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ABSTRACT 

Out of the various seismic hazards, soil liquefaction is a major cause of both loss of life and 

damage to infrastructures and lifeline systems. Soil liquefaction phenomena have been 

noticed in many historical earthquakes after first large scale observations of damage caused 

by liquefaction in the 1964 Niigata, Japan and 1964 Alaska, USA, earthquakes. Due to 

difficulty in obtaining high quality undisturbed samples and cost involved therein, in-situ 

tests, standard penetration test (SPT) and cone penetration test (CPT), are being preferred 

by geotechnical engineers for liquefaction potential evaluation with limited use of other in-

situ tests like shear wave velocity tests and Baker penetration tests. The liquefaction 

evaluation in the deterministic framework is preferred by the geotechnical engineering 

professionals because of its simple mathematical approach with minimum requirement of 

data, time and effort. However, for important life line structures, there is a need of 

probabilistic and reliability methods for taking risk based design decisions. In recent years, 

soft computing techniques such as artificial neural network (ANN), support vector machine 

(SVM) and relevance vector machine (RVM) have been successfully implemented for 

evaluation liquefaction potential with better accuracy compared to available statistical 

methods. In the recent past, evolutionary soft computing  technique genetic programming 

(GP) based on Darwinian theory of natural selection is being used as an alternate soft 

computing technique.  

The objective of the present research is to develop deterministic, probabilistic and 

reliability-based models to evaluate the liquefaction potential of soil using multi-gene 

genetic programming (MGGP) based on post liquefaction SPT and CPT database.  

Here, the liquefaction potential is evaluated and expressed in terms of liquefaction field 

performance indicator, referred as a liquefaction index (LI) and factor of safety against the 

occurrence of liquefaction (Fs). Further, the developed LIp models have been used to 

develop both SPT and CPT-based CRR models. These developed CRR models in 

conjunction with the widely used CSR7.5 model, form the proposed MGGP-based 

deterministic methods. The efficiency of both the developed SPT and CPT-based 
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deterministic models has been compared with that of available statistical and ANN-based 

models on the basis of independent database. Two examples have been solved to show the 

use of developed deterministic methods to find out the extent of ground improvement 

works needs to be done in terms of N1,60  and  qc1N using the adopted factor of safety. 

The probabilistic evaluation of liquefaction potential has been performed where 

liquefaction potential is expressed in terms of probability of liquefaction (PL) and the  

degree of conservatism associated with developed deterministic models are quantified in 

terms of  PL. Using Bayesian theory of conditional probability the Fs is related with the PL 

through the developed mapping functions. The developed SPT and CPT-based probabilistic 

models have been compared in terms of the rate of successful prediction within different 

limits of PL, with that of the available statistical and ANN-based probabilistic models. Two 

examples, one from SPT and the other from CPT-based data, have been illustrated to show 

the use of developed probabilistic methods to take risk-based design decision for a site 

susceptible to liquefaction. 

Further reliability analysis following first order reliability method (FORM) has been 

carried out using high quality SPT and CPT database, which considers both model and 

parameter uncertainties. The uncertainties of input parameters were obtained from the 

database. But, a rigorous reliability analysis associated with the Bayesian mapping function 

approach was followed to estimate model uncertainty of the limit state, which has been 

represented by a lognormal random variable, and is characterized in terms of its two 

statistics, namely, the mean and the coefficient of variation. Four examples, two from SPT 

data (one liquefied and the other non-liquefied case) and the other two from CPT data (one 

liquefied and the other non-liquefied case), have been illustrated to show the procedure of 

reliability-based liquefaction potential evaluation in terms of notional probability of 

liquefaction (PL) considering the corresponding “true” model uncertainty as obtained for 

SPT and CPT-based limit state models in the analysis.  

The development of compact and comprehensive model equation using deterministic 

methods based on both SPT and CPT data will enable geotechnical professional to use it 
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with confidence and ease. The presentation of probabilistic methods in conjunction with 

deterministic factor of safety (Fs) value gives the measure of probability of liquefaction 

corresponding to particular Fs. The present works also illustrate the effect of model and 

parameter uncertainties while discussing the reliability analysis. Design charts have been 

presented and discussed with examples using both SPT and CPT data. 
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1.1 GENERAL 

Natural hazards like earthquake, tsunami, flood, cyclone and landslides pose severe threat to 

human life and its environment. There is a huge social and economic consequence 

immediately after the occurrence of a natural disaster. The adverse effects of disasters are 

much more in developing countries where the population is very large and the 

socioeconomic factors force the people to live in vulnerable areas. It is estimated, on average 

natural disaster claim 1000 lives and cause damage exceeding one billion US$ each week. 

Due to natural hazards in the last century around 30% of total casualties and 60% of the total 

property loss caused by the various major natural hazards around the world is due to 

earthquake only (www.em-dat.net/ngdc.noaa.gov). The natural hazards are no more 

considered as the curse of God, but can be mitigated with suitable identification, evaluation 

and analysis of the same.  

The advent of high speed digital computers, development of new computational algorithms 

and their application to new areas cutting across various disciplines in science and 

engineering went hand in hand. In recent years such efforts have increased phenomenally. In 

the following section an effort has been made briefly to trace the need for evaluation of 

seismic hazard and use of soft computing techniques for liquefaction susceptibility analysis 

to decide upon the course of studies to be taken up in the present thesis. 

1.2  RECENT TRENDS OF NATURAL HAZARDS 

A study was made to observe the recent trends in natural hazards to identify the need of the 

present research. Case histories of different major natural disasters, occurred during 1911-

2010 around the world as well as in India, are collected from international and national 

disaster databases such as en.wikipedia.org, em-dat.net, ngdc.noaa.gov, nidm.net, sarc-
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sdmc.nic.in etc. The conflicting data have been verified considering the authenticity of the 

database. The major natural hazards include earthquake, Tsunami, flood, Cyclone and 

landslide. The number of occurrences of the aforesaid natural disasters as reported, the 

casualties and the property loss caused due to these disasters during the last one century 

(1911-2010) are studied thoroughly and presented as follows.  

The number of occurrences of the major natural disasters in the last century is increasing 

continuously over the years, whereas there is a decrease in the total numbers of people died 

(Fig. 1.1). This shows the better preparedness, implementation of early warning systems and 

other preventive measures adopted gradually by the world community has got a positive 

impact on prevention of loss of life. However, the property damage caused by the major 

natural disasters has been increased during the same period of time (Fig. 1.1). This clearly 

indicates that the existing disaster mitigation measures are not adequate to protect the 

infrastructures completely from catastrophic nature of the hazards.  
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Fig.1.1 Major natural disasters in the world, during 1911-2010, reported causality and 
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Figs. 1.2a and 1.2b show the variation of human death and property losses, respectively due 

to different major natural hazards during the last century. It can be seen that the causality is 

the maximum due to flood but the property loss is maximized due to earthquake. However, 

when the data are presented in terms of quarter century for human death (Fig. 1.3) and 

property loss (Fig. 1.4), it was observed that in last 50 years the effect of the flood has been 

reduced in terms of human death and property loss. However, the human death and property 

damage due to earthquake has steadily increased over the same period. This may be due to 

the fact that the prediction models for flood forecasting have become effective in 

combination with warning system and society has become less prone to this disaster. In case 

of earthquake due to increase in urbanization and lack of an adequate mitigation system, its 

destructive effect has been increased.  
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Fig. 1.2 Distribution of (a) human death and (b) property loss due to different Major natural 
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Fig. 1.3 Number of people reported killed by major natural hazards in World during 

1911-2010, presented in terms of quarter century. 

 

Fig. 1.4 Estimated Damage (Million US$) caused by reported major Natural Disasters in 

World during 1911-2010, presented in terms of quarter century 
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1.3  SOIL LIQUEFACTION 

Seismic hazards can be categorized as ground shaking, structural hazards, liquefaction, 

landslides, retaining structure failures, lifeline hazards, tsunamis. Out of the above, 

seismically induced liquefaction of soil is a major cause of both loss of life and damage to 

infrastructures and lifeline systems. The soil liquefaction phenomenon was known in early 

stage of development of soil mechanics by Terzhagi and Peck (1948) to explain the 

phenomenon of sudden loss of strength in loose sand deposit. It was recognized as the main 

cause of slope failure in saturated sandy deposit. Though, soil liquefaction phenomena have 

been recognized since long, it was more comprehensively brought to the attention of 

engineers, seismologists and scientific community of the world by several devastating 

earthquakes around the world; Niigata and Alaska (1964),  Loma Prieta (1989), Kobe 

(1995),Kocaeli (1999) and Chi-Chi (1999) earthquakes (Baziar and Jafarian 2007). Since 

then, a numerous investigations on field and laboratory revealed that soil liquefaction may 

be better described as a disastrous failure phenomenon in which saturated soil loses strength 

due to increase in pore water pressure and reduction in effective stress under rapid loading 

and the failed soil acquires a degree of mobility sufficient to permit movement from meters 

to kilometers. Soil liquefaction can cause ground failure in the way of sand boils, major 

landslides, surface settlement, lateral spreading, lateral movement of bridge supports, 

settling and tilting of buildings, failure of waterfront structure and severe damage to the 

lifeline systems etc.  

Soil liquefaction can be classified into two groups as flow liquefaction and cyclic 

liquefaction. The flow liquefaction can occur when the shear stress required for static 

equilibrium of a soil is greater than the shear strength of soil in its liquefied state. The cyclic 

liquefaction occurs even if static shear stress is less than the shear strength of liquefied soil. 

Here, the deformations produced are driven by both cyclic and static shear stress. Generally 

the deformations develop incrementally during earthquake shaking. It can produce large 

permanent deformations during earthquake shaking. The cyclic liquefaction occurs under a 

much broader range of soil and site conditions than flow liquefaction. But, its effect can 

range from insignificant to highly damaging.  
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The liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction (i.e., the extent of ground failure 

caused by liquefaction) and study of response of various foundations in liquefied soil. These 

are the major concern of geotechnical engineers. In the present study, the focus is on 

liquefaction potential evaluation, which determines the likelihood of liquefaction triggering 

in a particular soil in a given earthquake. Evaluation of the liquefaction potential of a soil 

subjected to a given seismic loading is an important first step towards mitigating 

liquefaction-induced damage. Though, different approaches like cyclic strain-based, energy- 

based and cyclic stress-based approaches are in use, the stress based approach is the most 

widely used methods for evaluation of liquefaction potential of soil (Krammer, 1996). Thus, 

the focus of present study is on the evaluation of liquefaction potential on the basis of the 

cyclic stress-based approach.  

There are two types of cyclic stress based-approach available for assessing liquefaction 

potential. One is by means of laboratory testing (e.g., cyclic tri-axial test and cyclic simple 

shear test) of undisturbed samples, and the other involves the use of empirical relationships 

that relate observed field behavior with in-situ tests such as standard penetration test (SPT), 

cone penetration test (CPT), shear wave velocity measurement (Vs) and the Becker 

penetration test (BPT).  

The methods like finite element, finite difference, statistically-derived empirical methods 

based on back-analyses of field earthquake case histories are used for liquefaction analysis. 

Finite element and finite difference analyses are the most complex and accurate of the above 

methods. However, liquefied sediments are highly variable over short distances, developing 

a sufficiently accurate site model for a detailed numerical model requires extensive site 

characterization effort. Desired constitutive modeling of liquefiable soil is very difficult, 

even with considerable laboratory testing. Hence, in-situ tests along with the post 

liquefaction case histories-calibrated empirical relationships have been used widely around 

the world. The cyclic stress-based simplified methods based on in-situ test such as SPT, 

CPT, Vs measurements and BPT are commonly preferred by the geotechnical engineer to 

evaluate the liquefaction potential of soils throughout most part of world.  
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The stress-based simplified procedure is pioneered by Seed and Idriss (1971). The SPT-

based simplified method, developed by Seed and Idriss (1971), has been modified and 

improved through several revisions (Seed and Idriss 1982; Seed  et al. 1983;  Seed et al. 

1985; Youd et al. 2001) and remains the most widely used methods around the world. 

Robertson and Campanella (1985) first developed a CPT based method for evaluation of 

liquefaction potential, which is a conversion from the SPT based method using empirical 

correlation of SPT-CPT and follows the same stress-based approach of Seed and Idriss 

(1971). Thereafter, various CPT-based methods of soil liquefaction potential evaluation 

using statistical and regression analysis techniques have been developed (Seed and de Alba 

1986; Olsen 1988; Shibata and Teparaksa 1988; Mitchell and Tseng 1990; Stark and Olson 

1995; Suzuki et al. 1995; Olsen 1997; Robertson and Wride 1998; Youd et al. 2001). 

Several VS-based simplified methods have been developed (Dobry et al. 1981; Stokoe et al. 

1988; Tokimatsu and Uchida 1990; Robertson et al. 1992; Kayen et al. 1992; Lodge 1994; 

Andrus and Stokoe 2000; Juang et al. 2000a; Juang et al. 2001; Andrus et al. 2003) and are 

in use. But, very few BPT-based simplified methods (Harder and Seed 1986 and Youd et al. 

2001) have been developed and primarily for gravelly soil. 

For a given soil resistance index, such as the corrected SPT blow count, the boundary curve 

yields liquefaction resistance of a soil, which is usually expressed as the cyclic resistance 

ratio (CRR). Under a given seismic loading, which is usually expressed as the cyclic stress 

ratio (CSR) the liquefaction potential of a soil is evaluated in terms of a factor of safety (Fs), 

which is defined as the ratio of CRR to CSR. The approach of expressing liquefaction 

potential of soil in terms of Fs is referred to as a deterministic method and is very much 

preferred by geotechnical professionals due its simplicity for use. 

However, due to parameter and model uncertainties, Fs>1 does not always indicate non-

liquefaction and also does not necessarily guarantee zero chance of soil being liquefied. 

Similarly Fs≤1 may not always correspond to liquefaction and may not guarantee 100% 

chance of being liquefied (Juang et al. 2000b). The boundary surface that separates 

liquefaction and non-liquefaction cases in the deterministic methods is considered as a 

performance function or “limit state function” and is generally biased towards the 
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conservative side by encompassing most of the liquified cases. But, the degree of 

conservatism is not quantified (Juang et al. 2000b). Thus, attempts have been made by 

several researchers (Haldar and Tang 1979; Lioet al. 1988; Youd and Nobble 1997b; Toprak 

et al. 1999) to assess liquefaction potential in terms of probability of liquefaction (PL) using 

statistical or probabilistic approaches.  

The above in-situ test-based models are all data-driven as they are based on statistical 

analyses of the databases of post liquefaction case histories. The calculation of PL using 

these empirical models requires only the mean values of the input variables, whereas the 

uncertainty in the parameters and the model are excluded from the analysis. Thus, resulting 

PL might be subjected to error if the effect of parameter and model uncertainty is significant. 

These difficulties can be overcome by adopting reliability based probabilistic analysis of 

liquefaction, which considers both model and parameter uncertainties. In the framework of 

reliability analysis, the boundary curve separating liquefaction and non-liquefaction is a 

limit state. To conduct a thorough reliability analysis, knowledge of the uncertainties that are 

associated with both the input parameters and the limit state model is required. However, 

most of the existing simplified methods have not been fully examined for its model 

uncertainty, though the simplified methods tend to be conservative to some extent.  

Soft computing techniques such as; artificial neural network (ANN) (Goh, 1994; Juang et 

al., 2000; Hanna et al., 2007; Samui and Sitharam, 2011), support vector machine (SVM) 

(Pal, 2006; Goh and Goh, 2007; Samui and Sitharam, 2011) and relevance vector machine 

(RVM) (Samui, 2007) have been used to develop liquefaction prediction models based on an 

in-situ test database, which are found to be more efficient compared to statistical methods.  

However, the ANN has poor generalization, attributed to attainment of local minima during 

training and needs iterative learning steps to obtain better learning performances. The SVM 

has better generalization compared to ANN, but the parameters ‘C’ and insensitive loss 

function (ε) needs to be fine tuned by the user. Moreover, these techniques will not produce 

a comprehensive relationship between the inputs and output and are also called as ‘black 

box’ system.  
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In the recent past, genetic programming (GP) based on Darwinian theory of natural selection 

is being used as an alternate soft computing technique. The GP is defined as the next 

generation soft computing technique and also called as a ‘grey box’ model (Giustolisi et al., 

2007) in which the mathematical structure of the model can be derived, allowing further 

information of the system behaviour. The GP models have been applied to some difficult 

geotechnical engineering problems (Yang et al., 2004; Javadi et al., 2006; Rezania and 

Javadi, 2007;  Alavi et al., 2011; Gandomi and Alavi, 2012b; Muduli et al., 2013) with 

success. However, its use in liquefaction susceptibility assessment is very limited (Alavi  

and Gandomi, 2012; Gandomi and Alavi, 2012b; Gandomi and Alavi, 2013). The main 

advantage of GP and its variant multi-gene genetic programming (MGGP) over traditional 

statistical methods and other soft computing techniques is its ability to develop a compact 

and explicit prediction equation in terms of different model variables. 

1.4  MOTIVATION FOR THE RESEARCH 

From the above discussions, it can be seen that different approaches and methodologies have 

been used to develop predictive models for evaluation of liquefaction potential over the 

years by various researchers. But any improvement to the existing methods for assessing 

liquefaction potential is considered as a contribution to the field of geotechnical engineering 

in mitigating the liquefaction hazards. In recent years, artificial intelligence techniques such 

as ANN, SVM and RVM have been successfully implemented for evaluation liquefaction 

potential. Though, GP has been implemented to solve some complex geotechnical problems 

its use in liquefaction potential evaluation is very limited. Muduli et al. (2013) observed that 

the efficacy of GP-based predictive model for uplift capacity of suction caisson 

outperformed the other soft computing technique-based (ANN, SVM, RVM) prediction 

models in terms of different statistical performance criteria. Now a days, the performance-

based design concepts in earthquake engineering have been receiving wide acceptance. One 

of the vital features of performance-based design in the perspective of geotechnical 

earthquake engineering is an assessment of liquefaction potential in terms of the probability 

of liquefaction. Precise estimation of the probability of liquefaction requires information of 

both parameter and model uncertainties. The issue of model uncertainty has been addressed 
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in the research presented in this dissertation through rigorous genetic programming based-

reliability analyses, which is considered to be significant.  

1.5.  OBJECTIVES AND SCOPE OF THE RESEARCH 

The objective of the present research is to develop deterministic, probabilistic and 

reliability-based models to evaluate the liquefaction potential of soil using multi-gene 

genetic programming based on reliable post liquefaction SPT and CPT database.  

The scopes of the research are as follows: 

i. To develop deterministic models implementing MGGP on the basis of available post 

liquefaction SPT and CPT data base 

ii. To develop SPT and CPT-based probabilistic models using Bayesian mapping 

function approach to relate Fs to PL  

iii. To explore the use of first order reliability method (FORM) for assessing 

liquefaction potential of soil in terms of PL on the basis of available SPT and CPT 

database 

iv. To estimate model uncertainties of the developed MGGP-based models for 

liquefaction potential evaluation using rigorous reliability analysis 

v. To validate developed models by comparing the efficacy of the proposed models 

with available models on the basis of independent database 

1.6   ORGANIZATION OF THESIS 

This thesis consists of seven chapters and the chapters have been organized in following 

order. 

After a brief introduction, the recent trend in natural hazards, the motivation, the scope and 

objective of the research work are presented in Chapter 1, that sets the stage for the entire 

thesis.  
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A detailed literature review pertaining to liquefaction susceptibility analysis has been 

presented in Chapter 2. The various approaches of liquefaction triggering analysis, in-situ 

test-based methods used for liquefaction susceptibility evaluation, methods of analysis and 

analysis tools used are discussed in this chapter.  

Chapter 3 pertains to a detailed description of the methodology (analysis tool), genetic 

programming (GP), used for development of different models for evaluation of liquefaction 

potential. The description and implementation of the GP in general and its variant, multi-

gene genetic programming (MGGP), is described citing examples. 

In Chapter 4, on the basis of post liquefaction SPT and CPT database separate deterministic 

models are developed using the MGGP method.  The efficiencies of developed models are 

compared with the existing ANN and SVM models. The developed models are also 

compared with other methods using independent database. While describing GP as an 

alternate predictive tool, aspects like the GP parameters, different statistical measures to 

compare different methods are also discussed. 

The probabilistic evaluation of liquefaction susceptibility evaluation is discussed in Chapter 

5. This chapter covers implementation of Bayesian mapping function for probabilistic 

evaluation of liquefaction potential by using the developed SPT and CPT-based 

deterministic models of Chapter 4. In this chapter efficiency of the developed models are 

compared with the available SPT and CPT-based probabilistic models using independent 

database.  

Chapter 6 presents the use of the first order reliability method (FORM) for evaluating the 

probability of liquefaction in detail, and uncertainties of the developed SPT and CPT-based 

limit state models are estimated through rigorous reliability analysis. The robustness of the 

Bayesian mapping approach is also demonstrated in this chapter. In the absence of existing 

model for comparison, development of ‘best’ model using cross validation method is also 

discussed in this chapter. 
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In Chapter 7, generalized conclusions made from various studies in this thesis, are presented 

and the scope of the future work is indicated.  The general layout and method of liquefaction 

potential evaluation of soil using different in-situ test data and different methods are shown 

in a flow diagram (Fig. 1.5) for ready reference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5 A flow diagram showing the organization of the thesis 
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2.1  INTRODUCTION 

The liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction (i.e. the extent of ground failure 

caused by liquefaction) and study of response of various foundations in liquefied soil. These 

are the major concerns of geotechnical engineers. But, in the present study, the focus is on 

liquefaction potential evaluation, which determines the likelihood of liquefaction triggering 

in a particular soil in a given earthquake. This Chapter presents a review of the various 

liquefaction potential evaluation methods. All these available research works are presented 

in four different parts. Part I focuses on different approaches of liquefaction potential 

evaluation and Part II discusses about widely used stress-based approach in particular with 

emphasis on the in-situ test based methods. The available methods of analysis within the 

framework of stress-based approach such as deterministic method, probabilistic method and 

reliability method, which are in use for assessment of liquefaction potential are discussed in 

Part III. The various analysis tools used in model development for assessing liquefaction 

potential are described in the last part. 

2.2  LIQUEFACTION POTENTIAL EVALUATION 

Once a particular soil is found to be susceptible to liquefaction on the basis of various 

susceptibility criteria as mentioned in Kramer (1996) the next step in the liquefaction hazard 

evaluation process is the evaluation of liquefaction potential, which is the main topic of the 

present study. The major factors controlling the liquefaction potential of a saturated 

cohesion-less soil in level ground is the intensity and duration of earthquake shaking and the 

density and effective confining pressure of the soil. Several approaches are used for 

evaluating liquefaction potential, including (i) the energy-based approach, (ii) the cyclic 

Chapter 2 
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stress-based approach and the (iii) the cyclic strain-based approach. Each of the above three 

methods are described briefly in the following subsections.  

2.2.1  Energy-based approach 

The energy-based approach is theoretically very much appropriate for liquefaction potential 

evaluation, as the dissipated energy reflects both cyclic stress and strain amplitudes.When a 

dry soil is cyclically loaded it causes densification at the expense of energy as energy is 

required to rearrange the individual soil particles. For a saturated soil densification causes an 

increase in pore water pressure under un-drained condition as the amount of energy required 

to rearrange soil grains decreases due to decrease in contact forces. Using this principle 

Davis and Berrill (1982) developed energy based formulation, in which the dissipated 

seismic energy at a site is considered responsible for the progressive development of pore 

water pressure, and also presented an expression as a criterion for liquefaction. Berrill and 

Davis (1985) revised their earlier formulation and developed an expression for the pore 

pressure increase by taking into account a non-linear relationship between the pore pressure 

increase and dissipated energy, effect of natural attenuation and reassessing the magnitude-

total radiated energy relationship: 
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where Δu = increase in pore water pressure, σv
’
 = effective vertical stress at depth of interest, 

N1 = corrected standard penetration value of the site soil layer under investigation, A = 

material attenuation factor, M= earthquake magnitude on the Richter scale, r = distance of 

the site from the centre of energy release. Law et al. (1990) used the above energy principles 

and developed a criterion for liquefaction occurrence in sands as given below. 
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Several other investigators have established relationships between the pore pressure 

development and the dissipated energy during ground shaking (Figueroaet al. 1994; Ostadan 

et al. 1996). The liquefaction triggering can be formulated by comparing the calculated unit 

energy from the time series record of a design earthquake with the resistance to liquefaction 

in terms of energy based on in-situ soil properties (Lianget al. 1995; Dief 2000). The energy-

based methods, however, is less commonly used due to non-availability of quality data for 

calibration of these methods.  

2.2.2  Cyclic strain-based approach 

The cyclic strain-based approach to evaluate of liquefaction potential is based on 

experimental evidence that shows densification of dry sands is effectively controlled by 

cyclic strain rather than cyclic stress and there exist a threshold volumetric strain below, 

which densification does not occur. Since there are tendencies of sand to density when dry, 

this is directly related to its tendency to develop excess pore pressure when saturated. This 

shows that pore pressure generation is more fundamentally related to cyclic strains than 

cyclic stress. In this approach earthquake induced loading is expressed in terms cyclic 

strains. The time history of the cyclic shear strain can be estimated from the ground response 

analysis. As it is difficult to predict cyclic strain accurately, Dorby et al.(1982) developed a 

simplified method for estimating uniform cyclic strain (γcyc ) from the amplitude of the 

uniform cyclic stress as originally proposed by Seed and Idriss (1971).  Once γcyc is 

calculated it is compared with threshold shear strain (γt). If γcyc< γt, no pore water pressure 

will be generated and thus liquefaction cannot be initiated. If γcyc>γt, the occurrence of 

liquefaction is possible. Liquefaction potential can be evaluated in this approach  by 

comparing the earthquake induced cyclic loading in terms of the amplitude of a series of  an 

equivalent number of uniform strain cycles with liquefaction resistance, which is expressed 

in terms of the  cyclic strain amplitude required to initiate liquefaction in the same number 

of cycles. Liquefaction can be triggered at depths where loading exceeds the liquefaction 

resistance. Dorby et al.(1984) developed a torsional tri-axial test for measurement of 

liquefaction resistance by imposing cyclic strains under un-drained conditions on a 

cylindrical tri-axial specimen by strain controlled cyclic torsion. The developed cyclic shear 

strain induces excess pore pressure in the specimen. Unlike cyclic stress approach cyclic 



 

16 

 

strain approach is not commonly used as cyclic strain amplitudes  can to be predicted as 

accurately as cyclic stress amplitude and the cyclic strain-controlled testing equipment is 

less readily available than the cyclic stress-controlled testing equipment (Kramer and 

Elgamal, 2001). Thus, the focus of this chapter is on the evaluation of liquefaction potential 

using the cyclic stress-based methods.  

2.2.3  Cyclic stress-based approach 

In this approach the earthquake induced loading is expressed in terms of cyclic shear stress, 

which is compared with the liquefaction resistance of soil expressed also in terms of cyclic 

shear stress. The location at which the loading exceeds the resistance of the soil liquefaction 

is expected to occur. The earthquake loading can be estimated in two ways: (i) by a detailed 

ground response analysis (ii) by the simplified method as originally proposed by Seed and 

Idriss (1971) and its subsequent modifications. The simplified methods are widely used than 

the first method. The uniform cyclic shear stress amplitude due to earthquake loading for 

level (or gently sloping) ground can be evaluated as per the simplified model developed by 

Seed and Idriss (1971), which is presented below. 

dvav
r

g

a
 max65.0                                                           (2.3) 

where τav = the average equivalent uniform shear stress; σv = total vertical stress at the depth 

under consideration; amax = the peak horizontal ground surface acceleration, g = acceleration 

due to gravity and rd = the value of a stress reduction factor at the depth of interest that 

accounts for the flexibility of soil column (e.g., rd= 1 corresponds to the rigid body 

behavior) as illustrated in Fig. 2.1. and rd  can be presented as: 
 
 

r

d

d
r

max

max




 . The (τmax)d is 

the maximum shear stress on soil element considering it as deformable body whereas (τmax)r  

is the maximum shear stress on soil element considering it as a rigid body. The factor 0.65 is 

used to convert the peak cyclic shear stress ratio to a cyclic stress ratio that is representative 

of the most significant cycles over the full duration of loading. 
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Fig. 2.1 Schematic for determining maximum shear stress, max, and the stress 

reduction coefficient, rd (Seed and Idriss 1971). 

 

The liquefaction resistance of an element of soil depends on how close the initial state of soil 

is to the state corresponding to “failure” and also the nature of loading required to move the 

soil element from the initial state to failure state. Cyclic stress based approach is widely used 

and two types of methods under this approach are available for assessing liquefaction 

potential. One is by means of laboratory testing of undisturbed samples, and the other is 

based on empirical relationships that relate the field behavior with the in-situ tests. 

 

2.2.3.1  Laboratory test-based methods:  

Liquefaction resistance can be determined generally by two types of laboratory testing of 

undisturbed samples: (i) cyclic tri-axial test and (ii) cyclic simple shear test. In these tests 

liquefaction failures is defined as the point at which initial liquefaction is reached or at 

which some limiting cyclic strain amplitude is reached. Laboratory tests show that number 

of loading cycles required to produce liquefaction failure decreases with increase of shear 

stress amplitude and with the decrease of density of soil. Cyclic strength is normalized by 

initial effective overburden pressure to produce cyclic stress ratio (CSR). For cyclic simple 

shear test CSR is taken as the ratio of cyclic shear stress to the initial vertical effective stress 

i.e. (CSR)ss= τcyc/σ’v. For cyclic tri-axial test it is taken as the ratio of maximum cyclic shear 

stress to the initial effective confining pressure and can be given as (CSR)tx=σdc/2σ3c
’
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whereσdc is cyclic deviator stress and σ3c
’
 is the effective confining pressure. The CSR of the 

above two tests are not equivalent as they impose quite different loading. The CSR values of 

both tests are related as (CSR)ss=cr (CSR)tx, where cr is a correction factor. 

 

Seed and  Lee (1966) defined initial liquefaction as the point at which the increase in pore 

pressure is equal to the initial effective confining pressure from their study of  liquefaction 

of saturated sands during cyclic loading. Seed and Idriss (1967) developed an empirical 

procedure to evaluate the liquefaction potential of soil deposits by combining the 

development of pore water pressure obtained from laboratory results with the shear stress 

time history determined from the seismic response calculations. Seed et al. (1975) developed 

a model to determine the number of uniform stress cycles, Neq (at an amplitude of 65% of 

the peak cyclic shear stress i.e, τavg=0.65τmax) that would produce an increase in pore 

pressure equivalent to that of irregular time history by applying weighting procedure to a set 

of shear stress time histories from the recorded strong ground motions. Ishihara and Koseki 

(1989) showed that when the plasticity indices were below 10 the fines have little effect on 

liquefaction resistance. Chern and Chang (1995) developed a mathematical model for the 

evaluation of liquefaction characters of soil subjected to earthquake induced cyclic loading 

based on cyclic triaxial test results. Using the developed model and commonly used physical 

properties of soil the cyclic shear strength, number of cycles required to cause liquefaction 

and generation of excess pore water pressure can be evaluated without resorting to the 

complex laboratory cyclic shear test. Bray and Sancio (2006) confirmed through cyclic 

testing of a wide range of soils, which were found to liquefy in Adapazari during the 1999 

Kocaeli earthquake, that  these fine-grained soils are  susceptible to liquefaction. Gratchev et 

al. (2006) examined the validity of the plasticity index (PI) as a criterion for estimating the 

liquefaction potential of clayey soils under cyclic loading. They found that an increase in PI 

decreased the soil potential to liquefy, and soil with PI>15 seemed to be non-liquefiable, a 

finding that is in agreement with the results of other researchers.  

Though, evaluation of liquefaction potential based on laboratory test yields good results 

many engineers prefer to adopt the field performance correlation-based approach because of 

great difficulty and cost involved in obtaining undisturbed samples from cohesion-less soil 
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deposits. Here in this study focus is on in-situ test-based available methods for liquefaction 

potential evaluation. 

 

2.2.3.2  In-situ Test based methods: 

Soil liquefaction potential can be determined by using in-situ tests such as: (i) standard 

penetration test (SPT) (ii) cone penetration test (CPT) (iii) shear wave velocity (Vs) 

measurement (iv)Becker penetration test (BPT).  

 

Due to difficulties in obtaining high quality undisturbed samples and subsequent high 

quality laboratory testing of granular soils, use of in-situ tests along with case histories- 

calibrated empirical relationships are generally resorted by the geotechnical engineers for 

the assessment of liquefaction potential of soils. The simplified procedure pioneered by Seed 

and Idris (1971) mostly depend on a boundary curve, which presents a limit state and 

separates liquefaction cases from the non-liquefaction cases basing on field observations of 

soil in earthquakes at the sites where in situ data are available. The boundary is usually 

drawn conservatively such that all cases in which liquefaction has been observed lie above 

it. In this approach the CSR is usually used as earthquake loading parameters and the cyclic 

resistance ratio (CRR) is represented by in-situ test parameters that reflect the density and 

pore pressure generation properties of soil. Out of the various in-situ methods as mentioned 

above SPT and CPT-based methods are widely used for liquefaction susceptibility analysis 

of soil. 

 

SPT-based method 

It is the most widely used methods among the available in-situ test methods as discussed 

above for evaluation of resistance of soil against the occurrence of liquefaction. Whitman 

(1971) first proposed to use liquefaction case histories to characterize liquefaction resistance 

in terms of measured in situ test parameters. Seed and Idriss (1971) did a pioneer work in 

developing a simplified empirical model, using laboratory tests and post liquefaction field 

observations in earthquakes, which presents a limit state function separating liquefied cases 

from the non-liquefied cases on the basis of SPT data. Seed et al. (1983) extended their 
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previous work in developing a modified model in which used CSR (τav/σv
’
) instead of peak 

ground acceleration (amax) as a measure of seismic action and overburden pressure corrected 

SPT value (N1) instead of relative density (Dr) as the site parameter representing its 

resistance to liquefaction. However, it has been addressed by many researchers that the SPT 

has been conventionally conducted by using different kinds of hammers in different parts of 

the world, with different energy delivery systems, which also have varying degrees of 

efficiency. Moreover, the borehole diameters and the sampling techniques also differ 

significantly, which in turn cause a large variability in the measured values depending on the 

combinations of actual test procedures and equipment used. 

Seed et al. (1985) expressed the measured penetration resistance (Nm) in terms of N1,60 

where the driving energy in the drill rod is considered to be 60% of the free fall energy and 

correction for overburden effect is applied. Liquefaction resistance curves for sands with 

different fines contents are proposed, which is considered to be more reliable than the 

previous curves expressed in terms of mean grain size. Cyclic stress ratio, CSR, as proposed 

by Seed and Idriss (1971) and its subsequent modifications in Seed et. al.(1983), Seed et 

al.(1985), Youd et al. (2001), is defined as the average cyclic shear stress, τav, developed on 

the horizontal surface of soil layers due to vertically propagating shear waves normalized by 

the initial vertical effective stress, σ′v, to incorporate the increase in shear strength due to 

increase in effective stress and is presented as follows: 

d

v

v

v

av r
g

a
CSR

'

max

'
65.0









                                               (2.4) 

where σv
’
 = effective vertical stress at the depth under consideration. The value of CSR is 

corrected to an earthquake magnitude of 7.5, using the magnitude correction proposed by 

Seed et al. (1985). Seed et al.(1985) proposed a standard blow count N60as given below: 

 %60
60

ERNN
m

                                                      (2.5) 

where ER= percentage of the theoretical free-fall energy (i.e., estimated rod energy ratio 

expressed in percentage); and  Nm= measured  SPT blow count corresponding to the ER. The 
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value of N60is corrected to an effective stress of 100 kPa. Thus, the overburden stress and 

energy corrected SPT value, N1,60 is obtained by using the following relation: 

6060,1
NCN

N
                                                        (2.6) 

where CN is the effective stress correction factor and is calculated from the following 

relation: 

 
av

N
P

C
'2.1

2.2


                                                       (2.7) 

where, Pa = 1atm of pressure in the same units used for σ′v. Fig. 2.2 is a graph of calculating 

CSR and corresponding N1, 60 data from sites where liquefaction was or was not observed 

following past earthquakes with magnitudes of approximately 7.5. Liquefaction and non-

liquefaction data were separated by Cyclic Resistance Ratio (CRR) curves. Curves were 

developed for granular soils with the fines content of 5% or less, 15%, and 35%. Fig. 2.2 is 

only applicable for magnitude of 7.5 earthquakes.  

Juang et al. (2000) proposed an artificial neural network (ANN) -based CRR model based on 

SPT dataset and used Bayesian mapping function approach to relate factor of safety against 

the occurrence of liquefaction, Fs with probability of occurrence of liquefaction, PL. Youd et 

al. (2001) published a summary paper of 1996 and 1998, NCEER workshop in which the 

updates and augmentations to the original “simplified procedure” of Seed and Idriss (1971); 

Seed et al.1983; and Seed et al (1985) for evaluation of liquefaction potential, are 

recommended using SPT-based methods and is still followed as the current state of the art 

on the subject of liquefaction potential evaluation. Cetin (2000) and Cetin et al. (2004) 

proposed new correlations for assessment of liquefaction triggering in soil. 
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These correlations are developed on the basis of an expanded and reassessed post 

liquefaction SPT database after making screening of field data case histories on a 

quality/uncertainty basis, incorporating improved knowledge and understanding of factors 

affecting interpretation of SPT data, using improved understanding of factors affecting site 

specific earthquake ground motion, implementing improved methods for assessment of in 

situ CSR and using higher order probabilistic tools, Bayesian updating technique. The 

resulting correlations reduce the uncertainty associated with the liquefaction potential 

evaluation with respect to the existing models and also resolve controversial issues like 

magnitude-correlated duration weighting factors, adjustment of fines content and corrections 

for overburden stress in the context of assessment of CSR. Idriss and Boulanger (2004) and 

Idriss and Boulanger (2006) re-examined the existing semi-empirical procedures for 

evaluating the liquefaction potential of saturated cohesion-less soils during earthquakes and 

recommended revised correlations for use in practice. In this paper the authors discussed 

about the parameters, which contribute to the CSR formulation like stress reduction factor, 

earthquake magnitude scaling factor, overburden correction factor, and also the overburden 

Fig. 2.2  SPT –based limit state boundary curves for Magnitude 7.5 earthquakes with 

data from liquefaction case histories (Modified from Youd et al. 2001) 
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normalization factor for penetration resistances and presented the modified relations for 

these parameters. 

 

CPT-based method 

Although, the above SPT-based method remains an important tool for evaluating 

liquefaction resistance, it has some drawbacks, primarily due to the variable nature of the 

SPT (Robertson and Campanella, 1985; Skempton, 1986), nowadays the cone penetration 

test (CPT) is becoming more acceptable as it is consistent, repeatable and able to identify a 

continuous soil profile. Thus, CPT is being used as a valuable tool for assessing various soil 

properties, including liquefaction potential of soil. A typical CPT involves pushing a 

35.7mm diameter conical penetrometer into the ground at a  standard rate of 2cm/sec, while 

electronic transducers record (generally at 2cm or 5cm intervals) the force on the conical tip, 

the drag force on a short sleeve section behind the tip, pore water pressure behind the tip (or 

sometimes at other locations). The tip force is divided by the cross sectional area of the 

penetrometer to determine the tip resistance, qc and the sleeve drag force divided by the 

sleeve surface area to determine the sleeve friction, fs. The main advantages of the CPT are 

that it provides a continuous record of penetration resistance and is less vulnerable to 

operator error than the SPT. The main disadvantages of the CPT are the difficulty in 

penetrating layers that have gravels or very high penetration resistance and need to perform 

companion borings or soundings to obtain actual soil samples. 

Zhou (1980) first published liquefaction correlation directly based on case history CPT 

database of the 1978 Tangshan earthquake. He presented the critical value of cone 

penetration resistance separating liquefiable from non-liquefiable conditions to a depth of 

15m. Seed and Idriss (1981) as well as Douglas et al. (1981) proposed the use of correlations 

between the SPT and CPT to convert the available SPT-based charts for use with the CPT 

data. Robertson and Campanella (1985) developed a CPT- based method for evaluation of 

liquefaction potential, which is a conversion from SPT-based method using empirical 

correlation of SPT-CPT data and follows the same stress-based approach of Seed and Idriss 

(1971). This method has been revised and updated by many researchers (Seed and de-Alba 

1986; Shibata and Teparaksa 1988; Stark and Olson, 1995; Suzuki et al. 1995; Olsen 1997, 
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Robertson and Wride 1998).  Most of the CPT based simplified methods are presented in a 

chart that defines the limit state function (i.e., a boundary curve) separating the liquefied and 

non-liquefied cases in a plot of the cyclic resistance ratio (CRR) versus corrected CPT tip 

resistance (QC). These methods also need the knowledge of mean particle size (D50) and 

fines content (FC) which cannot be obtained from CPT measurements alone. For 

determining D50 and FC additional boreholes are required for collecting samples. Ishihara 

(1993) suggested that in case of liquefaction resistance evaluated by using CPT value for 

silty sands (>5% fines), the effects of fines could be estimated by adding some tip resistance 

increments to the measured tip resistance to obtain an equivalent clean sand tip resistance. 

For evaluating liquefaction potential only from CPT measurements, Olsen (1997) developed 

a CRR model using the parameters: qc, σ′v and friction ratio (Rf). Robertson and Wride 

(1998) proposed a separate method using soil behaviour type index, Ic, which was 

recommended for use by the 1998, National Center for Earthquake Engineering Research 

(NCEER) workshop and is also presented in the summary paper of Youd et al. (2001).Fig. 

2.3is used to determine the CRR for clean sands [i.e., fines content (FC) ≤5%] from CPT 

data. This chart (i.e., Fig. 2.3) is valid for the magnitude 7.5 earthquake only.  

As per Juang et al. (1999a), Robertson and Wride method and Olsen method  are found to be 

quite comparable. Juang et al. (2003) also developed an ANN-based simplified method 

using soil type index (Ic) for evaluation of CRR of soil using post liquefaction CPT database 

and also used Bayesian mapping function approach to relate Fs with PL. Moss (2003) and 

Moss et al.  (2005) presented a CPT-based probabilistic model for evaluation of liquefaction 

potential using reliability approach and a Bayesian updating technique. Juang et al. (2006) 

used first order reliability method (FORM) for probabilistic assessment of soil liquefaction 

potential. 
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Shear wave velocity (Vs)-based methods 

The use of shear wave velocity (Vs) as a in-situ test index of liquefaction resistance of soil is 

very well accepted because both Vs and CRR are similar, but not proportional, influenced by 

void ratio, effective confining stresses, stress history, and geologic age. The followings are 

the main advantages of using Vs for evaluation of liquefaction potential: (i) Vs measurements 

are possible in soils that are difficult to penetrate with SPT and CPT or difficult to extract 

undisturbed samples, such as sandy and  gravelly soils, and at sites where borings or 

soundings may not be permitted; (ii) Vs is a basic mechanical property of soil materials, 

directly related to small-strain shear modulus; and (iii) the small-strain shear modulus is a 

parameter required in analytical procedures for estimating dynamic soil response and soil-

structure interaction analyses. But, the following disadvantages are also there  when Vs  is 

used for liquefaction resistance evaluations: (i) seismic wave velocity measurements are 

made at small strains, whereas pore-water pressure build up and the liquefaction triggering 

are medium- to high-strain phenomena; (ii) seismic testing does not provide samples for 

Fig.2.3 Curve recommended for calculation for CRR from CPT data 

(Reproduced from Robertson and Wride 1998). 
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classification of soils and identification of non-liquefiable soft clay-rich soils; and (iii) thin, 

low Vs strata may not be detected if the measurement interval is too large. Therefore, it is 

preferred to drill sufficient boreholes and conduct in-situ tests (SPT or CPT) to detect and 

demarcate thin liquefiable strata, non-liquefiable clay-rich soils, and silty soils above the 

ground water table that might become liquefiable should the water table rise. Few VS-based 

simplified methods (Dobry et al. 1981; Stokoe et al. 1988; Tokimatsu and Uchida 1990; 

Robertson et al. 1992; Kayen et al. 1992; Lodge 1994; Andrus and Stokoe 1997; Andrus and 

Stokoe 2000; Juang et al. 2000a; Juang et al. 2001; Andrus et al. 2003) have been developed 

and are in use. But as Vs method is of recent origin and has not been verified with the 

historical post liquefaction database, Vs – based method is not that popular like SPT and 

CPT–based method.  

