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Abstract

Microscopic analysis of peripheral blood smear is a critical step in detection of leukemia.

However, this type of light microscopic assessment is time consuming, inherently

subjective, and is governed by hematopathologists clinical acumen and experience. To

circumvent such problems, an efficient computer aided methodology for quantitative

analysis of peripheral blood samples is required to be developed. In this thesis, efforts are

therefore made to devise methodologies for automated detection and subclassification

of Acute Lymphoblastic Leukemia (ALL) using image processing and machine learning

methods.

Choice of appropriate segmentation scheme plays a vital role in the automated

disease recognition process. Accordingly to segment the normal mature lymphocyte

and malignant lymphoblast images into constituent morphological regions novel schemes

have been proposed. In order to make the proposed schemes viable from a practical

and real–time stand point, the segmentation problem is addressed in both supervised

and unsupervised framework. These proposed methods are based on neural network,

feature space clustering, and Markov random field modeling, where the segmentation

problem is formulated as pixel classification, pixel clustering, and pixel labeling

problem respectively. A comprehensive validation analysis is presented to evaluate the

performance of four proposed lymphocyte image segmentation schemes against manual

segmentation results provided by a panel of hematopathologists.

It is observed that morphological components of normal and malignant lymphocytes

differ significantly. To automatically recognize lymphoblasts and detect ALL in

peripheral blood samples, an efficient methodology is proposed. Morphological, textural

and color features are extracted from the segmented nucleus and cytoplasm regions of

the lymphocyte images. An ensemble of classifiers represented as EOC3 comprising

of three classifiers shows highest classification accuracy of 94.73% in comparison to

individual members.

The subclassification of ALL based on French–American–British (FAB) and World

Health Organization (WHO) criteria is essential for prognosis and treatment planning.

Accordingly two independent methodologies are proposed for automated classification

of malignant lymphocyte (lymphoblast) images based on morphology and phenotype.

These methods include lymphoblast image segmentation, nucleus and cytoplasm feature

extraction, and efficient classification.

To subtype leukemia blast images based on cell lineages, an improved scheme is also



proposed and the results are correlated with that of flow cytometer. Using this scheme

the origin of blast cells i.e. lymphoid or myeloid can be determined. An ensemble of

decision trees is used to map the extracted features of the leukemic blast images into

one of the two groups.

Each model is studied separately and experiments are conducted to evaluate their

performances. Performance measures i.e. accuracy, sensitivity and specificity are used to

compare the efficacy of the proposed automated systems with that of standard diagnostic

procedures.

Keywords: Automated leukemia detection, Acute lymphoblastic leukemia, Quantitative microscopy,

Lymphocyte image segmentation, Hematological image analysis, Machine learning.
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Chapter 1

Introduction

The term disease implies discomfort, or absence of ease within the body. Whenever

the normal functioning of the body or any of its part becomes impaired, diseases

occur and may require medical treatment [1]. In general, diseases can be classified

on the basis of their cause and cell of origin i.e. infectious, immunological, endocrine,

genetic, neoplastic, and traumatic etc. Physicians across the globe are interested in

understanding the biology of a diseases, and how it can be prevented, or treated [2].

Among all diseases the quest for understanding cancer, a malignant neoplastic disorder

is in the research forefront for several investigators including biologists, clinicians, and

chemists. It can be defined as several groups of diseases, each with its own rate of growth,

diagnosis, treatment, and cure. However all cancers are characterized by uncontrolled

growth of abnormal cells, invade surrounding tissues, metastasize (spread to distant

sites), and eventually killing the host where it originates [3]. Cancer can develop in

individuals of any race, gender, age, socioeconomic status, or culture and can involve any

type of cells, tissues or organs of the human body. Globally cancer is the second leading

cause of death, after cardiovascular diseases and 12.7 million people are diagnosed with

cancer out of which 7.6 million deaths occurred in the year 2008 itself [4]. As per

American Cancer Society a total of about 1,660,290 new cancer cases and 580,350 cancer

deaths are projected to occur in the United States in 2013 [5]. Although these figures

are based on American cancer registries and confined to the United States, proportional

statistics are also expected for other countries across the globe. Scientific evidence

suggests that most of the cancers caused by infectious agents, smoking, heavy use of

alcohol and obesity could be prevented. Moreover, early diagnosis through regular

screening programs and removal of precancerous growth can provide complete cure in
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many cancers. Cancer mortality rate decreased by 1.8% per year in males and by 1.5%

per year in females during the most recent 5 years due to the development in the field

of diagnostic instrumentation, and progress in therapeutics. Therefore, the possibility

of complete cure is achievable with early detection and with appropriate treatment.

Hematological malignancies i.e. leukemia, lymphoma, and myeloma are the types

of blood cancer that can affect blood, bone marrow, lymphatic system, and are the

major contributors to cancer deaths [6]. As per Leukemia and Lymphoma Society it

was estimated that in 2012 a total of 148,040 will be diagnosed, and 54,380 will die

of leukemia, lymphoma, and myeloma in the US [7]. In India, the total number of

individuals suffering from blood cancer was estimated to be approximately 104,239 in

2010 [8]. And according to Indian Council of Medical Research (ICMR), by the year 2020

the total number of cancer cases of lymphoid and hematopoietic system are expected to

go up to 77,190 for males and 55,384 for females. Moreover, as per Indian Association

of Blood Cancer and Allied Diseases among all childhood cancers, leukemia (white

blood cell cancer) account for one–third of childhood cancer in India. Even though the

death rates have declined in some blood cancers i.e. leukemia over the last few years, the

complete cure rate in India has been much inferior to developed nations [9]. Discrepancy

in terms of death rate or cure rate between blood cancer patients of India and other

developed nations is mostly because of misdiagnosis or diagnosis at advanced stages

of cancer. Studies reveal that excessive workload, shortage of trained pathologist, and

use of conventional hematological evaluation methods are some of the leading causes

behind delayed or wrong diagnosis in India. Such shortcomings can be overcome by

the utilization of quantitative microscopic techniques in the precise characterization of

blood test samples facilitating early diagnosis of blood cancers.

1.1 Blood

Blood is a fluid connective tissue which circulates through the heart and blood vessels. It

transports oxygen and nutrients to the tissues and the excretory products to the lungs,

liver, and kidneys, where they can be removed from the body. Blood is composed

of different types of cells suspended in a pale yellow colored transparent fluid called

plasma [10]. There are three types of blood cells :

� Erythrocyte or Red Blood Cell (RBC): combines with oxygen in the lungs and

carries it to tissues where it is needed for the metabolic processes.
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� Leukocyte or White Blood Cell (WBC): is responsible for defending the body

against infections and aid in the immune process.

� Thrombocyte or Platelet: contain a variety of substances that promote blood

clotting.

The process of blood cell formation is known as �haemopoiesis�and takes place in

the bone marrow. Initially all blood cells originate from �pluripotent stem cells�and

undergo several developmental stages before distinct cells of each type are formed, and

enter the peripheral blood stream.

WBCs are responsible for defending the body against infections caused by microbes

and other foreign materials. They are the largest blood cells and account for about

1% of the blood volume. Unlike erythrocytes, leukocytes have a nuclei and each cell

is made up of a nucleus and cytoplasm. The nucleus contains chromatin material

and is chemically deoxyribonucleic acid (DNA) carrying genetic messages. Normally,

human peripheral blood contains mature leukocytes and can be classified into two

major groups of cells i.e. polymorphonuclear leukocytes (granulocytes) or mononuclear

leukocytes (agranulocytes) [11]. This classification is based on nucleus morphology and

presence of cytoplasmic granules. There are three types of granulocytes and two types

of agranulocytes (Table 1.1).

Table 1.1: Types of Leukocytes

Major Types Specific Types Percentage of the WBC’s

Neutrophils 50–70%

Granulocytes Eosinophils Less than 5%

Basophils Fewer than 1%

Lymphocytes 25–35%

Agranulocytes Monocytes 4–10%

Lymphocytes are further subdivided into B–lymphocytes, which are synthesized in

the bone marrow, T–lymphocytes from the thymus gland and natural killer (NK) cells.

They continuously circulate between tissues and blood stream and are accountable

for body’s immune responses. Monocytes are large mononuclear cells that originate

in the red bone marrow and spleen. They are phagocytic in nature and are part of
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body’s defense mechanism against bacterial and fungal infections. Monocytes are also

responsible for the cleaning of dying body cells.

Additionally, immature leukocytes i.e. unsegmented neutrophils, myelocytes,

metamyelocytes, promyelocytes, myeloblasts, monoblasts, lymphoblast are also present

in human body and are normally found in the bone marrow. But in individuals with

unregulated or increased growth, they get spilled to peripheral blood and different types

of leukocytic malignancies are observed.

1.2 Blood Diseases

The study of blood diseases are commonly known as hematology and are diagnosed by

medical experts known as hematopathologist. Hematological disorders can be broadly

classified in three ways, i.e. by the type of blood cell which is affected, according to

functional disorders of the blood and lymphoid organs, neoplastic disorders of blood and

lymphoid organs [12]. Moreover the neoplastic diseases can also be further classified as

nonmalignant disorders and malignant disorders. Nonmalignant disorders are conditions

with increased or decreased cell count but not due to malignant transformation of stem

cells. Table 1.2 lists few examples of blood diseases along with the basic pathology they

belong to. However, malignant disorder of leukocytes is the only disease considered for

our study, and a brief introduction on hematological malignancies is presented in the

following section

1.2.1 Hematological Malignancies (Blood Cancer)

Cancer is a generic term to describe a group of malignant diseases with cells displaying

uncontrolled and invasive growth along with metastasis. It can develop in almost any

organ or tissue, such as the blood, lymph node, bone, breast, skin, colon, or nerve

tissue. Among various types of human cancers, hematological malignancies accounts for

a substantial percentage of all cancers worldwide. Around 10% of all cancers in United

States are hematologic in origin [13]. Hematological malignancies are a heterogeneous

group of cancers of the blood, bone marrow and lymph node. Such malignancies can

derive from either of the two major blood cell lineages: myeloid and lymphoid cell

lines [14]. Myeloproliferative diseases, myelodysplastic syndromes and myelogenous

leukemia, are from the myeloid line, while lymphomas, lymphocytic leukemia, and

myeloma have lymphoid origin. As per American Cancer Society an estimated 48, 610
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Table 1.2: Types of blood diseases and there pathology

Disorders Pathology Disease

Erythrocyte
Increased RBC Polycythemia

Decreased RBC Anemia

Leukocyte

Eosinophilia

Increased WBC (nonmalignant) Infectious Mononucleosis

Sepsis

Decreased WBC (nonmalignant) Leukopenia

Malignant disorders of WBC Leukemia

Lymphomas

Hemostatic
Quantitative Platelet Disorder Primary Thrombocythemia

Allergic Purpura

Coagulation Disorder Hemophilia

Vascular Disorder Purpura Simplex

and 79, 030 number of new cases of leukemia and lymphoma are expected to be diagnosed

in the United States during the year 2013. It is also predicted that the total number

of deaths during the same year due to leukemia and lymphoma will be 23, 720 and

20, 200 respectively [7]. Moreover, among all cancers of the children younger than 15

years leukemia and lymphoma contributes 34% and 12% respectively. In India, these

two cancers comprise nearly half of all pediatric cancers, accounting 28.6% and 13.2%

respectively [15]. Even though leukemia is most common in children, it can also occur

in adults and about 90% of all leukemia are diagnosed in adults [16]. The high mortality

rate of leukemia is mainly due to late diagnosis, and is mainly because of the symptoms

of leukemia tend to mimic those of other common diseases. Due to unavailability of

experienced pathologists and adequate laboratory facilities in district level hospitals

of India many leukemia patients are initially misdiagnosed leading to patient’s death.

Leukemia is one of the most common hematological malignancies in India and is the only

disease which is considered here for our study. A detailed description about leukemia is

presented in the following section.
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1.3 Leukemia

Leukemia also known as liquid cancer which develops from cells in the blood, bone

marrow, and lymphatic system. It is different from other cancers as it does not produce

solid masses or tumors. In leukemia, the abnormal white blood cells flood the marrow,

providing no room for red blood cells and platelets. This can affect a patient in several

ways i.e. decrease in red blood cells can result with anemia, drop in platelet count

decreases the clotting ability of the blood. Moreover due to abnormal nature of white

blood cells, they lack the ability to fight infections. The usual symptoms of leukemia

include fatigue, frequent infections, and easy bruising and bleeding. Depending on

the clinical course, leukemia disease can be preliminary classified as either acute with

rapidly progressing disease with a predominance of highly immature blast cells, or

chronic which denotes slowly progressing disease with increased numbers of more mature

cells [17]. However, additional classification of leukemia are developed to further identify

differences in the response to treatment, prognosis and are based on the hematopoietic

cell of origin i.e. myelocytic (myeloid) or lymphocytic (lymphoid). A rudimentary

classification of leukemia based on both clinical course and the source of leukemic cell

population is presented in Table 1.3.

Table 1.3: Leukemia Classification
Clinical

Course

Cell of Origin

Lymphoid Myeloid

Acute Acute Lymphoblastic Leukemia (ALL) Acute Myeloid Leukemia (AML)

Chronic Chronic Lymphocytic Leukemia (CLL) Chronic Myeloid Leukemia (CML)

As per World Health Organization (WHO) acute leukemia in general can be defined

as malignant neoplasms with more than 20% blasts (myeloid or lymphoid) in the

peripheral blood/bone marrow. In this study, we investigate on one such acute condition

of malignant proliferation of lymphoid cells known as acute lymphoblastic leukemia.

1.4 Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is a malignant disease caused by the genetic

alterations of the lymphocyte precursor cells of the bone marrow. In the language

of hematology precursors are also known as blasts, therefore ALL is known as acute
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lymphoblastic leukemia. ALL is characterized by excessive production of immature

lymphocytes (lymphoblast) in the bone marrow preventing normal hematopoiesis. If

untreated ALL can cause death due to crowding out normal cells in the bone marrow

and by metastasizing to other essential organs through the peripheral blood. Clinically

and biologically features of ALL are sufficiently distinct from its myeloid counterpart

and warrant separate diagnostic and treatment protocols. Moreover, due to advances in

molecular biology and treatment modalities subtype classification of ALL has become

essential for prognostic assessment and suitable chemotherapy planning. The overall

classification of ALL is discussed in Section 1.4.1.

1.4.1 Classification

Two popular ALL classification schemes presently in use worldwide are

French–American–British (FAB) classification and World Health Organization

(WHO) classification.

A. FAB Classification

A group of seven French, American and British hematologists in 1976 formulated

a classification of leukemia based on morphology and cytochemistry establishing a

worldwide consistency in diagnosis [18]. As per FAB classification, there are three

subtypes of ALL i.e. L1, L2, and L3 and each has a distinct blast morphology.

B. WHO Classification

The classification schemes by WHO requires additional evaluation of leukemic blasts

by flow cytometric immunophenotyping, cytogenetics and molecular analysis [19]. Such

methods provide significant information on the heterogeneity of ALL and has been

very useful in the confirmative diagnosis, treatment and prognostic evaluation of ALL

patients [20]. Based upon all the four (morphology, immunophenotyping, cytogenetics

and molecular analysis) criteria ALL can be broadly subdivided as:

� Precursor B–lymphoblastic leukemia or pre–B

� Precursor T–lymphoblastic leukemia or pre–T

� Mature B–lymphoblastic leukemia or mature–B
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As per studies, around 75% of cases of ALL are of B–cell lineage and 25% of cases are

found to be of T–cell lineage [21]. Treatment protocol differs entirely for patients with

B or T–cell lineages hence WHO classification of ALL is of utmost importance.

1.4.2 Correlation between FAB and WHO Classification

The correlation between FAB and WHO classification in terms of morphology is studied

in 50 ALL patients. Experts have unequivocally confirmed the presence of morphological

differences in majority of cases in blasts of both the phenotypes. Moreover, based on

additional morphological evaluation of these blast cells, it is observed that most of

the cases of pre–B ALL shows L1 and pre–T ALL L2 morphology [22]. However, flow

cytometric study revealed that few cases of pre–T show ALL specific L1 morphology

and few cases of pre–B show ALL specific L2 morphology. As such complex cases

are few, morphological evaluation can be used as a criteria for the initial correlation

between FAB and WHO subtyping of ALL. The equivalence between FAB and WHO

classification is presented in Table 1.4.

Table 1.4: Morphological correlation between FAB and Immunophenotyping.

Phenotype Morphology

pre–B L1/L2

pre–T L1/L2

Mature B L3

Due to similarity in the visual appearances of the blasts to hematopathologists, few

ALL cases are often misdiagnosed as AML. Thereupon, correlation between morphology

and immunophenotype has also been studied for ALL and AML patients for authentic

automated diagnosis of ALL. Based on human morphological evaluation and flow

cytometric immunophenotyping it is observed that by using morphology, the lineages

of leukemic blasts could be determined in majority of our cases.

1.4.3 Epidemiology

ALL is the most common malignancy in children, accounting for one third of all pediatric

cancers. The global burden and epidemiology associated with ALL in terms of incidence
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rate, number of new cancer cases and mortality rate in relation to age, gender, race, and

geographic location is presented in this section. Such empirical data helps to identify

the trends and patterns of ALL across the globe and renders proper population based

health management.

Globally over 250, 000 people are diagnosed with leukemia each year, accounting

for 2.5% of all cancers [23]. In United States overall incidence rate of leukemia for

the period 2005–2009 has been reported to be 12.5% per 100, 000 population [24]. The

incidence of ALL has been reported to be highest in countries like Spain, Northern Italy,

New Zealand (Whites) and Hispanics in the US, whereas lowest incidence is observed

in African Americans and Asians [25]. ALL accounts for approximately 80% of all

leukemia patients and 30% of all cancers in children worldwide [23]. In India, 60–85%

of all leukemia reported are ALL [26]. Even though ALL is more prevalent in children

and adolescents, it can appear in the people of any age group and around 20% of adult

acute leukemia cases are found to be ALL worldwide. In Europe, about 10, 000 new

adult cases are diagnosed each year with incidence rates varying between two and four

per 100, 000 population [27]. Age–specific incidence patterns demonstrates high rise for

1 to 4 year–olds, followed by decreasing rates during later childhood, adolescence, and

young adulthood. Again an increase in incidence is observed among the people with

age 50 years or older. Globally incidence of ALL is found to be higher among males

compared to females by nearly 40%, and the overall incidence of ALL in blacks is lower

by 43% than in whites.

For US the total number of deaths expected to be attributed to ALL in 2012 is

approximately 1, 440. However, in the recent years the ALL mortality rate for children

and adolescents in the age group of 0 to 14 years has declined 80% in the developed

nations. Though several research studies on Indian population have also reported an

improving outcome over the last decade, the cure rates of childhood ALL in developing

countries like India have not kept pace with more than 80% survival outcome of the

developed nations [9, 28]. The majority of ALL deaths occur in rural areas of India,

where most of the patients are diagnosed in late stages due to lack of proper clinical or

diagnostic services. Factors which contribute to lower survival rates in rural population

of India include delayed or wrong diagnosis, ignorance about leukemia, and lower

socioeconomic status.
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1.4.4 Etiology

Cancer is a major burden of disease worldwide, and has become a public health problem

demanding global attention. Even after years of research, surprisingly little is known

about the exact cause of many cancers including leukemia. However, clinical evidences

suggest that a variety of factors may be etiologically involved in the leukemogenesis

in man. Important etiological factors contributing to the development of ALL can be

broadly classified as biological, physical and chemical factors [29]. Indeed, researchers

also believe that complex interplay between multiple etiological factors are involved in

different cases, and is found to be true in individual ALL cases also [30]. Some of the

evidences implicating chromosomal alterations, viruses, ionizing radiation and exposure

to benzene in leukemogenesis are discussed below under biological, physical and chemical

etiological factors.

A. Biological Factors

Etiological factors which are believed to play a role in pathogenesis of ALL are:

� Cytogenetic Abnormalities: Hereditary syndromes are associated with

cytogenetic abnormalities and has been linked to ALL [31]. These abnormalities

include germ–line karyotype abnormalities, somatic karyotypic abnormalities,

translocations, and deletions. The germ–line abnormalities associated with

childhood leukemia includes Down syndrome, Bloom syndrome, Klinefelter

syndrome, Fanconi anemia and Ataxia telangiectasia. Somatic abnormalities are

also associated with childhood leukemia and include aneuploidy, pseudodiploidy

and hyperdiploidy. Translocations and deletions are also frequently found in ALL

cases.

� Infectious Etiology: Several lines of scientific evidence support the possibility

that infections might cause ALL. The most widely accepted theory of causation of

childhood ALL by infectious etiology was first proposed by Kinlen [32]. However,

till date no specific virus, retroviruses or microbes have been confirmed to be

associated with ALL.
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B. Physical Factors

� Ionizing Radiation: Of the several possible causes investigated for ALL,

exposure to radiation in different forms has shown a strong and consistent

association with ALL among children as well as adults. The most important

evidence of ionizing radiation as an etiologic agent for ALL came from the studies

of survivors of atomic bomb blasts in Japan [33] and from patients treated

for ankylosing spondylitis [34]. There is also evidence for increased risk of

ALL incidence in prenatal associated exposure to X–rays through radiography

of pregnant women’s abdomen [35]. Concern has also been raised over the

apparent elevated leukemia incidence associated with radionuclide contamination

i.e. ingestion of radium through ground water [36].

� Nonionizing Radiation: Epidemiological studies have also found positive

association between ALL and residential exposure to electric and magnetic

fields [37,38]. However, there is limited evidence about increased risk of childhood

leukemia with exposure to magnetic fields inside infant incubators [39].

C. Chemical Factors

� Solvents: Substantial number of epidemiologic studies have described elevated

risks of childhood leukemia associated with parental occupational exposure to

solvents, glues, exhausts, and paints [40,41]. Often workers in various occupations,

such as shoe, leather, rubber and printing industry are exposed to benzene and

pose increased risk of leukemia [29]. However, studies have linked more number

of AML cases than ALL to occupational exposure of benzene. Elevated risk

for children are also found for substantial prenatal and postnatal exposure to

household solvents [42].

� Pesticides: Various hypothesis exists that suggest a link between ALL and

pesticides [43]. Excessive use of organophosphates as pesticides on crops, fruits,

and vegetables for farming and gardening expose humans to such carcinogenic

chemicals through the food chain, air, and water supply. There is also evidence

of differences in urine organophosphate levels in children with ALL than in

controls [44]. Some studies have also reported presence of pesticides in umbilical

cord and newborn blood, indicating exposure of pesticides in pregnant women

including fetus [45].
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� Drugs: Several researchers have linked certain drugs used in chemotherapy for

treating other cancers with secondary leukemia [46,47]. However, secondary ALL

is a very rare disease in comparison to secondary AML. In another study, parental

use of diet pills and psychoactive drugs before and during the index pregnancy is

associated with increased risks of childhood ALL [48].

Many other risk factors have also been suggested but remain under investigations.

Such etiological factors need further studies on larger population to confirm the

association with ALL.

1.4.5 Clinical Signs and Symptoms

Clinical features in ALL patients are mainly a result of marrow failure due to

replacement of normal hematopoietic cells by proliferating leukemic blasts. Most of

the symptoms are the result of anemia, infections due to neutropenia and bleeding due

to thrombocytopenia. In addition, due to infiltration of leukemic cells organomegaly

ensues in essential organs such as lymph nodes, liver, and spleen [46]. Clinical features

of ALL in terms of sign and symptoms are presented in Table 1.5.

Table 1.5: Clinical Features of ALL

Symptoms Signs

Fatigue Lymphadenopathy

Fever Hepatomegaly

Purpura and gum bleeding Thrombocytopenia

Bone/ joint pain Splenomegaly

Weight Loss Sternal tenderness

1.4.6 Diagnosis

The diagnostic evaluation of patients with suspected leukemia begins with a careful

review of the clinical history, thorough physical examination and laboratory studies.

Together all the above medical examinations are essential in determining the correct

diagnosis and devising suitable treatment plan for the suspected patients.
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A. Clinical History

Competent history taking [49] is a part of clinical examination, and is of vital importance

in all aspects of medical practice including oncology. A systematic approach to

history taking and recording is crucial as it is the first step in making the diagnosis.

Clinical history taking in doubtful leukemia patients include recording of specific patient

information i.e.

� Presenting Symptoms

� Past illness history

� Social history

� Family history

B. Physical Examination

If a diagnosis of leukemia is suspected, the patient undergoes a thorough review of

medical history followed by a physical examination. During physical examination

clinicians look for possible physical signs of leukemia, such as pale skin from anemia

and swelling of lymph nodes, enlarged liver and palpable spleen.

C. Laboratory Examination

Patients with leukemia present with decreased hemoglobin and elevated WBC

count in around 60–70% of cases [22]. In addition, coexisting anemia along with

thrombocytopenia may be present [50]. Moreover, peripheral blood smear (PBS)

examination reveals around 40–95% blast cells in usually most of the ALL patients.

Analysis of cerebrospinal fluid (CSF) may also show presence of blast cells. Even rising

of uric acid levels is also an indicator of high leukemic cell burden of ALL suspected

patients. Microscopic evaluation of PBS samples, along with bone marrow aspiration

examination is an usual procedure for the diagnosis of ALL. Furthermore, as per WHO,

presence of more than 20% blasts in bone marrow is essential for the confirmation of

ALL. Moreover, it is also necessary to recognize blast subtype present in the blood

samples for prognosis assessment and for suitable treatment planning.

Laboratory diagnosis of ALL in modern hematology practice relies on blood and

bone marrow morphology, immunophenotyping, cytogenetics and molecular analysis.
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However, regardless of such advanced techniques microscopic examination of blood slides

still remains as a standard procedure for ALL diagnosis. Hence, since a long time human

visual analysis of stained peripheral blood and bone marrow samples has been the most

economical way for initial screening of ALL patients across the globe. The basis behind

the microscopic diagnosis and classification of ALL are discussed in Section 1.4.7.

1.4.7 Basis of Microscopic Diagnosis and Classification of ALL

Successful identification and subtyping of lymphoblast in stained peripheral blood and

bone marrow samples is essential for accurate diagnosis of ALL. Clinically, ALL is

characterized by excess lymphoblast in the peripheral blood or bone marrow samples

than healthy conditions. Essentially, for obtaining the blast count on the smear

mature lymphocytes are required to be distinguished from lymphoblast based on nucleus

and cytoplasm morphology of the cells. Moreover, leukemic blast cells are immature

lymphocytes having a completely different morphology with respect to healthy mature

lymphocytes and are the basis of such microscopic diagnosis. The current morphological

criteria for distinguishing both type of cells are described in Table 3.1 of Chapter 3, and

is followed by most of the hematopathologists across the globe [51].

Additionally, subtype classification of blasts is essential as it provides important

information regarding prognosis, and for suitable selection of chemotherapy. Standard

protocols for leukemia sub categorization are based on the nomenclature proposed

by French, American, British (FAB) cooperative classification system and World

Health Organization ( 1.4.1). Popular FAB classification of ALL blasts is based on

morphology and cytochemical staining, and can be L1, L2 or L3 subtypes. Whereas,

according to WHO, ALL subtypes is based on whether the precursor cell is a T or B

lymphocyte. WHO classification is more recognized than FAB system as it incorporates

morphological, immunophenotypic, cytogenetic and molecular features in the evaluation

of leukemic blasts and has better significance to therapeutic or prognostic implications.

However, classification of ALL as per WHO standardsis complex due to additional

evaluation of blasts based on flow cytometer and molecular analysis. Moreover, in

developing countries like India it is unfeasible to use flow cytometer for routine screening

of ALL at most of the health institutions due to high cost and/or device availability.

Therefore, regardless of advanced techniques, microscopic examination of blood samples

(peripheral blood and/or bone marrow) is still a standard procedure for screening

and subtyping of ALL. Hematopathologists have been using light microscope for the
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examination of stained blood samples for a long time, relying on cellular morphology and

their pathological expertise. This includes distinguishing normal mature lymphocytes

from abnormal lymphocytes (lymphoblast) and identifying subtypes of lymphoblast

using FAB classification. The current FAB criteria classify the blast cells into L1, L2

and L3 subtypes, and are summarized in Table 4.1 of Chapter 4.

1.5 Limitations of the Conventional Diagnosis

Microscopy based cytometry allows inspection of histological characteristics of

lymphocyte for the diagnosis and classification of ALL. Although it is an invasive

procedure, this modality provides evidence and display visual images of morphological

components of cells and tissues under study. Visualization of underlying cellular

components even exposes the texture content of cytoplasmic and nucleus regions of

the lymphocytes. Provision to interpret morphological and textural features of cells

assists in the diagnosis process, and is the motivation for visual microscopy.

Hematopathologists have been using light microscopy for the visualization of cell

and tissue samples from a long time. They rely on their clinical expertise while

making decisions about the healthiness of the examined PBS or bone marrow biopsy

samples. This includes distinguishing normal mature lymphocytes from leukemic

blasts (lymphoblast) and identifying subtypes of lymphoblast using FAB classification.

Nevertheless, variability in reported manual diagnosis may still occur [52, 53] in all

types of cancers including ALL. This could be due to, but not limited to morphological

heterogeneity; noise arising due to improper staining process; intraobserver variability,

i.e. hematopathologists inability to produce same reading while observing the same

samples more than once and interobserver variability, i.e. difference in reading among

hematopathologists. Few studies have been reported concerning observer discrepancies

in light microscopic based manual diagnosis of hematological disorders. Browman et

al. [54] reported on one such study where the intraobserver concordance was found to be

64.8% and 70.5% for two independent observers respectively. However, the interobserver

concordance for FAB classification of ALL between two observers was reported to be

72%. As per our clinical studies at SCB, Medical College Cuttack and IGH Rourkela

during the last five years the discrepancies which may arise during the manual detection

and subclassification of ALL can be classified into two categories i.e. low and high

according to Table 1.6.
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Table 1.6: Discrepancy measure for different acute leukemia conditions

Diagnostic condition Discrepancy

Lymphocyte vs Lymphoblast High

L1 vs L2 High

L1 vs L3 Low

L2 vs L3 Low

B–ALL vs T–ALL High

Lymphoid vs Myeloid Low

Therefore, over the few decades quantitative techniques have been developed and

have taken over conventional pathological examinations in the process of cancer

diagnosis [55]. Such techniques developed for computer aided diagnosis avoid

unnecessary repeated biopsies, and offer a rigorous and reproducible method of clinical

investigation. Currently, the challenge still remains in developing a value added

diagnostic technique for early detection of diseases and reducing diagnostic error in

comparison to the conventional procedures.

