
Back End Development and

Unit Test Case Generation for

Collaborative Invention Mining

Abhishek Singh Yadav

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Back End Development and

Unit Test Case Generation for

Collaborative Invention Mining

Dissertation submitted in

May 2014

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Abhishek Singh Yadav

(Roll 212CS1101)

under the supervision of

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

dedicated to Lord Krishna and my beloved family...

Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Certificate

This is to certify that the work in the thesis entitled Back End Development and

Unit Test Case Generation for Collaborative Invention Mining by Abhishek Singh

Yadav, bearing roll number 212CS1101, is a record of an original research work

carried out by him under my supervision and guidance in partial fulfillment of

the requirements for the award of the degree of Master of Technology in Computer

Science and Engineering . Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Place: NIT Rourkela Dr. Durga Prasad Mohapatra

Date: May 23, 2014 Associate Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgement

This dissertation, though an individual work, has benefited in various ways from

several people. Whilst it would be simple to name them all, it would not be easy

to thank them enough.

The enthusiastic guidance and support of Prof. Durga Prasad Mohapatra

inspired me to stretch beyond my limits. His profound insight has guided my

thinking to improve the final product. My solemnest gratefulness to him.

I am also grateful to Prof. S.K.Rath,Head,CSE for his excellent support

throughout my research work. I am greatly indebted to his invaluable advice and

support in almost every aspect of my academic life. My sincere thanks to Prof.

B.Majhi for his continuous encouragement and invaluable support. It is indeed a

privilege to be associated with people like Prof. S.K.Jena, Prof.P.M.Khilar, Prof.

A. K. Turuk, Prof. S.Chinara, Prof. Pankaj Sa, Prof. B. D. Sahoo, Prof.

Ratnakar Dash , Dr. Suman Bhattacharya and Dr. Debiprasad Swain. They

have made available their support in a number of ways.

I have been fortunate to have met great friends throughout my M. Tech

journey. I am forever grateful for their support and encouragement.

I am grateful to all the staffs of the computer science department for their

help in generous help in various ways for the completion of this thesis. Last but

not least, I forever indebted to my parents, my sisters and the rest of my family.

They have been a great source of inspiration for me. This would have not been

possible without their love, support and continuous encouragement.

Abhishek Singh Yadav

Abstract

Software testing plays a very important role in the development process because it

is an essential mean of providing reliability and quality to any software. Designing

and execution of test cases consumes lot of time since it requires planning and

resources manually. To overcome this it is highly required to automate the

generation of test cases.

UML, is a standard modeling language which supports object oriented

technology. It is generally used to depict the analysis and design specification

of software development. UML models are an essential and a rich source of

information for test case design. In this thesis, we present a testing methodology

which is used to generate the unit test cases from UML state chart diagram for

an industrial application

Firstly, we discussed about the CIM, an industrial application which is used for

transforming an Idea through a collaborative interaction into such a state so that

the idea becomes patentable. This application provides a platform to the people

in industry to encourage and enhance their invention skills for an enterprise.

Next we proposed a testing approach to generate unit test cases for the phases

of CIM application using UML state chart diagram. UML model provides a lot

of information which can be used for testing. In our approach, firstly the state

chart diagram is constructed. for CIM application. Then the adjacency matrix

is generated and subsequently transform the state chart diagram into a UML

state chart graph. Then we traverse the graph using adjacency matrix by using

DFS. Therefore test sequences are generated. Then we apply the node coverage

minimization technique to generate the test cases so that maximum coverage is

achieved.

Keywords: Unified Modeling Language,State chart diagram,Test Sequences,Test

Cases,State chart graph,CIM.

