machining has become an im-

portant issue which needs to be investigated in detail. The AISI P20 steel is applied

by the tooling industry as material for injection molding tools. These steel are cat-

egorized as “difficult to machine” materials, since they posses greater strength and

toughness. Therefore, AISI P20 steel is usually known to create major challenges

during conventional and non- conventional machining.

Keeping this in view, an experimental investigation to explore the productivity,

quality, surface integrity, and accuracy on the EDM surface. The work has been

carried out by conducting a set of experiments using AISI P20 tool steel work-piece

with copper electrode. Important machining parameters like Discharge current (Ip),

Pulse on Time (Ton), Pulse off Time (Toff ), Lift Time (Tup) and Work Time (Tw) are

considered for investigation. The effect of the machining parameters on the responses

such as MRR, TWR, Surface Roughness (SR), and Micro hardness were investigated.

Now-a-days optimization and modeling of EDM process is a highly demanding re-



search area. Single objective optimization method creates problem, when more than

one response variables need to be optimized simultaneously. So, many attempts have

been made to model performance parameters of EDM process by using multi-objective

optimization approach like Principal Component Analysis (PCA) based approaches

and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

method. In this thesis, both single and multi-objective optimisation methods have

been reported to study some aspects of machining of AISI P20 tool steel.

A well-designed experimental were conducted with L18 Orthogonal Array (OA)

based on the Taguchi method with input factors Discharge current, Pulse on Time,

Lift Time and Flushing pressure. The Signal-to-Noise (S/N) ratios associated with

the observed values were plotted and the factor effecting the micro-hardness of the

work-piece has been obtained. It is inferred that micro- hardness value increases with

increase in Ip and decreases with increase in Ton. The optimal condition for minimum

hardness was found to be Fp1, Ip1, Ton3, Tup3.

Fuzzy TOPSIS method have been implemented and the result obtained has been

illustrated in detail. Important machining parameters like Discharge current, Pulse on

Time, Lift Time, Inter Electrode gap and Work Time were considered for the study.

The experiments were conducted to study the effect of the machining parameters on

the responses such as MRR, TWR and SR. It was observed that the optimal process

condition for higher MRR and lower TWR and SR is Ip= 8A, Ton= 500µs, Tup= 0s,

Tw= 1s and IEG = 90µm. A sensitivity analysis was carried out to determine the

influence of criteria weights on the decision making process. The optimal parameter

values were having 55.56 % votes. It was observed that 97.22% optimal Ip, 88.88

% optimal Ton, 100% optimal Tup, 66.67% optimal Tw, 100% optimal IEG were

robust against the variation of Decision Maker (DM)s preferences.

Taguchi design has been implemented to investigate the effect of Discharge cur-

rent, Pulse on Time, Lift Time and Flushing pressure on the responses MRR and

TWR and SR. Three different PCA based approaches (Grey Relational Analy-

sis (GRA),Weighted Principal Component (WPC) and Proportion of Quality Loss

Reduction (PQLR)) were used to get a single output for optimisation of the above

three responses. A study was performed if the reduction of principal components

vi



effect optimality and it was concluded that it doesn’t effect. It was observed that the

optimal process condition for Overall Quality Performance Index (OQPI) and Multi-

response Performance Index (MPI) is Ip1, Ton3, Tup3 and Fp1. The optimal process

condition for Weighted Score (WS) is Ip1, Ton2, Tup1 and Fp2. PCA-based PQLR

method yields better optimisation and can be an effective approach for optimisation

of multiple correlated responses.

Keywords: Electric Discharge Machining (EDM), AISI P20 tool steel, Taguchi

method, Micro Hardness, Principal Component Analysis, Fuzzy TOPSIS, Material

Removal Rate, Tool Wear Rate, Surface Roughness.
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1. INTRODUCTION

1.1 Introduction on EDM

1.1.1 Overview on EDM

In this technological era, manufacturing industries are facing challenges from such

advanced difficult- to- machine materials, viz. super alloys, ceramics and composites

and stringent design requirements (high surface quality, high precision, high strength,

complex shapes, high bending stiffness, good damping capacity, low thermal expan-

sion and better fatigue characteristics) and machining costs. There is a growing trend

to use light weight and compact mechanical component in the recent years; there-

fore there has been an increased interest in the advance materials in modern day

industries. The new concept of manufacturing uses non-conventional energy sources

like sound, light, mechanical, chemical, electrical, electrons and ions. The machining

processes are non-conventional in the sense that they do not employ traditional tools

for metal removal and instead they directly use other forms of energy. For the last

few years, EDM has been used to machine advanced materials with desired shape,

size and required accuracy. EDM is a non- conventional machining process, where

electrically conductive materials is machined by using precisely controlled sparks that

occur between an electrode and a work-piece in the presence of a dielectric fluid. It

uses thermoelectric energy sources for machining extremely low machinability mate-

rials; complicated intrinsic- extrinsic shaped jobs regardless of hardness have been

its distinguishing characteristics. Machining of any electrically conductive material

irrespective of its hardness, by the application of thermal energy is one of the prime

advantages of EDM process. As EDM does not make direct contact (an inter electrode

gap is maintained throughout the process) between the electrode and the work-piece,

its eradicate mechanical stresses, chatter and vibration problems during machining.

Various types of EDM process are available, but here the concern is about die- Sink-
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ing (also known as ram) type EDM machines and there are many input machining

parameter which can be wide- ranging in the EDM process that have different ef-

fects on the EDM performances characteristics. EDM has been replacing traditional

machining operations and is now a well-established machining option in many man-

ufacturing industries throughout the world. Modern EDM developed in late 1940s,

has been accepted worldwide as a standard process in manufacturing. The history

of EDM techniques was discovered by Sir Joseph Priestley an English Scientist. It

took more than a century to make use of some practical use. The popularity of this

machining was grown by leaps and bounds in last sixty years.

1.1.2 Types of EDM

Basically, there are three different types of EDM

1. Die Sinking EDM

2. Micro Electro Discharge Machining (MEDM)

3. Wire Electro Discharge Machining (WEDM)

1. Die Sinking EDM: It is the most basic one EDM, which is a non-contact

machining process in which metal is removed by a series of periodically electrical

discharges between a tool work-piece submerged in an insulating liquid are connected

to a suitable power supply. A schematic diagram of such a machine is shown in

Fig. 1.1. It uses thermoelectric energy sources for machining low machinability ma-

terials; complicated intrinsic- extrinsic shaped jobs regardless of hardness have been

its distinguishing characteristics. According to Droza (1998), any electrically con-

ductive material can be used as work-piece and tool electrode. EDM founds its wide

applicability in manufacturing of plastic moulds, forging dies, press tools, die cast-

ings, automotive, surgical components, tool, die, and mould making industries and

aerospace (Ho and Newman, 2003).

1.1.3 Equipments of EDM

(a) Dielectric system: The dielectric system consists of dielectric fluid, delivery de-

vice, pumps, and filters. In EDM, material removal mainly occurs due to thermal
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Fig. 1.1: Schematic of an electric discharge machining machine
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evaporation and melting which is required to be carried out in absence of oxygen so

that the process can be controlled and oxidation avoided. Hence, dielectric system

should provide an oxygen free machining environment.

(b) Electrode: It is the tool determining shape of the cavity generated. It depends

upon material and design. Requirements for selection: should be readily available,

easily machinable, exhibit low wear, electrically conductive and provide good surface

finish. The different electrode materials which are used commonly in the industry

are:

• Graphite

• Electrolytic oxygen free copper

• Tellurium copper 99% Cu + 0.5% tellurium

• Brass

(c) Servo System: It is commanded from signals of gap voltage sensor system in

power supply and controls the in-feed of electrode or work-piece to match material

removal.

(b) Power Supply: It transforms the alternating current from the main utility

electrical supply to pulse DC required to produce spark discharges at the machining

gap.

1.1.4 Working principle of EDM

In EDM process, the principle is the conversion of electrical energy into thermal en-

ergy through a series of discrete sparks occurring between the tool electrode and a

conductive work-piece immersed in a dielectric medium and separated by a small

gap. Short duration discharges are generated in a liquid dielectric gap, which sep-

arates tool and work-piece. In this process electrical energy is used to generate the

electrical spark and thermal energy is used for material removal. The electrode is

moved towards the work-piece until the gap is small enough to ionize the dielec-

tric. The dielectric flush eroded particles from the gap and it is really important to

maintain this flushing continuously. As the work-piece remain fixed by the fixture
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arrangement, tool helps in focusing the discharge or intensity of generated heat at

the place of shape disclose. Application of heat raises the temperature of work-piece

in the region of tool position, which subsequently melts and evaporates the metal. In

this way the machining process removes small volumes of work-piece material by the

mechanism of melting and vaporization during a discharge.

The erosion process due to a single electric spark in EDM generally passes through

the following phases which shown in Fig. 1.2 and also described below.

Fig. 1.2: (a) Pre-breakdown phase (b) Breakdown phase (c) Discharge phase (d) End of the
discharge and (e) Post-discharge phase

(a) Pre-breakdown: In this phase, the electrodes are held at a small distance where

the electrode moves close to the work-piece and a high potential difference is applied

between the electrodes.

(b) Breakdown: When the applied voltage crosses the boundary limit of strength

of used dielectric fluid, the breakdown of the dielectric is originated. The spot of

breakdown is normally between the closest points of the electrode and the work-piece,

but it is also depend on conductive particles or debris present in the gap. When the

breakdown occurs the voltage falls and a current rises quickly. In this phase the

dielectric gets ionized and a plasma channel is created between the electrodes.

(c) Discharge: In this phase the flow of discharge current is maintained at constant

level for a continuous attack of ions and electrons on the electrodes leads to cause

strong heating of the work-piece material, leading to temperature rise between 8,000

◦C and 12,000 ◦C. This results rapidly creating a small molten metal pool at the

electrodes surface. Also a small amount of metal are directly vaporized due to the
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tremendous amount of heat. In this phase, the plasma channel expands; therefore the

radius of the molten metal pool also increases with time. The Inter Electrode Gap is

an important parameter throughout the discharge phase.

(d) End of the discharge: In this phase, current and voltage supply are cut off and

therefore, plasma collapses under the pressure enforced by the surrounding dielectric.

(e) Post-discharge: In this phase, there will be no plasma. Here a small portion of

metal will be machined and a small thin layer (white layer) will be deposited because

of plasma is collapsing and cooling. Accordingly, the molten metal pool is strongly

sucked up into the dielectric, producing a tiny crater on the work-piece surface.

Finally, the machining process removes small volumes of work-piece material,

molten or vaporized during a discharge and is carried away from the inter-electrode

gap by the dielectric flow in the form of debris. The gap increases after material

removal at the point of spark, and the position of the next spark shifts to a different

place, where gap is smallest on the work-piece surface. In this manner thousands of

sparks occur at different locality over the whole surface of the work-piece correspond-

ing to the inter electrode gap. As a consequence, a replica of the tool surface shape

is produced in the work-piece.

1.1.5 EDM process parameters

Different EDM machines have different set of parameters due to their designs. To

perform an efficient machining one should have to identify important process param-

eters which influence the responses which are described below. The complete set of

parameters is machine dependent. The machining parameter can be categorized into;

Input /process parameters: The parameters are voltage (V ), discharge current

(Ip), pulse- on time (Ton), pulse-off time (Toff ), duty factor (τ), flushing pressure

(Fp), work-piece material, tool material, inter-electrode gap (IEG), Lift Time (Tup),

Work Time (Tw) and polarity (p) which affects the performance of machining process.

(a) Voltage: Open-circuit voltage specifies the voltage of applied pulses that influ-

ences the spark energy. This de-ionizes the dielectric medium, which depends upon

the electrode gap and the strength of the dielectric, prior to the flow of current.

(b) Pulse-on time: It is the time during which actual machining takes place or it is
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the duration of time for which the current is allowed to flow per cycle. The longer the

pulse duration higher will be the spark energy that creates wider and deeper crated.

it is because the material removal is directly proportional to the amount of energy

applied during this on-time. During pulse duration, the lengths of ignition delay and

discharge duration depend on the gap state. Together with discharge current, pulse

duration sets the amount of energy generated during a single electrical discharge.

(c) Discharge current: The current increases until it reaches a preset level which

is expressed as discharge current. The setting of discharge current on static pulse

generators generally determines the number of power units connected parallel to the

gap. The larger discharge current means the higher power intensity during electrical

discharge. It is the most important machining parameter in EDM because it relates

to power consumption of power while machining.

(d) Duty cycle: It is the percentage of on-time relative to the total pulse period.

At higher duty cycle, the spark energy is supplied for longer duration of the pulse

period which gives higher machining efficiency.

(e) Pulse-off time: It is the duration of time between the sparks during which the

supply voltage is cut off as a consequence the discharge current becomes to zero. This

time allows the molten material to solidify and to be wash out of the arc gap. This

parameter affects the speed and the stability of the cut. Thus, if the off-time is too

short, it will cause unstable sparks.

(f) Polarity: It specifies to the potential of the work-piece with respect to tool,

depending on the application, the polarity can be either way. Carbide, Titanium and

copper are generally cut with negative polarity.

(g) Inter Electrode Gap: It is the distance between the electrode and the part

during the process of EDM. It is also called spark gap. It is the most important

requirements for spark stability and proper flushing. Gap width is not measurable

directly, but can be inferred from the average gap voltage. The tool servo mechanism

is responsible for maintaining working gap at a set value.

(h) Dielectric fluid: The dielectric fluid is act as an electrical insulator carry out

for most important purposes in the EDM. Most commonly used dielectric fluids

are paraffin, deionized water, light transformer oil and kerosene. It cools down the
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electrodes, also provides a high plasma pressure and therefore a high removing force

on the molten metal, and it also helps in flushing away these eroded particles.

(i) Flushing pressure: Flushing is an important factor in EDM of supplying clean

filtered dielectric fluid into the machining zone. Flushing is difficult if the cavity is

deeper, inefficient flushing may initiate arcing and may create unwanted cavities which

can destroys the work-piece. There are several methods generally used to flush the

gap: injection flushing, suction flushing, side-flushing, motion flushing and impulse

flushing. The usual range of pressure used is between 0.1 to 0.4 kgf/cm2.

(j) Lift time: It is the time in which tool lifts up and flushing takes place in the

Inter Electrode Gap.

Response /performance measures: The parameters are MRR, TWR, SR and

Surface integrity, used to evaluate the machining process in both qualitative and

quantitative terms.

(a) MRR: The material MRR is expressed as the ratio of the difference of weight

of the workpiece before and after machining to the machining time and density of

the material. Material removal determines both machining rate and tool electrode

wear rate. The anode has larger material removal with shorter pulse duration while

the cathode has larger material removal with longer pulse duration. The higher the

material removal rate in the EDM process, the better is the machining performance.

Hence, the MRR is the higher-the-better performance characteristic.

(b) TWR: It defined as the volumetric ratio of material removal on tool electrode.

The smaller the TWR in the EDM process, the better is the machining performance.

Therefore, TWR is the lower-the-better performance characteristics.

(c) SR: A profilemeter (Talysurf) was used to measure the machined surface

roughness. The average surface roughness Ra that is the most widely used surface

roughness parameter in industry was selected in this study. The smaller SR in the

EDM process, the better is the machining performance. So, SR are the lower-the-

better performance characteristics.

(d) Surface Integrity: The electrode machined surface is made up of three distinc-

tive layers consisting of White Layer Thickness (WLT), Heat Affective Zone (HAZ)

and unaffected parent metal can be characterized by geometrical shape of the surface,
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metallurgical and chemical characteristics, and mechanical properties. SR is increases

with discharge energy. The sparks produce a surface layer that consists of resolidi-

fied layer on the top of heat- affected-zone and the white layer is the topmost layer

exposed to the environment. Due to the presence of powders in the dielectric fluid

increases the micro- hardness and reduces the micro-cracks on the EDMed surface

due to a reduction of losing alloying elements residing onto the work-piece.

2. WEDM: It uses a thin single-strand metal wire (diameter 0.1 mm, generally

in steel, brass or copper), which cuts the work-piece during the process. Deionized

water is used as dielectric which directly injected around the wire and controlling its

resistivity and other electrical properties with filters and de-ionizer units. Therefore,

WEDM is commonly used when low residual stresses are desired. The wire in WEDM

applications acts almost like an electrical saw and it is capable of achieving very small

cutting angles. The quality of the machining, i.e. precision and surface rugosity, is

directly related to the discharge parameters (current, voltage, discharge duration,

polarity), and also on the dielectric cleanliness. Sparks with low current will produce

small craters: the surface rugosity is low but the removal rate is also low. WEDM is

typically used to cut plates as thick as 300mm and to make punches, tools, and dies

from hard metals.

3. MEDM: It a powerful bulk micro-machining processes, generates highly com-

plex 3-D features with high-precision positioning stages. It is applicable to all kinds

of metals and alloys, any type of electrical conductor. The unique features and the

extensive material base available to MEDM have led to the process being leveraged for

industrial applications, such as micro-mechanical tooling, ink-jet nozzle fabrication,

and micro-machining of magnetic heads for digital VCRs. In the beginning, MEDM

was applied mostly for fabricating small holes in metal foils but currently it is used

in a lot of applications.

1.2 Characteristics of EDM

1.2.1 Benefits of EDM

1. It is a non-traditional process that generates no cutting forces, produces burr-free

edges, permitting the production of small, fragile pieces.
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2. EDM machines allows the production of intricate parts and superior finishes

with minimum operator intervention.

3. Since material removing by melting and evaporation in EDM, so there is no

limitation of machining hard materials eliminating the deformation caused by heat

treatment.

4. Machining of complex shapes, three dimensional micro work pieces.

5. Material that is electrically conductive can be cut and very accurate structures

can be machined using the EDM process.

1.2.2 Limitations of EDM

a) Low material removal rates.

b) Lead time is needed to produce specific, consumable electrode shapes.

c) The work-piece has to be electrically conductive.

d) High specific energy consumption.

e) Thermal stresses are induced in the work-piece surface due to thermal shocks.

1.2.3 Applications of EDM

1. It is the most widely used in machining of very hard metals and alloys and to

meet increasing demands for smaller components usually highly complicated,

multi- functional parts used in the field of micro-electronics.

2. It is used for drilling of curved holes and used for forging, extrusion, wire draw-

ing, thread cutting.

3. It is used for internal thread cutting and helical gear cutting and machining

sharp edges and corners.