Other than the development of automated differential counter, very limited research

has been undertaken in the area of quantitative hematology. Researchers are yet

to develop an integrated image processing based approach to differentiate mature

lymphocytes from leukemic blasts. In addition, there is no dedicated image based

method for which morphological features of lymphocytes can be used to subtype

leukemic blasts based on cell lineages. Experimental studies showed that quantitative

morphological features of normal and malignant blood samples have significant

difference among them. Thus, such objective measurements can facilitate early and

accurate diagnosis of ALL and its subtyping. In the following section, we illustrate the

use of image processing in hematology.

1.6 Hematological Image Analysis

The science of medical imaging owes back to the discovery of X–rays in 1895. However,

it was only after the development of computed tomography scanners in the early 1970

that introduced the use of computers into medical imaging and clinical practice [56].

Since then, computers have become an integral part of almost all medical imaging
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systems including radiography, ultrasound, nuclear medicine and magnetic resonance

imaging systems. However, the use of computers and image processing in pathology

is quite recent. With the widespread acceptance of medical imaging as a standard

diagnostic tool for various diseases gave an implicit invitation to apply computers

and computing for the diagnosis of cancer too. Over the last two decades, many

image processing based systems have already been designed and successfully used for

laboratory diagnosis of various types of cancer. Specifically, computing technology was

first applied to microscopic data for the automated screening of gynecological cancer in

1950 [57]. Eventually, with advances in both computing hardware and image processing

methodologies several applications have been developed to emulate manual diagnostic

procedures for a large spectrum of diseases i.e. oral cancer [58], ovarian cancer [59],

cervical cancer [60], prostate cancer [61], breast cancer [62], colon cancer [63] and

follicular lymphoma [64] etc. In above applications, stained cell or tissue samples are

placed under the microscope for scanning, and the images of the specific field of view are

acquired. Additionally, development of an automated system for cancer diagnosis in the

scanned microscopic images involves four main computational steps i.e. preprocessing,

segmentation, feature extraction and detection. The aim of the preprocessing step

is to correct the background illumination and eliminate noise. Preprocessing step is

followed by cellular/tissue layer segmentation in the case of extracting cellular level

and tissue level information. Segmentation is the most important and difficult step

before feature extraction that must be performed with high accuracy for a successful

diagnosis. After segmenting the image, features are extracted either at cellular or

tissue level. Cellular features are concerned with the quantification of individual cell

properties regardless of spatial dependency between themselves, whereas tissue level

feature extraction quantifies the distribution of cells across the tissues [65]. For a single

cell, morphological, textural, fractal, and/or intensity features are extracted, and for

a tissue sample the textural, fractal, and/or topological features can be extracted. In

general, the aim of the detection step is (i) to distinguish between normal and malignant

cell samples (ii) to subtype malignant samples based on the extracted features.

As per existing literature on hematology and our own hematopathology laboratory

evaluations it is observed that there exists significant morphological differences between:

i. Mature lymphocyte and lymphoblast (immature lymphocyte)

ii. FAB subtypes of lymphoblast (L1, L2, and L3)
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iii. WHO subtypes of lymphoblast (pre–B, pre–T, and mature–B)

iv. Lymphoid and myeloid leukemic blast

Hence, based on these observations it is concluded that there exists enough scope to

use image analysis and machine learning approaches to automate the above diagnostic

problems. Therefore, in this thesis investigations have been made to develop an

computer aided scheme for the detection and subtyping of ALL in microscopic color

images of peripheral blood smear (PBS). Additionally, a dedicated scheme has also been

developed for the discrimination of acute lymphoblastic leukemia (lymphoid blast) and

acute myeloid leukemia (myeloid blast) in PBS image samples. The computer aided

detection and subtyping of ALL is performed at cellular level, and is based on (i) image

segmentation (ii) extract features from the segmented images of stained blood smear

samples, and (iii) analysis of these features for classification.

1.7 Review of Literature

In last few years, various researchers have been attracted to digital pathology, and have

contributed to the area of modern quantitative microscopy [66]. In the literature, most

of the work done are devoted to overcome the problem of subjectivity in the visual

assessment of morphological characteristics in stained cell/tissue samples. Although

extensive research has been carried out to implement quantitative microscopy on

histopathological images, studies on the automatic evaluation of hematological images

for disease recognition and classification is limited. From the available literature on

hematological image processing it is observed that most of the research done till date

can primarily be categorized into three groups namely —

A1. Leukocyte or White Blood Cell (WBC) image segmentation

B1. Differential blood count

C1. Automated leukemia detection

A1. Leukocyte Image Segmentation

Leukocyte or WBC image segmentation methods available in the literature are mostly

shape, threshold, region growing, or edge based schemes. Liao and Deng [67] introduced
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a novel WBC image segmentation scheme which is based on simple thresholding followed

by contour identification. This algorithm works with an assumption that the cells

are circular in shape, hence is not at all suitable for irregularly shaped lymphoblasts

(malignant lymphocytes).

Angulo et al. [68] proposed a two stage blood image segmentation algorithm based on

automatic thresholding and binary filtering. This scheme exhibits good segmentation

performance in terms of cytoplasm, nucleus and nucleolus extraction in lymphocyte

images. All these come at the cost of higher computational time due to the two

stage segmentation process. Moreover, determination of optimum threshold for initial

segmentation is always difficult due to variable staining and lighting conditions.

Sinha et al. [69] proposed an automated leukocyte segmentation scheme using

Gaussian mixture modeling and EM algorithm. This method is fully unsupervised

and even no parameter tuning is necessary, however this scheme does not perform well

for all stains.

Umpon [70] introduced patch based WBC nucleus segmentation using fuzzy

clustering. Even if the nucleus segmentation is accurate, there is no provision for

cytoplasm extraction which is equally important for leukemia detection.

Dorini et al. [71] used watershed transform based on image forest transform to

extract the nucleus. Concurrently, size distribution information is used to extract the

cytoplasm from the background including RBC. While effective for nucleus segmentation

this method fails when the cytoplasm is not round.

Dorin Comaniciu et al. [72] proposed an efficient cell segmentation algorithm that

detects clusters in the L∗u∗v∗ color space and delineates their borders by employing the

gradient ascent mean shift algorithm. Though this method is effective in accurate

nucleus segmentation, there is no provision for cytoplasm extraction which is also

essential for ALL detection.

Yang et al. [73] used color gradient vector flow (GVF) active contour model for

leukocyte segmentation. The algorithm has been developed in the L∗u∗v∗ color space.

They have incorporated color gradient and L2E robust estimation technique into the

traditional GVF snake model. Though the segmentation performance showed promising

results in comparison to the mean shift approach and the standard color GVF snake, the

test data is unable to distinguish weak edges and textures, thereby limiting its ability

to segment lymphocytes.

Yi et al. [74] proposed a PSO trained on–line neural network for WBC image
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segmentation. It uses mean–shift and uniform sampling for reducing the training data

set. Despite the reduction in training time, this scheme is found to be unsuitable for

differentiating nucleus from cytoplasm accurately.

Shitong [75] proposed a hybrid method combining threshold segmentation followed

by mathematical morphology and fuzzy cellular neural networks. However, despite high

running speed and good leukocyte detection it is unable to separate cytoplasm and

nucleus.

Chinwaraphat et al. [76] proposed a modified fuzzy c–means clustering technique.

The modification is performed to eliminate false clustering due to uncertainty in

determining the belongingness at the conjunction of cytoplasm and nucleus. The

segmentation performance is only compared to traditional Fuzzy c–Means and manual

cropping is necessary for the test images.

Meurie et al. [77] introduced an automatic segmentation scheme based on

combination of pixel classification. However, despite hybridization of classifiers the

average segmentation performance is not so high. Further the use of multiple classifiers

increases the average running time.

Ghosh et al. [78] proposed a marker controlled watershed segmentation technique to

extract the entire WBC from the background. Although the proposed technique usually

performs well in extracting the WBC from the background, it obtains rather poor result

while extracting cytoplasm and nucleus from the background. Determination of accurate

threshold to separate nucleus from cytoplasm is important, and no specific methods has

been presented for its estimation.

Ghosh et al. [79] proposed a threshold detection scheme using fuzzy divergence for

leukocyte segmentation. Various fuzzy membership functions i.e. Gamma, Gaussian

and Cauchy functions have been evaluated for the test images. While this method is

able to segment the nucleus accurately, there is no provision for cytoplasm extraction

which is also an essential morphological component of lymphocytes for ALL detection.

Ko et al. [80] proposed a hybrid leukocyte segmentation scheme which employs

stepwise merging rules based on mean shift clustering and boundary removal rules with

a GVF snake model. Two different schemes are employed independently to extract

the cytoplasm and nucleus of the leukocyte. However, the segmentation accuracy for

cytoplasm needs further improvement and computation time has to be reduced.
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B1. Differential Blood Count

There are several drawbacks associated with the conventional differential blood count

method, and have led to the need to automate the process. The automatic methods

can be classified as fluid properties or visual information based methods. Automated

schemes for differential blood count based on flow cytometry are widely in use [81, 82].

Such methods employ coulter principle of impedance measurement for a liquid dispersed

blood flow and classify WBC’s using laser light scattering [83,84]. Additionally, systems

using cytochemical or fluorescence staining are also used for leukocyte differential

count [85].

Above methods depend on hematological practice, but forfeit the rich amount of

information available in the visual blood microscopic images. Hence, several attempts

have been made using image processing and pattern recognition to develop an automated

differential leukocyte counting system [86–88]. Few of them are able to detect theWBC’s

in the blood microscopic images [89,90], while others have been successful in classifying

the leukocytes also [91–93].

C1. Automated Leukemia Detection

There have been a few studies done on the recognition and classification of leukemia

blasts in the peripheral/bone marrow blood samples. The automatic detection and

subclassification methods can be divided into two categories. The first category uses

the genetic information, fluid properties while the second category uses the perceptible

information present in the blood microscopic images.

a. Gene Data and Flow Cytometry Based Methods

Lin et al. proposed a novel approach for classifying subtypes of ALL using silhouette

statistics and genetic algorithm [94]. In this scheme, a classification accuracy of 100%

is achieved using gene expression or microarray data.

Ross et al. developed an approach [95] for the classification of prognostic subtypes

of pediatric ALL. In this scheme, few newly selected subtype discriminating genes are

identified, and are used to get an overall accuracy of 97% for prognostic classification

of ALL.

Adjouadi et al. proposed a neural network based algorithm for the classification of

normal blood samples from acute leukemia samples [96]. Flow cytometer data is used
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for the recognition of leukemia blasts. The authors reported a classification accuracy

of 96.67%. However, despite high classification accuracy the use of flow cytometer for

diagnosis of ALL is restricted due to high cost and is limited to specialized hospitals

only. Moreover, the algorithm doesn’t dealt with the problem of ALL subclassification.

Microarray gene data and flow cytometry based approaches for leukemia diagnosis

and subtyping provides good results, the process of obtaining of such data is often

complex and expensive for initial screening and classification of ALL. Extraction of

genetic information from bone marrow aspirates often requires sophisticated equipments,

and is difficult to afford for the medical institutions of developing nations. In this regard,

image processing based approaches provide a low cost and precise alternative for ALL

detection and its subclassification. Therefore, efforts have been made by researchers

to use hematological images for automated ALL recognition and classification and are

discussed below.

b. Image Processing Based Methods

Serbouti et al. [97] proposed the use of classification and regression trees (CART)

statistical software for the classification of hematological malignancies using the cell

markers extracted from images. However, the problems of discrimination of lymphocyte

from lymphoblast in blood images have not been addressed exactly. Further, the

segmentation scheme used, as well as the features involved are not mentioned either.

Foran et al. [98] have reported a method to discriminate among lymphoma and

leukemia with a classification accuracy around 83%. The method is reported to have

successfully worked on 19 lymphoproliferative cases, which is a very small data set to

evaluate the performance of the system. Further, the presented method is yet to be

validated on ALL cases.

Scotti [99] proposed a method for automated classification of ALL in gray level

peripheral blood smear images. As per the experiments conducted by them on 150

images it has been concluded that lymphoblast recognition is feasible from blood images

using morphological features. However, use of Otsu thresholding in image segmentation

and feed forward neural network for feature classification is the cause of low recognition

rate.

Markiewicz et al. [100] worked on images of the bone marrow aspirate and proposed

a system for automatic recognition of blast cells of myeloid series. While this method

is able to recognize myeloblast up to certain extent, the system is yet to be tested with
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sample blast cells of lymphoid series (lymphoblast).

Halim et al. [101] reported an automated blast counting method for acute leukemia

detection in blood microscopic images. Histogram based thresholding is performed

on S–component of the HSV color space, followed by morphological erosion for image

segmentation. Determination of accurate threshold to separate nucleus from cytoplasm

is important, and no specific methods has been presented for its estimation. Further

the features used, as well as classifier employed for disease recognition haven’t been

mentioned.

Seshadri et al. [102] introduced the use of computer morphometry in FAB

classification of ALL. Cell morphology is measured using a morphometric system

developed using a computer, digitizer tablet and a plotter. The contours of the cell,

the nucleus, and the nucleoli are drawn and traced with a digitized cursor to measure

simple features i.e. area and perimeter. Essential discriminating features i.e. nuclear

chromatin density, basophilic nature of the cytoplasm and cytoplasmic vacuoles could

not be measured due to limited computational resources. While this semi–automated

method is effective up to certain extent for distinguishing L1 and L2 samples, it is

limited to classify L3 from the others.

Angulo et al. used watershed transformation for lymphocyte image segmentation.

After segmentation morphological features are extracted for classifying lymphocytes

based on cellular typology (i.e. small lymphocyte, B–like lymphocyte, Hairy cell

etc.) [103, 104]. While, accurate for lymphocyte segmentation and classification, the

method has neither been tested for lymphoblast recognition nor classification.

Gupta et al. proposed a relevant vector machine based technique for the

identification of three types of lymphoblasts [105]. The classification accuracy for the

childhood ALL has been promising, but needs more study before they are used for adult

ALL as well. Specialized techniques need to be developed to measure nucleus indentation

and count cytoplasmic vacuoles. Furthermore, use of Otsu’s algorithm for lymphoblast

segmentation may not be a robust approach for accurate nucleus and cytoplasm region

extraction due to variable staining.

Escalante et al. proposed an alternative approach to leukemia subclassification using

ensemble particle swarm model selection [106]. Manually isolated leukemia cells are

segmented using Markov random fields. Segmented cytoplasm and nucleus regions has

been used to extract three types of features for leukemia type classification i.e. ALL vs.

AML, L1 vs. L2 and AML subtyping. While this method is effective for ALL vs. AML
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classification, there is no provision for ALL subtyping (L1 vs. L2 vs. L3). Moreover,

manual selection is still required for identifying the region of interest and the scheme

neither consider any feature to measure presence of vacuoles, nor nucleus indentation

or cleft in ALL samples.

Various commercial hematology software having a provision for leukocyte image

analysis are also available over the last few years. Among them, CellarVision Diffmaster

Octavia [86] and Cellarvision DM96 [107] have been a trusted brand and recognize WBC

by scanning the entire blood slide at a lower magnification and using specific features of

WBC. Pre–classification is performed without leukocyte segmentation on the cropped

sub image. Thus the reliability of the current system is less as accurate leukocyte

classification requires proper cytoplasm and nucleus segmentation [80]. Absence of

image segmentation module prohibits accurate classification of lymphoblasts.

1.8 Comparative Analysis of Existing Schemes

From the literature on hematological image processing it is observed that most schemes

thrust upon the development of either an detection mechanism or on a suitable

segmentation scheme. However, as can be seen from these schemes that the classic

methodology prior to cell detection and classification is blood image segmentation.

Image segmentation is a fundamental and difficult problem in automated hematological

analysis. The aforementioned segmentation schemes for blood microscopic belong to

one of categories of segmentation algorithms listed below:

� Histogram–based thresholding

� Watershed method

� Deformable models

� Clustering/Classification

Histogram based thresholding techniques are computationally inexpensive method of

leukocyte segmentation. However, selection of an optimum threshold is often difficult

in histogram based methods as deep valleys of histogram cannot be located properly.

A common alternative to histogram–based thresholding is the watershed transform,

which can segment objects as long as separate initializing seeds are available for

each region. The drawback of watershed based segmentation is over–segmentation,
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due to the frequent presence of multiple markers per region resulting from a poor

initialization. A more robust family of approaches to blood image segmentation is

the family of deformable models. Such an approach consist of steps which finds the

boundaries of the region of interest by evolving contours or surfaces guided by internal

and external forces. The deficiency of deformable models lies in the initial identification

of nucleus contour before segmentation, and dependency on cell shape priors. It was

observed from simulations that the clustering/classification oriented techniques are more

appropriate than histogram based thresholding schemes in segmenting stained blood

images, as each pixel has three color attributes and can be easily represented by a

feature vector. The aforementioned methods are reasonably successful on each of the

specific problem for which they have been designed, and depend only on pixel intensity

value for final segmentation. The cause of lower segmentation accuracy in such intensity

based segmentation methods is the non–utilization of pixel contextual information in

the determination of final pixel class label.

In addition, development of computer algorithms for differential count of leukocytes,

ALL or AML detection, and there classification is another aspect of research in

hematological image processing. Many researchers have suggested a large number

of schemes for image based differential blood count. However, quite a few number

of schemes have been reported for automated detection of ALL, AML and there

subclassification. It is observed from the literature that the existing ALL detection

schemes are only able to discriminate the blast cells in childhood ALL. Moreover,

many of the discriminative features for FAB classification of ALL are not embedded in

the image feature based classification process, and is the cause for low robustness and

accuracy. Additionally, none of the schemes have been reported for WHO classification

of ALL blasts based on phenotype.

1.9 Problem Statement

It has been observed from Section 1.8 and the above literature study that quite a good

number of schemes on automated differential blood count have been proposed till date.

Also many researchers are still active in this domain as the automated differential blood

counting system assists in the diagnosis of many ailments.

From the literature on leukocyte image segmentation it is observed that most of

the schemes thrust upon nucleus extraction and very few schemes are able to extract
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the cytoplasm that too with lesser accuracy. One possible reason for higher cytoplasm

segmentation error is direct use of gray level intensity or color (Red–Green–Blue) as

features which are linearly unseparable in the image plane. Also, it is seen through

simulation that performance of many pre–existing methods fail to classify boundary

pixels (nucleus–cytoplasm and cytoplasm–background) in leukocyte images due to color

overlapping (finite probability of belonging to both the regions). Further, very few

segmentation schemes have been developed specifically for lymphocyte images.

It is observed that schemes for ALL detection and subclassification in peripheral

blood/bone marrow are too much limited. Mostly the reported schemes have focused

on the detection and subclassification of AML, and few of them have also attempted to

distinguish between the blasts of ALL and AML. However, still many key open issues

related to ALL detection and subclassification remain to be investigated.

Keeping the research directions in view, it has been realized that there exists enough

scope to develop an improved automated system for the detection and subclassification

of ALL in blood microscopic images. In this thesis, attempts have been made to

recognize lymphoblasts in peripheral blood smear images and to classify them based

on FAB and WHO classification. In particular, the objectives are to —

(i) devise improved segmentation schemes for lymphocyte images.

(ii) utilize morphological, texture, and color features in peripheral blood smear images

to classify mature lymphocytes and lymphoblasts.

(iii) develop a system for the FAB classification of lymphoblasts.

(iv) create a strategy for automatic classification of lymphoblasts based on WHO

criteria.

(v) establish a machine learning system for the classification of leukemic blasts from

lymphoid and myeloid origin in peripheral blood smear images.

1.10 Thesis Contribution

The major contributions of the thesis are summarized as follows:

� Four different segmentation algorithms in comparison with standard schemes have

been presented for lymphocyte segmentation of both healthy as well as leukemic

peripheral blood image samples.
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� Combination of morphological, textural and color features has been used to classify

a mature lymphocyte and lymphoblast (immature lymphocyte) using an ensemble

of classifiers.

� Combination of morphological, textural and color features has been utilized here

to classify a lymphoblast image as per FAB classification.

� A decision tree based classification method has been proposed for WHO

subclassification of lymphoblasts. Here the morphological, textural and color

characterization of the cytoplasm and nucleus has been investigated to subtype

the lymphoblasts into pre–B and pre–T groups.

� Quantitative characterization of the leukemic blast cells has been done for

identifying lymphoblasts and myeloblasts groups. Neural networks based

segmentation, feature extraction, feature selection and an ensemble of decision

trees based classification have been used to improve the accuracy in subtyping of

leukemic blast cells based on cell lineage.

1.11 Thesis Layout

Rest of the thesis is organized as follows —

Chapter 2: Lymphocyte Image Segmentation Here in this chapter, four different

algorithms have been proposed to segment the lymphocyte images. In the first

proposition the use of Functional Link Artificial Neural Network as a classifier is

introduced for lymphocyte image segmentation (FLANNS). Whereas in the second

proposition Kernel Induced Rough Fuzzy C–Means clustering algorithm has been

used for nucleus and cytoplasm region extraction (KIRFCM). The third segmentation

approach uses Kernel Induced Shadowed C–Means clustering technique to determine the

class label of each pixel in the lymphocyte image (KISCM). Subsequently, lymphocyte

image segmentation using Markov Random Field model and memory based simulated

annealing is the last proposition on image segmentation (MBSA).

Chapter 3: Quantitative Characterization of Lymphocytes for ALL

Detection A quantitative microscopic approach towards the discrimination of

lymphoblasts from mature lymphocytes in stained peripheral blood smear samples is
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presented in this chapter. It is likely to have different cell architecture among normal

mature lymphocytes and malignant lymphocytes (lymphoblasts) due to morphological

and textural changes due to the cancerous condition in lymphoblasts. In this chapter,

various lymphocyte cell features have been quantified and classification of normal and

malignant lymphocytes using ensemble learning is introduced.

Chapter 4: Automated FAB Classification of Lymphoblast Subtypes

Subclassification of ALL is necessary and has always been a challenge in the field of

hematopathology and clinical hematology. Visual microscopic examination of peripheral

blood samples has been the major bottleneck in providing accurate and early diagnostic

classification of ALL. Therefore, an automated system using image morphometry can

be developed as an alternate to subjective evaluation of blood smear examination

by human experts. This chapter proposes one such automated scheme for subtyping

lymphoblasts as per the French–American–British (FAB) classification. In doing this,

we extract morphological, textural and color features from segmented nucleus and

cytoplasm according to characteristics commonly adapted by hematopathologists. A

five member ensemble classifier is used to test the effectiveness of classification for FAB

subtypes in lymphoblast images.

Chapter 5: Lymphoblast Image Analysis for WHO Classification of ALL

Classification based on World Health Organization (WHO) criteria is essential to assess

the prognosis and to administer a specific chemotherapy in ALL patients. Essentially,

morphology and immunophenotyping using flow cytometer, cytogenetics and molecular

analysis of lymphoblasts used in the WHO based evaluation of ALL blasts are limited by

high cost, device availability and shortage of trained medical technologists. Therefore, in

this chapter we propose one such pattern recognition approach towards the automation

of WHO based classification process in lymphoblast images. Methods in this strategy

include lymphoblast image segmentation followed by nucleus and cytoplasm feature

extraction, unsupervised feature selection, and decision tree based classification.

Chapter 6: Image Morphometry for Lymphoid and Myeloid Blast

Classification The problem of automatic classification of leukemic blast cells into

myeloid and lymphoid category is considered in this chapter. Subjective microscopic

examination along with flow cytometric analysis is generally used for initial and

confirmatory diagnosis of AML respectively. To overcome the limitations of such
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methods, an improved blast classification system is developed here. The proposed

scheme is based on image segmentation, feature extraction, mutual information based

feature selection and classification. An ensemble of decision trees has been investigated

along with standard classifiers to improve the classification accuracy of lymphoid and

myeloid blast samples.

Chapter 7: Conclusion This chapter provides the concluding remarks with a stress

on achievements and limitations of the proposed schemes. The scopes for further

research are outlined at the end.

The contributions made in each chapter are discussed in sequel, which include

proposed schemes, their simulation results, and performance analysis.
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Lymphocyte Image Segmentation

Initial screening of Acute Lymphoblastic Leukemia (ALL) begins with microscopic

analysis of peripheral blood smear samples to detect the presence of immature

lymphocytes or blast cells (lymphoblasts). However, in an alternate approach presence

of ALL can be diagnosed through lymphocyte image analysis based blast counting

method. In such an automated blast counting approach it is required to differentiate

lymphoblasts from mature lymphocytes, and is performed using image processing

and machine learning based methods. To analyze the differences in lymphocytes it

is important to segment such cell images into individual morphological regions i.e.

cytoplasm and nucleus as depicted in Figure 2.1.

Image segmentation is one of the early computer vision problem and has a wide

application domain. It involves partitioning an image into a set of homogeneous

and meaningful regions, such that the pixels in each partitioned region possess an

identical set of properties or attributes [108]. The result of segmentation is a number

of homogeneous regions, each having a unique label. Until now, several methods have

been proposed for segmenting the leukocytes in general. However, several drawbacks

are associated with the existing methods, a detailed review of which are presented in

Section 1.7. Moreover, independent segmentation schemes with high accuracy are not

yet reported for individual lymphocyte images [109]. These limitations of the existing

methods encouraged us to search for potentially better alternatives. In this chapter,

four novel segmentation schemes have been proposed to segment the lymphocyte

images into its constituent morphological regions. Further, the efficacy of the proposed

schemes are compared with that of segmented ground truth images provided by the

hematopathologists. The ground truth images are considered to be the desired partition
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map for segmentation performance evaluation.

2.1 Materials and Methods

This section describes the details about the study subject selection, image dataset

creation and preprocessing of lymphocyte images.

(a) Lymphocyte (b) Cytoplasm (c) Nucleus

Figure 2.1: Microscopic view of lymphocyte along with segmented cytoplasm and

nucleus images.

2.1.1 Histology

Stringent inclusion and exclusion criteria [110] were followed while enrolling patients for

this study. The blood samples are obtained from the patients who have been clinically

diagnosed of ALL at the Department of Clinical Hematology, SCB Medical College,

Cuttack, India. A total of 63 patients with ALL are considered for this study, which

includes children, adolescents, and adults. The patients are in the age range of 2 − 70

years from different geographical locations of the state of Odisha, India. All these

patients are clinically examined and are advised to undergo peripheral blood and/or

bone marrow examination. Subsequently peripheral blood samples are collected from

the patients. A total of 55 normal samples for the study are also obtained from patients

undergoing routine differential blood count. For this, samples of those patients are only

considered who did not have clinical history of leukemia or any serious disorders which

may manipulate the blood cell morphology. Peripheral blood smear and bone marrow

tissue sections are prepared for all ALL patients and then stained with Lieshman [111]

for microscopic visualization. Standard laboratory procedures [112] are followed for the

preparation of stained peripheral blood smear, and is used for photomicrography [113].
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2.1.2 Hematological Image Acquisition

Blood microscopic images of Lieshman [111] stained peripheral blood samples are

optically grabbed by Zeiss Observer microscope (Carl Zeiss, Germany) under 100X

oil immersed setting and with an effective magnification of 1000 at Ispat General

Hospital, Rourkela, India. Individual grabbed digital images are represented using

three fundamental colors (Red, Green and Blue) and each is stored in an array of size

1024 × 1024. 55 and 63 stained peripheral blood smear images are obtained from the

specimens collected from the normal and clinically diagnosed ALL patients respectively.

2.1.3 Subimaging

Peripheral blood smear images are relatively larger with more than one leukocyte per

image. However, the desired region of interest (ROI) must contain a single lymphocyte

only for ALL detection. This is necessary, since each lymphocyte in the entire blood

smear image has to be evaluated for differentiating a lymphoblast from a mature

lymphocyte. In order to facilitate this, initially K–Means [114] clustering is performed

using RGB color features on the entire blood smear image to obtain the nucleus image

as one of the cluster output [115]. It is observed that for different runs K–Means

clustering results with different cluster outputs due to random initialization of center.

Thus average intensity value of individual color (RGB) planes for each clustered image

is used to recognize the cluster representing the nucleus image. This identified clustered

output represents nucleus image and contains nuclei of all the leukocytes present in

the entire blood smear. To crop a subimage around each nucleus a bounding box is

required to be drawn around a center point. The coordinates of the center point can be

determined by averaging the coordinates of each pixel in the object [116]. This center

point is known as centroid and is obtained for each nucleus using the binary version of

the nucleus image. Once the coordinates of the centroid is obtained for each nucleus

a rectangular subimage is cropped from the original image. This entire process results

with subimages containing a single lymphocyte only with an assumption that there are

neither any touching cells, nor any other leukocytes. The entire sub imaging process is

illustrated in Figure 2.2, and sample subimages containing only a single lymphocyte are

shown in Figure 2.3. A total of 150 lymphoblast and 120 mature lymphocyte subimages

are obtained using the above process from the 63 ALL and 55 normal peripheral images

respectively. These images are used in the study of the proposed segmentation schemes.
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(a) Peripheral Blood Smear Image (b) Nucleus Centroid of Lymphocytes

(c) Detected Lymphocyte Subimages

Figure 2.2: Lymphocyte subimage detection using K–Means clustering and bounding

box.

(a) IGH1a (b) IGH1b (c) IGH1c (d) IGH1d (e) IGH1e

Figure 2.3: Cropped subimages (Single lymphocyte per image).

2.1.4 Color Space Conversion

Blood microscopic images are acquired in RGB color space. Colorimetric transformation

of the initial color coordinate system i.e. RGB, is essential to obtain a color space

in which the representation of the color data is the best to optimally perform the
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segmentation process [117]. To perform image segmentation, the features of objects

of interest might seem to be more decorrelated in certain color space than in others.

Due to strong correlation among the individual color planes, RGB color model is

unsuitable for stained peripheral blood smear image segmentation. L∗a∗b∗ color model

is a suitable alternative for color feature based image segmentation as the color

dimension is reduced [118] and the color channels are uncorrelated. This color space is

originally derived from the CIE XYZ tristimulus values, which has been standardized by

International Commission on Illumination (CIE). The spacing of the colors in the XYZ

space is not uniform, hence is transformed to a more nearly uniform CIE 1976 L∗a∗b∗

(CIELAB) color space introduced by Robertson [119]. This color space consists of a

luminosity layer L∗, and a set of chromaticity layers a∗ and b∗. The color information is

contained in the a∗ and b∗ layers only. Transforming the blood microscopic images from

RGB to CIELAB reduces the color dimension of the problem from three (RGB) to two

(a∗ and b∗) and facilitates color based image segmentation. Therefore, in the first three

proposed schemes lymphocyte images in CIELAB color space is used. However, due to

high computation time in the last proposed segmentation scheme the gray scale version

of the lymphocyte image is used instead of color as initial input.