Contents

Certificate iii

Acknowledgment iv

Abstract v

List of Figures ix

List of Tables xi

1 Inroduction 1

1.1 Why Software Testing is important ? 3

1.2 UML Diagrams . 4

1.3 Test Case Generation . 5

1.4 Motivation . 6

1.5 Problem Statement & Objective . 6

1.6 Thesis Layout . 7

2 Basic Concepts and Definitions 9

2.1 Preliminary Definition and Concepts 9

2.1.1 Testing Techniques . 9

2.1.2 Test Process . 10

2.1.3 Test Case . 11

2.1.4 Test Adequacy Criterion . 12

2.2 XMI Overview . 12

vi

2.3 Overview of Model Based Testing 13

2.4 Overview of UML Diagrams . 14

2.5 Summary . 15

3 Literature Review 16

3.1 Automatic Test Case Generation From UML State Chart Diagram . 16

3.2 Summary . 18

4 Back End Development for Collaborative Invention Mining 19

4.1 Introduction . 19

4.2 Objectives of CIM Application . 20

4.3 CIM Model Overview . 20

4.3.1 Validate and Iterate (V & R) Dimension 22

4.3.2 Idea Detailing Tree Schema(IDT) 23

4.4 Contribution in Application Development 24

4.4.1 Algorithm used in CIM Application 24

4.4.2 Working and Implementation of Application 26

5 Unit Test Case Generation Using State Chart Diagram 32

5.1 Relevant UML Diagrams . 32

5.1.1 State Chart Diagram: . 32

5.2 Test Coverage Criterion for State Chart 36

5.2.1 State Coverage Criteria . 36

5.2.2 Transition Path Coverage 36

5.2.3 Transition Pair Coverage . 37

5.2.4 Boundary-testing criterion 37

5.3 Intermediate Graph Reprsentation 37

5.4 Our Proposed approach to Generate Unit Test Cases 38

5.4.1 Construct State chart diagram for the application 39

5.4.2 Save model in XMI Format 40

5.4.3 Construct USG and generate adjacency matrix 40

5.4.4 Traverse the graph and generate Test cases 40

vii

5.5 Case Study . 41

5.6 Implementation of Our Approach 49

5.7 Comparison of our Work with Unit Test Cases Design in TCS . . . 51

5.8 Conclusion . 51

6 Conclusion and Future Work 53

6.1 Contribution to CIM . 53

6.2 Contribution to Proposed Approach 54

6.3 Future Work . 54

Bibiliography 55

List of Figures

1.1 Testing Information Flow and Events [3] 3

2.1 Test Process [6] . 11

2.2 Model Based Testing Process . 14

4.1 Overview of Invention Mining Architecture 22

4.2 Idea Detialing Tree Schema . 23

4.3 Idea Scorecard Template . 25

4.4 CIM IST Phase . 28

4.5 CIM Parking Lot Phase . 29

4.6 CIM Storm Pad Phase . 30

4.7 CIM Form Pad Phase . 30

4.8 CIM Norm Pad- Matrix View . 31

4.9 CIM Compose Pad Phase . 31

5.1 State Chart Diagram showing states & events 33

5.2 State Chart Diagarm of Flight Object showing Transitions and

Guard Conditions . 36

5.3 Schematic Representation of Proposed Approach 39

5.4 State Chart Diagram of CreateIST Phase 41

5.5 Snapshot of XMI Code of State Chart Diagram 43

5.6 UML State Chart Graph generated by code 44

5.7 Test Sequence Generated For CreateIST Phase 46

5.8 Calculated Node Coverage . 47

5.9 Screenshot of JAVA source code . 49

5.10 UML State Chart Graph generated by External Tool 50

x

List of Tables

5.1 Generated Test Cases for CreateIST Phase 51

5.2 Table Showing Comparison Between Designed Test Cases ;

TCD=Test Case Design ; FC=Functionality Coverage 52

Chapter 1

Inroduction

Invention mining is the process converting a raw idea into a mature idea so that it

becomes patentable in a selected set of jurisdiction by collaborative deliberation.

Invention mining is the procedure of increasing the strength of an idea by means

of collaborative interaction. The primary purpose of this process is to divide

the idea in several dimensions such as category dimension, are coverage and

business characteristics to widen, lengthens and deepens the idea by collaborative

deliberation. So further, the idea gets matured and compose it as a sustainable

invention that can be patented.It is the persistent methodology of working to

recognize the potential innovations at an initial stage of the development cycle.

Software Testing is the way of exercising a software or application with the

purpose of seeing bugs and observing failures. In other words we can say that

Software Testing is the process of executing a executing a program with the intent

of finding an errors [1]. Software testing is considered as an art that helps in

improving the quality of the software product. It is the process of identifying an

error in order to fix those errors. It helps to make the software error free.

According to the definition of IEEE (USA): Software testing is the process of

analyzing a software item to detect the differences between existing and required

conditions (that is, bugs) and to evaluate the features of the software item

(IEEE/ANSI [Std 829-1983]) . Testing assist the softwares to measure its attribute

in terms of defect found in both operative and non functional requirements. Some

1

Inroduction

of the objective of software testing are as follows:

• A successful test is one that uncovers an as yet undiscovered errors [1].

• Product Quality is ensured by software testing.

• Software testing helps to reduce risk.

• Testing is any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required results [2]. In

recent years, softwares are becoming complex and larger. Software mainly

consists of system documentation, user documentation, configuration files

and programs. Software testing is one of the most important phase of

software development process.

It holds several characteristics and some of them are as follows:

• Software testing must begin with the business requirement document.

• Software testing means testing of both stable and dynamic activities of a

software.

• Software testing is done to determine the operational coverage.

• Software testing helps to ward off the inconsistency between functional and

non functional requirement.

• Software testing is a method to prevent failure and determining the reason

of failure if occurs.

Testing as well serves to evaluate the software quality in the termini of

its capability for achieving correctness, reliability, usability, maintainability,

reusability and testability. The main intent of software testing is to know

the errors of the software in order to fork up the defect free software to our

clients. Benefits of software testing are as follows:

1) Reduction in Defects

2) Product Quality Improvement

2

Chapter 1 Inroduction

3) Enhance Software Developers Productivity

4) To heighten control and accountability.

Figure 1.1: Testing Information Flow and Events [3]

Testing information flow as shown in figure 1.1 is supposed to be as a testing

technique which specifies the scheme to select input test cases and analyze test

results [3].

1.1 Why Software Testing is important ?

In recent time, computer applications have spread into every area of circle, for

handling of various sophisticated applications. Testing of the right thing at

the proper time, harmonizing to the right degree of detail in a most efficient

way demonstrates that a software system functions accurately. In the software

development life cycle (SDLC) the Testing assumes a substantial component,

which serves to raise the quality, reliability and performance of the system with

all checks what all capacity software expected to do and additionally also check

that software is not practicing what it shouldn’t get along.

In the today’s business of competition just the quality product stays

long-lasting immovably, and then to verify the produce the greatest quality

3

Chapter 1 Inroduction

product the testing of software is a key element in SDLC. A significant number of

these applications are of extremely extensive, complex and security critical. So,

highly reliable software is vital. In other word, better quality software with high

reliability is almost indispensable. Aside from the presence of numerous techniques

for expanded reliability, software testing is an significant and regular approach

took over. So, testing remains the most imperative role of quality assurance in the

act of software evolution. The substantial software size is examined as a major

challenge while creating a quality software. So quality assurance is a vital and

significant issue for expansive scale software Development.

According to Miller [4] the goal and need of software testing is ”affirm the quality

of software systems by systematically exercising the software in carefully controlled

circumstances.

According to IEEE Computer Society testing is A verification method that applies

a controlled set of conditions and stimuli for the purpose of finding errors [5].

Test results are the recorded verifications, which demonstrates that that

prerequisites are met and could be repeated. The resulting information could

be reviewed by all concerned for affirmation of capabilities [5].