 

BPT-based methods 

Liquefaction resistance of non-gravelly soils has been assessed mostly through SPT and 

CPT, with rare Vs measurements. Several investigators have employed large-diameter 

penetrometers to overcome these difficulties; the Becker penetration test (BPT) in particular 

has become one of the more effective and widely used larger tools. The BPT was developed 

in Canada in the late 1950s and consists of a168-mm diameter, 3-m-long double-walled 

casing driven into the ground with a double-acting diesel-driven pile hammer. The hammer 

impacts are applied at the top of the casing and the penetration is continuous. The Becker 

penetration resistance is defined as the number of blows required to drive the casing through 

an increment of 300 mm.  The BPT has not been standardized, and several different types of 

equipment and procedures have been used. There is currently very few liquefaction sites 

from which BPT data have been obtained. Thus the BPT cannot be directly correlated with 

field behaviour, but rather through estimating equivalent SPT Nm-values from BPT data and 

then applying evaluation procedures based on the SPT. This indirect method introduces 

substantial additional uncertainty into the calculate CRR. But, very few BPT-based 

simplified methods (Harder and Seed 1986 and Youd et al. 2001) have been developed 

primarily as it is only suitable for gravelly soil. 
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2.3  METHODS OF ANALYSIS  

The basic analysis criterion in liquefaction potential evaluation is to compare the resistance 

(CRR) of soil with the loading (CSR) effects. These liquefaction triggering analyses are 

carried out using the following three methods based on the importance of the project. 

Deterministic method  

Probabilistic method 

Reliability-based probabilistic method 

A brief description and literature pertaining to above methods are presented separately.  

 

2.3.1  Deterministic method  

In deterministic approach, the Fs, which is defined as the ratio of CRR to CSR,  is calculated 

on the basis of prediction of single values of load (CSR) and resistance (CRR) as shown in 

the Fig. 2.4 without considering the uncertainty associated in prediction of loading and 

resistance. It is assumed that there is 100% probability of occurrence of calculated CRR and 

CSR. In deterministic approach, Fs>1 corresponds to non-liquefaction and Fs ≤ 1 

corresponds to liquefaction. Here in this approach, only single Fs based on past experience is 

used to account for all the uncertainties associated with the load and resistance parameters. 

Though, this method of analysis does not provide adequate information about the behaviour 

of variables causing liquefaction, is still very much preferred by the geotechnical 

professionals due to its simple mathematical approach with minimum requirement of data, 

time and effort.  
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Fig. 2.4 Shows deterministic approach in liquefaction potential evaluation (modified from 

Becker 1996). 

The most commonly used deterministic method to assess the liquefaction potential of a site 

is the “simplified procedure” originally developed by Seed and Idriss (1971) as discussed in 

earlier sections. This method has been modified and improved on several occasions for its 

use in different in-situ tests (Seed et al. 1983; Seed et al. 1985; Robertson and Campanella 

1985; Shibata and Teparaksa 1988; Olsen 1997; Robertson and Wride 1998). National 

Center for Earthquake Engineering Research (NCEER) workshop, 1998, published the 

reviews of in-situ test-based deterministic methods for evaluation of liquefaction potential of 

soil (Youd et al., 2001). Factor of safety (Fs) against the occurrence of liquefaction for any 

earthquake is given by the following relation (Youd et al. 2001): 

 MSFCSRKKCRRF
s 


0,1,5.7                                                    (2.8) 

where CSR= calculated cyclic stress ratio by using the Eq. (2.4); Kσ is the overburden 

correction factor and Kα is static shear stress correction factor; CRR7.5  is determined from 

Fig. 2.2; MSF is the magnitude scaling factor used to adjust the CRR value to magnitude 

smaller or larger than 7.5 and it is calculated by using different formulae (Seed and Idriss, 

1982; Ambraseys, 1988; Arango, 1996; Andrus and Stokoe, 1997; Youd and Noble, 
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1997a).The further design decisions for mitigation of liquefaction hazards are taken on the 

basis of evaluated Fs of a site. 

 

2.3.2 Probabilistic method 

 

Because of the parameter and model uncertainties, in liquefaction potential evaluation, Fs>1 

does not always correspond to non-liquefaction that it cannot guarantee a zero chance of 

occurrence of liquefaction and  similarly, Fs ≤ 1 does not always correspond to liquefaction. 

This can be explained considering the variability of CRR and CSR as shown in the Fig. 2.5. 

If Fs is evaluated considering the mean values of CRR and CSR then, Fs is greater than1.0. 

But, as per the distributions of CSR and CRR shown in the Fig. 2.5,there is some probability 

that the CRR will be less than CSR as indicated by the shaded region of the figure, which 

will yield Fs< 1, proving the previous prediction wrong and  a non-liquefied case may turn 

out to be a liquefied case.  Thus, in recent years a lot of work has been done to assess the 

liquefaction potential in terms of probability of liquefaction (PL). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Shows the possible distribution of CRR and CSR in liquefaction potential 

evaluation. 

Haldar and Tang (1979) carried out second moment statistical analyses of the SPT-based 

limit state introduced by Seed and Idriss (1971) to estimate the PL. Fardis and Veneziano 

(1981) used Bayesian regression technique to develop a model for evaluation of liquefaction 
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potential of sands using the results of 192 published cyclic simple shear tests taking into 

account the uncertainties caused by the effect of sample preparation, effect of system 

compliance, and stress non-uniformities. The developed model is only applicable to uniform 

and medium clean sands. Fardis and Veneziano (1982) presented a probabilistic method of 

liquefaction analysis of horizontally layered sand deposits subject to vertically propagating S 

waves. The method was able to predict well, the probability of liquefaction on the basis of 

post liquefaction case history of SPT data. Liao et al. (1988) developed logistic regression-

based models using post liquefaction field performance database to quantify the probability 

of liquefaction as a function of parameters such as distance to earthquake, peak horizontal 

acceleration at the ground surface, normalized CSR, depth of ground water table, total 

vertical stress, effective vertical stress, corrected field SPT N-value, fines content, clay 

content, gravel content, and grain size at 50% passing. Hwang and Lee (1991) used a 

liquefaction potential probability matrix and a fragility curve based on the moment 

magnitude to determine probability of no, minor, moderate, and major liquefaction. They 

considered the uncertainties in both site parameters and seismic parameters to determine 

various earthquake-site models. The Fourier Acceleration amplitude spectrum (non-linear 

site response analysis) was used to determine ground motions for each case. A factor of 

safety based on SPT N-values is calculated to evaluate a probability of liquefaction index, 

which measures the severity of liquefaction. The shear stresses calculated by this method are 

close to those obtained by using simplified stress-based method pioneered by Seed and 

Idriss (1971). Youd and Nobble (1997b) and Toprak et al. (1999) used logistic regression 

analyses of post liquefaction field performance data to develop empirical equations for 

assessing PL.  Juang et al. (2000b) proposed a Bayesian mapping function based on SPT 

dataset to relate Fs with PL. Juang et al. (2002a) found that the Bayesian mapping function 

approach is better than logistic regression approach for the site specific probability of 

liquefaction evaluation. The equation for determining liquefaction probability established 

through logistic regression has nothing to do with any deterministic methods whereas 

Bayesian mapping function preserves the characteristics of a particular deterministic method 

under consideration and provides an easy transition from Fs-based design to PL-based 

design, thus it is the preferred approach. Juang et al.(2002b) compared three CPT- based 
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simplified methods, the Robertson method, the Olsen method, and the Juang method on the 

basis of developed Bayesian mapping functions for the corresponding deterministic methods 

within probabilistic framework using the case histories obtained from the 1999, Chi-Chi, 

Taiwan earthquake. They showed that the Juang method is more accurate than the other two 

methods in predicting the liquefaction potential of soils. Juang et al. (2003) developed a 

simplified CPT-based method using the Bayesian mapping function approach to relate Fs 

with PL.  

 

2.3.3 Reliability-based Probabilistic method 

The probabilistic models as discussed above are all data-driven as they are based on 

statistical analyses of the databases of post liquefaction case histories. Calculation of PL 

using these empirical models requires only the mean values of the input variables, whereas 

the uncertainty in the parameters and the model are excluded from the analysis. Resulting PL 

might be subjected to error if the effect of the parameter and model uncertainty is 

significant. These difficulties can be overcome by adopting reliability based probabilistic 

analysis of liquefaction, which considers both model and parameter uncertainties. 

 

Juang et al. (1999b) used advanced first order second moment (AFOSM) method to find out 

the reliability index (β) for liquefied and non-liquefied cases of the database, and developed 

a relationship between β and PL using a Bayesian mapping function based on post 

liquefaction CPT database. They used ellipsoid method (Low and Tang 1997) to carry out 

the minimization analysis in reliability index calculation. For the reliability analysis authors 

assumed the coefficient of variation (COV) of the soil and seismic parameters. But, model 

uncertainty was not considered. Juang et al. (2000d) used AFOSM method with Monte 

Carlo simulation technique to find out minimum β for liquefied and non-liquefied cases, and 

also proposed a PL-Fs relationship based on a Bayesian mapping function approach without 

considering model uncertainty. Cetin (2000) and Cetin et al. (2004) developed SPT-based 

probabilistic models for evaluation of liquefaction potential using first order reliability 

method (FORM) and a Bayesian updating technique. Similarly, Moss (2003) and Moss et al.  

(2005) presented a CPT-based probabilistic model for evaluation of liquefaction potential 
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using a mean value first-order second moment (MVFOSM) reliability approach and a 

Bayesian updating technique. Hwang and Yang (2004) developed a model using MVFOSM 

reliability analysis to calculate the relation among the probability of liquefaction, the factor 

of safety and the reliability index. Juang et al. (2006) used first order reliability method 

(FORM) along with the Bayesian mapping function approach for probabilistic assessment of 

soil liquefaction potential and carried out extensive sensitivity analyses to characterize 

uncertainties associated with their developed CRR model.  

 

2.4  ANALYSIS TOOLS USED FOR LIQUEFACTION POTENTIAL 

 EVALUATION 

 

As discussed in the previous section, due to difficulty in developing analytical models for 

liquefaction susceptibility analysis of soil, because of complex constitutive model for 

liquefied soil, various empirical methods have been developed based on post-liquefaction 

database of laboratory and in-situ tests.  Later, soft computing techniques are found to have 

better efficiency in developing the empirical models compared to traditional regression 

techniques. A brief literature on the above techniques and its applications are presented 

below.  

 

2.4.1  Regression technique 

The statistical regression techniques have been used to develop different soil liquefaction 

evaluation.  Seed and Idriss (1971), Seed et al. (1984), Seed et al. (1985), Robertson and 

Campanella (1985),Shibata and Teparaksa (1988), Olsen (1997), Robertson and Wride 

(1998), Juang et al. (2000a), and Juang et al. (2003) used statistical regression techniques for 

development of their empirical models for evaluation of liquefaction potential using 

laboratory and in-situ test data.  

 

2.4.2  Soft computing techniques  

 The soft computing techniques such as artificial neural network (ANN), support vector 

machines (SVM), relevance vector machine (RVM) etc. have been used recently for 
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liquefaction susceptibility analysis with success and found to have better performance 

compared to the statistical method. A brief description on application of the above soft 

computing techniques to the liquefaction evaluation is presented below.  

 

2.4.2.1  Artificial neural network (ANN) 

The ANN is a problem solving algorithm modelled on the structure of the human brain. 

Neural network technology mimics the brain’s own problem solving process. The neurons 

are described as processing elements or nodes in mathematical model of the ANN. A 

network with an input vector of elements xl(l = 1, …, Ni) is transmitted through a connection 

that is multiplied by weight wjl to give the hidden unit zj(j = 1, …, Nh) 

 

                                             (2.9) 

 Where Nh is the number of hidden units and Ni is the number of input units. The hidden 

units consist of the weighted input and a bias (bj0). A bias is simply a weight with constant 

input of 1 that serves as a constant added to the weight. These inputs are passed through a 

layer of transfer function/activation function f which produces: 

 

                                                                   (2.10) 

The activation functions are designed to accommodate the nonlinearity in the input-output 

relationships. Some common activation functions used in ANN are: (a) stepped (b) linear (c) 

logistic sigmoid and (d) hyperbolic tangent sigmoid (Das 2013). The outputs from hidden 

units pass another layer of filters, and are fed into another activation function F to produce 

output y (k = 1, …, No):  

                 

                (2.11)    

 

This way it continues depending upon the number of hidden layers and finally the output 

layer. This multilayer (hidden layer and output layer) with the nonlinear transfer function 

gives rise to a highly nonlinear function with a number of unknown parameters in terms of 

weights. Fig. 2.6 shows the typical architecture of a three layer ANN. 
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Fig.2.6   Typical architecture of a neural network (Reproduced from Das 2013). 

 

Studies dealing with various engineering applications indicate that the ANN models are not 

significantly different from a number of statistical models. However, there has been little 

interaction between the neural network and statistical communities. In general, the problems 

dealt by ANNs are more complex, and as such, the dimensionality of the models tends to be 

much higher. The ‘learning’ or ‘training’ process in ANN in general, is a nonlinear 

optimization of an error function. The process is about optimizing the connection weight. 

This is equivalent to the parameter estimation phase in conventional statistical models.  

Steepest descent algorithm, which is known as gradient descent algorithm is mostly used in 

geotechnical engineering. The Levenberg-Marquardt (LM) algorithm is the other 

optimization used in the implementation of ANN in Geotechnical engineering.  

As the characteristic of traditional nonlinear programming based optimization method are 

the initial point dependent, the results obtained using back propagation algorithm are 

sensitive to initial conditions (weight vector) (Shahin et al. 2002). The use of global 

optimization algorithms like genetic algorithm (GA) are also in use in geotechnical 

engineering (Goh 2002). Goh (2002) used GA to find out the optimum spread of 

probabilistic network for liquefaction analysis. 
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Goh (1994) first investigated the feasibility of use of ANN to model the relationship 

between soil and seismic parameters, and the liquefaction potential. He used a simple back 

propagation neural-network algorithm. The “best” model consists of eight input variables: 

corrected SPT value (N1,60), fines content(FC), the mean grain size (D50), equivalent 

dynamic shear stress (τav/σ’v), σv, σ’v, Mw, and amax. From the parametric studies, the most 

important input parameters have been identified as N1, 60 and FC. The results obtained by the 

neural network model were compared with that of the statistical method of Seed et al. 

(1985). The liquefaction classification accuracy of the neural network model was found out 

to be 95% compared to 84% of Seed et al. (1985). Goh (1996) developed five neural 

network models to assess liquefaction potential using a post liquefaction CPT database. The 

sites were from sand and sandy silt deposits in Japan, China, United States and Romania 

representing the earthquakes that occurred during the period 1964-1983.The “best” model 

consists of five input variables: measured cone tip resistance qc, σ’v, D50, Mw, and amax. The 

efficiency of the developed model in terms of rate of successful prediction has been 

compared with that of the existing statistical method of Shibata and Teparaksa (1988), and 

found that the rate of successful prediction by both the models are equally good (i.e., 97%). 

From the parametric studies, the most important input parameter has been identified as qc.   

Najjar and Ali (1998) used ANN to characterize the soil liquefaction resistance using post 

liquefaction CPT data obtained from various earthquake sites around the world. They 

presented a liquefaction potential assessment chart, which can be used by geotechnical 

professionals for liquefaction potential evaluation. Juang et al. (1999a) developed two ANN-

based models to approximate the two existing CPT-based statistical methods: the Robertson 

method and the Olsen method using the same database. Based on the developed ANN 

models the rate of successful prediction of both liquefied and non-liquefied cases by 

Robertson method (89%) was found to be better than that of Olsen method (77%).  Juang 

and Chen (2000a) used Levenberg-Marquardt neural network (LMNN) to a large database of 

shear wave velocity measurements to establish a limit state boundary that separates the zone 

of liquefaction from the zone of non-liquefaction. Juang et al. (2000c) developed an ANN-

based CRR model using 225 cases of post liquefaction CPT data. The developed CPT-based 

limit state function forms the basis for the development of a reliability-based method for 
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assessing cyclic liquefaction potential. Goh (2002) used probabilistic neural network (PNN) 

to develop two separate models for evaluating seismic liquefaction potential based on CPT 

data and shear wave velocity data, respectively. It was observed that the overall rate of 

successful prediction of both liquefied and non-liquefied cases were 100% for CPT data and 

98% for shear velocity measurement data. Rahman and Wang (2002) developed fuzzy 

artificial neural network models for assessment of liquefaction potential of a site using SPT-

based post liquefaction case histories. The results from the developed models were 

compared with actual field observations and misclassified cases were identified. The models 

are found to have good predictive ability and can be used by the geotechnical professionals 

for preliminary evaluation of liquefaction potential of a site for which the input parameters 

are not well defined. Juang et al.(2003) used a large CPT-based database to develop an 

artificial neural network (LMNN) model for predicting the occurrence and non-occurrence 

of liquefaction in terms of a liquefaction field performance indicator (LI) based on derived 

soil (qc1N, Ic, σ’v ) and seismic parameters (CSR7.5). Further, using this ANN-based model a 

simplified CRR model was developed. The developed CRR model in conjunction with the 

existing CSR7.5 model forms the deterministic method for evaluation of liquefaction 

potential where factor of safety is used for taking design decisions. Su and Tak (2006) 

developed a back propagation ANN model to predict the CRR of sands using the data 

obtained from un-drained cyclic triaxial and cyclic simple shear tests. It was found that the 

predicted CRR values are mostly sensitive to the variations in relative density thus 

confirming the ability of the developed model to identify the dominant dependence of 

liquefaction susceptibility on soil density already known from field and laboratory-based 

experimental observations. Baziar and Jafarian (2007) developed an artificial neural network 

(ANN)-based model to establish a correlation between soil parameters and the strain energy 

required to trigger liquefaction in sands and silty sands using a relatively large database of 

the results of cyclic triaxial, torsional shear and simple shear test. Hanna et al. (2007) 

developed a general regression neural network (GRNN) model based on 620 cases of post 

liquefaction SPT data from earthquakes of Turkey and Taiwan, 1999 using  12 soil and 

seismic  input parameters: depth of soil layer (z), N1,60, FC, depth of ground water table (dw), 

σv, σ’v, threshold acceleration (at), CSR,shear wave velocity (Vs) , internal friction angle of 
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soil (ϕ
’
), Mw, and amax. From sensitivity analysis it was observed that N1,60 was the most 

important parameter and Vs is the least significant parameter. Lee and Hsiung (2009) 

developed an MLP neural network model based on reliable SPT-based case history data to 

classify the cases of liquefaction and non liquefaction. Excellent performance and good 

generalization were achieved with overall 96.6% success rate. Using this model sensitivity 

analyses was made and amax was found out to be the most significant parameter. Juang et al. 

(2006) developed an ANN-based reliability model using a post liquefaction CPT database. 

The model uncertainty of the developed limit state model was estimated. Samui and 

Sitharam (2011) developed a SPT-based ANN model for classification of liquefaction and 

non-liquefaction cases using post liquefaction database of 1999, Chi Chi Taiwan earthquake. 

The performance of the developed ANN model in terms of rate of successful prediction of 

liquefied cases and non-liquefied cases based on an independent database was found out to 

be 70.58%. 

 

2.4.2.2 Support vector machine (SVM) 

Support vector machine (SVM) is an emerging machine learning technology where 

prediction error and model complexity are simultaneously minimized. Unlike ANN 

modeling, which is based on biological inspired algorithm, the SVM is based on statistical 

learning theory.  The support vector machine is becoming more popular due to its high 

generalization ability (Vapnik 1998). However, application of SVM to liquefaction 

triggering analysis is very much limited (Pal 2006; Goh and Goh 2007; Samui and Sitharam 

2011), but it is found to have better generalization capability compared to ANN modeling. 

Support Vector Machine (SVM) has originated from the concept of statistical learning 

theory pioneered by Boser et al. (1992). For liquefaction analysis the SVM is used as a 

regression technique by introducing a ε-insensitive loss function. In this section, a brief 

introduction on SVM for regression problem is presented. More details can be found in 

literature (Boser et al. 1992; Cortes and Vapnik 1995). Considering a set of training 
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The ε-insensitive loss function can be described in the following way 

  0yεL   for   εyxf   otherwise      εyxfyεL                   (2.12) 

This defines an  tube so that if the predicted value is within the tube the loss is zero, while 

if the predicted point is outside the tube, the loss is equal to the absolute value of the 

deviation minus . The main aim in SVM is to find a function  xf  that gives a deviation of 

 from the actual output and at the same time is as flat as possible.  

The final equation of SVM can be written as (Vapnik, 1998; Cristianini and Shwae-Taylor 

2000; Smola and Scholkopf 2004). 
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where i, 
*
i

α are the Lagrangian Multipliers, nsv is the number of support vectors and 

K(xi.xj) is kernel function. Some common kernels have been used such as polynomial 

(homogeneous), polynomial (nonhomogeneous), radial basis function, Gaussian function, 

sigmoid etc. for non-linear cases.  

Pal (2006) developed SVM-based classification models using post liquefaction case 

histories based on reliable SPT and CPT database and observed that prediction accuracy was 

96% and 97% respectively. Goh and Goh (2007) developed SVM model using CPT 

database and found that the overall liquefaction classification accuracy was 98%. Samui and 

Sitharam (2011) developed SPT-based SVM model for classification of liquefaction and no-

liquefaction using post liquefaction database of 1999, Chi Chi Taiwan and found that the 

classification accuracy based on an independent dataset was 77.5%, which is better than that 

of their developed ANN model (70.58%). 
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2.4.2.3  Relevance vector machine (RVM) 

The relevance vector machine (RVM) is a revised SVM tool. It is introduced by Tipping 

(2001) and is a sparse linear model, which is based on Bayesian formulation of linear model. 

Samui (2007) developed RVM model using reliable CPT-based liquefaction case history 

dataset for liquefaction potential assessment and revealed that overall performance was good 

in prediction, more accurate than ANN model. Das and Samui (2008) examined the potential 

of RVM-based classification approach to assess the liquefaction potential from the reliable 

CPT data by developing two models. The liquefaction prediction accuracy for Model-I and 

Model- II was 100% and 97.14%, respectively. 

 

2.4.2.4  Genetic programming (GP) 

In the recent past, genetic programming (GP) based on Darwinian theory of natural selection 

is being used as an alternate soft computing technique. The GP is defined as the next 

generation soft computing technique. According to the classification of modeling techniques 

based on colours (Giustolisi et al. 2007), whose meaning is related to the three levels of 

prior information required, white-, black-, and grey-box models are in use, each of which 

can be explained as follows. Black-box models (e.g., ANN, SVM etc.) are data-driven or 

regressive systems in which the functional form of relationships between model variables is 

unknown and needs to be estimated. Black-box models depend on data to map the 

relationships between model inputs and corresponding outputs rather than to find a feasible 

structure of the model input-output relationships. But, grey-box models are conceptual 

systems in which the mathematical structure of the model can be derived, allowing further 

information of the system behavior to be resolved. White-box models are systems that are 

based on first principles (e.g., physical laws) where model variables and parameters are 

known and have physical meaning by which the underlying physical relationships of the 

system can be explained. GP and its variant multi-gene GP (MGGP) can be classified as 

grey box techniques. Fig. 2.7 is a pictorial representation of the above classification, where 

higher the physical knowledge used during the model development, the better the physical 

interpretation of the phenomenon that the model allows the user.  
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Fig. 2.7 Graphical classifications of soft computing modelling techniques (modified from 

Giustolisi et al. (2007) 

The models developed using GP and its variants have been applied to some difficult 

geotechnical engineering problems (Yang et al., 2004; Javadi et al. 2006; Rezania and Javadi 

2007; Alavi et al. 2011; Gandomi and Alavi 2012b) with success. The main advantage of GP 

and its variant multi-gene genetic programming (MGGP) over traditional statistical methods 

and other soft computing techniques is its ability to develop a compact and explicit 

prediction equation in terms of different model variables. However, its use in liquefaction 

susceptibility assessment is very limited (Gandomi and Alavi, 2012b). Gandomi and Alavi 

(2012b) developed a liquefaction classification model using post liquefaction CPT database. 

The overall classification accuracy of their model is 91.6%, which is considered to be very 

good. But, the performance of the developed model has not been compared with that of the 

existing models based on other soft computing techniques. The developed model has not 

also been tested with independent dataset other than testing data.  
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2.5  CONCLUSION 

The following conclusions are drawn from the above literature study. 

i. Though conceptually the energy-based approach is more appropriate for 

liquefaction potential evaluation, it is less commonly used than the cyclic 

stress-based approach due to non-availability of quality data for calibration of 

the developed models. 

ii. The cyclic strain-based approach is less commonly used than the cyclic 

stress-based approach as the cyclic strain amplitudes cannot be predicted as 

accurately as cyclic stress amplitudes, and due to unavailability of equipment 

for cyclic strain-controlled testing.  

iii. Though, evaluation of liquefaction potential based on laboratory test yields 

good results many geotechnical engineers prefer to adopt the field 

performance correlation-based approach because of great difficulty and cost 

involved in obtaining high quality undisturbed samples from cohesionless 

soil deposits. 

iv. Out of the various in-situ methods SPT and CPT-based methods are widely 

used for liquefaction susceptibility analysis of soil due to availability of 

sufficient post liquefaction database of these methods. 

v. Though, deterministic method of liquefaction potential is preferred by the 

geotechnical professionals but, probabilistic evaluation is very much required 

in actual practice, which helps in taking risk-based design decisions. 

vi. For making an unbiased evaluation of liquefaction potential, the uncertainty 

of the limit state boundary surface is to be determined for which rigorous 

reliability analyses are required.  

vii. Though, various soft computing techniques such as ANN, SVM, and RVM 

are in use and performing well in predicting the liquefaction susceptibility of 

soil the ANN has poor generalization. The SVM has better generalization 

compared to ANN, but the parameters ‘C’ and insensitive loss function (ε) 

needs to be fine tuned by the user. Moreover, these techniques will not 
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produce a comprehensive relationship between the inputs and output and are 

also called as ‘black box’ system.  
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3.1  INTRODUCTION 

In the present study, multi-gene genetic programming (MGGP), the variant of GP is used to 

develop different prediction models for evaluation of liquefaction potential of soil within the 

framework of deterministic, probabilistic and reliability-based approach. As discussed in 

previous chapter, GP and its variant, MGGP have been used in limited geotechnical 

engineering problems and are not very common to geotechnical engineering professionals, 

hence, a detailed description is presented as follows. 

3.2 GENETIC PROGRAMMING 

Genetic Programming is a pattern recognition technique where the model is developed on 

the basis of adaptive learning over a number of cases of provided data, developed by Koza 

(1992). It mimics biological evolution of living organisms and makes use of the principles of 

genetic algorithms (GA). In traditional regression analysis the user has to specify the 

structure of the model, whereas in GP, both structure and the parameters of the mathematical 

model are evolved automatically. It provides a solution in the form of a tree structure or in 

the form of a compact equation using the given dataset. A brief description about GP is 

presented here for the completeness, but the details can be found in Koza (1992).  

GP model is composed of nodes, which resembles a tree structure and thus, it is also known 

as  GP tree. Nodes are the elements either from a functional set or terminal set. A functional 

set may include arithmetic operators (+, ×, ÷, or -), mathematical functions (sin (.), cos (.), 

tanh (.) or ln(.)), Boolean operators (AND, OR, NOT, etc.), logical expressions (IF, or 

THEN) or any other  suitable  functions defined by the user. The terminal set includes 

variables (like x1, x2, x3, etc.) or constants (like 3, 5, 6, 9, etc.) or both. The functions and 

Chapter 3 

GENETIC PROGRAMMING AS AN ANALYSIS TOOL 
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terminals are randomly chosen to form a GP tree with a root node and the branches 

extending from each function nodes to end in terminal nodes as shown in Fig.3.1.The GP 

tree as shown in Fig. 3.1 presents a mathematical expression: tan (6.5x2/x1). Here the 

variables: x1, x2, and constant: 6.5 constitute the terminal nodes and the arithmetic operators: 

×, / and the mathematical function: tan, constitute the functional nodes. The starting 

functional node (tan) from which the branching of other nodes begins with the GP tree is 

called the root node. 

Initially a set of GP trees, as per user defined population size, is randomly generated using 

various functions and terminals assigned by the user. The fitness criterion is calculated by 

the objective function and it determines the quality of each individual in the population 

competing with the rest. At each generation a new population is created by selecting 

individuals as per the merit of their fitness from the initial population and then, 

implementing various evolutionary mechanisms like reproduction, crossover and mutation 

to the functions and terminals of the selected GP trees. The new population then replaces the 

existing population. This process is iterated until the termination criterion, which can be 

either a threshold fitness value or maximum number of generations, is satisfied. The best GP 

model, based on its fitness value that appeared in any generation, is selected as the result of 

genetic programming. A brief description of various evolutionary mechanisms in GP is 

presented below. 

 

3.2.1 Initial Population 

In the first step of genetic programming a number of GP trees are generated by randomly 

selecting user defined functions and terminals. These GP trees form the initial population. 

 

3.2.2 Reproduction 

In the second stage of the GP, a proportion of the initial population is selected and copied to 

the next generation and this procedure is called reproduction. The reproduction mechanism 

does not produce any new population. The generated GP trees of initial population are 

evaluated based on the fitness function and less than average populations are replaced by 

copies of the above average population thereby keeping the population size constant. So the 
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GP tree with high fitness enter the mating pool and the remaining ones die off. There are 

different operators of reproduction like: (1) Tournament selection, (2) Roulette wheel 

selection (3) Ranking selection.  The number of the population taking part in the selection 

procedure is guided by a probability constant Ps.  

 
 

6.5  x2 

  X   x1 

/ 

tan 

 

Root node 

Link 

 
Function nodes

 

Terminal nodes 
 

Fig.3.1 Typical GP tree representing a mathematical expression:  tan (6.5x2/x1). 

 

3.2.2.1 Tournament selection 

In this selection procedure, tournaments are played between a specific numbers of GP trees. 

The tournament size represents the number of GP trees taking part in the tournament. The 

winner survives and gets more number of copies and the looser does not go to the next 

generation.   
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3.2.2.2 Roulette Wheel Selection 

Parents are selected according to their fitness. The better the GP trees are, the more chances 

they have, to be selected. This procedure is explained taking example of a Roulette wheel 

where all the GP trees in the population are placed. The size of the section in the Roulette 

wheel is proportional to the value of the fitness function of every GP tree - the bigger the 

value is, the larger the section is as shown in Fig. 2.2. A marble is thrown in the roulette 

wheel and the GP tree where it stops is selected. Clearly, the GP tree with bigger fitness 

value will be selected more times.  

This process can be described by the following steps.  

Step 1. Calculate the sum of all GP tree fitness in population; sum =S.  

Step 2.Generate random number r from the interval (0, S) 

Step 3.Go through the population and sum the fitness from 0 to sum Si. When the sum Si is  

 greater then r, stop and return the i
th 

GP tree.  

Step 4. Repeat step 2 and 3  

Of course, the step 1 is performed only once for each population.  

 

GP Tree 4
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GP Tree 3
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GP Tree 2
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GP Tree 1

80%

 

 

 

Fig.3.2 Roulette wheel showing the area of fitness of different GP trees 
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3.2.2.3 Ranking selection 

The Roulette wheel selection will have problems when there are big differences between the 

fitness values. For example, if the best GP tree fitness is 90% of the sum of all fitness then 

the other GP trees will have very few chances to be selected. Ranking selection ranks the 

population first depending upon their respective fitness, and then every GP trees is assigned 

revised fitness value determined by this ranking. The worst will have the fitness 1, the 

second worst 2 etc. and the best will have fitness N (number of GP trees in population). Fig. 

3.3 shows an example of the ranking selection procedure in which the initial fitness of the 

GP trees are 80, 12, 6 and 2 respectively. So the ranks assigned to the GP trees are 4, 3, 2 

and 1 respectively. So the average ranking value is 2.5 and the revised fitness of the GP trees 

are obtained by dividing the ranks by the average ranking value (2.5) as 1.6, 1.2, 0.8 and 0.4 

corresponding to 80, 12, 6 and 2, respectively.  The final GP tree as per ranking selection is 

shown in Fig. 3.3.  Now all the GP trees have a chance to be selected. However this method 

can lead to slower convergence, because the best GP tree does not differ so much from other 

ones.  
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GP Tree 1
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Fig.3.3 The area of fitness of different GP trees as per ranking selection 
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3.2.3 Crossover 

In crossover operation, two GP trees (Parent1 and Parent2) are selected randomly from the 

population in the mating pool (Koza 1992). One node from each tree is selected randomly, 

the sub-trees under the selected nodes are swapped and two offspring (Offspring1 and 

Offspring 2) are generated. An example of crossover operation is shown in Fig. 3.4. 

 

3.2.4 Mutation  

In mutation operation a GP tree is first selected randomly from the population in the mating 

pool and any node of the tree is replaced by any other node from the same function or 

terminal set. A function node can replace only a function node and the same principle is 

applicable for the terminal nodes. An example of mutation operation is shown in Fig. 3.5 in 

which the functional node, “/” of the GP tree representing a mathematical expression:  

tan(x1/x2) is replaced by another functional node, “×” and thus, a new GP tree representing a 

mathematical expression: tan(x1×x2) is produced. 
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 Fig. 3.4 A typical crossover operation in GP 

 



 

49 

 

Fig. 3.6 shows a typical flow diagram of MGGP procedure in which Ngen is the number of 

generation, Ps, Pc, and Pm are the probability of reproduction, crossover and mutation 

respectively. 
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Fig. 3.5 A typical mutation operation in GP 

3.3  MULTI-GENE GENETIC PROGRAMMING 

MGGP is a variant of GP and is designed to develop an empirical mathematical model, 

which is a weighted linear combination of a number of GP trees. It is also referred to as 

symbolic regression.  Each tree represents lower order non-linear transformations of input 

variables and is called a ‘gene’. “Multi-gene” refers to the linear combination of these genes. 

Fig. 3.6 shows a typical flow diagram of MGGP procedure in which Ngen is the number of 

generation, Ps, Pc, and Pm are the probability of reproduction, crossover and mutation, 

respectively. 

Fig. 3.7 shows an example of MGGP model where the output is represented as a linear 

combination of two genes (Gene-1 and Gene- 2) that are developed using four input 

variables (x1, x2, x3, x4).Each gene is a nonlinear model as it contains nonlinear terms  (sin(.) 

/log(.)). The linear coefficients (weights) of Gene-1 and Gene-2 (c1 and c2) and the bias (c0) 

of the model are obtained from the training data using statistical regression analysis 

(ordinary least square method).  

In MGGP procedure, initial population is generated by creating individuals that contain 

randomly evolved genes from the user defined functions and variables. In addition to the 
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standard GP evolution mechanisms as discussed earlier there are some special MGGP 

crossover mechanisms (Searson et al. 2010), which allow the exchange of genes between 

individuals and brief descriptions of them are presented as follows. 

 

3.3.1   Two point high-level crossover 

Two point high level crossover operation allows swapping of genes between two parent 

individuals in the mating pool and can be explained through an example, where the first 

parent individual is having four genes [G1, G2, G3, G4] and the second contains three genes 

[G5, G6, G7] with  Gmax as 5. Two crossover points are selected randomly for each parent and 

genes enclosed by crossover points are denoted by {...}. 

[G1, {G2, G3, G4}], [G5, G6,{G7}] 

The genes enclosed by the crossover points are swapped and thus, two offspring individuals 

are created as shown below. 

[G1, {G7}], [G5, G6, {G2, G3, G4}] 

If swapping of genes results in an individual containing more genes than Gmax then genes are 

randomly selected and removed until the individual contains Gmax genes. 

 

3.3.2 Low-level crossover 

Standard GP sub-tree crossover is referred to as low level crossover. In this operation, first a 

gene is randomly selected from each of the parent individuals (any two) in the mating pool 

and then swapping of sub-trees under arbitrarily selected nodes of each gene is performed. 

The resulting trees replace the parent trees in the otherwise unchanged parent individuals, 

which go on to produce offspring individuals for the next generation without any deletion of 

genes.  

Similarly, MGGP also provides six methods of mutation for genes (Gandomi and Alavi 

2012a): (i) sub-tree mutation, (ii) mutation of constants using additive Gaussian 

perturbation, (iii) substitution of a randomly selected input node with another randomly 
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selected input node, (iv) substitute a randomly selected constant with another randomly 

generated constant (v) setting of randomly selected constant to zero, (vi) setting a randomly 

selected constant one.  

 

Fig. 3.6 A typical flow diagram for a multi-gene genetic programming procedure  
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Fig. 3.7   An example of typical multi-gene GP model. 

The probabilities of the each of the re-combinative processes (evolutionary mechanisms) can 

be set by the users for achieving the best MGGP model. These processes are grouped into 

categories referred to as events. Therefore, the probability of crossover, mutation and the 

direct reproduction event are to be specified by the user in such a way that the sum of these 

probabilities is 1.0. The probabilities of the event subtypes can also be specified by the user. 

For example, once the probability of crossover event is selected, it is possible to define the 

probabilities of a two point high-level crossover and low-level crossover keeping in mind 

that the sum of these event subtype probabilities must be equal to one. 

Various controlling parameters such as function set, population size, number of generations, 

maximum number of genes allowed in an individual (Gmax), maximum tree depth (dmax), 

tournament size, probabilities of crossover event, high level crossover, low level crossover, 

mutation events, sub-tree mutation, replacing input terminal with another random terminal, 

Gaussian perturbation of randomly selected constant, reproduction, and ephemeral random 

constants are involved in MGGP predictive algorithm. The generalization capability of the 

model to be developed by MGGP is affected by selection of these controlling parameters. 
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These parameters are selected based on some previously suggested values (Searson et al. 

2010) and after following a trial and error approach for the problem under consideration. 

The function set (arithmetic operators, mathematical functions etc.) is selected by the user 

on the basis of physical knowledge of the system to be analysed. The number of programs or 

individuals in the population is fixed by the population size. The number of generation is the 

number of times the algorithm is used before the run terminates. The proper population size 

and number of generations often depend on the complexity of the problems. A fairly large 

number of population and generations are tested to find the best model. The increase in Gmax 

and dmax value increases the fitness value of training data whereas the fitness value of testing 

data decreases, which is due to the over-fitting to the training data. The generalisation 

capability of the developed model decreases. Thus, in the MGGP-model development it is 

important to make a tradeoff between accuracy and complexity in terms Gmax and dmax. 

There are optimum values of Gmax and dmax, which produce a relatively compact model 

(Searson et al. 2010). The success of MGGP algorithm usually increases by using optimal 

values above of controlling parameters.  

 In the MGGP procedure a number of potential models are evolved at random and each 

model is trained and tested using the training and testing data respectively. The fitness of 

each model is determined by minimizing the root mean square error (RMSE) between the 

predicted and actual value of the output variable (LI) as the objective function (f), 

 

n

LILI

fRMSE

n

i

p




 1

2

                                                        (3.1) 

where n = number of cases in the fitness group. If the errors calculated by using Eq. (4.5) for 

all the models in the existing population do not satisfy the termination criteria, the evolution 

of a new generation of the population continues till the best model is developed as discussed 

earlier. 
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The general form of the MGGP based model of the present study can be presented as: 

   0
1

∑ ,, ccXfXFLI
n

i
ip 


                                                  (3.2) 

where  LIp = predicted value of liquefaction field performance indicator (LI), F = the 

function created by the MGGP  referred herein as liquefaction index function, X = vector of 

input; ci is a constant,  f  are the functions defined by the user, n is the number of terms of 

target expression and c0= bias. The MGGP as per Searson et al. (2010) is used and the 

present models are developed and implemented using Matlab (Math Work Inc. 2005).  

As discussed in previous chapter, though GP has been used in some limited application in 

geotechnical engineering, there are only two applications of MGGP in geotechnical 

engineering (Gandomi and Alavi 2012a, 2012b).  In this study an initial attempt was made to 

compare the efficiency of the MGGP with ANN, SVM (Muduli et al. 2013).  The efficacy of 

MGGP-based predictive model for uplift capacity of suction caisson outperformed the other 

soft computing technique-based (ANN, SVM, RVM) prediction models in terms of different 

statistical performance criteria.  

3.4     CONCLUSIONS 

The MGGP, a variant of GP is a biologically inspired algorithm with different operators 

like, reproduction, crossover and mutation. Unlike ANN and SVM, it has the advantage of 

obtaining a comprehensive expression for the output from the inputs for further analysis. A 

trade off is to be made between the complexity and accuracy of the method. There is a very 

limited application of MGGP in Geotechnical engineering. Based on preliminary study on 

application of MGGP to uplift capacity of suction pile, it has been observed that the 

performance of MGGP model is better than ANN, SVM and RVM models. Hence, in this 

thesis an attempt has been made in the following chapters to develop models for evaluation 

of liquefaction potential within the frame work of deterministic, probabilistic and reliability-

based methods using MGGP.  
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4.1 INTRODUCTION 

Though, different approaches like cyclic stress-based, cyclic strain-based, and energy-based 

approach are in use, the stress-based approach is the most widely used method for evaluation 

of liquefaction potential of soil (Krammer 1996). The SPT is the most widely used in situ 

test-based soil exploration method for liquefaction potential evaluation but, it has some 

drawbacks, primarily due to the variable nature of the SPT used around the world. Now a 

days cone penetration test (CPT) is also becoming more acceptable as it is consistent, 

repeatable and able to identify continuous soil profile.  

Soft computing techniques  such as artificial neural network (ANN), support vector machine 

(SVM), and relevance vector machine (RVM) have been used to develop liquefaction 

prediction models based on in-situ test database, which are found to be more efficient 

compared to statistical methods. The advantages and disadvantages of the above techniques 

have already been discussed in Chapter-I.  

In the present study, an attempt has been made using MGGP to present a deterministic 

model based on post liquefaction SPT database (Hwang and Yang 2001). A limit state 

function that separates liquefied cases from the non-liquefied cases and also represents 

cyclic resistance ratio (CRR) of soil is developed by using MGGP. The developed CRR 

model in conjunction with widely used CSR7.5 (Juang et al. 2000) is used to evaluate 

liquefaction potential in terms of Fs. Using an independent SPT dataset, a comparative study 

among the present MGGP model, available ANN and statistical models is also made in 

terms of rate of successful prediction of liquefaction and non-liquefaction cases based on Fs. 