2.1.5 Preprocessing

Presence of noise and acquisition of blood microscopic images under uneven lighting

conditions necessitates preprocessing. The steps involved in preprocessing includes

wiener filtering and contrast enhancement. Initially the RGB image is converted to

L∗a∗b∗ color space and the luminance channel L∗ is subjected to wiener filtering and

adaptive contrast enhancement. The refined L∗ component is merged with the existing

chrominance components (a∗ and b∗) and revert back to RGB color space. Similarly,

the grayscale version of the lymphocyte image is also subjected to wiener filtering

and adaptive contrast enhancement and is used in the Markov Random Field (MRF)

modeling based image segmentation scheme. In general, preprocessing is essential to

improve the image quality of the hematological images, and this enhanced image is used

for segmentation followed by feature extraction. Moreover, it is found from experiments

that color information is essential for reliable feature matching. Therefore, colors are

normalized for invariance to variable staining and illumination changes in segmented

nucleus and cytoplasm images.
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2.1.6 Lymphocyte Image Segmentation

Image segmentation of blood images is the foundation for all automated image based

hematological disease recognition and classification systems including ALL. In this

chapter, lymphocyte image segmentation has been formulated as three independent

problems i.e.

� Pixel classification problem

� Pixel clustering problem

� Pixel labeling problem

A total of four novel solutions under the above heads have been proposed to facilitate

automated ALL recognition and classification. Details of these approaches are presented

in the following sections.

2.2 Lymphocyte Image Segmentation as a Pixel

Classification Problem

In our first approach segmentation of lymphocyte images is considered as a pixel

classification problem in supervised framework, and is performed by measuring a set

of CIELAB color features of each pixel which defines a decision surface in the feature

space. Thus, each pixel of the lymphocyte image is classified as belonging to one of

the regions i.e. cytoplasm, nucleus or background (including RBC) using a single

layer neural classifier. In this regard, the use of Functional Link Artificial Neural

Network (FLANN) as a classifier is introduced for lymphocyte image segmentation and

is presented in Section 2.2.1.

2.2.1 Functional Link Artificial Neural Network

Artificial Neural Networks (ANN) are intended to build machines that can demonstrate

intelligence similar to human beings in problem solving [120]. ANNs have been used in

solving pattern classification problems for a long time in the areas of computer vision

and image processing [121]. Once the ANN is trained with suitable input–output

relationship, it sets itself suitably to generalize and classify any given input data

pattern in that particular domain. Various structural variations along with learning
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methodologies are available in the literature making ANN more suitable for non-linear

classification problems. In general, ANN are well suited for image segmentation based

on individual pixel color subject to availability of training image samples. Indeed, ANN

considers the problem of segmentation as a classification problem, i.e. assign a class

label to each input feature vector. FLANN belongs to the class of ANN, which is a

flat network without any hidden layers [122]. It is capable of solving non–linear pattern

classification problems in comparison to single layer perceptron. Use of more layers

(multilayer perceptron) is an alternative for non-linear problems but at the additional

expense of memory and training time. Further, back propagation training in multilayer

perceptron (MLP) is a cumbersome process which increases with rise in number of

hidden layers. Round-off error also increases with the use of more number of hidden

layers and hence influences the final classification accuracy. Considering all the above

issues FLANN is employed as a neural classifier for lymphocyte image segmentation. In

spite of a single layer, the FLANN is capable of resolving non-linearity issues by virtue

of non-linear expansion (trigonometric, polynomial etc.) of inputs. This expansion

increases the pattern dimension space and provides greater discrimination capability

in the input pattern space leading towards easier classification [123, 124]. Finally to

conclude, FLANN provides a simpler architecture with faster training convergence rate

with comparable non-linearity. Additionally, the observation on the color behavior

of Leishman stain on different morphological components of the lymphocyte images

motivated us to consider its segmentation as a color feature based classification problem.

Therefore, FLANN a supervised neural network is utilized for lymphocyte image

segmentation.

2.2.2 Proposed Algorithm for Lymphocyte Image

Segmentation using FLANN

This section describes the proposed supervised pixel classification method for

lymphocyte image segmentation using FLANN (FLANNS) in a two dimensional feature

space. Individual color features i.e. a∗ and b∗ of the CIELAB color space are calculated

from the original tristimuli R, G, B for each pixel and forms the input feature set for

segmentation. a∗, b∗ color planes of the CIELAB color space serves as more useful

features in contrast to simple RGB as the color planes are decoupled among each

other [125]. Further transforming images from RGB to CIELAB color space reduces

the dimension of the problem from three (RGB colors) to two (colors a∗ and b∗) for
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color feature analysis purposes, and therefore reducing computational overhead during

functional expansion. Hence, CIELAB color features (a∗ and b∗) are selected to classify

each pixel of the lymphocyte image into one of the three regions i.e. cytoplasm, nucleus

or background.

The classifier used in the proposed segmentation approach is a single layer structure

and is shown in Figure 2.4. The a∗ and b∗ color values of each pixel are functionally

expanded for N patterns in the input layer with the trigonometric polynomial basis

function given by:

{1, a∗, sin(πa∗), sin(2πa∗), · · · , sin(Nπa∗), cos(πa∗), cos(2πa∗), · · · , cos(Nπa∗),

b∗, sin(πb∗), sin(2πb∗), · · · , sin(Nπb∗), cos(πb∗), cos(2πb∗) · · · , cos(Nπb∗)}
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Figure 2.4: Functional linked artificial neural network structure for pixel classification.

IGH24HS

Figure 2.5: Sample training image.

A particular lymphocyte image, say IGH24HS (Figure 2.5) is considered by the

hematologist for the preparation of the training data pattern. As per the human expert
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(hematologist) each stained lymphocyte image consists of three regions, so the number

of labels in all Leishman stained images will be three. The visual as well as image

based analysis is based on the fact that the color intensity of cytoplasm region in a

lymphocyte image is quite different from that of nucleus and background regions. Few

pixel locations are selected randomly by the human expert using a graphic tool in each

region for feature extraction and supervised region labeling. Intensity values (a∗, b∗)

for each color band and its assigned label ( R1, R2, or R3) are recorded for those pixel

locations. This procedure is repeated for a few similar stained lymphocyte images to

generate the input–output patterns for training the FLANN. Out of 270 subimages, the

training data set is prepared using 20 sample images which includes ten images each

from benign (lymphocytes) and malignant (lymphoblast) types, and 76 subimages are

considered as members of the testing data set. For any Lieshman stained lymphocyte

images, color features for each individual band are easily accessible, hence is used for

class labeling.

To train the FLANN, the input–output patterns (Color features–Class label) are

generated for different sample lymphocyte images. a∗, b∗ color values of each pixel is

fed as input to the FLANN, and the label of each pixel location is computed. Using

a set of input–output pair (training data set) we optimize the network parameters. In

order to calculate the error, the actual label output of the FLANN is compared with

the desired label output provided by the human expert. Depending on this error value,

the weight matrix between input and output layers is updated using back propagation

algorithm (BPA) [121]. A set of such patterns generated from IGH24HS (Figure 2.5)

image is listed in Table 2.1. The training convergence characteristics for all the three

individual output of the FLANN is shown in Figure 2.6. To validate the prediction of

the proposed FLANN, six patterns from six different images other than the training

images are tested and listed in Table 2.2.

2.3 Lymphocyte Image Segmentation as a Pixel

Clustering Problem

In the second approach, the problem of image segmentation is considered as a pixel

clustering problem and is defined as partitioning an image into segments or regions

such that pixels belonging to a same region are more similar to each other than pixels

belonging to different regions. A large number of image segmentation techniques
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Table 2.1: Training patterns generated from IGH24HS image.

a∗ b∗ Label Description

0.2708 0.4251 R1 Cytoplasm

0.2399 0.4547 R1 Cytoplasm

0.9428 0.2267 R2 Nucleus

0.9514 0.2128 R2 Nucleus

0.1184 0.9404 R3 Background

0.1103 0.9384 R3 Background

Label corresponds to assigned pixel class label.

0 500 1000 1500 2000 2500 3000

−20

−15

−10

−5

0

Iterations

M
SE

 (
dB

)

Figure 2.6: Convergence characteristics of FLANN.

Table 2.2: Validation of classification for FLANN.
Image a∗ b∗ Target Label Actual Label

IGH21LB 0.1161 0.6091 R1 R1

IGH22LB 0.1973 0.5273 R1 R1

IGH23LB 0.8034 0.3523 R2 R2

IGH24LB 0.8458 0.2647 R2 R2

IGH25LB 0.1211 0.9018 R3 R3

IGH26LB 0.1323 0.8886 R3 R3

using clustering are available in the literature [108, 126–128]. Such segmentation

schemes generally use multidimensional data to partition the image pixels into clusters.
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Moreover, such schemes have been found to be more appropriate than histogram oriented

ones in segmenting stained microscopic images, where each pixel has several attributes

and is represented by a vector.

Clustering is a special kind of unsupervised classification and can be subdivided

into hierarchical or partitional classifications by the type of structure imposed on the

data. In general, clustering techniques can be broadly classified as hard clustering (or

crisp clustering) and soft clustering. The popular clustering algorithms i.e. K–Means,

K–Medoid belong to the first category and each pixel is assumed to belong to one

and only one cluster. However, in practice there are many situations where the

clusters are not disjoint and a pixel may have finite belongingness to different clusters.

Hence, soft clustering algorithms have been developed, and offer a principal alternative

to crisp approaches with pixels having partial membership to different classes. For

example, in a lymphocyte image a particular pixel on the nucleus–cytoplasm boundary

have a finite probability of belonging to both the classes i.e. nucleus and cytoplasm.

Algorithms such as Fuzzy C–Means, Rough C–Means, and Shadowed C–Means are

generally used for the segmentation of such images, where the class separation is not

well defined. Even though, the soft clustering approaches endow efficient handling

of overlapping partitions for spherical data, it fails dramatically when the structure

of input patterns is non–spherical and complex [129]. An alternative approach for

solving such problems is to adopt the strategy of nonlinearly transforming the data

into a higher dimensional feature space and then performing the clustering within this

feature space [130]. Accordingly, two novel kernel based clustering algorithms have been

proposed here for the segmentation of human lymphocyte images. At the onset we first

discuss few soft computing based partitive clustering algorithms followed by feature (or

kernel) space clustering.

2.3.1 Soft Partitive Clustering

In this section, a discussion about soft computing based clustering techniques is

presented which includes the Fuzzy C–Means (FCM), Rough C–Means (RCM),

Rough-Fuzzy C–Means (RFCM), and Shadowed C–Means (SCM) algorithms. The

objective here is to contrast the essence of each individual algorithms in a unified fashion.
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A. Fuzzy C–Means

Fuzzy C–Means (FCM), introduced by Dunn [131] and improved by Bezdek [132] has

been the first algorithm in the soft clustering arena. In this algorithm each data point

is associated with every cluster using a membership function, which gives degree of

belongingness to the clusters. The partition matrix is obtained by minimizing an

objective function:

J =

N∑
k=1

c∑
i=1

(µik)
m||Xk − vi||2, (2.1)

where, 1 ≤ m < ∞ is the degree of fuzziness, Xk is the kth data pattern, vi is the ith

cluster center, µ ∈ [0, 1] is the membership of the kth data pattern to it, and || · || is
the Euclidean distance norm. The corresponding mathematical expression for vi and

µik are given below:

vi =

∑N
k=1(µik)

mXk∑N
k=1(µik)m

, (2.2)

and

µik =
1∑c

j=1

(
dik
djk

) 2
m−1

(2.3)

∀i with dik = ||Xk − vi||2, subject to
∑c

i=1 µik = 1, ∀k, and 0 <
∑c

i=1 µik < N , ∀i.
The FCM algorithm consists of the following steps:

1. Assign initial centroids vi, i = 1, 2, ..., c. Choose value of fuzzifier m and threshold

tmax. Set iteration counter t = 1.

2. Repeat step (3)–(4) by incrementing t until |µik(t)− µik(t− 1)| > tmax.

3. Compute µik by equation (2.3) for c clusters and N data patterns.

4. Update cluster centers, vi, using equation (2.2).

For initial selection of number of clusters in FCM, experiments were conducted

with different values of c i.e. c=2, 3, 4, and 5. The clustering output and segmented

results were evaluated in both objective and subjective manner, and the segmentation
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performance was found to be best for c value as 3. Again experiments were conducted

by varying the fuzziness index (m) between 1 to 10, and keeping the number of clusters

fixed as 3. Cluster validity index i.e. Xie–Beni (XB) index [133] is computed for different

values of m. The corresponding m value for which the Xie-Beni (XB) index is minimum

is considered for final clustering. This procedure of parameter selection is repeated for

all the subsequent clustering algorithms.

Even though, the membership concept of fuzzy sets endow efficient handling of

overlapping partitions in FCM algorithm, issues like uncertainty, vagueness, and

incompleteness still persists. In view of this, there is a necessity to use an alternative

tool like rough sets to handle such issues. Therefore, to achieve such robustness in

clustering problems the notion of rough sets has been incorporated in the C–Means or

k–means [134] framework, and is termed as Rough C–Means (RCM) algorithm.

B. Rough C–Means

The principle of rough set is based on representation of rough or imprecise information

in terms of exact concepts i.e. lower and upper approximation. These approximations

(lower and upper) are obtained using an indiscernible relation based on the attributes of

the objects in a domain. The set of objects which definitely belong to the vague concept

are classified under lower approximation, whereas objects which possibly belong to the

same are categorized as upper [135]. The difference of upper and lower approximation

will result with objects in the rough boundaries. Figure 2.7 provides a schematic diagram

of a rough set X within upper and lower approximation.

Figure 2.7: Lower and upper approximations in a rough set.
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In Rough C–Means (RCM) clustering, the idea of standard C–Means is extended by

visualizing each class as an interval or rough set [136]. A rough set Y is characterized

by its lower and upper approximations BY and BY respectively. In rough context an

object Xk can be a member of at most one lower approximation. If Xk ∈ BY of cluster

Y , then concurrently Xk ∈ BY of the same cluster. Whereas it will never belong to

other clusters. If Xk is not a member of any lower approximation, then it will belong to

two or more upper approximations. Updated centroid vi of cluster Ui is computed as

vi =

⎧⎪⎪⎨
⎪⎪⎩

M1 if BUi �= ∅ ∧ BUi − BUi �= ∅
M2 if BUi = ∅ ∧ BUi − BUi �= ∅
M3 otherwise

(2.4)

where,

M1 = wlow

∑
Xk∈BUi

Xk

|BUi | + wup

∑
Xk∈(BUi−BUi )

Xk

|BUi − BUi |

M2 =

∑
Xk∈(BUi−BUi )

Xk

|BUi − BUi |
(2.5)

M3 =

∑
Xk∈BUi

Xk

|BUi |
The parameters wlow and wup correspond to relative weighting factor for lower and

upper approximation respectively towards centroid updation. In this process the weight

factor for lower approximation (BUi) is higher than that of rough boundary (BUi −
BUi), i.e. wlow > wup. Where |BUi | signifies the number of members in the lower

approximation of cluster Ui, whereas |BUi − BUi | is the number of members present

in the rough boundary within the two approximations. The detailed RCM algorithm is

presented below.

1. Assign initial centroids vi for the c clusters.

2. Each data object Xk is assigned either to the lower approximation BUi or upper

approximation BUi of cluster Ui, by computing the difference in its distance

d(Xk, vi)− d(Xk, vj) from cluster centroid pairs vi and vj .

3. If d(Xk, vi)− d(Xk, vj) is less than a particular threshold T ,

then Xk ∈ BUi and Xk ∈ BUj and Xk cannot be a member of any other lower

approximation,
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else Xk ∈ BUi such that Euclidean distance d(Xk, vi) is minimum over the c

clusters.

4. Compute new updated centroid vi for each cluster Ui using equation (2.4).

5. Iterate until convergence, i.e., there are no more data members in the rough

boundary.

Rough C–Means algorithm is completely governed by three parameters such as wlow,

wup and T . The parameter threshold can be defined as relative distance of a data

member Xk from a pair of cluster centroids vi and vj . These parameters each has to be

suitably tuned for proper segmentation.

C. Rough–Fuzzy C–Means

Rough–Fuzzy C–Means (RFCM) provides a framework for the implementation of

membership concept into RCM. This permits integrating fuzzy membership values µik

of a sample Xk to a cluster mean vi , relative to all other means vj ∀j �= i, instead of

absolute individual distance dik from the centroid as in RCM. Embedding fuzziness into

RCM improves the robustness in clustering, and hence better data partitioning can be

achieved. The major steps of the algorithm is outlined below:

1. Assign initial centroids vi for the c clusters.

2. Compute µik using equation (2.3) for c clusters and N data objects.

3. Assign each data pattern Xk to the lower approximation BUi or upper

approximation BUi , BUj of cluster pairs Ui and Uj by computing the difference

in membership µik − µjk

4. Assuming µik be maximum and µjk be the next to maximum.

If µik − µjk is less than some threshold T ,

then Xk ∈ BUi and Xk ∈ BUj and Xk cannot be a member of any lower

approximation,

else Xk ∈ BUi such that membership value µik is maximum over the c clusters.

5. Compute updated centroid for each cluster Ui by incorporating (2.2) and (2.3)

into (2.4), as given in (2.6).
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6. Repeat step 2-5 until convergence, i.e., there are no more new assignments.

vi =

⎧⎪⎪⎨
⎪⎪⎩

M1 if BUi �= ∅ ∧ BUi − BUi �= ∅
M2 if BUi = ∅ ∧ BUi − BUi �= ∅
M3 otherwise

(2.6)

where,

M1 = wlow

∑
Xk∈BUi

µm
ikXk∑

Xk∈BUi
µm
ik

+ wup

∑
Xk∈(BUi−BUi )

µm
ikXk∑

Xk∈(BUi−BUi )
µm
ik

M2 =

∑
Xk∈(BUi−BUi )

µm
ikXk∑

Xk∈(BUi−BUi)
µm
ik

(2.7)

M3 =

∑
Xk∈BUi

µm
ikXk∑

Xk∈BUi
µm
ik

An optimal selection of above parameters is an important issue in RFCM clustering.

Similar to RCM, we use wup = 1− wlow, 0.5 < wlow < 1, 0 < T < 0.5 and m = 2.

Even though the clustering performance is improved with rough set based approaches

they are limited by issues like fine tuning of upper and lower approximation parameters

and determination of threshold.

D. Shadowed C–Means

Soft computing consists of several computing paradigms, including neural networks,

fuzzy set theory, approximate reasoning, and derivative-free optimization methods such

as genetic algorithms [137]. Among all these paradigms fuzzy sets are dedicated to deal

with uncertainty and vagueness. Such tool empowers to confront issues manifesting

unclear boundaries. Fuzzy logic strives to model vagueness using membership

function, which indicates the degree of belongingness to a concept which is desired

to be represented. Membership values are accurate numerical quantities representing

excessive precision for describing imprecise phenomena. However, such excessive

precision is undesirable under imprecise phenomenon, and a possible solution has been

proposed in the literature [138] as shadowed sets. This provides the optimum level of

resolution in precision.

Studies reveal that most of the uncertainty arises in the determination of the

membership grades around 0.5 in contrast to assigning grades close to 1 or 0 [139]. Such
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confusion of assigning the belongingness around 0.5 sparked the need of shadowed sets.

For each fuzzy set few membership values beyond a particular threshold are elevated and

reduced those are below a substantially low value. Such process eliminate disambiguate

property of the fuzzy sets and thereby reducing the number of computations. The overall

level of vagueness is maintained by defining a new region termed zone of vagueness.

Suitable membership assignment is made such that this particular area of the universe

of discourse will have values between [0, 1], but left undefined. Rather than a single

value the complete unit interval can be marked as a non–numeric model of membership

grade. The entire construct is depicted in Figure 2.8. The transformation of fuzzy set

to shadowed set is achieved using a particular threshold. Effectively such development

transforms the domain of discourse into clearly marked region of vagueness. Such

mapping is termed as shadowed set and is defined as A : X → {0, 1, [0, 1]}. The

elements of X for which A attains the value 1 constitute its core, whereas the elements

with A(x) = [0, 1] lies in the shadow region of the mapping; the rest forms the exclusion

region.

Figure 2.8: The fuzzy set inducing a shadowed set.

A particular threshold is desired for partitioning the distribution into core, shadowed

and exclusion regions. The principle for threshold determination is optimization based

on balance of vagueness as proposed by Pedryz [140]. Modification of membership

grades in terms of reduction and elevation has to be compensated by marked indecision

in the rest of the zones or increased uncertainty in membership grades in the form of
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a unit interval [0, 1]. A suitable threshold λ is obtained for the quantification process

using the relation:

θ(λi) =

∣∣∣∣
∫ b1

−∞
J(x)dx+

∫ ∞

b2

(1− J(x))dx−
∫ b2

b1

dx

∣∣∣∣ , (2.8)

where λ ∈ (0, 1
2
) such that θ(λi) = 0. The right hand side of equation (2.8) consists

of three terms representing three regions r1, r2, r3 as shown in Figure 2.9. b1 and b2

represent the integral boundaries characterizing each regions in the figure where the

membership grades are below a particular threshold λ and above the threshold 1− λ.

Shadowed sets and rough sets may be conceptually similar but mathematically both

are different. It can be observed in rough sets that the approximation spaces are defined

in advance and the equivalent classes are kept fixed. Whereas in shadowed sets the class

assignment is dynamic. A discrete version of equation (2.8) can be defined as,

θ(λi) =

∣∣∣∣∣∣
∑

XK |µik≤λi

µik +
∑

XK |µik≥µimax−λi

(µimax − λi)− card{XK |λi < µik < (µimax − λi)}
∣∣∣∣∣∣

(2.9)

such that

λi = λopt = argmin
λi

θ(λi) (2.10)

where µik, µimin
and µimax represent the discrete, the lowest and the highest

membership values to the ith class respectively. Use of standard fuzzy membership

functions like triangular and Gaussian is mentioned in the literature [141]. λopt is

obtained by the minimization of θ(λ).

By extending C–Means or k–Means algorithm based on the concept of shadowed

sets Mitra et al. [142] proposed a novel clustering algorithm called Shadowed C–Means

(SCM). The major steps of the algorithm is outlined below

1. Assign initial centroids vi, i = 1, 2, ..., c. Choose value of fuzzifier m and threshold

tmax. Set iteration counter t = 1.

2. Repeat step (3)–(5) by incrementing t until no new assignment is made and t <

tmax.

3. Compute µik by equation (2.3) for c clusters and N data patterns.

4. Compute threshold λi for i th cluster, using equation (2.9).
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Figure 2.9: Threshold Computation

5. Update cluster centers, vi, using the relation as defined as,

vi =

∑
XK |uik≥(uimax−λi)

XK +
∑

XK |λi<uik<(uimax−λi)
(uik)

mXK +
∑

XK |uik≤λi
(uik)

mm
XK

φi + ηi + ψi
(2.11)

where,

φi = card{XK |uik ≥ (uimax − λi)}
ηi =

∑
XK |λi<uik<(uimax−λi)

(uik)
m

ψi =
∑

XK |uik≤λi

(uik)
mm

(2.12)

Data patterns belonging to core region have no fuzzy weight factor, whereas elements

belonging to shadowed region are treated as in FCM. Moreover, for data members

belonging to the exclusion region, the fuzzy weight factor m is raised to itself i.e. mm.

2.3.2 Kernel Space Clustering

The above soft computing based partitive algorithms can overcome the drawbacks of

conventional hard clustering techniques up to a certain extent only. However, similar to

traditional C–Means algorithm, soft computing based approaches are effective only in

clustering crisp, spherical, and non–overlapping type of data. Due to differential staining
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efficiency the pixels in the nucleus–cytoplasm and cytoplasm–background boundaries

in lymphocyte images are highly overlapping. Thus, such techniques cannot always

work well for lymphocyte images. In order to alleviate this problem, feature space

transformation using nonlinear kernels is proposed for the clustering of lymphocyte

image data leading to improvement in segmentation performance.

Kernel functions are used to transform the data in the image plane into a feature

plane of higher dimension (possibly infinite) known as kernel (or feature) space.

Nonlinear mapping functions i.e. φ transforms the nonlinear separation problem in

the image plane into a linear separation problem in kernel space facilitating clustering

in the feature space. Although, due to high and possibly infinite feature dimension,

it is unrealistic to measure the Euclidean distance between the transformed variables.

However, as per Mercer’s theorem working directly on the transformed variables can

be avoided. Mercer’s theorem can be used to calculate the distance between the pixel

feature values in the kernel space without knowing the transformation function φ(.) as

presented below.

Mercers Theorem Let φ(·) is considered to be a nonlinear mapping function for

transforming from the observation space I to a higher dimensional feature space J.

Again let x and y are assumed to be two points in the image plane each representing

a pixel with color values, φ(x) and φ(y) be the corresponding kernelized value in the

feature plane respectively. The squared Euclidean distance between φ(x) and φ(y) in

the feature space can be represented as:

Jk(x, y) = ||φ(x)− φ(y)||2 (2.13)

As per Mercer’s theorem any continuous, symmetric, positive semi definite kernel

function can be expressed as a dot product in a higher dimension. Therefore it is

undesirable to know the transfer function while calculating the distance in the feature

plane.

The transfer function φ(·) is usually not defined explicitly, however the kernel

function k is given and is defined as

k (x, y) = φ(x)T · φ (y) ∀ (x, y) ∈ I2 (2.14)

where ′′·′′ is the dot product in the kernel space.

Thus (2.13) can be represented in terms of kernel function and is defined as
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Jk (x, y) = ||φ (x)− φ (y) ||2

= (φ (x)− φ (y))T · (φ (x)− φ (y))

= φ(x)Tφ (x)− φ(y)Tφ (x)− φ(x)Tφ (y) + φ(y)Tφ (y)

= k (x, x)− k (x, y)− k (x, y) + k (y, y)

= k (x, x)− 2k (x, y) + k (y, y) , ∀ (y, z) ∈ I2 (2.15)

where Jk (x, y) is the non–Euclidean distance measure in the original data space

corresponding to the squared norm in the kernel space. This distance provides

more linear separability among features when compared to simple Euclidean distance

measure [143]. Some standard kernel functions are listed in Table 2.3.

Table 2.3: Kernel Functions

Kernel Expression

Linear k (x, y) = xT y + c

Gaussian k (x, y) = exp
(−||x− y||2/2σ2

)
Exponential k (x, y) = exp

(−||x− y||/2σ2
)

Sigmoid k (x, y) = tanh
(
c
(
xT · y)+ θ

)
Polynomial k (x, y) = (x.y + c)d

Using kernel functions the non–Euclidean distance between feature points can be

measured without defining the transfer function φ(·). Nonlinear transformation of

lymphocyte image data in the form of color (a∗ and b∗) features into a high dimensional

kernel space and then performing clustering is the proposed approach. Accordingly

the desired clustering is performed on this kernelized data for the segmentation of

lymphocyte images. Here, we have introduced two new algorithms i.e., Kernel Induced

Rough Fuzzy C–Means (KIRFCM) and Kernel Induced Shadowed C–Means (KISCM)

by nonlinear mapping of color features of input image to the higher dimensional feature

or kernel space. Each pixel is grouped into three clusters, i.e. cytoplasm, nucleus and

background. The details of both the proposed segmentation approaches are presented

in the following sections.
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2.3.3 Proposed Algorithm for Lymphocyte Image

Segmentation using Kernel Induced Rough Fuzzy

C–Means

The proposed Kernel Induced Rough Fuzzy C–Means (KIRFCM) segmentation

algorithm is applied on each lymphocyte subimage to extract the nucleus and cytoplasm

regions from the background. The detailed KIRFCM algorithm for lymphocyte image

segmentation is presented as follows:

1. Let Irgb represent an original color leukocyte image in RGB color format.

2. Apply L∗a∗b∗ color space conversion on Irgb to obtain the L∗a∗b∗ image i.e. Ilab .

3. Construct the input feature vector using a∗ and b∗ components of Ilab .

4. Using a nonlinear mapping function φ(.) transform the input feature vector into

a higher dimensional feature space.

5. Perform Rough Fuzzy C–Means clustering in this feature space using nonlinear

kernel function.

6. Obtain the labeled image from the clustered output.

7. Reconstruct the segmented RGB color image for each class representing an

individual morphological region.

2.3.4 Proposed Algorithm for Lymphocyte Image

Segmentation using Kernel Induced Shadowed C–Means

Kernel framework has been applied to shadowed clustering for lymphocyte image

segmentation. The detailed Kernel Induced Shadowed C–Means (KISCM) algorithm

for lymphocyte image segmentation is presented as follows:

1. Let Irgb represent an original color leukocyte image in RGB color format.

2. Apply L∗a∗b∗ color space conversion on Irgb to obtain the L∗a∗b∗ image i.e. Ilab .

3. Construct the input feature vector using a∗ and b∗ components of Ilab .

4. Using a nonlinear mapping function φ(.) transform the input feature vector into

a higher dimensional feature space.
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5. Perform SCM clustering within this feature space using nonlinear kernel function.

6. Obtain the labeled image from the clustered output.

7. Reconstruct the segmented RGB color image for each class representing an

individual morphological region.

2.4 Lymphocyte Image Segmentation as a Pixel

Labeling Problem

In this approach the segmentation of lymphocyte images is formulated as a pixel labeling

problem, and a memory based search algorithm is proposed using Markov Random

Field (MRF) model. Image segmentation using spatial interaction models like Markov

Random Field and Gibbs Random Field (GRF) to model the images is inspired by the

computational techniques developed in statistical mechanics [118]. In digital images the

pixels close together or lying in a neighborhood will tend to have similar intensity values.

The use of such contextual information has become very popular and is being used in

low level and high level image processing applications [144]. MRF theory provides a

consistent and convenient way of modeling the entities with contextual constraints. Such

modeling started with the influential work of Geman and Geman [145] who linked via

statistical mechanics between mechanical systems and probability theory. Segmentation

methods based on such theories can be viewed as model based approach and have been

extensively used in medical as well as non–medical imaging applications [146,147]. The

label estimates are generally obtained by adhering to the maximum a posteriori (MAP)

estimation principle. Moreover, the model parameters are either estimated a priori

thus leading to supervised segmentation scheme, or estimated together with the labels

leading to unsupervised schemes. One such supervised approach using evolutionary

computation has been addressed in [148].