1.2 UML Diagrams

The Object Management Group (OMG) specification states: “ The Unified

Modeling Language (UML) is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system.” The

UML offers a standard way to write a systems blueprints, including conceptual

things such as business processes and system functions as well as concrete

things such as programming language statements, database schemas, and reusable

software components . UML 2.0 mainly comprises of 14 diagrams. And these

fourteen diagram are divided into t hree basic classification and they are as follows:

1) Structure diagrams : It is the most essential and generally used form of

UML. It is used to show the static and stable aspect of the system.

4

Chapter 1 Inroduction

2) Behavior diagrams :It is used to depicts the dynamic aspect and behavior

of the system.

3) Interaction diagrams : It a subpart of behaviour diagram in which object

interactions are emphasized.

1.3 Test Case Generation

Generally Manual software testing and test case generation, are labor intensive

process. Automated testing essentially minimize the expenses of application

development and maintenance. As shown by the definition, an imperative part of

the test case is receiving the expected result or output.

Consequently, test case mainly consists of two entities:

1) Program Input data

2) Detail of accurate output from the set of input data.

For satisfying the arbitrary test requirements by test case generation is nontrivial

issue. Several researchers have give their attention towards this process. And it

concludes the various degrees of achievement as a result. Different strategies and

different design documents are used to generate test cases automatically from the

system which is to be tested. It might involve the design document as an input,

then process it. After this test specification are generated depending upon the

prespecified testing criteria termed as coverage criteria. Afterwards, the precise

test data for each test is identified to organize test cases. In testing , execution

of the test case is performed continuously for the peculiar set of inputs. And it

helps to establish the trust of developers. Test case may be obtained from business

requirement document.

It can also be derived from the source code. Test events are basically designed

depends upon the origin code. And due to this, test case generation becomes

complex for those who test at the cluster level. Test case generation using design

documents gives additional benefit for designing the test cases in the initial stage

5

Chapter 1 Inroduction

of the SDLC, so that test planning can be performed more effectively. Generation

of test cases manually, consumes time and effort both. That is why test case

design process should be either automatic or semi-automatic. Therefore, it is

mostly required to design the test cases from the requirement document

1.4 Motivation

In recent years, usage of software is present almost in every field. And testing is

a very essential part of any developing software system.

Nowadays, software is not allowed in the production by several companies until

the testing is done properly. Unit testing is also an essential division of testing

that provides quality to the software. For proper testing, we need to design the

unit test cases that cover every part of the application.

Merely it is really complex to test the large software system. And if a system

is large then there is need of design large number of test cases and it became very

hard to achieve the proper coverage. For these kind of systems, it is unacceptable

to design the test cases, manually since it consumes too much time and effort.

Automated test case design can assist in cutting down the time and effort, and

along with this it increases the reliability and quality of the software by increasing

the test coverage. These issues motivate us to develop an approach that can

generate the efficient unit test cases automatically from the UML state-chart

diagram of the application. In the subsequent section, we have elaborated the

major goal of our research thesis.

1.5 Problem Statement & Objective

Software testing is one of the time consuming and costly process in SDLC.

Automation of this process helps to overpower this problem and it too shortens

the human effort. Automation Testing would not be beneficial if we have to hold

the testing until the SDLC stage is not completed. If any defect is identified at

this stage, then from starting we have to verify the code and design document

6

Chapter 1 Inroduction

to find the genuine cause of defect. So the resolution for this kind of issue is to

begin the testing procedure from the initial stage, i.e. requirements specification

phase to the last stage. We used the Model Bases Testing approach for test case

generation to accomplish our objective.

The major objectives of our research work are as follows:

[1] To develop the back end of Collaborative Invention Mining.

[2] To generate Unit test cases for the back end Collaborative Invention Mining,

using UML state chart diagrams.

[3] To minimize the developed Unit test cases.

[4] To compare the test cases generated by our approach with the test cases

designed by the testing team of the TCS organization.

1.6 Thesis Layout

Rest of the thesis is organised as follows —

Chapter 2: Basic Concepts and Definitions: In this chapter, we discussed

about the basic concepts and definitions related to model based testing and

automatic test generation of test cases.

Chapter 3: Literature Review: In this chapter, we explore about the existing

research work in the era of automatic test case generation usingUML state chart

diagrams.

Chapter 4: Collaborative Invention Mining: In this chapter, we discuss

about the overview of CIM application. Then we discuss about our contribution

in CIM application development and working on that application.

7

Chapter 1 Inroduction

Chapter 5: Unit Test Case Genration Using State Chart Diagram: In

this chapter, we discussed about our proposed technique for automatic test case

generation using a state chart diagram. We first discuss about a few basic concepts

and definitions used in our methodology. Then we discussed about the working

of our proposed approach using an example of CreateIST phase followed by a

conclusion.

Chapter 6: Conclusion and Future Work: This chapter concludes the

important contributions of our work. Finally, we discuss the possible future

extension to our work.

8

Chapter 2

Basic Concepts and Definitions

In this chapter, we discuss about the terminology and basic concepts which is used

in our research work. This chapter is organized as: In section 2.1, we have given

the preliminary definition and concepts. Section 2.2 represents a brief overview of

XMI. Overview of model based testing is discussed in Section 2.3 and in Section

2.4 we have discussed about the UML Overview. In Section 2.5 conclusion of this

chapter is discussed.

2.1 Preliminary Definition and Concepts

2.1.1 Testing Techniques

Testing is an imperative method to verify and control software quality. It is nearly

related to software evolution process. Software testing is a technique which ought

to be performed within the entire process of development [6].There are following

types of techniques that is performed during the development of the project:

[1] Black Box Testing : Black-box testing is a testing technique that analyze

the utility of an application without peering into its inward structures or

functioning.

This testing technique can be built singularly with respect to an analysis

of the requirements (user documentation, specification), either functional or

9

Chapter 2 Basic Concepts and Definitions

non-functional, of a framework or segment without reference to its inward

structure. It is also known as functional testing.