Chapter 4 

DETERMINISTIC MODELS FOR EVALUATION OF 

LIQUEFACTION POTENTIAL 
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Similarly, an attempt has also been made to predict the liquefaction potential of soil in terms 

of liquefaction field performance indicator referred as liquefaction index (LI)   (Juang et al. 

2003) on the basis of a large database consisting of  post liquefaction CPT measurements 

and field manifestations using MGGP. Two different MGGP models (Model-I and Model-

II) are developed for predicting occurrence and non-occurrence of liquefaction taking 

different combination of input parameters.  The parameters of Model-I are kept same as that 

of  ANN model (Juang et al. 2003) to compare the efficacy of both the models in terms of 

rate of successful prediction of liquefaction and non- liquefaction. These parameters are 

further used for development of cyclic resistance ratio (CRR) model using MGGP similar to 

the most widely used statistical model of Robertson and Wride (1998) and ANN-based CRR 

model of Juang et al. (2003). In Model-II, the primary soil and seismic parameters of the 

CPT database are used to present a simple model that can easily be used by the practicing 

engineers. Goh and Goh (2007) have used the same parameters of the above database (Juang 

et al. 2003) for prediction of liquefaction susceptibility using SVM. Hence, liquefaction 

classification accuracies of the developed Model -II are compared with that of the SVM 

model of Goh and Goh (2007). Performances of the proposed MGGP based models (Model-

I and Model-II) in terms of rates of successful prediction of liquefaction and non-

liquefaction as per predicted LI values are also verified using an independent CPT database 

(Juang et al. 2006).The developed MGGP-based CRR model in conjunction with widely 

used CSR7.5 (Juang et al. 2000) is used to evaluate liquefaction potential in terms of Fs. 

Similarly as mentioned above, using an independent CPT dataset (Juang et al. 2006), a 

comparative study among the present MGGP model, available ANN and statistical models is 

also made in terms of rate of successful prediction of liquefaction and non-liquefaction cases 

based on Fs. 

4.2  DEVELOPMENT OF SPT-BASED DETERMINISTIC MODEL 

The general form of MGGP-based model for LIp based on SPT database can be presented 

here as: 

  
0

1

∑ ,, ccXfXFLI
n

i
ip


         (4.1) 
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where,  LIp= predicted value of liquefaction index (LI),  F = the function created by the 

MGGP process referred herein as liquefaction index function, X = vector of input variables =  

{N1,60 , CSR7.5} where, N1,60 =  corrected blow count. Here in the present study, the general 

formulation of CSR as presented by Seed and Idriss (1971) and  by Youd et al. (2001) is 

adopted with minor modification, i.e., CSR is adjusted to the benchmark earthquake 

(moment magnitude, Mw , of 7.5) by using the  parameter, magnitude scaling factor (MSF).  
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                                       (4.2) 

where amax= peak horizontal ground surface acceleration, g = acceleration due to gravity, rd 

= shear stress reduction factor which is determined as per Youd et al. (2001):  

,z..r
d

00765001  for  z ≤ 9.15m 

,0267.0174.1 z  for 9.15 ≤  z ≤ 23m           (4.3) 

where z is depth under consideration. 

The adopted MSF equation is presented below according to Youd et al. (2001). 
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ci is a constant,  f  is MGGP function defined by the user, n is the number of terms of model 

equation and c0 is the bias. It is pertinent to mention here that Juang et al. (2000) also 

followed the above CSR formulation for development of their ANN-based CRR model. The 

MGGP as per Searson et al. (2010) is used and the present model is developed and 

implemented using Matlab (MathWorks Inc. 2005). 

 



 

58 

 

4.2.1  Database and preprocessing 

In the present study, SPT-based dataset of post liquefaction case histories of Chi Chi, 

Taiwan, earthquake, 1999 is used (Hwang and Yang 2001). It contains information about 

soil and seismic parameters: measured SPT blow count (Nm), corrected blow count (N1,60), 

fines content (FC),clay size content (CC), mean grain size (D50), peak horizontal ground 

surface acceleration (amax) and CSR7.5, which are obtained from the SPT measurements at 

different  sites of Taiwan along with field performance observations (LI). The soil in these 

cases ranges from sand to silty sand to sandy and clayey silt. The depths at which SPT 

measurements are reported in the database range from 1.3m -20.3m. The Nm values range 

from 01 to 50 and the N1,60 values range from 0.93 to 49.29. The FC and CC values are in 

the range of 4-65% and 0-23% respectively. The amax and CSR7.5values are in the range of 

[0.055, 1g] and [0.041, 0.822] respectively. The moment magnitude, Mw of the 1999, Chi 

Chi, Taiwan, earthquake was 7.6. The database consists of total 288 cases, 164 out of them 

are liquefied cases and other 124 are non-liquefied cases. Out of the above data 202 cases 

are randomly selected for training and remaining 86 data are used for testing the developed 

model. Samui and Sitharam (2011) also used the above databases with the above number of 

training and testing data while developing ANN and SVM-based liquefaction classification 

models.  Here, in the MGGP approach normalization or scaling of the data is not required 

which is an advantage over ANN and SVM approach. 

 

4.2.2 Results and discussion 

In this section, the result of deterministic model based on post liquefaction SPT database is 

presented. A limit state function that separates liquefied cases from the non-liquefied cases 

and also represents cyclic resistance ratio (CRR) of soil is also developed by using MGGP. 

The developed CRR model in conjunction with widely used CSR7.5 (Juang et al. 2000) is 

used to evaluate liquefaction potential in terms of Fs and the results are presented in 

following sequence.  
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4.2.2.1 MGGP Model for Liquefaction Index 

The MGGP-based model for liquefaction index is developed taking LI = 1 for liquefaction 

and LI = 0 for non-liquefaction field manifestations. In the MGGP procedure a number of 

potential models are evolved at random and each model is trained and tested using the 

training and testing cases respectively. The fitness of each model is determined by 

minimizing the RMSE between the predicted and actual value of the output variable (LI) as 

the objective function or the error function (Ef), 

 

n
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n
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2

                                                        (4.5) 

where n = number of cases in the fitness group. If the errors calculated by using Eq. (4.5) for 

all the models in the existing population do not satisfy the termination criteria, the evolution 

of a new generation of the population continues till the best model is developed as discussed 

earlier in Chapter-III. 

 The selection of controlling parameters (as mentioned in Chapter-III) affects the efficacy of 

the model generated by the MGGP. Thus, optimum values of the parameters are selected for 

the development of LIp model based on some previously suggested values (Searson 2009; 

Searson et al. 2010) and after following a trial and error approach and are presented in Table 

4.1. 

Using the optimum values of controlling parameters as given in the Table 4.1 different LIp 

models were developed running the MGGP code several times.  These models are analyzed 

with respect to physical interpretation of LIp as well as their rate of successful prediction 

capability and the “best” LIp model was selected. The developed model is presented below as 

Eq. (4.6). 
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Table 4.1 Controlling parameter settings for MGGP-based LIp model development. 

 

The developed LIp model has been characterized by the Figs. 4.1, 4.2, 4.3. Fig. 4.1 shows the 

variation of the best fitness (log values) and mean fitness with with number of generations. 

It can be seen from this figure, the fitness values decrease with increasing the number of 

generations and its decrements. The best fitness was found at the 143
rd

 generation (fitness 

=0.2466).The statistical significance of each of the four genes of the developed model is 

shown in Fig. 4.2. As shown in the Fig. 4.2a the weight (coefficient) of the the gene-2 is 

higher than the other genes and bias. The degree of significance of each gene using p values 

is also shown in Fig. 4.2b. It can be noted that the contribution of all the genes  towards 

prediction of LI(i.e., LIp) is very high except the Gene-2, as their corresponding p values are 

Parameters Ranges Resolution Selected 

optimum 

values 

Population size 1000-4000 200 3000 

Number of generations 100-300 50 150 

Maximum number of genes (Gmax) 2-4 1 3 

Maximum tree depth (dmax) 2-5 1 4 

Tournament size 2-8 1 7 

Reproduction probability 0.01-0.07 0.02 0.05 

Crossover probability 0.75-0.9 0.05 0.85 

Mutation probability 0.05-0.15 0.05 0.1 

High level cross over probability 0.1-0.4 0.1 0.2 

Low level cross over probability 0.5-0.9 0.1 0.8 

Sub-tree mutation 0.6-0.9 0.05 0.85 

Substituting input terminal with 

another random terminal 

0.05-0.2 0.05 0.05 

Gaussian perturbation of randomly 

selected constant 

0.05-0.2 0.05 0.1 

Ephemeral random constant    [-10 10] - - 
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very low, whereas the Gene-2 contribution is the least. Fig. 4.3 presents the population of 

evolved models in terms of their complexity (number of nodes) and fitness value.The 

developed models that perform relatively well with respect to the “best” model and are much 

less complex (having less number of nodes) than the “best” model in the population can be 

identified in this figure as green circles. The “best” model in the population is highlighted 

with a red circle.  
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Fig. 4.1 Variation of the best and mean fitness with the number of generation. 

 

Fig.4.2 Statistical properties of the evolved MGGP-based LIp model (on training data) 
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Fig 4.3  Population of evolved models in terms of their complexity and fitness. 

Table 4.2 Comparison of results of developed MGGP based LIp model with ANN and SVM 

models of Samui and Sitharam (2011) 

 

A prediction in terms of LIp is said to be successful if it agrees with field manifestation (LI) 

of the database.  As per Table 4.2, the successful prediction rates of liquefied and non-

liquefied cases are comparable, 94.55% for training and 94.19% for testing data, showing 

good generalization of the developed model.  The overall success rate of the trained model 

in predicting liquefaction and non-liquefaction cases is 94.44%.Thus, it is evident from the 

results that the proposed MGGP based LIp model is able to establish the complex 

relationship between the liquefaction index and its main contributing factors in terms of a 

model equation with a very high accuracy. In comparison, the classification accuracy of the 

ANN model was 94.55% and 88.37% for training and testing data respectively for the above 

Model Input 

variables 
Performance in terms of successful prediction (%) 

MGGP ANN SVM MGGP ANN SVM 

Training data Testing data 

LI N1,60, CSR7.5 94.55 94.55 96.04 94.19 88.37 94.19 
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database as presented by Samui and Sitharam (2011). Similarly, the liquefaction 

classification accuracies for SVM model (Samui and Sitharam 2011) for training and testing 

dataset are 96.04% and 94.19% respectively. The efficiency of different models should be 

compared in terms of testing data than that with training data (Das and Basudhar 2008). 

Thus, it is found that MGGP-based prediction model (Eq.4.6) is better than the ANN-base 

model and at par with SVM-based model on the basis of rate of successful prediction of 

liquefaction and non-liquefaction cases. This LIp model is further used to develop the 

proposed CRR model. 

 

4.2.2.2 Generation of artificial points on the limit state curve 

As discussed earlier artificial data points on the boundary curve are generated using the Eq. 

(4.6) to approximate a function, referred as limit state function that will separate liquefied 

cases from the non–liquefied ones, following a simple and robust search technique 

developed by Juang et al. (2000). The technique is explained conceptually with the help of 

Fig.4.4. Let a liquefied case, ‘L’ target output LI=1) of the database as shown in the Fig.4.4 

can be brought to the boundary or limit state curve [i.e. when the case becomes just non-

liquefied as per the evaluation by the Eq. (4.6)] if CSR7.5 is allowed to decrease (path P) or 

N1,60 is allowed to increase (path Q). Further, for a non-liquefied case, ‘NL’ (target output LI 

= 0) of the database, the search for a point on the boundary curve involves an increase in 

CSR7.5 (path T) or a decrease in N1,60 (path S) and the desired point is obtained when the case 

just becomes liquefied as adjudged by Eq. (4.6). Fig.4.5 shows the detailed flowchart of this 

search technique for path ‘P’ and ‘T’.  A two dimensional (N1,60, CSR7.5) data point on the 

unknown boundary curve is obtained from each successful search.In this study, the limit 

state is defined as the ‘limiting’ CSR7.5, which a soil can resist without occurrence of 

liquefaction and beyond which the soil will liquefy. Thus, for a particular soil at it’s in- situ 

conditions, this limit state specifies its CRR value. A total of 115 two dimensional artificial 

data points (CRR, N1,60), which are located on the boundary curve are generated using the 

developed model (Eq. 4.6) and the technique explained in Figs. 4.4 and 4.5. These data 

points are used to approximate the limit state function in the form of CRR=f(N1,60) as per 

MGGP and is presented below. 
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Fig. 4.4 Conceptual model for search technique for artificial data points on limit state curve 

(Modified from Juang et al. 2000) 

 

4.2.2.3 MGGP Model for CRR 

The multi-gene GP is also used for development of CRR model using 115 artificially 

generated data points, out of which 81 data points are selected randomly for training and rest 

34 numbers for testing the developed model. The optimum values of the controlling 

parameters are obtained as explained above using the range of values given in Table 

4.1.Several CRR models were obtained with the optimum values of controlling parameters 

by running the MGGP program several times. Then, the developed models were analyzed 

with respect to physical interpretation of CRR of soil and after careful consideration of 

various alternatives the following expression (Eq. 4.7) was found to be most suitable 

prediction model for CRR.  

                     (4.7)     6090
0430

19400770043061300080

601

601601601
.

N

.
N.cos.N.cos.N.CRR

,

,,,




 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

Table 4.3. Statistical performances of developed MGGP based CRR model 

 

Data R R
2 

E AAE MAE RMSE 

Training (81) 1.000 1.000 0.999 0.010 0.019 0.011 

Testing (34) 0.999 0.999 0.999 0.011 0.019 0.013 

Fig.4.5 Search algorithm for data point on limit state curve 
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CRR=CSR7.5= f [N1, 60] 

 

Optimize (LIp-0.5) using solver 

option of MSExcel to a value of 

0.0keeping N1, 60 constant and 

changing (decreasing) CSR7.5with 

constraint that CSR7.5 value remain 

within upper and lower limit as per 

the database.  

Optimize (0.5-LIp) using solver 

option of MSExcel to a value 

of0.0keeping N1, 60 constant 

andchanging (increasing) 

CSR7.5with constraint that CSR7.5 

value remain within upper and 

lower limit as per the database  

 

Liquefied? 

 

Input data of a case history of the database 

[N1, 60, CSR7.5] 

 

Calculation of LIp = f [N1, 60, CSR7.5] 

using MGGP model (Eq. 4.6) 

 



 

66 

 

The statistical performances of the developed CRR model can be evaluated in terms of the 

correlation coefficient (R), coefficient of determination (R
2
) (Rezania and Javadi 2007), 

Nash-Sutcliff coefficient of efficiency (E) (Das and Basudhar 2008), RMSE, average 

absolute error (AAE) and maximum absolute error (MAE). These coefficients are defined as: 
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where n is the number of case histories and Xt and Xp are the measured (i.e., target) and 

predicted values ( of CRR in this case), respectively. 

Thus, statistical performances: R, R
2
, E, RMSE, AAE and MAE of the developed CRR model 

as presented in Table 4.3 for training and testing data are comparable showing good 

generalization capability of the CRR model. The performance of the above MGGP-based 

CRR model as shown in Fig. 4.6 clearly indicates that Eq. (4.7) is a very good 



 

67 

 

approximation of the limit state function. The liquefied and non-liquefied cases of the 

present data base are shown in Fig.4.7 along with the developed MGGP based limit state 

curve separating them. 
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Fig. 4.6 Performance of proposed MGGP based CRR model 

Factor of safety against occurrence of liquefaction (Fs) can be presented by Eq. (4.14) 

5.7
CSRCRRF

s
                                              (4.14) 

The performance of the proposed CRR model is also evaluated by calculating the Fs for each 

case of the present database as discussed earlier. In present study, Fs ≤ 1 refers to occurrence 

of liquefaction and Fs>1 refers to non-liquefaction. A prediction (liquefaction or non-

liquefaction) is considered to be successful if it agrees with the field manifestation as 

recorded in the database. The success rate in predicting liquefied cases is 99.39% and that 

for non-liquefied case is 85.48% and the overall success rate is found to be 93.40%.  The 

low rate of success for non-liquefied case may be due to following. In 1999, Chi-Chi 
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earthquake, at some locations, surface manifestations of liquefaction (sand boiling, 

settlement etc.) was not detected, though occurrence of liquefaction at some depth below 

ground level was observed. This was due to existence of thin capping layers above the 

liquefied layer. Therefore, at these locations occurrence of liquefaction at some depth below 

ground level cannot be excluded due to lack of liquefaction surface observations (Ku et al. 

2004). Due to lack of surface manifestations as explained above the actual liquefied cases 

might have been considered as non-liquefied cases in the database.   

 

 

Fig.4.7 The developed MGGP based limit state curve separates liquefied cases from non-

liquefied cases of the database of Hwang et al. (2001). 

 

The CRR model (Eq. 4.7) in conjunction with the model for CSR7.5 (Eq.4.2) forms proposed 

MGGP-based deterministic method, which can be used for evaluation of liquefaction 

potential in terms of Fs. Generally a higher factor of safety (1.1-1.5) may be recommended 

for design purpose to account for the possible uncertainties associated with the model and 

model parameters, as there is no scope of uncertainty analysis in deterministic approach. 

Selection of proper factor of safety depends on both technical and non-technical factors like 
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importance and economics of the project under consideration. The present MGGP method 

can also be used to assess the soil strength in terms of CRR or N1, 60 at a design level of 

seismic loading with a given Fs. This is explained by considering the example as presented 

by Juang et al. (2000). Let a sandy soil layer is having following properties: depth, z = 5.8m, 

vertical effective stress of soil at the depth studied, σ
’
v=84kPa, vertical total stress of soil at 

that depth, σv= 111 kPa, fines content, FC=2%. The structure to be built at the site is to be 

designed for an earthquake of moment magnitude, Mw =7 and peak horizontal ground 

surface acceleration, amax= 0.2g. In this case the CSR7.5 is found out to be 0.14 as per 

equation presented by Eq.(4.2). If the Fs considered for the said project is 1.14, then 

minimum required CRR value as per the proposed deterministic method is 0.16.  For a 

ground improvement project, the required N1, 60value corresponding to the obtained CRR 

value of 0.16 is found out to be 14.63 as per the Eq. (4.7). Thus, after ground improvement 

the N1, 60value should reach a value greater than 14.63.  

 

4.2.2.4 Comparison with existing methods using independent database 

It is always required to compare the efficacy of a newly developed method with that of the 

existing methods. In the present study the developed MGGP-based method is compared with 

the statistical and ANN-based methods as per Juang et al. (2000) in terms of rate of 

successful prediction of liquefied and non-liquefied cases.  It is pertinent to mention here 

that the statistical method, which is presented in Juang et al. (2000), is an updated version of 

Seed et al. (1985) method (Youd and Idriss 1997). An independent post liquefaction SPT- 

based database (Idriss and Boulanger 2010) consisting of total 230 cases, out of which 115 

cases having surface evidence of liquefaction, 112 cases of non-liquefaction and 3 marginal 

cases   provides a good basis for comparison of efficacy of the above  methods.  

The Fs of the total 227 cases of the database (neglecting 3 marginal cases) are calculated 

using ANN-based method (Juang et al. 2000), statistical method (Juang et al.2000) and the 

proposed MGGP-based method following Eq. (4.7) and Eq. (4.2). The assessed Fs is used to 

judge the correctness of a prediction on the basis of field manifestations as explained earlier. 

As per the comparison presented in Table 4.4 the rate of successful prediction by the 

proposed MGGP-based method (87%) is better than that of the ANN-based method (82%) 
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and comparable with that of statistical method (89%) for liquefied cases. In case of non-

liquefied cases the prediction accuracy of the present MGGP-based method (88%) is better 

than statistical method (78%) and close to ANN-based method (90%). The over all 

successful prediction rate of the present MGGP method (87%) is better than ANN (86%) 

and statistical (84%) methods. Though, all the three methods are comparable it can be 

observed that ANN-based method predicts non-liquefied (90%) cases better than liquefied 

(82%) cases and the statistical method predicts liquefied (89%) cases better than non-

liquefied (78%) cases but, the prediction accuracy of the present MGGP method is  equally 

good for both liquefied (87%) and non-liquefied (88%) cases. Thus, it can be noted that the 

present MGGP method is equally efficient in predicting liquefied and non-liquefied cases 

compared to ANN and statistical methods. 

Table 4.4 Comparison of results of proposed MGGP-based model with Statistical and ANN-

based models   using an independent database of Idriss and Boulanger (2010). 

 

 

It is pertinent to mention here that the proposed MGGP-based CRR model is a function of 

N1, 60whereas the CRR models of ANN and statistical methods (Juang et al. 2000) are 

function of clean sand equivalence of the overburden stress corrected SPT blow count, 

N1,60,cs., the parameter which takes care of  the effect of fines content on the resistance of 

soil. The ANN and the statistical methods are applicable for N1,60,cs<35 and N1,60,cs<30 

respectively, otherwise the soil is considered to be too clay rich to liquefy (Juang et al. 

2000). It is found that in the present database 27 cases are having N1,60,cs value more than or  

Criterion 

(Fs) 

Statistical method 

(Juang et al. 2000) 

ANN based method 

(Juang et al. 2000) 

MGGP based method  

(Present study) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

Liquefied 

cases(115) 

102 89 94 82 99 87 

Non-liquefied  

cases(112) 

87 78 100 90 98 88 

Total 

cases(227) 

189 84 194 86 197 87 
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equal to 35 and for 31 cases N1,60,cs>= 30. For all these cases Fs is considered to be greater 

than 1 for the comparative study presented in Table 4.4. Even though, the proposed MGGP 

based CRR model does not incorporate fines content (FC) parameter, it predicts well all the 

31 cases of database  having N1,60,cs>= 30 as non-liquefied cases. This shows the 

compactness as well as the effectiveness of the developed MGGP-based CRR model 

compared to the available ANN and statistical methods.  

4.3. DEVELOPMENT OF CPT-BASED DETERMINISTIC MODEL 

The general form of MGGP-based LIp model on the basis of CPT database can be presented 

as: 

  
0

1

∑ ,, ccXfXFLI
n

i
ip



                                                  (4.15) 

where LIp = predicted value of LI, F= the function created by the MGGP  referred herein as 

liquefaction index function.  

For Model-I: X = vector of input variables = {qc1N, Ic, σv
’
, CSR7.5}, qc1N = normalized cone 

tip resistance and is defined as per Juang et al. (2003): 
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where v’= vertical effective stress of soil at the depth studied in kPa, qc= measured cone tip 

resistance in kPa, Ic = soil type index and is defined as per Juang etal. (2003): 

                  (4.17) 

where F=normalized friction ratio and defined as: 
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where  fs = sleeve friction in kPa, σv = vertical total stress of soil at  the depth studied in 

kPa,CSR7.5 is the cyclic stress ratio adjusted to the benchmark earthquake of  moment 

magnitude (Mw) of 7.5 as presented by Eq. (4.2). 

Similarly, for Model-II, X== {qc, Rf,  σv, σv’, amax/g, Mw} (Goh and Goh 2007),  

Rf is the friction ratio in percent, and defined as: 

                (4.19) 

ci is a constant,  f  is the function defined by the user and n is the number of terms of target 

expression and c0= bias. Here, also the MGGP as per Searson et al. (2010)is used and the 

present model is developed and implemented using Matlab (Math Works Inc. 2005). 

 

4.3.1 Database and Reprocessing 

The database (Juang et al. 2003) used in this study consists of total 226 cases, 133 out of 

them are liquefied cases and other 93 are non-liquefied cases. It contains information about 

soil and seismic parameters ( qc,  Rf,  σv, σ’v, amax, Mw),which are derived from the CPT 

measurements at over 52 sites along with field performance observations (LI) of  six 

different earthquakes. The soil in these cases ranges from sand to silty sand to silt mixtures 

(sandy and clayey silt). The depths at which CPT measurements are reported in the database 

range from 1.4m to 14.1m. The qc values range from 0.5 to 25.0 MPa and the Rf values 

range from 0.05 to 5.24%. The σv and σ
’
v values are in the range of 26.6-274.0 kPa and 22.5-

215.2 kPa respectively. The amax and Mw values are in the range of [0.08, 0.8g] and [6, 7.6] 

respectively. It is pertinent to mention here that the pore pressure parameter was not 

available in the present database and thus, σ’v is derived using hydrostatic pressure. The 

present database consists of the above parameters incorporating all necessary corrections to 

the raw CPT data.  Out of the mentioned 226 data, 151 data are selected for training and 

remaining 75 data are used for testing the developed model as per Juang et al. (2003). Goh 

and Goh (2007) also used this database with same number of training and testing data for 

developing the SVM- based liquefaction classification model. Here in the MGGP approach 

  100
csf

qfR



 

73 

 

normalization or scaling of the data is not required, which is an advantage over ANN and 

SVM approach. 

 

4.3.2 Results and discussion  

In this section, the result of deterministic model based on post liquefaction CPT database is 

presented. A limit state function that separates liquefied cases from the non-liquefied cases 

and also represents cyclic resistance ratio (CRR) of soil is also developed by using MGGP. 

The developed CRR model in conjunction with widely used CSR7.5 (Juang et al. 2000) is 

used to evaluate liquefaction potential in terms of Fs and the results are presented in 

following sequence.  

 

4.3.2.1 MGGP Model for Liquefaction Index (LI) 

In the present MGGP procedure a number of potential models are evolved at random and 

each model is trained and tested using the training and testing cases respectively as 

described above. The fitness of each model is determined by minimizing the error function 

(Ef), as given by Eq. (4.5) of section 4.2.2.1. If the errors calculated by using Eq. (4.5) for all 

the models (individuals) in the existing population do not satisfy the termination criteria, the 

generation of new population continues till the best model is developed as per the earlier 

discussion. Here in the MGGP model development controlling parameters are obtained 

following the procedure as described in the section 4.2.2.1 and following parameters ranges 

as per Table 4.1. The optimum values of obtained controlling parameters are presented in 

Table 4.5. 

Using the above optimum controlling parameters several models for LIp are obtained. The 

“best” model for Model-I and Model-II are selected out of various developed MGGP models 

after carefully analyzing and considering various alternatives with physical interpretation of 

LI and are described as Eqs. (4.20) and (4.21), respectively.  
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   (4.20) 

 

Table 4.5 Optimum values of controlling parameters for MGGP-based LIp models (Model-I 

and Model-II) using CPT data 
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Parameters Model-I Model-II 

Population size 3000 3000 

Number of generations 150 200 

Maximum number of genes 4 5 

Maximum tree depth 3 3 

Selection Type Tournament Tournament 

Tournament size 7 6 

Reproduction probability 0.05 0.05 

Crossover probability 0.85 0.85 

Mutation probability 0.1 0.1 

High level cross over probability 0.2 0.2 

Low level cross over probability 0.8 0.8 

Sub-tree mutation 0.9 0.9 

Substituting input terminal with 

another random terminal 

0.05 0.05 

Gaussian perturbation of randomly 

selected constant 

0.05 0.05 

Ephemeral random constants [-10 10] [-10 10] 
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Fig. 4.8 Variation of the best and mean fitness with the number of generation. 
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Fig.4.9  Statistical properties of the evolved ‘best’ MGGP model (on training data) 
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Fig 4.10  Population of evolved models in terms of their complexity and fitness. 

The “best” model for  Model-I has been characterized by the Figs. 4.8, 4.9, 4.10. Fig. 4.8 

shows the variation of the best fitness (log values) and mean fitness with number of 

generations. It can be seen from this figure, the fitness values decrease with increasing the 

number of generations. The best fitness was found at the 149
th
 generation (fitness 

=0.2852).The statistical significance of each of four genes of the developed model is shown 

in Fig. 4.9. As shown in the Fig. 4.9a the weight  of the the gene-1 is higher than the other 

genes and bias. The degree of significance of each gene using p values is also shown in Fig. 

4.9b. It can be noted that the contribution of all the genes  towards prediction of LI(i.e., LIp) 

is very high, as their corresponding p values are very low, whereas the bias contribution is 

very less. Fig. 4.10 presents the population of evolved models in terms of their complexity 

and fitness value.The developed models that perform relatively well with respect to the 

“best” model and are much less complex (having less number of nodes) than the “best” 

model in the population can be identified in this figure as green circles. The “best” model in 

the population is highlighted with a red circle.  

Similarly, the “best” model for  Model-II has been characterized by the Figs. 4.11, 4.12, 413. 

Fig. 4.11 shows the variation of the best (log values) and mean fitness with with number of 

generations. It can be seen from this figure, the fitness values decrease with increasing the 
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number of generations. The best fitness was found at the 146
th
 generation (fitness 

=0.28047).The statistical significance of each of five genes of the developed model is shown 

in Fig. 4.12. As shown in the Fig. 4.12(a) the weight of the the Gene-4 is higher than the 

other genes and bias. The degree of significance of each gene using p values is also shown in 

Fig. 4.12(b). It can be noted that the contribution of all the genes as well as the bias  towards 

prediction of LI(i.e., LIp) is very high, as their corresponding p values are very low except 

Gene-2. Fig. 4.13 presents the population of evolved models in terms of their complexity 

(number of nodes) and fitness value.  

 

Fig. 4. 11 Variation of the best and mean fitness with the number of generation. 

 

 

 

 

 

 

0 50 100 150
-2.5

-2

-1.5

L
o

g
 F

it
n

e
ss

Generation

Best fitness: 0.28047 found at generation 146

 

 

Best fitness

0 50 100 150
0

0.5

1

Generation

F
it

n
es

s

 

 

Mean fitness (+ - 1 std. dev)

Best fitness: 0.28047 found at generation 

146 



 

78 

 

 

 

 

 

 

 

 

 

 

Fig.4.12 Shows statistical properties of the evolved ‘best’ MGGP model (on training data) 
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Fig 4.13  Population of evolved models in terms of their complexity and fitness. 
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Table 4.6 Comparison of results of developed MGGP models with available ANN (Juang et 

al. 2003) and SVM (Goh and Goh 207) models. 

 

 

Model 

No. 

Input  

variables 

Performance in terms of successful prediction (%) 

MGGP ANN 

 

MGGP ANN MGGP SVM MGGP SVM 

Training data Testing data Training data  Testing data 

I qc1N,  Ic, 

σ
’
v,CSR7.5 

97 98 95 91 - - - - 

II qc, Rf, σ
’
v,  

σv, amax, 

Mw   

- - - - 98 98 97 97 

 

As per the results presented in Table 4.6 the performances of Model-I for training and 

testing data are comparable. The successful prediction values are 97% for training and 95% 

for testing data whereas the overall success rate in predicting liquefaction in all cases is 

96%. The classification accuracy of the available ANN model (Juang et al. 2003) is 98%, 

91% and 96% for training, testing and overall data respectively. As described earlier, the 

comparison of efficacy of different models are also made on the basis of the testing data 

only. It is found that the performance of MGGP based prediction model (Model-I) is better 

than that of the ANN model (Juang et al. 2003) in terms of rate of successful prediction of 

liquefaction and non- liquefaction cases. Similarly from Table 2, it can also be noted that the 

liquefaction classification accuracies for training, testing and total dataset of the Model-II 

are 98%, 97% and 97% respectively. The classification accuracy of the available SVM 

model (Goh and Goh 2007) is 98%, 97% and 97% for training, testing and overall data, 

respectively. Hence, the prediction performance of the developed Model-II is found to be at 

par with the SVM model. The number of training data (170) and testing data (56) used by 

Gandomi and Alavi (2012) for development of their MGGP based model is different from 

that of the proposed MGGP model (Model-II) and the SVM model of Goh and Goh (2007). 

Thus, the comparison of efficacy of the above models could not be done, even though the 

model parameters and database is same. Table 4.7 shows the statistical performances of both 
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training and testing data for the developed Model-I and Model-II in terms of R, E, AAE, 

MAE and RMSE. 

Table 4.7   Statistical performances of developed MGGP models 

 

The performances of both Model- I and Model- II for training and testing data are found to 

be comparable showing good generalization of the developed models.  As R > 0.8, for both 

Model-I and Model-II, there is a strong correlation between predicted and actual vales 

(Smith 1986).It is evident from the results presented in Table 4.6 and Table 4.7 that the 

proposed MGGP based models (Model-I and Model-II) are able to learn the complex 

relationship between the liquefaction index and its main contributing factors with a very 

high accuracy. The  Eq. (4.20) and (4.21) can be used by geotechnical engineering 

professionals with the help of a spreadsheet to evaluate the liquefaction potential of soil for a 

future seismic event without going into complexities of model development whereas the 

available ANN and SVM models  do not provide any such explicit equations for 

professionals. Even if the performance of both the developed models is equally good in 

separating liquefied cases from the non-liquefied cases, model equation of Model-I is more 

compact having less number of input parameters.  

An independent CPT-based post liquefaction database of 96 cases (58 liquefied and 38 non-

liquefied) as given in Juang et al. (2006) is also used to verify the efficacy of the proposed 

models. From the results presented in Table 4.8 it can be observed that overall prediction 

rates are 87% and 86% for Model-I and Model-II, respectively. Samui and Sitharam (2012) 

similarly used an independent SPT dataset to evaluate the performance of their developed 

Model 

No. 

Input 

variables 

Data R R
2 

E AAE MAE RMSE 

I qc1N, Ic, σ
’
v, 

CSR7.5 

Training 0.81 0.86 0.66 0.24 0.64 0.29 

Testing 0.81 0.84 0.65 0.24 0.73 0.30 

II qc, Rf, σ
’
v, 

σv,amax, Mw 

Training 0.83 0.86 0.68 0.23 0.62 0.28 

Testing 0.85 0.89 0.70 0.21 0.79 0.27 
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ANN and SVM-based models for predicting soil liquefaction susceptibility and the overall 

classification accuracies were 71% and 78% for ANN and SVM models, respectively. It is 

pertinent to mention here that both the models (Model-I and Model-II) are able to predict 

liquefied cases with a very high rate of accuracy of 97% and 95%, respectively whereas the 

successful prediction rates for non-liquefied cases are 70% for Model-I and 71% for Model-

II. Thus, the performance of both the present MGGP models based on the independent 

dataset is very efficient in predicting liquefied cases but, not that efficient for non-liquefied 

cases. It may be mentioned here that as a professional engineer, the prediction of liquefied 

case is more important than that of non-liquefied case.  

Table 4.8 Comparison of performance of the developed MGGP models with respect to an 

independent dataset (Juang et al. 2006). 

 

4.3.2.2  Parametric study and Sensitivity analysis  

Parametric study was made for each of  the developed models (Model-I and Model-II) and 

presented in the addendum. 

The sensitivity analysis is an important aspect of a developed model to identify important 

input parameters.  In the present study, sensitivity analyses were made following Liong et al.  

(2000). As per Liong et al. (2000) the sensitivity (Si) of each parameter, is expressed as Eq. 

(4.22). 
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where N is the number of data points. In the present study N=151. The analysis has been 

carried out on the trained model by varying each of the input parameters, one at a time, at a 

constant rate of 30%. Table 4.9 presents the results of above analysis for both the proposed 

MGGP models. As per Model-I soil type index (Ic) is the most important parameter. The  

Model 

No. 

Input 

variables 

Performance in terms of successful prediction (%) 

Liquefied 

cases (58) 

Non-liquefied 

cases (38) 

Over all 

Cases (96) 

I qc1N, Ic, σ
’
v, CSR7.5 97 70 87 

II qc, Rf, σ
’
v, σv,amax, Mw 95 71 86 
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other important inputs are CSR7.5, and σ’v with qc1N is the least important parameter. For 

Model-II the most important parameter is measured cone tip resistance (qc). The other input 

parameters in decreasing order of their contribution in governing the prediction of LI are 

(amax/g), σv, Mw and Rf. It is well known that qc is the most important soil parameter for 

liquefaction susceptibility analysis, which is LI for the present case. However, as defined 

earlier, Model –I is developed using derived parameters, qc1N and Ic , where qc1Nis a function 

of qc and σ’v , and Ic  is a function of qc1N, qc,  fs, σ’v and σv.  Thus, as per sensitivity analysis 

Ic, which is a function of other parameters along with qc1N is found to be a better parameter 

to predict LI than qc1N alone. But in Model- II, as basic soil and seismic parameters are 

considered, qc is found to be most important parameter.  

Table 4.9 Sensitivity analysis of inputs for the developed MGGP models 

 

In the present study, sensitivity analyses were also made as per Gandomi et al. (2013) and 

the results are presented in Table 4.9(a) in the ADDENDUM. 

4.3.2.3 Generation of artificial points on the limit state curve 

To approximate a limit state function that will separate liquefied cases from the non-

liquefied ones, artificial data points on the boundary curve are generated using the Eq. (4.20) 

and following a simple but robust search technique developed by Juang et al. (2003). The 

technique is explained conceptually with the help of Fig. 4.14. Let a liquefied case, ‘L’ 

target output LI=1) of the database as shown in the Fig.4.14, can be brought on to the 

boundary or limit state curve [i.e., when the case becomes just non-liquefied according to 

the evaluation by Eq. (4.20)] if CSR7.5 is allowed to   decrease (path P) or qc1N is allowed to 

increase (path Q). Further, for a non-liquefied case, ‘NL’ (target output LI = 0) of the 

database, the search for a point on the boundary curve involves an increase in CSR7.5 (path T) 

or a decrease in qc1N (path S) and the desired point is obtained when the case just becomes 

Model -I Model - II 

Parameters qc1N Ic σ
’
v CSR7

.5 

qc Rf σ
’
v σv amax/g Mw 

Sensitivity 

(%) 
-4.4 -460.4 -10.4 50.2 -283.7 -79.6 -90.7 145.2 184.6 136.0 

Rank 4 1 3 2 1 6 5 3 2 4 
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liquefied as adjudged by Eq. (4.20). Fig.4.15 shows the detailed flow chart of this search 

technique for path ‘P’ and ‘T’. A multi-dimensional (qc1N, Ic, σv
’
, CSR7.5) data point on the 

unknown boundary curve is obtained from each successful search.  A total of 406 multi-

dimensional artificial data points (qc1N, Ic, σv
’
, CSR7.5), which are located on the boundary 

curve are generated using the developed MGGP-based model Eq. (4.20) and the technique 

explained in the Figs. 4.14 and 4.15. These data points are used to approximate the limit 

state function in the form of CRR= f (qc1N, Ic, σv
’
) using MGGP and is presented below. 

 

4.3.2.4 MGGP Model for CRR 

The MGGP is also adopted for development of CRR model using 406 artificially generated 

data points, out of which 285 data points are selected randomly for training and the 

remaining 121 for testing the developed model. The optimum values of the controlling 

parameters are obtained as explained above in section 4.2.2.1 and using the range of values 

given in Table 4.1. Several CRR models were obtained by running the MGGP using 

optimum values of controlling parameters as explained earlier for the development of the LIp 

model.  
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Fig. 4.14 Conceptual model of the search technique for artificial data points on limit 

state curve (modified from Juang et al. 2000) 
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Then, the developed models were analyzed with respect to physical interpretation of CRR of 

soil and after careful consideration of various alternatives, the following expression (Eq. 

4.23) was found to be most suitable. 

 

 

                                                                                                                                       (4.23) 
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CRR=CSR7.5= f (qc1N, σ
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Optimize (LIp-0.5) using solver option of 

MSExcel to a value of 0.0.keeping 

qc1N,σ
’
v,Ic, constant and changing 

(decreasing) CSR7.5with a constraint that 

CSR7.5 value remains within upper and 

lower limit as per the database.  

Optimize (0.5-LIp) using solver option 

of MSExcel to a value of 0.0.keeping 

qc1N, σ’v, Ic constant andchanging 

(increasing) CSR7.5with a constraint that 

CSR7.5 value remains within upper and 

lower limit as per the database.  
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Fig.4.15   Search algorithm for data points on limit state curve 
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Table 4.10 Statistical performances of developed MGGP-based CRR model. 

 

The statistical performances in terms of R, R
2
, E, RMSE, AAE and MAE as presented in 

Table 4.10 for training and testing data are comparable showing good generalization of the 

developed CRR model, which also ensures that there is no over-fitting. The performance of 

MGGP-based CRR model as shown in Fig.4.16 clearly indicates that Eq. (4.23) is a very 

good approximation of the limit state function. 
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Fig. 4.16 Performance of proposed MGGP based CRR model 

The performance of the proposed CRR model is also evaluated by calculating the Fs for each 

case of the present database as discussed earlier. In deterministic approach Fs ≤ 1 predicts 

occurrence of liquefaction and Fs > 1 refers to non-liquefaction. A prediction (liquefaction or 

non-liquefaction) is considered to be successful if it agrees with the field manifestation. The 

Data 

(Numbers) 
R R

2 
E AAE MAE RMSE 

Training (285) 0.961 0.983 0.923 0.021 0.124 0.028 

Testing (121) 0.958 0.983 0.918 0.018 0.112 0.025 
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deterministic approach is preferred by the geotechnical professionals and various design 

decisions for further works to be taken up at the site under consideration, are taken on the 

basis of Fs. In the present study, Eq. (4.23) in conjunction with the model for CSR7.5 (Eq. 

4.2) forms the proposed CPT-based deterministic method for evaluation of liquefaction 

potential. The performance of the proposed MGGP-based deterministic model is compared 

with that of the ANN-based model (Juang et al. 2003) and the results are presented in Table 

4.11. It can be noted from the Table 4.11 that the success rate in prediction of liquefied cases 

is 98% and that for non-liquefied cases is 91% and the overall success rate is found to be 

95% by the present MGGP model, whereas the accuracies in prediction of liquefied cases, 

non-liquefied cases and for overall cases are 93%, 88% and 91%, respectively by the 

available ANN-based deterministic model (Juang et al. 2003).  This clearly indicates the 

robustness of the proposed deterministic method. 

Table 4.11 Comparison of performance of the developed MGGP-based deterministic model 

with ANN-based deterministic model of Juang et al. (2003) based on present database. 

 

4.3.2.5 Comparison with existing methods using independent database 

It is always required to compare the efficacy of a newly developed method with that of the 

existing methods. In the present study, the efficiency of the developed MGGP-based method 

is compared with that of widely used statistical methods as per Olsen (1997), and Robertson 

and Wride (1998) and ANN-based method of Juang et al. (2003) in terms of rate of 

successful prediction of liquefied and non-liquefied cases. Henceforth, these three methods 

are referred to as Olsen method, Robertson method and Juang method for convenience. 

 

 

 

Performance in terms of successful prediction (%) 

Liquefied cases(133) Non-liquefied cases(93) Overall (226) 

MGGP ANN MGGP ANN MGGP ANN 

98 93 91 88 95 91 
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Table 4.12 Comparison of results of proposed MGGP-based deterministic model with the 

existing models   based on independent database (Moss 2003 and Juang et al. 2006) 

 

To study the efficacy of the proposed MGGP-based deterministic method to a new database, 

an independent post liquefaction CPT database [obtained from Moss (2003) and Juang et al. 

(2006)], consisting of total 200 cases, out of which 139 cases having surface evidence of 

liquefaction and the remaining 61 cases of non-liquefaction, is considered. As mentioned 

earlier, the Fs for the total 200 cases of the database are evaluated using Olsen, Robertson, 

Juang and the proposed MGGP-based methods.  According to the comparison presented in 

Table 4.12, the accuracy in prediction of liquefied cases (95%)by the proposed MGGP-

based deterministic method is better than that obtained by Juang method (89%), Robertson 

method (84%), and Olsen method (80%), whereas for non-liquefied cases the rate of 

successful prediction by Robertson method (76%) is better than that of Juang method 

(74%),MGGP method (60%) and Olsen method (54%). Similarly, overall rate of successful 

prediction by the proposed MGGP method (84%) is at par with that of Juang method (84%) 

and better than that of Robertson method (81%) and Olsen method (72%). 