Here, a memory based simulated annealing (MBSA) algorithm is proposed for

lymphocyte image segmentation in a stochastic framework using MRF model. In this

MRF–MBSA scheme, the lymphocyte image segmentation problem has been formulated

as a pixel labeling problem and the label estimates are obtained using the MAP

estimation criterion. The label process has been modeled using the MRF model and the

model parameters are assumed to be known a priori i.e. they are selected on an ad hoc

basis. The MAP estimates of the labels are obtained by the proposed MBSA algorithm.
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Before introducing the proposed approach, a brief introduction about Markov Random

Field model is presented in the following section.

2.4.1 Markov Random Field

Let us consider a collection of random variables Xi,j , that is a random field defined

over a finite discrete rectangular lattice of size (M × N). The lattice S is defined as

S = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} where site (i, j) corresponds to each pixel of the

discrete image lattice structure. A neighbourhood system η on this rectangular lattice

can be defined as follows,

Definition 1 A collection of subsets of S described as η = {ηi,j : (i, j) ∈ S, ηi,j ⊂ S}
is a neighbourhood system on S if and only if ηi,j, the neighbourhood of pixel (i, j) is

such that

1. a site is not neighbouring to itself: (i, j) /∈ ηi,j

2. the neighbouring relationship is mutual: If (k, l) ∈ ηi,j, then (i, j) ∈ ηk,l, for any

(i, j) ∈ S

The neighbour set of ηi,j is defined as the set of nearby sites within a radius r such

that ηi,j = {(k, l) ∈ S|{dist((i, j), (k, l))}2 ≤ r, (i, j) �= (k, l)}, where dist(A,B) denotes

the Euclidean distance between A and B, r takes an integer value. A hierarchically

ordered sequence of neighbourhood systems is shown in Figure 2.10 where η1, η2, η3,

. . . are the �first–order�, �second–order�, �third order �,. . . neighbourhood systems

respectively and are denoted by numbers 1, 2, 3 . . . . Due to the finite lattice

used, the neighbourhood of pixels on the boundaries are necessarily smaller unless a

toroidal (periodic) lattice structure is assumed. A nearest neighbourhood dependence

of pixels on an image lattice is obtained by going beyond the assumption of statistical

independence. The neighbourhood systems that can be defined over S are neither

limited to the hierarchically ordered sequence of neighbourhood systems, nor they have

to be isotropic or homogeneous.

Definition 2 Let η be a neighbourhood system defined over a lattice S. A random

field X = {Xi,j} defined over lattice S is a Markov Random Field (MRF) with respect

to the neighbourhood system η if and only if

1. All of its realizations have non zero probabilities P (X = x) > 0 for all x (property

of positivity).
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Figure 2.10: Hierarchically arranged neighbourhood system of Markov Random Field.

2. Its conditional distribution satisfies the following property

P{Xij = xij |Xkl = xkl, (k, l) ∈ S, (k, l) �= (i, j)}
= P{Xij = xij |Xkl = xkl, (k, l) ∈ ηij for all (i, j) ∈ S (property of Markovianity)

where xij is the configuration corresponding to the random variable Xij and so

on. When the positivity condition is satisfied, the joint probability P (X) of any

random field is uniquely determined by its local conditional probabilities [149]. The

Markovianity depicts the local characteristics of X which is characterized by the

conditional distributions. The Definition 2 says that the image value at a pixel does

not depend on the image data outside the neighbourhood, when the image data on

its neighbourhood are given. Hence, the most attractive feature of MRF is that

�images tend to have a degree of cohesiveness : pixels located near to each other tend

to have the same or similar colors� [145]. It doesn’t constitute a theoretical restriction

either, because all random field satisfy Definition 2, with respect to a large enough

neighbourhood system, e.g. η = S for all η ∈ S. On the other hand, MRF models,

even with respect to small neighbourhood systems such as η2 prove to be very flexible

and powerful. Let us define the clique associated with (S, η), a lattice neighbourhood

system pair :

Definition 3 A clique of the pair (S, η) denoted by c is a subset of S such that

1. c consists of a single pixel, or

2. for (i, j) �= (k, l), (i, j) ∈ c and (k, l) ∈ c implies that (i, j) ∈ η(k, l)

The collection of all cliques of (S, η) is defined by C(S, η).
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2.4.2 Gibbs Random Field

Gibbs Distribution (GD) or equivalently the Gibbs Random Field (GRF) can be defined

as follows,

Definition 4 Let η be a neighbourhood system defined over a finite lattice S. A

random field X is said to be a Gibbs Random Field (GRF) of lattice S with respect

to a neighbourhood system η if and only if its configuration obey a Gibbs distribution

which has the following form

P (X = x) =
1

Z
e−

1
T
U(x) (2.16)

where,

Z =
∑
x

e
1
T
U(x) (2.17)

is the partition function. Z is simply a normalizing constant so that the sum of the

probabilities of all realizations, x becomes one. T is a constant analogous to temperature

which shall be assumed to be 1 unless otherwise stated and U(x) is the energy function

or Hamiltonian of a Gibbs distribution, which can be expressed as follows

U(x) =
∑
c∈C

VC(x) (2.18)

Hence, energy is sum of clique potentials Vc(x) over all possible cliques C. Vc(x)

are a set of potential functions depending on the values of x at the sites in the

clique c. Thus, the key functions in determining the properties of the distribution

are the potential functions Vc(x). P (x) measures the probability of the occurrence of a

particular configuration x. Configurations with more probability of occurence has lesser

energy. This is so because the energy is computed as a measure of the distance between

the model and the raw image data. The potential functions are chosen to reflect the

desired properties of the image so that the more likely images have a lower energy and

are thus more probable. The temperature T controls the sharpness of the distribution.

When the temperature is high, all configurations tend to be equally distributed and

when it gradually decreases to zero, global energy minima is achieved. Gibbs energy

formalism has the added advantage that if the likelihood term is given by an exponential,

and the prior is obtained through a MRF model, the posterior probability continues

to be a gibbsian. This makes the MAP estimation problem equivalent to an energy

minimization problem.
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2.4.3 Markov–Gibbs Equivalence

MRF is defined in terms of local properties (the classification label assigned to a pixel

is affected only by its neighbours), whereas GRF is characterized by its global property

(the Gibbs distribution). The popular Hammersley–Cliffords theorem states that given

the neighbourhood structure η of the model, for any set of sites within the lattice S,

their associated contribution to the Gibbs energy function should be non zero, if and

only if the sites form a clique; a random fields having the Markov property is equivalent

to its having a Gibbs distribution. This theorem establishes the equivalence of these

two types of properties and provides a very general basis for the specification of MRF

joint distribution function. Many have been used throughout the literature [150]. The

difficulties inherit in the MRF formulation are eliminated by use of this equivalence

which are as follows:

i. Readily available joint distribution of random field

ii. Obtaining local characteristics regardless of inconsistency

iii. Characterizing the Gibbs Distribution model with few parameters

By the use of MRF–GRF equivalence, MRF theory provides a mathematical

foundation for solving the problem of making a global inference using local information.

It follows from the above equivalence that the local characteristics of the MRF are

readily obtained from the joint distribution in 2.16 as

P (Xi,j = xi,j | Xk,l = xk,l ∈ S, (k, l) �= (i, j))

= P (Xi,j = xi,j | Xk,l = xk,l, (k, l) ∈ ηi,j)

=
e−

∑
c∈Vc(x)∑

xi,j ∈ Se−
∑

c∈CVc(x)
(2.19)

2.4.4 MRF Image Model

Let the images are assumed to be defined on a discrete rectangular lattice S = N ×N .

Assuming that X denotes the random field associated to the noise free image and Z

denotes the corresponding label process. Let z be a realization of Z. The observed

image y is assumed to be a realization of the random field Y . Moreover, the label

process Z is assumed to be a MRF with respect to a neighborhood system η and is

described by its local characteristics.
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P (Zij = zij | Zkl = zkl, (k, l) ∈ (N ×N), (k, l) �= (i, j))

= P (Zij = zij | Zkl = zkl, (k, l) ∈ η)

As Z is MRF, or equivalently Gibbs distributed, the joint distribution can be

expressed as

P (Z = z | φ) = 1

Z ′ e
−U(z,φ), (2.20)

where Z ′ =
∑
z

e−U(z,φ) is the partition function and φ denote the clique parameter

vector. U(z, φ) is the energy function and is of the form U(z, φ) =
∑

c(i,j)∈c
Vc(z, φ), where

Vc(z, φ) is the clique potential. The clique potential function Vc(z, φ) of the MRF model

corresponding to the a priori is given by:

Vc(z) =

{
−β if | zm − zn |= 0

β otherwise
(2.21)

where, zm and zn are the mth and nth pixels respectively and are in the same clique.

The image model for our lymphocyte images has been formulated as follows.

Yij = Zij +Wij, ∀(i, j) ∈ (N ×N) (2.22)

We assume the following three points for the above model:

i. Wi,j is white gaussian sequence with zero mean and variance σ2

ii. Wi,j is statistically independent of Zkl, ∀(i, j) and (k, l) belonging to N ×N .

iii. Zi,j takes any value from the label set M=(1, 2, 3) (typically for lymphocyte

images).

The MRF model parameters are represented as a vector and is denoted as θ.

2.4.5 Image Label Estimation

Since in a supervised framework the number of regions M and the model parameters

are assumed to be known, it is required to estimate the pixel labels using the associated

model parameter vector θ. The label process Z, of the image is modeled as MRF and

the objective is to obtain the optimal estimate of the realization of the scene labels z∗
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and hence achieve segmentation. This is formulated based on the maximum a posteriori

estimate criterion. In the present pixel labeling problem, let z∗ denote the true but

unknown labeling configuration and ẑ denote the estimate for z∗. Where, z∗ is the

realization of random field Z, and is modeled as MRF. The problem is to recover z∗

from the observed image y. The following optimality criterion is adopted.

ẑ = argmax
z
P (Z = z | Y = y, θ) (2.23)

Where θ denote the parameter vector, which is assumed to be known a priori, ẑ is

the MAP estimate of the labels. Since z is unknown the posterior probability cannot

be evaluated in (2.23). Hence using Bayes rule, (2.23) can be expressed as

P (Z = z | Y = y, θ) =
P (Y = y | Z = z, θ)P (Z = z | θ)

P (Y = y | θ) (2.24)

Since y is known, the denominator of (2.24) is a constant. So 2.24 can be rewritten

as

P (Z = z | Y = y, θ) = P (Y = y | Z = z, θ) P (Z = z | θ) (2.25)

Using the assumptions i.e. the noise is a white Gaussian sequence with zero mean,

is independent of z in the degradation model, P (Y = y | Z = z, θ) can be expressed as

P (Y = y | Z = z, θ) =
1

(2πσ2)
N2

2

exp(
−‖y − z‖2

2σ2
) (2.26)

Since, Z is MRF, using equation (2.20) and (2.26) the estimation of image labels ẑ

can be written as

ẑ = argmax
z

exp

(
−[‖y − z‖2

2σ2
+ U(z, φ)

])
(2.27)

We can further simplify this optimization problem by taking the negative and

minimizing the resultant to obtain the following relation:

ẑ = argmin
z

[‖y − z‖2
2σ2

+ U(z, φ)

]
(2.28)

This optimization is computationally an enormous task. Therefore, in order to

reduce the computational burden, a memory based search algorithm is proposed here

by exploiting the notion of simulated annealing for obtaining the MAP estimate of image

labels ẑ.
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2.4.6 Memory Based Simulated Annealing

As the number of possible configurations for pixel labels are too many the above

optimization problem is computationally expensive. A number of approaches have been

proposed to solve this difficult problem. However the solutions can in general be viewed

under two categories: deterministic or stochastic. Here we discuss one such deterministic

approach known as Iterated Condition Modes (ICM) algorithm and another stochastic

approach such as Simulated Annealing (SA) algorithm.

Besag et al. [151] proposed the ICM algorithm which provides an approximate

solution to the MAP estimate. It solves the optimization problem by sequentially

updating labels by minimizing equation (2.28) at each pixel. The conventional ICM

algorithm suffers from the problem of local minima trapping and result with poor

segmentation performance. However, the performance of the ICM algorithm depends

on the initial labeling and a suitable initial labeling can facilitate quick convergence to a

desired solution. Providing a reasonable good initial labeling is difficult and stochastic

algorithms like SA proves to be a better choice in such scenarios.

SA based algorithms solve the MAP estimates in a manner similar to the physical

annealing process that occurs in matters and has been suggested by Kirkpatrick [152].

In a physical annealing process, the matter is heated at a very high temperature and

then gradually cooled slowly to reach the ground state. Inspired by this, the SA based

approaches introduced a temperature variable, similar to physical temperature into the

present energy functions. The temperature variable allows to start the optimization

process from a state in which all the configurations have equal probability i.e. from

a very hot state. Then, by gradually decreasing the temperature variable, the global

solution is achieved. Geman and Geman [145] in his seminal work introduced the use

of SA for the sophisticated optimization problem of image segmentation. Making the

optimization process independent of initial labeling is the key behind this approach.

This method also overcomes the local convergence problem in the ICM algorithm.

However, stochastic optimization algorithms are computationally intensive and is the

major drawback of SA. One possible reason that could be attributed for this problem

in our optimization problem of image segmentation is the revisiting of the candidate

solutions already visited in the search space. Therefore, as a possible solution a hybrid

algorithm is developed exploring the notions of annealing and memory based technique

and is presented below.
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2.4.7 Proposed Algorithm for Lymphocyte Image

Segmentation using Memory Based Simulated Annealing

In our proposed Memory Based Simulated Annealing (MBSA) algorithm the notion of

annealing is employed with a view to examine every point of the search space with finite

probability and hence achieve global optimal solution. In the proposed MRF–MBSA

framework the memory consists of an array of images representing the recent past moves

in the multidimensional search space. The next move of the memory based search

is achieved by using the notion of neighborhood search. During implementation, an

image is considered as a point in the multidimensional search space. The next move

is another image in the neighborhood that has energy less than all the previous moves

and is attained by perturbing the point in the neighborhood structure. Following, this

approach the revisiting of earlier points are avoided and an array of images denoted

�Memory�is created. In order to overcome the local minima trapping, a criterion is

introduced. The criterion here is to accept moves of higher energy with a probability.

This guides the algorithm to overcome the local minima problem and to attain the

optimal values. To avoid the premature convergence of the algorithm the cooling

schedule is introduced here. The basic steps of the proposed memory based simulated

annealing (MBSA) algorithm are as follows.

MBSA Algorithm

1. Initialize the initial temperature Tin.

2. The initial image of the algorithm is the observed image y.

3. An array of images is created to store the recent moves, i.e. the image estimates

of the algorithm. The set is of fixed length.

4. From the current move of the image, the next intermediate image is generated.

(i) At iteration t, for each pixel xij perturb xij(t) with a zero mean Gaussian

distribution with a suitable variance.

(ii) Evaluate the energy after perturbation Up(xij(t))new and before perturbation

Up(xij(t))old. If change in energy f = [Up(xij(t))new − Up(xij(t))old] < 0,

assign the modified value as the new value. If f > 0, accept the xij(t)new

with a probability (if exp(− f/T (t)) > random(0, 1)).
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(iii) Repeat step (ii) for all the pixels of the image.

5. Compute the energy of the updated image x(t) as Px(t) and compare it with the

energy of the stored recent estimated images in the memory and named as Pmemory,

if Px(t) < Pmemory accept x(t) as the recent image of the memory list.

6. Criterion: If Px(t) > Pmemory accept x(t) as the image of the memory list with a

probability.

7. Update the memory list.

8. Decrease the temperature T (t) according to the logarithmic cooling schedule.

9. Repeat step 4–8 till stopping criteria is met i.e. temperature decreases to a low

value.

Hence, final configuration with minimum energy is obtained.

2.5 Simulation Results

The four proposed segmentation schemes (FLANNS, KIRFCM, KISCM, MBSA) are

implemented using Matlab 7.8 and experimental simulation is performed using an

Intel Core i5 3.20GHz PC, along with 2GB RAM running on Windows 7 professional

operating system. A total of 270 lymphocyte sub images which include mature

lymphocytes and lymphoblasts constitute the entire image data set and are used for

the experimental evaluation of the proposed schemes. Three experiments are conducted

on the test images to demonstrate the efficacy of all the four proposed schemes. In

the first experiment each individual proposed scheme is compared with three standard

leukocyte segmentation schemes such as Fuzzy Divergence (FD) [79], Gaussian Mixture

Model (GMM) [153], and Modified Fuzzy C–Means (MFCM) [76]. Additionally, the

original Rough C–Means (RCM) [154] algorithm for lymphocyte image segmentation

is also considered for comparison in this experiment. The segmentation error rate (ei)

of region i (cytoplasm or nucleus) is evaluated in the second experiment by comparing

the segmentation results with the available manual segmented test images using the

following relation:

ei =
Total number of misclassified pixels in a region i

Total number of pixels in a region i
× 100 (2.29)
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In the last experiment, the proposed schemes are compared among themselves in

terms of computation time.

a. Experiment 1

To visualize the subjective performance, segmented output of all the four proposed

schemes are compared with some of the best performing schemes reviewed in Section 1.7.

Segmentation results for two lymphocyte images (IGH21 and IGH17) are presented in

Figure 2.11 and Figure 2.12 respectively. Subjective comparisons are also made for

two lymphoblast (malignant lymphocytes) images and are presented in Figure 2.13. It

is observed from the above results that the performance of the proposed schemes in

terms of subjective visual evaluation are better than all of the above cited segmentation

schemes. However, it is perceived visually that MBSA algorithm yields best results

among all the four proposed segmentation schemes. Therefore, segmentation results

of another six more lymphoblast images using MBSA approach are also presented

in Figure 2.14. Additionally, the posterior energy convergence plot for lymphoblast

image IGH1LB using SA and MBSA algorithm is shown in Figure 2.15. It is observed

from this figure that MBSA algorithm converges faster at around 12 iterations whereas

SA algorithm converges after 32 iterations. The faster convergence in case of MBSA

algorithm is due to the notion of memory which avoids revisiting of moves in search

space.

b. Experiment 2

In this experiment segmentation performance for each of the proposed scheme is

evaluated with respect to the available manual segmented (ground truth) images

provided by a joint panel of hematologists. Figure 2.16 exhibits manual segmented

images for nine sample lymphocytes which includes both healthy as well as malignant

cells. Since the predefined regions of the manual segmented images are available,

segmentation error rate (ei) can be computed for each morphological region (cytoplasm

and nucleus) of a lymphocyte separately using equation (2.29). Nucleus segmentation

error rate (e1) and cytoplasm segmentation error rate (e2) for nine lymphocytes whose

manual segmented images (Figure 2.16) are available is tabulated in Table 2.4 and

Table 2.5 for the existing and the proposed schemes respectively. It is evident from

the above results presented in Table 2.5 that all the four proposed schemes have a
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IGH21LB

Cytoplasm Nucleus Background

FD

GMM

MFCM
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FLANNS

KIRFCM
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MBSA

Figure 2.11: Comparative lymphocyte image segmentation results.

segmentation error rate of less than 5% for both the image regions i.e. cytoplasm and

nucleus. It is also observed that the performance of MBSA approach in terms of nucleus

segmentation error rate is found to be outperforming the other proposed schemes for
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IGH17LB

Cytoplasm Nucleus Background

FD

GMM

MFCM
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FLANNS

KIRFCM

KISCM
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Figure 2.12: Comparative lymphocyte image segmentation results.

most of the test images.
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Figure 2.13: Segmentation results for two lymphoblasts (immature lymphocytes) using

proposed algorithms, FLANNS, KIRFCM, KISCM, MBSA.

c. Experiment 3

In this experiment, all the four proposed schemes are employed to segment two

lymphocyte images (IGH1LB and IGH17LB) of size 128 × 128. The computational

time (in seconds) are recorded for all the schemes and are presented in Figure 2.17. The

execution time for FLANNS scheme includes both training and segmentation phases

and the training data set consists of 120 patterns representing a particular pixel. It

is perceived from Figure 2.17 that the FLANNS is the most computationally efficient

scheme among all the four proposed schemes.

2.6 Comparative Study of Proposed Lymphocyte

Image Segmentation Schemes

To extract cytoplasm and nucleus image regions from lymphocyte mages, four

lymphocyte image segmentation schemes have been suggested here in this chapter.
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Figure 2.14: Segmentation results for lymphoblast images using MBSA algorithm.

Here the performance of the proposed methods have been compared with relevant

standard techniques. However the relative performance comparison has not been made

amongst the different proposed methods. The objective here is to critically study the

comparative segmentation performance amongst the various methods proposed in this

chapter. The proposed segmentation schemes can be classified into four categories

based on the type of problem considered. Table 2.6 shows the different segmentation

schemes along with the type of problem considered and nature of image information used

for segmentation. It is evident from Table 2.4 and 2.5 that the MBSA scheme is the

most efficient segmentation scheme in terms of segmentation error. Higher segmentation

efficacy of MBSA over the other three intensity based segmentation schemes is due to the

use of contextual or neighborhood pixel information in estimating the individual pixel

label. Comparative analysis reveals that KIRFCM and KISCM segmentation schemes

perform better in grouping pixels in the pixel–cytoplasm and cytoplasm–background

boundary image regions. As desired these schemes results with a well defined nucleus
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Figure 2.15: Posterior energy convergence plot for IGH1LB image.

and cytoplasm boundary, and is due to combined use of kernel space clustering and

granular computing concepts i.e. rough and shadowed sets. From the results obtained

(Table 2.5), it is observed that the segmentation performance of FLANNS is also quite

high. The reasoning behind acceptable segmentation performance using FLANN is due

to use of a∗ and b∗ components of CIELAB color model as color features. Moreover,

trignometric functional expansion in FLANN effectively increases the dimensionality of

the input vector and provides a greater discrimination capability. However, a major

challenge for neural network based supervised image segmentation is creation of the

color feature–image label training data set. It is apparent from Figure 2.17 that the

computational overhead associated with KIRFCM is the highest among all the proposed

schemes. The reasoning behind higher computational time in KIRFCM is as a result

of the use of concepts i.e. upper and lower approximation in deciding the members of

each cluster during each iteration.

2.7 Summary

In this chapter four image segmentation schemes are proposed for lymphocyte image

segmentation. A comparative segmentation performance amongst these methods is

discussed, and a conclusion is drawn to choose a method for automated lymphoblastic

leukemia detection and its classification. From the segmentation results it is observed
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Figure 2.16: Manual lymphocyte image segmentation results.

that all the four schemes outperform the existing schemes in terms of low segmentation

error rate and low computational time. But the performance of MBSA is found to be

comparatively better in terms of nucleus and cytoplasm segmentation error. Moreover,

FLANNS is computationally faster with an acceptable segmentation performance. But

the preparation of training data set to make the segmentation process robust against
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Table 2.4: Comparison of segmentation error rate for the existing methods.
Image

Sample

Segmentation

Error Rate

Methods

FD GMM MFCM RCM

IGH30LB
e1 2.64 12.12 8.25 5.73

e2 - 46.14 7.85 7.19

IGH18LB
e1 9.69 8.11 7.60 4.53

e2 - 46.43 8.22 6.19

IGH1H
e1 4.96 5.49 8.68 5.78

e2 - 48.65 10.81 6.84

IGH4H
e1 5.18 15.43 10.53 4.57

e2 - 52.04 9.83 4.92

IGH5H
e1 6.78 14.11 8.09 5.08

e2 - 56.62 11.87 4.39

IGH6H
e1 7.03 7.31 5.12 3.01

e2 - 28.51 7.83 5.52

IGH7H
e1 8.66 6.08 10.7 5.41

e2 - 61.17 12.87 5.54

IGH27H
e1 4.12 13.10 6.30 6.29

e2 - 27.66 10.79 7.71

IGH28H
e1 8.55 14.34 10.64 5.07

e2 - 68.02 17.45 6.76

e1: Nucleus Segmentation Error Rate

e2: Cytoplasm Segmentation Error Rate

uneven staining and lighting condition is often difficult. In unsupervised category,

segmentation results of kernel based clustering schemes (KIRFCM and KISCM) are

found to be quite comparable to MBSA. However, initial center and parameter selection

is essential in clustering based schemes for acceptable segmentation performance. In

comparison, performance of MBSA depends upon different initialization parameters.

For the proposed schemes the parameters are selected on trial and error basis and a range

of values are found to be working for the available images. Based upon segmentation

performance and computational time MBSA scheme is chosen to be the best scheme

among all the four proposed schemes, followed by that KISCM is found to be the second

best scheme among them.
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Table 2.5: Comparison of segmentation error rate for the proposed methods.
Image

Sample

Segmentation

Error Rate

Methods

FLANNS KIRFCM KISCM MBSA

IGH30LB
e1 1.72 1.21 1.03 1.00

e2 2.20 1.41 1.38 1.02

IGH18LB
e1 1.63 1.10 1.04 1.22

e2 2.41 1.39 1.24 1.09

IGH1H
e1 1.83 1.20 1.07 1.19

e2 1.97 1.02 1.11 1.15

IGH4H
e1 1.79 1.04 1.04 1.06

e2 2.16 1.73 1.05 1.15

IGH5H
e1 1.70 1.82 1.05 1.18

e2 2.27 1.15 1.51 1.13

IGH6H
e1 1.56 1.02 1.29 1.03

e2 2.34 1.02 1.56 1.08

IGH7H
e1 1.61 1.01 1.38 1.21

e2 2.10 1.08 1.35 1.34

IGH27H
e1 2.08 1.02 1.49 1.21

e2 4.30 1.15 1.45 1.15

IGH28H
e1 1.73 1.71 1.68 1.48

e2 2.12 1.05 1.10 1.27

e1: Nucleus Segmentation Error Rate

e2: Cytoplasm Segmentation Error Rate
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Figure 2.17: Variation of computational time in seconds.
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Table 2.6: Comparison of proposed lymphocyte segmentations schemes based on nature

of problem considered and type of image information used.

Scheme Nature of problem Image information

FLANNS Pixel classification Color intensity

KIRFCM Pixel clustering Color intensity

KISCM Pixel clustering Color intensity

MBSA Pixel labeling Contextual
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Chapter 3

Quantitative Characterization of

Lymphocytes for ALL Detection

Light microscopy has historically been a qualitative technique, but the transition to

quantitative microscopy has made the detection process more meaningful. Image

processing and machine learning techniques are central to such automation processes.

Better quantification in light microscopic evaluation of peripheral blood smear (PBS)

will bring important benefits in the form of improved performance and reproducibility

in hematological diagnosis.

Current limitation in existing techniques are preventing from realizing the full

potential of quantitative microscopy. Specifically, despite great demand for peripheral

blood smear analysis in India and worldwide, relatively very few research studies

have been performed in analyzing hematological images for automated acute leukemia

detection. In the literature, few attempts of semi/fully automated systems based on

image processing can be found in [98, 155]. But they are still in their infancy, and

require major upgradation.

After staining of peripheral blood and slide preparation, lymphocyte cells are

observed under the light microscope and images are digitally grabbed. Depending on

either healthy or malignant condition, the lymphocyte image has various differentiable

characteristics. The malignant status of lymphocyte is judged on the basis of image

cytological features viz., nucleus and cytoplasm morphology which have different shape

alterations according to malignant transformation in associated lymphoid stem cells. In

addition, ALL condition depicts associated changes in nucleus chromatin texture and

cytoplasm color.
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It is clinically understood that specific genetic events contribute to malignant

transformation of lymphocyte. Such alterations at DNA level result with immature cells

with large size, high nucleus–cytoplasm ratio, coarse nucleus chromatin and cytoplasmic

basophilia. These immature lymphocytes are known as lymphoblasts (blasts) which

replace normal hemopoietic cells in the bone marrow and result with the disease.

Presence of more than 20% lymphoblasts in the peripheral blood signify leukemia and

is the diagnostic criterion for ALL.

In this chapter, a novel image processing and machine learning based system is

developed for quantitative characterization of lymphocyte images, and to detect ALL in

peripheral blood smear (PBS) images. The proposed method is used to differentiate each

lymphocyte image into a mature lymphocyte or a lymphoblast. An ensemble classifier

is used to increase its performance in terms of classification accuracy. It is trained

and validated using k–fold cross validation approach. The outline of the chapter is as

follows.

Section 3.1 describes the process of microscopic image acquisition, the algorithm

for cropping subimages, and the method followed for lymphocyte image segmentation.

Detailed analysis of the applied feature extraction techniques is presented in Section 3.2.

Further, the process of feature value normalization and the procedure for the selection

of statistically significant features are also discussed in this section. A brief overview

of various standard classifiers is demonstrated in Section 3.4. In Section 3.5, use of

ensemble of classifiers for automated ALL detection is introduced. Simulation results are

discussed in Section 3.8. Finally, a summary of the chapter is presented in Section 3.9.

3.1 Materials and Methods

The block diagram of the proposed computational approach towards automated

screening of ALL is shown in Figure 3.1. In general, computer aided diagnosis systems

can be constructed by cascading segmentation, feature extraction and classification

subsystems. In this work, subsequent to lymphocyte segmentation presented in

Chapter 2, the morphological, textural and color features are extracted from nucleus

and cytoplasm regions. Significance of individual extracted features are evaluated using

statistical analysis. The significant features of each lymphocyte image are fed to the

ensemble classifier, to classify the data pattern into one of the predefined classes, viz.

normal and malignant. Therefore, such a system can differentiate a mature lymphocyte
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(normal) and lymphoblast (malignant) and will facilitate in the automated detection of

ALL in PBS images.

Stained Blood

Image Sample

Preprocessing

Subimaging

Lymphocyte Image

Segmentation

Cytoplasm and

Nucleus Feature

Extraction

Statistical Feature

Selection

Classification

Normal Malignant

Figure 3.1: Proposed automated lymphocyte characterization system.

3.1.1 Histology

In the present study the total data set used for the development of the model comprises

peripheral blood smear (PBS) samples, and are collected from 63 patients diagnosed

with ALL and 55 control subjects. 150, 120 stained subimages of lymphocyte are

obtained by the image acquisition and sub imaging process as described in Section 2.1

from diseased and normal subjects respectively. The subjects of the PBS samples are

male and female between 3 and 45 years of age. The images are optically grabbed by

a Zeiss Observer microscope (Carl Zeiss, Germany) using Leishman stained peripheral

blood smear under 100X oil immersed setting and with an effective magnification of

1000. The grabbed digital images are stored in an array of size 1024× 1024 × 3. Two
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representative blood microscopic images consisting of a mature lymphocyte (normal)

and a lymphoblast (malignant or immature lymphocyte) are depicted in Figure 3.2.