[2] White Box Testing : White box testing is a testing technique that

analyze the inward structures or functioning of an application, rather than

its functionality as in Black-box testing. In this form of testing internal

perspective and programming abilities can be used to plan the test cases

of the system. White box testing is the elaborated examination of internal

logic and structure of the code. This testing technique is focused on an

Investigation of the internal structure(design, code etc.) of a segment or

system. It is also known as structural testing.

[3] Gray Box Testing : Gray Box Testing is a software testing method which is

a combination of Black Box Testing method and White Box Testing method.

In Gray Box Testing, partial knowledge about the inner structure is there.

Internal data structure and algorithm is accessed in gray box testing for the

purpose of planning the test cases, but testing is executed solely at the user,

or black box stage.

This kind of testing is performed to identify the faults that occurred due to

the unconventional systems design and implementation. Tester already has

knowledge about the system’s internal structure and testing information.

2.1.2 Test Process

There are a few abstraction levels in system development that came from

requirement analysis to the usage in machine code. Testing could be addressed at

all layers of abstraction. Test process basically consists of following activities as

shown in Figure 2.1.

Test process dependably starts from Test Planning and finishes with the

verification of test completion. Few activities can be rehashed (or in any event

returned to) since various emphases is required prior criteria for completion that is

characterized throughout the Test Planning activity. Some of the activities can be

10

Chapter 2 Basic Concepts and Definitions

Figure 2.1: Test Process [6]

performed parallel and some sequentially. Throughout this cycle of activities, at

the same time, the advancement of activities needs to be observed and controlled

so we stay in accordance with the test plan.

2.1.3 Test Case

A Test Case will normally comprise of information such as requirements referenced

from a design specification, a series of test step to follow, verification of test steps,

prerequisites, events, outputs, expected outcomes and yield resolution.

A test case is the triplet (I,D,O) where I is the state of the system at which the

test data is input, D is the test data input to the system, and O is the expected

output of the system [8]. It is a set of inputs, execution conditions, and expected

results that is created for a specific goal for example to act out a specific path of

a program or to confirm consistence with a specific prerequisite [9]. A test case

generally consists of input, an action and an expected result. A set of test inputs,

execution conditions, and expected results developed for a particular objective,

such as to exercise a particular program path or to verify compliance with a

specific requirement [9].

Test cases are the particular set of inputs that we apply and the certain steps

11

Chapter 2 Basic Concepts and Definitions

that we follow while testing a software. Test cases must practice each characteristic

of the application to keep defects from being released. The procedure of making

test cases can additionally serve to discover issues in the requirements or intent of

an application. The objective of utilizing test cases is finding out the errors in a

program.

2.1.4 Test Adequacy Criterion

Test adequacy criterion endows the knowledge to the tester regarding the test

suite development. It is used as a method for fixing up the testing activity. It

assist as a stopping condition as well as it quantifies the advancement towards the

objective [10]

It is well known the way that testing produces the software error free and

increments the reliability. Even so it is not known when to terminate the testing

procedure or what constitutes the adequacy of a test. Test Adequacy criteria are

only a crucial and essential predicate, which indicates the adequacy.

There are several approaches for test adequacy criteria such as activity

coverage, branch coverage, path coverage, transition coverage. But here we are

using only transition and path coverage. A test adequacy criterion assist in

characterizing test goals or purpose that are to be carried out while doing a

particular software testing.

2.2 XMI Overview

XMI is short form for XML Metadata Interchange. It is a standard of Object

Management Group(OMG) which is used for exchanging metadata information

with the help of Extensible Markup Language. It helps developers using UML

with various languages and development tools so that their data model gets

exchanged with each other. XMI could be utilized to interchange information

about data warehouses. XMI depends upon these three industry standards or

recommendations:

12

Chapter 2 Basic Concepts and Definitions

• Extensible Markup Language (XML): This is a standard by World

Wide Consortium.

• Unified Modeling Language (UML): This is a standard by OMG.

• Meta Object Facility (MOF): This is also standard by OMG which is

used for metamodeling & metadata repository.

2.3 Overview of Model Based Testing

Model based testing might be summed up in one sentence, as it is basically a

technique for automatic creation of test cases from particular software application.

The key advantage with this strategy is that the test generation can methodically

infer all combinations of tests associated with the requirements demonstrated

in the model to automate both the test design and test execution process [11].

In other words, MBT is a technology that automates creation of test cases in

specific areas [12]. Model based testing refers to the process and techniques for the

automatic derivation of abstract test cases from the abstract formal models, the

generation of concrete tests from abstract test cases, and the manual or automated

eexution of the resulting concrete test cases [13]. MBT generates the test process

automatically by utilizing the models of system requirements and behaviors.

Software model is useful for refining the ambiguous defined requirement [11]. A

typical deployment of MBT in industry goes through the four stages as shown in

Figure 2.1.

The model is designed generally by using information, specification or

requirements. And while constructing the model, information regarding the

requirements become more clear and it also leads to identify the missing

information. Many researches show that the model is created by testers for testing

the system. MBT is kind of testing that depends upon the external behavior

of models which can code the behavior of the system. A succession of input is

provided as input to the SUT, that response with a series of output or outcomes. In

the last few decades, several testing approaches have been developed to automate

13

Chapter 2 Basic Concepts and Definitions

Figure 2.2: Model Based Testing Process

the testing procedure that increases the effectiveness of testing.

2.4 Overview of UML Diagrams

UML was developed by James Rumbaugh, Ivar Jacobson and Grady Booch.