 

Criterion 

 

(Fs) 

Olsen 

method 

Robertson 

method 

Juang 

method 

MGGP-based 

method 

(Present study) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

Liquefie

dcases 

(139) 

110 80 116 84 123 89 131 95 

Non-

liquefied  

cases 

(61) 

33 54 46 76 45 74 36 60 

Total 

cases 

(200) 

143 72 162 81 168 84 167 84 
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4.4 CONCLUSIONS 

The conclusions drawn from deterministic method for both SPT and CPT-based models are 

presented separately as follows.  

 

4.4.1  Conclusions based on SPT- based liquefaction potential evaluation 

The following conclusions are drawn based on the results and discussion of the SPT- based 

liquefaction potential evaluation by the proposed deterministic method: 

i. A compact LIp model equation is presented based on MGGP to predict the soil 

liquefaction in a future seismic event using SPT data. The liquefaction classification 

accuracy (94.19%) of present model is found to be better than that of available ANN 

(88.37%) model and at par with the available SVM (94.19%) model on the basis of 

the testing data.  

ii. A MGGP-based model equation is also presented for CRR of soil using SPT data 

which in conjunction with CSR7.5 can be used to predict the factor of safety against 

liquefaction occurrence. The overall success rate of prediction of liquefaction and 

non-liquefaction cases by the proposed method for all 288 cases in the present 

database is found to be 93.40% on the basis of calculated Fs. 

iii. Using an independent database (Idriss and Boulanger 2010) the proposed MGGP- 

based deterministic method (87%) is found to more accurate in predicting liquefied 

and non-liquefied cases than the existing ANN based method (86%) and statistical 

method (84%) on the basis of calculated Fs.  The proposed method is also found to 

be efficient in isolating non-liquefied cases without considering the effect of fines 

content.  

 

4.4.2  Conclusions based on CPT- based liquefaction potential evaluation 

Similarly, the following conclusions are drawn from the results and discussion of the CPT- 

based liquefaction potential evaluation studies by the proposed deterministic methods: 
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i. CPT-based post liquefaction database (Juang et al. 2003) is analyzed using multi-

gene genetic programming approach to predict the liquefaction potential of soil in 

terms of liquefaction field performance indicator, LI.  

ii. The efficacy of the developed MGGP-based models: Mode-I and Model-II are 

compared with that of the available ANN and SVM models, respectively. It is found 

that the performance of Model-I is better than the ANN model in terms of rate of 

successful prediction of liquefaction and non-liquefaction cases, whereas Model-II is 

as good as the SVM model.  

iii. The statistical performance parameters (R, R
2
, E, AAE, MAE, RMSE) for training and 

testing data are comparable in both the proposed models, which show good 

generalization capabilities of multi-gene GP approach. Using an independent global 

database the performance of Model -I and Model-II in terms of overall classification 

accuracy is found to be 87% and 86% respectively. Unlike available ANN and SVM 

models, the proposed model equations can be used by geotechnical engineering 

professionals with the help of a spreadsheet to predict the liquefaction potential of 

soil for future seismic event without going into the complexities of model 

development using MGGP.  

iv. Based on sensitivity analysis the soil type index and the measured cone tip resistance 

are found to be “most” important parameters contributing to the prediction of 

liquefaction index for Model-I and Model-II, respectively.  

v. For the proposed deterministic method based on developed CRR model and widely 

used CSR7.5 model, the rates of successful prediction of liquefaction and non-

liquefaction cases are 98%, and 91% respectively. The overall success rate of the 

proposed method for all 226 cases in the present database is found to be 95%. The 

performance of the present deterministic method is better than that of the ANN-based 

Juang method. 

vi. Based on an independent database the overall rate of successful prediction by the 

proposed MGGP method (84%) is at par with that of Juang method (84%) and better 

than that of widely used Robertson method (81%) and Olsen method (72%) in terms 

of calculated Fs. 
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Based on the comparisons as presented above the deterministic methods, which are 

predicting well the liquefied cases than non-liquefied cases, indicate the 

conservativeness of the developed boundary surfaces (limit state functions) 

separating liquefied and non-liquefied cases being biased towards non-liquefied 

cases. Though, correct prediction of liquefied cases is more important in the 

perspective of geotechnical professionals, the degree of conservativeness associated 

with the boundary surfaces needs to be quantified in terms of probability of 

occurrence of liquefaction, which is required for better design decision to be taken 

for precautionary measures to be considered for construction works to be done on the 

liquefied site. This is a disadvantage of deterministic method as it is unable to 

quantify the degree of conservativeness, which is addressed in the next chapter in 

terms of probabilistic approach. 
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5.1  INTRODUCTION 

The discussed methods in the previous chapter are deterministic methods, in which 

liquefaction potential of soil is evaluated in terms of   factor of safety against liquefaction 

(Fs).However, due to parameter and model uncertainties, Fs>1 does not always indicate non-

liquefaction and similarly Fs≤1 does not always correspond to liquefaction, which is already 

mentioned in the first chapter. The boundary curve (surface) that separates liquefaction and 

non-liquefaction cases in the deterministic approach is found to be biased towards 

conservative side by encompassing most of the liquefied cases as discussed in the previous 

chapter. But, the degree of conservatism is not quantified.  In order to overcome the 

mentioned difficulties in deterministic approach, probabilistic evaluation of liquefaction 

potential has been performed where liquefaction potential is expressed in terms of 

probability of liquefaction(PL) and the  degree of conservatism can be quantified in terms of  

PL. 

Thus, attempts have been made by several researchers to quantify the unknown degree of 

conservatism associated with the limit state function and to assess liquefaction potential in 

terms of probability of liquefaction (PL) using statistical or probabilistic approaches and the 

same has been discussed elaborately in the Chapter-II. 

In the present study an attempt has been made to develop a probability design chart using a 

mapping function based on post liquefaction SPT database (Hwang and Yang 2001). The 

mapping function is developed on the basis of Bayesian theory of conditional probability to 

relate Fs with PL.  Herein, the limit state function for assessing cyclic resistance ratio (CRR) 

of soil and thus, the factor of safety (Fs) against liquefaction occurrence is assessed using the 

Chapter 5 

PROBABILISTIC EVALUATION OF LIQUEFACTION 

POTENTIAL 
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developed MGGP-based deterministic model as present in the previous chapter. Using an 

independent post liquefaction SPT dataset, a comparative study among the present MGGP 

model, available ANN and statistical models is made in terms of rate of successful 

prediction of liquefaction and non-liquefaction cases based on PL. 

Similarly in this chapter, an attempt has also been made to develop a PL-based design chart 

using a mapping function based on available post liquefaction CPT database (Juang et al. 

2003). The mapping function is developed on the basis of Bayesian theory to relate Fs with 

PL as explained above using the developed CPT-based deterministic model as presented in 

the Chapter-IV. And also using an independent CPT database, a comparative study among 

the present MGGP method, available ANN and statistical methods is made in terms of rate 

of successful prediction of liquefaction and non-liquefaction cases on the basis of PL.  

5.2  SPT-BASED PROBABILISTIC MODEL DEVELOPMENT 

The SPT-based deterministic method as proposed in the previous chapter is calibrated with 

the liquefaction field performance observations using Bayesian theory of conditional 

probability and case histories of post liquefaction SPT database to develop a probabilistic 

model, referred herein as Bayesian mapping function, which is used to correlate Fs with PL. 

 

5.2.1 Development of Bayesian mapping function 

According to Juang et al.(1999b) the probability of liquefaction occurrence of  a case in the 

database, for which  the  Fs has been calculated, can be found out using Bayes’ theorem of 

conditional probability as given below. 

 
   

       NLPNLFPLPLFP

LPLFP
FLP

ss

s

s 
                                               (5.1) 

where P(L/ Fs) = probability of liquefaction for a given Fs ; P(Fs/L) = probability of Fs, 

assumed that liquefaction did occur; Fs, assumed that liquefaction did occur; P(Fs/NL) = 

probability of Fs, assumed that liquefaction did not occur; P(L) = prior probability of 
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liquefaction; and P(NL) = prior probability of non-liquefaction. P (Fs/L) and P (Fs/NL) can 

be obtained by using Eq. (5.2a), (5.2b), respectively. 

                                                      (5.2a) 

    

  (5.2b) 

 

where fL(x) and fNL(x) are the probability density functions of  Fs for liquefied cases and non-

liquefied cases of the database respectively. As ΔFs →0 Equation (5.1) can be expressed as 

Equation (5.3). 

 
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
            (5.3) 

If the information of prior probabilities P(L) and P(NL) is available Eq.(5.3) can be used to 

determine the probability of liquefaction for a given Fs. In absence of P(L) and P(NL) values 

it can be assumed that P(L) = P(NL) on the basis of the maximum entropy principle (Juang 

et al. 1999b). Thus, under the assumption that P (L) = P (NL), Eq. (5.3) can be presented as 

Eq.(5.4). 
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                                                   (5.4) 

where,  fL (Fs) and fNL (Fs) are the probability density functions (PDFs) of  Fs for liquefied 

cases and non-liquefied cases respectively.  

In the present investigation, the calculated Fs values, using the SPT-based deterministic 

method as presented in the previous chapter, for different cases of the database (Hwang and 

Yang 2001) are grouped according to the field performance observation of liquefaction (L) 
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and non-liquefaction (NL). Several different probability density functions are considered and 

out of them the three best fitting curves (Lognormal, Weibull and Rayleigh) to the histogram 

for both L and NL groups are shown in Figs 5.1a to F. It is found from the above figures that 

the factor of safety of L group is best fitted by Weibull distribution with scale parameter ( 

and shape parameter (k) of 0.580 and 2.437, respectively and the PDF of the above Weibull 

distributions shown in Figure 5.1 (b), can be presented as Eq. (5.5) : 
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 And the NL group is best fitted by Rayleigh distribution (as shown in Figure 5.1 

(f) and the corresponding PDF can be presented as Eq. (5.6). 
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Fig. 5.1 Histogram showing the distributions (PDFs) of calculated factor of safeties: 

(a),(b), (c) Liquefied (L) cases; (d),(e),(f) Non-liquefied (NL) cases. 

Based on the obtained probability density functions, PL is calculated using Eq. (5.4) for each 

case in the database. The Fs and the corresponding PL of the total 288 cases of database are 

plotted and the mapping function is obtained through curve fitting as shown in Fig.5.2. The 

mapping function is presented as Eq. (5.7), which is having R
2
value of 0.99. 
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where E and F are the parameters (E=0.95 and F=7.7) of the fitted logistic curve. The factor 

of safety against the occurrence of liquefaction is calculated using the proposed MGGP-

based deterministic method and corresponding probability of liquefaction can be found out 

using the developed mapping function.  
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Probability curves generated using the mapping function (Eq. 5.7) and the deterministic 

limit state curve represented by Eq. (4.7) are shown in Fig.5.3, wherein, the data points 

representing field performance cases of the database (Hwang and Yang 2001) is also 

presented. The relative position of the proposed deterministic limit state curve corresponds 

to a probability of 40% with respect to the probability curves. As the deterministic limit state 

curve (i.e., boundary curve) corresponds to a Fs = 1, Eq. (5.5) yields a PL = 0.40, which is 

also confirmed from the relative position of the deterministic curve in the probability chart 

as mentioned above.  This is close to the 50% probability that is associated with a 

Fig.5.2 Plot of PL-Fs showing the mapping function obtained through curve fitting. 
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completely unbiased limit state curve corresponding to factor of safety of 1.0 and mapping 

function parameter (E) value of 1.0. The mapping function can be utilized as a tool for 

selecting proper factor of safety based on the risk (i.e., the probability of liquefaction) that is 

acceptable for a particular project under consideration.. For example while applying the 

present deterministic method with a factor of safety of 0.95 would result in a probability of 

liquefaction 50% whereas an increased Fs of 1.14 corresponds to a PL of 20%. If a 

probability of liquefaction less than 20% is required for a particular project in a site then, 

this can be achieved by selecting a larger factor of safety on the basis of the developed 

mapping function. 

 

5.2.2 Probability-based chart for evaluation of liquefaction potential 

The mapping function as presented by Eq. (5.7) is used to develop a probability chart as 

shown in Fig. 5.4. This chart can be used by the geotechnical professionals to find out the 

probability of occurrence of liquefaction for a given soil under a given seismic load (CSR7.5) 

and soil resistance (CRR). It can also be used to assess the soil strength in terms of CRR or 

N1,60 at a design level of seismic loading with an assured level of risk (i.e., probability of 

liquefaction). The use of the design chart (Fig.5.4) is explained by considering the same 

example as presented by Juang et al. (2000b) for their ANN-based probabilistic model. Let a 

sandy soil layer is having following properties: depth, z = 5.8m, vertical effective stress of 

soil at the depth studied, σ
’
v=84kPa, vertical total stress of soil at that depth, σv= 111kPa, 

fines content, FC=2%, and N1, 60 = 6. The structure to be built at the site is to be designed for 

an earthquake of moment magnitude, Mw =7 and peak horizontal ground surface 

acceleration, amax= 0.2g. In this case the CSR7.5 is found out to be 0.14 as per Eq. (4.2) and 

corresponding CRR is found out to be 0.10 as per the present MGGP model (Eq.4.7), which 

is close to  the CRR value (0.09)  as obtained by the AAN-based method of Juang et al. 

(2000b).  
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Fig.5.3 SPT-based deterministic and probability curves with liquefied and non-liquefied 

cases of the database (Data from Hwang et al. 2001) 
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Fig.5.4 Probability-based design chart for evaluation of liquefaction potential of soil 

If the accepted level of risk is 20% (i.e. PL=0.2) for the said project, then minimum required 

CRR value as per the proposed design chart (Fig.5.4) is 0.16 whereas, the CRR value 

obtained by Juang et al. (2000b) is 0.2. For a ground improvement project, the required N1, 

60 values corresponding to the obtained CRR value of 0.16 is found out to be 14.63   as per 

the Eq.(4.7). Thus, after ground improvement the N1,60 value should reach a value greater 

than 14.63. The corresponding N1,60value obtained by the ANN based design chart and 

associated equations proposed by Juang et al. (2000b) is 16.0, which is slightly more than 

that obtained by the present MGGP-based model and probability chart. It may be mentioned 

here that the efficacy of the ANN model, based on which probability design chart was 

prepared by Juang et al., (2000b) were 91% and 82% for training and testing data 

respectively. In the present study, the design chart is prepared based on MGGP model 

(Eq.4.6), which has successful prediction rate of 94.55% for training and 94.19% for testing 

data.  

The proposed probability-based design chart and the associated model equations can be 

utilized by the geotechnical engineering professionals to take a risk-based design decision 
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regarding liquefaction potential depending on the importance of the structure to be built and 

the necessary N1, 60value for the possible ground improvement work. 

 

5.2.3 Comparison with existing methods using independent database 

It is always required to compare the efficacy of a newly developed method with that of the 

existing methods. In the present study the developed MGGP-based method is compared with 

the statistical and ANN-based method proposed by Juang et al. (2000b) in terms of rate of 

successful prediction of liquefied and non-liquefied cases. An independent post liquefaction 

SPT-based database (Idriss and Boulanger 2010) consisting of total 230 cases, out of which 

115 cases having surface evidence of liquefaction, 112 cases of non-liquefaction and 3 

marginal cases  provides a good basis for comparison of efficacy of the above  methods.  

The probability of liquefaction of the total 227 cases of the database (neglecting 3 marginal 

cases) are calculated using ANN-based method (Juang et al. 2000b), statistical method 

(Juang et al. 2000) and the proposed MGGP-based method.  The assessed probability of 

liquefaction, PL is used to judge the correctness of the prediction on the basis of field 

manifestations. In the present study the success rate of prediction for liquefaction is 

measured based on three criteria from stringent to liberal (A to C); PL  (0.85 to 1.0) is the 

stringent criterion (A),   PL (0.65 to 1) is the intermediate criterion  (B) and  PL (0.5 to 1.0)is 

the liberal criterion (C).  Similarly for non- liquefied cases stringent (A) if PL is in the range 

[0, 0.15]; if PL is within the range 0 to 0.5 then considered to be liberal (C) criterion and for 

the intermediate criterion (B), PL>=0 and PL<0.35 (Juang et al., 2002b). As per the 

comparison presented in Table 5.1 the rate of successful prediction by the proposed MGGP-

based probabilistic model on the basis of   the stringent criteria: A (73%) and B (80%) is 

better than that of the statistical method: A(34%), B(61%); and ANN-based method: 

A(36%),  B(62%) for liquefied cases. Similar observations can be drawn for non-liquefied 

cases and overall cases of the database. The prediction results as obtained by the three 

mentioned methods are comparable on basis of the liberal criterion, C. 

It is pertinent to mention here that the proposed MGGP based CRR model is a function of 

N1,60 whereas the CRR models of Juang et al. (2000b) are function of clean sand equivalence 
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of the overburden stress corrected SPT blow count, N1,60,cs., the parameter which takes care 

of  the effect of fines content on the resistance of soil. The ANN and statistical methods 

(Juang et al., 2000b) are applicable for N1,60,cs<35 and N1,60,cs<30 respectively, otherwise the 

soil is considered to be too clay rich to liquefy. It is found that in the mentioned database 27 

cases are having N1,60,cs value more than or  equal to 35 and for 31 cases N1,60,cs >= 30. For 

these cases PL is considered to be zero for the comparative study presented in Table 5.1. 

Even though, the proposed MGGP-based CRR model does not incorporate fines content 

(FC) parameter, it predicts well all the 31 cases of database  having N1,60,cs >= 30 as non 

liquefied cases based on the calculated PL. This shows the compactness as well as the 

effectiveness of the developed CRR model, which is a function of only parameter N1,60 

compared to the available ANN and statistical methods.  

Table 5.1 Comparison of results of probabilistic models of proposed MGGP method with 

Statistical and ANN-based methods on independent database (Idriss and Boulanger 2010) 

 

 

 

Criterion 

For 

PL 

Statistical method 

(Juang et  al., 2000b) 

 

ANN-based method  

(Juang et  al., 2000b) 

MGGP-based method  

(Present study) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

Based on 115 Liquefied cases 

A(PL>0.85) 38 34 41 36 83 73 

B(PL>0.65) 70 61 71 62 91 80 

C(PL>0.5) 87 76 95 83 96 84 

Based on 112 Non liquefied cases 

A(PL<0.15) 69 62 60 54 89 80 

B(PL<0.35) 95 85 84 75 95 85 

C(PL<0.5) 106 95 103 92 101 91 

Based on all 227cases 

A 107 48 101 45 172 76 

B 165 73 155 69 186 82 

C 193 86 198 88 197 87 
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5.3 CPT-BASED PROBABILISTIC MODEL DEVELOPMENT 

The CPT-based deterministic method as proposed in the previous chapter is calibrated with 

the liquefaction field manifestations using Bayesian theory of conditional probability and the 

case histories of post liquefaction CPT database to develop a mapping function that 

correlates Fs with PL. 

 

5.3.1. Development of Bayesian mapping function 

The probability of liquefaction occurrence of  a case in the database, for which  the  Fs has 

been calculated, can be found out using Bayesian theory of conditional probability as 

explained above in the section 5.2.1 and the relation between the  Fs and PL  is presented by 

Eq. (5.4). The calculated Fs values, for different cases of the present database (Juang et al. 

2003) using the MGGP-based deterministic method as presented in Chapter-IV, are grouped 

according to the field performance observation of liquefaction (L) and non-liquefaction 

(NL). Several probability density functions are considered and fitted with L and NL groups 

and few of fitted distribution curves (lognormal, Weibull, Rayleigh and Normal 

distributions) are shown in Figs. 5.5a to 5.5h. It is found that the liquefied and non-liquefied 

groups are best fitted by Weibull distribution (parameters: 0.588, k=2.362) and lognormal 

distribution (parameters: µ=0.476, σ=0.422), respectively as shown in Figs. 5.5 (b) and 

(e).The PDF of the above Weibull distribution is already presented by Eq. 5.5. Similarly the 

PDF of lognormal distribution can be presented by Eq. (5.8). 
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(h) 

 

For the present CPT database, fL(Fs) and fNL(Fs) are the Weibull and lognormal probability 

density functions  of  Fs   for liquefied cases and non-liquefied cases, respectively. Based on 

the obtained probability density functions, PL is calculated using Eq. (5.4) for each case in 

the database. The Fs and the corresponding PL of the total 226 cases of database are plotted 

and the mapping function is approximated through curve fitting as shown in Fig.5.6. The 

mapping function is presented as Eq. (5.9) with a high value of R
2 

(0.993). 
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Fig. 5.5   Histogram showing the distributions of calculated factor of safeties: 

(a), (b), (c), (d) Liquefied (L) cases; (e), (f), (g), (h) Non-liquefied (NL) cases. 
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where a (0.96) and b (7.3) are the parameters of the fitted logistic curve. The Fs is calculated 

using the proposed MGGP-based deterministic method and the corresponding PL can be 

found out using the developed mapping function.  
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Fig.5.6  Plot of PL-Fs showing the mapping function approximated through curve fitting. 

 

The proposed deterministic limit state surface (Fs=1.0) corresponds to a probability of 

42.6% according to the Eq. (5.9). This is close to the 50% probability that is associated with 

a completely unbiased limit state curve corresponding to a factor of safety of 1.0 and 

mapping function parameter (a) value of 1. The mapping function can be utilized as a tool 

for selecting proper factor of safety based on the probability of liquefaction that is 

acceptable for a particular project under consideration. For example, applying the present 

deterministic method with a factor of safety of 0.96 would result in a probability of 

liquefaction (PL) of 50%, whereas an increased Fs of 1.15 corresponds to a reduced PL of 

21%. If a probability of liquefaction less than 21% is required for a particular project in a 
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site, this can be achieved by selecting a larger factor of safety on the basis of the developed 

mapping function. 

 

5.3.2  PL-based design chart  

The mapping function as presented by Eq. (5.9) is used to develop a PL-based design chart 

as shown in Fig.5.7. This chart can be used by the geotechnical professionals to find out the 

probability of occurrence of liquefaction for a given soil under a given seismic load (CSR7.5) 

and soil resistance (CRR). It can also be used to assess the soil strength in terms of CRR or 

qc1Nat a design level of seismic loading with a given probability of liquefaction. The use of 

the design chart (Fig. 5.7) is explained by considering an example as presented below. Let a 

soil layer have the following properties: depth, z = 4.35m, σ’v=32.44 kPa, σv= 47.94 kPa, 

sleeve friction resistance (fs) = 42.86 kPa and qc = 3360 kPa. The structure to be built at the 

site is to be designed for an earthquake of moment magnitude, Mw = 7.5 and peak horizontal 

ground surface acceleration (amax) of 0.16g. In this case the CSR7.5 (Eq. 4.2) is found out to 

be 0.15 and the corresponding CRR (Eq.4.23) is 0.122 according to the proposed CPT-based 

deterministic method as presented in the previous chapter.  

If the accepted probability of liquefaction is 20% (i.e. PL=0.2) for the said project, then 

minimum required CRR value as per the proposed design chart (Fig. 5.7) is 0.175. For a 

ground improvement project, the required qc1N value corresponding to the obtained CRR is 

found to be 85.65 using the Eq. (4.23). With the above qc1N value, the qcvalue is found to be 

4880 kPa using Eq. (4.16).  Thus, after desired ground improvement work the qc should have 

a value greater than 4880 kPa. 

The proposed probability-based design chart and the associated model equations can be 

utilized by the geotechnical engineering professionals to take a probability-based design 

decision on selecting desired Fs value depending on the importance of the structure to be 

built. The necessary qc value for the possible ground improvement work can be worked out. 
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5.3.3 Comparison with existing methods  

It is always required to compare the efficacy of a newly developed method with that of the 

existing methods. In the present study, the developed MGGP-based method is compared 

with widely used Robertson method and Olsen method and Juang method in terms of rate of 

successful prediction of liquefied and non-liquefied cases. The comparison of performance 

of these methods are made using the present database (Juang et al. 2003), based on which 

the proposed MGGP method and the Juang method are developed. The statistical methods: 

Olsen method and Robertson method were developed using another database. It may be 

mentioned here that performances of statistical methods do not depend upon the database 

used. The probabilities of liquefaction for the total 226 cases of the database are calculated 

using Olsen, Robertson, Juang and the proposed MGGP methods.  The assessed probability 

of liquefaction is used to judge the correctness of the prediction on the basis of field 

manifestation. If the PL value is found out to be 1.0 for a particular case then, there is 

Fig. 5.7 PL-based design chart for evaluation of liquefaction potential of soil using CPT data. 
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maximum probability that liquefaction will occur and similarly, PL = 0 corresponds to 

maximum probability of non-liquefaction. But, it is not always possible to get the PL values 

as 1.0 or 0. Hence, in the present study, the success rate of prediction of liquefied cases is 

measured on the  basis  of  three different limits of  PL values and  are  as  follows: [0.85 - 

1.0],  [0.65 - 1]  and [0.5 - 1.0].  Similarly, for non- liquefied cases the three PL limits 

considered for comparison of prediction efficacy of the above methods are in the range [0, 

0.15], [0, 0.35] and [0, 0.5] (Juang et al. 2002b). In order to compare the efficacy of the 

proposed MGGP-based probabilistic model with the available ANN-based and other two 

statistical regression-based probabilistic models, the above criteria are considered here. 

As per the comparison presented in Table 5.2, the rate of successful prediction by the 

proposed MGGP-based probabilistic model for liquefied cases on the basis of above three 

different PL limits are (83%),  (91%) and (97%) respectively, which is better than that 

obtained by Juang method: (58%), (79%), (91%); Olsen method: (22%),  (49%), (71%)  and 

Robertson method: (45%),  (76%), (85%). Similar observations can be drawn for non-

liquefied cases and overall cases of the database. Thus, the proposed MGGP-based 

probabilistic method out performs all other methods for the database considered in the 

present study. It is pertinent to mention here that 24 cases of the database are representing 

soils with Ic≥2.6, which are considered to be too clay rich to liquefy as per Robertson and 

Wride (1998). However, out of these 24 cases 8 cases are identified as liquefied cases based 

on field manifestations. The proposed MGGP method as well as Juang method predicts all 

the above 8 liquefied cases correctly. This can be considered as one improvement in the 

present method over the Olsen method and Robertson method. 
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Table 5.2 Comparison of results of proposed MGGP-based probabilistic model with 

available statistical and ANN-based probabilistic models using the database of Juang et al. 

(2003). 

 

 

To study the efficiency of the proposed MGGP method to a new database, an independent 

post liquefaction CPT database (Moss 2003 and Juang et al.2006), consisting of 200 cases, 

out of which 139 cases having surface evidence of liquefaction and the remaining 61 cases 

of non-liquefaction, is also considered. As mentioned earlier, the PL for the total 200 cases of 

the database are evaluated using Olsen, Robertson, Juang and the proposed MGGP-based 

probabilistic methods.  According to  the comparison presented in Table 5.3, the accuracy in  

prediction of liquefied cases [(83%),  (91%) and  (93%)]  by the proposed MGGP-based 

probabilistic model within the  three different limits of PL as mentioned earlier is better than 

that obtained by Juang method [(67%), (80%) and (87%)], Olsen method [(36%), (68%) and 

Criterion 

(PL range) 

Juang 

Method 

Olsen 

Method 

Robertson 

Method 

Present MGGP 

Method 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

Based on133 Liquefied case 

0.85-1.00 77 58 28 22 59 45 110 83 

0.65-1.00 105 79 64 49 100 76 121 91 

0.5-1.00 120 91 94 71 112 85 129 97 

Based on 93 Non liquefied cases 

0-0.15 63 68 43 47 48 52 67 73 

0-0.35 75 81 74 80 56 61 79 85 

0-0.5 85 92 83 90 64 69 84 91 

Based on all 226 cases 

0.85-1.00 

and 

0-0.15 

140 62 71 32 107 48 177 79 

0.65-1.00 

and 

0-0.35 

180 80 138 62 156 70 200 89 

0.5-1.00 

and 

0-0.5 

205 91 177 79 176 78 213 95 
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(80%)  and Robertson method [(53%),  (76%) and (83%)] for liquefied cases. Similarly, for 

non-liquefied cases the successful prediction rates are as follows: MGGP method [(50%), 

(55%), (60%)], Juang method [(50%), (66%), (78%)], Olsen method [(23%), (43%), (55%)] 

and Robertson method [(40%), (51%), (63%)]. The overall accuracies are as follows: MGGP 

method [(73%), (80%), (83%)], Juang method [(61%), (75%), (84%)], Olsen method 

[(32%), (60%), (72%)] and Robertson method [(49%), (68%), (77%)].  

Table 5.3 Comparison of results of proposed MGGP-based probabilistic model with 

available statistical and ANN-based probabilistic models using independent database. 

 

 

Based on the comparison as presented above the developed MGGP-based probabilistic 

method is found to be more efficient than the other methods considered in this study and is 

applicable to a wider range of soils like the Juang method. 

Criterion 

(PL range) 

Juang 

 Method 

Olsen  

Method 

Robertson 

Method 

Present MGGP 

Method 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

No. of 

successful 

prediction 

Rate 

(%) 

Based on139 Liquefied case 

0.85-1.00 92 67 50 36 73 53 115 83 

0.65-1.00 110 80 94 68 105 76 126 91 

0.5-1.00 120 87 110 80 115 83 129 93 

Based on 61 Non-liquefied cases 

0-0.15 30 50 14 23 24 40 30 50 

0-0.35 40 66 26 43 31 51 33 55 

0-0.5 47 78 33 55 38 63 36 60 

Based on all 200 cases 

0.85-1.00 

 and 

0-0.15 

112 61 64 32 97 49 145 73 

0.65-1.00 

and 

0-0.35 

150 75 120 60 136 68 159 80 

0.5-1.00 

and 

0-0.5 

167 84 143 72 153 77 165 83 
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5.4 CONCLUSIONS 

The conclusions drawn from probabilistic method for both SPT and CPT-based models are 

presented separately as follows.  

 

5.4.1 Conclusions based on SPT- based liquefaction potential evaluation 

The following conclusions are reached from the results and discussion of SPT-based 

probabilistic evaluation of liquefaction potential. 

i. The SPT-based deterministic method, as proposed in the Chapter-IV, is characterized 

with a probability of 40% by means of the developed Bayesian mapping function 

relating Fs to PL. The developed mapping function can be utilized as a tool for 

selecting proper factor of safety in deterministic approach based on the probability of 

liquefaction that is acceptable for a particular project under consideration. For 

example while applying the present deterministic method with a factor of safety of 

0.95 would result in a probability of liquefaction 50% whereas an increased Fs of 

1.14 corresponds to a reduced PL of 20%. If a probability of liquefaction of less than 

20% is required, it can be achieved by selecting a larger Fs based on the mapping 

function. 

ii. A probability-based design chart is prepared for evaluation of liquefaction potential 

of soil in terms of PL. It can be used along with the developed SPT-based CRR model 

of Chapter-IV as a practical tool by the geotechnical professionals to take PL-based 

design decisions. 

iii. Using an independent database the proposed MGGP-based method is found to be 

more accurate than the existing ANN and statistical methods in predicting 

occurrence of liquefaction and non- liquefaction on the basis of calculated PL.    

 

5.4.2 Conclusions based on CPT- based liquefaction potential evaluation 

The following conclusions are drawn based on the results and discussion as presented above 

for CPT-based probabilistic evaluation of liquefaction potential. 
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i. The CPT-based deterministic method, as proposed in the Chapter-IV, is 

characterized with a probability of 42.6% by means of the developed Bayesian 

mapping function relating Fs to PL. The developed Bayesian mapping function can 

be utilized as a tool for selecting proper factor of safety in deterministic approach 

based on the probability of liquefaction that is acceptable for a particular project 

under consideration. For example, applying the present deterministic method with a 

factor of safety of 0.96 would result in a probability of liquefaction (PL) of 50%, 

whereas an increased Fs of 1.15 corresponds to a reduced PL of 21%. If a probability 

of liquefaction of less than 21% is required, it can be achieved by selecting a larger 

Fs based on the proposed mapping function. 

ii. A PL-based design chart is prepared for evaluation of liquefaction potential of soil 

using CPT data. It can be used along with the developed CPT-based CRR model of 

Chapter-IV as a practical tool by the geotechnical professionals to take probability-

based design decisions. 

iii. Using the present database as well as an independent database the proposed MGGP 

method is found to be more accurate than the existing ANN and statistical methods 

in predicting occurrence of liquefaction on the basis of calculated PL.    

The calculation of PL using the developed semi-empirical models requires only the mean 

values of the input variables, whereas the uncertainty in the parameters and the model are 

excluded from the analysis. Thus, resulting PL might be subjected to error if the effect of 

parameter and model uncertainties are significant. This is a draw back of mean value based 

probabilistic model. These difficulties can be overcome by adopting reliability based 

probabilistic analysis of liquefaction, which considers both model and parameter 

uncertainties. To conduct a thorough reliability analysis, knowledge of the uncertainties that 

are associated with both the input parameters and the limit state model is required. However, 

most of the existing simplified methods have not been fully examined for its model 

uncertainty, though the simplified methods developed within deterministic framework of 

analysis tend to be conservative to some extent. Thus, reliability-based probabilistic methods 

have been developed using post liquefaction SPT and CPT database in the following 

chapter. 
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6.1  INTRODUCTION 

Several probabilistic models (Lioet al. 1988; Youd and Nobble 1997;Toprak et al.1999; 

Juang et al. 2002a; Cetin et al. 2004), including the present SPT and CPT-based probabilistic 

models as presented in the previous chapter, have been developed for evaluation of 

liquefaction potential in terms of PL.  These models are all data-driven as they are based on 

statistical analyses of the databases of post liquefaction case histories. Calculation of PL 

using these semi-empirical models requires only the mean values of the input variables, 

whereas the uncertainties in both the parameters and the model are excluded from the 

analysis. Thus, resulting PL might be subjected to error if the effect of parameter and model 

uncertainties are significant. These difficulties can be overcome by adopting reliability based 

probabilistic analysis of liquefaction, which considers both model and parameter 

uncertainties. In the framework of reliability analysis, the boundary surface separating 

liquefaction and non-liquefaction cases is a limit state function. But, the reliability method 

needs knowledge of uncertainties associated with the input parameters and the limit state 

function. 

As very few reliability-based models are available and those have already been discussed in  

Chapter-II, in the present study, an attempt has been made to evaluate reliability-based 

liquefaction potential of soil in terms of probability of liquefaction using first order 

reliability method (FORM) based on the post liquefaction SPT database (Cetin 2000). The 

MGGP is used to develop CRR model of soil. The developed CRR model along with the 

CSR model (Idriss and Boulanger 2006) forms the limit state function of liquefaction for 

reliability analysis. The uncertainties of input parameters are obtained from the database. 

Chapter 6 

RELIABILITY-BASED LIQUEFACTION POTENTIAL 

EVALUATION 
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But, a rigorous reliability analysis associated with the Bayesian mapping function approach 

is carried out to estimate model uncertainty of the limit state function, which is represented 

by a lognormal random variable, and is characterized in terms of its two statistics, namely, 

the mean and the coefficient of variation. A mapping function is also developed on the basis 

of Bayesian theory to relate Fs with PL, which can be used in absence of parameter 

uncertainties. Similarly, following the same procedure as mentioned above another 

reliability-based liquefaction potential evaluation model using FORM on the basis of the 

post liquefaction CPT database (Moss, 2003) has been developed and the model uncertainty 

of the developed CPT-based limit state function has been characterized through rigorous 

reliability analysis. 

6.2  DEVELOPMENT OF SPT-BASED RELIABILITY MODEL 

6.2.1  Methodology 

In the present study, first, the MGGP is used to develop a liquefaction field performance 

observation function termed as liquefaction index (LI), which has already been defined in 

Chapter-IV. In the second step, artificial data points are generated for the unknown 

boundary curve separating liquefied cases from non-liquefied cases using a search technique 

(Juang et al. 2000). The boundary curve referred as a “limit state function” representing the 

CRR of the soil is approximated with the generated data points using MGGP. The developed 

CRR model along with the CSR model (Idriss and Boulanger 2006) forms the performance 

functions or limit state model of liquefaction for reliability analysis. Here, FORM (Hasofer 

and Lind 1974) is used to evaluate the liquefaction potential of soil in terms of PL, which 

requires the knowledge of both parameter and model uncertainties. The uncertainty 

associated with proposed limit state model is determined following the extensive sensitive 

analysis as adopted by Juang et al. (2006) through a rigorous reliability analysis associated 

with the Bayesian mapping function approach. Bayesian theory of conditional probability is 

used to create a mapping function to relate Fs with PL.  

The GP and its variant, the MGGP have already been described in Chapter -III hence, only 

the general form of the model equation for the present problem is presented in the following 

section. A brief description about FORM for determination of reliability index and its 
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corresponding PL using genetic algorithm (GA) as optimization tool is presented in the sub 

sections. 

 

6.2.2  MGGP-based LIp model  

The general form of MGGP model for the development of the SPT-based LIp model for the 

present problem is presented as Eq. (6.1) 
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where LIp = predicted value of LI, F = the function created by the MGGP  referred herein as 

liquefaction index function, X = vector of input variables = { N1,60, FC,  σv
’
,CSR7.5},  N1,60is 

normalized standard penetration resistance as per Idriss and Boulanger (2006): 
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where N60 value corresponds to measured standard penetration  resistance Nm after correction  

to an equivalent 60% hammer efficiency as per Cetin (2000), which is a modified version of 

Seed et al. (1985):  

EBSRm
CCCCNN 

60                                                            (6.5) 

CR= correction for “short” rod length, CS=correction for non-standardized sampler 

configuration, CB= correction for borehole diameter, CE= correction for hammer energy 

efficiency, FC= fines content in percentage (Idriss and Boulanger 2006), σ’v = vertical 

effective stress of soil at the depth under consideration, Pa= 1 atm of pressure in the same 

units used for σ’v, CSR7.5 is the cyclic stress ratio adjusted to a benchmark earthquake of 
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moment magnitude (Mw) of 7.5 and to an equivalent σ’v  of 101kPa (Idriss and Boulanger 

2006): 
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where   σv = total vertical stress of soil at the depth under consideration, amax= peak 

horizontal ground surface acceleration, g = acceleration due to gravity, rd = shear stress 

reduction coefficient, which is a function of depth and earthquake magnitude , is presented 

as follows: 
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in which z is depth in meters and Mw is moment magnitude. These equations are applicable 

to a depth, z ≤ 34m and for z ≥ 34m the following equation is applicable: 

 
wd

Mr 22.0exp12.0                                                 (6.10) 

MSF is the magnitude scaling factor, which is expressed by following expression: 
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Kσis the overburden correction factor as given below: 
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 and ci is a constant,  f  are the functions defined by the user, n is the number of terms of 

target expression and c0= bias. The MGGP as per Searson et al. (2010) is used and the 

present model is developed and implemented using Matlab (Math Works Inc. 2005). 

 

6.2.3 Reliability Analysis 

In order to overcome the limitations of the conventional factor of safety approach and mean 

value-based probabilistic approach in liquefaction potential evaluation as discussed in the 

earlier sections, reliability analyses have been performed in the present study using first-

order reliability method, FORM (Hasofer and Lind 1974). The Hasofer- Lind approach is 

one of the most widely used reliability methods (Haldar and Mahadevan 2000; Baecher and 

Christian 2003). It is an improvement over the first order second moment reliability method 

(FOSM) developed by Cornell (1969) and avoids its lack of invariance problem. A brief 

description of the formulation of the present problem as per FORM is discussed below. 

In the liquefaction potential evaluation the CSR (loading) and the CRR (resistance) are 

denoted by Q and R respectively. The margin of safety, Z (Baecher and Christian 2003) is 

defined as the difference between the resistance and the load, which is also the performance 

function for liquefaction potential assessment and is presented by Eq. (6.15). 

                    (6.15) 

If Z < 0, it indicates the occurrence of liquefaction. If Z> 0, it suggests that there will be no 

liquefaction. If Z = 0 the performance state is designated as a limit state, which is the 

boundary between liquefaction and non-liquefaction. It is to be noted that both R and Q are 

QRZ 
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uncertain and thus, can be treated as random variables and reliability index () can be 

presented by Eq. (6.16) following Baecher and Christian (2003). 
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If the load and resistance are uncorrelated (i.e. correlation coefficient is zero), Eq. (6.16) 

reduces to 
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In Eqs. (6.16) and (6.17), μR, μQ are the mean values of R and Q, respectively;  σR, σQ are the 

standard deviations of R and Q, respectively; σ
2

R, σ
2

Q are the variances of R and Q, 

respectively, and ρRQ is the correlation coefficient between R and Q.  Reliability index 

βdefined by Eq. (6.17) is same as the first order second moment (FOSM) reliability method 

developed by Cornell (1969) using first-order Taylor series expansion approximation. 

If R and Q are the random variables with normal distribution, then the performance function, 

Z = R - Q, is also normally distributed. Fig. 6.1 shows the resulting probability density 

function (PDF) of Z. The probability of liquefaction is defined as the probability that Z ≤ 0. 

The dark area of the PDF of Z as shown in Fig. 6.1 indicates the probability of liquefaction. 

Greater the dark region the greater is the probability of liquefaction. Then, the probability of 

liquefaction, pf  (PL) can be calculated from Eq. (6.18) as presented below. 
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where Φ(⋅)  is the cumulative distribution function (CDF) for a standard normal variable. 
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Fig. 6.1 Probability density function of liquefaction performance function, Z 

(modified from Baecher and Christian 2003). 

In most of the practical problems, the performance function does depend on multiple basic 

variables as in case of liquefaction potential evaluation: z = g (z1, z2….zn). In these cases the 

computation of probability of liquefaction is dependent on the joint probability density 

function of load and resistance random variables and can be presented as given below: 

 
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where fz (z1, z2,…, zn) is the joint PDF for basic random variables z1, z2, ….,zn and the 

integration is performed over the failure region, i.e., g(z)≤0. In general, obtaining joint 

probability density function and the evaluation of multiple integral for large numbers of 

random variables is extremely difficult. Hence, to quantify the probability of liquefaction 

(failure), weighted average methods like point estimate method, analytical approximation 

methods such as first-order reliability method (FORM), which includes both first order  

second moment method (FOSM) and advanced first order  second moment method 

(Hasofer-Lind method), second-order reliability  methods (SORM), and simulation based 

methods like Monte Carlo Simulation (MCS) approach are available in the literature (e.g 
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Haldar and Madhadevan 2000; Baecher and Christian 2003). Since, in the present study, 

Hasofer-Lind reliability method, which is well known as FORM is used for the analysis of 

liquefaction potential of soil, the following sub-section, presents a discussion on the 

formulation of FORM for the present problem. 

 

6.2.3.1 FORM (Hasofer -Lind approach) 

As per Hasofer-Lind approach all the normal random variables are transformed to their 

reduced form in standard normal space with zero mean and unit standard deviation. Thus, R 

and Q in liquefaction analysis can be expressed as standard normal variables as given below. 