(a) Mature lymphocyte (b) Lymphoblast

Figure 3.2: Representative blood microscopic images containing a mature lymphocyte

and lymphoblast.

3.1.2 Lymphocyte Image Segmentation

In fourth step of the ALL screening system, lymphocyte segmentation is performed.

An improved Markov Random Field model based image segmentation scheme for

lymphocyte images as proposed in Section 2.4 is used here. This segmentation uses

a memory based simulated annealing algorithm (MBSA) for image segmentation in a

stochastic framework. The segmentation results using the MBSA algorithm are shown

in Chapter 2, Figure 2.14 for both the classes viz., normal (mature lymphocyte) and

malignant (lymphoblast).

Segmentation is followed by feature extraction, and is one of the crucial steps in

automated disease detection system. During this process relevant and representative

features are extracted from the measurement data such as images and signals. In

this chapter shape, texture, and color features are extracted from mature lymphocyte

and lymphoblast images. The detailed procedure for lymphocyte feature extraction is

presented in the following section.

3.2 Lymphocyte Feature Extraction

The criteria during screening or in the follow up of ALL are based on the percentage

of lymphoblast present in the peripheral blood or bone marrow samples. Presence of

more than 20% of lymphoblast in peripheral blood or bone marrow samples are labeled

as ALL [22]. Morphologically, lymphoblast is characterized by large nucleus, having an
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irregular size and shape, and the nucleoli are prominent. Moreover, the cytoplasm is

scarce and intensely colored in blast cell images. Nucleus and cytoplasm of lymphoblast

reflects morphological and functional changes in comparison to lymphocytes, and

plays an important role in assessment of malignancy in peripheral blood samples.

The current visual criteria for the detection of lymphoblasts in blood samples are

summarized in Table 3.1 and is followed by most of the hematopathologists across

the globe [156]. Analysis of this table reveals marked differences in morphology among

mature lymphocyte (small and large) and lymphoblast, and forms the basis of ALL

detection process. As per expert observation it is often noticed that in few samples the

cell size of large lymphocytes equates to that of microblasts. In such samples, other

morphological parameters i.e. nucleus–cytoplasmic (N:C) ratio and nucleus chromatin

distribution are considered as essential discriminating factors for the screening process.

Further, it should also be remembered that the above features may not be distinct for

the recognition of blasts individually. Accordingly, an amalgamation of all the features

are adapted by expert hematopathologists for the final assessment of a PBS sample.

Despite all, human evaluation of PBS is always subjective and time–consuming in

nature. Therefore, to facilitate hematopathologists with a reliable tool for the screening

and follow up of ALL, a set of novel quantitative features are presented here using an

image processing approach.

As per hematopathological experts the basis for the differentiation of lymphocyte

from lymphoblast can be grouped into two types of characteristics i.e. nuclear changes

(variation in shape and size, chromatin pattern) and cytoplasmic changes (amount of

cytoplasm and protein accumulation). Here, we suggest some quantitative features for

nucleus and cytoplasm region of a lymphocyte which is correlated directly with the

actual cytological features, and aides in the computer processing of lymphocyte images.

Among them few features are directly measurable; while others can be computed from

the measured data and each of them belong to one of the three broad categories i.e.

morphological, textural and color features. A brief description of the proposed computed

shape, color and texture features are summarized in Table 3.2 and Table 3.3 respectively.

A detailed description about the clinical importance of each computed features are

presented below.

The following morphological, textural and color features are measured from the

binary, gray and color image version of the nucleus and cytoplasm image regions

respectively of each lymphocyte image.
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Table 3.1: Morphological differential characteristics of lymphocyte and lymphoblast.

Feature Lymphocyte Lymphoblast

Small Large

Cell Size Small Large Large

N:C Ratio Low Low High

Nucleus Shape Round or oval Round or oval Indented

Nucleus Size Less Less Large

Nuclear Chromatin Closed Closed Open

Nucleoli Usually absent Usually absent Distinct

Nucleus Boundary Smooth Smooth Rough

Amount of Cytoplasm Scanty Abundant Scanty

Nucleus Color Blue–purple Blue–purple Sparse Red–purple

Cytoplasmic Color Light clear sky blue Light clear sky blue Deep blue

Cytoplasmic Boundary Rough Rough Smooth

1. Area (F1–F2): Individual area is computed by counting the total number of pixels

present in the binary version of the nucleus and cytoplasm image respectively.

2. Nucleus–Cytoplasm ratio (F3): Is a measurement to indicate the maturity of a

cell and is the ratio of the size of the nucleus to the size of the cytoplasm of that

lymphocyte.

3. Cell size (F4): Entire cell area is computed by adding individual cytoplasm and

nucleus area.

4. Perimeter (F5): The perimeter of the nucleus is obtained by counting the total

number of pixels representing the nucleus boundary.

5. Form Factor (F6): Is a shape parameter derived from the basic cellular

measurements i.e. area and perimeter. It can be mathematically defined as

Formfactor =
4× π × Area

(Perimeter)2
(3.1)

6. Roundness (F7): Is the degree to which the nucleus shape differs from that of a

circle and can be defined as
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Table 3.2: Computed shape features for lymphocytes.

Features Description

Cytological Computed

Nucleus Size Nucleus Area Number of pixels in the nucleus

region.

Cytoplasm Size Cytoplasm Area Number of pixels in the cytoplasm

region.

Lymphocyte Size Lymphocyte Area Sum of all the pixels in the

cytoplasm and nucleus region.

Nucleus Contour Nucleus Perimeter Number of pixels in the contour of

the nucleus.

Nucleus Shape Nucleus Shape Nucleus region shape in terms

of form factor, roundness,

compactness and elongation.

Nucleus

Boundary

Roughness 1

Fractal Dimension Hausdorff dimension (HD) value of

the nucleus contour.

Nucleus

Boundary

Roughness 2

Contour Signature Variance, Skewness and Kurtosis of

all the distances between nucleus

centroid and contour pixels.

Roundness =
4× Area

π × (Maximum Diameter)2
(3.2)

7. Length–Diameter ratio (F8): Length to diameter (L/D) ratio is the ratio of the

major axis length and minor axis length of the nucleus region.

8. Compactness (F9): Is a numerical measure representing the degree to which a

shape is compact and is mathematically represented as.

Compactness =

√
4
π
× Area

Maximum Diameter
(3.3)

9. Nucleus Boundary Roughness: Nuclear boundary irregularity is an important

diagnostic feature of ALL. To measure such deformation accurately in quantitative
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Table 3.3: Computed texture and extracted color features for lymphocytes.

Features Description

Cytologic Computed

Texture 1 Wavelet Coefficients Mean and variance of

approximation, horizontal and

vertical matrix components of

nucleus and cytoplasm region.

Texture 2 GLCM Contrast, correlation, energy,

homogeneity and entropy statistics

are derived from the GLCM matrix

of the nucleus and cytoplasm

region.

Texture 3 Fourier transform Mean, variance, skewness

and kurtosis of the frequency

components of the nucleus region.

Color Region Color Individual nucleus and cytoplasm

region color in terms of mean

intensity of individual red, green,

blue, hue, saturation and lightness

component.

manner fractal geometry and contour signature can be used and a detail

explanation is presented below.

a. Fractal Geometry (F10): It is used to measure the irregularities of the

nucleus margin of lymphocytes and aids in the differentiation of malignant

lymphocytes (lymphoblast) from benign ones. Irregularity and complexity

are the main properties of organized biological matter including human

tissue, cells and sub cellular components. However, traditional Euclidean

geometry is incapable of objective assessment of human cellular components

including measurement of nucleus boundary irregularity of lymphocytes.

Unlike Euclidean geometry, fractal geometry represent objects in non–integer

dimension and is an invincible tool for representing irregular shaped objects
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including erratic ramified lesions of tumors and irregular shape of malignant

cells [157].

Due to strong theoretical reasons and as per published studies there is a

strong evidence of using fractal geometry in the quantitative assessment of

cellular pathology [158]. However, the use of fractals in hematopathology

is limited and in this chapter we present the use of fractals as a measure

of nuclear margin irregularity. Even though many fractal properties have

been defined, Hausdorff dimension (HD) is one of the most important since

it provides an accurate objective measure of boundary irregularity. Several

approaches for the estimation of HD or Df (F10) is available in the literature,

however the most common among them used in biological sciences may be

summarized as follows.

� Modified pixel dilation

� Perimeter–area

� Ruler counting

� Box counting

Out of these, the box counting method is more popular due to its easier

implementation and is based on self–similarity. This method is used here,

where we cover boxes of different pixel length over the digitized version of

the segmented nucleus image (Figure 3.3). The Hausdorff dimension Df of a

bounded set A in Euclidean n-space can be derived from the relation

Df = lim
r→0

log(Nr)

log(1
r
)

(3.4)

where Nr is the least number of distinct copies of A in the scale r.

(a) (b)

Figure 3.3: Boxes of different pixel length superimposed over the segmented nucleus

image.
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b. Contour Signature: The shape of the lymphocyte nucleus is well known

in normal healthy cases, and do not deviate much from an average shape.

However, genomic alterations in malignant cells affect the structure of the

nucleus and cause deviation from the average shape. Contour signature is an

additional measure to supplement fractal dimension in characterizing nucleus

boundary and has been presented here.

In this method the dimensionality of the representation of the contour

is reduced from two to one by converting from a coordinate–based

representation to distances from each contour point to a reference point.

A suitable reference point is centroid or center of mass of the contour, whose

coordinates can be defined as

x̄ =
1

M

M−1∑
n=0

x(n)

ȳ =
1

M

M−1∑
n=0

y(n) (3.5)

where (x, y) are the coordinates of the pixels along the contour and M is the

total no of digitized points (pixels) on the nucleus contour. Nucleus contour

of a healthy mature lymphocyte (normal) and a lymphoblast (malignant)

sample is depicted in Figure 3.4. The asterisk symbol represents the centroid

of the nucleus contour and d(n) is the Euclidean distance between the centroid

and each nucleus contour points.

The signature of a contour provides general information on the nature of

the contour such as its smoothness or roughness. It is evident that the

smooth nucleus contours of benign or healthy lymphocyte possesses a smooth

signature, whereas the malignant lymphocyte (lymphoblast) nucleus has a

rough signature with several significant rapid variations over its period. It

is obvious that in a smooth contour there will be less variation between

all the distances between centroid and nucleus contour points. Whereas, a

malignant nucleus contour will generate a highly irregular set of distances.

Such variations can be quantified by statistical moments. It is obserbed

that variance (F11), skewness (F12), and kurtosis (F13) of all the distances

between centroid and nucleus contour points are significantly different in

normal and malignant samples, and is used here.
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(a) Normal (b) Malignant

Figure 3.4: Nucleus contour of lymphocyte image samples.

Based on past experience of hematopathologists, malignant lymphocytes

are characterized by smooth cytoplasmic boundary and can be an essential

feature for lymphoblast recognition. Therefore, HD (F14) and contour

signature (F15–F17) features are also measured for the cytoplasm region

of each lymphocyte image sample.

10. Texture: Changes in the chromatin distribution, reflects the organization of DNA

in lymphocyte nucleus, and is an essential diagnostic descriptor for classifying

malignant lymphocytes (lymphoblast) from healthy ones. Leishman staining of

blood samples enables the visualization of chromatin distribution of lymphocyte

nucleus in form of texture. Genetic modifications are responsible for textural

changes and are visible during the transition from normal to malignant. Such

textural transformation can be quantified using Haar wavelet, Haralick feature

and Fourier descriptor based methods and is presented below.

a. Wavelet texture features (F18–F23): Haar wavelet texture features are

computed by applying a combination of high pass and low pass to each

lymphocyte nucleus image [159]. An is the approximation image and is

obtained by low pass filtering of the nucleus image. Whereas, Hn, Vn, and

Dn are the detail coefficients and are obtained through high pass filtering in

horizontal, vertical, and diagonal directions respectively. A texture feature

vector for each gray scale version of lymphocyte nucleus image consists of

wavelet coefficients obtained by taking mean and variance of An, Hn, and
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Vn components. Due to absence of classification information in diagonal

coefficients Dn component is excluded from feature extraction [105].

b. Haralick texture features: The Gray Level Co–occurrence Matrix (GLCM)

method is a way of extracting Haralick’s texture features. A co-occurrence

matrix is a two-dimensional matrix, in which both the rows and the columns

represent a set of possible image values. GLCM can be defined as Gd[i, j] =

ni,j , where ni,j is the number of occurrences of the pixel (i, j) lying at

distance d in the image. The co–occurrence matrix Gd has a dimension

n×n, where n is the number of gray levels in the image. Statistical measures

i.e. contrast (F24), correlation (F25), homogeneity (F26), energy (F27), and

entropy (F28) are computed from the co-occurrence matrices using offsets

as (1, 0); (−1, 0); (0, 1); (0,−1) [65] and are used to differentiate benign and

malignant nucleus of lymphocyte image data samples.

c. Fourier descriptors (F29–F32): This transform is useful in highlighting the

dominant orientations of the DNA structures contained in the lymphocyte

nucleus region. Feature descriptors used here for texture quantification is

based on two–dimensional DFT (Discrete Fourier Transform). Statistics i.e.

mean, standard deviation, skewness, and kurtosis are computed over the

nucleus image in the frequency domain and is obtained using the DFT.

11. Color: Excessive pigmentation in lymphocyte nucleus results with

hyperchromatism and is an important characteristic appearing in malignant

lymphocytes. Chromatin abnormality results in increased staining capacity of

nuclei. Such modification in DNA content of nuclei is visible in form of change

in color intensity in lymphoblasts. This change in color during transition from

normal to malignant is measured as mean color intensity in RGB and HSV color

space and a set of six features i.e. µR (F33), µG (F34), µB (F35), µH (F36),

µS (F37), and µV (F38) are computed to represent the change in color. Where,

µ represents the mean intensity for the red (R), green (G), blue (B), hue (H),

saturation (S), and value (V) components respectively. Similar measurement of

color features (F39–F44) are also performed for the cytoplasm region and are

considered as members of the feature vector for lymphoblast detection.

Combination of all three types of features generate a total of 44 features of which 17,

15 and 12 numbers are of shape or size, texture and color features respectively.
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3.3 Data Normalization and Feature Selection

Prior to classification, it is necessary to normalize the dataset with dissimilar range of

values and to estimate the discriminating capability of each feature or a set of features

among the labeled classes. In this section, we describe the data normalization process

followed by feature selection using statistical t–test for the above extracted lymphocyte

feature values.

Combination of variables with nonuniform magnitudes results with masking of lower

magnitude data by higher magnitude data due to the sheer magnitude of the inputs

which generates larger weights associated with them. Therefore, normalization is an

essential procedure to transform the input features into a similar range so that true

influence of variables can be ascertained. Feature normalization is also beneficial in

making the neural network training process smoother [160]. A popular approach is

to standardize the dataset with respect to the mean and standard deviation using a

linear transformation. The above linear transformation is performed for each individual

variable. To achieve data normalization, each input variable or feature is treated

individually, and for each feature xi in the training set, the mean xi and variance σ2
i are

calculated. Using these, each input variable or feature can be normalized as

(xni )T =
xni − xi
σi

(3.6)

where (xni )T is the normalized (transformed) value of the nth observation of the

variable xi. Such an operation results with a new set of normalized features with zero

mean and unit standard deviation.

Selection of an appropriate set of features is important and strongly affects the

performance of classifier. Filter and wrapper methods are widely used for the same.

Feature selection using filter method assess the relevance of features by looking only at

the intrinsic properties of the data. In most cases a feature relevance score is calculated,

and based on these score features are removed. Subsequently, this subset of features

is presented as input to the classifier module. Independent sample t–test is the most

widely used feature selection technique which obtains features with strong discrimination

power and is used in this chapter [161]. Independent sample t–test is one such popular

approach to determine the statistical significance of the extracted features [65]. Out of

all the 44 extracted features, 32 features are found to be statistically significant (p–value

< 0.05) using t–test and participate in the classification process.
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3.4 Classification

In pattern recognition, classifiers are used to divide the feature space into different

classes based on feature similarity. Depending on the number of classes each feature

vector is assigned a class label which is a predefined integer value and is based on the

classifier output. Each classifier has to be configured such that the application of a set

of inputs produces a desired set of outputs. The entire measured data is divided into

training and testing data sets. The training data is used for updating the weights and

the process of training the network is called learning paradigms. The remaining test

data are used for validating the classifier performance. In this study, we propose the use

of ensemble of classifiers for labeling each lymphocyte subimage as normal or malignant

sample based upon a set of measured features. Performance of the extracted features

in classification is also tested with five other standard classifiers i.e. Naive Bayesian,

K–Nearest Neighbor, Multilayer Perceptron, Radial Basis Function Neural Network and

Support Vector Machines. Suitable parameter tuning is performed for each classifier to

achieve optimum accuracy, and the same training and testing data set are used for all

while evaluating their individual classifier performances.

A. Naive Bayesian Classifier

Naive Bayesian Classifier (NBC) is based on Bayes’ theorem and is an important

supervised statistical classification method used in pattern recognition. The working

of such a classifier is based on Bayes decision theory and the principle of decision is to

choose the most probable one [65, 162]. It is designed specifically for classification task

with features that are independent of one another within each class.

B. K–Nearest Neighbor

K–Nearest Neighbor (KNN), even though a simple classifier yet yields good classification

accuracy. Using KNN classifier each unknown test sample is assigned to a class to which

majority of its K-nearest neighbors belong [108].

C. Multilayer Perceptron

Multilayer Perceptron (MLP) is the most popular supervised neural classifier for which

many learning paradigms have been developed and are capable of performing nonlinear
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mapping. In MLP networks there exists a nonlinear activation function. The hidden

layers along with the connected synaptic weights make the MLP network suitable for

such nonlinear mappings [123, 163]. Backpropagation is a general supervised method

for iteratively calculating the weights and biases of the MLP network [164].

D. Radial Basis Function Network

Radial Basis Function Network (RBFN) have gained considerable attention as

an alternate to multilayer perceptron (MLP) trained by the back propagation

algorithm [121]. The basis functions are embedded in a two layer neural network,

where each hidden unit implements a radial activated function. There are no weights

connected between the input layer and hidden layer. Finding the appropriate RBFN

weights is called network training and Least Mean Square (LMS) learning algorithm is

mostly used for the same.

E. Support Vector Machines

Vapnik [156] introduced Support Vector Machines (SVM) that has the capability to

distinguish two classes. SVM first uses a nonlinear mapping function for transforming

the input data from the observation space to a higher dimensional feature space, and

then creates a maximum margin hyper plane to separate the two given classes [165].

Nonlinear mapping functions transform the nonlinear separation problem in the input

plane into a linear separation problem in feature space facilitating easier classification

in the higher dimensional feature space.

F. Ensemble of Classifiers

Ensemble of classifiers or multiple classifier systems has been popular and drawing a

very significant attention of the researchers over the last few years [166–168]. Multiple

classifier systems are more preferable than their single classifier counterparts due to

several reasons and a few important among them are presented in Table 3.4.

There are many other scenarios where ensemble of classifiers have shown to produce

favorable results and the implementation details can be found in Kuncheva’s work [169].

Classifier diversity is a desirable property of all multiple classifier systems and is

achieved through several possible ways. Some of the possible ways, to achieve diversity

is by using different datasets, training parameters for the training of each individual
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Table 3.4: Reasons for using ensemble of classifiers.

Reason Description

Statistical Reduces the chance of poor selection.

Large Dataset Feasibility of training is less.

Limited Dataset Resampling techniques are very effective.

Divide and Conquer Complex decision boundary to be learned.

Data Fusion Useful with heterogeneous features.

member and by the combination of entirely different set of classifiers. It is always

needed to have a set of classifiers with adequately different decision boundaries and to

build an ensemble that is as diverse as possible. A suitable strategy is always needed to

be framed for combining the outputs of individual classifiers, and to build an ensemble

in such a way that the potential of correct decisions are amplified and incorrect ones

are ruled out [167].

Another key issue in combining classifiers is to frame suitable combination rules.

One such approach is combination rules that applies to class labels only, and is based on

classification decision output. Multiple classifier systems combine class labels obtained

from the individual ensemble members to predict the final class label. Specific predefined

rules have been framed and are used for the selection of final class label from the

individual class labels. Popular among them are majority voting, weighted majority

voting, behavior knowledge space and Borda count. The most powerful rule appears to

be majority voting rule and is used in this chapter. Figure 3.5 shows the block diagram

of a standard ensemble of classifiers for feature classification.

In general, enhanced recognition performance has often been observed through the

deployment of an ensemble of classifiers. Hence, such a multiple classifier system is

used here to differentiate a mature lymphocyte from a lymphoblast and to detect ALL

in PBS images. The following section presents a detailed description of the proposed

ensemble of classifier based approach for lymphocyte characterization.
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Figure 3.5: An ensemble of classifiers for feature classification.

3.5 Ensemble of Classifiers for Lymphocyte

Characterization

It is highly desirable to maintain a low error rate in all automated disease detection

system. However, it is difficult for a single classifier to achieve this for a complex

pattern recognition problem i.e. lymphoblast detection in PBS images. In an effort to

deal with such challenges, an ensemble of classifiers–based approach for the classification

of extracted lymphocyte features is investigated here. An ensemble based system, also

known as multiple classifier system, predicts by combining several, diverse classifiers.

Diversity may be achieved by using entirely different set of classifiers and also by using

a different training data set for each classifier [170]. The idea is that each ensemble

member will generate a different decision boundary and obtain a different error. A

suitable combination of classifiers will also reduce the total error. In order to promote

diversity, bagging [171] is used to train each ensemble member using a randomly drawn

subset of the training data. Majority voting is the most popular voting method. Here,

every classifier votes for one class label, and the final output class label of the ensemble

is the one that receives more than half of the votes.

In general there are two alternatives to build an ensemble of classifiers. Either

we have a single base classifier with variable architectures and parameter settings as

ensemble members or we have a collection of different independent classifiers as members

of the ensemble. In the first phase of our implementation, MLP is considered as the base
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classifier, and variable architectures of MLP obtained using different parameter settings

are considered to build the ensemble. However, during the second phase a combination of

classifiers with different topologies are considered for building the ensemble. In general,

the ensemble of 3 individual classifiers i.e. KNN, MLP, and SVM are found to perform

the best with the available data and will be referred to as EOC3 where the subscript

indicates the number of member classifiers. Therefore, only the experimental results

of the second phase of implementation of EOC3 is presented in Section 3.8. Figure 3.6

illustrates the architecture of our ensemble classifier considered here for final lymphocyte

characterization.

KNN

MLP

SVM

Independent

Classifiers

Feature Input

Class Label

Class Label

Class Label

Individual Class

Label

Majority

Voting

Final Class

Label

Figure 3.6: The proposed architecture of three member ensemble classifier for

lymphocyte characterization.

3.6 Validation

In view of the fact that the data set used in this study is small, k–fold stratified

cross validation [172] resampling technique is employed for the training and testing

of the classifiers for the extracted lymphocyte features. Considering the value of k

as 5 the whole data set is divided into five parts such that each class is represented

in approximately the same proportions as in the original data set. Four parts of the

data is used for classifier training (training set) and the rest one part is considered for

evaluation (testing set). This procedure is repeated for five times with each of the five

subsamples used exactly once as the validation data. Finally, the performance estimates

from the 5 folds are averaged to yield an overall estimate of the classifier performance.
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3.7 Performance Analysis

Performance evaluation is mandatory in all automated disease recognition system and is

conducted in this study to evaluate the ability of the above classifiers for the screening

of leukemia in PBS images. In practice, performance metrics i.e. accuracy, specificity,

and sensitivity are calculated from a confusion matrix as presented in Table 3.5 which

represents the differences in opinion between the hematopathologist and the classifier.

Table 3.5: Confusion matrix for classifier performance evaluation.

Classifier Output Hematopathologist Opinion

Positive (ALL) Negative (Normal)

Positive (ALL) TP FP

Negative (Normal) FN TN

In a binary classification problem, positive and negative are considered as identified

and rejected respectively. So in general TP , TN , FP , and FN can be defined as:

� TP (True Positive): Correctly identified

� TN (True Negative): Incorrectly identified

� FP (False Positive): Correctly rejected

� FN (False Negative): Incorrectly rejected

In this study, performance measure i.e. accuracy, specificity and sensitivity are

calculated to assess the diagnostic accuracy of the above classifiers and can be formulated

in terms of TP , TN , FP , and FN . The performance measures can be formulated as:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

Sensitivity =
TP

TP + FN
× 100%

Specificity =
TN

TN + FP
× 100%

As the validation procedure employed is 5–fold cross validation, the learning

procedure is executed a total of five times with different combinations of training and
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testing sets, and accuracy, specificity and sensitivity is recorded each time. Finally, the

average of all the five readings yields the overall estimate of each measure.

Moreover, the joint statistics of classifiers can be represented by Venn diagrams, and

is a procedure to visualize diversity among member classifiers. As the common belief

is that the more diverse the classifiers, the better the performance of the combining

system. Such diversity should result in different patterns of misclassification allowing

classifiers to compensate each other’s failures and result in improved performance of the

ensemble system. Error coincidence among classifiers is one such measure of diversity,

and can be represented by means of sets. In this approach the errors from a single

classifier are mapped into a corresponding set of indices of misclassified samples. If

more than one classifier misclassifies a particular sample then the index of this sample

becomes an element in the intersection of sets corresponding to misclassifying classifiers.

Using such a representation, all available information related to error coincidences can

be visualized as a complex architecture of overlapping sets resembling Venn Diagrams.

An example of such diagram for given outputs from 3 classifiers for 10 patterns of

first fold is presented here. Table 3.6 shows the binary output from three classifiers, and

Figure 3.7 demonstrates the visualization of set representation of coincident errors for 3

member ensemble classifiers. This figure gives the information regarding the existence

of diversity among KNN, MLP and SVM classifiers. Thus, it is decided to utilize these

classifiers to construct the three member ensmeble (EOC3) classifier for the classification

of lymphoblast and mature lymphoblast images in PBS images.

(a) (b)

Figure 3.7: (a.) Venn diagram showing all mutually exclusive subset. (b.) Venn diagram

with the indices of samples put in the appropriate subsets positions.
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Table 3.6: Binary output from three classifiers (1–correct and 0–error).

# C1 C2 C3

1 0 0 0

2 1 0 1

3 1 1 0

4 1 0 0

5 0 1 0

6 1 1 0

7 0 0 1

8 0 1 1

9 1 0 1

10 0 0 1

3.8 Simulation Results

The proposed scheme is implemented using Matlab 7.8 and experimental simulation

is performed using an Intel Core i5 3.20GHz PC, along with 2 GB RAM running

on Windows 7 professional operating system. As per previous discussion it is well

understood that ALL is detected on the basis of the presence or absence of immature

lymphocytes or lymphoblasts in PBS samples. Therefore, lymphocytes in PBS samples

must be characterized as malignant or normal based on certain fixed pathological

criteria defined for the screening of ALL. In this regard, an automated system has

been developed, and experiments are conducted using the above configuration and the

results are presented in this section.

As per experiments it is observed that the standard segmentation approaches

failed to delineate the cytoplasm–nucleus boundary accurately due to overlapping of

regions. Hence there is a necessity to develop segmentation methods specifically for

lymphocyte images. Accordingly, four schemes are developed in Chapter 2 specifically

for cytoplasm and nucleus region extraction in lymphocyte images. Even though

the performances of all the four schemes are found to be equally good, MRF model

based segmentation scheme is used here. In this scheme the segmentation process has

been made computationally faster with the implementation of memory based simulated

annealing (MBSA) algorithm. Experiments are conducted on the available lymphocyte
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images to demonstrate the efficacy of the image segmentation scheme and are presented

in Section 2.5 of Chapter 2. Significant differences in terms of nucleus chromatin

distribution are observed between normal and malignant alterations. Such anomalies in

nucleus chromatin distribution reflect the organization of the DNA and can be described

in terms of texture for the classification of normal and malignant lymphocyte samples.

After segmentation, nucleus and cytoplasmic features of normal and malignant

lymphocytes are extracted and are summarized into mean, standard deviation and are

tabulated in Table 3.7, 3.8, 3.9, and 3.10. Further, independent sample t– test suggests

that 32 features are statistically significant and are capable enough to discriminate

lymphocyte samples into two classes like malignant and normal. A plot between feature

index and p–value is depicted in Figure 3.8, which indicates significance of the features

to discriminate between two groups.

Table 3.7: Morphological features extracted from nucleus, cytoplasm of normal and

malignant lymphocytes.

Feature Features Malignant Normal

Index µ± σ µ± σ

1 Nucleus area* 8.30e+03±1.03e+03 7.31e+03± 1.27e+03

2 Cytoplasm area* 1.43e+03± 5.3721e+05 2.465e+03±0.71e+03

3 Nucleus–Cytoplasm ratio* 6.16 ± 2.93 3.34± 1.57

4 Cell size* 9.08e+03±1.60e+03 8.44e+03±0.43e+03

5 Nucleus perimeter* 308.29±703.74 300.60± 602.65

6 Nucleus Form factor* 0.81±0.06 0.86±0.04

7 Nucleus Roundedness* 0.85±0.07 0.87±0.04

8 LD ratio 1.16±0.10 1.16±0.14

9 Nucleus Compactness 0.92±0.04 0.93±0.05

10 HD (Nucleus)* 1.21±0.03 1.19±0.02

11 Nucleus CI (Variance)* 1.59e-2±1.55e-2 1.50e-2±1.66e-2

12 Nucleus CI (Skewness)* 0.45±0.37 0.39±0.24

13 Nucleus CI (Kurtosis)* 2.41±0.83 2.27±0.54

14 HD (Cytoplasm)* 1.20±0.03 1.21±0.03

15 Cytoplasm CI (Variance)* 1.35e-2±1.83e-2 0.67e-2±1.21e-2

16 Cytoplasm CI (Skewness)* 0.35±0.33 0.41±0.44

17 Cytoplasm CI (Kurtosis)* 2.31±1.31 2.64±1.94
∗ Significant based on t test.

Further, it can be observed from Table 3.7, 3.8, 3.9, and 3.10 that most of the

features are increasing steadily from normal to malignant. The nucleus–cytoplasm (N:C)
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Table 3.8: Texture and color features extracted from nucleus of normal and malignant

lymphocytes.