UML is also considered as the visual modeling language. It was adopted as

a de facto standard for modeling software systems by OMG in 1997 [8]. It is

widely acknowledge and utilized by the industry. UML models become popular

in industry and academic level, and it is also getting the attention of researchers

for the test case generation in the context of Model based testing. It is one of

the general purpose modeling language in the area of an object oriented software

system. UML comprises of standardized graphic notation which is utilized for

making a visual model of the software system. Models are the essential part of

the software project, whether the software is large or small. UML model helps to

interpret the commercial enterprise model, requirement specification and design

of the system. UML consists of several model elements which can be utilized to

show the different components of the system.

14

Chapter 2 Basic Concepts and Definitions

After its debut in the late 90s, UML has been retooled several times. UML 2.0

is the latest release, that has several novel characteristics as compared to UML

1.X.In our research study we have used the UML 2.0. UML is used to create

models but they are generally incomplete and ambiguous. And this happened

because UML has a semi- formal nature. Then also UML model is a rich source of

information to design the test cases. There are two essential cause of using UML

models in the software system. Firstly, this model endows the blueprint of the

application to the developer so that they come to know what they have to build

and to the project manager for the cost estimation of the project. Secondly, it

assists the non expert users to better interpret the software system.

2.5 Summary

In this chapter we have discussed about the basic concepts for better understanding

our research work. Firstly, we have described about some basic related to testing

and automatic test case generation approach. Then we have discussed about the

overview of XMI. And after this we have discussed about the model based testing.

We present our main attention towards the model based testing technique that

assists us in modeling and automatic generation unit test cases. In the subsequent

section we have discussed about the UML diagram which basic building block of

our research works.

15

Chapter 3

Literature Review

In this section,we present about a review of the related work that has been

performed in the area of UML state chart testing for an automatic test case

generation. Various researchers have worked in the field of test case generation

using UML Diagrams. Among UML diagrams, state chart diagram also received

attention from the researchers to generate test cases.

3.1 Automatic Test Case Generation From UML

State Chart Diagram

A technique is developed by Supaporn Kansomkeat and Wanchai Rivepiboon [14]

for the generation of test cases using UML state chart diagram. They attempt

to get the testing technique that can partly resolve the testing process. In their

approach they first transformed the state chart diagram into a model of states

that is called as testing flow graph. From this TFG, they define the flow of event

sequences which is termed as test sequences. And finally they get the test cases

from TFG by using the criteria of testing that is the state coverage and transitions.

Kim et al. [15] introduced a technique that generates the test cases that can

do testing up to the class level by using UML state chart diagram. They convert

the state chart diagram into the extended finite state machine to obtain the test

16

Chapter 3 Literature Review

cases. After this, data flow is determined by changing the EFSM within flow

graphs, on which the traditional data flow analysis techniques are enforced. As a

consequence, in EFSM the structure of the states is flattened in hierarchical and

concurrent manner. And in that broadcasting communication are also eliminated.

A novel approach is suggested by Kosmatov et al. [16] for automatic generation

of the test cases from formal models. They consider a certain set of preconditions

to test and the input domain. This methodology primarily performs a boundary

coverage analysis on a set of variables as input values and then generate the test

cases by using cost minimization and maximization functions.

Gnesi et al. [17] developed a mathematical model for conformance testing

and that can automatically generate test cases from UML state chart diagram.

They introduced a formal conformance testing relation which is used for IOLTSs.

IOLTSs stands for input-enabled transition systems with transitions labeled by

input/output-pairs and that endow a suitable semantic model. This model is

basically for a behavioral subset of statecharts. They also suggested an algorithm

that automatically generates a test suite for UMLSCs.

Systa et al. [18] proposed compression algorithm for statechart diagram that

is used for preserving information. Their algorithm is used for converting a simple

state chart diagram into more compact form. It scales down the count of states

and transition and preserves semantics of state chart diagram. It also finds out

the identical reaction to certain events and utilized that information to rebuild

the diagram. The algorithm proposed could be enforced to manually construct as

well as to automatically generate the statechart diagram.

Swain et al. [19] proposed a novel testing methodology that is focused

around the state and activity models of the system. They form a diagrammatic

representation which is termed as State-Activity diagram (SAD). And this diagram

is used for test cases generation to obtain the coverage of SADs. This technique

can be applied to identify seeded integration testing faults.

A method proposed by Samuel et al. [20] is to generate the test sequence

automatically by using UML state diagrams. In their technique, they first

traversed the state machine diagram and select the conditional predicates on each

17

Chapter 3 Literature Review

transition. After the conditional predicates are selected, then selected predicates

are transformed. Finally the test sequences are generated by applying the function

minimization technique for both testing class and cluster level behaviors.

A method for automatic generation of test cases from UML State chart diagram

is proposed by Swain et al. [21]. In this method, they transformed the state chart

diagram to state chart graph. And so by applying DFS in the state chart graph,

predicates are selected. Relation expression transforms the conditional predicates

to predicate function. And these predicate functions are minimized. Then by

using the minimization function technique, test cases are generated.

3.2 Summary

In this chapter, we discussed about the different strategies that are involved in

automatic test case generation. We learned about various approaches related to

test case generation using UML state chart diagram. This chapter gives us a brief

introduction about the existing work that has been done on model based testing

approach using UML state chart diagram. Various researchers have propose

different approaches for test case generation using UML diagram, but many of

them are semi automated and also inadequate to the complex organization. Test

case generation is very essential with respect to model based testing.

18

Chapter 4

Back End Development for

Collaborative Invention Mining

In this chapter we have discussed about the collaborative invention mining

application. Firstly we have given the introduction about it. Then we have

discussed about its objectives and after that we discussed about our contribution

in the development of the application. We as well discuss about its working and

the algorithm used for calculating CIM score.

4.1 Introduction

Invention mining is the technique of increasing the strength of an idea by

collaborative deliberation. The main goal of this procedure is to evolve the

capacity in the direction of widening, lengthen and deepens the idea, so that

it gets mature and later considered it as a ”patentable invention”. This process

assists in emerging of new inventors. And it also improves their skill for new

innovations and setting up an inventor community for an enterprise.