     

                  (6.20) 

If R and Q are uncorrelated, Eq. (6.15) for the performance function becomes: 

QRQR QRQRZ  ''

                                        (6.21) 

Fig. 6.2 shows a plot of the liquefaction limit state criterion using the standard normal 

variables as the axes. The origin is the point at which both R and Q are equal to their mean 

values. The distance, d between the origin and the limit state line, Z= 0 is  

    (6.22) 

 

which is identical to the definition of the reliability index β given by Eq. (6.17). This result 

suggests that the reliability index can be interpreted geometrically as the shortest distance 

from the point defined by the mean values of the variables to performance function surface 

defining the limit state. 
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But, the liquefaction performance function, Z depends on R and Q, which are also the 

functions of multiple basic variables such as measured standard penetration resistance (Nm), 

FC, σv, σ’v, amax and Mw. Thus, the performance function can be presented as Z = R - Q = g 

(z), where z is a vector of uncorrelated random variables i.e. 

z = {Nm, FC, σv, σ’v, amax, Mw}. Each variable, zi is defined in terms of its mean μzi and its 

standard deviation σzi. The above interpretation of reliability index (Eq.6.22) can be 

generalized for n (6) number of random variables, which are first converted to standard 

normal variables (zi') as per Eq. (6.20). In the multi-dimensional standard normal space, the 

distance from the origin to a point on the liquefaction limit state is 
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    (6.23) 

where the superscript T denotes the transpose of the vector z
’
.  

Thus, determination of β using Hasofer-Lind first order reliability formulation for 

liquefaction potential assessment can be stated as follows:  

 

Fig. 6.2. Plot of R’ (CRR) and Q
’
(CSR) showing definition of reliability index 

(modified from Baecher and Christian 2003). 
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    Minimize: 
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    Subjected to: 

0)( zg                                                          (6.24b) 

This is a constrained optimization problem that can be solved using the various approaches 

such as the method of Lagrange multipliers and method of the Taylor series. Hasofer-Lind 

reliability approach as described above for reliability based liquefaction triggering analysis 

can be extended to the non-linear limit state function and to the correlated and/or non-

normal random variables by suitable transformation algorithms. 

In the present study, Cholesky approach (Baecher and Christian 2003) is used to convert 

uncorrelated standard normal variables to correlated standard normal variable using the 

correlation matrix (K) of variables as given below. 
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where ij is the correlation coefficient  between the variables zi and zj . K must be symmetric 

and positive definite, it can be factored into two matrices that are the transposes of each 

other: 

TSSK       (6.26) 

'Szw         (6.27) 
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where w is a vector of n (6) variables, each of which has a standard normal distribution, with 

correlation matrix K. S is a lower triangular matrix, and its transpose S
T
 is an upper 

triangular matrix. z
’
is vector of standard normal variables of z. 

As in the present study, the random variables, z = {Nm, FC, σv, σ’v, amax, Mw }, are assumed 

to follow lognormal distribution, then, the mean and standard deviation of equivalent normal 

variables can be calculated as given below following Der Kiureghian et al.(1987): 

 21ln
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                                                         (6.28) 

     
25.0ln
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                                                    (6.29) 

where  ξi = the standard deviation of the equivalent normal variable; λi = the mean of the 

equivalent normal variable; μzi= the mean of the random variable zi and δzi= the coefficient 

of variation of zi. 

Though, Rackwitz and Fiessler (1978) iterative algorithm is widely used for reliability 

problem for finding out the minimum value of β out of various algorithms available in 

literature (Lin and Der Kiureghian 1991) but, for the complex and non-linear limit state 

functions there is a tendency to attain local minima by most of the algorithms resulting in 

failure to locate true β value. This difficulty can be overcome by using full population based 

iterative procedures such as the Monte Carlo or heuristic optimization algorithm, GA (Xue 

and Gavin 2007; Gavin and Xue 2008; Gavin and Xue 2009). In the present study, GA has 

been used as the optimization tool for the reliability analysis.  

The GA is a random search algorithm based on the concept of natural selection inherent in 

natural genetics, which presents a robust method to search for the optimum solution to the 

complex problems. In the present study, the GA is implemented using pseudo code (toolbox) 

available in Matlab (Math Works Inc. 2005). 
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6.2.4. Database and Pre-processing 

In the present study, the models are developed based on the post liquefaction SPT database 

compiled and reassessed by Cetin (2000). The total database consists of 198 cases from 

different earthquakes around the world. But, in the present study 163 cases are considered 

and the remaining 35 cases of proprietary data of 1995 Hyogoken-Nambu (“Kobe”) 

earthquake could not be considered as the details are not available in Cetin (2000). The 

database contains information about soil and seismic parameters such  as: Nm, correction for 

“short” rod length (CR), correction for non-standardized sampler configuration (CS), 

correction for borehole diameter (CB), correction for hammer energy efficiency (CE), FC, σv, 

σ’v, amax, Mwand liquefaction field performance observation, LI. The soil in these cases 

ranges from sand to silt mixtures (sandy and clayey silt). As per Cetin (2000) the case 

histories in the database have been classified in three groups as Class A, Class B and Class 

C in decreasing order according to the quality of informational content. In the present study, 

43cases out of 44 Class A   data, 111 cases from 113 Class B data and all the 6 Class C data 

have been considered as the left out cases are marginally liquefied cases. Out of total 160 

cases of data considered for model development 92 cases are liquefied and 68 cases are non-

liquefied. The summarized extract of the database used for model development is provided 

in the Table 6.1 in terms of maximum and minimum values of the mean and coefficient of 

variation (COV) of the various variables considered in the present investigation as inputs 

and output. 

6.2.5  Results and Discussion  

In the MGGP procedure a number of potential models are evolved at random and each 

model is trained and tested using the training and testing cases respectively. The fitness of 

each model is determined by minimizing RMSE between the predicted and actual value of 

the output variable (LI) as the objective function or error function (Ef),          

 

                      (6.30) 
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where, LI= 1 (liquefied case), 0 (non-liquefied case), n = number of cases in the fitness 

group. If the errors calculated by using Eq. (6.30) for all the models in the existing 

population do not satisfy the termination criteria, the generation of new population continues 

until the best model is developed as per the earlier discussion.  

Table 6.1 Summary of the database used for development of different models in the present 

study. 

 

Model 

Variables 
Type 

Maximum 

mean 

Value 

Minimum 

mean 

Value 

Maximum 

COV 

Value 

Minimum 

COV 

Value 

d (m) 

Input 

 

20.400 1.100 - - 

Nm 37.000 1.500 0.815 0.007 

FC(%) 92.000 0 2.000 0 

σv (kPa) 383.930 15.470 0.280 0.031 

σ’v (kPa) 198.660 8.140 0.378 0.044 

amax(g) 0.693 0.090 0.300 0.011 

Mw 8.000 5.900 0.025 0 

LI Output 1.000 0 - - 

 

 
Fig. 6.3 An example of K-fold cross validation approach where the data are split into K (4) 

equal folds (modified from Oommen and Baise, 2010). 
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It is pertinent to mention here that to make a substantive claim that the developed MGGP-

based LIp model is the “best”, some sort of repeated validation scheme such as K-fold cross-

validation or repeated random sub-sampling needs to be followed. Thus, in the present 

study, K-fold cross validation (Oommen and Baise 2010), which is a more reliable and 

robust approach has been used to obtain the most “efficient” LIp-based predictive model by 

the MGGP. Here, the original data (160 cases) of the present database is split into 

approximately K (4) equal folds. For each K split, (K-1)-folds are used for training and the 

remaining one fold is used for testing the developed model as shown in Fig. 6.3. Therein, the 

filled rectangles represent testing data, whereas the open rectangles represent the training 

data for each split. Hence, in each split out of the mentioned 160data, 120 data are selected 

for training and remaining 40 data are used for testing the developed model. The advantage 

of K-fold cross validation is that all the cases in the database are ultimately used for both 

training and testing. For each split, several LIp models were obtained by using optimized 

values of the controlling parameters of MGGP as explained in the Chapter-IV. Then, the 

developed models were analyzed with respect to physical interpretation of LI of soil, and 

after careful consideration of various alternatives, four  models, “best” one of each split, are 

selected. 

Table 6.2 Performance in terms of the rate of successful prediction of MGGP-based LIp 

models on the basis of K-fold cross validation 

 

Model Rate of successful prediction (%) 

Split -1 Split -2 Split -3 Split -4 Summary 

MGGP based 

LIp model 
85 83 80 88 84 

It is important to note that the efficiency of different models should be compared in terms of 

testing data rather than as per training data (Das and Basudhar, 2008). Hence, the efficiency 

of each of the 4 developed LIp models are evaluated by calculating the rate of successful 

prediction in percentage on test data of each of the K (4) splits. From Table 6.2 it can be 

observed that the efficiency of developed MGGP-based “best” LIp model, out of the four 

models, in terms of rate of successful prediction of liquefied and non-liquefied cases is 88%. 

The “best” MGGP-based LIp model was obtained with population size of 4000 individuals at 
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150 generations with reproduction probability of 0.05, crossover probability of 0.85, 

mutation probability of 0.1., Gmax as 4 and dmax as 3.   The developed “best” LIp model can 

be described as Eq. (6.31).  
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                 (6.31) 

The statistical performances of both training and testing data for the developed LIP model 

(Eq. 6.31) in terms of R (0.74,0.73), R
2
( 0.8, 0.79), E (0.55,0.54), AAE (0.27,0.29), MAE 

(0.76,0.70) and RMSE (0.33,0.35) are found to be comparable showing good generalization 

of the developed model, which also ensures that the model is not over-fitting to training 

data. A prediction in terms of LIp is said to be successful if it agrees with field manifestation 

of the database. As per Eq. (6.31) the rate of successful prediction of liquefied and non-

liquefied cases are 85% for training and 88% for testing data.  

The Eq. (6.31) can be used by geotechnical engineering professionals with the help of a 

spreadsheet to predict the occurrence of liquefaction based on soil properties in a future 

seismic event without going into complexities of model development. In the present study, 

the developed LIp model is further used for the development of a proposed CRR model. 

 

 6.2.5.1 Generation of artificial points on the limit state curve 

To approximate a limit state function that will separate liquefied cases from the non-

liquefied ones, artificial data points on the boundary curve are generated using the Eq. (6.31) 

and following a simple but robust search technique developed by Juang et. al (2000b). The 

technique is explained conceptually with the help of Fig. 4.4 of Chapter-IV and same is 

followed for the present problem. Fig. 6.4 shows the detailed flow chart of this search 

technique for path ‘P’ and ‘T’. A multi-dimensional data point (N1, 60, FC, σ’v, CSR7.5) on the 

unknown boundary curve is obtained from each successful search. A total of 240 multi-

dimensional artificial data points (N1,60, FC, σ’v, CSR7.5), which are located on the boundary 

curve are generated using the developed MGGP-based LIp model (Eq. 6.31) and following  
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the Figs.4. 4 and 6.4. The data points are used to approximate the limit state function in the 

form of CRR= f (N1, 60, FC, σ
’
v) using MGGP and is presented below. 

 

6.2.5.2 MGGP Model for CRR 

The MGGP is adopted to develop the CRR model using the above 240 artificially generated 

data points. The K-fold (4) cross validation procedure is also adopted to find the “best” 

MGGP-based CRR model.  Here, out of 240 generated data points in each of K (4) split 180 

data points are selected for training and the remaining 60 for testing the developed model. 

For each split, several CRR models were obtained by using the obtained optimum values of 

controlling parameters of the MGGP as explained earlier in Chapter-IV for the development 

of the LIp model. Similarly, four models, “best” one of each split are selected and their 

statistical performances in terms of R, R
2
, E, AAE, MAE and RMSE on the basis of testing 

data are evaluated and presented in Table 6.3. The model obtained from split-1 is found to 

be the “best” among these four models on the basis of above statistical performances and is 

described below as Eq. (6.32). 
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 Fig. 6.4 Search algorithm for data points on limit state curve. 
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Input data of a post liquefaction SPT-based case history 

(Nm , CR, CB, CS, CE, σv, σ
’
v, FC, amax, Mw) 

 

CRR=CSR7.5= f (N1,60, FC, σ
’
v) 

 

Optimize (LIp-0.5) using solver option of 

MSExcel to a value of 0.0. Keeping N1,60, FC, 

σ
’
v constant and changing (decreasing) 

CSR7.5with a constraint that CSR7.5 value 

remains within upper and lower limit as per the 

database.  

Optimize (0.5-LIp) using solver option of 

MSExcel to a value of 0.0. Keeping N1,60, FC, 

σ
’
v constant and changing (increasing) CSR7.5 

with a constraint that CSR7.5 value remains 

within upper and lower limit as per the 

database.  
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Derived parameters 

(N1,60, CSR7.5) 

 

Calculation of LIp= f (N1,60 , FC, σ
’
v, CSR7.5) 

using MGGP model Equation (6.31) 
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Table 6.3 Performance in terms statistical parameters of MGGP-based   CRR models on the 

basis of K-fold cross validation. 

 

The statistical performances of the “best” MGGP-based CRR model in terms of R, R
2
E, 

RMSE, AAE and MAE as presented in Table 6.4 for both training and testing data are 

comparable showing good generalization of the developed model (Eq. 6.32), which ensures 

that there is no over-fitting. Thus, in the present study a single, comprehensive and compact 

model (Eq. 6.32) for CRR is obtained using MGGP unlike the most widely used regression- 

based lengthy model equation as recommended by Youd et al. (2001).Unlike, the CRR 

model of Youd et al. (2001) the present CRR model can be used without converting N1,60 to 

the equivalent clean-sand overburden stress corrected SPT blow count (N1,60,cs).  

Table 6.4 Statistical performances of the developed “best” MGGP-based CRR model. 

 

The performance of the proposed CRR model is also evaluated by calculating the Fs for each 

case of field performance of the present database as discussed earlier. In deterministic 

approach Fs ≤ 1 predicts occurrence of liquefaction and Fs > 1 refers to non-liquefaction. A 

prediction (liquefaction or non-liquefaction) is considered to be successful if it agrees with 

the field manifestation. The deterministic approach is preferred by the geotechnical 

professionals and the design decisions are taken on the basis of Fs. In the present study, Eq. 

(6.32) in conjunction with the model for CSR7.5 (Eq. 6.6) is proposed for evaluation of 

liquefaction potential in deterministic approach. It can be noted that the success rate in 

prediction of liquefied cases is 89% and that for non-liquefied cases is 81% and the overall 

 R R
2 

E AAE MAE RMSE 

Split -1 0.98 0.99 0.95 0.01 0.05 0.02 

Split -2 0.89 0.97 0.79 0.02 0.18 0.04 

Split -3 0.93 0.98 0.86 0.02 0.16 0.03 

Split -4 0.97 0.99 0.94 0.01 0.08 0.02 

Summary 0.95 0.98 0.89 0.02 0.12 0.03 

Data (Numbers) R R
2
 E AAE MAE RMSE 

Training (180) 0.96 0.99 0.92 0.01 0.13 0.02 

Testing (60) 0.98 0.99 0.95 0.01 0.05 0.02 
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success rate is found to be 85% by the present MGGP model. The prediction performances 

for liquefied and non-liquefied cases are nearly equal, which indicates the un-biasedness of 

the developed boundary surface. Ideally, a boundary surface (i.e., CRR model) is said to be 

unbiased if the probability of occurrence of liquefaction, PL is 50% corresponding to Fs = 1. 

Further, the model is calibrated with respect to the liquefaction field manifestations of the 

present database to develop a relationship between Fs and PL using Bayesian theory, and also 

to quantify the degree of conservatism associated with the developed CRR model (relative to 

CSR model). 
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Fig. 6.5   Histogram showing the distributions of calculated factor of safeties: 

(a) Liquefied (L) cases; (b) Non-liquefied (NL) cases. 
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6.2.5.3  PL-Fs   mapping function 

The calculated Fs values for different cases of the present database are grouped according to 

the field performance observation of liquefaction (L) and non-liquefaction (NL).After 

considering several different probability density functions, it is found that both the liquefied 

and non-liquefied groups are best fitted by lognormal distribution with parameters (,  

are (-0.441, 0.437) and (0.419, 0.506) respectively as shown in Fig. 6.5 (a) and (b). 

According to Juang et al.(1999b) the probability of liquefaction occurrence of  a case in the 

database, for which  the  Fs has been calculated, can be found out by using Bayesian  

theorem of conditional probability and following  Eq. (5.4) of the Chapter-V. For the present 

SPT-based database fL (Fs) and fNL (Fs) of Eq. (5.4) are the lognormal probability density 

functions (PDFs) of  Fs for liquefied cases and non-liquefied cases, respectively. Based on 

the obtained probability density functions, PL is calculated using Eq. (5.4) for each case in 

the database. The Fs and the corresponding PL of the total 160 cases of database are plotted 

and the mapping function is approximated through curve fitting as shown in Fig. 6.6. The 

mapping function is presented as Eq. (6.33) with a high coefficient of determination value 

(R
2
) of 0.99.   
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where a (1.003) and b (4) are the parameters of the fitted logistic curve. The Fs is calculated 

using the proposed MGGP-based deterministic method (Eq.6.6 and Eq.6.32) and then, 

corresponding PL can be found out using the developed mapping function.   

The proposed CRR model is also characterized with a probability of 50.3% as 

PL=0.503according to the Eq. (6.33) when Fs=1.0, which indicates that CRR model is 

unbiased relative to CSR7.5model (Juag et al. 2000b). Ideally, a boundary surface (i.e. CRR 

model) is said to be unbiased if its probability of occurrence of liquefaction, PL is 50% 

corresponding to Fs = 1. 
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Thus, the degree of conservatism of the developed limit state boundary surface can be 

quantified in terms of PL as 50.3%. Juang et al. (2008) developed a SPT-based PL-Fs 

mapping function, which characterizes their adopted CRR model (Youd et al., 2001) by a PL 

of 55% corresponding to Fs=1. 

 

6.2.5.4 Estimation of model uncertainty from reliability analysis 

The most unbiased evaluation of liquefaction potential of soil is possible with a boundary 

surface, separating liquefied and non-liquefied cases, having 50% of the PL. Such a limit 

state model is considered to have no model uncertainty. Alternately, unbiased evaluation of 

liquefaction potential is possible by quantifying the model uncertainty of the limit state and 

incorporating correct model uncertainty in the reliability analysis for liquefaction potential 

evaluation. The model uncertainty of the liquefaction limit state model (Eq. 6.15) may be 

represented with a random variable ‘cmf’ and referred herein as model factor (Juang et al. 

2006). Thus, the liquefaction limit state model can be presented as given below: 

CSRCRRcQRczg mfmf )(                                             (6.34) 
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Fig. 6.6   Plot of PL-Fs showing the mapping function approximated through curve fitting. 
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where g(z) = limit state function considering model uncertainty and z= vector of input 

parameters. The uncertainty in the CRR model (Eq.6.44) is only considered, and the effect of 

the unrealized uncertainty associated with the CSR model is realized in the CRR model as 

the CRR model is developed using CSR model (Eq.6.6). 

In the present study, the model factor ‘cmf’ is treated as a random variable and then, 

combining it with the basic input parameters from the CRR (Eq.6. 32)and CSR (Eq.6.6) 

models, the limit state function (Eq. 6.34) for the reliability analysis can  be presented as Eq. 

(6.35): 

 ),,,,,,()( max
'

wvvmmfmf MaFCNcgCSRCRRczg                                 (6.35) 

Each of the six basic input parameters in Eq.(6.35); Nm, FC, σv, σ’v, amax and Mw is 

considered as a random variable and is assumed to follow a lognormal distribution, which 

has been shown to provide a good fit to the measured geotechnical parameters (Jeffries et al. 

1988). The mean and coefficient of variation (COV) of each of the input parameters for the 

94 cases considered in the present study for reliability analysis are obtained from Cetin 

(2000) and Moss (2003). Here, only 94 cases (59 liquefied and 35 non-liquefied cases) out 

of total 160 cases of the above database are considered for reliability analysis as the site 

specific COV of the parameter Mw is not available in Cetin (2000) but, the same is obtained 

for the mentioned 94 cases from Moss (2003). Juang et al. (2008) assumed a single value of 

COV of Mw as 0.1 for each case of database instead of site specific COV for their SPT-based 

reliability method. The model factor (cmf) is also assumed to follow lognormal distribution, 

which is very well accepted in reliability analysis (Juang et al. 2006).The model factor (cmf) 

is also characterized with a mean (µcmf) and a COV. Thus, estimation of model uncertainty 

includes determination of these two statistical parameters of ‘cmf’. 

In the present study, the correlations among the input variables are incorporated in the 

reliability analysis. The correlation coefficients between each pair of parameters used in the 

proposed limit state are provided in Table 6.5 as estimated by Juang et al. (2008) from the 

original database of Cetin (2000). As per Phoon and Kulhawy (2005), the model factor, cmf 
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is very weakly correlated to input variables. Thus, in the present study no correlation is 

assumed between cmf and the other six input parameters considered herein. 

Table 6. 5 Coefficients of correlation among six input variables as per Juang et al.(2008). 

 

Input 

Parameters 

Input Parameters 

N1,60 FC σ
’
v σv amax Mw 

N1,60 1 0 0.3 0.3 0 0 

FC 0 1 0 0 0 0 

σ
’
v 0.3 0 1 0.9 0 0 

σv 0.3 0 0.9 1 0 0 

amax 0 0 0 0 1 0.9 

Mw 0 0 0 0 0.9 1 

In the present FORM analysis, the GA is used as optimization tool to obtain reliability 

index, β. Thus, the limit state function, g (z) = 0 (Eq. 6.35) is used as constrained function 

and the Eq. (6.24a) is the objective function. Some of the GA parameters such as initial 

population size (Npop), probability of crossover (Pc), probability of mutation (Pm) and 

maximum number of generation (MaxGen) affect the convergence rate. Thus, through a 

sensitivity analysis the following appropriate values are found and are applied for GA 

analysis: Npop = 200, Pc= 0.75, Pm =0.05 and MaxGen = 100.  Following the flow chart as 

shown in Fig. 6.7, a code is developed in MATLAB (Math Works Inc. 2005) to estimate β. 

Then, notional probability of liquefaction, PL is obtained using Eq. (6.18). 

In the present study, as the model uncertainty is not known initially, the reliability index 

calculated without considering model uncertainty or considering any assumed value will 

result in incorrect calculation of β and the corresponding notional probability PL. Hereafter, 

reliability index calculated without taking into account the model uncertainty is designated 

as β1, whereas the reliability index calculated considering any value of model uncertainty is 

denoted as β2. 

In the first step of model uncertainty determination procedure, the reliability index,β1 is 

calculated for each of the 94 cases of the database considered for the present study. 

Following Bayesian mapping function approach and calibrating with field manifestations of 
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the database as explained in the section, 6.2.5.3, PL-β relationship is obtained as given 

below. 

 
   
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NLL
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ff

f
P                                                 (6.36) 

where fL(β) and fNL(β) are the PDFs of the calculated β of group L and NL cases, 

respectively. PL for each case of the database is calculated using Eq. (6.36). Fig.6.8 shows a 

plot of PL- β1 relationship obtained from the reliability analyses of 94 cases of database 

without considering the model uncertainty. The notional probability of each case of the 

database using Eq. (6.18) is calculated and plotted the same inFig.6.8. A difference is 

observed between the national concept-based PL-curve and Bayesian mapping function-

based PL-curve. The later curve is calibrated empirically with the field manifestations of 

case history database considered herein the present study and thus, it is assumed to be most 

probable evaluation of the “true” probability of liquefaction. 

It can also be observed from the Bayesian mapping function-based PL-curve of the Fig. 6.8 

that PL =0.52 when β1 =0. This result is consistent with the 50.3% probability of the 

developed CRR model as suggested by PL-Fs mapping function (Eq. 6.33), which has been 

discussed in the earlier section. This indicates the robustness of the proposed methodology. 

The accuracy of calculated probability on the basis of notional concept depends on the 

accuracy with which β is calculated. As in the above study, β is calculated without 

considering limit state model uncertainty in reliability analysis, it is subjected to some error 

and thus, the resulting notional probability may not be completely accurate. But, notional 

probability concept always yields: PL=0.5 at β=0.  If “true” model uncertainty can be 

incorporated with the limit state model then, the resulting reliability index (β2) at 0 will 

produce a PL value of 0.5 from the calibrated Bayesian mapping function approach. 
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The methodology for estimating the uncertainty of the adopted limit state model (Eq. 6.35) 

is based on the proposition that a calibrated Bayesian mapping function produces a most 

accurate estimate of the “true probability of liquefaction” for any given case. With the above 

idea, a simple but, trial-and-error procedure is adopted to estimate model uncertainty. The 

“true” model uncertainty is the one that yields the reliability indices and the corresponding 

notional probabilities matching best with those probabilities calculated from the calibrated 

Bayesian mapping function (Juang et al., 2006). And also the plot of β2versus PL as obtained 

from the calibrated Bayesian mapping function will produce a PL value of 0.5 at β2=0. 

Fig. 6.7   Flow chart of the proposed FORM analysis with GA as optimisation tool. 

 

Calculate   β 

)(1 
L

P (Eq.6.18) 

Genetic Algorithm 

 

Obtain the constrained function:  

0)( zg     (Eq. 6.47) 

 

 

 

0)( zg   (Eq. 6. 35) 

Calculate CSR (Eq. 6.6) and CRR (Eq. 6.32) 

Calculate the objective function: 

''min zz
T

       (Eq. 6.24a) 

Convert to correlated lognormal parameters (Eq.s 
6.20, 6.28 , 6.29) 

Convert to correlated standard normal variables using 
Cholesky approach (Eq. 6.27) 

GA parameters 

(Npop, MaxGen, Pm, 

Pc) 

Mean and COV of 

Nm, FC , σv, σ’v, Mw, 

amax, and cmf 

 

 

Soil parameters, seismic parameters and 

model factor (standard normal and 

uncorrelated) 
(Nm, FC, σv, σ’v, Mw, amax, and  cmf) 
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Fig. 6.8. PL- β1 mapping function obtained from the reliability analysis of 94 cases of 

liquefaction and non-liquefaction without considering model uncertainty. 

 

In the first phase of model uncertainty estimation procedure, a series of reliability analysis of 

94 cases of the database are performed to study the effect of COV component of the model 

factor, cmf. Four cases of model uncertainty, each with the mean of the model factor being 

kept equal to1.0 (µcmf= 1.0) and a different COV of 0.0, 0.1, 0.2, 0.3 are studied. For each 

case of model uncertainty, β2 values are calculated for the 94 cases of the database. A 

Bayesian mapping function is obtained for each model uncertainty scenario, as discussed 

above and presented a PL-β relationship using Eq. (6.36). From the developed mapping 

function for each of the above mentioned model uncertainty scenario liquefaction 

probabilities are obtained from the corresponding β2 values. Fig. 6.9 shows the plot between 

β2 versus PL for each of the above mentioned model uncertainty. It is clearly indicated that 

within the considered range of COV value: [0–0.3], COV component of the model 

uncertainty has got significant effect on the calculated probability.  
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Fig. 6.9 PL- β mapping functions showing effect of COV of model factor on probability of 

liquefaction. 
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Fig. 6.10. PL- β mapping functions showing effect of mean of model factor (µcmf) on 

probability of liquefaction
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In second phase of investigation COV component of model uncertainty is kept constant at 

0.1, whereas the mean value of cmf is varied from 0.9 to 1.1 at an interval of 0.05 (i.e. µcmf= 

0.9, 0.95, 1.0, 1.05 and 1.1). For each of the above scenario of model uncertainty, Bayesian 

mapping function is developed using all the 94 cases of liquefaction and non-liquefaction for 

reliability analysis as mentioned previously. Then, PL values calculated from the mapping 

functions are plotted against the corresponding reliability index (β2) for different cases of 

model uncertainty as mentioned above and presented in Fig.6.10. It can also be observed 

from the above figures that the mapping function is shifted from left to right as µcmf 

increases, and also the probability corresponding to β2= 0 increases. As per Fig. 6.10, at 

µcmf= 1 and COV = 0.1, the PL= 0.52 at β= 0, whereas µcmf =0.95 produces a lower value of 

PL(0.48) at β= 0. Thus, an intermediate value of µcmf = 0.98is considered for further 

reliability analysis. As already it has been observed that COV has got significant effect on 

calculated PL, keeping µcmf= 0.98 and changing COV component from 0 to 0.30 a series of 

reliability analysis of all the 94 cases are performed and similarly, the Bayesian mapping 

functions are obtained. The PL versus β2 plot for the above cases is shown in Fig.6.11 and it 

is clearly observed that from the mapping function curves for the two uncertainty scenarios: 

µcmf = 0.98; COV=0, and for µcmf = 0.98; COV=0.1, the PLis found out to be 0.5 at β= 0. The 

latter scenario of model uncertainty is considered as “true” model factor considering the 

explanation given below. 

Fig.6.12 shows a comparison of the probability of liquefaction for each of 94 case- histories 

obtained from two mapping functions, one with considering the “true” model uncertainty 

(i.e. µcmf= 0.98 and COV = 0.1) and the other without considering the model uncertainty (i.e. 

µcmf = 1.00  and COV = 0). In the earlier case, the reliability index, β2 for each case is 

calculated and then, the corresponding mapping function is established using Eq. (6.36).In 

the latter case, reliability index β1for each case is determined and then, the corresponding 

mapping function is developed in the similar manner using Eq. (6.36). The two sets of 

probabilities obtained for all the 94 cases based on the two sets of mapping functions agree 

well with each other, which is evident from the statistical parameters ( R =0.99,  E = 0.99 

and RMSE = 0.02) as mentioned in the  Fig. 6.12. 
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Fig. 6.11 PL- β mapping functions showing effect of mean (µcmf)  and COV of “true” model 

factor on probability of liquefaction i.e. at β=0, PL = 0.5.
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Fig. 6.12 Comparison of probability of liquefaction obtained for the 94 cases of the database 

from the mapping functions, one based on β2 (using µcmf =0.98 and COV=0.1) and other 

based on β1. 
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Fig. 6.13 shows the comparison of the notional probabilities obtained for all the 94 cases of 

present database using the reliability index β2 calculated by taking into account the “true” 

model factor(µcmf = 0.98 and COV = 0.1) with the probabilities obtained from the PL-β1 

mapping function, which has not  considered model uncertainty in the reliability analyses. 

The Fig. 6.13 also shows very good agreement (R=0.99, E=0.94 and RMSE = 0.10) between 

the probabilities obtained from two different concepts, which indicates that the probability 

of liquefaction can be correctly calculated from the notional concept if the right model 

uncertainty is incorporated in the reliability analysis. Similar analysis is made with the 

model uncertainty scenario of µcmf = 0.98; COV = 0, and it is found that earlier case (µcmf = 

0.98; COV = 0.1) is yielding better result as per the above considered statistical parameters. 

Thus, in the present study, the “true” model uncertainty of the developed limit state, 

considering the present database, is characterized by µcmf= 0.98 and COV = 0.1. Juang et al. 

(2008) using the same SPT database characterized the limit state model formed by CSR and 

CRR model as presented in Youd et al. (2001) with a model uncertainty of µcmf = 0.96  and  

COV=0.04 using FORM analysis.  
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Fig. 6.13.  Comparision of notional probability of liquefaction obtained for the 94 cases 

based on β2 (using µcmf =0.98 and COV=0.1) with PL obtained from mapping functions 

based on β1. 

 

Finally, the PL can be estimated from the developed PL-β1 mapping function using a 

reliability index, β1 that is calculated by FORM considering only parameter uncertainties. 

Alternatively, the reliability index β2 can be determined by FORM considering both model 

and parameter uncertainties, and then, the PL can be obtained with the notional concept 

using Eq. (6.18). The notional concept to estimate the PL of a future case is preferred as the 

model uncertainty of the adopted limit state has been determined and also it is a well-

accepted approach in the reliability theory (Juang et al. 2006). 

To explain the above findings one example of liquefied case from 1978, Miyagiken-Oki 

earthquake atIshinomakai-2 site as presented in the database of Cetin (2000) has been 

analyzed to find the PL. The soil and seismic parameters at critical depth (d =3.7m) are given 

as follows: Nm = 3.7; CB=1; CS =1; CR=0.77; CE=1.09; FC= 10%; σv =58.83kPa; σ’v =36.28 

kPa; amax = 0.2 g and Mw = 7.4. The COV of the parameters: Nm, FC, σv, σ’v, amax are 0.189, 
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0.2, 0.217, 0.164, 0.2 respectively, whereas the COV of Mw is taken as 0.1 as per Juang et al. 

(2008) as it is not available in Cetin (2000).The Eq.(6.6) and Eq.(6.32) are used to form the 

limit state model of liquefaction and considering the model uncertainty (µcmf= 0.98 and COV 

= 0.1), FORM analysis is made using the developed code in MATLAB. The reliability 

index, β2 and corresponding notional probability of liquefaction, PL using Eq. (6.18) are 

found out to be -1.3437 and 0.91 respectively. The above example was also solved by Juang 

et al. (2008) and the reliability index-based notional PL value was obtained as 0.91. The 

results of both the methods confirm the case as liquefied, and the PL calculated by the 

proposed MGGP-based reliability method is also found to be equal to that obtained by 

statistical regression-based reliability method of Juang et al. (2008).Similarly, probability of 

liquefaction can be evaluated using PL-Fs mapping function using only the mean values of 

the input variables. For the above example of liquefied case, using Eq. (6.6) and Eq. (6.32) 

Fs is found out to be 0.575, and thus, PL = 0.90 according to Eq. (6.33). Thus, the consistent 

results are obtained considering two different approaches. 

Another example of a non-liquefied case from 1977, Argentina earthquake at San Juan B-5 

as presented in Cetin (2000) has been analyzed to find PL. The mean values of seismic and 

soil parameters at the critical depth (d =2.9 m) are given as follows: Nm = 15.2; CB=1; CS =1; 

CR=0.72; CE=0.75; FC= 3%; σv = 45.61 kPa; σ’v = 38.14 kPa; amax = 0.2 g and Mw = 7.4 and 

the corresponding COV of these parameters are 0.026, 0.333, 0.107, 0.085,and 0.075, 

respectively, whereas the COV of Mw is taken as 0.1as per Juang et al. (2008) as it is not 

reported in Cetin (2000).Similarly as explained above, CSR and the CRR model equations 

are used to form the limit state of liquefaction and considering the model uncertainty (µcmf = 

0.98 and COV = 0.1), FORM analysis was made using the developed code in MATLAB. 

The reliability index, β2 and corresponding notional probability of liquefaction PL using Eq. 

(6) are found out to be 0.0213 and 0.491 respectively, and the result confirms the case as 

non-liquefied one. The above example is also presented in Juang et al. (2008) and the 

corresponding reliability index and notional PL are obtained as 0.533 and 0. 297. But, in this 

example the COV of N1,60  is wrongly taken to be 0.23 in stead of 0.023 as  presented in 

Cetin (2000).Thus, there is a discrepancy in the results of the above example as obtained by 

proposed method and  the method of  Juang et al. (2008).For the above example of non-
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liquefied case, using the mean values of parameters and the  Eq. (6.6) and Eq. (6.32),  Fsis 

found out to be 1.044, and thus, as per Eq. (6.33) PL = 0.460, which is nearly equal to the PL 

of 0.491 as obtained from the reliability analysis. 

The consistent results are obtained in the above two examples, which suggests the 

robustness of the present methodology. These two examples also illustrate the procedure for 

evaluation of PL of a site in a future seismic event using the proposed reliability based 

analysis if the uncertainties of soil and seismic parameters of the site are known. The Eq. 

(6.33) can be used for preliminary estimation of PL of cases where there is lack of 

knowledge of parameter uncertainties. 

6.3  DEVELOPMENT OF CPT-BASED RELIABILITY MODEL  

6.3.1 Methodology 

Similarly as explained above, first, the MGGP is used to develop a liquefaction field 

performance observation function termed as liquefaction index (LI) using post liquefaction 

CPT database. In the second step, artificial data points are generated for the unknown 

boundary curve separating liquefied cases from non-liquefied cases using a search technique 

as explained in Chapter-IV. The boundary curve referred as a “limit state function” 

representing the CRR of the soil is approximated with the generated data points using 

MGGP. The developed CRR model along with the CSR model (Idriss and Boulanger 2006) 

forms the performances function or limit state model of liquefaction for reliability analysis. 

Here, FORM is used to evaluate the liquefaction potential of soil in terms of PL, which 

requires the knowledge of both parameter and model uncertainties. The uncertainty 

associated with proposed limit state model is determined following the extensive sensitive 

analysis as adopted by Juang et al. (2006) through a rigorous reliability analysis associated 

with Bayesian mapping function approach. Bayesian theory of probability is used to create a 

mapping function to relate Fs with PL.  
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6.3.2  MGGP-based LIp model  

The general form of MGGP-based LIp model for the present CPT database can be presented 

as: 

   0
1

∑ ,, ccXfXFLI
n

i
ip 

       (6.37) 

where LIp = predicted value of LI, F = the function created by the MGGP  referred herein as 

liquefaction index function, X = vector of input variables = { qc1N, Ic,  σv
’
,CSR7.5},  qc1Nis 

normalized cone tip resistance (Idriss and Boulanger 2006): 
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Ic = soil type index (Juang et al. 2003) as per Eq. (4.17),CSR7.5 is the cyclic stress ratio as 

presented by Eq. (6.6),  f  are the functions defined by the user, n is the number of terms of 

target expression and c0= bias. The MGGP as per Searson et al. (2010) is used and the 

present model is developed and implemented using Matlab (Math Works Inc. 2005). 

 

6.3.3 Reliability Analysis 

Reliability analysis using the present CPT database can be done following the methodology 

as described in the section 6.2.3 with little modification to the liquefaction performance 

function, Z.  The Z for the CPT analysis depends on R and Q, which are the functions of 

multiple basic variables such as measured cone tip resistance (qc), sleeve friction (fs), σv, σ’v, 

amax and Mw.  
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6.3.4  Database and Pre-processing  

In the present study, the models developed based on the post liquefaction CPT database 

compiled and reassessed by Moss (2003).The database consists of 182 cases from 18 

different earthquakes around the world, 139 of them are liquefied cases and the other 43 are 

non-liquefied cases. It contains information about soil and seismic parameters such qc, fs, σv, 

σ’v, amax, Mw and liquefaction field performance observation, LI. The soil in these cases 

ranges from sand to silt mixtures (sandy and clayey silt). As per Moss (2003) the case 

histories in the database have been classified in four groups as Class A, Class B, Class C and 

Class D in decreasing order according to the quality of informational content. In the present 

study, all the 27 cases of Class A and 117 cases out of 125 Class B data have been 

considered. 8 cases of Class B data are not considered due to some ambiguity in statistical 

information of data, whereas none of the class C and D data is considered for the present 

model development. Thus, out of total 144 cases of data considered for model development 

110 cases are liquefied and 34 cases are non-liquefied. The summarized extract of the 

database used for model development is provided in the Table 6.6 in terms of maximum and 

minimum of mean values and COV of various parameters considered in the present 

investigation as inputs and output. 

 

Table 6.6 Summary of the database (Moss 2003) used for development of different 

models in the present study 

 

Model 

Variables 
Type 

Maximum 

mean 

Value 

Minimum 

mean 

Value 

Maximum 

COV 

Value 

Minimum 

COV 

Value 

d (m) 

Input 

10.750 1.380 - - 

qc (kPa) 18830.000 730.000 0.954 0.032 

fs(kPa) 216.230 1.160 1.126 0.027 

σv (kPa) 193.690 26.000 0.206 0.031 

σ’v (kPa) 144.990 14.100 0.196 0.036 

amax(g) 0.770 0.090 0.351 0.036 

Mw 7.700 5.900 0.025 0.013 

LI Output 1 0 - - 
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6.3.5  Results and Discussion 

In the MGGP procedure a number of potential models are evolved at random and each 

model is trained and tested using the training and testing cases respectively. The fitness of 

each model is determined by minimizing the RMSE between the predicted and actual value 

of the output variable (LI) as the objective function or error function (Ef),                  

 
n

LILI
ERMSE

N

i
p

f





 1

2

                                        (6.42) 

where, LI= 1 (liquefied case), 0 (non-liquefied case), n = number of cases in the fitness 

group. If the errors calculated by using Eq. (6.42) for all the models in the existing 

population do not satisfy the termination criteria, the generation of new population continues 

until the best model is developed as per the earlier discussion.  

As described in previous section for SPT data analysis, K-fold cross validation (Oommen 

and Baise 2010), which is a more reliable and robust approach has been used to obtain the 

most “efficient” LIp-based predictive model by the MGGP. Here, the original data (144 

cases) of the present database is split into approximately K (3) equal folds. For each K split, 

(K-1)-folds are used for training and the remaining one fold is used for testing the developed 

model as shown in Fig. 6.14. Therein, the filled rectangles represent testing data, whereas 

the open rectangles represent the training data for each split. Hence, in each split out of the 

mentioned 144 data, 96 data are selected for training and remaining 48 data are used for 

testing the developed model. The advantage of K-fold cross validation is that all the cases in 

the database are ultimately used for both training and testing. 
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Split-1

Split-2

Split-3

Test cases

Total number of cases

 
Fig. 6.14 An example of K-fold cross validation approach where the data are split into K (3) 

equal folds (modified from Oommen and Baise 2010). 

 

For each split, several LIp models were obtained by using the optimum values of controlling 

parameters of the MGGP as obtained following the explanation given in Chapter-IV. Then, 

the developed models were analysed with respect to physical interpretation of LI of soil, and 

after careful consideration of various alternatives, three models, “best” one of each split, are 

selected. Hence, the efficiency of each of the 3 developed LIp models are evaluated by 

calculating the rate of successful prediction in percentage on test data of each of the K (3) 

splits. From Table 6.7 it can be observed that the efficiency of developed MGGP-based 

“best” LIp model, out of the three models, in terms of rate of successful prediction of 

liquefied and non-liquefied cases is 96%. The “best” MGGP-based LIp model was obtained 

from split-3 with population size of 3000 individuals at 250 generations with reproduction 

probability of 0.05, crossover probability of 0.85, and mutation probability of 0.1, Gmax as 4 

and dmax as 3.   

Table 6.7 Performance in terms of the rate of successful prediction of MGGP-based LIp 

models on the basis of K-fold cross validation. 

 

Model Rate of successful prediction (%) 

Split-1 Split-2 Split-3 Summary 

MGGP based LIp 

model 

94 89 96 93 
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 The developed “best” LIp model can be presented as Eq. (6.43).  
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Table 6.8 shows the statistical performances of both training and testing data for the 

developed LIP model (Eq. 6.43) in terms of R,R
2
, E, AAE, MAE and RMSE and are found to 

be comparable showing good generalization of the developed model, which also ensures that 

the model is not over-fitting to training data. A prediction in terms of LIp is said to be 

successful if it agrees with field manifestation of the database. As per Eq. (6.43) the rate of 

successful prediction of liquefied and non-liquefied cases are 93% for training and 96% for 

testing data. The developed LIp model is further used for the development of a proposed 

CRR model. 

Table 6.8.  Statistical performances of the developed “best” MGGP- based LIp model
 

 

6.3.5.1 Generation of artificial points on the limit state curve 

To approximate a limit state function that will separate liquefied cases from the non-

liquefied ones, artificial data points on the boundary curve are generated using the Eq. (6.43) 

and following a simple but robust search technique as explained in Chapter-IV. The 

technique is already explained conceptually in section 4.3.2.4 with the help of Fig. 4.14 and 

Fig. 4.15 of Chapter-IV. A total of 213 multi-dimensional artificial data points (qc1N, Ic, σv
’
, 

CSR7.5), which are located on the boundary curve are generated using the developed MGGP-

based model Eq. (6.43). These data points are used to approximate the limit state function in 

the form of CRR= f (qc1N, Ic, σv
’
) using MGGP and presented below. 