Feature Features Malignant Normal

Index µ± σ µ± σ

18 Fourier coefficient (Mean)* 2.79e+07±1.19e+07 6.41e+07±4.85e+07

19 Fourier coefficient (Variance)* 2.16e+39± 4.2040e+39 45.75e+39±46.95e+39

20 Fourier coefficient (Skewness) 2.53±0.41 2.67±0.33

21 Fourier coefficient (Kurtosis) 20.89±4.57 21.85± 18.79

22 Average of Haar A coefficient* 152.99±63.11 173.11±34.95

23 Average of Haar H coefficient 7.38±1.95 7.58±1.59

24 Average of Haar V coefficient* 7.51±2.08 7.89±1.49

25 Variance of Haar A coefficient* 1.46e+03±1.07e+03 1.34e+03±0.50e+03

26 Variance of Haar H coefficient 0.23e+03±0.16e+03 0.23e+03±0.09e+03

27 Variance of Haar V coefficient* 0.25e+03±0.18e+03 0.24e+03±0.08e+03

28 Contrast 0.23±0.15 0.22±0.07

29 Correlation* 0.91±0.02 0.93±0.02

30 Energy* 0.37±0.08 0.39±0.06

31 Homogeneity 0.95±0.02 0.95±0.01

32 Entropy 6.01±0.46 6.04±0.33

∗ Significant based on t test.

Table 3.9: Color features extracted from nucleus region of normal and malignant

lymphocytes.

Feature Features Malignant Normal

Index µ± σ µ± σ

33 Average of red component* 113.84±25.65 125.72±20.67

34 Average of green component* 27.54±9.31 58.66±17.37

35 Average of blue component* 133.45±27.46 138.81±19.63

36 Average of hue component 0.80± 0.02 0.81± 0.03

37 Average of saturation component* 0.79± 0.10 0.59±0.07

38 Average of value component* 0.53± 0.10 0.56 ±0.07

ratio of the lymphoblast is twice as large as that of mature lymphocytes. The hike in

this ratio is due to increased nucleus area and reduced cytoplasm, and is a typical

characteristic of malignant cells caused due to increased metabolic rate. Abnormal
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Table 3.10: Color features extracted from cytoplasm region of normal and malignant

lymphocytes.

Feature Features Malignant Normal

Index µ± σ µ± σ

39 Average of red component* 155.75±31.66 166.81±22.97

40 Average of green component* 146.95±30.65 164.55±19.20

41 Average of blue component* 174.29±35.97 203.41±29.62

42 Average of hue component 0.63±0.12 0.63±0.07

43 Average of saturation component 0.22±0.08 0.23±0.07

44 Average of value component* 0.70±0.13 0.80±0.11
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Figure 3.8: Plot between feature index and p–value for showing feature significance.

nuclear shape in lymphoblast may be because of genetic instability which can be inferred

from the differences in form factor and roundness measure of cells. Difference in nucleus

chromatin distribution provides important diagnostic and prognostic information and

can be observed from wavelet texture measure. Due to accumulation of ribosomal

and messenger RNA the cytoplasm of lymphoblasts appears to be basophilic. Thus,

the mean color intensity of cytoplasm appears to be light blue. Analysis of measured

feature values shows that the lymphocyte image samples are separable and a suitable

classifier with high accuracy may be used for this purpose.

In this regard, an ensemble classifier based scheme has been developed for the
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classification of mature lymphocyte and lymphoblast in PBS images. Further, to have

a fair evaluation of the proposed screening system, k–fold cross validation is followed

for training/testing data partitioning. Average classification performance in terms of

accuracy, sensitivity and specificity of standard classifiers such as NBC, KNN, MLP,

RBFN, and SVM are also evaluated along with the proposed EOC3 for 32 features

and the comparative results are presented in Table 3.11, Table 3.12 and Table 3.13

respectively. It can be observed that the best overall accuracy of 94.73% is achieved

with the proposed ensemble classifier structure for the available PBS image samples with

5–fold cross validation. The corresponding sensitivity and specificity are calculated as

94.93% and 95.00% respectively. In EOC3, we have observed that both accuracy and

sensitivity are more than 90% in all 5–folds consistently, and the average of all folds

are found to be higher than that of SVM. The corresponding specificity of EOC3 is also

significantly higher than that of standard classifiers except SVM. The performance of

SVMs are better than other single classifiers as they map the data points with a kernel

function to a higher dimensional feature plane, and then accomplish the classification

task in the Reproducing Kernel Hilbert Space (RKHS). The possible reasoning behind

superior performance of EOC3 is the use of diverse classifiers in building the ensemble.

The errors made by these classifiers are uncorrelated, hence the probability of overall

ensemble error is reduced. The computational time (in seconds) which includes both

training and testing phases are recorded for all the above classifiers and are tabulated in

Table 3.14. The average computation time for EOC3 is found to be marginally higher

than that of NBC, KNN, MLP, and SVM. Overall increase in computational time in

EOC3 than individual ensemble members is due to the calculation of final label using

majority voting principle.

Table 3.11: Classification accuracy of EOC3 along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Average Accuracy

NBC 85.71 83.33 78.57 71.43 85.71 80.95

KNN 69.05 83.33 73.80 85.71 80.95 78.57

MLP 83.33 88.10 80.95 85.71 54.76 78.57

RBFN 80.95 90.48 76.19 66.67 80.95 79.05

SVM 92.86 95.24 95.23 85.71 88.10 91.43

EOC3 96.87 93.75 92.45 93.75 96.88 94.73
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Table 3.12: Sensitivity of EOC3 along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Average Sensitivity

NBC 54.54 100.00 83.33 47.06 62.50 69.49

KNN 69.23 90.91 91.67 76.92 69.23 79.59

MLP 84.62 100.00 83.33 61.54 100.00 85.90

RBFN 76.92 100.00 83.33 61.54 53.85 64.12

SVM 76.92 100.00 83.33 53.85 61.54 75.13

EOC3 96.30 95.83 94.59 92.31 95.65 94.93

Table 3.13: Specificity of EOC3 along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Average Specificity

NBC 96.77 80.55 76.67 88.00 100.00 88.40

KNN 68.97 80.65 66.67 89.66 86.21 78.43

MLP 82.76 83.87 80.00 96.55 34.48 75.53

RBFN 82.76 87.10 73.33 68.97 93.10 81.05

SVM 100.00 93.54 100.00 100.00 100.00 98.70

EOC3 100.00 87.50 87.50 100.00 100.00 95.00

From the above results it is inferred that EOC3 obtains promising results in

recognizing lymphoblasts from peripheral blood microscopic images. However, we agree

with the fact that much more research is necessary to completely fulfill the real clinical

demand. Nevertheless, the results achieved demonstrate the potential of adopting a

computer aided approach for assisting hematopathologists in their final decision on

suspected ALL patients. Additionally, the proposed system can support initial screening

of ALL patients in remote and rural parts of the country.

3.9 Summary

Early screening of ALL is essential in suspected patients and can decisively modulate the

treatment plan for them. Human evaluation of PBS samples is always time–consuming,

subjective, and inconsistent while computer aided detection of ALL from images requires

specific image processing and pattern recognition tools for precise screening.
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Table 3.14: Computational time of different classifiers for lymphocyte characterization.

Classifier Time (sec)

NBC 0.93

KNN 1.03

MLP 3.04

RBFN 13.31

SVM 0.36

EOC3 5.80

In this chapter, a new image processing based system has been proposed that

improves the screening accuracy of ALL in comparison to human microscopic evaluation

of PBS. Initially MRF based segmentation approach is followed to segment each

lymphocyte subimage into its individual nucleus and cytoplasm regions. During feature

extraction, 44 features are extracted from segmented nucleus and cytoplasm of each

lymphocyte subimages according to the malignant cell characteristics as suggested by

the hematopathologist. Using t–test 32 statistically significant features are selected

from the entire set of 44 features. These features which includes both shape and texture

features are used to classify the lymphocyte samples as benign or malignant.

Using quantitative microscopy for the development of an automated ALL detection

system from lymphocyte image samples is the main theme of the chapter. Encouraging

detection accuracy (94.73%) is observed with the proposed multiple classifier system

in contrast to standard classifiers for PBS samples. Average sensitivity and average

specificity of greater than 90% is also recorded for the available images. Even though

the proposed classifier is computationally slower, the average classification accuracy rate

is much higher as required for an automated ALL screening system.
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Chapter 4

Automated FAB Classification of

Lymphoblast Subtypes

Due to advancement in treatment modalities, it has always been necessary to subtype

the leukemia to assess the prognosis and for specific selection of chemotherapy. The

most widely used protocols for ALL sub categorization are based on the nomenclature

proposed by French–American–British (FAB) cooperative classification system and

World Health Organization (WHO) [113]. FAB classification of lymphoblasts or

ALL is based on morphology and cytochemical staining and can be L1, L2, or L3

subtypes. Whereas, according to WHO, ALL subtypes is based on whether the

precursor cell is a T or B lymphocyte. WHO classification is more recognized than

FAB system as it incorporates morphologic, genetic, and immunophenotypic features for

leukemia subtyping and has better significance to therapeutic or prognostic implications.

However, WHO classification requires additional evaluation of blasts by flow cytometric

immunophenotyping, cytogenetic study and molecular analysis. But in developing

countries like India it is unfeasible to screen leukemia patients using such advanced

techniques at most of the health institutions due to high cost and/or device availability.

Therefore, regardless of advanced techniques, microscopic examination of peripheral

blood samples (PBS) is still a standard procedure for initial screening and subtyping of

ALL.

In routine clinical practice hematopathologists have been using light microscope

for the examination of stained blood samples for a long time, relying on their

pathological expertise. This includes distinguishing mature lymphocytes (normal) from

immature lymphocytes (lymphoblast), and identifying subtypes of lymphoblasts using
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FAB classification. Nevertheless, human visual interpretations are often subjected

to variability in reported diagnosis and may occur due to improper staining and

intra- and inter-observer variability. Other modalities such as flow cytometric

immunophenotyping, cytogenetics, and molecular probing are limited by cost or device

availability for remote places. Moreover due to acute shortage of hematopathologists in

government hospitals, especially in rural areas account for late diagnosis and in some

cases leads to death. Therefore, there is an immediate need for an additional mechanism

that could provide pathologists with a valuable alternative opinion regarding the nature

of the lymphocyte considered. In this chapter, a computer–aided system based on image

processing and machine learning has been introduced for automated FAB classification

of ALL in Lieshman [111] stained PBS images.

Use of quantitative microscopy for automated detection and classification for specific

pathologies has been introduced in recent years to facilitate medical practitioners

in accurate diagnosis of these pathologies [65, 173–175]. Mostly all computer–aided

diagnosis (CAD) techniques rely heavily on image processing and machine learning

methods to classify acquired images into benign and malignant classes, and the

malignant classes into subtypes. For achieving these objectives significant features are

extracted from the segmented cell or tissue images and are fed to the classifiers. Image

processing based automated techniques can prove to be excellent diagnostic supplement

for manual examination of blood slides in terms of their speed, precision, reliability, and

cost. Although extensive research have been carried out to implement quantitative

microscopy on histopathological images, studies on the automatic evaluation of

hematological images is limited. Most of these studies, among them have been primarily

concerned on leukocyte or white blood cell (WBC) image segmentation [67,68,80,109].

There are also few studies that have been conducted for the classification of leukemia

blasts [100, 102, 105, 106]. Such studies have been thoroughly reviewed in Section 1.7,

and are some of the existing methods that suggest processes for subtyping of ALL.

However, the accurate FAB classification of ALL in peripheral blood smear images

is still an open problem to be dealt with. In addition, research shows that the

use of appropriate segmentation schemes, proper discriminating features along with

a suitable classifier in quantitative microscopy can improve the diagnostic accuracy.

Accordingly, to improve some of the problems associated with the previous studies, this

chapter presents one such robust and cost effective method for the FAB classification of

lymphoblast (malignant lymphocyte) images into L1, L2, or L3 subtypes. Discrimination
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of lymphoblast (immature lymphocyte) from healthy mature lymphocyte is a must for

complete automation and must be performed accurately prior to FAB classification.

Thus, prior to this, in the previous chapter, the problem of lymphocyte characterization

or lymphoblast detection in PBS images is considered. In this chapter, the problem of

FAB classification of lymphoblasts have been addressed assuming lymphoblast images

as input to the automated system. The KISCM clustering based lymphoblast image

segmentation presented in Chapter 2 is used in this work, and then feature extraction

is performed by color and texture measures for discrimination using ensemble classifier.

Significance of each extracted individual feature is evaluated using statistical analysis.

The significant features of each lymphoblast image are fed to the ensemble classifier,

to classify the data patterns into one of the predefined classes, viz. L1, L2, and L3.

The individual members of the ensemble classifier considered here for FAB classification

is different to that used in the previous chapter. The ensemble of classifiers with the

additional two set of individual classifiers will be hereafter referred to as EOC5 to avoid

confusion with EOC3 of Chapter 3 with three individual member classifiers.

The outline of the chapter is as follows. Section 4.1 describes the process

of microscopic image acquisition and the method followed for lymphoblast image

segmentation. Detailed analysis of the applied feature extraction techniques for

lymphoblast images are presented in Section 4.2. In Section 4.4, use of the proposed

five member ensemble of classifiers for automated FAB classification of lymphoblasts is

presented. Simulation results are discussed in Section 4.6. Finally, a summary of the

chapter is presented in Section 4.7.

4.1 Materials and Methods

This section describes the details about the study subject selection, image dataset

creation and segmentation of lymphocyte images. The block diagram of the proposed

methodology for computer aided FAB classification of ALL samples is presented in

Figure 4.1.

4.1.1 Histology

Image data for this study consisted of peripheral blood samples on standard glass

microscope slides collected from 63 ALL patients. The blood samples are collected

from patients in the age range of 2 − 70 years, and which includes both the genders.
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Figure 4.1: Block diagram of the automated ALL FAB classification system.

Subjected to microscopic evaluation of PBS samples by a panel of experts all these 63

patients are categorized into three classes (L1, L2, or L3). Among the participants, 30

are detected with L1 blasts, while 20 revealed L2 and the remaining 13 patients are

identified with L3 samples.

The total number of images considered for this study includes 120, 92, and 45

lymphoblast sub images of L1, L2, and L3 sub types respectively and are obtained

by the image acquisition and subimaging process as described earlier. Representative

subimages of different morphological types of lymphoblasts i.e. L1, L2, and L3 are

depicted in Figure 4.2.

(a) L1 (b) L2 (c) L3

Figure 4.2: Different subtypes of lymphoblasts.
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4.1.2 Lymphoblast Image Segmentation

This essential step before feature extraction mainly deals with the process to extract

the individual morphological regions of each lymphoblast image. A novel segmentation

approach i.e. KISCM is introduced in Chapter 2 and has been used here for lymphoblast

image segmentation. This kernelized version of Shadowed C–Means algorithm uses a

Gaussian kernel, and each lymphoblast image is partitioned into cytoplasm, nucleus,

and background region. To visualize the subjective performance segmented outputs for

all the three types of lymphoblasts i.e. L1, L2, and L3 using the proposed KISCM

algorithm is presented in Figure 4.3 respectively.

Original Cytoplasm Nucleus

L1

L2

L3

Figure 4.3: Segmentation results for different types of lymphoblasts (L1, L2, and L3)

using KISCM clustering algorithm.
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4.2 Lymphoblast Feature Extraction

Subtype classification of ALL is essential as it provides important information

regarding prognosis, and for suitable treatment planning. Standard criteria for ALL

subclassification of the blast cells are based on cellular morphology, cytochemistry,

immunophenotyping, molecular genetics, and cytogenetics. However, morphology is the

basis of FAB classification, and classify the blast cells into L1, L2, and L3 subtypes. The

current FAB criteria for the subtyping of lymphoblasts in blood samples are summarized

in Table 4.1 and is followed by most of the hematologists across the globe during visual

examination of blood samples [22].

Table 4.1: Morphological characteristics of FAB subtypes of ALL

FAB type

Feature L1 L2 L3

Cell Size Small

Large,

heterogeneous

cell population

Large, homogeneous

cell population

N:C Ratio High Variable Lower than in L1

Nucleoli Count Indistinct Present Prominent

Nucleus Shape Regular Irregular Oval or round

Nucleus Indentation Occasional Common Absent

Nuclear Chromatin Condensed Dispersed Finely stippled

Amount of Cytoplasm Scanty
Moderately

abundant
Abundant

Cytoplasmic Vacuoles Absent Variable Prominent

Cytoplasmic Basophilia Slight Variable Deep blue

It can be observed from Table 4.1 that the classification of lymphoblasts into L1, L2,

and L3 subtypes is based on the following two broad characteristics i.e. Nuclear changes

(variation in size and shape, difference in chromatin organization, indentation) and

cytoplasmic differences (presence of vacuoles and basophilia). Therefore, to facilitate

computer processing and image analysis, 38 features based on the FAB properties are

extracted from the segmented lymphoblast images for classification. All these features

can belong to one of the three feature measurement groups i.e. nucleus, cytoplasm, or

cellular, and are tabulated in Table 4.2.

The details of most of the above feature extraction methods have already been made
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Table 4.2: Lymphoblast Features

Features

Nucleus Cytoplasm Cellular

Area (FE1) Area (FE2) Area (FE3)

Perimeter Vacoule count (FE32) N:C ratio (FE4)

Form factor (FE5) Color (FE33–FE38)

Roundness (FE6)

L:D ratio (FE7)

Compactness (FE8)

Nucleus Indentation (FE9)

Nucleoli count (FE10)

Fourier descriptor (FE11–FE14)

Wavelet coefficients (FE15–FE20)

Haralick coefficients (FE21–FE25)

Color (FE26–FE31)

in Section 3.2 of Chapter 3. However, descriptions about the additional features which

are specifically used for lymphoblast subtyping are presented below.

1. Nucleus Indentation (FE9): Pronounced nucleus indentation or cleft as shown

in Figure 4.4 is a quite common characteristic in L2 blasts. Here, a novel

computational method has been introduced for counting the number of clefts in

each nucleus image. The proposed methodology interprets the nucleus boundary

Figure 4.4: Nucleus indentation in L2 lymphoblasts.

as a parametric curve and computes the curvature at each boundary point. The

complete algorithm for indentation counting in nucleus images is presented below.
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Indentation Counting Algorithm

a. Let Nbin represent a binary version of the lymphoblast nucleus image.

b. Obtain the sequence of pixel coordinates that represent nucleus boundary

from Nbin image.

c. Using fast Fourier transform (FFT) convert the obtained boundary points

into a trigonometric polynomial, and compute the curvature at each point

along the nucleus boundary.

d. Identify the pixel locations where the curvature value approaches very near

to zero and consider them as inflection points.

e. Consider a gap of more than one point where the curvature is near zero and

identify two inflection points for each cleft (one where the contour enters the

cleft, and one where it leaves it).

2. Nucleoli Count (FE10): Presence of nucleoli in nucleus is detected and counted by

analyzing the color and shape information of the holes present in the segmented

nucleus images.

3. Cytoplasmic vacuoles (FE32): Detection of cytoplasmic vacuoles is performed by

analyzing the color and shape information of the holes present in the segmented

cytoplasm images.

4. Cytoplasmic basophilia: Degree of cytoplasmic basophilia varies in ALL subtypes,

and can be quantified in terms of mean color intensity of individual red, green,

blue, hue, saturation, and lightness component of the segmented cytoplasm image

for accurate classification of lymphoblasts. Cytoplasmic color information can

also be quantified as a set of six color features i.e. µCR (FE33), µCG (FE34), µCB

(FE35), µCH (FE36), µCS (FE37), and µCV (FE38).

The extraction process for nucleoli and cytoplasmic vacuoles is found to be difficult

in few cases, and the segmentation is performed twice in such scenarios before counting

the holes in the segmented nucleus and cytoplasm images. Additionally, as per expert

observation it is noticed that in few lymphoblast samples the cytoplasmic vacuoles

overlap the nucleus region and can be confused as nucleoli. However, analysis of several

lymphoblast images containing vacuoles revealed that they are uncolored and appear

as completely round in shape with a rigid boundary in comparison to colored and loose
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shape of the nucleoli. In this work, these properties are considered during the detection

of nucleoli and vacuoles. Moreover, it should also be remembered that the above

features may not be distinct for the classification of blasts individually. Accordingly,

an amalgamation of all the features is adapted here for the final classification of a

blast sample which is also followed by expert hematopathologists. In this regard, a

combination of morphological, textural and color features are generated consisting of a

total of 38 features. Out of these features 11, 15, and 12 are of shape or size, texture and

color features respectively. These features will facilitate in the automated subtyping of

lymphoblasts and can assist clinicians in early subtyping of ALL blasts.

Classification performance is often biased if the features used are not properly scaled.

Hence, each individual features are normalized by the method presented in Section 3.3

of Chapter 3, and will have a mean of zero and a standard deviation of one.

4.3 Feature Selection

Prior to classification, often it is required to verify the discriminative power amongst the

extracted features in order to improve the classifier decision. In view of this, one way

ANOVA [176], an established statistical test is considered here for comparing more than

two means, i.e. to determine, whether the groups are actually different in the measured

characteristic. Additionally, testing the discriminatory capability of individual features

based on one way ANOVA results with a p–value, where a lower p–value indicates

that the groups are well separated. In practice, p–value less than 0.05 are considered

clinically significant [175]. In this work, out of entire 38 measured features, 31 features

are found to be significant with p–value < 0.05, and are considered for participation in

the classification process.

4.4 Ensemble of Classifiers for FAB Subtyping

In this chapter, the diagnostic problem is designed based on lymphoblast image features

for FAB subtyping of ALL blasts, which is a three–class pattern classification problem.

After test of significance, the extracted features are fed to an ensemble of classifiers

referred to as EOC5. For the present data, an ensemble of five classifiers i.e. NBC,

KNN, MLP, RBFN, and SVM is found to perform the best to classify each lymphoblast

subimage as L1, L2, or L3 classes. The architecture of the proposed EOC5 with five
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classifiers is shown in Figure 4.5. Additionally, the performance of lymphoblast FAB

classification has also been evaluated using the component classifiers (NBC, KNN, MLP,

RBFN, and SVM) as independent supervised classifiers. Moreover, considering the small

size of data set used in this work three fold cross validation resampling technique is

employed here to test the classifier performance with the 31 extracted features.

NBC

KNN

MLP

RBFN

SVM

Independent

Classifiers

Feature Input

Class Label

Class Label

Class Label

Class Label

Class Label

Individual Class

Label

Majority

Voting

Final Class

Label

Figure 4.5: Proposed five member ensemble classifier (EOC5) architecture for FAB

classification of lymphoblasts.

4.5 Performance Analysis

Performance evaluation is mandatory in all automated disease classification system and

is conducted in this study to evaluate the ability of the above classifiers for ALL

subtyping in blood images. As the validation procedure employed is 3–fold cross

validation, therefore the whole data set is divided into three parts such that each class

is represented in approximately the same proportions as in the original data set. Two

parts of the data is used for classifier training (training set) and the rest one part is

considered for evaluation (testing set). This procedure is repeated for three times with

each of the three subsamples used exactly once as the validation data. The performance

metrics are recorded each time and then averaged. Finally, the average test performance

is declared as the estimate of the true performance. Several metrics are available for

evaluating classifier performance. However, for binary classification standard measures
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of quality of classification are built from a confusion matrix which records correct and

incorrect classification, such as the true positive (TP ), false positive (FP ), false negative

(FN) and the true negative (TN) as described in Section 3.7 of Chapter 3. In order to

extend the usage of the confusion matrix in a three class problem i.e. ALL subtyping,

we follow the one versus rest approach. In this approach, we consider a particular class

as positive and the rest two as negative and calculate the sensitivity and specificity

index. Therefore in this work we calculate the sensitivity and specificity index for three

classes separately from the confusion matrix.

4.6 Simulation Results

ALL is detected on the basis of the percentage of presence or absence of lymphoblast

cells in peripheral blood samples. Once diagnosed, ALL patient’s are treated based

on the nature of the lymphoblasts present in the patients blood. According to FAB

classification of ALL, lymphoblasts can be classified into L1, L2, or L3 subtypes based

on cellular morphology. In this regard, an automated model has been developed for

the FAB classification of ALL in PBS images and experiments are conducted and the

results are presented in this section.

In this analysis, 120, 92, and 45 sub images of L1, L2, and L3 lymphoblast sub types

are considered respectively. Image segmentation is performed on these lymphoblast

images using the Kernel Induced Shadowed C–Means (KISCM) algorithm as explained

in Section 2.3.4 of Chapter 2. The nucleus and cytoplasm region extraction results

for all the three subtypes of lymphoblast images using KISCM algorithm is shown in

Figure 4.3. Segmented nucleus in Figure 4.3 depicts different chromatin organization

among lymphoblast subtypes. Moreover, differences in terms of cytoplasmic irregularity

can also be noticed and is mainly due to the malignant hematopoiesis process [31].

After segmentation, features are extracted from the segmented cytoplasm and

nucleus images of the lymphoblasts of all three types. The features of L1, L2, and

L3 subtypes are summarized into mean and standard deviation, and are tabulated in

Table 4.3, 4.4, 4.5, and 4.6 respectively.

Use of One way ANOVA suggests 31 features to be statistically significant, and

are capable enough to classify lymphoblast samples into L1, L2, or L3 samples. A plot

between feature index and p–value is depicted in Figure 4.6, which indicates significance

of the features to discriminate between the groups. Features with p–value less than 0.05
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Table 4.3: Morphological features extracted from nucleus, cytoplasm images of L1, L2,

and L3 lymphoblast subtypes.

Feature Features L1 L2 L3

Index µ± σ µ± σ µ± σ

1 Nucleus area* 0.69±0.13 0.86±0.11 0.74±0.15

2 Cytoplasm area* 0.45±0.15 0.67±0.20 0.63±0.17

3 Cell size* 0.72±0.12 0.83±0.12 0.76±0.16

4 N:C ratio* 0.63±0.18 0.59±0.16 0.71±0.15

5 Nucleus form factor* 0.87±0.02 0.79±0.04 0.74± 0.09

6 Nucleus roundedness* 0.86±0.07 0.79±0.06 0.82±0.09

7 LD ratio* 0.81±0.07 0.79±0.07 0.86±0.09

8 Nucleus compactness* 0.93±0.04 0.87±0.03 0.91±0.05

9 Nucleus indentation* 0.40±0.26 0.52±0.06 0.00±0.00

10 Nucleoli count* 0.13±0.35 0.33±0.49 0.47±0.30
∗ Significant based on ANOVA.

Table 4.4: Texture features extracted from nucleus images of L1, L2, and L3 lymphoblast

subtypes.

Feature Features L1 L2 L3

Index µ± σ µ± σ µ± σ

11 Fourier coefficient (Mean)* 0.39±0.32 0.37±0.27 0.50±0.20

12 Fourier coefficient (Variance)* 0.12±0.25 0.12±0.29 0.09±0.25

13 Fourier coefficient (Skewness)* 0.37±0.76 0.50±0.68 0.79±0.13

14 Fourier coefficient (Kurtosis) 0.73±0.16 0.58±0.17 0.73±0.17

15 Average of Haar A coefficient* 0.44±0.18 0.64±0.18 0.84±0.11

16 Average of Haar H coefficient* 0.77±0.14 0.88±0.01 0.85±0.01

17 Average of Haar V coefficient 0.47±0.16 0.47±0.13 0.41±0.11

18 Variance of Haar A coefficient* 0.24±0.20 0.39±0.23 0.65±0.21

19 Variance of Haar H coefficient* 0.14±0.14 0.41±0.25 0.46±0.20

20 Variance of Haar V coefficient 0.17±0.15 0.44±0.24 0.54±0.19

21 Contrast* 0.18±0.15 0.43±0.22 0.71±0.18

22 Correlation* 0.91±0.06 0.93±0.02 0.88±0.06

23 Energy 0.40±0.11 0.42±0.07 0.42±0.09

24 Homogeneity* 0.96±0.02 0.96±0.01 0.94±0.01

25 Entropy* 0.83±0.08 0.86±0.05 0.93±0.06

∗ Significant based on ANOVA.
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Table 4.5: Color features extracted from nucleus images of L1, L2, and L3 lymphoblast

subtypes.

Feature Features L1 L2 L3

Index µ± σ µ± σ µ± σ

26 Average of red component* 0.54±0.21 0.69±0.18 0.81±0.22

27 Average of green component* 0.35±0.22 0.62±0.17 0.74±0.22

28 Average of blue component* 0.62±0.22 0.63±0.21 0.82±0.21

29 Average of hue component * 0.77± 0.14 0.85±0.03 0.77± 0.19

30 Average of saturation component* 0.58± 0.21 0.50±0.05 0.53±0.13

31 Average of value component 0.47± 0.16 0.47±0.13 0.41 ±0.11

32 Cytoplasmic vacuole count* 0.00± 0.00 0.00±0.00 0.66±0.0.05

∗ Significant based on ANOVA.

Table 4.6: Color features extracted from cytoplasm images of L1, L2, and L3,

lymphoblast subtypes.

Feature Features L1 L2 L3

Index µ± σ µ± σ µ± σ

33 Average of red component* 0.68±0.11 0.80±0.13 0.85±0.09

34 Average of green component 0.65±0.12 0.73±0.14 0.80±0.11

35 Average of blue component* 0.75±0.16 0.75±0.15 0.84±0.09

36 Average of hue component * 0.62±0.14 0.79±0.05 0.75±0.08

37 Average of saturation component 0.23±0.09 0.21±0.06 0.15±0.03

38 Average of value component* 0.70±0.12 0.67±0.12 0.68±0.07

∗ Significant based on ANOVA.

can be used to discriminate the three classes with higher accuracy, hence considered

for classification. Analysis of measured feature values reveals that lymphoblast cells are

separable and a suitable classifier with high accuracy must be used for this purpose.

In our experiments, three fold cross validation technique is employed for the training

and testing of the classifiers with the extracted features. That is, the whole data set

is divided into 3 mutually exclusive subsets. Each subset contains data patterns in

approximately the same proportions as in the original data set. Two parts of the data

is used for classifier training (training set) and the remaining one part (testing set) is

considered for classifier evaluation. This procedure is repeated a total of three times

with different part for testing in each case. Finally, the three performance estimates of
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Figure 4.6: Plot between feature index and p–value for showing feature significance.

the folds are averaged to yield the true performance.