Mohanty et al. [22] from Tata Consultancy services (TCS) had registered a

patent named as ”Collaborative system & method to mine inventions”. Based on

this, an application is being developed at TCS, which is named as ”Collaborative

Invention Mining (CIM)” by Dr. S. K. Mohanty. Collaborative Invention Mining is

19

Chapter 4 Back End Development for Collaborative Invention Mining

the technique of converting a concept or an idea through a collaborative interaction

into a mature state so that the idea becomes patentable in a selected set of

jurisdiction. . The objective of such a process is to impart various dimensional

rigor across category dimension, area coverage and business characteristic to

widen, lengthen and deepens an idea, therefore make it as a feasible invention

that can be patented.

An idea/concept present in an enterprise must be resilient and aligned to its

business footprint to be considered as valuable asset. Hence, the objective of

invention mining process should derive and strengthen an idea collaboratively to

a matured state where it can be promoted as Patentable invention and protected

in a select set of jurisdiction.

4.2 Objectives of CIM Application

The main objective for developing this application are as follows:

[1] To automate the process of invention mining through collaborative

deliberation

[2] To set up an Inventors community in an organization

[3] To provide a platform where people can get together and share their

knowledge for an enterprise.

[4] To represent it directly with the TCS Valuation Module for the predictive

estimation of Non-linear in revenue.

[5] Multifaceted Usage of the Template and Process for Portfolio Analysis

[6] Multi-view Capability of the Framework: Stakeholders across all areas of IP

4.3 CIM Model Overview

The model that we have developed , mainly consists of three essential dimensions ,

which helps in increasing the strength of an idea through collaborative deliberation

20

Chapter 4 Back End Development for Collaborative Invention Mining

and they are as follows:

[1] Category : This dimension extensively classifies the scope of an idea

into technological progress, conceptual or commercial implementation

classification.

[2] Area : This dimension classifies the idea lengthen into several competency

building elements.

[3] Characteristic : This dimension consists time subsistence aspects to

further increase the idea’s competency so that it stays for a long time with

its sustain value.

For each of these Category, Area and Characteristic dimensions in our model,

a set of attributes has further been identified and contextually defined.

For Category dimension, we have defined Novelty, Inventive Step & Utility

(NIU) as the attributes to evaluate the patentability scopes of an idea. The

contextual definitions of NIU are as follows:

• Novelty : It is defined as the scope of an idea that is patentable, that

evaluates the idea to be new and knowledge about that idea should not be

present in the public domain.

• Inventive Step : It can be characterized as an idea that can be patented

in the way of technical progress in comparison to the existing information or

(accordingly) making investment importance which will make the idea not

only an evident development or simple re-plan of known existing segments

to an individual.

• Utility : It is specified as a patentable scope of an idea concept to evaluate

its ability towards commercial implementation on a bulk scale.

The area dimension is again categorized into four categories named as Process,

Technology, Measurement and System (PTMS) to create capacity development of

an idea.

21

Chapter 4 Back End Development for Collaborative Invention Mining

The Characteristic dimension is again categorized into four categories identified

as Efficient, Adaptable, Agile and Anticipative (EA3) so that the livelihood time

of an idea can be evaluated.

4.3.1 Validate and Iterate (V & R) Dimension

Each of the idea elements in Category, Area and Characteristic dimensions further

get validated iteratively, with respect to Enterprise Knowledge Data and other

external Patent and non-Patent literature Database. We have used image mapping

of prior art contents for an idea element of a, to visualize the existing prior art

documents for a respective content or cell in the IDT.

Following is the overview diagram of the Model covering the NIU, PTMS,

EA3 and V &R dimensions, This Figure 4.1 demonstrate how an idea is matured

through collaborative deliberation.

Figure 4.1: Overview of Invention Mining Architecture

22

Chapter 4 Back End Development for Collaborative Invention Mining

4.3.2 Idea Detailing Tree Schema(IDT)

Idea detailing process is complicated due to intricate connection to attributes of

manifold dimensions, the growing maturation of an idea is becoming probably

hard to imagine . The schematic diagram of IDT shows the diagrammatic view

about how an idea can grow and get matured.

The schema of the Idea Detailing Tree has been depicted in Figure 4.2. Tree

Figure 4.2: Idea Detialing Tree Schema

base is symbolized as funnel of an idea, which is the entrance CIM workflow. The

idea from its development stage may first go through Novelty(N) Funnel, Inventive

step(I) Funnel & Utility(U) Funnel that signify the vast scope of an idea in NIU

patentable criteria.

Along with progress towards a higher degree of maturity (Form Phase), every

idea element is further being classified into PTMS category, with the target of

constructing competency within the PTMS area. For making an idea to be time

sustainable there is need of increasing the subsistence feature of an idea to make

it EA3.

23

Chapter 4 Back End Development for Collaborative Invention Mining

These EA3 could be imagined as a fruit of every PTMS region coverage, which

come out from the branch of every NIU category funnel. Thus, in all, there are

48 such fruits that an idea can produce.

In an ideal scenario, it is desirable that all 48 fruits be matured for an idea so

that it can mature into a strong iconic patent. However, a realized throughput of

the Collaborative Inventive Mining method is to have sufficient claimable elements

that have over ridden prior art, then each idea can be termed to have shown good

yield.In an actual scenario, it is not necessary that we get all 48 fruits as matured,

but we are able to obtain that much which is sufficient to obtain a patent.

4.4 Contribution in Application Development

In this, we firstly shows the procedure of CIM score calculation in which our

participation was there during development. This algorithm is developed at back

end using Java technology which is used for handling database from the front end

. It is used for calculating the CIM score to identify that whether the idea is

patentable or not, Then we discuss about the back end development and working

on CIM application.