Input 

variables 

Data R R
2 

E AAE MAE RMSE 

qc1N, Ic, 

σ
’
v, CSR7.5 

Training (96) 0.78 0.90 0.61 0.19 0.79 0.27 

Testing (48) 0.77 0.92 0.59 0.19 0.81 0.26 
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6.3.5.2 MGGP Model for CRR 

The MGGP is adopted to develop the CRR model using the above 213 artificially generated 

data points. K-fold (3) cross validation procedure is also adopted to find the “best” MGGP-

based CRR model.  Here, out of 213 generated data points in each of K (3)-split 142 data 

points are selected for training and the remaining 71 for testing the developed model. For 

each split, several CRR models were obtained by using optimized controlling parameters of 

the MGGP as mentioned earlier in Chapter-IV. Similarly, three models, “best” one of each 

split are selected and their statistical performances in terms of R, R
2
, E, AAE, MAE and 

RMSE on the basis of testing data are evaluated and presented in Table 6.9. The model 

obtained from split-2 was found to be the “best” among these three models on the basis of 

above statistical performances and described below as Eq. (6.44). 

5
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The statistical performances in terms of R, R
2
, E, RMSE, AAE and MAE as presented in 

Table 6.10 for both training and testing data are comparable showing good generalization of 

the developed CRR model (Eq. 6.44), which ensures that there is no over-fitting.  

Table 6.9 Performance in terms statistical parameters of MGGP-based CRR models on the 

basis of K-fold cross validation. 

 

 

 

 R R
2 

E AAE MAE RMSE 

Split1 0.94 0.96 0.88 0.02 0.16 0.03 

Split2 0.98 0.99 0.97 0.01 0.09 0.02 

Split3 0.92 0.94 0.85 0.02 0.28 0.03 

Summary 0.95 0.96 0.90 0.02 0.18 0.03 
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Table 6.10.  Statistical performances of developed “best” MGGP-based CRR model. 

 

The performance of the proposed CRR model is also evaluated by calculating the Fs for each 

case of field performance of the present database as discussed earlier. In deterministic 

approach Fs ≤ 1 predicts occurrence of liquefaction and Fs > 1 refers to non-liquefaction. A 

prediction (liquefaction or non-liquefaction) is considered to be successful if it agrees with 

the field manifestation. The deterministic approach is preferred by the geotechnical 

professionals and the design decisions are taken on the basis of Fs. In the present study, Eq. 

(6.44) in conjunction with the model for CSR7.5 (Eq.6.6) is proposed for evaluation of 

liquefaction potential in deterministic approach. It can be noted that the success rate in 

prediction of liquefied cases is 99% and that for non-liquefied cases is 65% and the overall 

success rate is found to be 91% by the present MGGP-based deterministic model. The poor 

prediction performance for non-liquefied cases may be attributed to the conservativeness of 

the developed boundary surface, which encompasses almost all the liquefied cases. The 

boundary surface (i.e. CRR model) is said to be unbiased if its PL is 50% corresponding to Fs 

= 1. Further, the model is calibrated with respect to the liquefaction field manifestations of 

the present database to develop a relationship between Fs and PL using Bayesian theory, and 

also to quantify the degree of conservatism associated with the developed CRR model 

(relative to CSR model) as presented below. 

 

6.3.5.3   PL-Fs   mapping function 

The calculated Fs values for different cases of the present database are grouped according to 

the field performance observation of liquefaction (L) and non-liquefaction (NL). After 

considering several different probability density functions as explained in section 5.2.1, it is 

found that the liquefied and non-liquefied groups are best fitted by Rayleigh distribution 

(0.303 and log normal distribution (µ=0.415, σ=0.861), respectively as shown in 

Data 

(Numbers) 
R R

2
 E AAE MAE RMSE 

Training (142) 0.99 0.99 0.97 0.01 0.11 0.02 

Testing (71) 0.98 0.99 0.97 0.01 0.09 0.02 
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Fig.6.15 (a) and (b). The probability of liquefaction occurrence of a case in the database, for 

which the Fs has been calculated, can be found out by using Bayesian theorem of conditional 

probability as given by the Eq. (5.4).The Fs and the corresponding PL of the total 144 cases 

of database are plotted and the mapping function is approximated through curve fitting as 

shown in Fig. 6.16. The mapping function is presented as Eq. (6.45) with a high R
2 

value of 

0.99.     
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where a (0.74) and b (4.65) are the parameters of the fitted logistic curve. The Fs is 

calculated using the proposed MGGP-based deterministic method (Eq.6.6 and Eq.6.44) and 

then, corresponding PL can be found out using the developed mapping function.  The 

proposed CRR model is also characterized with a probability of 20% as PL=0.20 according 

to the Eq.(6.45) when Fs=1.0.  
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Fig. 6.15   Histogram showing the distributions of calculated factor of safeties: 

(a) Liquefied (L) cases; (b) Non-liquefied (NL) cases. 
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Fig. 6.16  Plot of PL-Fs showing the mapping function approximated through curve fitting 
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6.3.5.4 Estimation of model uncertainty from reliability analysis 

The most unbiased evaluation of liquefaction potential of soil is possible with a boundary 

surface, separating liquefied and non-liquefied cases, having 50% of the PL. Such a limit 

state model is considered to have no model uncertainty. Alternately, unbiased evaluation of 

liquefaction potential is possible by quantifying the model uncertainty of the limit state and 

incorporating correct model uncertainty in the reliability analysis for liquefaction potential 

analysis. The model uncertainty of the liquefaction limit state model (Eq. 6.15) may be 

represented with a random variable ‘cmf’ and referred herein as model factor (Juang et al. 

2006). Thus, the liquefaction limit state model can be presented as given below: 

CSRCRRcQRczg mfmf )(                                             (6.46) 

where g(z) = limit state function considering model uncertainty and z= vector of input 

parameters. The uncertainty in the CRR model (Eq.6.44) is only considered, and the effect of 

the unrealized uncertainty associated with the CSR model is realized in the CRR model as 

the CRR model is developed using CSR model (Eq.6.6). 

In the present study, the model factor ‘cmf’ is treated as a random variable and then, 

combining it with the basic input parameters from the CRR (Eq.6.44)and CSR (Eq.6.6) 

models, the limit state function for the reliability analysis can  be presented as: 

),,,,,,()( max

'

wvvscmfmf MafqcgCSRCRRczg              (6.47) 

Each of the six basic input parameters in Eq.(6.47); qc, fs, σv, σ’v, amax and Mw is considered 

as a random variable and is assumed to follow a lognormal distribution, which has been 

shown to provide a good fit to the measured geotechnical parameters (Jeffries et al. 1988). 

The mean and coefficient of variation (COV) of each parameter for all the 144 cases 

considered in the present study for reliability analysis are obtained from Moss (2003). The 

model factor (cmf) is also assumed to follow lognormal distribution, which is very well 

accepted in reliability analysis (Juang et al. 2006).The model factor (cmf) is also 

characterized with a mean (µcmf) and a COV. Thus, estimation of model uncertainty includes 
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determination of these two statistical parameters of ‘cmf’. In the present study, the 

correlations among the input variables are incorporated in the reliability analysis.  

Table 6.11 Coefficients of correlation among six input parameters (Juang et al. 2006) 

 

Input 

Parameters 

Input Parameters 

qc fs σ
’
v σv amax Mw 

qc 1 0.6 0.3 0.2 0 0 

fs 0.6 1 0.4 0.3 0 0 

σ
’
v 0.3 0.4 1 0.9 0 0 

σv 0.2 0.3 0.9 1 0 0 

amax 0 0 0 0 1 0.9 

Mw 0 0 0 0 0.9 1 

 

The correlation coefficients between each pair of parameters used in the proposed limit state 

are provided in Table6.11 as estimated by Juang et al. (2006) from the original database of 

Moss (2003). As per Phoon and Kulhawy (2005), the model factor, cmf is very weakly 

correlated to input variables. Thus, in the present study no correlation is assumed between 

cmf and the other six input parameters considered herein. 

In the present FORM analysis, GA is used as optimization tool to obtain reliability index, β. 

Thus, the limit state function, g(z)=0 (Eq. 6.47) is used as constrained function and the Eq. 

(6.24a) is the objective function. Following the flow chart as shown in Fig. 6.17, a code is 

developed in MATLAB (Math Works Inc. 2005) to estimate β. Then, notional probability of 

liquefaction, PL is obtained using Eq. (6.18). 

In the present study, as the model uncertainty is not known initially, the reliability index 

calculated without considering model uncertainty or considering any assumed value will 

result in incorrect calculation of β and the corresponding notional probability PL. Hereafter, 

reliability index calculated without taking into account the model uncertainty is designated 

as β1, whereas the reliability index calculated considering any value of model uncertainty is 

denoted as β2. 

In the first step of model uncertainty determination procedure, the reliability index,β1 is 

calculated for each of the 144 cases of the database considered for the present study.  
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Fig. 6.17.   Flow chart of the proposed FORM analysis with GA as optimisation tool. 
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Following Bayesian mapping function approach and calibrating with field manifestations of 

the database as explained in 6.2.5.4, PL-β relationship can be obtained using Eq.(6.36). PLfor 

each case of the database is calculated using Eq. (6.36). Fig.6.18 shows a plot of PL- β 

relationship obtained from the reliability analyses of 144 cases of database considered for 

limit state model development without considering the model uncertainty. The notional 

probability of each case of the database using Eq. (6.18) is calculated and plotted in the same 

Fig.6.18.A difference is observed between the national concept-based PL-curve and 

Bayesian mapping function-based PL-curve. The later curve is calibrated empirically with 

the field manifestations of case history database considered herein the present study and 

thus, it is assumed to be most probable evaluation of the “true” probability of liquefaction. It 

can also be observed from the Bayesian mapping function-based PL-curve of the Fig. 6.18 

that PL=0.195, when β =0. This result is consistent with the 20% probability of the 

developed CRR model as obtained by PL-Fs mapping function (Eq. 6.45), which has been 

discussed in the earlier section. This indicates the robustness of the proposed methodology. 

The accuracy of calculated probability on the basis of notional concept depends on the 

accuracy with which β is calculated. As in the above study, β is calculated without 

considering limit state model uncertainty in reliability analysis, it is subjected to some error 

and thus, the resulting notional probability may not be completely accurate. But, notional 

probability concept always yields: PL=0.5 at β=0.  If “true” model uncertainty can be 

incorporated with the limit state model then, the resulting reliability index (β2) at 0 will 

produce a PL value of 0.5 from the calibrated Bayesian mapping function approach.  

The methodology for estimating the uncertainty of the adopted limit state model (Eqs. 6.6 

and 6.44) is based on the proposition that a calibrated Bayesian mapping function produces a 

most accurate estimate of the “true probability of liquefaction” for any given case. With the 

above idea, a simple but, trial-and-error procedure is adopted to estimate model uncertainty. 

The “true” model uncertainty is the one that yields the reliability indices and the 

corresponding notional probabilities matching best with those probabilities calculated from 

the calibrated PL-mapping function (Juang et al.2006). And also the plot of β2versus PL as 
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obtained from the calibrated Bayesian mapping function will produce a PL value of 0.5 at 

β2=0. 
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Fig. 6.18.PL- β mapping function obtained from the reliability analysis of 144 cases of 

liquefaction and non-liquefaction without considering model uncertainty 

 

In the first phase of model uncertainty estimation procedure, a series of reliability analysis of 

all the 144 cases of the database are performed to study the effect of COV component of the 

model factor, cmf. Six cases of model uncertainty, each with the mean of the model factor 

being kept equal to1.0 (µcmf= 1.0) and a different COV of 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, are 

studied. For each case of model uncertainty, β2 values are calculated for all 144 cases of the 

database. A Bayesian mapping function is obtained for each model uncertainty scenario, as 

discussed above. From the developed mapping function for each of the above mentioned 

model uncertainty scenario liquefaction probabilities are obtained from the corresponding β2 

values. Fig. 6.19 shows the plot between β2 versus PL for each of the above mentioned model 

uncertainty. It is clearly indicated that within the range of COV value [0–0.5] the model 

uncertainty has got significant effect on the calculated probability. But, Juang et al. (2006) 
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observed the effect of COV component of model uncertainty on PL as insignificant in their 

reliability analysis. 
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Fig. 6.19.PL- β mapping functions showing effect of COV of model factor on probability of 

liquefaction 

 

In second phase of investigation COV component of model uncertainty is kept constant at 

0.1, whereas the mean value of cmf is varied from 1.0 to 2.1 at an interval of 0.1(i.e. µcmf= 

1.0,1.1,1.2,1.3,….2.1). For each of the above scenario of model uncertainty, Bayesian 

mapping function is developed using all the 144 cases of liquefaction and non-liquefaction 

for reliability analysis as mentioned previously. Then, PL values calculated from the 

mapping functions are plotted against the corresponding reliability index (β2) for different 

cases of model uncertainty as mentioned above and presented in two figures, Fig.6.20a and 

b, as it becomes illegible while presenting all the plots in one figure. It can also be observed 

from the above figures that the mapping function is shifted from left to right as µcmf 

increases, and also the probability corresponding to β2= 0 increases.  



 

163 

 

-4 -3 -2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
 

cmf
=1.0, COV=0.1

 
cmf

=1.1, COV=0.1


cmf

=1.2, COV=0.1

 
cmf

=1.3, COV=0.1

 
cmf

=1.4, COV=0.1

 
cmf

=1.5, COV=0.1

 

 

P
ro

b
ab

il
it

ie
s 

fr
o

m
 m

ap
p

in
g

 f
u

n
ct

io
n

s

Reliability Index, 
  

         (a) 

  

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 
cmf

=1.6, COV=0.1

 
cmf

=1.7, COV=0.1

 
cmf

=1.8, COV=0.1

 
cmf

=1.9, COV=0.1

 
cmf

=2.0, COV=0.1

 
cmf

=2.1, COV=0.1

 

 

P
ro

b
a
b

il
it

ie
s
 f

ro
m

 m
a
p

p
in

g
 f

u
n

c
ti

o
n

s

Reliability Index, 


 

 

(b) 
Fig. 6.20 (a) and (b) PL- β mapping functions showing effect of mean of model factor 

(µcmf) on probability of liquefaction
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As per Fig. 13b, at µcmf = 2.1 and COV = 0.1, the PL= 0.52 at β= 0, whereas µcmf = 2.0 

produces a lower value of PL (0.46) at β= 0. Thereafter, at an intermediate value of µcmf = 

2.08 and COV=0.1, the PL is found out to be 0.48 at β= 0. As already it has been observed 

that COV has got significant effect on calculated PL, keeping µcmf = 2.08 and changing COV 

component from 0 to 0.20 a series of reliability analysis of all the144 cases are performed 

and similarly, the Bayesian mapping functions are obtained. The PL versus β plot for the 

above cases are shown in Fig.6.21 and it is clearly observed that at µcmf = 2.08 and COV=0.2 

the PLis found out to be 0.5 at β= 0.  
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Fig. 6.21  PL- β mapping functions showing effect of mean (µcmf)  and COV of “true” model 

factor on probability of liquefaction i.e. at β=0, PL = 0.5. 

 

Fig.6.22 shows a comparison of the probability of liquefaction for each of 144 case- 

histories obtained from two mapping functions, one with considering the “true” model 

uncertainty (i.e. µcmf = 2.08 and COV = 0.2) and the other without considering the model 

uncertainty (i.e. µcmf = 1.00  and COV = 0). In the earlier case, the reliability index, β2 for 

each case is calculated and then the corresponding mapping function is established using Eq. 



 

165 

 

(6.36).In the latter case, reliability index β1for each case is determined and then, the 

corresponding mapping function is developed in the similar manner using Eq. (6.36). The 

two sets of probabilities obtained for all the 144 cases based on the two sets of mapping 

functions agree well with each other, which is evident from the statistical parameters ( R 

=0.94, E = 0.87 and RMSE = 0.18) as mentioned in the  Fig. 6.22. Fig. 6.23 shows the 

comparison of the notional probabilities obtained for all the 144 cases of present database 

using the reliability index β2 calculated by taking into account the “true” model factor(µcmf= 

2.08 and COV = 0.2) with the probabilities obtained from the PL-β1 mapping function, 

which has not  considered model uncertainty in the reliability analyses. 
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Fig. 6.22  Comparision of probabilities of liquefaction obtained from 144 cases of the 

database obtained from two mapping functions one based on β2 (using µcmf=2.08 and 

COV=0.2) and other based on β1 

 

The Fig. 6.23 also shows good agreement (R=0.95, E=0.89 and RMSE = 0.17) between the 

probabilities obtained from two different concepts, which indicates that the probability of 

liquefaction can be correctly calculated from the notional concept if the right model 

uncertainty is incorporated in the reliability analysis. Thus, in the present study, the “true” 
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model uncertainty of the developed limit state, considering the present database, is 

characterized by µcmf = 2.08 and COV = 0.2. However, Juang et al (2006) developed a limit 

state model of liquefaction using ANN and the model was characterized with an uncertainty 

of mean value 1.24 and COV of 0.1. There the model uncertainty was determined on the 

basis of reliability analyses of only 64 cases of the database (Moss 2003; Ku et al. 2004) 

with maximum COV value of the input parameters was 0.3. But, the present study was 

based on 144 cases of the database (Moss 2003) with maximum COV value of the input 

parameters was 1.126. 

Finally it can be noted that the PL can be estimated from the developed PL-β1 mapping 

function using a reliability index, β1 that is calculated by FORM considering only parameter 

uncertainties. Alternatively, the reliability index β2 can be determined by FORM considering 

both model and parameter uncertainties, and then, the PL can be obtained with the notional 

concept using Eq. (6.18). The notional concept to estimate the PL of a future case is 

preferred as the model uncertainty of the adopted limit state has been determined and also it 

is a well-accepted approach in the reliability theory (Juang et al. 2006).  

To explain the above findings one example from 1989, Loma Prieta earthquake at 

Tanimura105 site as presented in Juang et al. (2006) has been analyzed to find PL. There was 

no occurrence of liquefaction with critical depth, d =5.5m; qc = 3.84 MPa; fs = 15.8 kPa; 

σv=92.3 kPa; σ’v =79.5 kPa; amax = 0.15 g and Mw = 7. The COV of the parameters: qc, fs, σv, 

σ’v, amax and Mw are 8.9, 9.8, 9.6, 5.5, 26.7 and 1.7% respectively. The Eq.(6.6) and 

Eq.(6.44) are used to form the limit state of liquefaction and considering the model 

uncertainty (µcmf = 2.08 and COV = 0.2) FORM analysis is made using the developed code 

in MATLAB. The reliability index, β2 and corresponding notional probability of liquefaction 

PL using Eq. (6.18) are found out to be 0.961 and 0.17 respectively, whereas Juang et al. 

(2006) found the reliability index as 0.626 and corresponding PL as 0.27. The results of both 

the methods confirm the case as non-liquefied, and as the PL calculated by the present 

method is less than that of the ANN-based reliability method of Juang et al. 2006, the 

present method can be considered as more accurate method based on this example. 
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Fig. 6.23  Comparision of notional probabilities of liquefaction obtained for 144 cases based     

on β2 (using µcmf=2.08 and COV=0.2) with PL obtained from mapping function based on β1 

 

Another example of a liquefied case from 1979, Imperial Valley, California earthquake at 

Mckim Ranch A as presented in Moss (2003) has been analyzed to find PL. There was 

occurrence of liquefaction at critical depth, d =2.75m; qc = 2.69 MPa; fs = 30.56 kPa; σv = 

47.75 kPa; σ’v = 35.49 kPa; amax = 0.51 g and Mw = 6.5. The COV of the parameters: qc, fs, 

σv, σ’v, amax and Mw are 32.3, 14.2, 17, 12.3, 9.8 and 2%, respectively. The CSR model 

(Eq.6.6) and the CRR (Eq.6.44) are used to form the limit state of liquefaction and 

considering the model uncertainty (µcmf = 2.08 and COV = 0.2), FORM analysis was made 

using the developed code in MATLAB. The reliability index, β2 and corresponding notional 

probability of liquefaction PL using Eq. (6.18) are found out to be -2.271 and 0.99 

respectively, and the result confirms the case as liquefied one. These two examples illustrate 

the procedure for evaluation of PL of a site in a future seismic event using the proposed 

reliability based analysis if the uncertainties of soil and seismic parameters of the site are 

known. 
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6.4 CONCLUSIONS 

The conclusions drawn from probabilistic method for both SPT and CPT-based models are 

presented separately as follows.  

 

6.4.1 Conclusions based on SPT- based reliability analysis 

The following conclusions are drawn based on the results and discussion of SPT-based 

reliability analysis as presented above.  

i. The developed MGGP-based CRR model has been characterized with an uncertainty 

of mean value 0.98 and COV of 0.1 on the basis rigorous FORM analysis of 94 cases 

of the database. As the mean value of model uncertainty is very close to 1 the CRR 

model, which represents the boundary surface separating the liquefied cases from 

non-liquefied cases, can be considered as un-biased one. This is also evident from 

the proposed PL-Fs mapping function that yields PL=0.503, when Fs=1. Thus, the 

degree of conservatism of the limit state boundary surface is quantified in terms of 

PL as 50.3%. 

ii. The probability of liquefaction, PL can be estimated from the developed PL-β1 

mapping function using a reliability index, β1 that is calculated by FORM 

considering only parameter uncertainties. Alternatively, the reliability index β2 can 

be determined by FORM considering both model and parameter uncertainties, and 

then, the PL can be obtained with the notional probability concept (using Eq. 

6.18).The notional concept to estimate the PL of a future case is preferred as the 

model uncertainty of the adopted limit state has been determined and also it is a well-

accepted approach in the reliability theory.  

iii. In absence of parameter uncertainties the proposed PL-Fs mapping function as 

defined by Eq.(6.33) can be used to estimate probability of liquefaction, where the Fs 

is calculated based on the CSR and CRR models as presented by Eq. (6.6) and Eq. 

(6.32), respectively. 

iv. Using the developed code for FORM two examples, one liquefied case and the other 

non-liquefied case, are analyzed and corresponding probability of liquefaction on the 
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basis of notional probability concept, using the obtained “true” uncertainty of the 

limit state model were found out to be 0.91 and 0.49, respectively. The PL of the 

above liquefied case was also found out to be 0.91 as per the available regression-

based reliability method. This indicates accuracy of the proposed MGGP-based 

reliability method for evaluation liquefaction potential on the basis of the above 

example.It is pertinent to mention here that the proposed MGGP-based reliability 

method is developed on basis of the most recent CSR formulation whereas the 

available reliability method is based on an older CSR model. 

 

6.4.2 Conclusions based on CPT- based reliability analysis 

 The following conclusions are drawn based on the results and discussion of CPT-based 

reliability analysis as presented above. 

i. The developed MGGP-based CRR model has been characterized with an uncertainty 

of mean value 2.08 and COV of 0.2 on the basis rigorous FORM analysis of 144 

cases of the post liquefaction CPT database. 

ii. As discussed for the SPT database, the probability of liquefaction, PL can be 

estimated from the developed PL-β1 mapping function using a reliability index, β1 

that is calculated by FORM considering only parameter uncertainties. Alternatively, 

the reliability index β2 can be determined by FORM considering both model and 

parameter uncertainties, and then, the PL can be obtained with the notional 

probability concept (using Eq. 6.18).The notional concept to estimate the PL of a 

future case is preferred as the model uncertainty of the adopted limit state has been 

determined and also it is a well-accepted approach in the reliability theory. 

iii. The characterization of the developed MGGP-based limit state model uncertainty 

using the proposed reliability analysis was based on all the 144 cases of the database 

with maximum COV of input parameters is 1.26, whereas the estimation of 

uncertainty of available ANN-based limit state model was made using only 64 cases 

of the same database with maximum COV of the input parameters is 0.30. Thus, the 

proposed MGGP-based reliability method can be used for wider range of COV of 
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soil parameters compared to the available ANN-based reliability method of Juang et 

al. (2006). 

iv. In absence of parameter uncertainties the proposed PL-Fs mapping function as 

defined by Eq.(6.45) can be used to estimate probability of liquefaction, where the Fs 

is calculated based on the CSR and CRR model as presented by Eq. (6.6) and Eq. 

(6.44), respectively. 

v. Using the developed code for FORM two examples, one non-liquefied case and the 

other liquefied case, are analyzed and the corresponding probability of liquefaction 

on the basis of notional probability concept, using the obtained “true” uncertainty of 

the limit state model, are found out to be 0.17 and 0.99, respectively. But, the PL of 

the non-liquefied case was found out to be 0.27 as per the available ANN-based 

reliability method, which is slightly more than the present finding. This indicates 

accuracy of the proposed MGGP-based reliability method for evaluation liquefaction 

potential is more than that of the available ANN-based reliability method on the 

basis of the above example. 

 

 

 

 

 

 

 

 

 



 

171 

 

 

 

 

 

7.1 SUMMARY 

Natural hazards like earthquake, tsunami, flood, cyclone and landslide pose severe threat to 

human life and its environment. But, now days natural hazards are no longer considered as a 

rare act of God, but as a recurrent natural phenomenon whose disastrous effects can and 

should be mitigated. Out of the various seismic hazards, soil liquefaction is a major cause of 

both loss of life and damage to infrastructures and lifeline systems. Soil liquefaction 

phenomena have been noticed in many historical earthquakes after first large scale 

observations of damage caused by liquefaction in the 1964 Niigata, Japan and 1964 Alaska, 

USA, earthquakes. Accurate evaluation of liquefaction potential of soil is one of the most 

important steps towards mitigating liquefaction hazard. Though, different approaches like 

cyclic strain-based, energy-based and cyclic stress-based approach are in use, the stress- 

based approach is the most widely used method for evaluation of liquefaction potential of 

soil. Seed and Idriss (1971) first developed a stress-based simplified semi-empirical model, 

using laboratory tests and post liquefaction SPT-based field manifestations in earthquakes, 

which presents a limit state function that separates liquefied cases from the non-liquefied 

cases. Due to difficulty in obtaining high quality undisturbed samples and cost involved 

therein, further development of this simplified method was made using SPT- based field test 

data (Seed et al. 1983 and Seed et al. 1985). Though, SPT is most widely used soil 

exploration method now a days cone penetration test (CPT) is also preferred by geotechnical 

engineers for liquefaction potential evaluation as it is consistent, repeatable and also able to 

identify continuous soil profile. 

Chapter 7 

SUMMARY AND CONCLUSIONS 
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Although, different approaches and methodologies have been used to develop predictive 

models for evaluation of liquefaction potential over the years by various researchers any 

attempt to improve the existing methods for assessing liquefaction potential is considered as 

a contribution to the field of geotechnical engineering in mitigating the liquefaction hazards. 

In recent years, soft computing techniques such as ANN, SVM and RVM have been 

successfully implemented for evaluation liquefaction potential. However, the ANN has poor 

generalization, attributed to attainment of local minima during training and needs iterative 

learning steps to obtain better learning performances. The SVM has better generalization 

compared to ANN, but the parameters ‘C’ and insensitive loss function (ε) needs to be fine-

tuned by the user. Moreover, these techniques will not produce a comprehensive relationship 

between the inputs and output, and are called as ‘black box’ systems.  

In the recent past, evolutionary soft computing technique, genetic programming (GP) based 

on Darwinian theory of natural selection is being used as an alternate soft computing 

technique. The GP is defined as the next generation soft computing technique and also 

called as a ‘grey box’ model (Giustolisi et al. 2007) in which the mathematical structure of 

the model can be derived, allowing further information of the system behaviour. The GP 

models have been applied to some difficult geotechnical engineering problems (Yang et al. 

2004; Javadi et al. 2006; Rezania and Javadi 2007; Alavi et al. 2011; Gandomi and Alavi 

2012b; Muduli et al. 2013) with success. However, its use in liquefaction susceptibility 

assessment is very limited (Gandomi and Alavi 2012b). The main advantage of GP and its 

variant, MGGP over traditional statistical methods and other artificial soft computing 

techniques is its ability to develop a compact and explicit prediction equation in terms of 

different model variables. 

Out of different analysis frameworks, which are in use deterministic method is preferred by 

the geotechnical engineering professional because of its simple mathematical approach with 

minimum requirement of data, time and effort though, probabilistic methods are also in use 

for taking risk-based (i.e., PL-based) design decisions. Thus, in the present study first, 

MGGP has been used as an analysis tool to develop deterministic models using available 

high quality post liquefaction SPT and CPT-based case history databases. Here, the 
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liquefaction potential is evaluated and expressed in terms of liquefaction field performance 

indicator, referred as liquefaction index (LI) and factor of safety against occurrence of 

liquefaction (Fs). The predicted value of LI in a future seismic event can be obtained by 

using developed SPT and CPT-based LIp model equations with the help of a spread sheet, 

which will indicate the occurrence or non-occurrence of liquefaction. The efficacy of the 

developed LIp models in terms of rate of successful prediction of liquefaction and non-

liquefaction cases  have been compared with available soft computing technique (ANN, 

SVM)-based models using independent data and are found to be comparable. Further, the 

developed LIp models have been used to develop both SPT and CPT-based CRR models. 

These developed CRR models in conjunction with the widely used CSR7.5 model, form the 

proposed MGGP-based deterministic methods. These developed SPT and CPT-based 

deterministic models can be used to evaluate liquefaction potential in terms of Fs. The 

efficiency of both the developed SPT and CPT-based deterministic models have been 

compared with that of available statistical and ANN-based models on the basis of 

independent database and it has been found that the results are quite good. Using the 

obtained Fs, further design decision can be taken by the geotechnical professionals regarding 

extent of ground improvement techniques to be followed for a liquefaction susceptible site. 

Two examples have been solved to show the use of developed deterministic methods to find 

out the extent of ground improvement works needs to be done in terms of N1,60  and  qc1N 

using the adopted factor of safety. 

However, because of uncertainties associated with the parameters and developed 

deterministic models, Fs greater than 1.0does not necessarily guarantee zero chance of being 

liquefied and similarly, Fs less or equal to 1 does not always correspond to liquefaction. In 

order to overcome the mentioned difficulties in the proposed SPT and CPT-based 

deterministic methods, probabilistic evaluation of liquefaction potential has been performed 

where liquefaction potential is expressed in terms of probability of liquefaction(PL) and the  

degree of conservatism associated with developed deterministic models are quantified in 

terms of  PL. By calibrating the calculated Fs of each of the case of the database with field 

manifestations (liquefaction or non-liquefaction) as recorded in the database and using 

Bayesian theory of conditional probability the Fs is related with the PL through the 
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developed mapping functions. The developed SPT and CPT-based probabilistic models have 

been compared in terms of rate of successful prediction within different limits of PL, with 

that of the available statistical and ANN-based probabilistic models. The results are found to 

be better than that of the available methods. Two examples, one from SPT-based and the 

other from CPT-based post liquefaction data, have been illustrated to show the use of 

developed probabilistic methods to take risk-based (i.e., on the basis of PL) design decision 

for carrying out ground improvement work for a site susceptible to liquefaction. 

Several probabilistic models including the present SPT and CPT-based probabilistic models 

as presented in the Chapter-V, have been developed for evaluation of liquefaction potential 

in terms of PL.  These models are all data-driven as they are based on statistical analyses of 

the databases of post liquefaction case histories. Calculation of PL using these semi-

empirical models requires only the mean values of the input variables, whereas the 

uncertainties in both the parameters and the model are excluded from the analysis. Thus, 

resulting PL might be subjected to error if the effect of parameter and model uncertainties 

are significant. To overcome these disadvantages reliability analysis following FORM has 

been carried out using high quality SPT and CPT database, which considers both model and 

parameter uncertainties. In the framework of reliability analysis, the boundary curve 

separating liquefaction and non-liquefaction is a limit state. The multi-gene GP (MGGP) has 

been used to develop CRR model of soil using new SPT and CPT database as per Cetin 

(2000) and Moss (2003), respectively. Each of the developed CRR model along with most 

recent CSR model (Idriss and Boulanger 2006) forms the limit state model of liquefaction 

for reliability analysis. The uncertainties of input parameters were obtained from the 

database. But, a rigorous reliability analysis associated with the Bayesian mapping function 

approach was followed to estimate model uncertainty of the limit state, which is represented 

by a lognormal random variable, and is characterized in terms of its two statistics, namely, 

the mean and the coefficient of variation. Four examples, two from SPT data (one liquefied 

and the other non-liquefied case) and the other two from CPT data (one liquefied and the 

other non-liquefied case), have been illustrated to show the procedure of reliability-based 

liquefaction potential evaluation in terms of notional probability of liquefaction (PL) 

considering the corresponding “true” model uncertainty as obtained for SPT and CPT-based 
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limit state models in the analysis. The PL of a site in a future seismic event using the 

proposed reliability-based analysis can be evaluated if the uncertainties of soil and seismic 

parameters of the site are known and without any more back analysis of post liquefaction 

SPT/CPT database. 

7.2  CONCLUSIONS 

The major conclusions of the present study are given as below: 

7.2.1 Based on Deterministic method 

i. A compact MGGP-based LIp model equation is presented to predict the soil 

liquefaction in a future seismic event using SPT data. The liquefaction classification 

accuracy (94.19%) of the above developed model is found to be better than that of 

available ANN-based model (88.37%) and at par with the available SVM-based 

model (94.19%) on the basis of the testing data.  

ii. A MGGP-based model equation is also presented for CRR of soil using SPT data 

which in conjunction with CSR7.5 (Youd et al. 2001) can be used to predict the factor 

of safety against occurrence of liquefaction. The overall success rate of prediction of 

liquefaction and non-liquefaction cases by the proposed method for all 288 cases in 

the present database is found to be 93.40%. 

iii. Using an independent database (Idriss and Boulanger 2010) the proposed MGGP- 

based deterministic method (87%) is found to more accurate in predicting liquefied 

and non-liquefied cases than the existing ANN based method (86%) and statistical 

method (84%) on the basis of calculated Fs.  The proposed method is also found to 

be efficient in isolating non-liquefied cases without considering the effect of fines 

content.  

iv. CPT-based post liquefaction database (Juang et al. 2003) is analyzed using multi-

gene genetic programming approach to predict the liquefaction potential of soil in 

terms of liquefaction field performance indicator, LI.  

v. The efficacy of the developed MGGP based models (Mode-I and Model-II) are 

compared with that of the available ANN and SVM-based models, respectively. It is 
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found that the performance of Model-I is better than that of the ANN model in terms 

of rate of successful prediction of liquefaction and non-liquefaction cases, whereas 

Model-II is as good as the SVM-based model in predicting both liquefaction and 

non-liquefaction cases. 

vi. The statistical performance parameters (R, R
2
, E, AAE, MAE, RMSE) for training and 

testing data are comparable in both the proposed models, which show good 

generalization capabilities of multi-gene GP approach. Using an independent global 

database the performance of Model -I and Model-II in terms of overall classification 

accuracy is found to be 87% and 86% respectively. Unlike available ANN and SVM-

based models, the proposed model equations can be used by geotechnical 

engineering professionals with the help of a spreadsheet to predict the liquefaction 

potential of soil in terms of LI for future seismic event without going into the 

complexities of model development using MGGP.  

vii. Based on sensitivity analysis, the soil type index and the measured cone tip 

resistance are found to be “most” important parameters contributing to the prediction 

of LI for Model-I and Model-II, respectively.  

viii. For the proposed CPT-based deterministic method based on developed CRR model 

and widely used CSR7.5 model (Youd et al. 2001), the rates of successful prediction 

of liquefaction and non-liquefaction cases are 98%, and 91% respectively. The 

overall success rate of the proposed method for all the 226 cases in the present 

database is found to be 95%. The performance of the present deterministic method is 

better than that of the ANN-based Juang method. 

ix. Based on an independent database the overall rate of successful prediction in terms 

of calculated Fs by the proposed MGGP method (84%) is at par with that of Juang 

method (84%) and better than that of widely used Robertson method (81%) and 

Olsen method (72%). 
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7.2.2 Based on Probabilistic method 

i. The proposed SPT-based deterministic method is characterized with a probability of 

40% by means of the developed Bayesian mapping function relating Fs to PL. The 

developed mapping function can be utilized as a tool for selecting proper factor of 

safety in deterministic approach based on the probability of liquefaction that is 

acceptable for a particular project under consideration. For example while applying 

the present deterministic method with a factor of safety of 0.95 would result in a 

probability of liquefaction 50% whereas an increased Fs of 1.14 corresponds to a PL 

of 20%. If a probability of liquefaction of less than 20% is required, it can be 

achieved by selecting a larger Fs based on the developed mapping function. 

ii. A probability design chart is prepared for evaluation of liquefaction potential of soil 

in terms of PL. It can be used along with the developed SPT-based CRR model as a 

practical tool by the geotechnical professionals to take risk-based (i.e., PL-based) 

design decisions. 

iii. Using an independent database the proposed MGGP-based method is found to be 

more accurate than the existing ANN and statistical methods in predicting 

occurrence of liquefaction and non-liquefaction on the basis of calculated PL.    

iv. The proposed CPT-based deterministic method is characterized with a probability of 

42.6% by means of the developed Bayesian mapping function relating Fs to PL. The 

developed Bayesian mapping function can be utilized as a tool for selecting proper 

factor of safety in deterministic approach based on the probability of liquefaction that 

is acceptable for a particular project under consideration. For example, applying the 

present deterministic method with a factor of safety of 0.96 would result in a 

probability of liquefaction (PL) of 50%, whereas an increased Fs of 1.15 corresponds 

to a PL of 21%. If a probability of liquefaction of less than 21% is required for any 

site susceptible to liquefaction, it can be achieved by selecting a larger Fs based on 

the proposed mapping function. 

v. A PL-based design chart is prepared for evaluation of liquefaction potential of soil 

using CPT data. It can be used along with the developed CPT-based CRR model of 
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as a practical tool by the geotechnical professionals to take probability-based design 

decisions. 

vi. Using the present database as well as an independent database the proposed MGGP 

method is found to be more accurate than the existing ANN and statistical methods 

in predicting occurrence of liquefaction on the basis of calculated PL.   

7.2.3 Based on reliability method 

i. On the basis rigorous FORM analysis of 94 cases of the database of Cetin (2000),the 

developed MGGP-based CRR model has been characterized with an uncertainty of 

mean value 0.98 and COV of 0.1. As the mean value of model uncertainty is very 

close to 1 the CRR model, which represents the boundary surface separating the 

liquefied cases from non-liquefied cases, can be considered as un-biased one. This is 

also evident from the proposed PL-Fs mapping function that yields PL=0.503 when 

Fs=1. Thus, the degree of conservatism of the limit state boundary surface is 

quantified in terms of PL as 50.3%. 

ii. The probability of liquefaction, PL can be estimated from the developed PL-β1 

mapping function using a reliability index, β1 that is calculated by FORM 

considering only parameter uncertainties. Alternatively, the reliability index β2 can 

be determined by FORM considering the “true” model and parameter uncertainties, 

and then, the PL can be obtained with the notional probability concept. The notional 

concept to estimate the PL of a future case is preferred as the model uncertainty of 

the adopted limit state has been determined and also it is a well-accepted approach in 

the reliability theory.  

iii. In absence of parameter uncertainties the proposed PL-Fs mapping function as 

defined by Eq.(6.33) can be used to estimate probability of liquefaction, where the Fs 

is calculated based on the CSR and CRR models as presented by Eq. (6.6) and Eq. 

(6.32) respectively. 

iv. Using the developed code for FORM two examples, one liquefied case and the other 

non-liquefied case, are analyzed and corresponding probability of liquefaction on the 

basis of notional probability concept, using the obtained “true” limit state model 

uncertainty were found out to be 0.91 and 0.49, respectively. The PL of the above 
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liquefied case was also found out to be 0.91 as per the available regression-based 

reliability method. This indicates accuracy of the proposed MGGP-based reliability 

method for evaluation liquefaction potential on the basis of the above example. It is 

pertinent to mention here that the proposed MGGP-based reliability method is 

developed on basis of the most recent CSR formulation whereas the available 

reliability method is based on an older CSR model. 

v. On the basis rigorous FORM analysis of 144 cases of the database of Moss(2003) the 

developed MGGP-based CRR model has been characterized with an uncertainty of 

mean value 2.08 and COV of 0.2  

vi. The characterization of the developed MGGP-based limit state model uncertainty 

using the proposed reliability analysis is based on all the 144 cases of the database 

with maximum COV of input parameters is 1.26, whereas the estimation of 

uncertainty of available ANN-based limit state model was made using only 64 cases 

of the database with maximum COV of the input parameters is 0.30. Thus, the 

proposed MGGP-based reliability method can be used for wider range of COV of 

soil parameters than the available ANN-based reliability method. 

vii. In absence of parameter uncertainties the proposed PL-Fs mapping function as 

defined by Eq.(6.45) can be used to estimate probability of liquefaction, where the Fs 

is calculated based on the CSR and CRR model as presented by Eq. (6.6) and Eq. 