Initially, five standard supervised classifiers i.e. NBC, KNN, MLP, RBFN, and SVM

along with the proposed EOC5 are applied to evaluate the model using 31 features. The

comparative classification accuracy of all these six classifiers over 3–fold is explicitly

shown in Table 4.7. It can be observed that the improved accuracy of 97.37% is

achieved with the proposed five member ensemble classifier (EOC5). The corresponding

sensitivity and specificity for each lymphoblast class are calculated using one vs. others

approach. Average sensitivity and specificity for SVM and the proposed EOC5 is

presented in Table 4.8 for performance comparison. Sensitivity and specificity of greater

than 96% is obtained using the five member ensemble classifier for all the three classes.

The corresponding sensitivity and specificity of the proposed EOC5 are found to be

higher than that of SVM. As expected, SVM is among the best single classifier model

studied here and is due to the use of kernel methods. It is indicated here that use of

diversified classifiers in EOC5 results with uncorrelated individual classifier error. So the

overall probability of correct classification in the EOC5 is increased. The computational

time required for both training and testing for all the above classifiers are recorded, and

are shown in Table 4.9. It is observed that the proposed scheme is marginally slower in

terms of computation time than that of standard individual classifiers. This marginal

increase in computation time is due to use of computationally intensve RBFN as a

member of the ensemble. Albeit the proposed model is little slower, it outperforms the
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other individual standard classifiers in terms of average classification accuracy. Hence,

the proposed system can assist clinicians in early subtyping of ALL patients based on

the PBS image samples.

Table 4.7: Classification accuracy of EOC5 along with standard classifiers over 3–fold.

Fold

Classifier 1 2 3 Average Accuracy

NBC 83.42 82.37 81.84 82.54

KNN 90.00 89.53 88.26 89.26

MLP 73.53 77.16 75.53 75.40

RBFN 86.63 87.32 86.68 86.88

SVM 92.11 89.47 97.37 92.98

EOC5 97.37 100.00 94.74 97.37

Table 4.8: Average sensitivity and specificity among SVM and the proposed EOC5.

L1 L2 L3

Classifier Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

SVM 95.94 87.89 81.76 95.66 91.67 100.00

EOC5 96.57 100.00 100.00 97.02 100.00 100.00

4.7 Summary

Categorization of ALL is essential to assess the prognosis and can decisively modulate

the treatment plan of suspected leukemia patients. In conventional diagnosis,

pathologist visually characterizes lymphoblasts present in the PBS samples under

light microscope. Such an evaluation process is often slow, subjective in nature

and error prone. In this study, a quantitative methodology has been proposed for

the FAB classification of lymphoblasts in PBS images. A kernel space shadowed

clustering algorithm has been applied for the segmentation of lymphoblast images into

its individual nucleus and cytoplasm regions. During feature extraction, 38 features

are extracted from segmented nucleus and cytoplasm of each lymphoblast subimages

according to the blast cell characteristics as suggested by the hematopathologist. Using

One way ANOVA 31 statistically significant features are selected from the entire set
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Table 4.9: Computation time consumed for FAB classification of lymphoblast images.

Classifier Time (sec)

NBC 0.37

KNN 0.84

MLP 3.12

RBFN 16.33

SVM 0.73

EOC5 17.31

of 38 features. These features which includes both morphological, color and texture

features are used to classify the lymphoblast samples into L1, L2, or L3 subtypes.

The proposed combination of multiple classifiers is used in this chapter for the

development of a model for FAB classification of lymphoblast image samples. The

system is effective because experimental results show that an accuracy of 97.37% can be

achieved on an average. Sensitivity and specificity of greater than 96% can be achieved

with the proposed ensemble classifier. The execution time for EOC5 is marginally higher

than that of other standard classifiers. From the perspective of quantitative microscopy,

the proposed multiple classifier based FAB subtyping approach has shown novelty, along

with higher accuracy.
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Lymphoblast Image Analysis for

WHO Classification of ALL

Classification of ALL is a complex subject in its own right and is constantly

under revision. The most popular lymphoblast classification system which relies

predominantly on morphology and cytochemistry is the FAB system. However, with

advent of treatment modalities WHO classification of ALL has become essential for

accurate diagnosis and prognostications. Such subtyping are based on additional

evaluation of ALL blasts by immunophenotyping, cytogenetics, and molecular

analysis [19]. However, most of the cases of ALL in routine pathology are detected

based on morphology and immunophenotyping alone, excluding few complex cases where

cytogenetics and molecular analysis are utmost necessary for confirmatory diagnosis.

Flow cytometric immunophenotyping of ALL evaluates individual lymphoblasts in

suspension for the presence and absence of specific antigens (phenotype). In

general, from the flow cytometer based assessment of blood samples few important

interpretations can be made as follows:

i. Identification of cells from different lineages i.e lymphoid or myeloid.

ii. Determination of cell maturity level i.e. whether mature or immature.

iii. Detection of abnormal cells through identification of antigen expression.

iv. Evaluation of phenotype of abnormal cells.

Despite these advantages, the application of flow cytometer in clinical study of ALL

is still limited. Due to high cost of equipment and reagents, and unavailability of
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specialized technologists flow cytometer based diagnosis cannot be afforded at district

level hospitals in developing countries like India. Surprisingly for a state like Odisha with

a population of 43, 122, 537 there is a single flow cytometer available for hematological

diagnosis. Because of this clinicians at far flung areas either refer the patients to

specialized hospitals outside of the state, or start treatment based on microscopic

evaluation of PBS samples.

As discussed in Section 1.4.2 of Chapter 1, correlation between FAB and WHO based

blast subtypes is observed in majority of cases. Hence, in those cases morphology can

be used to classify the lymphoblasts into WHO subtypes. Therefore, in this chapter, a

sincere effort has been made to use image processing and pattern recognition principles

for the automation of the WHO subtyping process. Additionally, efforts are also made

to analyze the WHO classification results obtained from the proposed system with that

of a flow cytometer. Rest of the chapter is organized as follows.

The microscopic image acquisition process and the method followed for lymphoblast

image segmentation has been outlined in Section 5.1. Feature extraction and

unsupervised feature selection techniques are described in Section 5.2 and Section 5.3

respectively. In Section 5.4, use of decision tree classifier for automated WHO

classification of ALL is introduced. Simulation results are discussed in Section 5.5.

Summary of the chapter is provided in Section 5.6.

5.1 Materials and Methods

This section describes the details about the study subject selection, flow cytometric

evaluation of blood samples, image dataset creation, preprocessing and segmentation of

images. The work flow chart of the proposed methodology for computer aided WHO

classification of ALL samples is presented in Figure 5.1.

5.1.1 Histology

It has been difficult to conduct the cytogenetic study and molecular analysis for all

suspected ALL patients with the available pathology laboratory setup at SCB Medical

College Cuttack. Hence, in the present study the patients are screened based on

morphology and immunophenotyping analysis of blood samples using flow cytometry

only. However, for the doubtful cases blood samples are sent for cytogenetic study and

molecular analysis to Institute of Life Sciences, Bhubaneswar for confirmatory diagnosis.
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Figure 5.1: Work flow chart of the proposed automated WHO classification of ALL.

The patients diagnosed with ALL from January 2010 to April 2013 at SCB Medical

College Cuttack, Odisha are only considered for this study. A flow cytometric study

of the peripheral blood and bone marrow is performed in all cases to assess the

immunophenotype characteristics of the blood samples. As per the cell surface antigen

profile obtained from the flow cytometric study, the ALL patients are broadly classified

into one of the 3 principal phenotype categories i.e. pre–B, pre–T, and mature–B.

However, from previous epidemiologic studies on ALL it is known that mature–B ALL

cases are very rare. Additionally, as per the medical records of Department of Clinical

Hematology, SCB Medical College Cuttack for the above period of 2.4 years a very

negligible number of such cases is recorded. Thus, in the present study we only consider

the peripheral blood samples from those patients who are diagnosed with either pre–B

or pre–T ALL.

During the above defined period of study, 63 patients are diagnosed with ALL which

includes children, adolescents and adults. Subsequently based on morphological and

immunophenotypic study using flow cytometer the peripheral and bone marrow blood

samples of the ALL patients are categorized into two groups i.e. pre–B or pre–T. Among

the participants, 43 are diagnosed with pre–B and the remaining 20 are identified with
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pre–T. Suitable CD markers [113] are used as per WHO standards for obtaining the

immunophenotypic subsets of ALL.

Thereafter, blood microscopic images of Leishman stained peripheral blood samples

of all the pre–B and pre–T patients are optically grabbed. Representative lymphoblast

subimages of two different phenotypes i.e. pre–B and pre–T are depicted in Figure 5.2.

(a) pre–B (b) pre–T

Figure 5.2: Lymphoblast subimages of two different phenotypes.

5.1.2 Lymphoblast Image Segmentation

Analysis of cytoplasm and nucleus is essential for the WHO classification of

lymphoblasts. Nucleus and cytoplasm region extraction is performed using the MBSA

lymphocyte segmentation algorithm as proposed in Section 2.4 of Chapter 2.

5.2 Feature Extraction for Lymphoblasts of

Different Phenotypes

Lymphoblasts of both the phenotypes have distinguishable morphological appearance.

Such appearance along with stain absorption efficiency of each cell generates varying

gray scale profile for pre–B and pre–T blast samples. The basis for differentiation

of lymphoblasts of both phenotypes can be broadly grouped as following types of

characteristics i.e. cytoplasmic protrusion, sieve–like nuclear chromatin pattern, and

degree of nucleus shape irregularity. The current light microscopic criteria for subtyping

of lymphoblasts based on phenotype are summarized in Table 5.1.

Here an attempt to automate the process is made, and few quantitative

measurements of nucleus and cytoplasm for lymphoblast cells have been suggested. Such

118



Chapter 5 Lymphoblast Image Analysis for WHO Classification of ALL

Table 5.1: Morphological characteristics for two different phenotypes of ALL

Phenotype

Feature pre–B pre–T

Cell Size Small Large

Cell Shape Regular

Irregular

(Occasional hand

mirror appearance)

N:C Ratio High Lower than pre–B

Nucleoli Indistinct Present

Nucleus Shape Regular Highly Irregular

Nucleus Protrusion Absent Prominent

Nucleus Chromatin
Fine

Granular
Sieve–like

Amount of Cytoplasm Scanty Abundant

Cytoplasmic Protrusion Absent Prominent

Cytoplasmic Basophilia Intense Less Intense

quantifications can assist in accurate and economic computer aided WHO classification

of ALL at par the flow cytometry results.

To facilitate such an automatic process 36 features are extracted from the segmented

nucleus and cytoplasm images of each individual lymphoblast cell image. These

features can be broadly categorized into three feature measurement groups i.e. nucleus,

cytoplasm or cellular, and are tabulated in Table 5.2. The procedure for measurement

of few features is found to be common with that of feature extraction methods used

in previous chapters, hence are not repeated here. However, a description about the

specific features used for WHO classification of lymphoblasts is presented below.

1. Nucleus protrusion (f7 ): Presence of protrusion in nucleus is detected by

measuring the Length–Diameter (LD) ratio in segmented nucleus image. It is

the ratio of the major axis length and minor axis length of the nucleus region.

2. Cytoplasmic protrusion (f9): Lymphoblasts which manifest distinctive

hand–mirror morphologic features and with cytoplasmic pseudopods on one side

of the cell have been described as a condition for pre–T [177]. This feature is

measured in term of LD ratio and is the ratio of the major axis length and minor

axis length of the complete cell.
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Table 5.2: Extracted features for WHO classification of lymphoblasts.

Features

Nucleus Cytoplasm Cellular

Area (f1) Area (f2) Area (f3)

Perimeter LD ratio (f9) N:C ratio (f4)

Form factor (f5) Color (f32–f37)

Roundness (f6)

LD ratio (f7)

Compactness (f8)

Nucleoli count (f10)

Fourier descriptor (f11–f14)

Wavelet coefficients (f15–f20)

Haralick coefficients (f21–f25)

Color (f26–f31)

4. Nucleoli count (f10): It is indistinct in pre–B and are present mostly in all pre–T

lymphoblasts. Presence of nucleoli in the lymphoblast nucleus is detected based

on shape and color information of the holes present in segmented nucleus image.

However, in few cases vacuoles as holes can be present in the nucleus region

of both the types of lymphoblasts and can be confused with nucleoli. But an

unique property about the vacuole is that it has an uncolored white body with

completely round and tight boundary in comparison to nucleoli which have a loose

structure with a colored body. These features are quantified for accurate counting

of nucleoli.

3. Cytoplasmic basophilia (f32–f37): Degree of cytoplasmic basophilia varies among

blasts of different phenotypes, and can be quantified in terms of mean color

intensity of individual red, green, blue, hue, saturation and lightness component

of the segmented cytoplasm image. Thus the cytoplasmic color information is

measured as a set of six color features i.e. µCR (f32), µCG (f33), µCB (f34), µCH

(f35), µCS (f36), and µCV (f37).

As per our observation it is noticed that pre–T blasts have highly irregular shape

in comparison to pre–B blasts. Additionally, presence of nucleoli, sieve–like nuclear

chromatin pattern, and occasional presence of hand mirror morphology (Figure 5.3) is

perceived in most of the PBS samples with pre–T subtype. Moreover, from experiments
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(a) (b)

Figure 5.3: pre–T lymphoblasts with hand mirror morphology.

it is also observed that the above features may not be distinct for the WHO classification

of blasts individually. Accordingly, an amalgamation of all the features is adapted by

expert hematopathologists as well as here for automated WHO classification of each

blast sample. In this regard, a combination of morphological, texture and color features

are generated consisting of a total of 36 features of which 9, 15 and 12 are of shape

or size, texture and color features respectively. These features act as the basis in the

automated WHO based subtyping of lymphoblasts, and can aid clinicians in the early

diagnosis and prognosis of ALL.

5.3 Unsupervised Feature Selection

It is a mandatory to verify the discriminating capability of a feature before classification.

In this view, a measure called maximal information compression index (MICI) [178] is

considered as an unsupervised feature selection method. Redundancy is removed based

on feature similarity measurement. The MICI can be defined as follows.

Considering Σ to be the covariance matrix of random variables x and y, the MICI

can be defined as λ2(x, y) = smallest eigenvalue of Ψ, i.e.

2λ2(x, y) = var(x)+var(y)−
√
(var(x) + var(y))2 − 4var(x)var(y)(1− ρ(x, y))2 (5.1)

Here ρ(x, y) signifies correlation coefficient between two random variables x and y,

and is defined as

ρ(x, y) =
cov(x, y)√
var(x)var(y)

where, var(·) denotes variance of a variable and cov( ) the covariance between two

variables.
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As per the relation(5.1), the value of λ2 is zero when the features are linearly

dependent and increases as the dependency decreases. It can be noticed that λ2 is the

eigenvalue for the principal component feature pair (x, y). As per [179] the maximum

information compression is achieved if a multivariate data is projected along its principal

component direction. The corresponding loss of information in reconstruction of the

pattern (in terms of second order statistics) is equal to the eigenvalue along the direction

normal to the principal component. Thus, λ2 is the amount of reconstruction error

committed if the data is projected to a reduced dimension in the best possible way. It

is the measure of the minimum amount of information loss or the maximum amount of

information compression possible.

This feature selection procedure involves two steps, partitioning the original feature

set into a number of homogenous clusters, and selecting a representative feature from

each individual cluster. The initial partitioning is done using the k–NN principle based

on MICI, which is described as follows. At first the k nearest features of each feature

are computed. Among these, the feature having most compact subset (as determined

by its distance to its farthest neighbor) is selected, and its k neighboring features are

discarded. This process is repeated for the remaining features until all of them are either

selected or discarded.

While determining the k nearest neighbors of features a constant error threshold (ε)

is assigned which is set equal to the distance of the kth nearest neighbour of the feature

selected in the first iteration. Whereas, in subsequent iterations the λ2 value is checked

corresponding to the subset of a feature whether it is greater than ε or not. If λ2 > ε

the k is decreased.

One important advantage of using the above feature selection method for inspecting

feature separability is that the algorithm is generic in nature and has the capability

of multiscale representation of the data set. Therefore, such an unsupervised feature

selection method is used here prior to classification.

5.4 WHO Classification of Lymphoblast

The performance of WHO classification of lymphoblasts is evaluated by using supervised

(NBC, KNN, MLP, RBFN, SVM, and decision tree classifier) and unsupervised

classifiers (k–means, Fuzzy–c means, and GMM clustering) respectively.
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a. Decision Tree Classifier

A decision tree is a predictive model which can be used to represent both classifiers

and regression models [180]. When a decision tree is used for classification problems, it

is generally referred as a classification tree. Classification trees are used to classify an

object or a data pattern to a predefined set of classes based on their feature values. A

decision tree classifier (DTC) is represented graphically as a hierarchical structure, and

consists of nodes and directed edges. The root node has no incoming edges, whereas

all other nodes have exactly one incoming edge. A node with outgoing edges is referred

to as an internal node and all other nodes are known as leaves. In a decision tree,

each internal node splits the instant space into two or more sub–spaces according to a

certain discrete function of the input feature values. Starting from the root node, the

test condition is applied to the data pattern, and the appropriate branch based on the

outcome of the test is followed. This either leads to an another internal node, for which

a new condition is applied, or to a leaf node [181]. In such tree classifiers, each leaf node

is assigned a class label which is assigned to the data pattern after final classification.

Here, in order to make a classification between pre–B and pre–T a binary decision tree

is used here.

b. k–Means Clustering

k–means is a center-based clustering algorithm which is efficiently employed for

clustering large databases and high-dimensional databases. The objective of a

center-based algorithm is to minimize its objective function and is well suited for convex

shape clusters and fails drastically for clusters of arbitrary shapes [134]. MacQueen in

his seminal work [182] first proposed the conventional k–means algorithm in 1967. This

technique clusters the data into fixed number of clusters and the mean of one cluster

is placed as far as possible from another. Every data point is associated to the nearest

mean and belongs to one of the clusters [183]. This algorithm initially assumes k

centroids (here k = 2). Based on the initial centroids, it calculates the class label for

each data pattern based on the minimum Euclidean distance. On the basis of these

labels each centroid is updated as the average of all the patterns belonging to that class

at that iteration. This procedure of centroid updation and assignment of observations

to different clusters are continued until the mean squared error (MSE) is less than a
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particular threshold. The k–means clustering minimizes the following objective function

J =

K∑
k=1

N∑
i=1

||xi − ck||2, (5.2)

where, xi indicates the i
th pattern and ck represents the kth centroid.

c. Fuzzy C-Means Clustering

Unlike traditional k–means clustering, where each observation has a well defined binary

membership, the Fuzzy C-Means (FCM) clustering method uses a fuzzy membership

that assigns a degree of belonginess (membership) for each class. The concept of degree

of membership in FCM is similar to the posterior probability in a mixture modeling

setting. By monitoring data points that have close membership values to existing classes,

forming new clusters is possible in FCM [118]. The details of the FCM algorithm is

described in Section 2.3.1 of Chapter 2.

d. Gaussian Mixture Model Clustering

Clustering algorithms based on probability models offer an alternative to

non–probabilistic clustering techniques. In such clustering, it is assumed that the

data are generated by a mixture of probability distributions in which each component

represents a different cluster. Gaussian mixture model (GMM) is a generative approach

to clustering, where each cluster corresponds to a Gaussian distribution, and is a popular

clustering tool for several applications [184]. In this chapter, a binary class problem of

classification of pre–B and pre–T lymphoblasts has been considered. Therefore, we have

two class conditional densities corresponding to each class viz., p(xn|ωk), 1 ≤ k ≤ 2

and 1 ≤ n ≤ N , where k and N denote the number of classes and total number of

observations or patterns respectively. p(ωk) denotes the prior probability for kth class.

Each of the two mixing components has individual mean vector and a covariance matrix.

The probability density function of such a model is given by

p(xn|ωk) =
1

2π|Σk|1/2 exp
{
−1

2
(xn − x̄k)

TΣ−1
k (xn − x̄k)

}
(5.3)

where,

x̄k =
1

|Xk|
∑

xn∈ωk

(5.4)
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and

Σk =
1

|Xk|
∑

xn∈ωk

(xn − x̄k)(xn − x̄k)
T = diag(σ2

i ), 1 ≤ i ≤ d (5.5)

The corresponding posterior probabilities are given by Bayes’ rule as follows.

p(ωk|xi) = p(xi|ωk)
2∑

k=1

p(ωk)p(xi|ωk)

(5.6)

The model parameters i.e. mean and variance are updated using the Expectation

Maximization (EM) algorithm and maximum likelihood estimation method [134]. This

process is continued till the new parameters do not change much from the previous

parameters. At this stage the model gets stabilized and the EM based GMM is said

to be converged. In general, the GMM algorithm can be considered as an optimization

problem which maximizes the following optimization function.

J =
∏
n

∑
k

p(ωk)p(xn|ωk) (5.7)

The converged model parameters are such that the product over all the observations,

the total class conditional densities weighted with respective prior probability will be

maximized. The EM algorithm is used to update the model parameters such that it

would obtain the optimum of the objective function.

5.5 Simulation Results

WHO classification of ALL is based on the presence of blasts with B or T phenotype in

the peripheral blood and/or bone marrow. Such classification is essential for determining

treatment plan and for accurate prognosis. Therefore, an automated system for the

WHO classification of blasts has been developed, and experiments are conducted to

correlate with the results of the flow cytometer. The proposed scheme is implemented

using the same hardware and software specification as that of earlier ones and the results

are presented in this section.

The total data set used for the development of the proposed model, comprises of PBS

samples, and are collected from 63 ALL patients. Based on flow cytometer evaluation
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43 patients are confirmed to have pre–B blasts and the rest 20 are identified with pre–T.

The number of images used for this study includes 160 and 110 lymphoblast sub images

of pre–B and pre–T subtypes respectively.

Figure 5.4 shows the extracted cytoplasm and nucleus region of lymphoblast images

of both the phenotypes after performing segmentation using MBSA algorithm as

discussed in Section 2.4.7 of Chapter 2. Difference in stain absorbing capacity can

be observed among the segmented nucleus images of both the phenotypes. Moreover,

significant differences in terms of cytoplasm shape are also observed. This motivated us

to develop the proposed machine learning based WHO classification approach.

Original Cytoplasm Nucleus

pre–B

pre–T

Figure 5.4: Segmentation results for lymphoblasts of different phenotypes using MBSA

algorithm.

Three types of features i.e. morphological, textural and color are extracted from

the segmented nucleus and cytoplasm images of lymphoblast of each phenotype. The

features of pre–B and pre–T blast samples are summarized into mean and standard
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deviation, and are tabulated in Table 5.3, 5.4, 5.5, and 5.6.

Table 5.3: Morphological features extracted from nucleus and cytoplasm of pre–B and

pre–T lymphoblast subtypes.

Feature Features pre–B pre–T

Index µ± σ µ± σ

1 Nucleus area* 0.70±0.13 0.61±0.09

2 Cytoplasm area* 0.43±0.17 0.58±0.18

3 Cell size* 0.72±0.12 0.69±0.08

4 N:C ratio* 0.34±0.18 0.21±0.09

5 Nucleus form factor* 0.90±0.08 0.84±0.08

6 Nucleus roundedness* 0.87±0.07 0.75±0.11

7 Nucleus LD ratio* 0.61±0.07 0.71±0.10

8 Nucleus compactness* 0.93±0.04 0.86±0.06

9 Cytoplasm LD ratio* 0.96±0.01 0.99±0.02

10 Nucleoli count* 0.10±0.30 0.86±0.35
∗ Significant based on feature weights.

Using unsupervised feature selection method it is found that 35 features are

statistically significant except contrast and energy in discriminating pre–B and pre–T

lymphoblast samples. Figure 5.5 shows a plot between feature index and feature weights

of the unsupervised feature selection between pre–B and pre–T group. Feature weights

are basically distance of k-NN for each feature, and the plot indicates significance of the

features to discriminate between the two groups. The unsupervised feature selection

approach selects only those features which have higher weights.

Further, numeric values of most of the features are different in blasts of both

the phenotypes. The cytoplasm area of pre–T blasts are larger than pre–B cells.

Difference in shape indices i.e. form factor, roundedness and compactness indicates

that pre–T blasts have more irregular shape compared to pre–B. Presence of hand

mirror morphology or cytoplasmic protrusion in pre–T is confirmed from higher LD

ratio. Textural difference among blasts of both phenotypes is due to sieve like chromatin

pattern in pre–T, and is well indicated by entropy, Fourier and wavelet feature values.

Moreover, the mean intensity of nucleus in pre–B usually appears different than pre–T

due to unequal staining capacity, which can be inferred from the results.

In this study, k–fold cross validation has been followed for training/testing data

partitioning, and the number of cases is divided into 5 folds. Here, the supervised

classifiers viz., NBC, KNN, MLP, RBFN, SVM, and DTC, and unsupervised classifiers
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Table 5.4: Texture features extracted from nucleus of pre–B and pre–T lymphoblast

subtypes.

Feature Features pre–B pre–T

Index µ± σ µ± σ

11 Fourier coefficient (Mean)* 0.68±0.27 0.75±0.18

12 Fourier coefficient (Variance)* 0.26±0.31 0.33±0.37

13 Fourier coefficient (Skewness)* 0.90±0.11 0.70±0.13

14 Fourier coefficient (Kurtosis)* 0.80±0.20 0.63±0.19

15 Average of Haar A coefficient* 0.44±0.18 0.53±0.06

16 Average of Haar H coefficient* 0.83±0.15 0.84±0.10

17 Average of Haar V coefficient* 0.60±0.20 0.77±0.13

18 Variance of Haar A coefficient* 0.24±0.21 0.34±0.17

19 Variance of Haar H coefficient * 0.14±0.14 0.20±0.14

20 Variance of Haar V coefficient* 0.17±0.15 0.25±0.14

21 Contrast 0.19±0.15 0.24±0.08

22 Correlation* 0.93±0.06 0.94±0.02

23 Energy 0.49±0.14 0.50±0.08

24 Homogeneity* 0.96±0.02 0.96±0.01

25 Entropy* 0.83±0.07 0.89±0.05

∗ Significant based on feature weights.

Table 5.5: Color features extracted from nucleus region of pre–B and pre–T lymphoblast

subtypes.

Feature Features pre–B pre–T

Index µ± σ µ± σ

26 Average of red component* 0.54±0.21 0.65±0.09

27 Average of green component* 0.35±0.22 0.44±0.08

28 Average of blue component* 0.57±0.20 0.76±0.13

29 Average of hue component* 0.83± 0.15 0.84±0.10

30 Average of saturation component* 0.63± 0.23 0.69±0.12

31 Average of value component* 0.60± 0.20 0.77±0.13

∗ Significant based on feature weights.

viz., k–means, FCM, and GMM are applied to evaluate the phenotype screening system

using 33 features. Based on the quantitative comparison between the classifier results

and the flow cytometer reading the performance metrics are computed. The average
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Table 5.6: Color features extracted from cytoplasm region of pre–B and pre–T

lymphoblast subtypes.

Feature Features pre–B pre–T

Index µ± σ µ± σ

32 Average of red component* 0.68±0.11 0.79±0.07

33 Average of green component* 0.65±0.12 0.71±0.09

34 Average of blue component* 0.69±0.14 0.87±0.08

35 Average of hue component * 0.73±0.16 0.84±0.05

36 Average of saturation component* 0.42±0.16 0.54±0.15

37 Average of value component* 0.71±0.12 0.88±0.07

∗ Significant based on feature weights.
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Figure 5.5: Plot between feature index and feature weights for showing significance of

features.

classification accuracy is listed in Table 5.7 for all the supervised classifiers. Additionally,

sensitivity and specificity over five folds are indexed in Table 5.8 and Table 5.9

respectively. Average performance measure for the EOC5 for WHO classification of

lymphoblasts is also presented in Table 5.10. It is observed that, in the case of SVM the

accuracy is more than 90% in all 5 folds consistently, and the average sensitivity and

specificity are recorded as 84.06% and 96.61% respectively. However, the best overall

accuracy (94.29%) is obtained over 5 fold cross validation using decision tree classifier.
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The corresponding sensitivity is 87.98% and specificity is recorded as 96.71% which is

higher in comparison to other classifiers.

Table 5.7: Average accuracy of DTC along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Accuracy

NBC 85.71 91.43 93.33 88.57 93.81 90.57

KNN 93.33 89.05 88.09 89.05 84.29 88.76

MLP 88.57 92.38 93.81 89.53 86.67 90.19

RBFN 90.48 90.48 90.00 93.34 91.91 91.24

SVM 91.43 91.91 94.76 90.95 95.24 92.86

DTC 95.24 92.86 95.24 95.24 92.86 94.29

Table 5.8: Average sensitivity of DTC along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Sensitivity

NBC 87.48 91.19 89.78 89.93 91.64 90.00

KNN 92.72 93.22 79.48 92.88 85.81 88.82

MLP 80.70 83.73 87.96 82.99 81.26 83.33

RBFN 80.52 73.77 82.75 84.00 84.48 81.10

SVM 87.57 81.92 85.37 82.12 83.33 84.06

DTC 83.33 90.91 90.00 83.33 92.31 87.98

Table 5.9: Average specificity of DTC along with standard classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Specificity

NBC 84.97 91.81 95.05 87.65 94.48 90.79

KNN 93.68 87.43 92.86 87.16 83.74 88.97

MLP 92.12 95.70 95.64 92.36 88.87 92.94

RBFN 94.64 97.44 92.42 96.72 95.34 95.31

SVM 93.69 96.25 98.71 94.38 100.00 96.61

DTC 100.00 93.55 96.88 100.00 93.10 96.71

The performance measure is listed in Table 5.11 for all three unsupervised classifiers,

i.e. k–means, FCM and GMM. The best overall accuracy (79.05%) is obtained using
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Table 5.10: Average performance measure for five member ensemble classifier.

Classifier Accuracy (%) Sensitivity (%) Specificity(%)

EOC5 93.52 87.22 96.08

Table 5.11: Performance measure for unsupervised classifiers

Classifier Accuracy (%) Sensitivity (%) Specificity(%)

k–means 77.14 72.00 90.00

FCM 78.09 70.67 95.59

GMM 79.05 72.00 96.67

GMM classifier. The corresponding sensitivity and specificity are found to be 72%

and 96.67% respectively. The computation time (in seconds) for all the six supervised

classifiers are listed in Table 5.12 which includes both training and testing phases. The

binary decision tree classifier (DTC) has been found to be computationally better than

all individual supervised classifiers except k–NN and SVM. However, due to promising

classification accuracy and marginal difference in processing time the DTC is chosen to

be the most suitable classifier for WHO classification of lymphoblast images. From the

above results it can be concluded that the performance of supervised classifiers for WHO

classification of lymphoblast images are much better in comparison to the unsupervised

ones. Moreover, it is observed that the performance of DTC is comparable to EOC5 in

classifying lymphoblasts as per WHO criteria.