4.4.1 Algorithm used in CIM Application

In this section we discussed about the algorithm that is used for calculating CIM

score . And based on CIM score it is decided whether the newly created Idea is

ready for filing as a patent or not. Inventor views CIM score and CIM clusters

to strengthen his/ her invention. CIM score and CIM clusters help to decide if

additional iterations are required to further strengthen the invention.

Steps involved in CIM Score calculation is given below:

Step 1: Calculate the total number of statements in each of N, I and U.

Step 2: Based on each N,I and U calculate the total number of statements in each

of Process P,Technology T,Measurement M and System S.

24

Chapter 4 Back End Development for Collaborative Invention Mining

Step 3: Depending upon each P,T,M and S calculate the total number of statements

in Efficient E,Adaptable A,Agile A and Anticipation

Step 4: Then calculate V by using weighted values of P,T,M ,S and E,A,A,A.

Step 5: After calculating V, calculate the individual score of

N Score,N Score,I Score Iand U Score.

Step 6: Finally calculate CIM Score i.e.(N Score+N Score+I Score I+U score)

For calculating the CIM score we used a Idea score card template. The Figure 4.3

below shows the score card template.

Figure 4.3: Idea Scorecard Template

Working of CIM Scoring Algorithm:

Let us calculate CIM score when there are:

3 ideation statements in Novelty+Process+Efficient cell

2 ideation statements in InventiveStep+Technology+Adaptable cell

1 ideation statement in Utility+Measurement+Agile cell

25

Chapter 4 Back End Development for Collaborative Invention Mining

Step 1: Calculate the score of each populated cell for Area and Characteristic

combination.

Since there are 3 ideation statements in Novelty+Process+Efficient cell, the

score of this cell is: V+V/2+V/4 where V for this cell=3*2 = 6.

So the score of this Novelty+Process+Efficient = 6 + 6/2 + 6/4 = 11

The score of this InventiveStep+Technology+Adaptable = 4 + 4/2 = 6

There is 1 ideation statement in Utility+Measurement+Agile cell, the score

of this cell is: V where V for this cell =8*1 = 8.

So the score of this Utility+Measurement+Agile = 8

Step 2: Multiply individual cell score with the weight age given for each category.

Weight age for Novelty = 4. So Total Novelty Cell Score * Weight age = 11

* 4 = 44

Similarly Total Inventive Step Cell Score * Weight age = 3 * 6 = 18

Total Utility Step Cell Score * Weight age = 8 * 3 = 24

Step 3: Add the results of Step 2 to get CIM Score:

Total CIM Score = 44 + 18+ 24 = 86

Invention is said to be patentable if CIM Score > 450 CIM score helps to

strengthen the inventors invention. If the CIM score > 450 then the idea is

considered for filing a patent. But if it less than 450 then further iteration is

required to achieve the good CIM score so that idea can become patentable.

4.4.2 Working and Implementation of Application

CIM is an application which provides a platform to the TCS employees to give

an idea by collaborating together, so that the idea becomes patentable. In CIM

application, we have used Adobe Flex Builder in the front end development and we

have used the Java Eclipse IDE for back end development along with Postgre SQL

which is used for handling the databases. We were involved in the development

of the application and also in writing Unit test cases. We were also involved in

writing unit test cases.

26

Chapter 4 Back End Development for Collaborative Invention Mining

The CIM application mainly consists of following phases for strengthening the

idea :

• IST Phase

• Parking lot Phase

• Storm Pad Phase

• Form Pad Phase

• Norm Pad Phase

• Compose Pad Phase

Summarized work flow of CIM application is as shown: IST Phase–> Parking

Lot Phase –> Storm Phase Pad –> Form Pad Phase –> Norm Pad Phase –>

Compose Pad Phase Now we give the detailed working of each phase :

• IST Phase: Firstly, user login into CIM application lands on the home page

of the application. Then the user can see the projects in which he/she is

involved. On click of the ”My Ideas”, it would open the screen with the idea

details. This screen is also named as Idea Sharing Template (IST) phase. In

this phase user provides the details related to ideas such as Title, keyword

etc. User may add more participants, but he must have to add Moderator

before submitting the IST. Finally user submits the IST for reviewing. The

screenshot for IST Phase is shown in Figure 4.4. After submitting or saving

of IST the details provided by user is handled by Java code and is stored in

the database in backend.

• Parking lot Phase: After the IST is approved by the moderator, with

the help of base list idea element will form in the parking lot phase. User

may add a new Idea element even in the parking lot phase. After adding

of the idea list element , PAA may add prior art document that updates

the document base list of parking lot phase. The screenshot for parking

lot phase is shown in Figure 4.5. User can view the prior art document any

27

Chapter 4 Back End Development for Collaborative Invention Mining

Figure 4.4: CIM IST Phase

time whenever he wants by clicking on documents that is present in the right

corner. After adding prior documents or new ideas user can finally submit

the IST for review.

• Storm Pad Phase: After the IST is approved by moderators, the idea list

elements will be present in the parking lot phase. The user has to drag and

drop the idea elements from Parking Lot to Norm pad phase based upon its

category in N, I and U. Here also User may add a new Idea list in storm

pad phase. After adding of the idea list, PAA may add prior art document

that updates the document base list of parking lot. User can view the prior

art document any time whenever he wants by clicking on documents that

is present in the right corner. After categorizing an idea list into N,I and

U user can finally submit the IST for review. The screenshot for storm pad

phase is present in Figure 4.6.

• Form Pad Phase: The behavior of form phase is almost similar to that of

storm pad phase. Here idea elements are dragged from the storm pad phase

that is NIU category and drop in any of the Process P or Technology T or

Measurement M or System S category. After categorizing the idea list into

P,T,M and S user can finally submit the IST for review to moderator. The

28

Chapter 4 Back End Development for Collaborative Invention Mining

Figure 4.5: CIM Parking Lot Phase

screenshot for storm pad phase is shown in Figure 4.7.

