
XSS Attack Prevention

Using

DOM based filtering API

Shende Dinesh Ankush

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XSS Attack Prevention

Using

DOM based fitering API

Dissertation submitted in

May 2014

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Shende Dinesh Ankush

(Roll 212CS2102)

under the supervision of

Dr.Sanjay Kumar Jena

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

dedicated to my family and friends...

Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Dr. Sanjay Kumar Jena

Professor

May , 2014

Certificate

This is to certify that the work in the thesis entitled XSS Attack Prevention Using

DOM based filter by Shende Dinesh Ankush, bearing roll number 212CS2102, is a

record of an original research work carried out by him under my supervision and

guidance in partial fulfillment of the requirements for the award of the degree of

Master of Technology in Computer Science and Engineering . Neither this thesis

nor any part of it has been submitted for any degree or academic award elsewhere.

Dr.Sanjay Kumar Jena

Acknowledgement

This thesis, however an individual work, benefited in several ways from different

people. Although it would be easy to enlist them all, it would not be easy to

appreciate their efforts.

The patient guidance and support of Prof. Dr.Sanjay Kumar Jena inspired me to

work with full strength. His profound insight has guided my thinking to improve

the final product. My earnest gratefulness to him.

It is indeed a privilege to be associated with Dr.S.K.Rath HOD,Department

of Computer Science and Engineering and all faculties from the department.

They have made available their support in a number of ways.

Many thanks to my friend and fellow research colleagues at NIT Rourkela.

It was delight to work with you all and special thanks to Ph.D. scholars Asish

Kuamr Dalai,Jitendra Kumar Rout and Santosh Kumar Sahoo for valuable

guidance and suggestions during this work.

Finally,I am grateful to all of my friend for continuous motivation and

encouragement.Last but not least to my family having faith in me and always

supporting me.

Shende Dinesh Ankush

Author’s Declaration

I hereby declare that all work contained in this report is my own work unless

otherwise acknowledged. Also, all of my work has not been submitted for any

academic degree. All sources of quoted information has been acknowledged by

means of appropriate reference.

Shende Dinesh Ankush

Roll: 212CS2102

Department of Computer Science

National Institute of Technology,Rourkela

Abstract

Cross-site scripting (XSS) is a type of vulnerability typically found in Web

applications that enables users to input data and uses user submitted data

without proper sanitation. XSS enables attackers to inject client-side script into

Web pages viewed by other users.A cross-site scripting vulnerability present in

web application may be used by attackers to bypass access controls such as the

Same Origin Policy(SOP). Cross site-scripting is ranked 3rd among list of Top

10 vulnerability mentioned in OWASP (Open Web Application Security Projects).

Some of existing solutions to XSS attack include use of regular expressions to

detect the presence of malicious dynamic content that can easily bypassed using

parsing quirks and client side filtering mechanisms such as Noscript and Noxes

tool which require security awareness by user that cannot be guaranteed.Some of

existing solutions are unacceptably slow and can be bypassed .Some of them as

too restrictive resulting in loss of functionality.

In our work,we developed server side response filtering API that will allow

benign HTML to pass through it but blocks harmful script. It does not require

large amount of modification in existing web application. Proposed system is

having high fidelity and low response time.

Keywords: Cross Site Scripting, Web Security, Injection attack, Server side filter,Input

sanitation,Document Object Model

Contents

Certificate iii

Acknowledgement iv

Declaration v

Abstract vi

List of Figures x

List of Tables xi

1 Inroduction 1

1.1 Types of XSS attacks . 3

1.1.1 Non-persistent/Reflected XSS Attack 3

1.1.2 Persistent/Stored XSS attack 6

1.1.3 DOM based XSS attack . 7

1.2 Impact of XSS attack . 7

1.2.1 Cookie stealing and account hijacking 8

1.2.2 Misinformation . 8

1.2.3 Denial of Service . 8

1.2.4 Browser exploitation . 9

1.3 Motivation . 9

1.4 Thesis Layout . 9

vii

2 Literature Survey 11

2.1 Document Object Model . 11

2.2 Same Origin Policy(SOP) . 12

2.2.1 Weakness in Same Origin Policy 13

2.3 Content Security Policy . 13

2.3.1 Weakness in Content Security Policy 14

2.4 Server side XSS mitigation . 14

2.4.1 AntiSamy . 14

2.4.2 HTML Purifier . 15

2.4.3 SWAP . 15

2.4.4 XSS-GUARD . 16

2.4.5 deDacota . 16

2.5 Client side XSS mitigation . 17

2.5.1 Noxes . 17

2.5.2 XSS Auditor . 18

2.6 Client and server side mitigation . 18

2.6.1 Document Structure Integrity model 18

2.6.2 BEEP . 19

3 Designing of DOM based XSS Filter 20

3.1 Threat Model . 20

3.1.1 HTML5 vulnerable features 20

3.1.2 Parsing quirks . 21

3.1.3 Event Attributes . 22

3.1.4 Vulnerable DOM properties 23

3.1.5 Links pointing to external contents 23

3.1.6 Data URI’s . 24

3.1.7 Encoded Attribute Values 24

3.1.8 Cascaded Style Sheet vectors 25

3.1.9 History Tampering . 26

3.1.10 Vectors embedded in SVG files and <SVG>tag 26

viii

3.1.11 HTML tag and attributes 26

3.1.12 Special tags and attributes 27

3.2 Problem Statement . 27

3.3 Proposed Solution . 28

4 Implementation and Results 30

4.1 Implementation Details . 30

4.1.1 Parser Selection . 30

4.1.2 Parser modification . 31

4.1.3 Filter deployment . 31

4.1.4 Results . 32

5 Conclusions and Future Work 34

Bibliography 36

List of Figures

1.1 Reflected XSS attack flow . 4

1.2 URL containing malicious script . 4

1.3 Encoded URL of fig 1.2 containing malicious script 5

1.4 Search with normal search query 5

1.5 Search with HTML content . 5

1.6 Search with malicious input . 6

1.7 Stored XSS attack flow . 7

2.1 Simple HTML code . 12

2.2 DOM structure of HTML given above 12

2.3 Relaxing SOP using document.domain 13

4.1 Changes in web.xml needed for implicit filtering 31

4.2 Response Time Comparison . 33

List of Tables

3.1 Event attributes in HTML5 used for XSS 22

3.2 DOM properties can be used for XSS attack 23

3.3 HTML tags and attributes and their allowed file types 27

4.1 Comparison of various HTML parsers 30

4.2 Statics of Attack detection and filtering 32

4.3 Statics of response time of filter . 33

Chapter 1

Inroduction

Web 2.0 allows web application users to interact and collaborate with each other in

a social media dialog as creators of user-generated content in a virtual community,

as opposed to sites where individuals are constrained to view passive contents.