4. Higher Tolerance limits can be obtained in EDM machining.



Chapter II

Literature Survey



2. LITERATURE SURVEY

Literature provides a strong impression in relation to the scope as well as interest

in the field of Electro Discharge Machining (EDM) and it reveals that traditional

methods are very straightforward (consisting of a number of assumptions) and not

free from limitations. Various aspects on EDM were addressed by pioneer researchers

throughout the World. The earlier work related to the present research area by other

researchers have been explored and the progressive account of the work has been

enumerated in this chapter. According to Taguchi quality concept, the objective of

response optimisation can be defined as to determine the parametric settings that

can minimise the overall quality loss.

Here in the primary phase (1st phase), literature review has been done on Single

Objective Optimization (SOO) modelling in EDM process, to find out shortcomings

if any and for investigating in the direction of improvising the efficiency in modelling

of the EDM process. In the 2nd phase of literature review, an investigation has been

made on the Multi Objective Optimization (MOO) in EDM process.

2.1 Single objective optimisation on EDM

2.1.1 Taguchi method

Chen et al. (2013) had utilized the Taguchi design methodology to optimize the EDM

processing parameters for the machining of A6061-T6 aluminium alloy. They have

taken four EDM parameters, namely; the pulse current (Ip), the pulse-on duration

(Ton), the duty cycle (τ), and the machining duration to observed the Surface Rough-

ness (SR). The optimal machining parameters and the relative influence of each

parameter on the SR are determined by analysing the experimental data using the

analysis of means (ANOM) and Analysis of Variance (ANOVA) techniques. The re-

sults shows that the magnitude of the SR is determined primarily by the Ip and τ
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parameters. A CuZn40 brass alloy specimen is machined using the optimal processing

parameters and is found to have a lower mean SR than the A6061-T6 work-piece.

Guleryuz et al. (2013) had investigated the effect of EDM parameters on the

SR for machining of Al/SiCp metal matrix composites produced with the Powder

Mettalurgy (PM). Ip, electrode type, Ton, particle reinforcement weight ratio and

V were used as the process parameters. An experimental plan L18 was constituted

by using the Taguchi orthogonal design. Results showed that Ton (34%) and Ip

(31.26%) is the most influencing parameters. Besides this, the percentage contribution

of particle reinforcement on the SR is 6.71%.

Das et al. (2012) presented an investigation on the effect and optimization of ma-

chining parameters namely, Ton, Toff , Ip and V on Material Removal Rate (MRR)

in EDM of EN31 tool steel. The settings of machining parameters are determined by

using Taguchi’s L27 Orthogonal Array (OA). The level of importance of the machin-

ing parameters on MRR was determined by ANOVA and the optimum machining

parameter combination is obtained by the analysis Signal-to-Noise (S/N) ratio. The

analysis shows that Ip has the most significant effect on MRR followed by Toff and

V . It has been seen that with an increase in Ip and Toff , MRR also increases.

Manikandan and Venkatesan (2012) have shown an investigation the feasibility of

micron size hole manufacturing using Micro Electro Discharge Machining (MEDM).

This study investigates the effect of machining parameters such as Ip, Ton, Toff on

the optimization of machining characteristics namely, Radial Over cut (OC), MRR,

Tool Wear Rate (TWR) for machining in MEDM. The cutting of the Inconel 718 us-

ing MEDM with a brass electrode by using Taguchi methodology has been reported.

Geometry of the machined micro-holes and resolified material around the hole en-

trance are observed. Several descriptive pictures, obtained by Scanning Electron

Microscope (SEM) are included to understand this work.

Chen and Lee (2010) have shown an investigation and to optimize the EDM pa-

rameters for machining ZrO2 ceramic. During the EDM process, the surface of the

electrically non-conductive ceramic was covered with adhesive conductive copper and

aluminium foils to attain the threshold of electrical conductivity for the EDM process.

The machining characteristics, such as MRR, TWR, and SR were explored through
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the experimental study according to an L27 OA based on the Taguchi experimental

design method. The results shows that Ip and pulse duration significantly affected

MRR and SR, and the adhesive conductive material was the significant parameter

correlated with TWR. A convenient process for shaping electrically non-conductive

ceramics was developed with the features of high efficiency, high precision, and excel-

lent surface integrity.

Huertas Talon et al. (2010) proposed a method of manufacturing a spur tooth gear

made up of in Ti-6Al-4V alloy using a Wire Electro Discharge Machining (WEDM)

and implemented using the program MATLAB to obtain the interpolation points.

This program simplifies the task of solving the equations originated by the math-

ematical model which allows the wire path to be calculated. The electro-erosion

parameters namely; power, pause, V , amperage tested for this alloy were applied to

an ONA PRIMA S-250. The Taguchi OA method was chosen to obtain the opti-

mum values for cutting Ti alloy. The WEDM method used here is a commendable

alternative for machining electrically conductible materials which are difficult to work

with using conventional machine tools ( milling, turning or boring). Furthermore, the

WEDM process reduces or even eliminates the need for subsequent polishing processes

due to the high-quality finish achieved.

Marafona and Araujo (2009) developed a model using Taguchi methodology with

the influence of the hardness of the alloy steel on the MRR and SR. The results

shows that MRR and SR are directly dependent on the work-piece hardness and the

result for SR was a strong confirmation and for MRR was poor confirmation due to

an Interaction of parameters. Hence for SR, this type of outcome allows the use of

the additive model to predict with an average error of 0.4 % and for MRR, this type

of outcome does not allow the additive model to predict with accuracy. Therefore,

a linear regression model was developed for MRR using work-piece hardness and its

interactions, among other variables. This model predicts the MRR with an average

error of 1.06%. It demonstrates that EDM process is not only influenced by the

thermal properties of the work- piece but also by its hardness.

Lajis et al. (2009) discussed the feasibility of machining Tungsten Carbide ceramics

by EDM with a graphite electrode by using Taguchi methodology. Taguchi method
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was used to formulate the experimental layout, to analyse the effect of each parameters

such as Ip, V , pulse duration and interval time on the machining characteristics

namely, MRR, TWR and SR and to predict the optimal choice. It is found that these

parameters have a significant influence on machining characteristic. The analysis of

the Taguchi method reveals that, in general the Ip significantly affects the TWR and

SR, while, the pulse duration mainly affects the MRR.

Lin et al. (2008) examined the effects of attached magnetic force on EDM machin-

ing characteristics such as MRR, TWR, SR using Electrolytic Copper as Tool and

work-piece is SKD61 steel. Taguchi’s L18 OA was adopted to design the parameters

namely p, Ip, pulse duration, high-voltage auxiliary Current (IH), no-load voltage

and servo reference voltage (Sv). The benefits of using the magnetic force assisted

EDM from the analysis of discharge waveforms and from the micrograph observation

of surface integrity would be proven to attain a high efficiency, better machining sta-

bility and high quality of surface integrity to meet the demand of modern industrial

applications. The results shows that the magnetic force assisted EDM have a higher

MRR almost three times as large as the value of standard EDM, a lower relative

electrode wear ratio (REWR), and a smaller SR as compared with standard EDM.

Kansal et al. (2007) had analysed the effect of silicon powder mixing into the

kerosene as dielectric fluid of EDM on machining characteristics of AISI D2 die steel.

Six process parameters, namely Ip, Ton and Toff , concentration of powder, gain, and

nozzle flushing have been considered. The process performance is measured in terms

of machining rate (MR). This study indicated that all the selected parameters except

nozzle flushing have a significant effect on the mean and variation in MR. Optimiza-

tion to maximize MR has also been undertaken using the Taguchi method. The

ANOVA indicates that the percentage contribution of Ip and powder concentration

toward MR is maximum among all the parameters.

Lin et al. (2006) had investigated the effects of the machining parameters in EDM

on the machining characteristics i.e. MRR, TWR and SR, in the machining of SKH57

high- speed steel. The experiments were conducted with the L18 OA based on the

Taguchi method. The significant parameters i.e. p, Ip, auxiliary current with high

voltage (IH), pulse duration, no load voltage and Servo reference voltage that critically
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influenced by the machining characteristics. MRR and SR increased with the Ip. As

the pulse duration extended, the MRR and also SR initially increased and then fell.

The TWR declined as the pulse duration increased at a particular peak current.

Simao et al. (2003) presented a research work on the deliberate surface alloying

of various work-piece materials using EDM. Operations involving PM tool electrodes

and the use of powders suspended in the dielectric fluid, typically aluminium, nickel,

titanium, etc. experiments conducted on the surface alloying of AISI H13 hot work

tool steel during a die sink operation using partially sintered WC/ Co electrodes

operating in a hydrocarbon oil dielectric. A L8 fractional factorial Taguchi experiment

was used to identify the effect of key operating factors on output measures (TWR,

SR,etc.). With respect to micro-hardness, the percentage contribution ratios (PCR)

for Ip, p and Ton were 24, 20 and 19%, respectively.

Nikalje et al. (2013) used Taguchi method to determine the influence of process

parameters and optimization of MDN 300 steel in EDM. Important performance

measures such as, MRR, TWR, SR and relative wear ratio (RWR). The experiment

were conducted under taking the machining variables namely, Ip, Ton and Toff . Re-

sults showed that that the optimal level of the factors for TWR and SR were same

but differed from the optimum levels of the factors for MRR and RWR. Analysis of

structural features of machined surface was done by using SEM to understand the

influence of parameters.

2.1.2 Full factorial design

Kodlinge and Khire (2013) had presented detailed investigation on MRR of Tungsten

carbide for EDM operation using Kerosene as dielectric medium. The parameters

considered were Ip, electrode diameter and Ton designed according to 23 factorial

design. ANOVA indicates that among the three factors investigated Ip has a strongest

effect on MRR.

Atefi and Amini (2012) has been investigated the influence of different EDM pa-

rameters named as Ip, V , Ton and Toff on the TWR as a result of application copper

electrode to hot work steel DIN1.2344. Design of Experiments (DOE) was chosen

as full factorial. Artificial Neural Network (ANN) has been used to choose proper
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machining parameters and to reach certain TWR. Finally a hybrid model has been

designed to reduce the ANN errors. The results indicated a good performance of

proposed method in optimization of such a complex and non-linear problems.

Pradhan and Jayswal (2011) presented a detailed experimental investigation ac-

cording to 23 full factorial design to consider the machining characteristics in EDM

process of EN-8 alloy steel with copper and aluminium as tool electrode. The hard-

ened work material was machined with the two electrodes at different values of Ip,

Ton and duty factor. It has been found that copper showed better results than alu-

minium in term of surface finish (µm) in same dielectric media. Therefore, copper

was recommended as a good electrode material.

Amini et al. (2010) evaluated the influence of different EDM parameters Ip, V ,

Ton and Toff in finishing stage on the SR as a result of application copper electrode

to hot work steel DIN 1.2344. DOE was chosen full factorial. Statistical analysis has

been done and ANN has been used to choose proper machining parameters and to

reach certain SR. Finally a hybrid model has been designed to reduce the ANNerrors.

The results indicated a good performance of proposed method in optimization of such

a complex and nonlinear problems.

Ali and Mohammad (2008) had analysed the optimization of the process param-

eters of conventional WEDM of a copper substrate for micro-fabrication. Statistical

models were established to predict the SR and peak-to-valley height (Rt) in terms

of Ip, Ton and gap voltage. The SR increased with higher Ip and gap voltage and

decreased with increase of Ton. Using the optimized parameters, miniaturized spur

gears, and plate-shaped hot embossing micro tools were fabricated where an average

surface roughness of about 1µm and dimensional accuracy of 12% were achieved.

Dhar et al. (2007) presented a work aimed on evaluates the effect of Ip, Ton

and air gap voltage on MRR, TWR, ROC of EDM with Al4Cu6Si alloy10 wt. %

SiCP composites. The PS LEADER ZNC EDM machine and a cylindrical brass

electrode of 30 mm diameter and three factors, three levels full factorial design was

using to analysing the results. A second order, non-linear mathematical model has

been developed for establishing the relationship among machining parameters. The

significant of the models were checked using technique ANOVA and finding the MRR,
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TWR and ROC increase significant in a non-linear fashion with increase in current.

The MRR and radial ROC increases with increase in pulse duration.

Lee and Tai (2003) presented a study of the relationship between EDM parameters

and surface cracks by using a full factorial design, based upon Ip and Ton parameters

on D2 and H13 tool steels as materials. The formation of surface cracks is explored by

considering SR, White Layer Thickness (WLT), and the stress induced by the EDM

process. Increased Ton will increase both the average WLT and the induced stress.

When the Ip is increased, the increase in MRR causes a high deviation of thickness of

the white layer. Compared to a thin white layer, a thick white layer has a tendency

to crack more readily. Its use will provide a valuable aid in improving the quality of

the EDM process.

2.1.3 RSM method

Gopalakannan et al. (2012) had conducted experiment on the newly engineered Metal

Matrix Composite (MMC) of aluminium 7075 reinforced with 10 wt% of Al2O3 parti-

cles were prepared by stir casting method. EDM was employed to machine MMC with

copper electrode. A mathematical model has been formulated by applying Response

Surface Methodology (RSM) in order to estimate the machining characteristics such

as MRR, TWR and SR. ANOVA was applied to investigate the influence of process

parameters and their interactions viz., Ip, Ton, V and Toff on MRR, TWR and SR.

The objective was to identify the significant process parameters that affect the output

characteristics.

Rahman et al. (2010) has been reported on modelling, optimization and to develop

of mathematical model of MRR for Ti-5Al-2.5Sn using RSM. The EDM was carried

out on this material employing positive polarity of copper electrode. Ip, Ton, V and

Toff was considered as input parameter to correlate with MRR. The validity test of

the fit and adequacy of the proposed models has been carried out through ANOVA.

It was observed that the developed model was within the limits of the agreeable error

and Ip effectively influences the performance measures.

Habib (2009) proposed a comprehensive mathematical model for MRR, TWR,

Gap Size and SR in EDM for correlating the interactive and higher order influences



2. Literature Survey 20

of various EDM parameters(Ip, Ton, SiC percentage and gap voltage) through RSM.

The analysis showed the MRR increases with an increase of Ip, Ton, relatively with

gap voltage and decreases with increase of SiC percentage. TWR increases with an

increase of both Ip, Ton, and decreases with increase of both of SiC percentage and

gap voltage. The gap size decreases with the increase of SiC percentage and increases

with the increase of Ip, Ton, and gap voltage. Finally, the SR increases with the

increase of Ip, Ton, SiC percentage, and gap voltage.

Soveja et al. (2008) reported the experimental study of the operating factors on

the surface laser texturing of TA6V alloy using two experimental approaches: Taguchi

methodology and RSM. They had determined a correlation between process operating

factors and performance indicators, such as SR and MRR. Results analysis showed

that the laser pulse energy and frequency are the most important operating factors.

MRR is directly proportional to linear effects of the pulse energy and frequency, while

the SR is inversely proportional to them. Here, the optimal set of influencing factors,

which enable the maximisation of MRR, while preserving a small SR (Sao5 mm), are

a 12.5 kHz pulse frequency and a 5 mJ pulse energy.

Kung and Chiang (2008) proposed a mathematical models of the MRR and SR

to correlate the dominant machining parameters, including the Ip, Ton, duty factor,

and wire speed, in the WEDM process of aluminium oxide based ceramic material

(Al2O3 + TiC). An face centred Central Composite Design (CCD)-based on the RSM

has been employed to carry out the experimental study on the performance charac-

teristics of MRR and SR. It has been concluded that the proposed mathematical

models in this study would fit and predict values of the performance characteristics,

which would be close to the readings recorded in experiment with a 95 % confidence

level.The significant parameters that critically affect the performance characteristics

are examined.

2.1.4 ANN method

Prajapati et al. (2013) studied the effect of WEDM process parameters named as;

Ton, Toff , V , Wire Feed and Wire Tension on MRR, SR, Kerf and Gap current

by conducting an experiment. ANN was used for Predict of output parameters of



2. Literature Survey 21

WEDM of AISI A2 giving very accurate result. The training, testing and validation

data set are collected by conducting experiment on work-piece material AISI A2.

From Comparison of Experimental result and ANN Predicted result was found that

error is very less and the maximum error is 0.14. Ton has more importance on output

parameter.

Ndaliman et al. (2012) reported that this study involves the use of ANN technique

with 16 experimental runs to develop behavioural models for predicting the values of

electrical conductivity, thermal conductivity and density for Cu-TaC compacted elec-

trodes produced by PM method for use in EDM. Twenty hidden layer used with feed

forward back-propagation hierarchical neural networks were designed with MATLAB

2009b Neural Network Toolbox. Here, Cu-TaC electrode compacts were produced at

two levels each of the composition and the compacting pressures from copper and

tantalum carbide powders for use in EDM. Results showed that the sintered elec-

trodes are not suitable for EDM because they lost their electrical conductivity. The

pre sintered electrodes (green compacts) were however found to suitable for EDM.

They found that ANN models were capable of predicting the electrode properties

with high degree of prediction accuracy compared to the experimental results.

Jia et al. (2011) presented a new progressive mapping method and modes for

accomplishment of three mappings namely fuzzy identification mode, learning vector

quantification (LVQ) neural network classification mode, and a judging mode. Fuzzy

rules were used to combine the complementary signals with V , Ip and then a scalar

in a range representing a state of the sampled point through the first mapping is

deduced. A LVQ ANN was adopted to convert this scalar to the corresponding state

vector. The ratios in the vector clarify the discharging pulses through the third

mapping, judging mode. Results were presented to verify the effectiveness of this

discharging pulses discriminator for MEDM and showed that this discriminator can

quickly and accurately classify the discharging pulses for MEDM.

Thillaivanan et al. (2010) proposed a method of optimizing cutting parameters for

EDM under the minimum total machining time based on Taguchi method and ANN.

Here a feed forward- backpropagation neural network was developed for getting the

parameters i.e. Ip and feed for a required total machining time, oversize and taper of a
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hole to be machined by EDM, It has been found that Ip has a significant influence on

the total machining time. This methodology could be applied to different machining

conditions such as different work material, electrode etc. so as to build a CAPP

expert system of EDM with the goal of automation.