(6.44) respectively. 

viii. Using the developed code for FORM two examples, one non-liquefied case and the 

other liquefied case, are analyzed and corresponding probability of liquefaction on 

the basis of notional probability concept, using the obtained “true” uncertainty of  

limit state model, are found out to be 0.17 and 0.99, respectively. But, the PL of the 

non-liquefied case was found out to be 0.27 as per the available ANN-based 

reliability method, which is slightly more than the present finding. This indicates 

accuracy of the proposed MGGP-based reliability method for evaluation liquefaction 

potential is more than that of the available ANN-based reliability method on the 

basis of the above example. 
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7.3  RECOMMENDATIONS FOR FURTHER RESEARCH 

The use of evolutionary soft computing technique, the multi-gene genetic programming 

(MGGP) for evaluation of liquefaction potential of soil within deterministic, probabilistic 

and reliability-based probabilistic framework, has given some promising results.  The 

following are the recommendation for further research. 

i. Effort should be made to include pore pressure into the limit state function to study 

its effect on liquefaction triggering. 

ii. The second order reliability method (SORM) and Monte Carlo simulations can be 

used for reliability analysis for highly non-linear limit state function for achieving 

more accuracy in finding reliability index and thus, the notional probability of 

liquefaction. 

iii. These studies can be extended using shear wave velocity (Vs) measurement-based in-

situ testing method for liquefaction potential evaluation and efficacy of the MGGP 

can be tested. 

iv. The liquefaction hazard analysis efforts can be extended to develop probabilistic 

model for estimation of liquefaction induced ground deformation.  
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APPENDIX-A 

SPT-based Post liquefaction case histories of Chi Chi, Taiwan, earthquake, 1999 

(Hwang and Yang 2001) 

Table A-1. Training Data 

Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

No 9 14 17 4 0.13 0.124 0.14 14.29 

No 9 21 14 3 0.23 0.124 0.127 20.7 

No 5 16 46 5 0.09 0.124 0.127 20.61 

Yes 7.5 12 55 8 0.08 0.428 0.384 12.14 

No 8.2 1 42 6 0.111 0.084 0.069 0.97 

Yes 7.8 7 16 4 0.3 0.42 0.363 6.99 

Yes 1.3 1.5 65 23 0.055 0.789 0.741 3.6 

Yes 4.3 9 26 4 0.14 0.211 0.165 10.65 

Yes 3.6 6 11 3 2 0.42 0.289 7.53 

Yes 4.5 7 26 4 0.135 0.211 0.222 9.85 

No 9 19 10 1 0.26 0.124 0.113 17.72 

Yes 6.3 11 30 6 0.11 0.42 0.363 12.13 

Yes 8.3 12 13 3 0.56 0.428 0.386 11.62 

No 16.2 28 31 9 0.3 0.42 0.374 20.82 

Yes 12.8 5 26 10 0.11 0.211 0.178 7.95 

No 7 16 8 1 0.22 0.124 0.131 17.97 

Yes 10.3 14 15 5 0.38 0.211 0.228 13.7 

No 13.2 12 61 6.9 0.068 0.055 0.042 8.95 

Yes 6 2 33 7 0.16 0.124 0.13 2.39 

No 9 21 12 2 0.2 0.124 0.133 21.09 

Yes 7.3 13 40 11 0.095 0.789 0.644 12.03 

Yes 3.8 6 17 2 0.17 0.211 0.208 8.65 

Yes 2.2 6 23 5 0.15 0.42 0.304 7.51 

Yes 4 5 21 3 0.14 0.124 0.126 7.27 

Yes 13.5 13 14 3 0.16 0.211 0.223 11.53 

No 9 16 29 6 0.2 0.124 0.135 16.11 

No 10 20 18 4 0.19 0.124 0.125 19.01 

No 10 22 15 3 0.18 0.124 0.118 19.91 

Yes 19.5 9 46 18 0.093 0.211 0.196 6.6 

No 5 18 14 3 0.2 0.124 0.137 23.86 

Yes 3 2 36 5 0.1 0.124 0.118 3.26 

Yes 5.8 11 22 4 0.13 0.789 0.78 12.79 

No 10 25 14 3 0.22 0.124 0.123 23.49 
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Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

Yes 5.8 6 10 3 0.28 0.211 0.231 7.46 

Yes 7.3 5 16 2 0.21 0.211 0.244 5.76 

Yes 4.2 7 27 5 0.19 0.428 0.634 8.52 

No 10 18 7 1 0.29 0.124 0.126 17.27 

Yes 13.5 7 47 5 0.091 0.211 0.226 6.29 

No 15.7 46 29 5 0.1 0.42 0.384 35.34 

Yes 10.9 26 31 8 0.12 0.42 0.355 21.87 

Yes 2.8 3 38 11 0.097 0.789 0.76 4.94 

No 9 22 16 3 0.15 0.124 0.139 22.39 

Yes 3.7 9 11 3 0.19 0.165 0.128 11.57 

Yes 8.8 13 40 14 0.1 0.789 0.611 11.01 

No 4 8 15 3 0.18 0.124 0.124 11.41 

Yes 13.3 16 11 4 0.34 0.211 0.2 13.29 

Yes 12 8 41 6 0.104 0.211 0.234 7.69 

Yes 5.5 15 17 3 0.7 0.42 0.42 18.66 

No 10 20 15 3 0.17 0.124 0.134 19.33 

Yes 8.8 5 31 ± 0.125 0.165 0.193 5.31 

No 17.3 13 23 3 0.148 0.181 0.095 7.11 

No 18.8 9 45 10 0.11 0.181 0.123 5.34 

Yes 3.8 3 24 ± 0.138 0.165 0.217 5.04 

Yes 3 7 5 0 0.2 0.124 0.121 11.8 

Yes 8.8 5 24 2 0.4 0.211 0.219 5.13 

No 8 20 13 2 0.22 0.124 0.129 20.82 

Yes 7.4 13 25 4 0.18 0.42 0.416 14.34 

Yes 5.3 10 21 4 0.23 0.42 0.294 10.86 

Yes 6.8 8 59 9 0.07 1 0.633 7.39 

Yes 4.2 3 62 17 0.1 0.211 0.417 4.05 

Yes 5.8 7 25 7 0.15 0.428 0.283 6.55 

No 9.5 27 17 4 1 0.42 0.296 23.58 

Yes 6.3 16 15 5 0.27 0.428 0.41 16.59 

Yes 8.8 7 37 11 0.11 0.211 0.228 7.22 

No 8 20 13 2 0.17 0.124 0.113 19.55 

No 5 15 17 4 0.17 0.124 0.13 19.8 

Yes 3 2 9 1 0.2 0.124 0.118 3.28 

Yes 9.2 12 49 3 0.078 0.211 0.203 11.49 

No 16.8 40 39 8 0.1 0.42 0.275 27.73 

Yes 9 7 42 9.4 0.1 0.789 0.714 6.38 

Yes 11.8 10 24 5 0.2 0.211 0.165 7.88 

No 9.1 44 32 5 0.15 1 0.613 37.49 

No 6.5 26 17 4 0.28 0.42 0.353 27.8 
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Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

No 14.1 36 35 12 0.3 0.42 0.364 27.92 

Yes 14.8 14 17 1 0.17 0.211 0.187 10.81 

No 10 18 16 3 0.18 0.124 0.124 17.04 

Yes 14.3 14 14 3 0.5 0.211 0.143 9.57 

Yes 10.3 10 45 14 0.1 0.211 0.176 8.59 

Yes 4.3 4 18 6 0.19 0.211 0.177 5.02 

No 6 11 8 0 0.2 0.165 0.142 12.07 

No 9 15 18 4 0.18 0.124 0.141 14.68 

Yes 5.8 6 47 7 0.08 0.33 0.325 7.03 

Yes 2.4 6 41 9 0.095 0.789 0.514 8.71 

No 6 17 9 2 0.28 0.124 0.108 18.44 

Yes 6.2 6 23 5 0.13 0.42 0.411 7.11 

No 10 19 10 2 0.25 0.124 0.124 17.99 

No 10.9 30 21 5 0.013 0.42 0.354 25.9 

Yes 5.7 8 16 2 0.17 0.165 0.139 8.82 

No 9.8 15 23 3 0.149 0.181 0.128 11.84 

No 12.8 12 44 3 0.111 0.181 0.126 8.4 

No 6.2 1 42 4.6 0.108 0.084 0.064 1.04 

Yes 7.2 6 13 5 0.14 0.165 0.145 6.05 

No 8 20 18 3 0.18 0.124 0.143 21.57 

Yes 11.8 18 12 1 0.61 0.211 0.213 16.15 

Yes 10.3 6 31 5 0.11 0.211 0.207 5.6 

Yes 2.8 2 55 13 0.06 0.33 0.271 3.02 

No 10 17 12 2 0.3 0.124 0.134 16.43 

Yes 3.8 6 13 4 0.5 0.42 0.391 8.75 

No 8 20 24 6 0.17 0.124 0.129 20.72 

No 5 8 14 2 0.13 0.124 0.104 9.32 

No 10 18 28 5 0.13 0.124 0.134 17.43 

Yes 13.5 7 42 3 0.102 0.211 0.228 6.34 

No 3 12 33 8 0.16 0.124 0.156 18.83 

No 10 16 13 3 0.29 0.124 0.135 14.92 

No 5 20 18 4 0.18 0.124 0.119 24.84 

Yes 6 7 11 0 0.167 0.211 0.232 8.82 

Yes 15.4 20 33 10 0.18 1 0.663 14 

Yes 2.8 4 33 9 0.188 0.428 0.506 5.37 

Yes 5.8 3 47 5 0.078 0.211 0.247 3.85 

No 9 17 16 4 0.18 0.124 0.112 15.74 

No 4 6 43 3 0.09 0.165 0.124 7.46 

Yes 3 3 38 6 0.11 0.211 0.203 4.94 

Yes 6.8 10 15 7 0.037 0.789 0.79 10.78 
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Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

No 10 21 21 9 0.15 0.124 0.123 19.62 

Yes 8.8 17 39 9 0.1 1 0.606 14.48 

Yes 11.7 10 13 2 1.2 0.165 0.146 8.44 

Yes 7.2 5 30 13 0.024 0.165 0.144 4.99 

No 9 17 31 5 0.1 0.124 0.139 17.26 

No 10 20 12 3 0.2 0.124 0.124 18.95 

Yes 12 9 39 5 0.108 0.211 0.222 8.33 

No 10.8 44 32 5 0.16 1 0.67 35.22 

Yes 4 11 11 0 0.12 0.428 0.356 14.34 

Yes 13.2 26 31 8 0.1 0.42 0.352 20.15 

Yes 8.1 17 18 6 0.2 0.42 0.347 16.64 

Yes 9 12 4 3 0.22 0.124 0.127 11.86 

No 6 18 19 4 0.19 0.124 0.138 21.97 

No 18.8 13 15 1 0.164 0.181 0.142 8.29 

No 10.6 40 14 1 0.3 0.42 0.353 33.43 

Yes 2.8 6 22 5 0.18 0.428 0.458 10.62 

Yes 4.8 9 29 ± 0.129 0.165 0.214 13.4 

Yes 3 5 24 6 0.13 0.428 0.3 6.71 

Yes 16 11 20 0 0.3 0.165 0.152 8.79 

No 15.4 28 18 6 0.1 0.42 0.337 19.59 

Yes 5 9 20 6 0.15 0.428 0.296 9.4 

No 17.3 22 39 3 0.12 0.181 0.1 12.26 

Yes 7.3 12 18 5 0.21 0.211 0.201 12.54 

Yes 8.8 4 30 4 0.1 0.211 0.208 3.94 

Yes 6 7 61 13.5 0.075 0.428 0.451 8.47 

Yes 7.5 7 47 9 0.091 0.211 0.247 8.14 

Yes 3.7 7 28 1 0.1 0.165 0.148 9.93 

No 10 20 14 4 0.18 0.124 0.125 19.04 

Yes 5.3 17 21 3 0.3 0.42 0.339 19.51 

Yes 2.8 4 18 2 0.18 0.211 0.197 6.53 

Yes 12 7 48 10 0.089 0.211 0.232 6.67 

Yes 5.7 5 40 10 0.08 0.165 0.14 5.58 

No 9 22 10 1 0.22 0.124 0.128 21.8 

Yes 5.8 12 49 12 0.075 0.428 0.65 12.45 

No 8 22 15 4 0.19 0.124 0.138 23.37 

Yes 7.7 7 18 3 0.17 0.165 0.142 6.72 

Yes 2.1 2 18 4 0.13 0.42 0.33 2.69 

No 7 17 20 3 0.115 0.124 0.14 19.31 

Yes 5.7 13 34 7 0.15 0.42 0.322 14.4 

Yes 2.3 8 29 6 0.1 0.42 0.336 10.63 
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Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

Yes 4.2 5 43 7 0.143 0.428 0.596 5.87 

Yes 5.8 10 30 7 0.97 0.428 0.433 12.04 

Yes 7.2 6 22 15 0.18 0.165 0.148 6.16 

Yes 7.7 11 16 3 0.22 0.165 0.132 10.19 

Yes 12 12 13 3 0.162 0.211 0.231 11.4 

No 7.5 26 17 4 0.3 0.42 0.354 26.28 

No 9 19 14 3 0.2 0.124 0.127 18.71 

Yes 10.3 11 28 5 0.11 0.211 0.191 9.87 

No 18 13 22 0 0.104 0.165 0.142 9.34 

Yes 13.3 10 30 3 0.11 0.211 0.214 8.58 

Yes 8.1 11 19 2 0.17 0.165 0.148 10.71 

No 10 21 17 4 0.18 0.124 0.124 19.89 

No 9 18 14 3 0.2 0.124 0.139 18.35 

No 10 23 15 4 0.22 0.124 0.128 21.98 

Yes 3 6 30 3 0.127 0.211 0.195 9.58 

No 5 14 14 3 0.2 0.124 0.138 18.68 

No 11.3 15 47 4 0.106 0.181 0.124 10.98 

No 16.2 15 43 16 0.113 0.128 0.124 11.81 

Yes 5.8 10 48 12 0.08 0.789 0.822 11.78 

Yes 8.7 6 44 12 0.08 0.165 0.148 5.68 

Yes 12 10 28 3 0.131 0.211 0.238 9.76 

Yes 10.2 6 13 4 0.14 0.165 0.145 5.32 

Yes 7.3 5 23 1 0.31 0.211 0.208 5.31 

No 13 31 20 5 0.4 0.42 0.331 23.49 

No 8 20 13 2 0.2 0.124 0.144 21.72 

No 10 21 12 2 0.3 0.124 0.135 20.43 

No 7.1 25 15 1 0.8 0.42 0.341 24.34 

No 9 21 14 3 0.2 0.124 0.122 20.23 

No 14.3 43 39 8 0.08 0.42 0.272 29.28 

Yes 4.5 4 32 6 0.123 0.211 0.221 5.61 

No 7.2 10 36 17 0.126 0.128 0.141 11.43 

Yes 4 4 30 4 0.1 0.124 0.124 5.73 

No 9 20 9 2 0.2 0.124 0.128 19.86 

Yes 5.7 6 15 4 0.18 0.165 0.143 6.62 

Yes 12.8 15 25 ± 0.138 0.165 0.174 13.11 

No 6.9 46 44 12 0.1 1 0.715 49.29 

No 7.8 7 31 18 0.135 0.128 0.139 7.65 

Yes 5.8 5 19 4 0.5 0.211 0.211 5.94 

No 14.3 13 46 8 0.108 0.181 0.12 8.49 

Yes 10 8 45 4 0.08 0.165 0.145 7.25 
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Liquefied? Depth 

(m) 

Nm FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

No 12.6 33 29 6 0.3 0.42 0.368 26.67 

Yes 3 5 12 2 0.19 0.124 0.119 8.22 

Yes 5 14 25 3 0.8 0.42 0.324 15.45 

Yes 2.7 4 22 15 0.18 0.165 0.105 5.52 

No 5 18 14 3 0.2 0.124 0.137 23.86 

No 2.8 11 33 18 0.155 0.211 0.161 15.95 

No 10 18 23 5 0.13 0.124 0.111 16.09 

No 14.7 13 25 6.91 0.16 0.055 0.041 9.2 

No 9.2 1 39 4.8 0.128 0.084 0.07 0.93 

 

Table A-2. Testing Data 

Liquefied? Depth 

(m) 

N FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

Yes 3.7 9 17 1 0.16 0.165 0.153 12.63 

Yes 7.3 11 9 0 0.49 0.211 0.199 11.32 

Yes 4.2 7 40 10 0.13 0.428 0.672 8.72 

Yes 4.7 12 29 6 0.25 0.42 0.344 14.74 

Yes 7.8 10 46 ± 0.094 0.165 0.209 11.88 

Yes 6 7 14 1 0.16 0.211 0.193 7.79 

Yes 5.8 9 40 7 0.16 0.428 0.718 9.88 

No 10 22 16 3 0.17 0.124 0.122 20.42 

Yes 4.2 8 34 7 0.2 0.428 0.609 9.5 

Yes 7.7 6 13 0 0.18 0.165 0.134 5.7 

Yes 8.8 11 38 12 0.4 0.42 0.308 9.86 

Yes 5.8 4 35 7 0.125 0.428 0.36 4.35 

No 10 19 11 2 0.18 0.124 0.124 18.03 

Yes 4.3 4 10 3 0.25 0.211 0.167 4.87 

Yes 4.3 4 9 2 0.31 0.211 0.193 5.24 

No 4.2 3 6 0 0.331 0.084 0.054 3.64 

No 15.8 17 39 5 0.12 0.181 0.141 11.55 

No 9 22 9 2 0.2 0.124 0.128 21.87 

No 10 16 14 2 0.18 0.124 0.123 15.03 

Yes 8.2 8 10 2 0.45 0.211 0.202 7.98 

No 8 17 16 3 0.14 0.124 0.139 18.12 

No 18 15 32 3 0.1 0.165 0.142 10.77 

No 9.8 8 36 14 0.126 0.128 0.136 7.95 
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Liquefied? Depth 

(m) 

N FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

Yes 11.8 11 31 9 0.13 0.211 0.194 9.41 

Yes 8.7 7 42 1 0.08 0.165 0.152 6.86 

No 17.1 50 20 5 0.1 0.42 0.339 35.09 

Yes 16.9 28 49 7 0.08 1 0.67 19.25 

Yes 7.2 9 29 5 0.185 0.428 0.687 8.93 

Yes 11.8 12 17 3 0.22 0.211 0.194 10.27 

No 9 20 12 2 0.22 0.124 0.128 19.92 

No 12 12 8 0 0.201 0.165 0.149 10.2 

Yes 14.8 11 12 3 0.21 0.211 0.208 8.94 

No 18.1 48 18 5 0.85 0.42 0.367 34.18 

Yes 5.8 3 34 6 0.1 0.211 0.182 3.31 

No 9 17 15 4 0.19 0.124 0.128 16.94 

Yes 6.4 11 16 5 0.4 0.42 0.406 12.63 

No 14.7 4 39 5.7 0.126 0.084 0.071 3.13 

Yes 8.8 8 25 8 0.12 0.211 0.201 7.76 

Yes 5 3 22 3 0.065 0.428 0.379 3.67 

No 10 18 13 3 0.18 0.124 0.11 15.99 

No 10.4 33 30 12 0.04 0.42 0.406 30.44 

Yes 8.8 4 46 19 0.11 0.211 0.199 3.86 

Yes 7.7 9 48 5 0.08 0.165 0.15 8.89 

Yes 4.9 9 29 6 0.2 0.42 0.323 10.66 

Yes 7.5 7 13 1 0.162 0.211 0.248 8.14 

Yes 5.8 5 10 4 0.36 0.211 0.217 6.03 

Yes 11.8 12 13 1 0.3 0.211 0.215 10.81 

Yes 6.5 4 17 4 0.3 0.42 0.412 4.58 

Yes 4 2 36 5 0.1 0.124 0.127 2.93 

No 9 22 6 1 0.22 0.124 0.128 21.93 

Yes 8.1 9 16 3 0.19 0.165 0.136 8.48 

Yes 3 3 6 3 0.08 0.124 0.12 5 

Yes 17.6 19 26 5 0.2 1 0.699 13.43 

Yes 7.7 7 19 1 0.17 0.165 0.151 6.96 

No 14.5 28 18 6 0.1 0.42 0.322 25.3 

Yes 3 4 26 2 0.135 0.211 0.235 6.94 

No 9 22 7 1 0.28 0.124 0.128 21.93 

Yes 2.3 2 22 6 0.15 0.789 0.641 3.33 

No 8.7 3 23 3.5 0.227 0.084 0.07 2.87 

No 16 16 18 0 0.14 0.165 0.145 12.08 

No 11.8 9 36 14 0.126 0.128 0.131 8.19 

No 16 12 18 4 0.14 0.165 0.145 9.06 

No 18.1 42 39 8 0.08 0.42 0.274 27.04 
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Liquefied? Depth 

(m) 

N FC 

(%) 

CC 

(%) 

D50 

(mm) 

amax 

(g) 

CSR N1,60 

No 7.7 4 24 4.7 0.22 0.084 0.068 3.91 

No 14.3 16 33 2 0.132 0.181 0.147 11.53 

No 15.6 40 39 8 0.1 0.42 0.274 28.47 

No 10 12 40 7 0.08 0.124 0.13 11.54 

No 18.8 9 45 4 0.11 0.181 0.13 5.5 

Yes 7.3 11 21 7 0.15 0.428 0.306 9.75 

No 10 22 11 2 0.19 0.124 0.124 20.78 

Yes 4 12 26 0 0.11 0.428 0.362 15.78 

Yes 7.2 17 18 6 0.2 0.42 0.349 17.39 

Yes 3.3 6 34 8 0.11 1 0.673 8.61 

Yes 3 13 45 14 0.09 0.789 0.697 19.24 

No 5 16 31 7 0.13 0.124 0.127 20.52 

Yes 5.7 4 30 10 0.024 0.165 0.136 4.31 

Yes 5.8 6 27 5 0.195 0.428 0.659 6.44 

No 6.2 5 18 7.9 0.254 0.084 0.065 5.45 

Yes 4.2 3 24 5 0.2 0.789 0.378 3.58 

Yes 11.7 6 48 14 0.075 0.165 0.144 4.96 

No 10 22 20 4 0.19 0.124 0.134 21.24 

Yes 8.2 7 17 2 0.18 0.165 0.163 7.04 

No 9 14 13 3 0.18 0.124 0.135 14.12 

Yes 10.8 11 20 5 0.13 0.42 0.376 9.77 

No 20.3 17 30 2 0.137 0.181 0.098 8.98 

No 10 23 15 4 0.22 0.124 0.128 21.98 
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APPENDIX-B 

CPT-based post liquefaction database (Juang et al. 2003) 

Table B-1. Training Data 

Depth 

(m) 

qc 

(MPa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv' 

(kPa) 

amax 

(g) 
Mw Liquefied? 

5.8 9.4 84.6 0.9 109.3 67.6 0.27 7.1 YES 

14 1.2 31.2 2.6 271.6 151.1 0.19 7.6 No 

4.1 4.3 43 1 77.9 55.9 0.25 7.1 YES 

8 2.3 92 4 158.4 102.5 0.19 7.6 No 

4.8 3.8 83.6 2.2 90.3 51.8 0.15 6.6 No 

10.8 6.2 124 2 204.3 161.6 0.16 7.1 No 

5.8 6.8 34 0.5 109.3 79.3 0.21 7.1 YES 

3.2 3.3 26.4 0.8 59.9 43.4 0.55 6.6 YES 

9.5 25 75 0.3 180.5 103.5 0.25 7.1 No 

4.8 4.5 31.5 0.7 90.3 59.8 0.15 6.6 No 

4.3 5.3 37.1 0.7 80.8 73.4 0.57 7.1 YES 

5 9 27 0.3 95 63 0.25 7.1 YES 

2.1 1.3 1.3 0.1 32.7 27.1 0.21 7.1 YES 

4.4 8.2 24.6 0.3 83.6 54.6 0.25 7.1 YES 

4.8 3.9 81.9 2.1 90.3 51.8 0.15 6.6 No 

2.5 3.4 27.2 0.8 47.5 42.6 0.27 7.1 YES 

3.3 6.2 24.8 0.4 62.7 50 0.27 7.1 YES 

3.2 4.3 47.3 1.1 59.9 40.7 0.23 7.1 YES 

11 15.5 356.5 2.3 209 119 0.37 6 No 

4.2 4.9 24.5 0.5 79.8 64.8 0.25 7.1 YES 

11.6 1.9 38 2 220.4 112.6 0.19 7.6 YES 

9.5 12.1 36.3 0.3 180.5 116.8 0.28 7.1 No 

11 15.5 356.5 2.3 209 119 0.08 6.6 No 

4 4.9 122.5 2.5 76 56 0.8 6.6 YES 

2.8 2.4 2.4 0.1 52.3 43.9 0.21 7.1 YES 

5.7 2.2 19.8 0.9 82.4 73.4 0.53 7.1 YES 

6.6 7.7 69.3 0.9 128.7 85.7 0.24 7.1 No 

4.1 6.2 55.8 0.9 77.9 55.9 0.25 7.1 YES 

3 3 12 0.4 57 45 0.25 7.1 YES 

2.8 1.4 16.8 1.2 52.3 42.9 0.21 7.1 YES 

9.3 2 22 1.1 175.8 131.1 0.53 7.1 YES 
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Depth 

(m) 

qc 

(MPa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv' 

(kPa) 

amax 

(g) 
Mw Liquefied? 

4.1 6.4 147.2 2.3 77.9 63.3 0.37 6 YES 

2 3.1 12.4 0.4 38 28 0.25 7.1 YES 

4.1 6.4 147.2 2.3 77.9 63.3 0.13 6.6 No 

10.3 5.5 71.5 1.3 195.7 157.5 0.53 7.1 YES 

4.2 5.5 66 1.2 79.8 70 0.49 7.1 YES 

8 1.7 57.8 3.4 153.6 86 0.19 7.6 No 

5.8 8.1 48.6 0.6 109.3 96 0.49 7.1 YES 

1.8 1.4 16.8 1.2 33.3 23.9 0.21 7.1 YES 

6 2.1 16.8 0.8 114 79.7 0.16 7.1 YES 

4.8 3.9 81.9 2.1 90.3 51.8 0.33 6 YES 

6 2.6 85.8 3.3 116 103.5 0.5 6.4 YES 

5.9 14.5 87 0.6 115.1 83.1 0.24 7.1 No 

8.6 4.3 55.9 1.3 163.4 90.4 0.25 7.1 YES 

4.5 3.5 31.5 0.9 84.6 55.1 0.1 6 No 

10.4 2.4 96 4 198.7 116.9 0.19 7.6 No 

5.8 7.5 52.5 0.7 109.3 100.9 0.53 7.1 YES 

4.8 5.1 91.8 1.8 90.3 59.8 0.15 6.6 No 

7.3 6.7 46.9 0.7 137.8 121.6 0.59 7.1 YES 

4.8 2.9 66.7 2.3 90.3 51.8 0.33 6 YES 

8.3 10.3 61.8 0.6 156.8 88.6 0.21 7.1 No 

11.8 8.1 40.5 0.5 218.3 115.3 0.19 7.6 YES 

4.3 5.4 37.8 0.7 80.8 55.7 0.21 7.1 YES 

10.8 9.5 57 0.6 204.3 116.5 0.21 7.1 No 

5.1 3.9 15.6 0.4 96 87.6 0.19 7.1 YES 

2.5 10.4 20.8 0.2 47.5 40.5 0.25 7.1 No 

6 3.9 66.3 1.7 111.8 56.8 0.13 7.3 YES 

4.5 1.8 21.6 1.2 83.3 53.3 0.19 7.6 YES 

5.8 4.6 27.6 0.6 109.3 100.9 0.57 7.1 YES 

6.8 3.9 31.2 0.8 128.3 103.2 0.54 7.1 YES 

4.8 4.3 43 1 90.3 59.8 0.15 6.6 No 

8.3 5.4 108 2 156.8 105.3 0.53 7.1 YES 

2.4 2.2 8.8 0.4 45.6 39.7 0.21 7.1 YES 

5.4 5 35 0.7 101.7 89.4 0.56 7.1 YES 

6.5 5.8 121.8 2.1 123.5 73.5 0.55 6.6 YES 

2.8 2.6 20.8 0.8 53.2 46.3 0.38 7.1 YES 

2.9 5.1 10.2 0.2 55.1 39.1 0.25 7.1 YES 

2.6 2.2 17.6 0.8 48.5 40.1 0.23 7.1 YES 

13 6.6 330 5 253.5 181.5 0.5 6.4 No 

3.7 1.8 14.4 0.8 70.8 55.1 0.21 7.1 YES 

5 1.1 40.7 3.7 97 62.7 0.19 7.6 No 
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Depth 

(m) 

qc 

(MPa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv' 

(kPa) 

amax 

(g) 
Mw Liquefied? 

2.8 12.8 51.2 0.4 52.3 35.1 0.32 7.1 No 

2.7 1 1 0.1 42.1 33.1 0.21 7.1 YES 

4 2 56 2.8 76 56 0.8 6.6 YES 

3 1.4 14 1 57 47 0.29 6 YES 

11 6.4 76.8 1.2 209 119 0.37 6 No 

13.7 12.9 451.5 3.5 267.2 215.2 0.5 6.4 No 

11 9.1 218.4 2.4 209 119 0.08 6.6 No 

6.8 20.8 62.4 0.3 129.2 79.2 0.25 7.1 No 

13.1 7.5 337.5 4.5 254.5 171 0.5 6.4 No 

2.6 10 20 0.2 49.4 40.4 0.25 7.1 No 

3.3 1 5 0.5 57.5 32.5 0.21 7.1 YES 

2.5 1.6 16 1 46.3 36.3 0.19 7.6 YES 

5.3 15.2 60.8 0.4 103.4 77.4 0.24 7.1 No 

11 6.4 134.4 2.1 209 119 0.08 6.6 No 

2.2 12.6 50.4 0.4 40.9 29.6 0.32 7.1 No 

10.2 1.8 54 3 196.9 116.5 0.19 7.6 No 

8.3 4.3 77.4 1.8 157.7 88.7 0.25 7.1 YES 

10.3 8.5 42.5 0.5 194.8 144.2 0.55 7.1 YES 

2.5 7.5 30 0.4 46.6 39.2 0.21 7.1 No 

5.8 10.5 42 0.4 109.3 99.9 0.54 7.1 YES 

6.8 11.8 59 0.5 128.3 95.4 0.32 7.1 No 

6 6.4 25.6 0.4 114 84.6 0.28 7.1 YES 

8.8 4.2 67.2 1.6 166.3 139.3 0.55 7.1 YES 

7.3 5.7 39.9 0.7 137.8 115.7 0.5 7.1 YES 

5.5 1.9 3.8 0.2 104.5 77.5 0.25 7.1 YES 

4.6 3.5 24.5 0.7 86.5 62.4 0.21 7.1 YES 

3.3 8.6 43 0.5 64.4 58.4 0.24 7.1 No 

14 13.7 27.4 0.2 259 134 0.19 7.6 No 

6.5 5.1 20.4 0.4 121.2 66.2 0.13 7.3 YES 

6.2 4.5 40.5 0.9 117.8 109 0.49 7.1 YES 

3.9 11.7 35.1 0.3 74.1 53.1 0.25 7.1 No 

4.4 5.9 64.9 1.1 82.7 65.6 0.13 6.6 No 

2.5 8.7 34.8 0.4 47.5 39.5 0.25 7.1 No 

4 2.3 55.2 2.4 76 56 0.08 6.6 No 

4.4 5.9 64.9 1.1 82.7 65.6 0.37 6 YES 

4.8 4.8 33.6 0.7 90.3 51.8 0.15 6.6 No 

4 16.4 49.2 0.3 76 70 0.25 7.1 No 

4.7 9.2 27.6 0.3 89.3 79.3 0.25 7.1 No 

2.8 1.9 22.8 1.2 54.6 50.6 0.24 7.1 YES 

7.5 1.7 83.3 4.9 142.5 82.7 0.19 7.6 No 
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Depth 

(m) 

qc 

(MPa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv' 

(kPa) 

amax 

(g) 
Mw Liquefied? 

5.3 3.6 32.4 0.9 100.7 78.1 0.56 7.1 YES 

9.8 3.8 53.2 1.4 186.2 110.2 0.25 7.1 YES 

5.8 6.8 27.2 0.4 111 87.4 0.21 7.1 YES 

6 2.2 22 1 114 79.7 0.16 7.1 YES 

2.5 5.5 82.5 1.5 47.5 42.5 0.29 6 No 

3 3.8 19 0.5 57 45 0.25 7.1 YES 

14.1 6.8 333.2 4.9 274 173.5 0.5 6.4 No 

3.4 8.5 8.5 0.1 64.6 49.6 0.25 7.1 No 

4.8 5.9 23.6 0.4 90.3 51.8 0.33 6 YES 

7.3 4.5 18 0.4 114.7 86.4 0.53 7.1 YES 

4.5 4.2 54.6 1.3 85.5 60.5 0.18 6.6 YES 

11 6.4 134.4 2.1 209 119 0.37 6 No 

9.8 1.1 12.1 1.1 185.3 134.7 0.53 7.1 YES 

4.1 9.4 9.4 0.1 77.9 59.9 0.25 7.1 No 

8 3.3 49.5 1.5 149 76.5 0.13 7.3 YES 

3 4.3 17.2 0.4 56.1 47.7 0.21 7.1 YES 

7 8.5 59.5 0.7 133 84 0.28 7.1 YES 

7.3 5.5 115.5 2.1 137.8 129.4 0.16 7.1 No 

3.5 1.5 28.5 1.9 64.8 49.8 0.43 7.6 YES 

5 2.2 24.2 1.1 92.5 57.5 0.19 7.6 YES 

8.2 6.9 117.3 1.7 158.8 101.9 0.17 7.1 No 

4.8 5.1 45.9 0.9 90.3 59.8 0.15 6.6 No 

5 15.5 46.5 0.3 95 57.7 0.23 7.1 No 

2.3 2.8 14 0.5 42.8 35.4 0.23 7.1 YES 

11 9.1 218.4 2.4 209 119 0.37 6 No 

4.8 3.8 83.6 2.2 90.3 51.8 0.33 6 YES 

3.8 4.3 30.1 0.7 71.3 58 0.38 7.1 YES 

2 8.3 33.2 0.4 37.1 28.7 0.32 7.1 No 

4.9 1.1 25.3 2.3 99.8 62.6 0.19 7.6 YES 

5.8 4.8 24 0.5 111.3 83.8 0.21 7.1 YES 

6.8 7.4 51.8 0.7 128.3 96.4 0.56 7.1 YES 

4.5 4.2 54.6 1.3 85.5 60.5 0.29 6 YES 

1.4 3 12 0.4 26.6 26.6 0.25 7.1 YES 

12.7 6.2 37.2 0.6 235.5 118.5 0.13 7.3 No 

3.2 1.2 22.8 1.9 62.4 43.8 0.19 7.6 YES 

2.5 7.7 23.1 0.3 47.5 40.5 0.25 7.1 YES 

4.1 13 26 0.2 77.9 62.9 0.25 7.1 No 

3.5 15.5 31 0.2 66.5 49.5 0.25 7.1 No 

2.1 1 8 0.8 28.4 22.5 0.21 7.1 YES 

2.7 4.9 63.7 1.3 51.3 39.5 0.69 7.1 YES 
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Table B-2. Testing Data 

Depth 

(m) 

qc 

(MPa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv’ 

(kPa) 

amax 

(g) 
Mw Liquefied? 

4.8 5.2 104 2 90.3 51.8 0.33 6 YES 

4.8 4.5 31.5 0.7 90.3 59.8 0.33 6 YES 

3.8 1.9 45.6 2.4 72.4 45.4 0.19 7.6 YES 

12.2 1.6 43.2 2.7 234.2 132.3 0.19 7.6 No 

4.8 5.2 104 2 90.3 51.8 0.15 6.6 No 

3.5 1.4 37.8 2.7 69.7 53 0.19 7.6 No 

8.5 1.2 37.2 3.1 158.1 88.5 0.19 7.6 No 

2.5 5.5 82.5 1.5 47.5 42.5 0.18 6.6 No 

9.8 8.6 129 1.5 187.7 145.5 0.17 7.1 No 

3.4 3.1 12.4 0.4 63.7 55.3 0.21 7.1 YES 

4.3 4.6 27.6 0.6 80.8 62.6 0.38 7.1 YES 

4.8 3.2 38.4 1.2 91.2 58.2 0.55 6.6 YES 

7.3 7.7 30.8 0.4 140.7 98.5 0.21 7.1 YES 

4.3 4.3 25.8 0.6 80.8 57.7 0.21 7.1 YES 

2.5 10.5 52.5 0.5 47.5 37.7 0.32 7.1 No 

5.8 4.1 36.9 0.9 109.3 65.6 0.21 7.1 YES 

3.2 3.3 26.4 0.8 59.9 43.4 0.1 6 No 

6.5 1.1 28.6 2.6 125.3 68 0.19 7.6 YES 

4.7 9 108 1.2 89.3 68.7 0.13 6.6 No 

5.6 4.8 43.2 0.9 105.5 98.1 0.19 7.1 YES 

2.9 6.6 19.8 0.3 55.1 38.1 0.25 7.1 YES 

4.8 5.9 23.6 0.4 90.3 51.8 0.15 6.6 No 

2.2 3.1 12.4 0.4 41.8 29.8 0.25 7.1 YES 

3.9 7.2 72 1 73.2 61.1 0.37 6 YES 

8 20 60 0.3 152 90 0.25 7.1 No 

3.6 4.1 41 1 67.5 59.1 0.21 7.1 YES 

3.9 7.2 72 1 73.2 61.1 0.13 6.6 No 

6.5 5.8 121.8 2.1 123.5 73.5 0.1 6 No 

4 2.3 55.2 2.4 76 56 0.37 6 YES 

6.5 18.2 36.4 0.2 123.5 75.5 0.25 7.1 No 

3.6 7.8 7.8 0.1 68.4 44.4 0.25 7.1 YES 

4.8 5.1 45.9 0.9 90.3 59.8 0.33 6 YES 

5 6.9 158.7 2.3 95 45 0.2 6.6 No 

3 4.7 28.2 0.6 58.5 51.5 0.24 7.1 No 

4.5 3.5 31.5 0.9 84.6 55.1 0.55 6.6 YES 

6 3.9 19.5 0.5 99.8 79 0.53 7.1 YES 

9.3 5 85 1.7 175.8 117.4 0.56 7.1 YES 
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Depth 

(m) 

qc 

(Mpa) 

fs 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σv’ 

(kPa) 

amax 

(g) 
Mw Liquefied? 

3.7 7.9 31.6 0.4 70.4 59.7 0.22 7.1 No 

4.8 5.1 91.8 1.8 90.3 59.8 0.33 6 YES 

6.6 8 40 0.5 124.5 107.3 0.54 7.1 YES 

2.1 2.5 5 0.2 39.9 33.9 0.25 7.1 YES 

5.6 2.3 48.3 2.1 112 86.5 0.43 7.6 YES 

11 6.4 76.8 1.2 209 119 0.08 6.6 No 

7.3 4 40 1 116.3 96.9 0.49 7.1 YES 

4.4 5.4 21.6 0.4 83.6 65.6 0.25 7.1 YES 

6.2 7.2 57.6 0.8 117.8 101.1 0.49 7.1 YES 

4.4 7.7 46.2 0.6 82.7 69.4 0.56 7.1 YES 

4.8 2.9 66.7 2.3 90.3 51.8 0.15 6.6 No 

4 1.9 70.3 3.7 76 56 0.08 6.6 No 

9.5 19.4 562.6 2.9 185.3 149.3 0.5 6.4 No 

2.8 2.8 11.2 0.4 52.3 42.9 0.21 7.1 YES 

13.5 16.3 130.4 0.8 249.8 134.8 0.43 7.6 No 

7.3 6.1 115.9 1.9 137.8 129.4 0.16 7.1 No 

6.8 3.7 22.2 0.6 128.3 118 0.53 7.1 YES 

5.9 1.3 11.7 0.9 115.1 85.1 0.24 7.1 YES 

6.9 7 35 0.5 131.1 109.5 0.53 7.1 YES 

4.8 4.8 33.6 0.7 90.3 51.8 0.33 6 YES 

3 1.4 14 1 57 47 0.18 6.6 YES 

5.1 2.4 64.8 2.7 96.9 61.6 0.19 7.6 No 

1.9 10.4 31.2 0.3 36.1 34.1 0.25 7.1 No 

2.8 0.9 44.1 4.9 52.3 34.1 0.38 7.1 No 

4.8 4.3 43 1 90.3 59.8 0.33 6 YES 

4.2 10.1 121.2 1.2 78.9 63.8 0.37 6 No 

3.1 7.2 28.8 0.4 60.5 56.5 0.24 7.1 No 

1.9 8.4 16.8 0.2 36.1 32.1 0.25 7.1 No 

3.3 2.3 39.1 1.7 61.8 53.4 0.38 7.1 YES 

4.7 4.1 24.6 0.6 89.3 72.3 0.25 7.1 YES 

6.3 4.1 20.5 0.5 119.7 77.5 0.28 7.1 YES 

8.4 5.9 29.5 0.5 172.2 143.2 0.24 7.1 No 

3 1.4 18.2 1.3 55.9 35.9 0.13 7.3 YES 

2.4 1 52 5.2 45.4 37.5 0.19 7.6 No 

11 4.6 46 1 209 123 0.25 7.1 YES 

7.2 5.7 28.5 0.5 136.8 99.5 0.21 7.1 YES 

4.8 3.2 38.4 1.2 91.2 58.2 0.1 6 No 

4.2 10.1 121.2 1.2 78.9 63.8 0.13 6.6 No 
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APPENDIX-C 

Post liquefaction SPT-based data (Cetin 2000) used for reliability analysis  

Table C-1. Training Data 

Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

4.2 69.61 0.149 51.85 0.107 0.24 0.2 6 0.333 7.4 - 10 0.2 0.8 1 1 1.09 Yes 

5.2 89.15 0.085 57.29 0.084 0.4 0.1 11.7 0.248 8 - 2 0.5 0.85 1 1 1.22 Yes 

3 49.07 0.118 22.22 0.139 0.24 0.2 7 0.229 7.4 - 12 0.167 0.73 1 1 1 Yes 

4.5 73.26 0.078 46.37 0.08 0.2 0.075 6 0.017 7.4 - 50 0.1 0.82 1 1 0.75 Yes 

3.7 58.83 0.217 36.28 0.164 0.2 0.2 3.7 0.189 7.4 - 10 0.2 0.77 1 1 1.09 Yes 

4.7 72.78 0.157 35.43 0.189 0.17 0.265 7.8 0.449 6.5 0.02 40 0.075 0.83 1 1 1.05 No 

6 102.7 0.123 67.73 0.103 0.24 0.2 9.9 0.424 7.4 - 10 0.2 0.88 1 1 1.09 No 

9.9 184.6 0.179 135.57 0.126 0.4 0.1 17.5 0.154 6.9 0.016 20 0.25 1 1 1 1.22 No 

3.5 53.89 0.057 44.04 0.073 0.26 0.096 13 0.238 7 0.017 3 0.333 0.76 1 1 1 Yes 

8.5 137.8 0.105 69.39 0.109 0.1 0.2 9.5 0.158 7.3 0.015 5 0.4 0.95 1 1 1 Yes 

5.5 90 0.095 45.05 0.109 0.095 0.011 4.6 0.087 6.1 - 13 0.077 0.86 1 1 1.09 No 

11.4 211 0.054 116.24 0.068 0.18 0.15 24.7 0.121 7.5 0.015 8 0.25 1 1 1 1.21 No 

6.2 112.6 0.04 93.48 0.044 0.54 0.074 10.3 0.155 6.7 0.019 38 0.605 0.89 1 1 1.13 Yes 

3.2 52.82 0.133 30.77 0.137 0.09 0.2 2.7 0.556 7.5 0.015 5 0.4 0.74 1 1 1.22 Yes 

10.7 200.1 0.106 110.44 0.106 0.4 0.1 26 0.096 8 - 0 0 1 1 1 1.22 No 

2.4 38.18 0.093 27.02 0.113 0.24 0.2 11.5 0.191 7.4 - 7 0.143 0.68 1 1 1.12 Yes 

6.5 117.4 0.036 83.12 0.053 0.22 0.045 13 0.315 7 0.017 5 0.2 0.9 1.1 1 0.92 Yes 

6 82.08 0.066 57.57 0.072 0.165 0.079 4 0.35 7 0.017 25 0.2 0.88 1.1 1 0.92 Yes 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

8.9 159.8 0.043 142.12 0.049 0.693 0.087 20 0.22 6.7 0.019 43 0.302 0.97 1 1 1.13 Yes 

7.9 129.6 0.194 66.05 0.169 0.13 0.2 8.4 0.19 7.3 0.015 67 0.104 0.94 1 1 0.83 Yes 

7.9 143.2 0.137 88.63 0.121 0.24 0.2 19.3 0.13 7.4 - 5 0.2 0.94 1 1 1.21 No 

2.7 44.57 0.28 22.52 0.257 0.12 0.2 4.6 0.348 6.7 - 5 0.2 0.71 1 1 1 Yes 

5 84.97 0.206 44.91 0.185 0.1 0.2 8.8 0.318 6.7 - 0 0 0.84 1 1 1.09 No 

3.7 60.52 0.162 32.09 0.156 0.24 0.2 8.8 0.42 7.4 - 0 0 0.77 1 1 1 Yes 

3.7 58.83 0.217 36.28 0.164 0.12 0.2 3.7 0.189 6.7 - 10 0.2 0.77 1 1 1.09 No 

5.5 97.24 0.069 52.15 0.089 0.35 0.2 18.1 0.088 8 0.011 20 0.15 0.86 1 1 1 Yes 

2.5 35.74 0.089 30.84 0.113 0.18 0.111 10.9 0.202 6.7 0.019 30 0.167 0.69 1 1 1.05 No 