Which resulted in sudden increase in social networking sites, and web applications

which deliver dynamic content to the clients and increase in the user created

HTML content in the World Wide Web.

But largely Web developers ignored the security aspects of the websites which

resulted in continuous Cyber-attacks on them. There are lots of vulnerabilities

still present in web sites as list below and hackers are continuously finding new

attacks to exploit these vulnerabilities [4].

• Injection

• Broken Authentication and Session Management

• Cross-Site Scripting (XSS)

• Insecure Direct Object References

• Security Misconfiguration

• Sensitive Data Exposure

• Missing Function Level Access Control

1

Inroduction

• Cross-Site Request Forgery (CSRF)

• Using Components with Known Vulnerabilities

• Unvalidated Redirects and Forwards

We will be discussing XSS attack in detail in this work.Cross-site scripting

(XSS) is a type of web security vulnerability typically found in Web applications

that accepts user inputs.XSS enables attackers to insert client-side script into Web

pages viewed by other users.Restrictive access control mechanism like Same Origin

Policy(SOP) can be bypassed using XSS attack.Cross-site scripting is ranked 3rd

in Top 10 vulnerability list of OWASP (Open Web Application Security Projects).

Impact of XSS attack depends on the degree of sensitivity of the data

handled by the vulnerable website and the security mitigation implemented by

the administrator. This impact may be range from pretty low to significantly

high. Cross-site scripting uses known loopholes present in web-based applications,

servers or plug-in systems on which they rely. Exploitation of one of above

loopholes allows insertion of malicious content into the contents being delivered

from the compromised site. When the resulting compromised content arrives at

the user web browser, it is considered as it is delivered from the trusted source,

and thus operates under the permissions granted to that access data associated

with source website. Attacker can gain privileged access to highly sensitive data,

such as session cookies, and other information stored by browser on user behalf by

finding different ways to inject malicious script into web pages. Cross-site scripting

attacks are special case of code injection.

Cross site scripting (XSS) is type of attack deployed at application layer of

network hierarchy. XSS commonly targets scripts embedded in a page which

are executed on the client-side (in the users web browser) rather than on the

server side. XSS is a threat arises due to internet security weaknesses of various

client-side technologies such as HTML, JavaScript, VBScript, ActiveX and Flash.

Presence of weakness in these technologies is a main reason for the exploit. XSS

is triggered by manipulation of client-side scripts present in web application in a

2

Chapter 1 Inroduction

way as anticipated by attacker. Such manipulation embeds script in page which

is executed wherever that page is loaded or associated event is performed. In

a classic XSS attack the attacker infects authentic web page with his malicious

client-side script. When a user visits this web page the script is downloaded to

his browser and executed.

One of the basic example of XSS is when a hacker injects a script in a legitimate

shopping site URL. When user clicks on such link he will be redirected to a fake

but identical page. The malicious page would run a script to steal the cookie of

the user surfing the shopping site, and that cookie gets sent to the malicious user

who can now capture the legitimate users session. As no attack is performed on

the shopping site, but still XSS has misused a scripting weakness in the webpage

to trick a user and take command of his session. A trick normally used to make

malicious URLs less clear to recognize is to encode XSS part of URL in any

supported encoding method. And this will make attack URL look harmless to

user who recognizes the familiar URLs and hence they will simply neglect and end

up clicking them which results in exploit.

1.1 Types of XSS attacks

Depending on the process followed for execution of XSS attack,they can be majorly

classified in following categories.

1.1.1 Non-persistent/Reflected XSS Attack

Non-persistent attacks are types of attack in which user provided data present in

request to server is reflected partially of completely in the form of error message,

search result or any other type of response. Non-persistent attacks are delivered

to victim in various ways such as in an e-mail message or link present in other web

site. When user is deceived to click on malicious link which result in submission

of specially crafted form or just browsing of malicious site which will reflect attack

back to user browser and browser will execute that response treating as if it came

3

Chapter 1 Inroduction

from trusted site.

Figure 1.1: Reflected XSS attack flow

As explained above attacker will include script given as below.So when victim

will click on that link then request is sent to webapplication.com with given data

search parameter that are pointing to the script stored at attacker server that will

steal cookie.When webapplication.com sends response then that script will gets

executed at victims browser resulting in cookie stealing attack.

Figure 1.2: URL containing malicious script

In some case attacker can trick victim by encoding the URL parameters in order

hide the parameter from him/her.Below figure show content of URL mentioned in

figure 1.2 encoded in hex encoding scheme.

One of the way to achieve reflected XSS attack through websites search

box.Generally it will accept content from user and display the search results

associated with it and that content also.Fig 1.4 show example that shows search

content and reflected contents.In Fig 1.4 normal content is searched.

Now if same search box is provided with some benign HTML.After reflecting

4

Chapter 1 Inroduction

Figure 1.3: Encoded URL of fig 1.2 containing malicious script

Figure 1.4: Search with normal search query

the query data that HTML is interpreted by browser.And resulting response page

show in Fig 1.5.

Figure 1.5: Search with HTML content

Now attacker can take advantage of this direct usage of user provided data in

response page,he/she can enter some malicious script into search box as shown

in figure 1.6.That script will get executed with access privileges of the web

application.As it is considered as part of that response page.

5

Chapter 1 Inroduction

Figure 1.6: Search with malicious input

1.1.2 Persistent/Stored XSS attack

Stored XSS attacks are more dangerous than other types of XSS. Because malicious

scripts injected by attacker are stored permanently by server in databases or

webpages and served back to other users as normal pages coming from trusted

application and user is interpreting them without proper HTML sanitization.

Various sinks like database, message forum, comment fields and visitor logs are

used to store such malicious scripts permanently, and sent to user browser when

request is made for particular content.

Figure 1.7: Stored XSS attack flow

6

Chapter 1 Inroduction

Above figure 1.7 shows general flow of attack.Attacker inserts script in web

page of vulnerable website.Whenever victim accesses that webpage malicious script

injected by attacker is embedded as content of response page and sent to victims

browser and browser will execute it with same access privileges as that of any

other script or HTML content from that web page.

Persistent attacks are considered to easy for execution in perception of attacker

as once he/she succeed in injection of script it will be stored permanently in

that page and wherever user access that page it gets executed and resulting into

attack,but in case of reflected XSS attack attacker need to trick user to click

malicious links either by social engineering or other means.