Table 5.12: Computational time consumed by different classifiers for WHO classification

of ALL.
Classifier Time (sec)

NBC 2.03

KNN 1.19

MLP 3.68

RBFN 13.60

SVM 0.39

EOC5 16.19

DTC 1.84
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5.6 Summary

Contemporary treatment of ALL requires the assignment of patients to specific

phenotype groups. Such subtyping requires flow cytometric analysis of blood samples,

and can accurately identify the known prognostic subtypes of ALL, including pre–T

and pre–B. However, use of flow cytometer for routine hematological investigation of

blood samples are too expensive to be installed in district level health centers of India.

Therefore, in this chapter a model is developed for WHO subtyping of ALL blast images

in correlation to that of flow cytometer. Initially cytoplasm and nucleus image regions

are extracted from the lymphoblast images using the improved Markov random field

based segmentation approach. In feature extraction, 37 features are extracted from

the segmented lymphoblast images according to phenotype characteristics of pre–B

and pre–T blasts. These features comprises of morphological, textural and color

measurements so that pre–B and pre–T blasts can be distinguished effectively. In

classification, unsupervised feature selection method is used to select an optimal feature

subset (33 features) from the 37 features and are fed to the classifiers.

The major contribution of this study is to develop an efficient system for WHO based

classification of lymphoblast images. The efficacy of the proposed system is enhanced

because of improved segmentation scheme, suitable feature extraction and selection

methods. Using binary decision tree classifiers for classifying the extracted lymphoblast

image features results with an average accuracy of 94.29%. The corresponding average

sensitivity and average specificity is recorded to be 87.98% and 96.71% respectively.

The significance of lower sensitivity value is due to few complex overlapping cases where

pre–B show ALL specific L2 morphology and pre–T show ALL specific L1 morphology.

Whereas, high specificity indicates discriminating morphological differences between

pre–B and pre–T lymphoblasts in majority of cases.
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Chapter 6

Image Morphometry for Lymphoid

and Myeloid Blast Classification

Unlike the studies made in the previous chapters, in this chapter we shall be dealing

with a slightly different problem of distinguishing blasts of ALL (lymphoid blast)

from those of AML (myeloid blast). As per our visual microscopic examination

and flow cytometric immunophenotyping confirmation it is observed that there exists

significant morphological differences between lymphoid and myeloid blasts. Thus, image

morphometry can be used in such diagnostic problems to automate the classification

process of leukemic blasts based on cell lineages. Such automation is necessary

to facilitate clinicians in taking decisions for early treatment. Clinically the major

differential diagnosis for ALL and AML is determined with the presence of lymphoblast

(lymphoid blast) or myeloblast (myeloid blast) in the peripheral blood. Blast cells of

myeloid origin are characterized by several cytological features i.e. auer rods, dispersed

nuclear chromatin, abundant and granular cytoplasm which can differentiate it from a

lymphoblast. The motivation to automate emerged from the fact that besides being

time–consuming, the quality of results of manual subtyping varies with staining quality,

hematopathologist’s experience, workload, and stress level. Moreover, flow cytometric

evaluation of blood samples for ALL and AML differentiation becomes questionable not

only because of high cost, but also with regard to unavailability of desired CD markers

in district hospitals. Hence the automation of this process is highly essential for various

health institutions across India.

Very few studies have addressed the problem of classification of leukemic blasts based

on cell lineages in peripheral blood smear images [100,106,185]. However, they are still
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at prototype stages and can be upgraded using advanced image processing and machine

learning techniques.

This chapter, aims at developing a computer aided system for the analysis of

peripheral blood microscopic image samples. Such a system will have the ability to

discriminate ALL and AML blast cells based on their image information automatically.

In view of this, shape, color and texture features are extracted from blast cell images,

followed by Functional Link Artificial Neural Network (FLANN) based segmentation.

The basis of considering FLANN based supervised segmentation method for blast images

of both the phenotypes is associated with its ability to segment the AML blast images

with higher accuracy. A mutual information based supervised feature selection technique

is used for choosing a subset of optimal features. Finally, an ensemble of decision tree

classifier (EDTC) is used to discriminate the ALL and AML blast images based on the

measured significant features. Additionally, a comparative study have been presented

by conducting simulations with other standard classifiers like NBC, KNN, MLP, RBFN,

SVM and DTC.

6.1 Materials and Methods

In this section, we describe the different steps required for the computer aided

classification of acute leukemia blast samples. This includes study subject selection,

image dataset creation, preprocessing, and segmentation of acute leukemia blast images.

In Figure 6.1, the schematic diagram of the proposed methodology for quantitative

evaluation of leukemia blast images is presented.

6.1.1 Histology

The diagnostic blood samples are derived from acute leukemia patients at SCB Medical

College Cuttack, Odisha. To confirm the lineage of the blast cells a flow cytometry

study of the peripheral blood and bone marrow have also been conducted for the above

patients. Based on the cell lineage analysis report obtained from the flow cytometric

study, 63 and 45 patients are identified to have ALL and AML blast cells respectively

in their peripheral blood samples. The study included patients from both the genders.

The microscopic images of blast cells in peripheral blood are optically grabbed from

ALL and AML cases by Zeiss Observer microscope under 100X oil immersed setting

and with an effective magnification of 1000. Image database for this analysis consist of
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Figure 6.1: Block diagram of the proposed automated classification of acute leukemic

blasts based on cell lineage.

126 ALL and 58 AML images. Representative blast subimages of both the lineages i.e.

lymphoid and myeloid are depicted in Figure 6.2.

(a) Lymphoid Blast (b) Myeloid Blast

Figure 6.2: Blasts of different lineages.

6.1.2 Blast Image Segmentation

The intensity distribution of blasts, red blood cells and background stain are not well

separated and in fact, it is a difficult segmentation problem. Here, a neural network is

used to extract the cytoplasm and nucleus based on the a∗, b∗ pixel values as an input
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features. From the image, R, G and B pixel values of the blast are subjectively selected

by a panel of hematopathologists for training the neural network. Subsequently, a∗ and

b∗ of the CIELAB color space are calculated from the original tristimuli R, G and B

for each pixel and forms the input feature set for FLANNS algorithm. The detailed

procedure of the same is presented in Section 2.2.2 of Chapter 2.

6.2 Feature Extraction

Morphologically, blasts of both the lineages i.e. lymphoid and myeloid have

distinguishable morphological appearance. The morphological dissimilarity between

them corresponds to the variation in the maturation processes of the cell nucleus as well

as the cytoplasm of the individual cells. Such diversity can be quantitatively measured

in terms of computed features and can assist in the automated classification of blasts

based on cell lineages. Quantitative features for discriminating blasts are devised as per

the descriptions provided by the human experts. Table 6.1 lists some of the standard

features that is followed by hematologists across the world to differentiate lymphoblasts

from myeloblasts.

Table 6.1: Morphological differences between lymphoblasts and myeloblasts.

Feature Lymphoblast Myeloblast

Cell Size Small–Medium Medium–Large

N:C Ratio High
Lower than

Lymphoblast

Nucleoli Indistinct Present

Nuclear Chromatin
Coarse

Granular
Fine Granular

Amount of Cytoplasm Small Moderate

Cytoplasmic Granularity Absent Prominent

Cytoplasmic Basophilia Present
Less Intense than

Lymphoblast

Auer Rods Absent Present

In laboratory practice, hematopathologists attempt to adjudge these features

qualitatively under the microscope for assessing the lineage of the blast. In order

to improve the diagnostic accuracy especially for borderline cases, a quantitative
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microscopic approach is presented in this chapter. Additionally, we tried to correlate

our results from the machine learning approach with that of the flow cytometer. The

computed measurements of the image with correlation to human visual features for blast

cells are summarized in Table 6.2. A detailed description about the clinical importance

of each individual computed blast feature is also presented below.

Table 6.2: Computed cell features of lymphoblast extracted using image processing

Features Description

Cytologic Computed

Blast Size Cell Area Sum of all the pixels in the individual

cytoplasm and nucleus region.

Nucleoli Nucleus Holes Holes counting in the nucleus image

region.

Nucleus Chromatin

Pattern

Nucleus texture Texture in terms of GLCM, wavelet

coefficients and Fourier coefficients.

Amount of Cytoplasm Cytoplasm area Number of pixels in the cytoplasm

image region.

Cytoplasmic

Granularity

Cytoplasm Texture Coarseness measurement.

Cytoplasmic

Basophilia

Cytoplasm color Cytoplasm region color in terms of

mean intensity of individual RGB

and HSV components.

Auer Rods Cytoplasmic Holes Color intensity and shape of

cytoplasmic holes.

The following morphological, textural and color features are measured from the

binary, gray and color image versions of the segmented nucleus and cytoplasm images

respectively obtained from each individual blast images.

1. Feature measurements such as nucleus area (FF1), amount of cytoplasm (FF2),

cell size (FF3), N:C (Nucleus–Cytoplasm) ratio (FF4) and nucleus perimeter are

measured in a similar fashion as described in Section 4.2 of Chapter 4.

2. Blast cells of lymphoid origin may be differentiated from myeloid ones by the

coarser chromatin, and by the clumping of chromatin near the nuclear membranes.

Such textural differences can be assessed through feature measurements i.e.
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Fourier descriptors (FF5 − FF8), Haar wavelet (FF9 − FF14) and Haralick

feature(FF15 − FF19).

3. Nucleoli (FF20) detection in blast nucleus and its counted is performed by

analyzing the color and shape information of the holes present in the segmented

nucleus images.

4. Presence of multiple distinct azurophilic (primary) granules in cytoplasm of

myeloblast clearly distinguishes it from a lymphoblast. The difficulty in measuring

cytoplasm texture is in obtaining a sizable rectangular portion that can capture

the texture. Use of some texture features like Gabor feature are discarded, since

enough texture information could not be captured in the maximum available

window of size 16 × 16. It resulted in nearly identical features for visible

different textures, belonging to different classes. However, specific Tamura texture

features [186] such as coarseness (FF21) is found to reflect the disparity in

cytoplasm between the blast cells, and are computed from the auto–correlation

matrix of the cytoplasm image [91].

5. Difference in stain absorption efficiency among the nucleus of blast cells of different

lineages generates varying color profile for lymphoid and myeloid blasts. Such

variation in this profile provides color information of the blast nucleus, and the

feature measures include mean color intensity of individual red, green, blue, hue,

saturation, and lightness component of the segmented nucleus image, and are

denoted as µNR (FF22), µNG (FF23), µNB (FF24), µNH (FF25), µNS (FF26),

and µNV (FF27) respectively.

6. The cytoplasm of a myeloblast is basophilic but the basophilia is less marked than

the lymphoblast. To measure such degree of cytoplasmic basophilia in blasts of

different lineages, six color features are used. This includes mean color intensity

of individual red, green, blue, hue, saturation and lightness component of the

segmented cytoplasm images, and are denoted as µCR (FF28), µCG (FF29), µCB

(FF30), µCH (FF31), µCS (FF32), and µCV (FF33) respectively.

7. Presence of auer rods (FF34) in the cytoplasm of myeloblast makes it unique

and easily distinguishable from lymphoblast. Such cytoplasmic inclusions are

usually round or rod shaped and is typically pink in color. Due to difference in

color between cytoplasm region and auer rods cytoplasmic holes are present in
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myeloblast images. Color intensity and shape of such cytoplasmic pixel regions

are validated before confirming such structures as auer rods.

As per opinion of hematopathologists, even though auer rods are important

characteristic of myeloblasts, it may not be present in some samples. Therefore, based

on the combination of all three types of features (morphology, texture, and color) a blast

sample can only be categorized into the class ALL or AML. Accordingly, a total of 34

features are extracted here from the segmented cytoplasm and nucleus sub images of the

blast samples. Significant features among these 34 features are used in the automated

subtyping of blasts based on cell lineages.

6.2.1 Mutual Information based Feature Selection

It is always essential that the information contained in the input feature vector must

be sufficient enough to determine the output class label. The presence of too many

irrelevant features can burden the training process and can produce a neural network

with more connection weights than those required by the problem. One such approach to

select an informative subset of features to be used as input data for a classifier is the use

of mutual information criteria. Evaluation of mutual information for selecting individual

feature has been first addressed by Battiti [187]. Mutual information measures arbitrary

dependencies between random variables, and is suitable for assessing the information

content of features in complex classification tasks. Therefore, in this chapter the

notion of mutual information (MI) is used to evaluate the information content of each

individual feature with regard to the output class.

Classification performance can be improved by reducing uncertainty, and is achieved

by the use of informative features. Shannons information theory [188] provides a suitable

formalism i.e. entropy for measuring the uncertainty. Mathematically if the probabilities

for the different classes are P (c), where c = 1, . . . Nc, the initial uncertainty in the output

class is measured by the entropy and is defined as:

H(C) = −
Nc∑
c=1

P (c) logP (c) (6.1)

while the average uncertainty after knowing the feature vector f (with Nf

components) is conditional entropy:
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H(C |F ) = −
Nf∑
f=1

P (f)

(
Nc∑
c=1

P (c | f) logP (c | f)
)

(6.2)

where P (c | f) is the conditional probability for class c given the input vector f . The

amount by which the uncertainty is decreased is, by definition, the mutual information

MI(C;F ) between variables c and f and can be defined as:

MI(C;F ) = H(C)−H(C |F ) (6.3)

This mutual information function can be rewritten in terms of entropy and reduces to

the following expression:

MI(C;F ) =
∑
c,f

P (c, f) log
P (c, f)

P (c)P (f)
(6.4)

The mutual information (MI) is the amount by which the knowledge provided by

the feature vector decreases the uncertainty about the class. This score MI, can be

estimated between each feature and the class label, and the highest scores correspond

to features that are most relevant in discriminating between the classes.

6.2.2 EDTC for Leukemic Blast Classification

A method is presented that achieves cell lineage detection in leukemic blasts by

classification of ALL and AML blast image patterns. It is based on ensemble of

classifiers using binary decision trees (BDT). For each observation, each individual

binary decision tree (Chapter 5) votes for one class and the ensemble predicts the

class that has the majority of votes. Developing such an ensemble using multiple binary

decision trees and getting them vote for the most popular class results with an improved

classification accuracy owing to minimization of error obtained by individual classifier.

The ensemble learning algorithms can be roughly categorized into two classes, i.e.

algorithms where component learners must be trained sequentially, or algorithms where

component learners could be trained in parallel. The Bagging algorithm (Bootstrap

aggregating) by Breiman [189] is one such parallel method which is used here for

constructing the ensemble, and training each decision tree on a random redistribution

of the training set. This bagging procedure uses the bootstrap replicate of the training

data for introducing diversity among the member classifiers while training the individual

classifiers. The proposed structure for ensemble of decision tree classifier (EDTC) is
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Figure 6.3: An ensemble of decision tree classifiers for feature classification.

shown in Figure 6.3. This multiple decision tree ensemble model assigns a class label

to an instance using majority of votes of all the decision trees for the classification of

blast samples based on cell lineage.

Simulations are also carried out for blast cell image classification using six individual

supervised classifiers i.e. NBC, KNN, MLP, RBFN, SVM, and DTC. Additionally, a

comparison is also made to study the performance between two ensemble classifiers,

i.e. decision tree ensemble and an ensemble of classifiers (EOC5) with five members i.e.

NBC, MLP, KNN, RBFN, and SVM.

6.3 Simulation Results

The blast cells of both the lineages are segmented using the FLANNS algorithm, and the

cytoplasm, nucleus region are successfully extracted from the background. Segmentation

results for four blast images, each of both the lineages (lymphoid and myeloid) using

the proposed FLANNS approach is presented in Figure 6.4 respectively.

Morphological, textural and color features are extracted from the nucleus and

cytoplasm images of the blast cells. The summary statistics of the extracted features

are presented in Table 6.3, 6.4, 6.5, and 6.6.

An informative subset of 28 features is selected from the entire set of 34 features

based on the mutual information criterion. Figure 6.5 shows plot between feature index

and mutual information (MI) which indicates significance of the features to differentiate
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Figure 6.4: Segmentation results for blasts of lymphoid and myeloid origin using

FLANNS algorithm.

Table 6.3: Morphological features extracted from nucleus and cytoplasm of blasts of

lymphoid and myeloid origin.

Feature Features Lymphoid Blasts Myeloid Blasts

Index µ± σ µ± σ

1 Nucleus area 0.69±0.12 0.71±0.10

2 Cytoplasm area* 0.23±0.09 0.47±0.21

3 Cell size* 0.71±0.12 0.84±0.06

4 N:C ratio* 0.34±0.18 0.18±0.11
∗ Significant based on MI.

blasts between two groups i.e. lymphoid and myeloid.

For simulation, a set of 50 independent binary decision trees each with a leaf size

of one is used to construct the classification ensemble. This ensemble is developed and

trained using the bootstrap aggregation algorithm, and is known as bagged decision

tree. If the majority of the trees predict one particular class (ALL or AML) for a new

blast pattern, it is often reasonable to consider that prediction to be more robust than

the prediction of any single tree alone.

Moreover, five–fold cross validation sampling technique is used here to test the

robustness of all the six single classifiers (NBC, KNN, MLP, RBFN, SVM, and DTC).

The procedure of training and testing is repeated for five times with each of the five

subsamples used exactly once as the validation data. Performance metrics i.e. accuracy,
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Table 6.4: Texture features extracted from nucleus and cytoplasm of blasts of lymphoid

and myeloid origin.

Feature Features Lymphoid Blasts Myeloid Blasts

Index µ± σ µ± σ

5 Fourier coefficient (Mean)* 0.48±0.35 0.85±0.10

6 Fourier coefficient (Variance)* 0.18±0.29 0.45±0.33

7 Fourier coefficient (Skewness)* 0.77±0.10 0.79±0.18

8 Fourier coefficient (Kurtosis)* 0.75±0.17 0.72±0.21

9 Average of Haar A coefficient* 0.44±0.18 0.54±0.08

10 Average of Haar H coefficient 0.83±0.15 0.85±0.06

11 Average of Haar V coefficient* 0.62±0.21 0.83±0.09

12 Variance of Haar A coefficient* 0.24±0.21 0.26±0.11

13 Variance of Haar H coefficient* 0.14±0.13 0.16±0.06

14 Variance of Haar V coefficient* 0.17±0.15 0.21±0.09

15 Contrast* 0.19±0.15 0.22±0.07

16 Correlation* 0.93±0.06 0.96±0.02

17 Energy 0.49±0.14 0.45±0.07

18 Homogeneity* 0.97±0.02 0.96±0.01

19 Entropy 0.83±0.07 0.86±0.04

20 Nucleoli count* 0.00±0.00 0.37±0.18

21 Cytoplasmic coarseness* 0.93±0.10 0.97±0.02

∗ Significant based on MI.

Table 6.5: Color features extracted from nucleus region of blasts of lymphoid and

myeloid origin.

Feature Features Lymphoid Blasts Myeloid Blasts

Index µ± σ µ± σ

22 Average of red component* 0.54±0.21 0.70±0.14

23 Average of green component* 0.35±0.22 0.41±0.07

24 Average of blue component* 0.63±0.22 0.87±0.09

25 Average of hue component 0.83± 0.15 0.85±0.06

26 Average of saturation component* 0.63± 0.23 0.72±0.08

27 Average of value component* 0.62± 0.21 0.83±0.09

∗ Significant based on MI.
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Table 6.6: Color features extracted from cytoplasm region of blasts of lymphoid and

myeloid origin.

Feature Features Lymphoid Blast Myeloid Blast

Index µ± σ µ± σ

28 Average of red component* 0.68±0.11 0.77±0.15

29 Average of green component 0.65±0.12 0.66±0.12

30 Average of blue component* 0.72±0.15 0.88±0.14

31 Average of hue component * 0.73±0.16 0.85±0.13

32 Average of saturation component* 0.42±0.16 0.57±0.21

33 Average of value component* 0.74±0.13 0.88±0.14

34 Auer rods* 0.00±0.00 0.90±0.31

∗ Significant based on MI.
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Figure 6.5: Plot between feature index and mutual information (MI) for showing feature

significance.

sensitivity, and specificity are recorded for each fold and the average of each fold

for all the six single classifiers are presented in Table 6.7, 6.8, and 6.9 respectively.

Comparative results between ensemble of decision tree classifiers (EDTC) and an

ensemble of classifiers (EOC5) are also presented in Table 6.10.

The best classification accuracy of 94.21% is obtained with DTC among all individual
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Table 6.7: Average accuracy of all the classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Accuracy

NBC 89.47 92.64 93.69 92.11 90.00 91.58

KNN 90.53 87.37 92.11 93.69 91.58 91.06

MLP 88.95 92.63 91.06 93.15 91.05 91.37

RBFN 89.48 88.95 92.11 92.63 85.26 89.69

SVM 88.42 86.31 85.79 87.37 88.42 87.26

DTC 94.74 94.21 94.74 93.68 93.69 94.21

Table 6.8: Average sensitivity of all the classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Sensitivity

NBC 85.05 95.56 89.92 96.67 90.00 91.44

KNN 100.00 92.64 100.00 100.00 98.33 98.19

MLP 89.38 92.89 94.21 96.09 92.85 93.08

RBFN 89.14 89.49 94.16 93.26 84.83 90.18

SVM 74.21 71.40 69.36 60.85 77.99 70.76

DTC 85.71 83.62 91.22 87.78 88.51 87.37

Table 6.9: Average specificity of all the classifiers over 5–fold.

Fold

Classifier 1 2 3 4 5 Avg. Specificity

NBC 91.58 92.04 94.79 90.34 90.36 91.82

KNN 87.99 86.81 90.36 91.88 90.38 89.48

MLP 88.33 93.74 81.39 82.00 86.39 86.37

RBFN 89.84 86.92 83.73 91.11 85.76 87.47

SVM 93.50 92.34 93.17 99.23 93.38 94.32

DTC 96.77 96.76 95.62 94.81 95.15 95.82

classifiers. This result reveals that SVM are not universally better than the other single

classifiers. Therefore, it can be concluded here that no one classifier is best for all types

of data. Among ensemble classifiers, EOC5 comprising of five independent classifiers

resulted with an average accuracy of 95.26% in comparison to 96.43% of decision tree

ensemble. The corresponding sensitivity is 91.67% which is lower than that of EOC5.
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Table 6.10: Average performance measurement for ensemble classifiers.

Classifier Average accuracy (%) Average sensitivity (%) Average specificity(%)

EOC5 95.26 97.89 94.70

EDTC 96.43 91.67 98.13

However, the specificity of EDTC is found to be 98.13% which is slightly higher than that

of EOC5. Ensemble classifiers are expected to fare better than single classifiers. EOC5

live to this expectation but invariably perform poorly than EDTC, and could be possibly

due to overtraining. Additionally the computational time required for classifying the

blast samples based on lineage with each classifier are also recorded and is shown in

Table 6.11. EOC5 is found to be slightly computationally expensive than EDTC and all

other single classifiers. Running time of EDTC is determined by the time of calculating

the outputs of multiple single DTC plus a little overhead for the combination of the

individual decisions. Higher computational overhead in EOC5 is due to use of diversified

member classifiers with higher individual running time.

Table 6.11: Computational overhead for blast classification of different lineages.

Classifier Time (sec)

NBC 1.97

KNN 1.03

MLP 4.87

RBFN 13.03

SVM 0.22

DTC 2.98

EOC5 15.44

EDTC 1.86

6.4 Summary

A quantitative technique has been developed in this chapter for the screening of leukemic

blast images on the basis of cell lineages. Initially, FLANN based segmentation

approach is followed to extract the nucleus and cytoplasm region from each blast

image. Subsequently, in the feature extraction step 34 features are extracted from the

segmented nucleus and cytoplasm images for discrimination using a classifier. These
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features comprise of morphological, texture, and color features according to various

blast characteristics as specified by experienced hematopathologists. During feature

selection, the above extracted features are evaluated using mutual information based

scoring method to discriminate ALL and AML blast samples. It indicates that 28

features are informative, and are used to select an optimal feature subset out of 34

extracted features.

Finally, the classification performance of seven independent classifiers and two

ensemble classifiers for blast image subtyping is exercised on a set of 126 lymphoid

and 95 myeloid blast subimages. The best accuracy of 96.43% is achieved with EDTC,

along with an average sensitivity and specificity value of 91.67% and 98.13% respectively.

Moreover, even though the sensitivity of EOC5 is better than that of EDTC, the latter

is chosen to be the best among all above cited classifiers for blast categorization based

on computation time and other two measures i.e. accuracy and specificity. Moreover,

the proposed system is found to be well correlated with that of flow cytometer as the

experimental results show an accuracy, sensitivity and specificity of more than 90% on

an average.
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Chapter 7

Conclusion

Regardless of progressive techniques like immunophenotyping, cytogenetics, and

molecular analysis, microscopic examination of peripheral blood smear still remains

an important screening procedure for ALL. Again it is not sufficient enough to merely

make a diagnosis of acute leukemia, or even of ALL or AML. Besides, it is also essential

to subtype ALL to assess the prognosis and to administer specific chemotherapy. For the

last one and a half century hematopathologists across the globe have been dependent on

visual assessment of blood samples for the diagnosis and classification of leukemia. Such

human visual evaluation is time consuming, subjective and inconsistent in comparison

to computerized analysis of PBS images which is more accurate, rapid and quantitative.

Such automation requires suitable use of image processing and pattern recognition

algorithms for improving the ALL screening accuracy.

In this thesis, attempts have been made for detecting and subtyping ALL from blood

microscopic images using image analysis and machine learning methods. Chapter 2

deals with segmentation of Leishman stained peripheral blood microscopic images.

The strategy followed is to extract the cytoplasm and nucleus image regions from the

lymphocyte images. This step facilitates in the measurement of different morphological

regions of the lymphocyte cell images. In this regard, four algorithms on lymphocyte

image segmentation are proposed. The first algorithm (FLANNS) uses a functional

link artificial neural network to classify the pixels into one of the three regions i.e.

nucleus, cytoplasm and background. Whereas in the second (KIRFCM) and third

(KISCM) algorithm rough and shadowed set based clustering of pixel color intensity

is performed in the kernel feature space respectively. A fast convergence memory based

simulated annealing approach is used in the fourth (MBSA) proposed segmentation
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algorithm. It is observed that while the MBSA algorithm is outperforming in terms of

segmentation accuracy, FLANNS, KIRFCM, and KISCM algorithms have comparable

performance. However, the segmentation performance of FLANNS is limited to creation

of suitable training sets. Comparative analysis demonstrates the efficacy of the proposed

segmentation schemes.

In Chapter 3, a novel image processing based approach is developed to characterize

a lymphocyte as a mature lymphocyte or lymphoblast in PBS images. Preprocessing,

segmentation, and feature extraction have been performed using various techniques.

Here, the lymphocyte characterization system is developed based on certain new features

i.e. contour signature and Hausdorff dimension. A total of 44 features are extracted

from the segmented nucleus and cytoplasm images. Feature selection technique is

implemented for selecting features with potentially discriminating capability amongst

both the classes. These features which comprises of morphological, textural and color

features are applied to five independent and the proposed three member ensemble of

classifiers (EOC3) for classifying the lymphocyte images, and the performance is studied.

Better classification accuracy (94.73%) is observed with EOC3 as compared to all other

individual classifiers. However, the execution time for the ensemble classifier has been

found to be higher than that of individual classifiers.

An automated system for the FAB classification of lymphoblast images is presented

in Chapter 4. Key discriminating features are extracted from the segmented nucleus

and cytoplasm regions of the lymphoblast images. These features are used to classify

the lymphoblast images into L1, L2 and L3 subtypes. One way ANOVA is adopted to

statistically evaluate these features and is used to select an optimal feature subset (32)

from the 38 features for supervised classifiers. The highest accuracy (97.37%) can be

achieved using a five member ensemble classifier system (EOC5) and 92.98% accuracy

is achieved using SVM classifier based on optimal set of features.

The problem of automated WHO classification of lymphoblast images is considered

in Chapter 5. Nucleus and cytoplasm region extraction is performed using the Markov

Random Field model based image segmentation algorithm. Specific features used

for WHO classification includes detecting presence of nucleoli, nucleus and cytoplasm

protrusions and measuring cytoplasmic basophilia. The classification of lymphoblasts

into pre–B and pre–T is developed based on 33 significant features. It provides an

accuracy of 94.29% with a average sensitivity of 87.98% and a specificity of more than

95% using a decision tree classifier (DTC).
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Additionally, a quantitative tool for the classification of acute leukemia blast cell

images based on lineages have been proposed in Chapter 6. Initially, nucleus and

cytoplasm region are extracted from blast images using FLANNS scheme. Subsequently,

features are extracted to differentiate the blast images into lymphoid and myeloid

subtypes. Mutual information based scoring method indicates that 28 features are

informative, and are used to select an optimal feature subset out of 34 extracted features.

During classification the blast cells are categorized automatically as ALL or AML blast

using a supervised classifier. The highest accuracy has been achieved as 96.43% by

combining shape, texture and color features using an ensemble of decision tree classifiers

(EDTC).

The proposed segmentation schemes along with a number of reported schemes

are simulated for lymphocyte and myeloblast images. Performance measure like

segmentation error rate is used to evaluate the segmentation accuracy. In addition,

the segmentation results are evaluated visually. Altogether, the proposed schemes

exhibit superior performance to their counterparts. Moreover, simulations have been

performed for all the proposed schemes using standard supervised classifiers for feature

classification in different situations. It is observed from the experimental evaluation that

the performance of ensemble classifier is better than than that of individual classifiers

in most of the PBS image data–sets.

Scope for Further Research

The research findings made out of this thesis has opened several auxiliary research

directions, which can be further investigated. The segmentation scheme can be

enhanced by including techniques that can lead to segmentation of overlapping cells

as well. The proposed schemes, which mostly deal with computer aided detection

and subclassification of ALL, can be extended to AML. In ensemble learning classifier

system, there exists multiple classifier processes which can be executed in parallel for

better response time. Another promising research direction to pursue is to develop

an automated prognostic scoring system for ALL. Moreover, further investigation can

be made to develop a low cost instrument which can be used as an alternate to flow

cytometer.
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