Joshi and Pande (2009) developed a two-dimensional axisymmetric thermal Finite

Element Method (FEM) model of single-spark EDM process based on assumptions

such as Gaussian distribution of heat flux, time and energy dependent spark radius,

etc. to predict the shape of crater cavity, MRR, TWR using FEM and ANN. ANN

based process model was proposed to establish relation between input process condi-

tions (discharge power, spark on time, and duty factor) and the process responses (

crater geometry, MRR and TWR) for various work materials. The ANN model was

trained, tested, and tuned using the data generated from the numerical (FEM) sim-

ulations. The ANN model was found to accurately predict EDM process responses

for chosen process conditions.

Esme et al. (2009) used two techniques, namely factorial design and neural network

(NN) for modelling and predicting the SR considering pulse duration, open voltage,

wire speed and dielectric flushing pressure as input parameters of AISI 4340 steel.

Relationships between SR and WEDM cutting parameters have been investigated by

using regression analysis method. The level of importance of the WEDM cutting

parameters on the SR was determined by using the ANOVA. Results shows that, NN

is a good alternative to empirical modeling based on full factorial design.

Gao et al. (2008) applied ANN in EDM to how improve generalization perfor-

mance. Here, machining process models have been established based on different

training algorithms of ANN, namely Levenberg-Marquardt algorithm (LM), Resilient

algorithm (RP), Scaled Conjugate Gradient algorithm (SCG) and Quasi-Newton al-

gorithm (BFGS). All models have been trained by same experimental data, checked

by another group data, their generalization performance are compared.

Krishna Mohana Rao and Hanumantha Rao (2010) developed multi-perceptron

neural network models using Neuro solutions package to optimizing the hardness of

surface produced in EDM. Hardness were measured on Ti6Al4V, HE15, 15CDV6 and

M-250 by considering the simultaneous affect of various input variables such as, Ip,
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V . It was found that the developed model was within the limits of the agreeable error

when experimental and network model results were compared. Sensitivity analysis

was also done to find the relative influence of factors on the performance measures.

2.1.5 Nero-fuzzy modelling

Suganthi et al. (2013) developed the Adaptive Neuro-Fuzzy Inference System (ANFIS)

and back propagation - based on ANN model in MEDM process for prediction of

multiple quality responses such as MRR, TWR and SR. The Feed rate, capacitance,

gap voltage, and threshold values were selected as a input parameter. It was observed

that the proposed ANFIS-based model out performs the ANN model in terms of

modelling and prediction accuracy.

Caydas et al. (2009)developed ANFIS model for prediction of responses namely,

SRand WLT in WEDM. The pulse on time, open circuit voltage, dielectric flushing

pressure and wire feed rate are consider as a control parameter. The model combined

modelling function of fuzzy inference with the learning ability of ANN. The experi-

mental results were compared with models predictions for verifying the approach.

Gostimirovic et al. (2012) used ANFIS to estimate MRR in EDM. The selected

control parameters are discharge Ip and Ton. Research showed that ANFIS model

gives accurate prediction on MRR. Here, Ip affecting the MRR first and then Ton.

Tsai and Wang (2001) had analysed the comparison of modelling the MRR for

various materials considering the change of polarity by taking six different neural net-

works with a neuro-fuzzy network. The six neuro networks are such as, Logistic sig-

moid multi-layered perception (LOGMLP), hyperbolic tangent sigmoid multi-layered

perception (TANMLP), fast error back- propagation hyperbolic tangent multi-layered

perception (error TANMLP), redial basis function network (RBFNs), adaptive sig-

moid multi layered perception and the adaptive basis function network and the ANFIS

have been trained and compared by using DOE. It wa concluded that the best is the

ANFIS with Bell - shape membership function.
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2.2 Multi Objective Optimisation on EDM

When more than one response is to be optimized simultaneously, some procedures

have been developed for optimizing multi response problems in recent years. Many re-

searchers have attempted several approaches for establishing an objective method for

determining the optimal parametric settings that can optimise multiple performance

measures to a single quality parameter of EDM process, which can be optimised eas-

ily (Aslan, 2008; Gaitonde et al., 2006). Relationship between process parameters

and response parameters in EDM process are very much stochastic, random and non-

linear in nature. Multi -attribute optimisation is a highly demanded research area of

recent trend in EDM process.

Grey-fuzzy logic :

Prabhu and Vinayagam (2013) have made an attempt to study the optimisation

of multiple quality characteristics such as, SR and MRR of EDM of carbon nano tube

(CNT) mixed dielectric fluid in EDM process. They have used Grey Relational Anal-

ysis (GRA) integrated with fuzzy logic system to conduct experiments for examine

precision and accuracy of EDM process parameter, and comparing each parameter

influencing the machining for with and without using CNT mixed dielectric fluid.

Atomic force microscope (AFM) was used to analysis the surface characteristics such

as surface roughness, micro cracks and topography of CNT-based machining surface.

Lin and Lin (2005) have presented multiple process responses namely, MRR,

TWR and SR optimisation on EDMapplying the grey-fuzzy logics method based on

OA.The selected machining parameter are pulse on time, duty factor and discharge

current with the SKD11 alloy steel as a work-piece material. Grey Relational Coef-

ficient (GRC), Grey Relational Grade (GRG) and ANOVA are applied to study the

performance characteristics.

Grey relation analysis :

Murugesan and Balamurugan (2012) described the optimisation of EDM process

with multiple quality characteristics under which a blind hole can be drilled using a

multi hole electrode. The GRA was used to determine the relationships among the

characteristics based on Taguchi’s OA. Machining parameter were selected as; p, Ip,
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Ton, Toff and dielectric pressure to optimizing the multiple responses like machining

time, TWR and SR. The Ip was found to be most significant factor.

Pradhan (2012) developed a model which combination of RSM, GRA and Prin-

cipal Component Analysis (PCA) on AISI D2 tool steel in EDM. The experiments

are designed using GRA, and the weights of the responses are evaluated by PCA.

These method were used for the determination of the optimum process parameters

that maximises MRR without compromising the surface quality considering control

parameters such as; Ip, Ton, τ and V . Using the RSM the interactive effects of the

machining parameters on the responses were evaluated and found that the GRG was

dominantly influenced by Ip and their interactions with the other parameters.

Dhanabalan et al. (2012) described the optimisation of multiple optimisation pro-

cess based on the OA with the GRA in EDM process They carried out the MRR,

TWR and SR with two different Titanium grades using brass electrodes.

Natarajan and Arunachalam (2011) used GRA and Taguchi method to optimise

multi- performance characteristics of MEDM. The input process parameters namely,

Ip, Ton and gap voltage were used to optimize responses like higher MRR, lower TWR

and lower OC and verified through a confirmatory experiment. It was concluded that

an improvement of MRR , TWR and OC is 12.88, 14.57 and 6.1% respectively.

Beri et al. (2011a) have been made an attempt to correlate the multi-response

over the process parameters of PM electrodes in EDM using GRA based on Taguchi’s

L18 OA. In this experiment using AISI D2 tool steel as a work-piece material with

copper CuW (25% Cu and 75% W) electrode in kerosene. The control parameter

were selected as, electrode material, duty cycle, flushing pressure and discharge cur-

rent on the response of MRR, SR and surface hardness. It was found that copper

tungsten PM electrode gives better multi-objective performance than conventional

copper electrode.

Beri et al. (2011b) had described that the multi response parametric optimisation

of EDM process by Taguchi’s L36 OA integrated with GRA performed on Inconel

718 with three different electrodes. Process parameters were taken as, (p, Ip, Ton,

electrode type, duty cycle, gap voltage, retract distance and flushing pressure) on the

responses of MRR, TWR and SR. It has been found that the optimal machining
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parameter combination gives significant improvement of theGRGby 8.72%.

Jung and Kwon (2010) analysed the optimality under which the micro-hole can

be formed to a minimum diameter and a maximum aspect ratio by using GRA with

Taguchi method to optimising the multiple characteristics. It was found that the

electrode wear and the entrance and exit clearances have a significant effect on the

diameter of the micro-hole when the diameter of the electrode is identical. The input

voltage and the capacitance were found to be the most significant factors.

Panda (2010) investigated the characterize spark-eroded craters formed on both

anode and cathode surfaces based on L9 OA. Here dielectric and thermo-physical

properties of electrode material act as associated parameters. GRA has been imple-

mented to significance of the process parameters. Finally, confirmatory experiments

have been done to recognize the nature of the relative erosion of anode and cathode

with respect to EDM process parameters.

Singh et al. (2004) had optimised multi responses such as, MRR, TWR, taper,

OC, and SR using OA with GRA for EDM process on EDM of Al − 10%SiCP as

cast metal matrix composites using OA. The application of this technique converts

the multi response variable to a single response GRG and, therefore, simplifies the

optimization procedure.

Lin and Lin (2002) used OA with GRA to optimize the EDM process with mul-

tiple performance characteristics namely, MRR, TWR and SR. By taking the input

parameters, namely p, Ip, Ton, τ , open discharge voltage and dielectric fluid, a GRG

obtained from the GRA was used to find the best setting for the EDM process. It

concluded that the performance characteristics of the EDM process are improved

together by using the method proposed.

Fuzzy logic :

Zhang et al. (2012) introduced type-2 fuzzy logic theory to solve uncertainties

caused by features of high frequency, serious signal distortion, and high noise in

MEDM process. Based on interval type-2 fuzzy logic, a two-stage fuzzy controller

was proposed. The first stage was used to detect the discharge state and the second

stage was used to detect the servo feed speed. They proved, the proposed interval

type-2 fuzzy logic based two-stage servo feed controller is an effective way to enhance
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the efficiency and stability MEDM.

Reddy et al. (2010) had proposed the modelling and analysis of the responses

such as, cutting velocity and SR in WEDM using Taguchi’s DOE. The experimental

results of WEDM process is modelled using fuzzy logic and showed that the discharge

current is the most significant parameter influencing the SR and cutting velocity.

Tzeng and Chen (2007)described the optimisation of multiple responses like ma-

chining precision and accuracy using fuzzy logic techniques integrated with Taguchi

method in high speed EDM. From the ANOVA it was identified that, Ip, Ton and

τ as the most significant parameters. Optimisation of Multi Performance Criteria

Index (MPCI)s in the process has been achieved through the proper system model

simulation.

Puri and Deshpande (2004) used Taguchi method couple with fuzzy logics system

for the optimisation of multi responses such as, SR and MRR in WEDM process on

the High-Chromium-High- Carbon die steel as work-piece material. From the result

it was concluded that this approach is simple, effective and efficient and both the

responses can be improved through this approach.

Lin et al. (2000) had presented the optimisation of multiple responses for MRR

and TWR using Taguchi method integrated with fuzzy logic on EDM and predict

the best optimum conditions with a confirmatory test. The selected control param-

eters such as p, Ip, Ton, τ , V , dielectric fluid on the SKD11 as work-piece material.

In this experiment his proved MRR and TWR are greatly improved through this

study. Experiment was conducted for this approach and showed that the optimization

methodology useful in improving multiple performance characteristics and effective.

Fuzzy TOPSIS :

Sivapirakasam et al. (2011) proposed a model of combination of Taguchi’s L9 OA

and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to

solve the multi objective parameter optimization problem in green EDM. Experiment

was carried out to analyse the sensitivity of attributes to the variations in process pa-

rameters such as, peak current, pulse duration, dielectric level and flushing pressure.

An analytical structure was developed to perform multi-criteria decision making. Tri-

angular fuzzy numbers were used to assign preference values to the output responses
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and the optimum factor level combinations were identified based on the Closeness

Coefficient Index (CCI) values. From CCI values, it was concluded that the peak

current was the most effective parameter.

Utility theory :

Chakravorty et al. (2013) applied two sets of past experimental data on EDM

processes and analysed using four different methods and then compared. The results

showed that weighted signal-to- noise ratio (WSN) and Utility Theory (UT) give

better optimisation performance than GRA-based and other approaches.

Chakravorty et al. (2012a) made an attempt to describe the PCA-based UT ap-

proach on EDM processes. They analysed two sets of past experimental data and

the results shows that the modified PCA- based UT gives better optimisation perfor-

mance. It proved that this method is very useful technique for optimising the EDM

processes.

Desirability function :

Assarzadeh and Ghoreishi (2013) has proposed a model to optimize the multi

responses such as, MRR and TWR in Powder Mixed Electro Discharge Machining

(PMEDM). In this experiment using aluminium oxide (Al2O3) fine abrasive powders

with particle concentration and size of 2.5-2.8 g/L and 4550 µm. The CK45 heat-

treated die steel selected as a work-piece and copper was used as tool electrode.

Experiments were analysed using RSM employing a face-CCD design considering the

input parameters named as, Ip, Ton and V , and they were optimized based on the

use of desirability functions with the machining regime of finishing, semi finishing

and roughing. Result showed that the error between experimental and anticipated

values at the optimal combination settings of input parameter are all less than 11 %,

checking the feasibility and effectiveness of the adopted approach.

Gopalakannan and Senthilvelan (2013) reported that this study involves alu-

minium based metal matrix nano-composites reinforced with nano-sized SiC particles

were successfully fabricated in ultrasonic cavitation method. The experiment was

carried out using face CCD design of RSM by conducting 30 experiments for four

factors at three levels and investigate the influence of process parameters by using

ANOVA. It was found that pulse current to be the most important factor affecting
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all the output parameters such as MRR, TWR and SR.

Sivasankar et al. (2012) investigated the maintainability of ZrB2 using EDM

with different tool materials such as graphite, aluminium, tantalum, niobium, cop-

per, brass, silver, tungsten and titanium. The output responses for this process

were Roundness, geometry of hole, and diameter of the hole at different diametric

planes,SR, MRR and TWR measured. Desirability function analysis was employed

to rate the performances of tools. They developed a new theory which relates recast

layer thickness with melting point and thermal conductivity of the tool materials and

found that graphite is the best tool.

El-Taweel (2008) had presented the MRR and TWR in EDM process of CK45

steel using AlCuSiTiC PM electrode were modelled and analysed through RSM. In

this experiment, titanium carbide percent (TiC%), peak current, dielectric flushing

pressure, and pulse on- time are taken as input process parameters and the results

were experimentally verified. ANOVA had also been carried out to check the adequacy

of the models. AlCuSiTiC PM electrodes are found to be more sensitive to peak

current and pulse on time.

Loss function :

Dave et al. (2012) had proposed the multi response optimisation using Taguchi’s

loss function for EDM process. In this research using Inconel 718 as work-piece

under orbital tool actuation and orbital tool radius and orbital speed along with

considering input parameters were Ip, Ton and V and duty factor. Taguchi’s L25 OA

was conducted to measure MRR, TWR and SR and to identify the significant level

of the input parameters by using ANOVA.

Principal component analysis :

Pradhan (2013) presented the effect of process parameters on MRR, TWR and OC

of EDM with AISI D2 tool steel. The control parameter were selected as Ip, Ton, V

and τ . Thirty experiments were conducted based on a face centred-CCD design. The

experimental results obtained were used in GRA, and the weights of the responses

were determined by the PCA and further evaluated using RSM. The results indicate

that the GRG was significantly affected by the machining parameters considered and

some of their interactions.
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Gauri and Chakraborty (2009) had described some modifications in the PCA-

based approach and two sets of experimental data published by the past researchers

are analysed using modified procedure. It was observed that the PCA-based optimi-

sation can give better results than the constrained optimisation and Multi Response

S/N ratio based methods, which can be attributed to the fact that the possible cor-

relation among the multiple responses was taken care in the PCA- based approach.

Chakravorty et al. (2012b) had presented four PCA-based optimization methods

to simplify multi response problems and using L18 orthogonal array and two sets of

past experimental data on EDM processes, found that among the four PCA- based

approaches, PCA- based Proportion of Quality Loss Reduction (PQLR) method re-

sults in the best optimization performance on on machining characteristics, MRR,

TWR and SR.

Su and Tong (1997) proposed an effective procedure on the basis of PCA to

optimize the multi-response problems in the Taguchi method. With the PCA, a

set of original responses can be transformed into a set of uncorrelated components.

Two case studies were evaluated, indicating that the proposed procedure yields a

satisfactory result.

Genetic algorithm :

Non-sorted Genetic Algorithm (GA) has been implemented to optimise the re-

sponses of EDM technology using a powder-mixed dielectric by (Padhee et al., 2012).

They used mathematical models for prediction of MRR and SR through the knowl-

edge of four process variables such as discharge current, concentration of powder

(silicon) in the dielectric fluid, pulse on time and duty cycle with EN-31 tool steel as

a work-piece material. RSM was adopted to study the effect of control variable on

responses and develop predictive models.

Experiential models developed for concerning the SR and MRR with machining

parameters like Ip, Ton and Toff by Baraskar et al. (2013). They used multi optimi-

sation method for non-dominating sorting GA-II, and to obtain the Pareto-optimal

set of solutions. With the RSM has been applied for evolving the models using the

technique of DOE and multi linear regression analysis.

Golshan et al. (2012) examined the effect of EDM on SR and MRR in metal
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matrix composite Al/SiC. They studied the correlation between four input variable

such as Ip, Ton, average gap voltage and percent volume fraction of SiC and process

outputs. From this study they found optimal conditions for outputs extracted from

non-dominated sorting GA-II.

Kuruvila and Ravindra (2011) had investigated the multi objective optimization

using single GA in which the objective function is define as composite function of the

responses OC, SR and MRR defined as objective = OC+SR-MRR. The objective

function was minimized by executing the GA. They used L16 OA based on Taguchi

method with the control parameters are Ip, Ton and Toff , Bed-speed and Flushing

rate.

Somashekhar et al. (2009) described the optimisation of multi response optimisa-

tion of WEDM using GA. They defined the effect of responses such as SR and OC

in the control input variables for gap voltage, capacitance and feed rate. ANOVA

was performed to find out the implication of each factor. Regression models were

established for the experimental results of SR and OC of the micro slots produced on

aluminium.

Su et al. (2004) had proposed an ANN integrated with GA-based for multi- ob-

jective namely, SR, TWR and MRR optimization in EDM process. A neural network

model with back- propagation learning algorithm was developed to establish a re-

lation between the 8 process parameters such as; Ton and Toff , Tw, high- voltage

discharge current, low- voltage discharge current, gap size, servo-feed, jumping time.

From all the optimised results indicate that the developed neural network with the

aid of a GA has sufficient prediction and reasoning capability to generate optimal

process parameters from rough cutting stage to finish cutting stage.