1.1.3 DOM based XSS attack

DOM XSS is type cross site scripting attack which arise due to improper handling

of data related with DOM (Document Object Model) present in HTML page.

DOM is standard for accessing and manipulating objects in HTML document.

Every HTML entity present in page can be accessed and modified by using

DOM properties such as document.referrer, document.url and document.location.

Attacker can manipulate or access DOM properties to execute such type of attack.

In the DOM-based XSS, the malicious script does not reach to the web

server. It is executed at client side only.DOM based XSS attack occurs when

user provided untrusted data is interpreted as JavaScript using methods such as

eval(), document.write or innerHTML. The main culprit for these type of attacks

is JavaScript code.

1.2 Impact of XSS attack

Impact of XSS attack totally depends on the sensitivity of the data handled by

vulnerable site. It may range from petty low to significantly high. Below list

mention the various impacts of XSS.

7

Chapter 1 Inroduction

1.2.1 Cookie stealing and account hijacking

Important information such as session ID is stored in cookies which can be stolen

by an attacker, so it is possible for an attacker to steal the user’s identity and

confidential information associate with it. In case of normal users, it will lead

loss of personal information such as bank account credentials and credit card

information. For administrator user having high privileges, if there account is

compromised through XSS, attacker can access web server and associated database

system and thus will have complete control on the web application.

1.2.2 Misinformation

One of the severe threats of XSS is a danger of credentialed misinformation. These

types of attacks can include malware that can spy on user’s browsing activities

and therefore get traffic statistics, which leads to loss of privacy. Other type of

misinformation is that malicious code can modify the appearance of the content

of the page, after it is interpreted by the web browser.

1.2.3 Denial of Service

In view of an enterprise, it is critical that their Web applications must be accessible

at all times. However, malicious scripts can cause loss of availability. Loss if

availability can be achieved by redirecting user to different page whenever he tries

to access particular legitimate page which can be achieved through XSS. Past

example of XSS attack was spread of XSS worm in social network site Myspace.com

which resulted in Denial of Service (DOS) attack. Also malicious script can crash

user browser by using script that will throw alert boxes infinitely hence user is not

allowed to access particular page.

1.2.4 Browser exploitation

Malicious script can route client browser to attackers site and then attacker can

take benefit of security vulnerabilities present in web browser to have full control

8

Chapter 1 Inroduction

over user computer by executing various system commands like installing Trojan

horse programs on the client or upload local data containing information about

user credentials.

1.3 Motivation

Keeping the research directions a step forward, it has been realised that there

exists enough scope to new research work. The previous work involving server

side filters are checking for JavaScript and blindly blocking it without checking

that they are harmful or benign scripts.

The idea of the proposed project work leads to development of server side

API that will check for JavaScripts and it’s intent.And filter will allow or block it

depending on it’s malicious or benign intents. This filtering is done on response

generated by server before sending it to client.

1.4 Thesis Layout

Rest of the thesis is organized as follows —

Chapter 2: Literature Survey It provides the analysis of existing client and

server side mitigation mechanism available to detect and prevent XSS attack and

their limitations.

Chapter 3: Design of DOM based XSS filter In this chapter, we will

discuss various factor considered during design of filter.It also vulnerable entities

present in HTML and how to negotiate them in order to prevent XSS attack.

Chapter 4: Implementation and Results This chapter includes the results

obtained from implemented filter and comparison with existing filters with respect

response time and fidelity.

9

Chapter 1 Inroduction

Chapter 5:Conclusion and Future Work This chapter involves analysis of

our work and limitation of current work.It also provides in sites of future work to

be done to remove those limitations.

10

Chapter 2

Literature Survey

In this chapter we discuss existing security measures employed by browser and

already existing techniques to avoid XSS attack.

2.1 Document Object Model

The Document Object Model (DOM) is a programming API for accessing and

modifying XML documents. DOM defines the logical structure of documents and

different ways of access and manipulation of document. In the DOM specification,

the term ”document” is used in the broad sense, XML is being used as a means of

representing different formats of information that can be stored in heterogeneous

systems, and much of this would interpret as data rather than as documents.

However, XML presents this data as documents, and the DOM may be used to

control this data

With the Document Object Model, programmers can create and build

documents, explore its structure, and add new elements, edit or delete existing

elements and content. Any entity present in HTML or XML document can be

accessed, changed, deleted or added using the Document Object Model, without

any restrictions.

11

Chapter 2 Literature Survey

Figure 2.1: Simple HTML code

Figure 2.2: DOM structure of HTML given above

2.2 Same Origin Policy(SOP)

Same origin policy allows running scripts on pages originating from the same

website, i.e. same combination of protocol, domain and port number to access the

DOM of each other, with no specific restrictions, but prevents access to DOM

on different websites. This mechanism has particular importance for modern

web applications that rely heavily on HTTP cookies to maintain sessions of

authenticated users, as servers uses HTTP cookies information to reveal sensitive

information or take action of status change. A strict separation between content

provided by unrelated sites should be maintained at the client side to prevent the

loss of confidentiality or data integrity [21].

12

Chapter 2 Literature Survey

2.2.1 Weakness in Same Origin Policy

Sometimes SOP is considered as too restrictive for large websites having different

sub domains. In order to have communication between different sub domains

present in one parent domain. The ’document.domain’ property is used. It is

possible to have communication between foo.example.com and bar.example.com

by down sampling the domains of both using document.domain method as shown

in below figure [22].

Figure 2.3: Relaxing SOP using document.domain

But this can result in security hole as this two domains can have access to

DOM properties of each other can result in arbitrary mess.

2.3 Content Security Policy

W3C specification provides the ability to guide the client browser from the location

and/or type of resources that are allowed to load. Loading behavior is defined by

CSP specification called directive. It defines loading behavior for a target resource

type. A newly developed web application can use CSP to mitigate XSS attack by

allowing particular scripts for execution at client side that are specified in policy

and blocking inline JavaScripts.

13

Chapter 2 Literature Survey

2.3.1 Weakness in Content Security Policy

CSP is just a additional layer of security applied at client side.It is not a

replacement of traditional mechanism of validation and escaping of input and

output on the server-side.It also requires manual changes to be done in each

and every page of website.Applying CSP manually is tedious task for large web

application because the web administrators have to change server-side code to

identify which codes and resources (e.g. JavaScirpts) are used by web pages. And

also these scripts need to be isolated from web page.