5.7 94.84 0.108 38.48 0.153 0.116 0.155 8.9 0.079 7.7 0.013 3 0.333 0.87 1 1 1.22 Yes 

2.9 45.74 0.238 25.71 0.207 0.2 0.2 5.6 0.143 7.9 - 20 0.15 0.72 1 1 1.17 Yes 

8.5 155.1 0.15 120.82 0.102 0.4 0.1 19.7 0.142 6.9 0.016 20 0.25 0.95 1 1 1.22 No 

7.7 146.5 0.24 94.08 0.192 0.34 0.029 5.7 0.246 6.9 0.016 20 0.25 0.93 1 1 1.22 Yes 

4.7 84.15 0.096 40.83 0.196 0.19 0.105 21 0.024 6.7 0.019 18 0.167 0.83 1 1 1.05 No 

3.5 61.66 0.206 38.13 0.171 0.22 0.2 19.7 0.157 8 0.011 5 0.6 0.76 1 1 1 No 

4.5 72.31 0.118 40.16 0.118 0.13 0.2 9.5 0.263 8 0.011 12 0.25 0.81 1 1 1 Yes 

4.5 65.59 0.117 41.08 0.102 0.09 0.278 4.5 0.778 6.2 0.023 75 0.133 0.81 1 1 1.05 No 

7.2 127.4 0.156 78.84 0.126 0.25 0.1 20 0.205 7.6 - 19 0.105 0.92 1 1 0.65 Yes 

3.5 53.41 0.065 48.51 0.053 0.28 0.2 11 0.245 7.4 - 5 0.4 0.76 1 1 1 Yes 

2 30.93 0.257 16.28 0.256 0.2 0.3 1.8 0.333 8 - 27 0.111 0.64 1 1 1.17 Yes 

3 49.72 0.12 29.14 0.126 0.32 0.2 15.5 0.31 7.4 - 4 0.25 0.73 1 1 1.12 No 

4.6 68.04 0.099 57.01 0.1 0.14 0.093 4.6 0.717 7 0.017 30 0.233 0.82 1.1 1 0.92 No 

2.4 41.9 0.223 26.96 0.188 0.225 0.111 14.4 0.153 7.9 - 5 0.4 0.68 1 1 1.21 No 

2.6 41.67 0.181 28.44 0.144 0.32 0.2 5.2 0.385 7.4 - 4 0.25 0.7 1 1 1 Yes 

5.7 94.84 0.108 38.48 0.153 0.213 0.141 8.9 0.079 7.8 - 3 0.333 0.87 1 1 1.22 Yes 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

6 87.58 0.066 63.07 0.067 0.13 0.1 4 0.35 7 0.017 25 0.12 0.88 1.1 1 0.92 Yes 

4.5 75.4 0.089 60.7 0.069 0.5 0.2 29.4 0.139 8 0.011 10 0.2 0.81 1 1 1 No 

4.2 66.67 0.115 54.66 0.142 0.28 0.2 13.2 0.424 7.4 - 0 0 0.8 1 1 1.21 No 

3.6 57.38 0.18 39.24 0.13 0.12 0.2 2 0.4 6.7 - 60 0.083 0.77 1 1 1 No 

5.3 81.54 0.073 70.93 0.086 0.45 0.1 3.4 0.265 6.6 - 55 0.091 0.85 1 1 1.13 Yes 

6.6 96.57 0.071 87.5 0.085 0.46 0.109 10.2 0.363 7 0.017 27 0.185 0.9 1 1 1.13 Yes 

6 101.6 0.093 63.9 0.084 0.24 0.2 21 0.09 7.4 -  0 0.88 1 1 1.12 No 

3.3 51.47 0.188 33.55 0.142 0.09 0.256 5.9 0.288 5.9 0.025 31 0.097 0.75 1 1 1.05 No 

4.5 65.59 0.117 41.08 0.102 0.17 0.118 4.5 0.778 5.9 0.025 75 0.133 0.81 1 1 1.05 Yes 

7.5 123.1 0.226 53.4 0.23 0.227 0.154 7.6 0.224 7.7 0.013 1 1 0.93 1 1 1.22 Yes 

4.2 66.08 0.131 51.14 0.091 0.13 0.077 6.4 0.516 6.5 0.02 92 0.109 0.8 1 1 1.05 No 

4.7 72.78 0.147 35.43 0.148 0.1 0.05 7.8 0.449 6.2 0.023 40 0.075 0.83 1 1 1.05 No 

3.6 57.38 0.18 39.24 0.13 0.24 0.2 2 0.4 7.4 - 60 0.083 0.77 1 1 1 Yes 

9.2 158.3 0.056 77.4 0.085 0.15 0.2 13.1 0.229 7.1 - 0 0 0.97 1 1 1.22 No 

9.5 174.8 0.17 130.65 0.119 0.4 0.1 30.2 0.235 6.9 0.016 20 0.25 0.98 1 1 1.22 No 

3 49.07 0.118 22.22 0.139 0.12 0.2 7 0.229 6.7 - 12 0.167 0.73 1 1 1 No 

4.5 76.85 0.124 55.93 0.097 0.24 0.2 11.9 0.227 7.4 - 26 0.192 0.82 1 1 1.09 No 

2.5 39.27 0.092 34.37 0.078 0.24 0.104 17.9 0.173 7 0.017 1 2 0.69 1 1 1 No 

3.4 54.08 0.172 37.9 0.225 0.47 0.106 10.6 0.302 6.5 0.02 37 0.135 0.76 1 1 1.13 No 

4.1 68.41 0.205 45.87 0.15 0.27 0.093 15 0.22 7 0.017 1 2 0.79 1 1 1 No 

3.5 53.57 0.169 36.9 0.125 0.29 0.086 6.1 0.557 7 0.017 2 1 0.76 1 1 1 Yes 

5.2 85.16 0.123 42.66 0.146 0.16 0.15 7.9 0.177 7.5 0.015 8 0.25 0.85 1 1 1.09 Yes 

6 82.08 0.119 57.57 0.084 0.15 0.087 3.9 0.487 7 0.017 50 0.1 0.88 1.1 1 0.92 Yes 

5.5 104.4 0.155 71.52 0.122 0.225 0.111 25.5 0.067 7.9 - 5 0.4 0.86 1 1 1.21 No 

3.5 54.98 0.153 37.83 0.118 0.25 0.22 9.7 0.227 7.7 0.013 1 1 0.76 1 1 1.22 Yes 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

4.5 73.01 0.15 53.9 0.103 0.24 0.104 15.7 0.204 7 0.017 1 2 0.82 1 1 1 Yes 

3.7 60.52 0.162 32.09 0.156 0.12 0.2 8.8 0.42 6.7 - 0 0 0.77 1 1 1 No 

6.5 123.3 0.051 113.51 0.087 0.24 0.1 37 0.038 7 0.017 7 0.286 0.9 1.2 1 0.92 No 

7.5 122.3 0.124 57.72 0.152 0.16 0.15 9.4 0.16 7.5 0.015 8 0.25 0.93 1 1 1.09 Yes 

11.4 210.5 0.225 136.98 0.171 0.34 0.118 11.6 0.31 6.9 0.016 20 0.25 1 1 1 1.22 Yes 

5.2 88.44 0.119 71.78 0.081 0.4 0.125 20.7 0.454 6.9 0.016 18 0.222 0.85 1 1 1.22 No 

7 117.4 0.108 63.66 0.119 0.2 0.2 12.4 0.056 7.3 0.015 48 0.104 0.91 1 1 1 Yes 

4.2 66.08 0.142 51.14 0.179 0.19 0.132 6.4 0.516 5.9 0.025 92 0.109 0.8 1 1 1.05 Yes 

3.5 56 0.199 32.48 0.166 0.22 0.2 5.9 0.136 8 0.011 3 0.667 0.76 1 1 1 Yes 

4.7 82.08 0.128 35.52 0.165 0.25 0.16 8.5 0.247 6.9 0.016 20 0.35 0.83 1 1 1.22 Yes 

2.7 44.57 0.28 22.52 0.257 0.32 0.2 4.1 0.39 7.4 - 5 0.2 0.71 1 1 1 Yes 

8.2 131.4 0.031 95.58 0.046 0.2 0.075 9 0.233 7.4 - 20 0.15 0.95 1 1 0.75 Yes 

7.9 130.5 0.137 61.06 0.161 0.16 0.15 8.8 0.25 7.5 0.015 8 0.25 0.94 1 1 1.09 Yes 

4.2 66.08 0.131 51.14 0.091 0.174 0.115 6.4 0.516 6.7 0.019 92 0.109 0.8 1 1 1.05 No 

4.2 69.32 0.26 37.46 0.215 0.2 0.2 4.8 0.583 7.7 0.013 15 0.267 0.8 1 1 1.22 Yes 

7.5 131.4 0.082 70.63 0.106 0.24 0.2 20.5 0.215 7.4 - 17 0.176 0.93 1 1 1.12 No 

9.9 183.8 0.139 115.18 0.115 0.34 0.118 9.5 0.137 6.9 0.016 20 0.25 1 1 1 1.22 Yes 

1.1 15.47 0.243 8.14 0.378 0.16 0.281 5.8 0.241 6.5 0.02 80 0.125 0.5 1 1 1.05 Yes 

3.3 51.47 0.188 33.55 0.142 0.51 0.098 5.9 0.288 6.5 0.02 31 0.097 0.75 1 1 1.05 Yes 

6 108.3 0.066 61.46 0.077 0.18 0.15 30 0.097 7.5 0.015 0 0 0.88 1 1 1.21 No 

4.9 85.81 0.181 59.83 0.13 0.25 0.1 34.2 0.216 7.6 - 19 0.105 0.84 1 1 0.65 No 

4.2 69.61 0.149 51.85 0.107 0.14 0.171 6 0.483 6.7 - 10 0.2 0.8 1 1 1.09 No 

2.9 49.88 0.163 39.1 0.169 0.156 0.128 26.4 0.394 6.7 0.019 25 0.16 0.72 1 1 1.13 No 

4.2 71.87 0.067 40.01 0.095 0.2 0.2 10.4 0.538 8 0.011 5 0.6 0.8 1 1 1 Yes 

1.1 15.47 0.243 8.14 0.378 0.19 0.105 5.8 0.241 6.7 0.019 80 0.125 0.5 1 1 1.05 No 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

6.2 117.8 0.048 85.96 0.057 0.25 0.04 6 0.65 7 0.017 8 0.375 0.89 1.1 1 0.92 Yes 

3.7 61.59 0.214 24.99 0.231 0.16 0.15 3.9 0.179 7.5 0.015 10 0.3 0.77 1 1 1.09 Yes 

7.9 141.6 0.053 98 0.054 0.4 0.125 25.9 0.193 6.9 0.016 2 0.5 0.94 1 1 1.22 No 

4.7 72.78 0.148 35.43 0.249 0.23 0.087 7.8 0.449 5.9 0.025 40 0.075 0.83 1 1 1.05 Yes 

5.9 91.33 0.119 74.9 0.114 0.14 0.171 9 0.2 6.7 - 5 0.6 0.88 1 1 1 No 

12.1 165.6 0.187 78.98 0.155 0.135 0.111 13 0.269 7.5 - 3 0.333 1 1 1 0.75 No 

4.5 73.95 0.153 33.27 0.176 0.12 0.183 7.7 0.091 7.1 - 0 0 0.81 1 1 1.22 Yes 

7 115.4 0.084 92.84 0.062 0.41 0.122 20 0.165 7 0.017 13 0.154 0.91 1 1 1.13 Yes 

9.1 129 0.238 54.35 0.213 0.135 0.111 4.3 0.302 7.5 - 3 0.333 0.97 1 1 0.75 Yes 

6.5 98.26 0.086 82.58 0.063 0.46 0.109 9 0.1 7 0.017 15 0.133 0.9 1 1 1.13 Yes 

4.5 65.59 0.117 41.08 0.102 0.2 0.2 4.5 0.778 6.6 0.02 75 0.133 0.81 1 1 1.05 No 

3.2 52.33 0.089 44.37 0.08 0.14 0.2 9 0.233 6.7 - 20 0.15 0.74 1 1 1.09 No 

7.5 135.6 0.119 80.04 0.108 0.18 0.15 17.5 0.063 7.5 0.015 8 0.25 0.93 1 1 1.21 No 

4.7 80.68 0.066 37.36 0.105 0.17 0.118 21 0.024 5.9 0.025 18 0.167 0.83 1 1 1.05 No 

9.2 172.4 0.045 120 0.048 0.51 0.118 24.4 0.123 6.7 0.019 25 0.2 0.97 1 1 1.13 Yes 

4.2 133.4 0.122 105.94 0.072 0.2 0.2 23.3 0.094 7.4 - 10 0.2 0.8 1 1 1.21 No 

4.2 69.32 0.26 37.46 0.215 0.15 0.2 4.8 0.583 7.1 - 15 0.267 0.8 1 1 1.22 No 

4 65.91 0.183 32.15 0.211 0.225 0.111 4.5 0.156 7.9 - 5 0.4 0.79 1 1 1.09 Yes 

3 47.6 0.144 34.39 0.115 0.24 0.2 4.3 0.581 7.4 - 10 0.2 0.73 1 1 1 Yes 

4.5 65.59 0.118 41.08 0.104 0.18 0.106 4.5 0.778 6.5 0.02 75 0.133 0.81 1 1 1.05 Yes 

3.3 53.17 0.224 32.21 0.175 0.4 0.3 3.6 0.278 7.3 
 

0 0 0.75 1 1 1.17 Yes 

4.7 72.78 0.147 35.43 0.148 0.18 0.028 7.8 0.449 6.6 0.02 40 0.075 0.83 1 1 1.05 Yes 

3.5 53.06 0.157 38.2 0.123 0.2 0.3 6 0.333 8 - 13 0.077 0.76 1 1 1.17 Yes 

1.7 26.7 0.15 19.35 0.166 0.25 0.1 6.5 0.062 7 0.017 35 0.143 0.61 1 1 1 Yes 

6 86.4 0.12 66.79 0.078 0.42 0.119 8 0.45 7 0.017 22 0.136 0.88 1 1 1.13 Yes 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

4.2 65.12 0.154 47.19 0.114 0.2 0.3 1.5 0.4 8 - 25 0.12 0.8 1 1 1.17 Yes 

3.9 61.38 0.144 46.19 0.183 0.24 0.104 10.2 0.039 7 0.017 3 0.333 0.79 1 1 1 Yes 

 

Table C-2. Testing Data 

Mean 
Depth 

(m) 

Mean 
 σv 

(kPa) 

COV 
σv 

 

Mean 
σv

’ 

(kPa) 

COV 
σv

’ 

 

Mean 
amax  

(g) 

COV 
 

Mean 
Nm 

COV 
Nm 

Mean 
Mw 

COV 
Mw 

Mean 
FC 

(% ) 

COV 
FC 

 

CR CS CB CE Liquefied? 

6 86.01 0.091 71.3 0.145 0.37 0.135 9 0.244 7 0.017 8 0.25 0.88 1 1 1.13 Yes 

5 81.53 0.076 38.4 0.114 0.16 0.15 4.4 0.364 7.5 0.015 0 0 0.84 1 1 1.09 Yes 

20.4 383.9 0.04 198.66 0.065 0.4 0.1 8.5 0.259 8 - 10 0.3 1 1 1 1.22 Yes 

7.5 140 0.071 95.86 0.068 0.25 0.04 12 0.425 7 0.017 10 0.1 0.93 1.1 1 0.92 Yes 

7.5 137.9 0.168 103.54 0.117 0.4 0.125 14.5 0.407 6.9 0.016 25 0.2 0.93 1 1 1.22 Yes 

3.4 54.08 0.179 37.9 0.235 0.13 0.154 10.6 0.302 6.7 0.019 37 0.135 0.76 1 1 1.13 No 

14.4 238.5 0.044 105.28 0.074 0.095 0.011 3.6 0.167 6.1 - 27 0.037 1 1 1 1.09 No 

4.5 73.95 0.153 33.27 0.176 0.278 0.144 7.7 0.091 7.7 0.013 0 0 0.81 1 1 1.22 Yes 

8.7 152.6 0.056 101.11 0.058 0.4 0.125 11 0.236 6.9 0.016 2 0.5 0.96 1 1 1.22 Yes 

2.5 35.74 0.075 30.84 0.099 0.16 0.125 10.9 0.183 5.9 0.025 30 0.167 0.69 1 1 1.05 No 

6.5 106.4 0.142 67.22 0.119 0.18 0.15 12 0.25 7.5 0.015 0 0 0.9 1 1 1.09 No 

4.2 71.34 0.158 53.42 0.112 0.24 0.2 9.6 0.448 7.4 - 3 0.333 0.8 1 1 1.09 Yes 

3 47.6 0.144 34.39 0.115 0.12 0.2 4.3 0.581 6.7 - 10 0.2 0.73 1 1 1 No 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

2.5 35.74 0.079 30.84 0.102 0.16 0.119 10.9 0.202 6.5 0.02 30 0.167 0.69 1 1 1.05 No 

2.4 39.26 0.182 27.31 0.144 0.2 0.075 13.9 0.007 7.4 - 4 0.375 0.68 1 1 0.75 No 

3.2 47.09 0.157 32.88 0.266 0.47 0.106 2.7 0.815 6.5 0.02 29 0.155 0.74 1 1 1.13 Yes 

4.2 71.34 0.158 53.42 0.112 0.14 0.2 9.6 0.448 6.7 - 3 0.333 0.8 1 1 1.09 No 

6.2 94.92 0.072 84.47 0.077 0.45 0.1 7.2 0.333 6.6 - 50 0.1 0.89 1 1 1.13 Yes 

5 84.97 0.206 44.91 0.185 0.2 0.2 8.8 0.318 7.4 - 0 0 0.84 1 1 1.09 Yes 

3.2 47.09 0.166 32.88 0.276 0.15 0.133 2.7 0.815 6.7 0.019 29 0.155 0.74 1 1 1.13 No 

11.6 181.8 0.052 133.22 0.05 0.2 0.075 11.4 0.14 7.4 - 20 0.15 1 1 1 0.75 Yes 

7.9 132.2 0.197 90.83 0.143 0.35 0.3 16.1 0.155 7.3 - 4 0.25 0.94 1 1 1.3 Yes 

8.5 124.5 0.068 70.58 0.077 0.41 0.122 18.5 0.151 7 0.017 20 0.15 0.95 1 1 1.13 Yes 

8.3 104.3 0.186 63.97 0.121 0.135 0.111 14.9 0.154 7.5 - 3 0.333 0.95 1 1 0.75 No 

4.7 83.3 0.095 47.19 0.101 0.2 0.2 9.8 0.204 8 0.011 12 0.25 0.83 1 1 1 Yes 

3.5 53.41 0.065 48.51 0.053 0.14 0.2 11 0.209 6.7 - 5 0.4 0.76 1 1 1 No 

2.9 45.61 0.107 38.14 0.085 0.2 0.075 15.2 0.026 7.4 - 3 0.333 0.72 1 1 0.75 No 

4.2 68.93 0.221 41.97 0.202 0.18 0.056 6 0.55 7 0.017 20 0.2 0.8 1.1 1 1.13 Yes 

5.9 91.33 0.119 74.9 0.114 0.24 0.2 9 0.444 7.4 - 5 0.6 0.88 1 1 1 Yes 

2.4 38.18 0.093 27.02 0.113 0.12 0.2 11.5 0.191 6.7 - 7 0.143 0.68 1 1 1.12 No 

1.1 15.47 0.243 8.14 0.378 0.17 0.118 5.8 0.241 5.9 0.025 80 0.125 0.5 1 1 1.05 No 

3.2 52.33 0.089 44.37 0.08 0.24 0.2 9 0.256 7.4 

 

20 0.15 0.74 1 1 1.09 Yes 

13.5 240.2 0.045 141.19 0.058 0.4 0.125 5.8 0.483 6.9 0.016 18 0.222 1 1 1 1.22 Yes 

6.5 119.9 0.037 88.49 0.045 0.4 0.1 9.5 0.074 6.7 0.019 37 0.135 0.9 1 1 1.13 Yes 

6.1 111.1 0.043 80.23 0.085 0.22 0.045 12.6 0.246 7 0.017 3 0.333 0.88 1.1 1 0.92 Yes 

7.5 121.3 0.14 62.7 0.13 0.2 0.2 10.3 0.32 7.3 0.015 5 0.4 0.93 1 1 1 Yes 

3.4 54.08 0.17 37.9 0.124 0.26 0.096 10.5 0.067 7 0.017 2 1 0.76 1 1 1 Yes 

2.9 49.88 0.163 39.1 0.169 0.47 0.106 26.4 0.394 6.5 0.02 25 0.16 0.72 1 1 1.13 No 
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Mean 

Depth 

(m) 

Mean 

 σv 

(kPa) 

COV 

σv 

 

Mean 

σv
’ 

(kPa) 

COV 

σv
’ 

 

Mean 

amax  

(g) 

COV 

 

Mean 

Nm 

COV 

Nm 

Mean 

Mw 

COV 

Mw 

Mean 

FC 

(% ) 

COV 

FC 

 

CR CS CB CE Liquefied? 

2.6 41.67 0.181 28.44 0.144 0.12 0.2 5.2 0.385 6.7 - 4 0.25 0.7 1 1 1 No 

3.3 51.47 0.188 33.55 0.142 0.16 0.125 5.9 0.288 6.7 0.019 31 0.097 0.75 1 1 1.05 No 
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APPENDIX-D 

Post liquefaction CPT-based data (Moss 2003) used for reliability analysis  

Table D-1. Training Data 

Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

3.3 3120 0.247 38.04 0.427 44.46 0.111 68 0.189 0.16 0.188 7.5 0.015 Yes 

1.95 5910 0.954 82.47 0.879 29.5 0.081 31.95 0.067 0.16 0.188 7.5 0.015 No 

1.38 730 0.26 5.78 0.606 14.1 0.178 26.66 0.101 0.2 0.25 7.4 0.015 Yes 

4.25 3140 0.503 30.28 0.333 52.75 0.086 74.72 0.11 0.18 0.111 6.5 0.02 Yes 

2.75 2690 0.323 30.56 0.142 35.49 0.123 47.75 0.17 0.51 0.098 6.5 0.02 Yes 

3.9 2800 0.679 68.56 0.356 54.5 0.084 65.88 0.129 0.13 0.308 6.5 0.02 No 

5.2 5140 0.593 76.9 0.302 56.52 0.087 98.7 0.104 0.17 0.294 6.5 0.02 No 

2.5 5750 0.637 80.79 0.485 36.66 0.101 41.47 0.088 0.16 0.125 6.5 0.02 No 

2.7 3140 0.182 1.16 0.181 39.3 0.107 44.2 0.076 0.19 0.263 6.2 0.023 Yes 

2.9 1720 0.174 13.45 0.176 39.37 0.113 48.2 0.116 0.19 0.263 6.2 0.023 Yes 

3 1920 0.302 17.92 0.133 41.75 0.105 49.6 0.102 0.19 0.263 6.2 0.023 Yes 

2.3 3000 0.087 24.15 0.08 34.46 0.118 37.4 0.061 0.19 0.263 6.2 0.023 Yes 

4.72 5130 0.46 70.69 0.313 51.93 0.114 89.31 0.149 0.23 0.087 5.9 0.025 Yes 

4.3 2570 0.588 71.54 0.259 58.18 0.084 73.48 0.133 0.19 0.158 5.9 0.025 Yes 

4.25 3230 0.43 28.53 0.206 50.43 0.098 72.5 0.106 0.17 0.118 5.9 0.025 Yes 

3.35 3310 0.254 37.22 0.119 39.15 0.142 57.3 0.194 0.09 0.222 5.9 0.025 No 

5 2820 0.468 29.61 1.126 52.96 0.1 91.91 0.141 0.17 0.294 7.7 0.013 Yes 

3 2720 0.239 48.22 0.457 43.91 0.075 49.8 0.132 0.17 0.294 7.7 0.013 No 

2.75 4970 0.298 68.72 0.309 37.98 0.103 49.75 0.166 0.3 0.2 6.9 0.017 Yes 
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Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

2.4 5760 0.568 105.6 0.859 29.1 0.108 44.8 0.12 0.5 0.2 6.9 0.017 Yes 

3.35 5290 0.459 206.28 0.651 50.01 0.071 59.33 0.109 0.5 0.2 6.9 0.017 Yes 

7.3 8300 0.265 214.07 0.583 120.45 0.042 125.45 0.044 0.5 0.2 6.9 0.017 Yes 

3.75 4920 0.415 18.07 0.296 28.03 0.153 57.37 0.161 0.44 0.205 6.6 0.02 Yes 

2.7 3380 0.334 21.83 0.185 19.5 0.196 41.38 0.191 0.43 0.209 6.6 0.02 Yes 

7.75 7610 0.112 28.38 0.114 58.46 0.085 118.5 0.047 0.42 0.19 6.6 0.02 Yes 

2.8 6820 0.194 75.03 0.117 26.06 0.117 42.25 0.069 0.37 0.189 6.6 0.02 Yes 

8 7290 0.144 22.47 0.129 67.9 0.077 121.46 0.071 0.31 0.194 6.6 0.02 Yes 

5.1 5530 0.329 30.77 0.272 39.15 0.117 77.9 0.118 0.28 0.214 6.6 0.02 Yes 

5.5 6070 0.196 19.51 0.098 41.43 0.098 84.1 0.055 0.27 0.185 6.6 0.02 Yes 

4.1 4180 0.191 4.18 0.191 44.03 0.076 61.2 0.052 0.27 0.185 6.6 0.02 Yes 

5 4030 0.313 11.94 0.624 39.81 0.149 76.21 0.206 0.26 0.192 6.6 0.02 Yes 

5.45 6030 0.202 23.34 0.244 53.04 0.07 81.98 0.042 0.39 0.205 6.6 0.02 Yes 

1.8 9200 0.177 40.6 0.553 18.17 0.152 27 0.037 0.37 0.189 6.6 0.02 No 

4.2 7630 0.157 31.14 0.268 37.38 0.094 63.57 0.072 0.4 0.3 6.6 0.02 No 

5.9 8010 0.17 25.02 0.341 52.07 0.077 89.35 0.051 0.41 0.293 6.6 0.02 No 

4.7 13800 0.132 67.07 0.132 65.51 0.06 68.45 0.047 0.26 0.192 6.6 0.02 No 

7.5 7390 0.273 31.37 0.277 55.36 0.088 114.81 0.041 0.27 0.296 6.6 0.02 No 

5.2 5140 0.593 76.9 0.302 56.52 0.087 98.7 0.104 0.17 0.294 6.2 0.023 No 

5.2 5140 0.593 76.9 0.302 56.52 0.087 98.7 0.104 0.21 0.238 6.6 0.02 Yes 

6.75 5280 0.129 34.83 0.143 90.64 0.043 127.53 0.032 0.28 0.036 7 0.017 Yes 

7.5 8660 0.221 47.96 0.349 96.79 0.049 141.03 0.055 0.28 0.036 7 0.017 Yes 

6.15 5710 0.119 25.87 0.064 73.41 0.075 111.18 0.117 0.28 0.107 7 0.017 Yes 

6.45 2140 0.285 13.36 0.139 74.42 0.056 114.15 0.07 0.16 0.188 7 0.017 Yes 
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Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

6 2030 0.433 9.66 0.206 71.48 0.056 106.8 0.065 0.16 0.188 7 0.017 Yes 

6.5 2320 0.203 9.88 0.124 76.08 0.05 116.3 0.039 0.16 0.188 7 0.017 Yes 

5.5 2120 0.198 10.91 0.232 66.32 0.048 95.75 0.035 0.25 0.12 7 0.017 Yes 

8.3 4530 0.313 54.16 0.36 86.75 0.065 148.55 0.069 0.25 0.12 7 0.017 Yes 

3.2 4680 0.145 25.76 0.118 44.55 0.087 52.4 0.107 0.25 0.12 7 0.017 Yes 

2.85 5490 0.182 26.17 0.091 43.22 0.09 46.65 0.077 0.25 0.12 7 0.017 Yes 

3.8 5940 0.582 34.21 0.227 47.86 0.089 66.5 0.092 0.25 0.32 7 0.017 Yes 

5.25 3740 0.377 31.63 0.457 60.64 0.077 97.43 0.119 0.16 0.188 7 0.017 Yes 

6.5 4050 0.119 28.58 0.08 87.13 0.044 106.75 0.042 0.31 0.258 7 0.017 Yes 

7.4 4790 0.196 12.19 0.745 98.99 0.042 123.42 0.043 0.3 0.233 7 0.017 Yes 

8.65 4790 0.503 92.4 0.099 99.92 0.054 155.35 0.061 0.3 0.233 7 0.017 Yes 

7 7130 0.22 34.88 0.35 99.84 0.052 122.4 0.086 0.3 0.233 7 0.017 Yes 

6.5 3170 0.442 22.66 0.42 95.7 0.047 103.55 0.065 0.3 0.233 7 0.017 Yes 

4.1 5730 0.162 19.93 0.2 54.02 0.054 70.7 0.046 0.29 0.241 7 0.017 Yes 

4.05 5280 0.303 15.88 0.207 53.56 0.057 69.75 0.066 0.29 0.241 7 0.017 Yes 

7.7 8740 0.041 41.87 0.027 103.45 0.04 131.9 0.032 0.31 0.258 7 0.017 Yes 

6.65 3890 0.136 31.53 0.062 86.39 0.045 110.43 0.047 0.31 0.258 7 0.017 Yes 

7.5 4450 0.065 22.26 0.311 102.98 0.04 127.5 0.033 0.31 0.258 7 0.017 Yes 

7.13 5670 0.159 25.38 0.074 90.33 0.046 126.88 0.041 0.18 0.278 7 0.017 Yes 

3.8 1860 0.253 15.53 0.196 50.27 0.064 66.95 0.072 0.18 0.278 7 0.017 Yes 

7.45 6890 0.251 26.06 0.129 94.12 0.045 137.78 0.033 0.18 0.222 7 0.017 Yes 

2.7 2610 0.149 8.17 0.072 37.07 0.069 45.9 0.065 0.17 0.235 7 0.017 Yes 

2.7 5070 0.108 60.88 0.234 36.38 0.07 48.15 0.063 0.32 0.25 7 0.017 Yes 

3.5 3030 0.31 4.76 0.137 45.1 0.079 60.8 0.129 0.17 0.235 7 0.017 Yes 
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Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

3.4 1220 0.131 5.86 0.09 43.5 0.06 59.2 0.044 0.17 0.235 7 0.017 Yes 

3.15 3560 0.124 10.12 0.375 44.82 0.061 55.13 0.062 0.17 0.235 7 0.017 Yes 

8.6 7190 0.076 48.48 0.119 121.47 0.05 150.9 0.082 0.28 0.25 7 0.017 Yes 

4.83 5210 0.146 38.3 0.14 72.26 0.049 79.38 0.056 0.28 0.25 7 0.017 Yes 

3.25 1330 0.301 7.03 0.193 36.29 0.077 60.33 0.057 0.17 0.235 7 0.017 Yes 

5.9 4820 0.062 33.17 0.031 79.83 0.054 103.37 0.08 0.28 0.25 7 0.017 Yes 

6.75 3950 0.187 37.51 0.083 100.15 0.044 114.38 0.053 0.3 0.267 7 0.017 Yes 

5.5 7100 0.38 152.37 0.166 74.32 0.048 103.75 0.041 0.24 0.083 7 0.017 No 

3.75 13380 0.065 27.51 0.286 52.74 0.058 64.03 0.083 0.25 0.12 7 0.017 No 

4.5 9330 0.066 27.61 0.18 66.95 0.048 74.8 0.056 0.25 0.12 7 0.017 No 

3.75 16470 0.298 48.62 0.179 50.9 0.069 61.2 0.088 0.25 0.12 7 0.017 No 

2.7 9360 0.154 29.57 0.083 39.09 0.096 48.9 0.078 0.25 0.12 7 0.017 No 

2.9 9590 0.106 27.03 0.166 38.27 0.086 48.08 0.093 0.25 0.12 7 0.017 No 

6.6 18830 0.032 56.94 0.146 85.64 0.05 123.9 0.031 0.25 0.12 7 0.017 No 

2.9 10400 0.073 52.53 0.062 43.5 0.076 48.4 0.084 0.25 0.12 7 0.017 No 

4.5 3900 0.231 13.48 0.1 58.38 0.075 78 0.133 0.17 0.235 7 0.017 No 

4.15 2770 0.278 65.16 0.061 58.6 0.05 72.83 0.043 0.17 0.235 7 0.017 No 

3.4 2860 0.189 13.46 0.087 43.5 0.099 60.18 0.185 0.15 0.267 7 0.017 No 

2.75 3700 0.097 41.19 0.076 42.92 0.064 46.36 0.064 0.26 0.269 7 0.017 No 

6.6 14930 0.072 103.79 0.032 109.48 0.042 113.4 0.043 0.28 0.25 7 0.017 No 

6.93 7870 0.208 53.73 0.395 90.94 0.061 124.54 0.099 0.28 0.25 7 0.017 No 

6.9 5530 0.148 90.75 0.185 109.97 0.043 113.97 0.046 0.12 0.25 7 0.017 No 

5.5 3840 0.089 15.77 0.098 79.54 0.055 92.29 0.096 0.15 0.267 7 0.017 No 

9 7260 0.566 187.3 0.278 144.99 0.039 162.74 0.042 0.69 0.087 6.7 0.019 Yes 
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Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

9.95 3110 0.479 73.46 0.254 110.45 0.049 169.8 0.038 0.51 0.118 6.7 0.019 Yes 

6.5 6220 0.386 67.31 0.235 91.27 0.043 122.67 0.037 0.4 0.1 6.7 0.019 Yes 

6.13 8770 0.643 98.79 0.418 94.85 0.036 112.76 0.031 0.54 0.074 6.7 0.019 Yes 

4 3620 0.124 65.07 0.486 53.85 0.068 66.6 0.095 0.77 0.143 6.7 0.019 Yes 

7 6250 0.323 30.8 0.248 70.45 0.07 119.5 0.056 0.37 0.297 7.2 0.015 Yes 

 

Table D-2. Testing Data 

Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

7 7830 0.068 97.46 0.698 95.07 0.042 124.5 0.037 0.45 0.311 7.2 0.015 Yes 

6.5 2350 0.115 9.38 0.306 75.24 0.053 121.35 0.038 0.6 0.3 7.2 0.015 Yes 

4.5 5090 0.104 44.37 0.161 55.86 0.056 82.35 0.048 0.6 0.3 7.2 0.015 Yes 

4 3840 0.193 11.24 0.327 55.79 0.052 70.5 0.047 0.6 0.3 7.2 0.015 Yes 

5.5 1900 0.242 33.32 0.401 71 0.048 99.45 0.042 0.45 0.311 7.2 0.015 Yes 

4.75 4340 0.122 33.73 0.5 60.33 0.057 86.33 0.063 0.45 0.311 7.2 0.015 Yes 

6.75 2840 0.489 61.63 0.486 94.01 0.042 119.03 0.039 0.45 0.311 7.2 0.015 Yes 

5.5 2510 0.554 10.42 0.183 54.71 0.081 93.95 0.068 0.4 0.3 7.2 0.015 Yes 

3.75 4650 0.217 30.19 0.254 49.96 0.077 67.13 0.124 0.5 0.3 7.2 0.015 Yes 

3.7 2530 0.178 9.98 0.249 42.13 0.08 62.73 0.053 0.45 0.311 7.2 0.015 Yes 

4.4 1490 0.342 5.91 0.342 50.98 0.068 74.52 0.041 0.5 0.3 7.2 0.015 Yes 
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σ'v 

(COV) 

σv 
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σv 

(COV) 
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Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

5.45 4070 0.246 24.66 0.549 69.15 0.051 99.08 0.05 0.6 0.3 7.2 0.015 Yes 

5.5 4850 0.214 35.84 0.29 69.64 0.049 100.05 0.042 0.6 0.3 7.2 0.015 Yes 

4 6290 0.169 27.13 0.185 55.79 0.064 70.5 0.097 0.6 0.3 7.2 0.015 Yes 

4.25 3370 0.288 31.52 0.342 59.57 0.049 74.78 0.036 0.45 0.311 7.2 0.015 Yes 

3.5 2330 0.227 21.81 0.646 51.62 0.054 60.45 0.046 0.45 0.311 7.2 0.015 Yes 

5 14220 0.217 85.41 0.354 70.48 0.056 95 0.076 0.7 0.3 7.2 0.015 No 

3.65 11380 0.394 216.23 0.563 57.62 0.05 64 0.037 0.5 0.3 7.2 0.015 No 

4 7890 0.766 214.05 0.65 59.19 0.061 69 0.1 0.5 0.3 7.2 0.015 No 

3.75 12930 0.041 94.75 0.591 46.11 0.073 63.28 0.053 0.65 0.308 7.2 0.015 No 

2.8 10300 0.243 67.98 0.408 38.09 0.083 46.92 0.057 0.6 0.3 7.2 0.015 No 

1.45 6040 0.356 63.38 0.479 21.59 0.107 26 0.1 0.65 0.308 7.2 0.015 No 

1.6 950 0.432 4.27 0.466 17.31 0.154 28.1 0.18 0.37 0.243 7.4 0.015 Yes 

1.8 1300 0.623 15.21 0.395 22.45 0.11 30.3 0.129 0.37 0.351 7.4 0.015 Yes 

2.3 1150 0.2 21.62 0.209 26.8 0.093 39.55 0.085 0.4 0.25 7.4 0.015 Yes 

3.8 3940 0.452 30.34 0.309 55.5 0.056 60.4 0.064 0.4 0.25 7.4 0.015 Yes 

4.05 1740 0.58 17.96 0.455 38.19 0.089 73.61 0.071 0.4 0.25 7.4 0.015 Yes 

2.15 1390 0.518 7.29 0.558 28.9 0.083 35.28 0.073 0.4 0.25 7.4 0.015 Yes 

2.25 2030 0.463 8.24 0.483 22.96 0.12 40.13 0.121 0.4 0.25 7.4 0.015 Yes 

2.4 3360 0.348 10 0.735 24.26 0.11 42.9 0.093 0.4 0.25 7.4 0.015 Yes 

2.1 2520 0.254 7.95 0.481 21.31 0.121 37.5 0.106 0.4 0.25 7.4 0.015 Yes 

2.5 2630 0.369 15.34 0.39 33.44 0.077 41.09 0.083 0.4 0.25 7.4 0.015 Yes 

3.25 1740 0.27 9.75 0.497 33.08 0.081 58 0.042 0.4 0.25 7.4 0.015 Yes 

2.5 1870 0.39 16.95 0.375 27.17 0.094 43.85 0.078 0.4 0.25 7.4 0.015 Yes 

2.38 1300 0.477 7.41 0.409 32.35 0.076 38.78 0.071 0.4 0.25 7.4 0.015 Yes 
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Depth 

(mean) 

m 

qc 

(mean) 

kPa 

qc 

(COV) 

fs 

(mean) 

kPa 

fs 

(COV) 

σ'v 

(mean) 

kPa 

σ'v 

(COV) 

σv 

(mean) 

kPa 

σv 

(COV) 

amax 

(mean) 

(g) 

amax 

(COV) 

Mw 

(mean) 

Mw 

(COV) 

Liquefied? 

3.25 2540 0.465 23.39 0.488 36.68 0.1 58.75 0.138 0.38 0.211 7.6 0.013 Yes 

4.25 2120 0.368 20.32 0.52 46.68 0.084 77.39 0.107 0.6 0.2 7.6 0.013 Yes 

4 1880 0.234 34.61 0.68 44.93 0.093 72.4 0.135 0.6 0.2 7.6 0.013 Yes 

7 750 0.387 15.42 0.459 69.78 0.078 130.6 0.079 0.6 0.2 7.6 0.013 Yes 

4.75 1700 0.535 36.96 0.837 50.46 0.112 87.25 0.166 0.6 0.2 7.6 0.013 Yes 

6.5 2060 0.194 22.23 0.191 63.62 0.074 121.79 0.057 0.25 0.2 7.6 0.013 Yes 

3.25 2480 0.31 12.22 0.466 33.68 0.092 60.07 0.086 0.25 0.2 7.6 0.013 Yes 

3.5 2720 0.136 12.59 0.345 39.86 0.076 63.11 0.077 0.25 0.2 7.6 0.013 Yes 

6.2 3870 0.233 23.27 0.361 65.15 0.067 114.2 0.063 0.25 0.2 7.6 0.013 Yes 

10.75 7740 0.141 61.67 0.198 122.76 0.05 193.69 0.049 0.25 0.2 7.6 0.013 Yes 

6 3390 0.31 21.03 0.317 60.18 0.084 111.78 0.091 0.25 0.2 7.6 0.013 Yes 

7 2750 0.105 57.1 0.163 71.14 0.085 130 0.102 0.38 0.211 7.6 0.013 Yes 

3.5 1160 0.371 6.6 0.662 38.98 0.087 63.5 0.104 0.38 0.211 7.6 0.013 Yes 
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ADDENDUM 

4.3.2.2 Parametric study and Sensitivity analysis  

For verification of the developed MGGP-based LIp models (Model-I and Model-II), a 

parametric analysis was performed in the present study. The parametric analysis investigates 

the response of the predicted liquefaction index from the above two models with respect to 

the corresponding input variables. The robustness of the developed model equations for LIp 

[Eq. (4.20) and Eq. (4.21)] are evaluated by examining how well the predicted values agree 

with the underlying physical behavior of occurrence of liquefaction. 
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Fig. 4.13(A)   Parametric analysis of LIp for developed MGGP-based Model-I 
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Fig. 4.13(B) Parametric analysis of LIp for developed MGGP-based Model-II 

It can be observed from Fig. 4.13 (A), that in case of the developed Model-I, LIp decreased 

with increasing qc1N, Ic and ’v showing nonlinearity. But, it can be seen that LIp increased 

with increasing CSR7.5 nonlinearly. Similarly, Fig. 4.13 (B), which corresponds to the Model- 
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developed Model-II, shows that LIp decreased with increasing qc linearly whereas LIp 

decreased with increasing Rf  and ’v nonlinearly. It can also be noted that LIp increased with 

increasing amax, Mw and v nonlinearly. The parametric analysis results are generally expected 

considering the physical behavior of liquefaction phenomenon. The above results confirm 

that the developed Model-I and Model-II are capable of showing the important characteristics 

of liquefaction index. 

Table 4.9(a) Sensitivity analysis of inputs for the developed MGGP models as per Gandomi 

et  al. (2013) 

 

Sensitivity analyses were made as per Gandomi et  al. (2013) for the developed models 

(Model-I and Model-II) and presented in Table 4.9 (a). For Model-I, normalized cone tip 

resistance (qc1N) is the most important parameter. The other important inputs are CSR7.5, and 

Ic with σ’v is the least important parameter. For Model-II the most important parameter is 

measured cone tip resistance (qc). The other input parameters in decreasing order of their 

contribution in governing the prediction of LI are (amax/g), σ’v, Rf,  σv, and Mw. It is well 

known that qc is the most important soil parameter for liquefaction susceptibility analysis. 

 

Model -I Model - II 

Parameters qc1N Ic σ
’
v CSR7.5 qc Rf σ

’
v σv amax/g Mw 

Sensitivity 

(%) 

46.2 20.6 11.7 21.4 29.8 15.1 18.4 9.9 18.7 8.2 

Rank 1 3 4 2 1 4 3 5 2 6 