Wang et al. (2003) discussed the development and application of a hybrid ANNand

GA methodology to modelling and optimisation of EDM. This research aimed to find

some solution for modelling and optimisation of manufacturing processes. The devel-

oped methodology with the model is highly beneficial to manufacturing industries,

such as aerospace, automobile and tool making industries. Further work to be car-

ried out include testing the model with more data, verification of the results and

optimising the model with respect to the structure of the neural network.
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Other Research Papers

Ekmekci et al. (2005) presented an experimental work to measure residual stresses

and hardness depth in EDMed surfaces of plastic mold steel with de-ionized water as

dielectric fluid. Layer removal method is used to express the residual stress profile.

The residual stress pattern does not change with respect to the machining parameters.

This pattern can be related to the thermal properties of the work piece material and

the dielectric liquid. Corresponding deformations due to stress relaxation are recorded

for each removal to determine the stress profile from elasticity theory. These stresses

increases rapidly with respect to depth, attaining to its maximum value, around the

the ultimate tensile strength of the material.

Guu and Hou (2007) had applied Atomic Force Microscopy (AFM) technique

on Fe-Mn-Al alloy to analyse the surface characteristics in EDM and to obtain a

three-dimensional image with a nanometer scale based on the experimental data.

Experimental results indicate that the EDM process causes a ridged surface and

induces machining damage in the surface layer, and increases the surface roughness.

The chemical compositions of the machined surface differed from the initial materials

due to the diffusion of the electrode material. The effect of the magnitude of the pulse-

on duration was more dominant than the pulsed current. There was no significant

difference between the hardness of the EDM surface and the hardness of the non-

EDM work-piece.

Krishna Mohana Rao et al. (2008) had conducted 27 experiments considering the

input parameters such as Ip, Ton and duty factor to characterizing the EDM on

Maraging steels. The performance characteristics like MRR, SR and micro-hardness

were measured. It was found that MRR, SR increases with increase in Ip, duty factor.

But, in case of Ton increases MRR, SR decreases. micro-hardness value increases as

the Ip, increases and then decreases. The same effect is observed as in case of duty

factor and pulse on-time. Average crack length and recast layer thickness increases

with increase in Ip and duty factor but, decreasing in case of pulse-on-time.
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Table 2.1: EDM literature review on AISI P20 tool steel

Author with

Year

Machining variables ranges Response

variable

Remark

Ip

(A)

Ton(µs) Toff (µs) Tau

(%)

V Other

variable

Joshi and

Pande (2011)

5-40 200-700 50 -80 30-50 Crater Size,

MRR and

TWR

Integrated FEMANNGA for multi opti-

misation of MRR,TWR and crater size.

Reza et al.

(2010)

0.8-

1.8

2-56 1-55 60-

100

Polarity MRR, TWR

and SR

The +ve polarity was found optimum

MRR, TWR and SR.

Joshi and

Pande (2010)

5-40 25-700 50-80 30-50 MRR, crater

cavity

Developed the thermo-physical model of

EDM process using the FEM in shape of

crater cavity and the MRR.

Kiyak and

Cakir (2007)

6-24 2-100 2 and 3 SR Low current and pulse time with high

pulse off time produces better SR. SR

increases as tool wears out.

Continued on next page
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Table 2.1: EDM literature review on AISI P20 tool steel

Author with

Year

Machining variables ranges Response

variable

Remark

Ip

(A)

Ton(µs) Toff (µs) Tau

(%)

V Other

variable

Amorima and

Weingaertner

(2007)

3-8 6.4 -100 160 Polarity MRR, TWR,

SR

Comparative experimental study of

Graphite and copper as tool material

with +ve and -ve polarity. Higher

MRR were obtained with -ve graphite

electrodes. Graphite and copper tools

yielded similar MRR for +ve polarity.

For graphite and copper tools the low-

est TWR with +ve polarity. The best

SR was obtained for copper electrodes

under -ve polarity.

Continued on next page
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Table 2.1: EDM literature review on AISI P20 tool steel

Author with

Year

Machining variables ranges Response

variable

Remark

Ip

(A)

Ton(µs) Toff (µs) Tau

(%)

V Other

variable

Curodeau

et al. (2005)

5-10 50-100 100-

150

MRR, TWR

and SR

Hybrid EDM process with a polymer-

carbon electrode in deionised water. A

better surface finish achieved for smaller

Ton and Ip. Minimise TWR with low

V, +ve impulse polarity and low flush-

ing pressure.

Amorima and

Weingaertner

(2005)

3-8 6.4-200 160-

200

Polarity MRR, TWR,

SR

Experimental were performed the MRR,

TWR and SR of AISI P20 material of

both positive and negative polarity.

Curodeau

et al. (2004)

1-1.5 60-90 120-180 150 SR Described thermoplastic composite elec-

trode and air as dielectric in EDM for

used automated polishing of tool steel

cavity.
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The following are the critical conclusions of the literature survey:

1. Optimization aspects of EDM have been highlighted in literature, but to a

limited extent. In most of the cases optimization has been performed on a

single objective function. But in practice, it has been found that optimizing one

response may not be favourable for other responses on that particular optimal

parameter setting. This invites complexity to the multi-objective optimization

problem towards optimizing multiple objective functions (may be contradicting

in nature) simultaneously. The introduction of multi objective optimization

technique provides optimal solution among the confiscatory parameters.

2. The goal is not simply to optimize an arbitrary objective function, but rather to

reduce the sensitivity of engineering designs to uncontrollable factors or noise.

In order to overcome this, Effort has been made to study the influence of process

parameters on performance of various aspects of machining like; MRR, TWR,

SR. Mathematical models have also been developed to understand the func-

tional relationship among process parameters with aforesaid process responses.

3. Various research works carried out with work-piece materials like tool steels,

composites and alloys but with very limited work on machining parameters op-

timization for AISI P20. Therefore, the present research has aimed to highlight

multi-objective extended optimization methodologies to be applied in machin-

ing of AISI P20 with different machining environments for continuous quality

improvement and off-line quality control.

2.3 Problem definition

The outcome of the present literature survey stimulate the following problems:

1. Taguchi methodology used to study single objective (micro-hardness) on AISI

P20 steel to obtain optimised value considering the various input parameters.

2. Fuzzy TOPSIS combined with Taguchi method are used in to convert optimize

multiple response parameters to single quality parameter of EDMprocess.
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3. To optimise the multi responses simultaneously using the machining parameters

like Ip, Ton, Tup and Fp by PCA based techniques.

2.4 Organisation of Thesis

The present work is an effort to propose an integrated methodology to state the ma-

chining characteristics in order that it may be competitive as regards of productivity,

quality and accuracy and to develop various prediction models from the experiment

trials. Productivity relates to maximise MRR and accuracy related to minimise TWR

and SR. Owing to this issue, in the present reporting two integrated multi-response

optimization and one single response optimization philosophies viz. (i) Taguchi anal-

ysis has been adopted for assessing favourable (optimal) machining condition during

the machining (ii) Fuzzy TOPSIS method combined with Taguchi framework and (i)

PCA based approaches .

The entire thesis has been divided in six chapters.

Chapter 1 presents the background of research related to EDM.

Chapter 2 covers an extensive literature survey also depicts the necessity of devel-

oping an efficient integrated optimization methodology applicable in product/ process

optimization in manufacturing production context.

Chapter 3: In this chapter, Taguchi analysis used to study micro-hardness on AISI

P20 steel to obtain single objective optimisation considering the input parameters like

Ip, Ton, Tup and Fp.

Chapter 4: TOPSIS can be efficiently used to identify the best alternative solution

from a finite set of points. In this chapter, Fuzzy TOPSIS method are used in

combination with Taguchi method to convert optimize multiple response parameters

to single quality parameter of EDM. The proposed methodology and the result

obtained thereof has been illustrated in detail.

Chapter 5: In this chapter, PCA based approaches are described, and the influ-

ences of the process parameters are studied. Important machining parameters like

Ip, Ton, Tup and Fp are considered for investigation. Optimal parameter setting was

obtained and compared using the prediction errors.

Overall conclusion and scope for future work have been highlighted in Chapter 6.



Chapter III
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3. MICRO-HARDNESS STUDY ON AISI P20 STEEL USING
TAGUCHI METHOD

3.1 Introduction

The present work aimed at optimizing the hardness of surface produced in this process.

The micro- hardness of a substance is an important parameter to define the strength

of its material. This property is basically related to the crystal structure of the

material. A typical hardness profile for a steel part produced by Electro Discharge

Machining (EDM), is characterized by a zone of very high hardness expanding across

the recast layer and the martensitic Heat Affective Zone (HAZ). This hard zone can

be followed by a tempered zone (in case of pre- hardened steel), that finally evolves

towards the hardness of the base material. The main reason for the high hardness

is an increased amount of dendritic cementite that results from absorption of carbon

originating from pyrolysis of the oil dielectric (Bleys et al., 2006).

Over the years, several industries have employed the Taguchi method to improve

the performance of products and processes. The method is robust for the design

or production stage, so that manufacturers can produce higher-quality products in

less time and at a lower cost. According to Tong et al. (2007), Taguchi method is

an implemented experimental technique, which uses an orthogonal array to perform

experiments and employes the Signal-to-Noise (S/N) ratio as the quality measure-

ment index, to optimize only a single response, i.e., the parametric settings can be

optimised with respect to only one performance characteristic at a time. It is a

best combination/set of factor levels of quality improvement that seeks to obtain the

lowest-cost solution to the product design specification based on the requirements of

the customer.

The experiments were carried out on AISI P20 by considering the simultaneous

effect of various input parameters and the corresponding values of hardness were
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measured. It is observed that type of material effectively influences the performance

measures. This paper proposes Taguchi analysis approach to determine parameter

design on EDM for single quality characteristics i.e. micro-hardness.

3.2 Experimental equipment and design

The experiment was conducted on Electronica Electraplus PS 50ZNC die-sinking

EDM machine with 12 mm diameter of cylindrical copper tool electrode and EDM

oil (specific gravity =0.763, flash point= 94◦C) as dielectric. The experimental setup

is shown in Appendix A (Fig. A.1). The work-piece material was AISI P20 tool steel

which is a semicircular shaped work-piece material (100 mm diameter and 10 mm

thickness), “the composition and properties for AISI P20 work-piece material are

shown in (Table A.2) and (Table A.3) of Appendix A respectively”.

The effect of four process parameters, namely, current (Ip), pulse-on-time (Ton),

lift time (Tup), flushing pressure (Fp) was studied on micro-hardness of the EDM

process as shown in Table 3.1 along with the fixed parameters like duty cycle (τ),

voltage (V ) , and polarity (p).

Table 3.1: Control parameter and their levels

Control Parameter
Parameter Level Unit

1 2 3
Discharge current (Ip) 2 5 8 A
Pulse on Time (Ton) 100 300 500 µs
Lift Time (Tup) 0 0.7 1.4 s
Flushing Pressure (Fp) 0.2 0.4 kgf/cm2

Fixed Parameter
Duty Cycle (τ) 90 %
voltage (V ) 45 V
polarity (p) +ve

It uses a special design of Orthogonal Array (OA) to study the entire parameter

space with only a small number of experiments. Usually, there are three categories

of performance characteristics in the analysis of the S/N ratios: Lower-The-Better

(LTB), Higher-The-Better (HTB) and Nominal-The-Better (NTB).
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For LTB response variable,

ηij = −10× log10(
1

n

n∑

k=1

y2ijk) (3.1)

For HTB response variable,

ηij = −10× log10(
1

n

n∑

k=1

1

y2ijk
) (3.2)

For NTB response variable,

ηij = 10× log10(
ȳ2ij
s2ij

) (3.3)

Where, n represents the number of repeated experiments, yijk is the experimental

value of jth response variable in ith trial at kth replication. The number of experi-

mental run = m and p is the number of responses.

.

In this study, the modelling was done with the help of software (Minitab16,

2011) using Taguchi L18 OA to study the effects of various machining parameters

on micro-hardness of the surface produced in EDM process. Micro-hardness was de-

termined with a micro-hardness tester (Vickers hardness machine), which is shown

in Appendix A (Fig. A.4). Basically, micro-hardness is considered to be LTB re-

sponse. So, the S/N ratio (ηij) for jth response variable corresponding to ith trial

(i = 1, 2, . . . ,m; j = 1, 2, . . . , p) can be computed using Equation 3.1.

The influence of different input parameters on micro-hardness was evaluated with

various experimental conditions and the experimental layout is given in Table 3.2.

Micro-hardness depth profile measurements were made on hardness tester with a

Vickers indenter. The principle is based on pressing a diamond indenter (square based

pyramid with an angle of 136 ◦ into the work-piece under test with 200g and loading

time was 15s. Consequently, the linear value (d) of the diagonal of the impression

shown in Fig. 3.1 was measured. Lengths of the indentation diagonals were precisely

measured at 400X magnification an a optical microscope. The hardness number (HV)

is defined as the ratio of applied load to contact area between the indenter and sample

by using Equation 3.4.
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HV = (
P

A
) (3.4)

3.3 Results and discussions

Three sample readings were taken on each work-piece and it is tabulated in Table 3.2.

The images of the indentations for different experiments runs (with one representative

image coresponding to each work-piece) are presented in Fig. 3.2, Fig. 3.3, Fig. 3.4.

Fig. 3.1: Vickers test scheme

It can be concluded from the main effect plot shown in Fig. 3.5, that Vickers

hardness value increases with increase in Ip. When Ip was increased, more number

of carbon particles were deposited on machined surface and hence, due to higher heat

generation and rapid chilling of the re- solidified layer the hardness of the machined

surface was increased (Krishna Mohana Rao et al., 2008). Whereas, the hardness

value decreased with increase in Ton, because with longer pulse on-time and high

current cause more frequent cracking of the dielectric fluid, as there was more frequent

melt expulsion leading to the formation of deeper and larger craters on the surface

of the work-piece. It gave rougher surface characteristics with more craters, globules
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(a) Run no.1 (b) Run no.2

(c) Run no.3 (d) Run no.4

(e) Run no.5 (f) Run no.6

(g) Run no.7 (h) Run no.8

Fig. 3.2: Indentations on work-piece after Vickers hardness test.
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(a) Run no.9 (b) Run no.10

(c) Run no.11 (d) Run no.12

(e) Run no.13 (f) Run no.14

(g) Run no.15 (h) Run no.16

Fig. 3.3: Indentations on work-piece after Vickers hardness test.
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(a) Run no.17 (b) Run no.18

Fig. 3.4: Indentations on work-piece after Vickers hardness test.

Table 3.2: Experimental layout

Run Fp Ip Ton Tup Micro hardness(HV) Avg. (HV)
1st 2nd 3rd

1 0.2 2 100 0.0 215 221 212 216
2 0.2 2 300 0.7 221 213 199 211
3 0.2 2 500 1.4 173 160 165 166
4 0.2 5 100 0.0 232 218 228 226
5 0.2 5 300 0.7 216 236 229 227
6 0.2 5 500 1.4 177 186 198 187
7 0.2 8 100 0.7 232 242 252 242
8 0.2 8 300 1.4 240 231 246 239
9 0.2 8 500 0.0 219 232 227 226
10 0.4 2 100 1.4 209 221 227 219
11 0.4 2 300 0.0 196 207 212 205
12 0.4 2 500 0.7 168 175 185 176
13 0.4 5 100 0.7 229 242 234 235
14 0.4 5 300 1.4 227 219 238 228
15 0.4 5 500 0.0 181 207 197 195
16 0.4 8 100 1.4 254 243 262 253
17 0.4 8 300 0.0 232 242 255 243
18 0.4 8 500 0.7 229 218 210 219
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of debris, micro-cracks and arcing phenomena increased that led to drop in micro-

hardness. The hardness was not significantly affected by Tup and Fp. Since, micro-

hardness is considered LTB factor optimality, so from the Fig. 3.5, the optimal input

factor combination is Fp1, Ip1, Ton3, Tup3.

The Analysis of Variance (ANOVA) table (Table 3.3) shows that Ip and Ton are

most significant parameters at 95% confidence level for micro- hardness among all

variables. In this model only interaction between Ip and Ton was possible which was

not significant in the range of the experiment conducted.
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Fig. 3.5: Main effect plot of Micro Hardness

Residual plots are an important accompaniment to the model calculations. The

residual plots of micro-hardness are shown in below. The standardised residuals are

plotted on a normal probability plot to check the departure of the data from normality

(Fig. 3.6). It can be seen that the residuals are almost falling with in the confidence

interval, which indicates that the residues are almost normally distributed. The

histogram plot of standardised residue for all the observations shows the symmetry

of the residues (Fig. 3.7). It is in the form of Gaussian distribution (bell shape). The
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Table 3.3: ANOVA for micro hardness

Source DF Seq SS Adj SS Adj MS F P
Fp 1 60.50 60.50 60.50 2.10 0.198*
Ip 2 4380.11 4380.11 2190.06 75.86 0.000
Ton 2 4699.11 4699.11 2349.56 81.38 0.000
Tup 2 38.11 4.78 2.39 0.08 0.922*
Ip×Ton 4 289.22 289.22 72.31 2.50 0.151*
Residual Error 6 173.22 173.22 28.87
Total 17 9640.28
* = insignificant at 95%

plot of the residues versus run order illustrates that there is no unusual structure

present in the data (Fig. 3.8). The fitted values to offer a visual check on the model

assumptions which indicate the variance is constant and a nonlinear relationship exists

as well as no outliers exist in the data (Fig. 3.9).
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Fig. 3.6: Normal probability plot

The coefficients of model for mean of micro-hardness are shown in Table 3.4.

The parameter R2 describes the amount of variation observed in micro-hardness is

explained by the input factors. R2 = 98.2 % indicate that the model is able to predict

the response with high accuracy. The standard deviation of errors in the modelling,

S= 5.373. Comparing the p-value with a commonly used confidence level = 0.05, it is
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Fig. 3.9: Fit value plot

found that if the p-value is less than or equal to confidence level, it can be concluded

that the effect is significant (shown in bold), otherwise it is not significant.

3.4 Conclusions

Following conclusions are drawn on the effect of EDM parameters on hardness of the

machined surface.

1. Experimental results indicate that in AISI P20 steel in EDM process causes a

ridged surface and induces machining damage in the surface layer, and increases

the micro-hardness.