2.4 Server side XSS mitigation

There are several solutions implemented at server side for prevention XSS

attacks.They are as follows

2.4.1 AntiSamy

AntiSamy is a project by OWSAP (Open Web Application Security Project) for

prevention of XSS. It is input validation and output encoding tool that provides

a set of APIs that can be invoked to filter and validate the input against XSS and

ensure user input supplied conforms to the rules of an application. The tool uses

NekoHTML and Policy file for validating HTML and CSS inputs. NekoHTML is

a simple HTML parser that is used to parse given HTML to XML document. The

policy file includes entities like common attributes, regular expressions, general

tag, directives, CSS and other rules used for validation. It can be modified as per

requirement of web administrator [1].

Limitation

There are lost issues regarding interpretation of HTML5 and CSS3.There are lots

of attack vectors that can bypass Antisamy [2].

14

Chapter 2 Literature Survey

2.4.2 HTML Purifier

HTML Purifier is an HTML filter library standards compliant written in PHP.

HTML Purifier will remove all sure malicious code (XSS attack vectors) with a

complete analysis, comparing with whitelist of permissible entities; in addition to

this it will ensure that given documents are standards compliant, which is achieved

with a comprehensive knowledge W3C specifications [13].

2.4.3 SWAP

SWAP uses the fact that user browser is final receiver of JavaScript and will

interpret them at client machine. Thus by using a web browser, they are able

to differentiate between benign (i.e. scripts initially associated with the web

application) and JavaScript code which is injected. In first stage, it will encode all

JavaScript present in original web application to syntactically invalid identifiers

(script IDs).In second stage, it will load each and every requested page in the Web

browser connected with the reverse proxy, and check for scripts which browser is

executing. It is clear that all other scripts browser trying to execute have not been

encoded in the first encoding stage hence they are not expected in the content, i.e.

injected malicious scripts. In third stage, after verifying that absence of malicious

scripts in the page, it decodes all script IDs encoded in first stage and restore it

to original code, and return the page to the client [33].

Limitations

SWAP introduces a performance overhead as it uses a full-sized Web browser for

JavaScript detection as it offers important assistances of complete vulnerability

detection; same thing can be achieved using more light-weight web filtering tools,

such as Crowbar or HtmlUnit. As SWAP uses Firefox browser for detection of

JavaScript, it will be perfect tool for users using Firefox for browsing. But if

user is using different browser then that Firefox used for detection JavaScript will

not the ideal option as each and every other web browser has different ways of

interpreting the HTML and script contents. Some scripts are considered as benign

15

Chapter 2 Literature Survey

for one class of browser but for other it may be malicious.

2.4.4 XSS-GUARD

In XSS-GUARD, the main idea for differentiating between benign and malicious

content is to generate a duplicate response for every (real) HTTP response

produced by the web application. The reason behind the generation of the

duplicate response is to produce the desired set of authorized script sequence

corresponding to the HTTP response. When a HTTP response is generated by web

application, XSS-GUARD will identify the set of scripts present in real response.

The technique used of identification of script requires modified web browser code.

XSS-GUARD then check for presence of script which is not authorized by web

application. This is done by using duplicate response that contains the scripts

which are intended by web application. And presence of intended script is nothing

but XSS attack vector, so XSS-GUARD will remove those scripts and send the

resulting response to the client [25].

Limitations

XSS-GUARD’s current implementation depends on JavaScript detection

component of Firefox browser family so it will fail to identify malicious scripts

based on ’quirks’ targeting other browsers(like IE and Safari). XSS-GUARD will

give different output for attack which are targeted to browsers other than Firefox.

2.4.5 deDacota

deDacota provides novel approach to automatically separate code and data in

a web application using static analysis. Its aim is to transform a given web

application to the new version using statical transformation with preserving the

semantics of the application and produce web pages that will have all its inline

JavaScript code transferred to external JavaScript file. These JavaScript files are

only source of scripts executed by web application adhering to Content Security

16

Chapter 2 Literature Survey

Policy (CSP). The remaining JavaScripts are ignored while interpreting the page

[28].

Limitations

deDacota technique mainly focus on separating inline JavaScript code (that is,

JavaScript inside the <script>and </script>). But still there are other ways of

execution of JavaScript attack vectors, like JavaScript code in HTML attributes

(like ’onfocus’ event handler attributes) and inline Cascading Style Sheet (CSS)

styles, the techniques described in this technique can be extended to handle HTML

attributes and inline CSS by rewriting them using approximation.

deDacota’s approach to filter dynamic JavaScript may fail to preserve

application layout as they dynamic content is sanitized as string consisting

multiple JavaScript contexts.

2.5 Client side XSS mitigation

2.5.1 Noxes

Noxes is a Microsoft-Windows-based personal web firewall application that runs

as a daemon service on the user’s system. A personal firewall alerts the user if

a new connection request is detected that does not match the existing firewall

rules. The user can choose to block the connection, allow, or create a permanent

rule that specifies what to do if an application of this type is detected again in

the future. Noxes works as a web proxy that gets HTTP requests on behalf of

the user’s browser. Therefore, all web browser connections go across Noxes and

decision about blocking or allowing particular content depends on current security

policy. [30]

Limitations

Noxes is a client-side web-proxy that conveys all Web traffic and acts as

an application-level firewall. However, in comparison to SWAP, Noxes needs

17

Chapter 2 Literature Survey

user-specific settings (firewall configuration), and also it requires user interaction

when any new event occurs that does not matches with the current firewall rules.

Such user awareness is not always guarantied.

2.5.2 XSS Auditor

XSS Auditor achieves high performance and high reliability by bringing the

interface between the browser HTML parser and JavaScript engine. Its

implementation is enabled by default in Google Chrome.XSS Auditors Post-parser

examines the semantics of an HTTP response, as interpreted by the browser,

without the need for an error-prone time consuming simulation. Blocks suspicious

attacks prevent injected script from being passed to the JavaScript engine rather

than risk making changes in the HTML code [24].

Limitation

XSS Auditor considers only reflected XSS vulnerabilities, where the byte sequence

chosen by the attacker appears in the HTTP request and response generated for

that request.It does not mitigate other variants of XSS attack.

2.6 Client and server side mitigation

2.6.1 Document Structure Integrity model

This technique has a new randomized scheme, which is similar to the instruction

set randomization to provide insulation against a robust adaptive attacker. It

preserves the structural integrity of the web application code throughout lifetime

of code even during dynamic updates and operations performed by execution of

client-side code. It ensures that the limitation of untrusted data is consistent with

processing the browser. It removes major difficulties with server-side sanitization

mechanism [32].

18

Chapter 2 Literature Survey

2.6.2 BEEP

BEEP (Browser-Enforced Embedded Policies) intends use of modified web browser

of checking execution attempts of all scripts and also checks with policies provided

by server. Two types of policies are suggested. First policy consists of list of

hashes which are white-listed by web application that is checked by using modified

browser. Second policy deals with highlighting of nodes in HTML source which

are supposed to contain user provided contents, so the browser can determine the

script’s position in DOM tree to check if it is in the user provided content. The

modified browser decides the fate of JavaScript execution by comparing it with

policy file. If current policy allows such JavaScript then it is executed else it is

blocked [29].

Limitations

This method requires modification in server software as well as in the client

browser. That is, it needs to be implemented by users, but most of users are

unaware of damage due to XSS and some of them are unwilling to do additional

effort for security of their systems.

19

Chapter 3

Designing of DOM based XSS

Filter

In this section we will consider factors considered will differentiating benign HTML

from malicious scripts. Also algorithm implemented by filter and deployment of

filter.

3.1 Threat Model

Before discussing actual design of filter, we discuss regarding the types of attacks

handled and scope of the work, our solution is implemented at server side with little

modification to existing web application. Our proposed solution only designed to

protect from server side XSS attacks i.e. reflected and stored XSS attacks.

Attacker exploits different vulnerabilities present in HTML features such as

tags and attributes. We try to classify attack vector in different classes as follows

[14].

3.1.1 HTML5 vulnerable features

• ”form” and ”formaction” attriibutes

Attributes like ”form” and ”formaction” added to HTML5 for

20

Chapter 3 Designing of DOM based XSS Filter

”button” tag these attribute can modify destination of user provided

data in the form.This is achieved by using the ”id” associated to

origin form to access that form and then change its ”formaction”

destination [15]. eg: <form id=”test”></form><button form=”test”

formaction=”http://evilsite.com/store.php”>X </button>

Prevention measure for such things is to not allow user inputed contents to

have these attributes. [15]

• ”autofocus” attribute

If we have two input fields with ”autofocus” attribute then the will

competing for the focus which results in Denial of Service.

• Cross Origin HTML imports

Google chrome supports HTML imports that can fetch resources from

external resources.That imports can access and modify DOM content of

original document [6]. eg: <link rel=”import” href=”test.svg”/>

This can be prevented by not allowing imports from external source or they

can be allowed if they are not malicious after checking them.

• <IFRAME >tag’s ”srcdoc” attribute

The attribute value of ”srcdoc” is interpreted as HTML contents

associated with that ”iframe”.So this contents has full access of that

particular hosting domain.

eg:<iframe srcdoc=”<script>alert(document.cookie)</script>”/>

3.1.2 Parsing quirks

1. Comment Parsing Different browser parse comments differently.It can be a

problem when user submitted input is allowed to contain comments.

eg: <!–<!––>results in

script execution which leads to XSS attack.

21

Chapter 3 Designing of DOM based XSS Filter

2. CDATA parsing Firefox and Opera allow using CDATA section delimiters

in HTML which can be used as ”<![” and ”<![CDATA[”.This can cause

problems for filtering mechanisms from those delimiters can be used for

large obfuscation.

eg:<svg><![CDATA[><img src=xx:x

onerror=alert(2)//”></svg>is example of one of the obfuscated attack

vector.

3.1.3 Event Attributes

Value associated with these attributes is then action taken by system on occurrence

of particular event. This can be used to execute malicious script or access DOM

properties. Hence value associated with such event attribute should be checked

and if they are associated with vulnerable entities then these attributes should be

blocked [9] [20].

Table 3.1: Event attributes in HTML5 used for XSS

HTML entity Event Attributes

Window onafterprint, onbefore, ombeforeunload, onerror,

onhaschange, onmessage, onpageshow, onpagehide,

onrisize, onunload

Form onblur, onchange, oncontextmenu, onfocus, onformchange,

onforminput, oninput, oninvalid, onreset, onselect,

onsubmit

Keyboard onkeydown, onkeypress, onkeyup

Mouse onclick, ondbclick, ondrag, ondrop, onmousedown,

onmousemove, onmouseout, onmouseover, onmouseup

Media onabort, oncanplay, oncanplaythrough, onduratiionchange,

onemptied, onended, onerror, onpause, onpaly, onplayong,

onprogress, onreadystatechange

22

Chapter 3 Designing of DOM based XSS Filter

3.1.4 Vulnerable DOM properties

DOM properties are used too access various entities of document.The entities

accessed by them can be any tag or attribute from that DOM and it can also

access cookie and history associated with that document that can lead in sensitive

information leak and tracking users surf behavior. So content submitted by user

should not have access to such information i.e. user provided content accessing

DOM properties should be blocked [8].

Table 3.2: DOM properties can be used for XSS attack

DOM property Use in Attack

document.cookie This property can be used to access cookies of site

document.location,location.href,

location.replace,location.reload,

window.location,window.top.location,

window.location.reload

These properties are used to modify location of document

and can result in Denial of Service

window.history,history.back,

history.forward, history.go

This property can be used to access history of browser tab

and can also navigate through history

document.write, document.writeln,

document.body.innerHTML

This property can be used to edit page content

document.getElementById,

document.getElementsByName

,document.getElementsByTagName

This property can be used to set value of tags and attributes

in the page

3.1.5 Links pointing to external contents

1. External flash files

Flash files(.swf) can contain ActionScripts and JavaScripts which can be

vector for XSS. As of now we are planning to block every refernce to external

.swf files.

23

Chapter 3 Designing of DOM based XSS Filter

2. External script files

Lot of websites includes JavaScript file(.js) from external sources. There

is possibility that these scripts can be malicious or originally benign but

modified by attacker to perform certain attacks. We are extracting contents

of those files and checking for its intent if malicious they are blocked from

inclusion in the page.

3.1.6 Data URI’s

Data URI’s are considered as self-content entities because the generally data

pointed by external source can be stored in Data URI’s saving the fetch time.So

Data URI’s are considered to be hostile as they can be used to execute JavaScript

stored in them.Values stored in data URI’s can also encoded using base64

encoding in order to bypass the filter. In our work,when handing Data URI’s we

are checking for encoding of base64,if present we are decoding it,and checking if

it contains any malicious scripts. [7]

eg:<object data=”data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==”

></object>is sample example of XSS attack vector.

3.1.7 Encoded Attribute Values

There are different encoding techniques used by attacker in order to bypass filters

which works on regular expression.Following are possible encoding mechanism

supported by HTML and JavaScript [23].