2. When Ip was increased the Vickers micro-hardness value also increased.

3. Micro-hardness decreased with increase in Ton.

4. Hardness was unaffected by the input factors Fp and Tup.

5. The optimal condition was found to be Fp1, Ip1, Ton3, Tup3.
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Table 3.4: Estimated model for MH

Term Coef SE Coef T P
Constant 217.389 1.266 171.651 0.000
Fp 0.2 -1.833 1.266 -1.448 0.198
Ip 2 -18.556 1.791 -10.36 0.000
Ip 5 -1.056 1.791 -0.589 0.577
Ton 100 14.444 1.791 8.065 0.000
Ton 300 8.111 1.791 4.529 0.004
Tup 0.0 0.111 2.068 0.054 0.959
Tup 0.7 0.667 2.068 0.322 0.758
Ip*Ton 2 100 4.556 2.736 1.665 0.147
Ip*Ton 2 300 0.667 2.736 0.244 0.816
Ip*Ton 5 100 -0.667 2.736 -0.244 0.816
Ip*Ton 5 300 3.111 2.736 1.137 0.299
S = 5.373 R-Sq = 98.2% R-Sq(adj) = 94.9%



Chapter IV

Optimization of Multiple Quality

Characteristics based on Fuzzy

TOPSIS



4. OPTIMIZATION OF MULTIPLE QUALITY
CHARACTERISTICS BASED ON FUZZY TOPSIS

4.1 Introduction

Currently trends in globalization and technological advancement at a very high rate

have made today’s market extremely competitive. Quality as well as productivity are

the two major parameters of concern for every manufacturing or production unit in

order to achieve high quality product towards fulfillment of the need and satisfaction

of the customers in an economic way. Single objective optimization method often

creates conflict, when more than one response need to be optimized simultaneously.

Literature survey described in Chapter 2 reveals that traditional methods are very

straightforward ( consisting of a number of assumptions) and not free from limitations.

In order to minimize cost and to maximize production rate simultaneously; multi-

objective optimization approach should be explored.

This research adopts the fuzzy-TOPSIS as a fuzzy multi-criteria decision making

technique to determine the weights of each criterion and the importance of alternatives

w.r.t to criteria. In Technique for Order of Preference by Similarity to Ideal Solution

(TOPSIS) approach, an alternative that is nearest to the Fuzzy Positive Ideal Solution

(FPIS) and farthest from the Fuzzy Negative Ideal Solution (FNIS) is chosen as

optimal. This technique is criticised due to neglect uncertainity. On the other hand,

fuzzy logic is able to model the uncertainity. It uses linguistic variable instead of

traditional quantitative expression, which is very helpful concept for dealing with

situations which are too complex or not well- defined enough.

Application of Fuzzy Set Theory was first formalised by Professor Lofti Zadeh at

the University of California in 1965. The fuzzy set theory appears as an important

tool to provide a multi -criteria decision framework that incorporates the vagueness

and imprecision inherent in the justification and selection of advanced manufacturing
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systems. An effective way to express factors including flexibility, quality of the prod-

ucts, enhanced response to market demand, and reduction in inventory, which can

neither be assessed by crisp values nor random processes, is using linguistic variables

or fuzzy numbers. To express an imprecise value, the fuzzy number is used associ-

ated with a membership function. Fuzzy-TOPSIS is one of the most classical method

that can help in objective and systematic evaluation of responses on multiple criteria.

TOPSIS approach, which assigns the best alternatives among a pool of feasible alter-

natives by calculating the distances from the FPIS and FNIS. FPIS is composed of

the best performance values for each alternative i.e., the solution that maximizes the

benefit criteria and minimizes the cost criteria whereas the FNIS consists of the worst

performance values i.e. the solution that maximizes the cost criteria and minimizes

the benefits criteria.

A number of Fuzzy-TOPSIS based methods and applications have been developed

in recent years. The review of the literature indicates that the fuzzy TOPSIS method

has received much less attention in Electro Discharge Machining (EDM). Hence,

the objective of this chapter is to establish mathematical model of Material Removal

Rate (MRR), Tool Wear Rate (TWR) and Surface Roughness (SR) of EDM process

using the fuzzy-based Taguchi method and to optimize these multi response process

performance characteristics simultaneously.

4.2 Equipment and Experimental Design

The experiment was conducted on die-sinking EDM machine with a cylindrical copper

tool electrode having 12 mm diameter and EDM oil (specific gravity =0.763, freezing

point= 94(◦C) as dielectric. The work material chosen was AISI P 20 tool steel which

was semicircular shaped (100 mm diameter and 10 mm thickness). Machining was

carried out for 60 min for each experimental run. In this study, the effect of five pro-

cess parameters, namely, current (Ip) , pulse-on-time (Ton), lift time (Tup), work time

(Tw), inter electrode gap (IEG) was studied on three performance characteristics (

responses) i.e., MRR, TWR, SR of the EDM process that are shown in Table 4.1.

The other fixed parameters include duty cycle (τ), voltage (V ), flushing pressure (Fp)

and polarity (p).
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Table 4.1: Control parameter and their levels with unit

Control Parameter
Parameter Level Unit

1 2 3
Discharge current (Ip) 2 5 8 A
Pulse on Time (Ton) 100 300 500 µs
Lift Time (Tup) 0 0.7 1.4 s
Work time (Tw) 0.2 0.6 1 s
Inter Electrode gap (IEG) 90 70 250 µm

Fixed Parameter
Duty Cycle (τ) 90 %
voltage (V ) 45 V
Flushing Pressure (Fp) 0.3 kgf/cm2

Experimental data on MRR and TWR were collected from Dewangan and Biswas

(2013), where they performed simultaneous optimisation of those two responses by

using Grey Relational Analysis (GRA) method. Their experimental data on MRR

and TWR were analysed in the current work for multi objective optimisation along

with SR as the third response. The MRR and the TWR were calculated by taking

the weights of the work-piece and tool, before and after the experiment, using Equa-

tion 5.1 and Equation 5.2 (Chapter 5). Precision balance was used to measure the

weigh of the work-piece and tool is shown in Appendix A (Fig. A.2).

The SR was measured with Talysurf. The modelling was done with the help of

MINITAB16 software using Taguchi L27 Orthogonal Array (OA). Taguchi Method is

an optimization methodology used to formulate the experimental layout and it uses

a special design of orthogonal array to study the entire parameter space with only a

small number of experiments. Then the proposed method was applied based on con-

cepts of positive ideal and negative ideal points for solving decision making problems

with multi- judges and multi-criteria in a fuzzy environment. In this method, the per-

formance rating values of each alternative under the selected criteria as well as the

weights of criteria are linguistic variables expressed as triangular fuzzy numbers. The

current research uses triangular fuzzy number for fuzzy TOPSIS because of ease using

a triangular fuzzy number for the decision-makers to calculate. Then a new collective
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index is introduced to discriminate among alternatives in the evaluation process by

constructing ideal separation and anti-ideal separation matrices simultaneously. To

avoid complicated aggregation of irregular fuzzy numbers, these weighted ratings are

de-fuzzified into crisp values by the ranking method and then, Closeness Coefficient

Index (CCI) is defined to determine the ranking order of alternatives by calculating

the distances of alternatives to both the ideal and negative- ideal solutions.

4.3 Proposed Optimization Procedure

The preceding study highlights on procedural steps for the multi-response optimiza-

tion based on Fuzzy-TOPSIS. Optimal factorial combination (parameter setting) has

been evaluated finally by optimizing CCI using Taguchi method. The linguistic vari-

ables were described using triangular fuzzy numbers known as Membership function

of Responses which is shown in Fig. 4.1. These linguistic values are denoted by fuzzy

numbers that are shown in Table 4.2. The four decision makers give their decisions

of responses for each attribute weight in linguistic term and aggregated fuzzy weight

of each output parameters are that are shown in Table 4.3.

Fig. 4.1: Membership Function of Response

The optimisation procedure includes the following steps:
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Table 4.2: Linguistic variables

Fuzzy subset Fuzzy weight
Very small(VS) (0.0769, 0.1538, 0.3076)
Small(S) (0.2307, 0.3076, 0.4614)
Medium(M) (0.3845, 0.4614, 0.6152)
High(H) (0.5383, 0.6152, 0.7690)
Very High(VH) (0.6921, 0.7690, 0.9228)
Extremely High(EH) (0.8459, 1.000, 1.000)

Table 4.3: Decision maker and aggregated fuzzy weight

Responses Decision maker Fuzzy weight(w̃j)
DM1 DM2 DM3 DM4

MRR H H M VH (0.5383, 0.6152, 0.7690)
TWR VS S ES M (0.1730, 0.2307, 0.3845)
SR S M VS M (0.2690, 0.3460, 0.4990)

Step 1: Construct the fuzzy decision matrix.

D27×3 = [xij ] (4.1)

where, xij represents the actual value of jth attribute of ith experimental run.

Step 2: Normalising the fuzzy decision matrix using the following equation.

rij = (
xij√∑27
i=1 x

2
ij

) (4.2)

where, rij represents the corresponding normalised value. The above normali-

sation method preserves the property that the ranges of normalised responses

belong to 0 and 1.

The experimental design matrix with normalised response rij ’s are presented in

Table 4.4.

Step 3: Compute the weighted normalised matrix.

The weighted normalised decision matrix Ṽ can be computed by multiplying

the importance weights (w̃j) of evaluated criteria with the values of normalised
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fuzzy decision matrix rij which are shown in Table 4.5.

Ṽ27×3 = [ṽij] (4.3)

where, ṽij= rij × w̃j

Step 4: Determine the FPIS and FNIS.

Since, the positive triangular fuzzy numbers are included in the interval [0,1],

FPIS denoted by A+ and FNIS denoted by A− are computed as:

A+ =
(
ṽ+1 , ṽ

+
2 , ṽ

+
3

)
(4.4)

where, ṽ+j = maxi {vij}

i= 1, 2, . . . , 27 ; j= 1, 2, 3

A− =
(
ṽ−1 , ṽ

−

2 , ṽ
−

3

)
(4.5)

where, ṽ−j = mini {vij}

i= 1, 2, . . . , 27 ; j= 1, 2, 3

These values are given in Table 4.6.

Step 5: Compute the distance of each alternative from FPIS and FNIS.

The distances (d+i , d
−

i ) of each experimental result from positive and negative

ideal solutions can be obtained using the following expression:

d+i =
3∑

j=1

d
{
ṽij, ṽ

+
j

}
(4.6)

i= 1, 2, . . . , 27

d−i =
3∑

j=1

d
{
ṽij, ṽ

−

j

}
(4.7)
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i= 1, 2, . . . , 27

where, d(x, y) is the distance measurement between two triangular fuzzy num-

bers and it can be calculated using the following equation.

d(x, y) = (1
3
[(x1 − y1)

2 + (x2 − y2)
2

+(x3 − y3)
2])

1

2 (4.8)

These values are given in Table 4.7.

Step 6: Compute the CCI of each alternative and the values are given Table 4.4

CCIi =
d−i

d−i + d+i
(4.9)

i= 1, 2, . . . , 27

Step 7: Rank the alternatives

The different alternatives are ranked according to the CCI. The alternative

with highest closeness coefficient represents the best alternative and is closest

to the FPIS and farthest from the FNIS.

4.4 Results and Discussions

The machining run with the greatest CCI value will indicate the optimal combination

of parameters. The main effect plot for CCI is shown in Fig. 4.2. The mean values

of CCI at various levels of input parameters are tabulated in Table 4.8 It is clearly

observed that the optimal machining parameters for the EDM are Ip= 8A (level

3), Ton= 500µs ( level 3), Tup= 0s (level 1), Tw= 1s (level 3) and IEG= 90µm
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Table 4.4: Experimental result with final output

Run Ip Ton Tup Tw IEG rij CCI
A µs s s µm MRR TWR SR

1 1 1 1 1 1 0.084 0.075 0.137 0.347
2 1 1 1 1 2 0.087 0.131 0.133 0.329
3 1 1 1 1 3 0.083 0.142 0.127 0.323
4 1 2 2 2 1 0.027 0.056 0.096 0.324
5 1 2 2 2 2 0.029 0.093 0.085 0.317
6 1 2 2 2 3 0.028 0.131 0.081 0.304
7 1 3 3 3 1 0.014 0.112 0.060 0.314
8 1 3 3 3 2 0.013 0.020 0.067 0.340
9 1 3 3 3 3 0.015 0.112 0.063 0.313
10 2 1 2 3 1 0.058 0.142 0.165 0.279
11 2 1 2 3 2 0.071 0.206 0.189 0.250
12 2 1 2 3 3 0.067 0.261 0.181 0.224
13 2 2 3 1 1 0.021 0.093 0.168 0.274
14 2 2 3 1 2 0.023 0.085 0.172 0.279
15 2 2 3 1 3 0.019 0.120 0.207 0.245
16 2 3 1 2 1 0.131 0.070 0.075 0.429
17 2 3 1 2 2 0.139 0.122 0.088 0.419
18 2 3 1 2 3 0.115 0.031 0.098 0.413
19 3 1 3 2 1 0.179 0.316 0.253 0.359
20 3 1 3 2 2 0.164 0.393 0.249 0.315
21 3 1 3 2 3 0.167 0.419 0.271 0.310
22 3 2 1 3 1 0.432 0.318 0.306 0.686
23 3 2 1 3 2 0.425 0.261 0.290 0.709
24 3 2 1 3 3 0.442 0.291 0.278 0.714
25 3 3 2 1 1 0.301 0.159 0.268 0.612
26 3 3 2 1 2 0.283 0.056 0.282 0.601
27 3 3 2 1 3 0.302 0.093 0.296 0.616
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Table 4.5: weighted normalised matrix

Run ṽij
MRR TWR SR

1 0.0451 0.0515 0.0644 0.0129 0.0173 0.0288 0.0368 0.0474 0.0683
2 0.0468 0.0535 0.0669 0.0227 0.0303 0.0504 0.0359 0.0461 0.0665
3 0.0449 0.0513 0.0641 0.0245 0.0327 0.0545 0.0343 0.0441 0.0635
4 0.0143 0.0163 0.0204 0.0097 0.0130 0.0217 0.0259 0.0333 0.0480
5 0.0158 0.0181 0.0226 0.0161 0.0215 0.0359 0.0229 0.0295 0.0425
6 0.0153 0.0175 0.0218 0.0227 0.0303 0.0504 0.0217 0.0279 0.0402
7 0.0077 0.0088 0.0110 0.0193 0.0258 0.0430 0.0162 0.0208 0.0300
8 0.0068 0.0078 0.0097 0.0035 0.0047 0.0078 0.0181 0.0233 0.0335
9 0.0080 0.0091 0.0114 0.0193 0.0258 0.0430 0.0168 0.0217 0.0312
10 0.0310 0.0354 0.0443 0.0245 0.0327 0.0545 0.0444 0.0572 0.0824
11 0.0384 0.0439 0.0549 0.0356 0.0475 0.0792 0.0509 0.0655 0.0944
12 0.0362 0.0414 0.0517 0.0452 0.0603 0.1005 0.0486 0.0625 0.0902
13 0.0110 0.0126 0.0158 0.0161 0.0215 0.0359 0.0453 0.0583 0.0840
14 0.0126 0.0143 0.0179 0.0146 0.0195 0.0325 0.0462 0.0595 0.0858
15 0.0100 0.0114 0.0143 0.0207 0.0276 0.0460 0.0556 0.0715 0.1031
16 0.0703 0.0803 0.1004 0.0122 0.0162 0.0271 0.0202 0.0259 0.0374
17 0.0750 0.0857 0.1072 0.0212 0.0282 0.0471 0.0238 0.0306 0.0441
18 0.0620 0.0708 0.0885 0.0054 0.0071 0.0119 0.0265 0.0340 0.0491
19 0.0965 0.1103 0.1379 0.0547 0.0729 0.1215 0.0680 0.0875 0.1262
20 0.0885 0.1012 0.1265 0.0679 0.0906 0.1510 0.0670 0.0862 0.1243
21 0.0898 0.1026 0.1283 0.0725 0.0967 0.1611 0.0729 0.0937 0.1352
22 0.2328 0.2660 0.3325 0.0550 0.0733 0.1222 0.0822 0.1057 0.1525
23 0.2290 0.2617 0.3272 0.0452 0.0603 0.1005 0.0780 0.1004 0.1447
24 0.2377 0.2717 0.3396 0.0503 0.0670 0.1117 0.0747 0.0961 0.1386
25 0.1620 0.1852 0.2315 0.0276 0.0368 0.0613 0.0721 0.0928 0.1338
26 0.1522 0.1739 0.2174 0.0097 0.0130 0.0217 0.0758 0.0975 0.1407
27 0.1623 0.1855 0.2319 0.0161 0.0215 0.0359 0.0795 0.1023 0.1476

Table 4.6: Positive Ideal and negative ideal solutions for each criterion

A+ A−

0.2377 0.0068
0.2717 0.0078
0.3396 0.0097
0.0035 0.0725
0.0047 0.0967
0.0078 0.1611
0.0162 0.0822
0.0208 0.1057
0.0300 0.1525
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Table 4.7: Calculated distance measures

Run d+i d+i
1 0.2341 0.1242
2 0.2334 0.1142
3 0.2358 0.1126
4 0.2694 0.1290
5 0.2679 0.1241
6 0.2695 0.1179
7 0.2779 0.1269
8 0.2779 0.1435
9 0.2776 0.1262
10 0.2542 0.0983
11 0.2502 0.0832
12 0.2557 0.0738
13 0.2766 0.1046
14 0.2749 0.1062
15 0.2811 0.0914
16 0.2020 0.1516
17 0.1981 0.1429
18 0.2120 0.1493
19 0.2026 0.1135
20 0.2194 0.1009
21 0.2246 0.1007
22 0.1253 0.2733
23 0.1111 0.2710
24 0.1121 0.2803
25 0.1270 0.2007
26 0.1338 0.2020
27 0.1296 0.2078
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(level 1), which is the best multi-performance characteristics among the twenty seven

experiments shown in bold. From Analysis of Variance (ANOVA) of CCI (Table 4.9),

Ip, Ton, Tup and Tw were the significant machining parameters affecting the multiple

performance characteristics. Only IEG has been found to be insignificant among five

machining parameters.
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Fig. 4.2: Main effect plot for CCI

Table 4.8: Response Table for mean of CCI (optimal values in bold)

Level Ip Ton Tup Tw IEG
1 0.3233 0.3038 0.4854 0.4030 0.4026
2 0.3124 0.4281 0.3919 0.3544 0.3954
3 0.5470 0.4508 0.3054 0.4254 0.3847

4.4.1 Sensitivity Analysis

Sensitivity analysis is a useful tool applied to determine the effect of criteria weights

on decision making because of inherent instability and graphically exposes the im-

portance of criteria weights in selecting the optimal alternative among the feasible

alternatives. The main goal of the present study is to understand which criteria

is most significant in influencing the decision making process and how sensitive the
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Table 4.9: Analysis of Variance for CCI

Source DF Seq SS Adj SS Adj MS F P
Ip 2 0.315466 0.315466 0.157733 650.70 0.000
Ton 2 0.112714 0.112714 0.056357 232.49 0.000
Tup 2 0.145836 0.145836 0.072918 300.81 0.000
Tw 2 0.023663 0.023663 0.011831 48.81 0.000
IEG 2 0.001449 0.001449 0.000725 2.99 0.079∗

Residual Error 16 0.003878 0.003878 0.000242
Total 26 0.603007
* = insignificant at 95%

alternatives change with the importance of the criteria. This technique generates dif-

ferent scenarios that may change the priority of alternatives and is needed to reach a

final solution. If the ranking order be changed by increasing or decreasing the impor-

tance of the criteria, the results are expressed to be sensitive otherwise it is robust.