URL encoding

It is of the form ”%XX” with or without trailing semicolons.Where ’X’ is any

hexadecimal digit. e.g:”%3C” represents ”<”.

24

Chapter 3 Designing of DOM based XSS Filter

Decimal HTML character encoding

It is of the form ”�*(X)+[;]”.i.e it begins with ”&#” followed by any number

of zeros,after that ’X’ is any decimal number and optional ending semicolon.

e.g:”<”,”<”,”<” and ”<” represents ”<”.

Hexadecimal HTML character encoding

It is of the form ”&#(x/X)0*(D){2}[;]”.i.e it begins with ”&#” followed by ’x’ or

’X’ after that any number of zeros and then two hexadecimal digits and ends with

optional semicolon. e.g:”<”,”<”,”<” and ”<”

represents ”<”.

Unicode encoding

It is of the form ”\u00XX” where ’X’ is any hexadecimal digit.It starts with ”\u”

followed by two zeros and then two hexadecimal digits eg:”\u003c” and ”\u003C”

represents ”<”.

Hex encoding

It is of the form ”\xDD” where ’D’ is any hexadecimal digit. e.g:”\x3c” and

”\x3C” represents ”<”.

HTML entity encoding

Various symbols in HTML are encoded using HTML entity encoding such as

”"” represent ’”’,”&” represents ”&”, ”<” represents ”<”,”>”

represents ”>”,”(” represents ”(” and ”)” represents ”)”.

3.1.8 Cascaded Style Sheet vectors

Internet Explorer supports data for displaying images and supplying stylesheet

information. This can be used to include expression() CSS into a data URI

and execute JavaScript with a <STYLE>@import directive. eg:<style>@import

25

Chapter 3 Designing of DOM based XSS Filter

”data:,*%7bx:expression(write(1))%7D”;</style>

CSS properties like ”-o-link” and ”-o-link-source” allow JavaScript as its value

and can exploited by attacker. Opera supports the CSS property ”content” for

style attributes those points to external URL of .svg file which may contain the

dynamic HTML content.

3.1.9 History Tampering

The history.replaceState() and history.pushState() API allows to create and

change the user’s history. An attacker can use this feature to change the

information displayed in the address bar as well as the location DOM object

and thus results in phishing attacks or obfuscate bad intentions. pushState is

used to add a new history entry and replaceState used to modify the current

entry.This uproots about all hints of the real area from the searching history

giving no probability to explore back. The information indicated in the address

bar can’t be trusted any longer when an malicious site execute Javascript.

e.g:<script>history.pushState(0,0,’/imp/bin/i-am-hacked’);</script>

3.1.10 Vectors embedded in SVG files and <SVG>tag

SVG files can contain dynamic HTML contents that can execute JavaScript via

’onload’ events on any element without user interaction. So SVG files should not

be considered as simple image files and need to be handled carefully. e.g:<svg

xmlns=”http://www.w3.org/2000/svg”><script>alert(1)</script></svg>

SVG tag allows ’onload’ attribute which can be used to execute code

without support of any other element. e.g:<svg onload=”javascript:alert(1)”

xmlns=”http://www.w3.org/2000/svg”></svg>

3.1.11 HTML tag and attributes

Some HTML tag and attributes points to link which may be external to website.

But attacker can uses these links to point to malicious contents. So in order to

26

Chapter 3 Designing of DOM based XSS Filter

avoid this we should enlist the tag and attributes with their allowed file types.Table

3.3 provides the list of allowed file types for particular tag and attributes [11] [12].

Table 3.3: HTML tags and attributes and their allowed file types

Tag Attribute Allowed file type

applet code .class

iframe,frame src .gif,.png,.jpg,.jpeg,.bmp,.xbm,.htm,

.html,.php,.asp,.aspx,.jsp

a,area,link href .htm,.html,.asp,.jsp,.aspx,.php,

.swf,.rb,.pl,.cgi

bgsound src .wav,.mid,.au

object classid .class,.py,.rb

object data .htm,.html,.asp,.jsp,.asp,.php,.gif,

.png,.jpg,.jpeg,.bmp,.xbm,.flv,.mov,

.wmv,.rm,.ra,.ram

img,input src,dynsrc,lowsrc .gif,.png,.jpg,.jpeg,.bmp,.xbm

3.1.12 Special tags and attributes

HTML tag <base>with ”href” attribute can change the base address of web

application. Hence it can affect all relative paths referenced in page. Hence we

should not allow attacker from changing that value. Also <script>tag can inject

arbitrary script in web page which is executed with all permissions and prohibit

user from injecting malicious scripts.

3.2 Problem Statement

Any proposed solution should not burden the client with extra efforts such

as installing tools and creating rules or taking decision such as whether to

block or allow particular new address link.Because the user awareness cannot be

27

Chapter 3 Designing of DOM based XSS Filter

guaranteed. Also proposed XSS attack prevention technique should not requires

large modification in existing system. The main challenge in designing solution

is that it should block every attempt of malicious script injection including novel

attack vectors. Because various encoding techniques can be used to bypass the

filter mechanism used. Another challenge during filter design is should not totally

depend on the regular expressions for detection of the attack because such filters

can easily bypassed using various quirks.

As every web administrator focus on reducing response time of its website, the

proposed solution should not largely increase in existing response time. So, there

is trade off between response time and security achieved.

3.3 Proposed Solution

Some of the existing solutions are implementing input filtration mechanism

[26].But escaping the user provided data on input is bad idea as we don’t know

how that data is utilized by application [16]. So in our proposed solution we are

filtering the server response for client request which contains user inserted data

that will be rendered by client browser. So server response filtering will give us

insight into possibility of presence of malicious script and hence we can filter it

out properly [23].

The proposed modified web application will separate the user provided contents

present in response from the original content of web application by inserting

boundary tag. So we will first extract user inserted data from the response and

will check for malicious scripts and then filter them if there is any. After filtering

user data it is again embedded in user response.

Our proposed solution uses DOM based filtering mechanism for detection and

removal of malicious scripts. This filtering mechanism uses HTML parser to

parse user provided data in DOM tree. And then that DOM tree is traversed

as mentioned in Algorithm 1 given below. After filtering malicious script out from

the response the result is sent to client browser. Filter works with white-list based

filtering mechanism.

28

Chapter 3 Designing of DOM based XSS Filter

Algorithm 1 Algorithm implemented for filteration of server response

1: The content is preprocessed to remove various types of encodings discussed in

section 3.1.7.