Sensitivity analysis technique is becoming increasingly demanding in many fields.

It is assumed that a committee of four Decision Maker (DM)s (DM1, DM2, DM3

and DM4) is formed to act as DMs and every one is preferring the same weight of each

of these three responses from among the linguistic terms shown in Table 4.3. Thus,

thirty six experiments were conducted by a full factorial design to investigate the

sensitivity to the variation of each weight. The Fuzzy-TOPSIS technique is applied

on these 36 combinations of DMs preferences, namely DMs preferences on MRR

known as Pref-MRR, similarly, Pref-TWR, Pref-SR. According the optimal levels

of Ip (Opt Ip), Ton (Opt Ton), Tup (Opt Tup) and Tw(Opt Tw) are obtained, which

are shown in Table 4.10. The individual plot for the Opt Ip versus DMs preferences

is plotted in Fig. 4.3a. It can be concluded that Opt Ip is level 3 for all the DMs

judgements except for one DM judgement combination. Whereas, the Opt Ton varies

between level 2 and level 3 for any DM preferences as shown in Fig. 4.3b. Fig. 4.4a

shows that whatever the decision makers prefer, the optimal Tup is level 1. But, Opt

Tw widely varies from level 1 to level 3 with the DMs judgements shown in Fig. 4.4b.

The Opt Ip is found to be 97.22% robust against the variation of DMs preferences,

whereas the same for Ton, Tup, Tw and IEG are 88.88%, 100%, 66.67% and 100%,

respectively. The overall matching of the optimal parameter values is 55.56% with

the results given in Table 4.8.
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Table 4.10: Sensitivity Analysis Result

Run no. Decision makers preferences optimal level
Pref-MRR Pref-TWR Pref-SR Opt-Ip Opt-Ton Opt-Tup Opt-Tw Opt-IEG

1 VH VS VS 3 2 1 3 1
2 VH S VS 3 3 1 3 1
3 H ES VS 3 3 1 3 1
4 M VS M 3 3 1 3 1
5 H ES M 3 3 1 3 1
6 M S VS 3 3 1 1 1
7 H VS VS 3 3 1 3 1
8 H M VS 3 3 1 1 1
9 H ES S 3 3 1 3 1
10 H VS S 3 3 1 3 1
11 VH ES S 3 3 1 3 1
12 M M VS 3 3 1 1 1
13 M ES VS 3 3 1 3 1
14 VH ES M 3 3 1 3 1
15 H M M 3 3 1 1 1
16 M S M 3 3 1 1 1
17 VH VS M 3 3 1 3 1
18 M M S 3 3 1 1 1
19 M ES S 3 3 1 3 1
20 H S VS 3 3 1 3 1
21 VH M M 3 3 1 1 1
22 VH S M 3 3 1 3 1
23 VH S S 3 3 1 3 1
24 H S S 3 3 1 3 1
25 M M M 1 3 1 1 1
26 VH M VS 3 3 1 1 1
27 H VS M 3 3 1 3 1
28 H VS VS 3 3 1 3 1
29 H ES VS 3 2 1 3 1
30 H VS S 3 2 1 3 1
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4.5 Conclusions

1. The present study aimed as converting the multiple responses in to a single

optimum setting of process parameters which is known as CCI, estimate the

factor effects on the CCI and determine the optimal factor-level combination.

2. It was observed that the optimal process condition for higher MRR and lower

TWR and SR is Ip= 8A, Ton= 500µs, Tup= 0s, Tw= 1s and IEG= 90µm.

3. A sensitivity analysis was carried out to determine the influence of criteria

weights on the decision making process. The optimal parameter values had

55.56% votes.

4. It was observed that 97.22% Opt Ip, 88.88% Ton, 100% Tup, 66.67% Tw, 100%

IEG robust against the variation of DMs preferences respectively.
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5. PCA BASED MULTI OBJECTIVE OPTIMIZATION

5.1 Introduction

In modern-day engineering, high demands are being placed on components in relation

to their dimensional precision. Industries are now concerned on focusing towards

refined product quality and increased productivity. So the main goal is to find the

optimum solution to satisfy customers multiple needs of the product performance in

an economic cost. With the development of work-piece material of better hardness,

strength and higher temperature resistance, it has become difficult to process them

by conventional machining methods. Extensive research and development in the field

has finally shown the way to a number of modern machining methods to machine

such difficult to machine materials.

Many attempts have been made to model performance parameters of Electro

Discharge Machining (EDM) process using Principal Component Analysis (PCA)

method. PCA is considered as an effective means of determining a small number of

uncorrelated linear combinations which account for most of the variance in the origi-

nal number of responses. All principal components are uncorrelated with each other.

The sum of variances of the principal components or eigenvalues is equal to the sum

of variances of the original responses. The main advantage of PCA is that once the

patterns in data have been identified, the data can be compressed, i.e., by reducing

the number of dimensions, without much loss of information. Therefore, the conflict

for determining the optimal settings of the design parameters for the multi- response

problems can be reduced. Generally, it is desired that a manufactured product satis-

fies multiple quality characteristics of interest and many of them may be correlated.

PCA is an effective means of determining a small number of constructs which account

for the main sources of variation in a set of correlated quality characteristics. It is,

therefore, thought that the PCA approach can be an efficient method for optimisation
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of process parameters in EDM process. The PCA-based procedure for optimisation

of multi-response processes was originally proposed by Su and Tong Su and Tong

(1997).

In this chapter, PCA technique has been integrated with Taguchis philosophy

towards solving multi- objective optimization problem in machining of material on

EDM. It would optimise the process parameters for Higher-The-Better (HTB) Ma-

terial Removal Rate (MRR) and Lower-The-Better (LTB) Tool Wear Rate (TWR),

Surface Roughness (SR). Optimal cutting condition has been aimed to be evaluated

to satisfy contradicting multi-requirements of product quality as well as productiv-

ity.The following paragraph describes some of the important investigations carried

out by pioneers towards successful implementation of PCA based methods.

5.2 Experimental equipment and design

The experiment was conducted on a die-sinking EDM machine with a cylindrical

copper tool electrode on AISI P20 tool steel. The copper tool and machined work-

piece are shown in Fig. 5.1. The details of the experiment is described in Chapter 3

Section 3.2.

Fig. 5.1: Copper electrode and AISI P20 work-piece

Machining was carried out for 60 min for each experimental run. MRR and TWR

were calculated by weight loss method using following Equation 5.1 and 5.2 and
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Precision balance was used to measure the weigh of the work-piece and tool is shown

in Appendix A (Fig. A.2).

MRR = (
Wb −Wa

t× ρw
) (5.1)

TWR = (
Tb − Ta

t× ρt
) (5.2)

where, Wb and Wa are the weights of work-piece, before and after machining and

tm is the machining time and ρw is the density of work-piece (7.85 g/cm3). Tb and Ta

are the weights of tool, before and after machining and tm is the machining time and

ρt is the density of tool (8.92 g/cm3). The SR was measured with Talysurf (Model:

Taylor Hobson, Surtronic 3+) which shown in Appendix A (Fig. A.3) with parameters,

sample length, Ln= 4 mm, cut-off length, Lc=0.8 mm and filter=2CR ISO. The effect

of four process parameters, namely, current (Ip), pulse on- time (Ton), lift time (Tup),

flushing Pressure (Fp) was studied on three performance characteristics (responses)

i.e., MRR, TWR, SR.

In this study, L18 Orthogonal Array (OA) based on Taguchi design is used for

multi- response optimisation of EDM process. The experimental layout and Signal-

to-Noise (S/N) ratios for the three response variables; MRR, TWR and SR are given

in Table 5.1. Basically here only two types S/N ratios are used i.e., LTB for TWR and

SR and HTB for MRR. The S/N ratio (ηij) for j
th response variable corresponding

to ith trial (i = 1, 2, . . . ,m; j = 1, 2, . . . , p) can be computed using Equation 3.1

and Equation 3.2. The modeling is done by Minitab16 (2011) software with PCA

technique or method.

5.3 Multi objective optimization methods

The process modelling is performed using three types of PCA based methods namely,

PCA-based Grey Relational Analysis (GRA), PCA-based Proportion of Quality Loss

Reduction (PQLR) and Weighted Principal Component (WPC) methods. The three
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Table 5.1: Experimental layout and computed S/N ratios

Run Ip Ton Tup Fp S/N MRR S/N TWR S/N SR
(A) (µs) (s) (kgf/cm2)

1 0.2 2 100 0.0 0.7580 0.0149 2.9
2 0.2 2 300 0.7 0.5032 0.0075 3.8
3 0.2 2 500 1.4 0.1507 0.0168 3.8
4 0.2 5 100 0.0 0.8365 0.0112 6.7
5 0.2 5 300 0.7 2.8705 0.0131 8.5
6 0.2 5 500 1.4 0.7665 0.0131 7.1
7 0.2 8 100 0.7 5.8004 0.0934 7.7
8 0.2 8 300 1.4 7.2930 0.0355 10
9 0.2 8 500 0.0 7.5499 0.0411 8.5
10 0.4 2 100 1.4 0.5223 0.0262 3.1
11 0.4 2 300 0.0 0.7919 0.0131 3.6
12 0.4 2 500 0.7 0.1890 0.0112 4.5
13 0.4 5 100 0.7 3.1762 0.0542 4.5
14 0.4 5 300 1.4 1.8110 0.0112 6.7
15 0.4 5 500 0.0 2.1996 0.0168 8.0
16 0.4 8 100 1.4 5.8726 0.0981 7.1
17 0.4 8 300 0.0 9.8599 0.0842 7.4
18 0.4 8 500 0.7 7.2442 0.0562 8.2

PCA-based methods assuming possible correlation between the responses and the

multiple responses are converted into a single response known as Process Performance

Index (PPI). The basic approach of estimating the factor effects on the PPI and

determine the optimal factor-level combination that can optimize the PPI value are

discussed. The detailed procedures for computing the PPI values and the optimal

factor level in these three methods are described in Appendix.

5.3.1 PCA-Based GRA Method:

GRA is a method in grey system theory that can provide a solution of a system

in which the model is unsure or the information is incomplete. Besides, it provides

an efficient solution to the uncertainty, multi -input and discrete data problem. The

relation between machining parameters and performance can be found out with GRA.

Also, the Grey Relational Grade (GRG) will utilize the discrete measurement method

to measure the distance.

The computed PPI in the PCA-based GRA method is known as Overall Qual-

ity Performance Index (OQPI) which are calculated by the steps described in Ap-
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pendix B. The eigenvalues and the corresponding eigenvectors obtained from the S/N

ratios are given in Table 5.2 for PCA based GRA method. These values are used to

calculate the Principal Component Scores (PCS)s using Equation B.1 which is shown

in Table 5.3. These PCSs values are normalised using Equation B.2 and are given

in Table 5.4. With these normalised values, the Grey Relational Coefficient (GRC)

are calculated using Equation B.3 which are shown in Table 5.5. By using these

values, output (OQPI) is evaluated from Equation B.4, shown in Table 5.16. There

are three different OQPI values for the ith trial that are calculated from the principal

components and are given below:

1. OQPI3i = OQPI value considering all the three principal components.

2. OQPI2i = OQPI value considering first two principal components.

3. OQPI1i = OQPI value considering first principal component only.

The optimality of the process can be checked by HTB category. These three OQPI

value are used to obtain the optimal setting which are described in Section 5.4.

Table 5.2: Eigen analysis for PCA based GRA

PC Eigen
value

Proportion
of variation
explained

Eigen vector

PC1 2.2653 0.755 [-0.640, 0.546, 0.542]
PC2 0.6106 0.204 [0.007,-0.700, 0.714]
PC3 0.1242 0.041 [-0.769,-0.461,-0.444]

5.3.2 PCA-Based WPC Method

WPC method can defeat many defects of multi-response optimization problems as

responses become uncorrelated and weights are easily estimated by percentage of

variation explained by each component. It uses the explained variation as the weight

to combine all principal components in order to form a Multi-response Performance

Index (MPI).

The computed PPI in the WPC method is called MPI, which are calculated by

the steps described in Appendix C. The experimental findings in Table 5.1 are used to
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Table 5.3: Calculated Principal Component Scores(PCSs)

Run no. PCS1 PCS2 PCS3
1 -1.3140 0.7343 -2.6741
2 -1.3480 1.4546 -3.8102
3 -0.8060 2.1686 -4.2542
4 -2.1200 2.9029 -6.9283
5 -2.7300 3.6295 -8.7565
6 -1.2920 4.3337 -8.1239
7 -1.1340 5.0519 -9.0293
8 -2.0640 5.7820 -11.2420
9 -0.5620 6.4855 -10.5325
10 3.4360 7.1617 -6.8239
11 3.6580 7.8792 -7.6524
12 3.6240 8.5995 -8.7885
13 4.1660 9.3135 -9.2325
14 3.3000 10.0429 -11.3683
15 3.0100 10.7660 -12.8120
16 4.1280 11.4737 -12.5639
17 4.4780 12.1898 -13.2386
18 4.5080 12.9094 -14.2978

Table 5.4: Normalized individual principal components

Run no. nor pcs1 nor pcs2 nor pcs3
1 0.7899 0.5519 0.3678
2 0.9161 0.1107 0.4193
3 1.0000 0.4730 1.0000
4 0.6980 0.0346 0.4407
5 0.4421 0.0000 0.0963
6 0.6828 0.0773 0.5139
7 0.0666 0.9405 0.2398
8 0.1280 0.3819 0.0139
9 0.1244 0.5237 0.0000
10 0.7635 0.7731 0.6240
11 0.7714 0.3915 0.3681
12 0.9962 0.2119 0.8725
13 0.3154 0.9392 0.2280
14 0.5717 0.0381 0.1755
15 0.4589 0.1408 0.2274
16 0.0691 1.0000 0.2295
17 0.0000 0.9139 0.0284
18 0.0924 0.6823 0.0716
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Table 5.5: GRC values

Run no. gr1 gr2 gr3
1 0.7041 0.5274 0.4416
2 0.8563 0.3599 0.4627
3 1.0000 0.4868 1.0000
4 0.6234 0.3412 0.4720
5 0.4726 0.3333 0.3562
6 0.6118 0.3514 0.5070
7 0.3488 0.8936 0.3968
8 0.3644 0.4472 0.3364
9 0.3634 0.5121 0.3333
10 0.6789 0.6879 0.5707
11 0.6862 0.4511 0.4417
12 0.9925 0.3882 0.7968
13 0.4220 0.8915 0.3931
14 0.5386 0.3420 0.3775
15 0.4802 0.3679 0.3929
16 0.3494 1.0000 0.3935
17 0.3333 0.8531 0.3397
18 0.3552 0.6114 0.3500

calculate the normalized MRR, TWR, SR, which are presented in Table 5.6. On the

normalized S/N ratios, PCSs named (Zil) are obtained using Equation C.2 in PCA,

which are shown in Table 5.7. The eigenvalues and the corresponding eigenvectors

obtained from the above method are given in Table 5.8. By using these values, the

output MPIs are evaluated from Equation C.3 as shown in Table 5.16. For the ith

trial, the three different MPI values are calculated from the principal components,

that are

1. MPI3i = MPI value considering all the three principal components.

2. MPI2i = MPI value considering first two principal components.

3. MPI1i = MPI value considering first principal component only.

Three MPI values are used to find optimality of the process with HTB category.

5.3.3 PCA-Based PQLR Method

The S/N ratios can be transformed into PQLR that represents the average proportion

of quality loss reduction from an initial or any arbitrary process setting to a new
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Table 5.6: Normalised S/N ratios

Run no. nor SN MRR nor SN TWR nor SN SR
1 0.3863 0.7307 1.0000
2 0.2883 1.0000 0.7817
3 0.0000 0.6850 0.7817
4 0.4099 0.8425 0.3235
5 0.7048 0.7826 0.1313
6 0.3890 0.7826 0.2767
7 0.8731 0.0188 0.2111
8 0.9279 0.3947 0.0000
9 0.9361 0.3377 0.1313
10 0.2972 0.5133 0.9461
11 0.3968 0.7826 0.8253
12 0.0540 0.8425 0.6451
13 0.7290 0.2304 0.6451
14 0.5947 0.8425 0.3235
15 0.6412 0.6850 0.1803
16 0.8761 0.0000 0.2767
17 1.0000 0.0594 0.2432
18 0.9263 0.2160 0.1603

Table 5.7: Calculated PCs

Run no. PC1 PC2 PC3
1 0.6937 0.2052 -1.0779
2 0.7851 -0.1399 -1.0298
3 0.7976 0.0786 -0.6628
4 0.3730 -0.3559 -0.8472
5 0.0474 -0.4491 -0.9611
6 0.3283 -0.3476 -0.7828
7 -0.4341 0.1437 -0.7738
8 -0.3783 -0.2698 -0.8955
9 -0.3436 -0.1361 -0.9339
10 0.6028 0.3183 -0.8853
11 0.6207 0.0442 -1.0324
12 0.7750 -0.1288 -0.7164
13 0.0088 0.3044 -0.9533
14 0.2548 -0.3546 -0.9893
15 0.0614 -0.3463 -0.8889
16 -0.4107 0.2037 -0.7965
17 -0.4757 0.1391 -0.9044
18 -0.3880 -0.0302 -0.8830
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Table 5.8: Eigen analysis for PCA based WPC

PC Eigen
value

Proportion
of variation
explained

Eigen vector

PC1 2.2653 0.755 [-0.640, 0.546, 0.542]
PC2 0.6106 0.204 [0.007,-0.700, 0.714]
PC3 0.1242 0.041 [-0.769,-0.461,-0.444]

setting. The computed PPI in this method is known as Weighted Score (WS) which

is calculated by the steps described in Appendix D.