2: The processed content is parsed using Jsoup HTML parser [18] to DOM.

3: Then resulting DOM is searched for presence of event attributes as discussed

in section 3.1.3.If these attributes are accessing any DOM properties enlisted

in section 3.1.4. Then these event attributes are filtered out from content.

4: Then filtered DOM is searched for presence of attributes like ’formaction’

discussed in section 3.1.1 and these attributes are filtered out from DOM.

5: Then DOM is searched for attributes enlisted in section 3.1.11 and checked for

their values against allowable list. If attribute value does not matches with

white-list then they are removed else they are retained in output DOM

6: Then filtered DOM is checked for embedded CSS in <style>tag and style

attribute. If these CSS content contains any malicious scripts then these CSS

contents are dropped else retained in DOM.

7: Then DOM is checked for <svg>tag and if it points to any dynamic HTML

content then that attribute of <svg>tag is blocked.

8: Then filtered DOM is checked for presence of combination of tag-attribute

pair discussed in section 3.1.11 and checked for value of attribute checked

with allowable extension. If value file extension is allowed file list then that

attribute is allowed else filtered out.

9: Then resulted DOM is searched for Data URIs .The values associated with

them is decoded using proper decoding scheme and checked for malicious

content if present that Data URI is removed else retained.

10: Then resulted DOM is checked for special tags as discussed in section 3.1.12

and treated properly.

29

Chapter 4

Implementation and Results

4.1 Implementation Details

4.1.1 Parser Selection

There are number of HTML parsers implemented in Java, we compared them on

the basis of their HTML parsing capabilities, handing of malformed HTML to

produce clean HTML and support to updated HTML5 features [5].

Table 4.1: Comparison of various HTML parsers

Parser HTML Parsing Clean HTML Update HTML

Jaunt API Yes Yes No

JTidy Yes No No

Validator.nu HTML Parser Yes No No

Jsoup Yes Yes Yes

We have selected Jsoup HTML parser [18] in our proposed work as it is

considered as robust among existing parsers.

30

Chapter 4 Implementation and Results

4.1.2 Parser modification

We have modified comment handling mechanism of Jsoup parser, originally Jsoup

parser was keeping comments are parsing the content. As there are lot of attack

vectors which are based on comment based parsing quirks ,we modified Jsoup, so

that it will remove all the comments present in content after it. This will provide

mitigation against whole family of comment based parsing quirks.

4.1.3 Filter deployment

We have filtered server response using Java Filter Interface [17].For implementing

filter we have created class named ContentFilter.java which will implement

Java Interface ’Filter’.In doFilter() method of this class we will chain the

response to another class named ’DummyResponse.java’ which extending

’HttpServletResponseWrapper’. In this calls we are extracting user provided

contents from the response and calling our filtering API. The filtered output from

API is embedded in response and it is sent to client.

In order to implicitly call the filter for every page we need to change in the

’web.xml’ file as shown below.

Figure 4.1: Changes in web.xml needed for implicit filtering

31

Chapter 4 Implementation and Results

4.1.4 Results

Fidelity Results

We have tested our filter on around 230 attack vectors from XSS Cheat Sheet

[20],HTML5 security cheat sheet [15] and other sources [19].Out of 230 attack

vector some off them are not effective due changes in modern browsers.

For testing we have created on XSS vulnerable web application using JSP and

deployed on Apache Tomcat 7.0 web server [3].We have tested on 5 majorly used

web browsers. Following table shows the analysis of attack vectors.

Table 4.2: Statics of Attack detection and filtering

Browser No. effective

attack vectors

Attack detected

and filtered

by proposed

solution

Undetected

attack by

proposed

solution

Chrome 34.0.1847.131 106 106 0

Opera 20.0.1387.91 115 115 0

Firefox 29.0.0 108 108 0

IE 8.0.7600.16385 119 119 0

Safari 5.1.7 104 104 0

Response Time Analysis

For response time analysis we used Firefox browser and Apache Tomcat 7.0 as

web server [3] both residing on same machine. We used Firebug extension [10] in

Firefox for calculation of response time. For each page of mentioned size we have

done 20 reloads and average time is used for analysis.

We have also compared response time results with SWAP [33] and comparison

results are shown in graph shown in figure 4.2.

32

Chapter 4 Implementation and Results

Table 4.3: Statics of response time of filter

Size

KB(Approx.)

Response Time

w/o filter(in ms)

Response Time

with filter(in

ms)

Difference in

Response Time

(in ms)

Response Factor

2 8.6923 33.2307 24.5384 2.823

10 14.461538 55.08255 40.6210 2.8089

50 39.9580 151.7272 111.7692 2.7961

100 85.0019 306.6676 221.6657 2.6077

200 137.1838 501.1111 363.9273 2.6528

Figure 4.2: Response Time Comparison

33

Chapter 5

Conclusions and Future Work

Our proposed filtering API will filter the server response rather that user input

which will ensure the more insight in attack mitigation. The proposed mechanism

employs the API for detection of malicious scripts rather than using modified web

browser [33] which will result in low overhead as discussed in result section, and

also it will block attack vectors targeted to almost all popularly used web browser

rather than for one which was used for malicious script detection [27].

Proposed method requires less modification at server application as compared

to other solutions [29] [25]which will not burden web developer. It does not require

any modification at client side hence user awareness not needed in deployment and

usage of the mechanism. It also provides loss of functionality by allowing benign

HTML content to pass through it.

As it is implemented as server side it will only detect and block server side XSS

attacks. It will not mitigate DOM based XSS attacks [31]. Our filtering mechanism

uses white-list based approach and we tried to cover all known XSS vulnerabilities

present in HTML5 and JavaScript still date, but our filtering mechanism may be

bypassed by using zero-day XSS attack vector.

34

Conclusions and Future Work

Scope for Further Research

Our proposed work does not provide mitigation against DOM based(Client side)

XSS attack [31]. In future this type of attack mitigation can be achieved by

applying filtering at client side with modification in browser. And also various

new techniques can be used to strengthen filtering mechanism to block all types

of XSS attacks.

35

Bibliography

[1] “Antisamy.” https://code.google.com/p/owaspantisamy, Jan. 2014.

[2] “Antisamy issues list.” https://code.google.com/p/owaspantisamy/issues/list, Mar.

2014.

[3] “Apache tomcat 7.0.” http://tomcat.apache.org/tomcat-7.0-doc/index.html, Apr.

2014.

[4] “Common vulnerabilities and explosures database.” http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=xss,

Jan. 2014.

[5] “Comparision of html parsers.” http://en.wikipedia.org/wiki/Comparison_of_HTML_parsers,

Mar. 2014.

[6] “Cross origin html imports.” http://www.w3.org/TR/html-imports/, Jan. 2014.

[7] “Data uri scheme.” https://tools.ietf.org/html/rfc2397, Jan. 2014.

[8] “Dom vulnerable property list.” http://www.webappsec.org/projects/articles/071105.shtml,

Jan. 2014.

[9] “Event attributes supported by html5.” http://www.w3.org/TR/html-imports/, Jan.

2014.

[10] “Firebug extension.” http://getfirebug.com/, Apr. 2014.

[11] “Html attribute list.” https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes,

Jan. 2014.

[12] “Html element list.” https://developer.mozilla.org/en-US/docs/Web/HTML/Element,

Jan. 2014.

[13] “Html purifier.” http://http://htmlpurifier.org/, Jan. 2014.

[14] “Html tag and attribute vulnerable to xss.” https://developer.salesforce.com/page/Secure_Coding_Cross_Sit

Jan. 2014.

36

https://code.google.com/p/owaspantisamy
https://code.google.com/p/owaspantisamy/issues/list
http://tomcat.apache.org/tomcat-7.0-doc/index.html
 http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=xss
http://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
http://www.w3.org/TR/html-imports/
 https://tools.ietf.org/html/rfc2397
 http://www.webappsec.org/projects/articles/071105.shtml
http://www.w3.org/TR/html-imports/
http://getfirebug.com/
 https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
 https://developer.mozilla.org/en-US/docs/Web/HTML/Element
http://http://htmlpurifier.org/
 https://developer.salesforce.com/page/Secure_Coding_Cross_Site_Scripting

Bibliography

[15] “Html5 security cheatsheet.” http://html5sec.org/, Jan. 2014.

[16] “Input encoding is harmful.” http://lukeplant.me.uk/blog/posts/why-escape-on-input-is-a-bad-idea/,

Jan. 2014.

[17] “Java response filter.” http://docs.oracle.com/javaee/5/tutorial/doc/bnagb.html,

Apr. 2014.

[18] “Jsoup html parser.” http://jsoup.org/, Apr. 2014.

[19] “New xss attack vectors by @soaj1664ashar.” http://pastebin.com/u6FY1xDA, Apr. 2014.

[20] “Rnake cheat sheet.” https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet,

Jan. 2014.

[21] “Same origin policy.” http://en.wikipedia.org/wiki/Same-origin_policy, Jan. 2014.

[22] “Same origin policy weakness.” https://code.google.com/p/browsersec/wiki/Part2,

Jan. 2014.

[23] “Xss prevention cheatsheet.” https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Ch

Jan. 2014.

[24] Bates, D., Barth, A., and Jackson, C., “Regular expressions considered harmful in

client-side xss filters,” in Proceedings of the 19th international conference on World wide

web, pp. 91–100, ACM, 2010.

[25] Bisht, P. and Venkatakrishnan, V., “Xss-guard: precise dynamic prevention of

cross-site scripting attacks,” in Detection of Intrusions and Malware, and Vulnerability

Assessment, pp. 23–43, Springer, 2008.

[26] BOGANATHAM, K. K., “Server side api to secure xss,” 2009.

[27] Chandra, V. S. and Selvakumar, S., “Bixsan: browser independent xss sanitizer for

prevention of xss attacks,” ACM SIGSOFT Software Engineering Notes, vol. 36, no. 5,

pp. 1–7, 2011.

[28] Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., andVigna, G.,

“dedacota: toward preventing server-side xss via automatic code and data separation,” in

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security,

pp. 1205–1216, ACM, 2013.

[29] Jim, T., Swamy, N., and Hicks, M., “Defeating script injection attacks with

browser-enforced embedded policies,” in Proceedings of the 16th international conference

on World Wide Web, pp. 601–610, ACM, 2007.

37

 http://html5sec.org/
http://lukeplant.me.uk/blog/posts/why-escape-on-input-is-a-bad-idea/
http://docs.oracle.com/javaee/5/tutorial/doc/bnagb.html
http://jsoup.org/
http://pastebin.com/u6FY1xDA
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://en.wikipedia.org/wiki/Same-origin_policy
https://code.google.com/p/browsersec/wiki/Part2
 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Bibliography

[30] Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N., “Noxes: a client-side solution

for mitigating cross-site scripting attacks,” in Proceedings of the 2006 ACM symposium on

Applied computing, pp. 330–337, ACM, 2006.

[31] Lekies, S., Stock, B., and Johns, M., “25 million flows later: large-scale detection

of dom-based xss,” in Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, pp. 1193–1204, ACM, 2013.

[32] Nadji, Y., Saxena, P., and Song, D., “Document structure integrity: A robust basis for

cross-site scripting defense.,” in NDSS, 2009.

[33] Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., and Kruegel, C., “Swap:

Mitigating xss attacks using a reverse proxy,” in Proceedings of the 2009 ICSE Workshop

on Software Engineering for Secure Systems, pp. 33–39, IEEE Computer Society, 2009.

38

	Certificate
	Acknowledgement
	Declaration
	Abstract
	List of Figures
	List of Tables
	Inroduction
	Types of XSS attacks
	Non-persistent/Reflected XSS Attack
	Persistent/Stored XSS attack
	DOM based XSS attack

	Impact of XSS attack
	Cookie stealing and account hijacking
	Misinformation
	Denial of Service
	Browser exploitation

	Motivation
	Thesis Layout

	Literature Survey
	Document Object Model
	Same Origin Policy(SOP)
	Weakness in Same Origin Policy

	Content Security Policy
	Weakness in Content Security Policy

	Server side XSS mitigation
	AntiSamy
	HTML Purifier
	SWAP
	XSS-GUARD
	deDacota

	Client side XSS mitigation
	Noxes
	XSS Auditor

	Client and server side mitigation
	Document Structure Integrity model
	BEEP

	Designing of DOM based XSS Filter
	Threat Model
	HTML5 vulnerable features
	Parsing quirks
	Event Attributes
	Vulnerable DOM properties
	Links pointing to external contents
	Data URI's
	Encoded Attribute Values
	Cascaded Style Sheet vectors
	History Tampering
	Vectors embedded in SVG files and <SVG>tag
	HTML tag and attributes
	Special tags and attributes

	Problem Statement
	Proposed Solution

	Implementation and Results
	Implementation Details
	Parser Selection
	Parser modification
	Filter deployment
	Results

	Conclusions and Future Work
	Bibliography