In this method, S/N ratios are transformed into PQLR using Equation D.1 and

the values are shown in Table 5.9. These values are normalized by using Equation D.2

as shown in Table 5.10. On the normalized PQLR values, conduct PCA to get PCSs

named (Zil) using Equation D.3, which are shown in Table 5.12. The eigenvalues and

the corresponding eigenvectors obtained from the PCA are given in Table 5.11. By

using these eigenvalues, output WSs are shown in Table 5.16, which are evaluated

from Equation D.4.

The optimality of WS setting is LTB type and the three different WS values for

the ith trial, that are calculated from the principal components, are

1. WS3i = WS value considering all the three principal components.

2. WS2i = WS value considering first two principal components.

3. WS1i = WS value considering first principal component only.

The multi-response optimisation has been performed and discussed in Section 5.4.4.

5.4 Results and discussions

5.4.1 Influence on MRR

During the process of EDM, the effects of various machining parameters like Ip, Ton,

Tup, Fp on MRR are shown in Fig. 5.2. This figure indicates that Ip is significant

to MRR because an increase in pulse current produces stronger spark, which in turn

produces the higher temperature, causing more material to melt and erode from the

work-piece. MRR initially increased with increase in Ton from 100 to 300 µs. Further
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Table 5.9: PQLR values

Run no. PQLR MRR PQLR TWR PQLR SR
1 169.2183 4.0000 1.0000
2 383.9610 1.0000 1.7170
3 4278.2594 5.0625 1.7170
4 138.9285 2.2500 5.3378
5 11.7986 3.0625 8.5911
6 165.4891 3.0625 5.9941
7 2.8895 156.2492 7.0500
8 1.8278 22.5624 11.8908
9 1.7055 30.2498 8.5911
10 356.3802 12.2499 1.1427
11 155.0123 3.0625 1.5410
12 2722.7251 2.2500 2.4079
13 9.6365 52.5622 2.4079
14 29.6405 2.2500 5.3378
15 20.0939 5.0625 7.6101
16 2.8189 172.1335 5.9941
17 1.0000 126.8005 6.5114
18 1.8525 56.6283 7.9954

Table 5.10: Normalised PQLR values

Run no. nor pqlr MRR nor pqlr TWR nor pqlr SR
1 0.0393 0.0175 0.0000
2 0.0895 0.0000 0.0658
3 1.0000 0.0237 0.0658
4 0.0322 0.0073 0.3983
5 0.0025 0.0121 0.6970
6 0.0385 0.0121 0.4586
7 0.0004 0.9072 0.5555
8 0.0002 0.1260 1.0000
9 0.0002 0.1709 0.6970
10 0.0831 0.0657 0.0131
11 0.0360 0.0121 0.0497
12 0.6363 0.0073 0.1293
13 0.0020 0.3013 0.1293
14 0.0067 0.0073 0.3983
15 0.0045 0.0237 0.6069
16 0.0004 1.0000 0.4586
17 0.0000 0.7351 0.5061
18 0.0002 0.3251 0.6423
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Table 5.11: Eigen analysis for PCA based PQLR

PC Eigen
value

Proportion
of variation
explained

Eigen vector

PC1 1.6279 0.543 [-0.619, 0.501, 0.615]
PC2 0.7894 0.263 [-0.379,-0.865,0.330 ]
PC3 0.5827 0.194 [0.697,-0.032, 0.716]

Table 5.12: PCs values

Run no. z1 z2 z3
1 -0.0152 -0.0301 0.0269
2 -0.0140 -0.0122 0.1095
3 -0.5566 -0.3778 0.7434
4 0.2290 0.1129 0.3074
5 0.4332 0.2186 0.5004
6 0.2646 0.1263 0.3548
7 0.7959 -0.6016 0.3690
8 0.6780 0.2209 0.7121
9 0.5142 0.0821 0.4937
10 -0.0096 -0.0840 0.0652
11 0.0147 -0.0077 0.0603
12 -0.3044 -0.2048 0.5358
13 0.2292 -0.2187 0.0843
14 0.2445 0.1226 0.2896
15 0.3824 0.1781 0.4369
16 0.7828 -0.7138 0.2966
17 0.6795 -0.4689 0.3388
18 0.5578 -0.0693 0.4496
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increase in Ton resulted in decrease in MRR. It can be said that with increasing spark

energy (higher Ip and Ton), increases material removal rate. As the Ton increases,

the total energy supply to the work-piece is more, so more material is eroded from

work-piece. MRR usually decreases with Tup because, with increase in Tup, the tool

temperature decreases considerably. MRR increased with increase in Fp due to the

fact that flushing of the spark gap keeps the gap clean and removes spark eroded

particles from the gap. Table 5.13 clearly indicates that Ip is the only significant

factors at 95% confidence level for MRR where as Ton, Tup, Fp are not significant in

influencing MRR.

Residual plots are important accompaniment to the model calculations. The resid-

ual plots of MRR are shown in below. This is useful to determine whether the model

meets the assumptions of the analysis. The normal probability plot is a graphical

technique for evaluating whether a data set is approximately normally distributed.

The standardised residuals are plotted on a normal probability plot to check the de-

parture of the data from normality (Fig. 5.3). It can be seen that the residuals are

almost falling with in the confidence interval, which indicates that the residues are

normally distributed. The histogram plot of standardised residue for all the obser-

vations shows the symmetry of the residues (Fig. 5.4). It is in the form of Gaussian

distribution (bell shape), and the residues are distributed with mean zero but here it

is approximately in bell shape. In addition, the plot of the residues versus run order

illustrates that there is no noticeable pattern or unusual structure present in the data

(Fig. 5.5). The residues which lie in the range of -2 to 2 are scattered randomly about

zero. The fitted values to offer a visual check on the model assumptions which indi-

cate the variance is constant and a nonlinear relationship exists as well as no outliers

exist in the data (Fig. 5.6).

5.4.2 Influence on TWR

Influence of EDM process variables on TWR is shown in Fig. 5.7 which indicates that

Ip is directly proportional to TWR. At higher Ton, more energy is released between

IEG resulting in dissociation of dielectric fluid, thus carbon particles are released.

These particles get deposited on the copper tool surface forming a protective layer,
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Fig. 5.2: Main effect plot for MRR

Table 5.13: ANOVA for MRR

Source DF Seq SS Adj MS F P
Fp 1 1.467 1.4666 1.69 0.222*
Ip 2 153.044 76.5218 88.40 0.000
Ton 2 3.587 1.7937 2.07 0.177*
Tup 2 2.631 1.3157 1.52 0.265*
Residual Error 10 8.657 0.8657
Total 17 169.386

* = insignificant at 95%
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which is basically a thick carbon layer that reduces TWR. TWR increases with Tup

from 0.0s to 0.7s and then decreased. In addition, TWR increased with increase in

Fp because increased flushing of the debris of the work-piece reduced the possibility

of carbon formation on tool affecting the TWR. From Table 5.14, it is observed that

Ip and Ton are the significant factors at 95% confidence level for TWR, where as Tup

and Fp are not important in influencing TWR.

The residual plot of TWR in the graph and the interpretation of each residual plot

shows that; Normal probability plot indicate outliers dont exist in the data, because

standardized residues are between -2 and 2 (Fig. 5.8). Histogram shows the data are

not skewed and not outline exist (Fig. 5.9). Residual versus order of the data indicate

that systematic effects in the data due to time of data collection order (Fig. 5.10).

Residuals versus fitted values indicate the variation is constant (Fig. 5.11).
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Fig. 5.7: Main effect plot for TWR

5.4.3 Influence on SR

Influence of EDM process variables on SR is shown in Fig. 5.12, SR increased with

increases the Ip because of generation of more heat energy in the work-piece tool

interface that led to increased melting and evaporation of the electrode. SR also

increased with increases the Ton and it decreases, it almost remains constant. Since
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Table 5.14: ANOVA for TWR

Source DF Seq SS Adj MS F P
Fp 1 0.000861 0.000861 4.06 0.072*
Ip 2 0.010333 0.005167 24.36 0.000
Ton 2 0.002126 0.001063 5.01 0.031
Tup 2 0.000252 0.000126 0.59 0.570*
Residual Error 10 0.002121 0.000212
Total 17 0.015693

* = insignificant at 95%
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Fig. 5.8: Normal probability plot
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SR having LTB characteristics, affecting lower Ip and Ton values would lead to better

surface finish. SR increases with Tup. From Table 5.15, it is observed that Ip and Ton

are the most significant factors at 95% confidence level for SR followed by Tup, Fp

which are not significant in influencing SR.

The residual plot for SR in the graph for normal probability plot indicates that, the

data are normally distributed and variables are influencing the response (Fig. 5.13).

Histogram proved the data are neither skewed and nor outline (Fig. 5.14). Residual

versus order of the data indicates that there are systematic effects in the data due to

time or data collection order (Fig. 5.15). Residuals versus fitted value indicate the

variation is constant (Fig. 5.16).

5.4.4 Influence on PPI

The computed PPI values corresponding to various trials for the PCA-based GRA

method, known as OQPI, are given in Table 5.16. From this table, the main effect

plots for OQPI3, OQPI2 and OQPI1 are drawn and are shown in Fig. 5.17. Larger

values of OQPI’s signify better quality and the optimal levels (bold faced) of the

control factors of the three OQPI’s are tabulated in Table 5.17. It is evident that the
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Fig. 5.12: Main effect plot for SR

Table 5.15: ANOVA for SR

Source DF Seq SS Adj MS F P
Fp 1 1.9339 1.9339 2.58 0.140*
Ip 2 65.9244 32.9622 43.90 0.000
Ton 2 7.2011 3.6006 4.80 0.035
Tup 2 0.0478 0.0239 0.03 0.969*
Residual Error 10 7.5089 0.7509
Total 17 82.6161

* = insignificant at 95%
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optimal parameter settings for all the three OQPI’s are found to be Ip1, Ton3, Tup3

and Fp1. So, it can be concluded that reduction of principal components doesnt

affect optimality.

Table 5.16: PPI values

Run OQPI MPI WS
OQPI3 OQPI2 OQPI1 MPI3 MPI2 MPI1 WS3 WS2 WS1

1 0.6573 0.6659 0.7041 0.5214 0.5895 0.6937 0.0214 0.0200 0.0152
2 0.7389 0.7502 0.8563 0.5220 0.5882 0.7851 0.0321 0.0134 0.0140
3 0.8953 0.8902 1.0000 0.5911 0.6444 0.7976 0.5458 0.4978 0.5566
4 0.5596 0.5630 0.6234 0.1743 0.2181 0.3730 0.2137 0.1909 0.2290
5 0.4394 0.4426 0.4726 -0.0953 -0.0579 0.0474 0.3898 0.3628 0.4332
6 0.5544 0.5560 0.6118 0.1449 0.1847 0.3283 0.2457 0.2193 0.2646
7 0.4619 0.4640 0.3488 -0.3301 -0.3112 -0.4341 0.6620 0.7317 0.7959
8 0.3801 0.3816 0.3644 -0.3774 -0.3549 -0.3783 0.5644 0.5283 0.6780
9 0.3925 0.3946 0.3634 -0.3255 -0.2992 -0.3436 0.3966 0.3728 0.5142
10 0.6763 0.6801 0.6789 0.4838 0.5419 0.6028 0.0400 0.0339 0.0096
11 0.6282 0.6357 0.6862 0.4353 0.4979 0.6207 0.0217 0.0124 0.0147
12 0.8612 0.8634 0.9925 0.5295 0.5826 0.7750 0.3231 0.2716 0.3044
13 0.5166 0.5212 0.4220 0.0297 0.0715 0.0088 0.1984 0.2256 0.2292
14 0.4919 0.4964 0.5386 0.0794 0.1253 0.2548 0.2212 0.2045 0.2445
15 0.4537 0.4559 0.4802 -0.0608 -0.0251 0.0614 0.3393 0.3154 0.3824
16 0.4839 0.4870 0.3494 -0.3012 -0.2801 -0.4107 0.6703 0.7595 0.7828
17 0.4396 0.4432 0.3333 -0.3679 -0.3449 -0.4757 0.5580 0.6102 0.6795
18 0.4072 0.4092 0.3552 -0.3353 -0.3118 -0.3880 0.4083 0.3980 0.5578

Similarly, for MPI’s and WS’s values are also shown in Table 5.16. The main

effects for MPI’s and WS’s are drawn and the desired optimal levels (bold faced) of

the control factors are shown in Table 5.17. Larger values of MPI’s signify better

quality, whereas it is smaller the better for WS’s. All the three graphs for MPI’s

and WS’s are having similar nature and the optimal settings are the same as are

shown in Fig. 5.18 and Fig. 5.19. Consequently, the optimal conditions with respect

to MPI3, MPI2, and MPI1 values are found to be Ip1, Ton3, Tup3 and Fp1.

And, the optimal conditions are Ip1, Ton2, Tup1 and Fp2 for all the three WS’s.

So, similar conclusions can be drawn that reduction of principal components doesnt

effect optimality.

One natural interest is to determine how well the performances of the optimal

solutions are with respect to the expected total S/N ratio values. The S/N ratios
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Fig. 5.17: Main effect plots for OQPI’s
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Fig. 5.18: Main effect plots for MPI’s
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Fig. 5.19: Main effect plots for WS’s
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Table 5.17: Mean values of PPI

Factors Levels OQPI3 OQPI2 OQPI1 MPI3 MPI2 MPI1 WS3 WS2 WS1

Ip
1 0.743 0.748 0.820 0.514 0.574 0.713 0.164 0.142 0.152
2 0.503 0.506 0.525 0.045 0.086 0.179 0.268 0.253 0.297
3 0.428 0.430 0.352 -0.340 -0.317 -0.405 0.543 0.567 0.668

Ton

1 0.559 0.564 0.521 0.096 0.138 0.139 0.301 0.327 0.344
2 0.520 0.525 0.542 0.033 0.076 0.142 0.298 0.289 0.343
3 0.594 0.595 0.634 0.091 0.129 0.205 0.377 0.346 0.430

Tup

1 0.522 0.526 0.532 0.063 0.106 0.155 0.258 0.254 0.306
2 0.571 0.575 0.575 0.053 0.094 0.132 0.336 0.334 0.389
3 0.580 0.582 0.591 0.103 0.144 0.199 0.381 0.374 0.423

Fp
1 0.564 0.568 0.594 0.092 0.134 0.208 0.341 0.326 0.389
2 0.551 0.555 0.537 0.055 0.095 0.117 0.309 0.315 0.356

of the individual responses under each optimal condition are displayed in Table 5.18

while applying different PCA-based approaches. From this table, it was concluded

that PCA-based PQLR method has the highest value of total S/N ratio comparing

with another two methods. So, results show that the optimal condition obtained

using the PCA-based PQLR method leads to the best optimality.

Table 5.18: Optimal parameter setting

Optimization Optimal condition Predicted S/N ratio Total
Method (PCA based) MRR TWR SR S/N ratio
GRA method Ip1 Ton3 Tup3 Fp1 -16.43 35.48 -11.59 7.45
WPC method Ip1 Ton3 Tup3 Fp1 -16.43 35.48 -11.59 7.45
PQLR method Ip1 Ton2 Tup1 Fp2 -2.03 37.67 -11.13 24.52

5.5 Conclusions

Following conclusions are drawn from the PCA-based multi-objective optimisation of

EDM performance measures.

1. The reduction of principal components doesn’t affect the optimality.

2. It is observed that the optimal process condition for OQPI and MPI is Ip1,

Ton3, Tup3 and Fp1.

3. The optimal process condition for WS has been found to be Ip1, Ton2, Tup1

and Fp2.
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4. PCA-based PQLR method yield better optimisation and can be an effective

approach for optimisation of multiple correlated responses.



Chapter VI

Conclusion



6. CONCLUSION

This research work was focused on assessing the Electro Discharge Machining (EDM)

behaviour of AISI P20 tool steel as work-piece and copper as electrodes. The ex-

periments were analysed against the variation of some of the most important EDM

parameters namely, current (Ip), pulse on-time (Ton), lift time (Tup), flushing pressure

(Fp), work time (Tw), Inter Electrode Gap (IEG) that influence the process perfor-

mance. The measured technological outputs were Material Removal Rate (MRR),

Tool Wear Rate (TWR), Surface Roughness (SR), micro-hardness. The most impor-

tant conclusions of the work are summarised below:

6.1 Most important conclusions

6.1.1 Taguchi analysis for Micro hardness

• Micro-hardness value increased with increase in Ip and decreased with increase

in Ton.

• The optimal condition was found to be Fp1, Ip1, Ton3, Tup3.

6.1.2 Fuzzy TOPSIS modelling for MRR, TWR and SR

• It was observed that the optimal process condition for higher MRR and lower

TWR and SR is Ip= 8A, Ton= 500µs, Tup= 0s, Tw= 1s and IEG= 90µm.

• A sensitivity analysis was carried out to determine the influence of criteria

weights on the decision making process. The optimal parameter values were

having 55.56 % votes.

• It was observed that 97.22% optimal Ip, 88.88% optimal Ton, 100% optimal

Tup, 66.67% optimal Tw, 100% optimal IEG were robust against the variation

of Decision Maker (DM)s preferences.
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6.1.3 PCA-based modelling for MRR, TWR and SR

• The reduction of principal components doesn’t affect the optimality.

• It was observed that the optimal process condition for Overall Quality Perfor-

mance Index (OQPI) and Multi-response Performance Index (MPI) was Ip1,

Ton3, Tup3 and Fp1.

• The optimal process condition for Weighted Score (WS) is Ip1, Ton2, Tup1

and Fp2.

• Principal Component Analysis (PCA)-based Proportion of Quality Loss Re-

duction (PQLR) method yielded better optimisation and can be an effective

approach for optimisation of multiple correlated responses.

6.2 Scope for future work

• The influence of type of steel (hardenable steels and non-hardenable steels) on

EDM surface integrity (roughness, micro-hardness, residual stress distribution,

White Layer Thickness (WLT) and Surface Crack Density (SCD)) can be stud-

ied.

• Finite element method (FEM) model can be attempted for WLT, SCD, MRR

and TWR.

• Using different type of electrode materials, the multi objective optimisation can

be performed of all these responses.
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A. EQUIPMENTS USED

Table A.1: Technical Specifications of electro discharge machine

Machine Tool PS50 ZNC
Work tank internal dimensions (W x D x H) 800 x500 x 350 mm
Work table dimensions 550 x 350 mm
Transverse(X,Y,Z) 300, 200, 250 mm
Maximum job weight 300 kg
Maximum electrode weight 100 kg
Maximum job height above the table 250 mm
Feed motor / servo system for Z axis DC Servo
Position measuring system (X, Y, Z) Incremental linear scale
Dielectric system Integral with the machine tool
Dielectric capacity 400 Litres
Filter element 10 µ paper cartridge 2 nos.
Pulse Generator S 50 ZNC
Pulse generator type MOSFET
Current range, Ip 0-50 A
Pulse on time range Ton 0.5-4000 µs
Duty factor range, Tau 50-93%
open circuit voltage, V 40-60 v
Power supply 3 phase, AC 415 V*, 50 Hz
Connected load 6KVA includes PF unit

Table A.2: Chemical composition of AISI P20 (wt %)

C Mn Si Cr Mo Cu P S
0.28-0.40 0.60-1.00 0.20-0.80 1.40-2.00 0.30-0.55 0.25 0.03 0.03

Machine and Equipment

This machine was used to machine on the AISI P20 tool steel for conducting the

experiments
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Fig. A.1: Die Sinker EDM, Brand : Electronica Elektra Plus; Model : PS 50ZNC
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Table A.3: Mechanical properties of workpiece material

Temperature Density Poison’s ratio modulus of elasticity
T (◦C) (kg/m3) ν E (GPA)

25 7.85 0.27-0.30 190-210

Weighing machine

Precision balance was used to measure the weigh of the workpiece and tool.

Fig. A.2: Electronic Balance

Brand:SHINKO DENSHI Co. LTD, JAPAN, Model: DJ 300S
Capacity: 300 gram
Accuracy: 0.001 gram
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Surface Roughness Analyser

Surface roughness of the EDMed component was measured using this machine.

Fig. A.3: Talysurf Surface Roughness Analyser

Brand : Taylor Hobson, Model : Surtronic 3+

Micro Hardness Tester

Fig. A.4: Vickers microhardness tester

Range: 20 Vickers to 1500 Vickers, Total Magnification: 400x, Indenter: diamond
pyramid with an angle of 136 (◦C)



B. PCA BASED GRA

Step 1: Calculate the Signal-to-Noise (S/N) ratio (ηij) for the j
th response variable

and ith trial, where (i = 1, 2, . . . ,m; j = 1, 2, . . . , p).

Step 2: To obtain uncorrelated Principal Component Scores (PCS)s, conduct PCA

on the S/N ratios, by subjecting ηij to PCA. The PCS value of lth component

(l = 1, 2, . . . , p) corresponding to ith trial, PCSil can be obtained as follows:

PCSil = al1ηi1 + al2ηi2 + . . .+ alpηip (B.1)

where a2l1 + a2l2 + . . . + a2lp = 1. The coefficients of the lth component, i.e.,

al1, al2, . . . alp are the elements of the eigenvector corresponding to the lth eigen-

value of the correlation matrix of the response variables. The performing PCA

is available in statistical software MINITAB.

Step 3: Since a larger PCS is always desired, normalized the PCS for lth principal

component in ith trial (Xil) can be obtained as follows:

Xil =
PCSil − PCSmin

l

PCSmax
l − PCSmin

l

(B.2)

where, PCSmin
l

= min(PCS1l, PCS2l, . . . PCSml)

and PCSmax
l

= max(PCS1l, PCS2l, . . . PCSml).

Step 4: Based on normalised PCS, calculate the Grey Relational Coefficient (GRC)

of lth component. Normalized PCS in ith trial γil is computed as follows:
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γil =
∆min

l + ζ∆max
l

∆il + ζ∆max
l

(B.3)

where, ∆il =| 1−Xil |,

∆min
l = min(∆1l,∆2l, . . .∆ml),

∆max
l = max(∆1l,∆2l, . . .∆ml),

ζ is the distinguishing coefficient, which has been set to 0.5.

Step 5: Calculate the OQPI’s values for ith trial can be obtained using the following

expression:

OQPI3i = 0.755γi1 + 0.204γi2 + 0.041γi3 (B.4)

OQPI2i = [0.755γi1 + 0.204γi2]
1

0.755+0.204
(B.5)

OQPI1i = γi1 (B.6)

The weights for each γil are the proportion of variance explained by lth principal

component, which are given in Table 5.8.



C. PCA BASED WPC

Step 1: Calculate the S/N ratio, ηij for the jth response variable in the ith trial.

Step 2: Calculate the normalized S/N ratio value for the jth response variable in

the ith trial (Yij) can be obtained by Equation C.1.

Yij =
ηij − ηmin

j

ηmax
j − ηmin

j

(C.1)

where, ηmin
j = min(η1j, η2j , . . . ηmj),

ηmax
j = max(η1j, η2j , . . . ηmj).

Step 3: To obtain uncorrelated principal components perform PCA on the normal-

ized S/N ratios of the response variables. The value of lth principal component

corresponding to the ith trial (Zil) can be obtained by using Equation C.2.

Zil = al1Yi1 + al2Yi2 + . . .+ alpYip (C.2)

Step 4: Calculate the MPI for each trial. The MPI for the ith trialMPIi is computed

as follows:

MPI3i = 0.755Zi1 + 0.204Zi2 + 0.041Zi3 (C.3)

MPI2i = [0.755Zi1 + 0.204Zi2]
1

0.755+0.204
(C.4)

MPI1i = Zi1 (C.5)

The weights for each Zil are the proportion of variance explained by lth principal

component, which are given in Table 5.8.



D. PCA BASED PQLR

Step 1: Corresponding to each trial, calculate the S/N ratio of each response variable

Step 2: For each response variable, calculate the main effect (in terms of S/N ratio)

of each control factor.

Step 3: For each response variable, estimate the expected S/N ratio at the starting

condition (or any arbitrary condition).

Step 4: Corresponding to each trial using Equation D.1, transform the computed

S/N ratio of each response variable into PQLR value.

PQLR =
L

′

L
= 10−(η

′

−η0)/10 (D.1)

Where, η0 represents the S/N ratio of the response for the stating condition and

their quality loss is L. η
′

is S/N ratio for an existing a new process condition

and their quality loss L
′

.

Step 5: Normalize the PQLR value for the jth response variable in the ith trial (Yij)

can be obtained by using Equation D.2.

Yij =
PQLRij − PQLRmin

j

PQLRmax
j − PQLRmin

j

(D.2)

where,

PQLRmin
j = min(PQLR1j, PQLR2j , . . . PQLRmj),

PQLRmax
j = max(PQLR1j, PQLR2j , . . . PQLRmj).

Step 6: Perform PCA on the normalized PQLR values and obtain the values of the

principal components (Zil) by using Equation D.3.



D. PCA based PQLR 109

Zil = al1Yi1 + al2Yi2 + . . .+ alpYip (D.3)

Step 7: Take the absolute value of Zil and then compute the WS for each trial as

follows:

WS3i = 0.543 | Zi1 | +0.263 | Zi2 |

+0.194 | Zi3 | (D.4)

WS2i = [0.543 | Zi1 | +0.263 | Zi2 |]

1
0.543+0.263

(D.5)

WS1i = | Zi1 | (D.6)

The weights for each | Zil | are the proportion of variance explained by lth

principal component, which are given in Table 5.11.



E. DESIGN OF EXPERIMENTS

Much of our knowledge about products and processes in the engineering and scientific

disciplines is derived from experimentation. An experiment is a series of tests con-

ducted in a systematic manner to increase the understanding of an existing process

or to explore a new product or process. Design of Experiments (DOE), is a tool

to develop an experimentation strategy that maximizes learning using a minimum

of resources. DOE is extensively used by engineers and scientists concerned in the

improvement of manufacturing processes to maximize yield and reduce unpredictabil-

ity. Quite often engineers works on products or processes where no scientific theory

or principles are directly applicable. In such circumstances, to develop new products

and processes in a cost-effective and confident manner experimental design techniques

become extremely important to explain the statistical significance of an effect that

a particular factor exerts on the dependent variable of interest. However, in case of

industrial goal, it is usually to extract the maximum amount of unbiased information

about the factors which affecting a production process from as few observations as

possible. In general, experiments are extensively used to study the performance of

processes and systems.

DOE helps in:

• Identifying relationships between cause and effect.

• Providing an understanding of interactions among causative factors.

• Determining the levels at which to set the controllable factors (product di-

mension, alternative material, alternative designs, etc.) in order to optimize

reliability.

• Minimizing experimental error (noise).
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• Improving the robustness of the design or process to variation.

Typical application of DOE

Experimental design is a critically important tool in the engineering tool in the engi-

neering world for improving the performance of a manufacturing process. It also has

extensive application in the development of new processes.

The application of experimental design techniques early in the process develop-

ment can be result in

• Improve process yield

• Reduced variability and closer conformance to nominal or target requirement

• Reduced development time

• Reduced overall costs

Experimental design methods also play a major role in engineering design activi-

ties, where new products are developed and existing ones improved. Some applications

of experimental design in engineering design include:

• Evaluation and comparison of basic design configurations

• Evaluation of material alternatives

• Selection of design parameters so that the product will work well under a wide

variety of field condition, that is robust

• Determination of key product design parameters that can impact product per-

formance

Why DOE?

With the advance of modern technology, products and processes are becoming ex-

tremely complicated. Since the expense of experimentation climbing quickly, it is

becoming difficult for the analyst, who is already constrained by resources and time,

to investigate the various factors that are affecting these complex processes by trial
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and error methods. Thus analyst will be interested for a technique which will identify

“vital few” factors in most efficient manner then directs the process to its best setting

to meet the growing demand for enhanced quality and better productivity. To achieve

these objectives, DOE technique provides a powerful and efficient method. Designed

experiments are much more efficient than that of one-factor-at-a-time experiments,

which involve changing a single factor at a time to study the effect of the factor on

the response. When the effect that a factor has on the response is changed due to

the presence of one or more other factors, that relationship is called an ‘interaction’.

Sometimes the interaction effects are more significant than the individual factor effect.

This is due to the fact that the application environment of the response comprises

the presence of many of the factors together instead of isolated occurrences of single

factors at different times.

Procedures of Experimental Design

The outline of procedures to use statistical methods in designing and analysing an

experiment, as given below

• Problem Statement or Definition.

• Selection of Response Variable.

• Choice of Factors, Levels, and Ranges.

• Selection of Experimental Design.

• Conduction of the Experiment.

• Analysis and Interpretation of the Data.

Statistical methods are involved in data analysis and interpretation to obtain

objective conclusions from the experiment. There are many software packages

designed to assist in data analysis, such as STATISTICA, MINITAB, DESIGN

EXPERT, etc.
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Conclusions and Recommendations.

After data analysis, the experimenter usually conducts a confirmation experiment to

verify the reproducibility of the optimum recommendation. If the result is not estab-

lished or is unsatisfactory, additional experimentation may be requisite. Based on the

results of the confirmation experiment and the previous analysis, the experimenter

can develop sound conclusions and recommendations. The entire process is actually

a learning process, where hypotheses about a problem are tentatively formulated,

experiments are conducted to investigate these hypotheses, and new hypotheses are

then formulated based on the experimental results. By continuous improvement, this

iterative process moves us closer to the ”truth” as we learn more about the system

at each stage.

Types of DOE techniques

The most prevalent experimental approaches are Factorial design, Taguchi’s design,

and Response Surface Methodology (RSM). The first Design of Experiments (DOE)

technique are used ‘Factorial’ or ‘Classical DOE’, which allows to differentiate which

factors are most significant and helps in identifying important interactions among

the factors. The main objective of Taguchi’s design is to find a ‘robust’ response

that is insensitive to factor variations and noise. RSM consists of an experimental

approach for exploring the settings of input parameter and to develop a quadratic

model suitably approximating relationship between the response and the input pa-

rameters. Subsequently, optimising the levels or values of the input variables that

produce desirable response value.

E.1 Taguchi method

Dr. Genichi Taguchi, a Japanese management consultant developed an efficient

methodology to optimize only a single performance characteristic and is widely being

applied now-a-days for continuous improvement. It produced better quality products

at a low cost (Ross, 1988). In this method is the “robust” parameter design, the main

aim is to find factor settings that minimize response deviation, while adjusting (or
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keeping) the process on target. After you determine which factors affect deviation,

that are find to settings for controllable factors that will either reduce the deviation,

make the product insensitive to changes in (noise) factors, or both (Minitab16, 2011).

Taguchis concepts are as follows: 1. Quality should be designed into the product

and not inspected into it. 2. Quality is best achieved by minimizing the deviation

from the target. It is immune to uncontrollable environmental factors. 3. The cost

of quality should be measured as a function of deviation from the standard and the

losses should be measured system-wide.

According to Taguchi, Quality characteristics are of three types as shown below.

1. Nominal-is-the-Best (NTB) or Target-the-Best (TTB) 2. Lower-the-Better

(LTB) 3. Higher-the-Better (HTB)

E.2 Response Surface Methodology (RSM)

RSM is a collection of mathematical and statistical techniques that are useful for

modelling and analysis of problems in which output or response is influenced by

several variables and the goal is to find the correlation between the response and the

variables (Montgomery, 2001).

E.2.1 Procedure of RSM

RSM is sequential in nature and at the outset, screening experiments are conducted to

reduce the list of contestant variables to a comparatively few. The techniques for the

analysis of the second-order model are presented by Myers and Montgomery (1995).

The steps shown below are typical of a response surface experiment. Depending on

the experiment, one may carry out some of the steps in a different order, perform a

given step more than once, or eliminate a step.

• Choose the response for an experimental investigation. Determine what the

influencing factors are, that is, what the process conditions are those influence

the values of the response variable.

• Create the response surface experiment design according to a central composite

design.
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• Set the factor levels and replicate the design.

• Randomize the design to change the order of the runs.

• Perform the experiment and collect the response data.

• Analyse the response surface design to fit a model to the experimental data.

• Optimize the response to obtain a numerical and graphical analysis.

Analysis of Variance (ANOVA)

Experimental factors will influence the response and so will be due to unknown causes

or measurement errors in experiments, there exists some variability. Every experi-

mental data set is most likely to shown certain variability, but wheather such change

is due to inputs factors or dur to random factors is to be answered by ANOVA. The

method tries to carry out the following.

• Decomposes the deviation of the experimental data in relation to possible

sources; the source may be from the main effect, from the interaction, or may

be from experimental error.

• Measures the magnitude of variation due to all sources.

• Recognize the main and interactions effects which have significant effects on

variation of data.

Sum of Squares (SS)

The distance between any point in a set of data and the mean of the data is the

deviation. Sum of Squares is the sum of all such squared deviations. SSTotal is the

total variation in the data. SSRegression is the portion of the variation explained by

the model, while SSError is the portion not explained by the model and is attributed

to error. The calculations are:
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SSTotal =
n∑

i

r∑

j

(yij − ȳ..)
2 (E.1)

SSError =
n∑

i

r∑

j

(yij − ŷi)
2 (E.2)

SSRegression = SSTotal − SSError (E.3)

where yij = ith observed response of jth replicate, ŷi = ith fitted response, and ȳ.. =

mean of all (n× r) obeservations.

The sum of squares for r set of replicates are calculated and added together to

create the pure error sum of squares (SSPE). Sum of square error SSError is the sum

of pure error sum of squares SSPE and sum of squares lack of fit SSLOF .

SSPE =
n∑

i

[
r∑

j

(yij − ȳi.)
2] (E.4)

SSLOF = SSE − SSPE (E.5)

where ȳi. = mean of r replicates of ith observed response.

Degree of Freedom

It depicts the number of independent variables needed to calculate the sum of squares

the response data. The degrees of freedom for each component of the model are:

DFRegression = t− 1

DFError = n− t

DFTotal = n− 1

DFA = a− 1

DFB = b− 1

DFAB = (a− 1)(b− 1) (E.6)

DFPE = n−m
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where n = number of observations, t = number of terms in the model, a, b = number

of levels of factors A and B, respectively. DOF of pure error DFPE is n - m, where n

= number of observations and m = the number of distinct x-values.

Mean Square

In an ANOVA, the term Mean Square refers to an estimate of the population variance

based on the variability among a given set of measures. The calculation for the mean

square for the model terms is:

MSTerm =
AdjSSTerm

DFTerm

(E.7)

F-value: F-value is the measurement of distance between individual distributions.

More the F-value, less is the P-value. F is a test to determine whether the interaction

and main effects are significant. The formula for the model terms is:

F =
MSTerm

MSError

(E.8)

Larger values of F support rejecting the null hypothesis that there is not a significant

effect

P-value: P-value is used in hypothesis tests helps to decide whether to reject

or fail to reject a null hypothesis. The p-value is the probability of obtaining a test

statistic that is at least as extreme as the actual calculated value, if the null hypothesis

is true. A commonly used cut-off value for the p-value is 0.10.

Model Adequacy Check

The adequacy of the underlying model can be checked from ANOVA as follows: It is

always necessary to examine the fitted model to ensure that it provides an adequate

approximation to the true system.

R2 (R-sq): Coefficient of determination; indicates how much variation in the re-

sponse is explained by the model. The higher the R2, the better the model fits your

data. The formula is:

R2 = 1−
SSError

SSTotal

(E.9)
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Another presentation of the formula is:

R2 =
SSRegression

SStotal

(E.10)

Adjusted R2 (R-sq adj): Adjusted R2 accounts for the number of factors in your

model. The formula is:

R2 = 1−
MS(Error)

SSTotal/DFTotal

(E.11)

Lack-of-fit test: This test checks the straight line fit of the model. To calculate

the pure error lack-of-fit test:

1. Calculate the pure error mean square:

MSPE =
SSPE

DFPE

2. Calculate the lack-of-fit mean square:

MSLOF =
SSLOF

DFSSE −DFPE

3. Calculate the F-statistic = MSLOF/MSPE and corresponding p-value.

Large F-values and small p-values suggest that the model is inadequate.
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