• Norm Pad Phase: The behavior of Norm pad phase is almost similar to

that of storm phase and Form phase. Here idea elements are dragged from

Form pad phase that is PTMS category and drop in any of the Efficient E or

Adaptable A or Agile A or Anticipative A category. After categorizing the

idea list into EA3 user can finally submit the IST for review to moderator.

In this phase user can switch to matrix view and he can also see the CIM

cluster. The screenshot for norm pad matrix view is shown in Figure 4.8.

• Compose Pad Phase: In compose pad phase user can drag and drop the

idea elements into independent, dependent or second dependent claim based

on the Inventor view. User can see the claim tree is being forming and

the claim document is generated after the completion of the process. The

screenshot for storm pad phase is present in Figure 4.9.

29

Chapter 4 Back End Development for Collaborative Invention Mining

Figure 4.6: CIM Storm Pad Phase

Figure 4.7: CIM Form Pad Phase

30

Chapter 4 Back End Development for Collaborative Invention Mining

Figure 4.8: CIM Norm Pad- Matrix View

Figure 4.9: CIM Compose Pad Phase

31

Chapter 5

Unit Test Case Generation Using

State Chart Diagram

In this chapter, we use a state chart diagram as the design specification and

proposed an approach to automatically generate test cases using a state chart

diagram. In this chapter firstly we discuss about the state chart diagram basics

that we have used in our approach. And then we have proposed an approach and

show the working of our approach by taking an example. And later we compared

the test cases generated from our approach with test cases designed in industry.

5.1 Relevant UML Diagrams

UML consists of fourteen different types of diagrams, but here we just discuss

about State Chart Diagram. In the subsequent subsection, we elaborate about

the basic concepts and terms that are related with this chapter.

5.1.1 State Chart Diagram:

UML offers a various diagram to depict a specific view of software systems. In

other words we can say that, it is utilized to indicate an extensive view of a system.

And the classification of these diagrams is based upon the description view of the

system whether structural or behavioural . State chart diagrams are one of the

32

Chapter 5 Unit Test Case Generation Using State Chart Diagram

behavioral diagrams that depict the action sequences between the objects that are

regarded in the flow of control at the time of implementation. It describes the

possible state that a model element may consider the transition that are allowed

from every state, the events due to which the transition may occur and the actions

that happened as a reaction to events. States ,Transitions and events are the most

essential part of state chart diagram. State of an object is generally identified by

the value that few variables(attributes) of an object may assume. State of an

object is generally identified by the value that few variables (properties) of an

object may take. Basically, an object has to remain in the same state until an

event cause it changes to some other state.

Before continuing to our detailed approach of unit test case generation using

UML state chart diagram, we should ,describe the basic terminologies related to

state chart diagram.

Definition 5.1.1. State Chart Diagram: A state chart diagram is most similar

to directed graph, which comprises of state as vertices and transition as directed

edges. And these edges are utilized to interconnect the two states. It catches the

different states that an object undergoes. It models how an object changes its

states in its entire span of a life. It is useful in modelling the object’s dynamic

behaviour [23].

Following statement gives the summarized view of the state chart diagram

Usually, an object remains in its current state. The object transit from one state

to another by taking an action, when any event takes place.

Figure 5.1: State Chart Diagram showing states & events

33

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Regions: It is an orthogonal portion of the state machine. It comprises of states

and machine. A state machine utilized dashed line so that it is split up into

regions.

State: A state is presented in any system as a state variable (attribute), which

is shown by discrete data. It refers to specific stage of an object in a behavioral

manner. A state chart is mainly comprised of a fix number of states. A state

is an abstraction of attributes and associations. For instance, the province of a

mobile phone could be ringing or is used for receiving or calling. Every object can

generally be in a single state at a time and moves through different states in its

life. A state is represented in a rectangular form having rounded corners. It is

subdivided into a number of compartments that are distinct from each other by

horizontal lines. Different compartment of the state is given below:

Name Compartment: It is an optional compartment that contains the state’s

name in the form of a string.

Internal Activities compartment : It holds the index of internal actions or

state activities that will perform until the element is present in the state.

Internal Transition Compartment: It holds the index of internal transition.

An internal transition is a transition that occurs without altering its state.

An Object possibly may have the following types of states:

Initial State: : This is demonstrated as a filled black circle or small black disk,

which is tagged with a name . Only one initial state is present in the state chart

diagram. A transition that leads from the initial event represent the leads , that

an entity can move into whenever it is created or initialized.

Final State : The final state is demonstrated as a dot or small black disk inside

a large circle. It may also be tagged with a name. The final state shown that an

entity is arrived, where it extinct or quits giving response to events. It is a special

form of state that signifies the completion of the enclosed area. More than one

final state can be there in the state chart diagram.

Activity State : It shows the duration of internal processing, that is performed

by an object . In general, it is represented in the form of normal state which

consist of an activity. For instance, when customer’s enter an amount in ATM

34

Chapter 5 Unit Test Case Generation Using State Chart Diagram

and after that when the process of entering amount is completed, then the activity

state becomes active, in case of ATM machine whether it is capable of dispensing

cash to complete the transaction.

Event : An event takes place when an input is given to the state court. When

an event occurs, it results some changes to the system. In any specific state,

associated transition to a new state occur because of some events. On the other

hand, some events do not cause any transition. It occurs at a particular point of

time. It Both error condition and normal condition are included in the events .

For Example, while modelling an ATM System, when the cash is dispensed by the

machine, then picking up the cash is an event. Various kinds of events are there

in the state chart diagram.The most commonly used events are Signal event,Call

event,Timing event and Change event.

Action : An Action is related with a specific state and event. It includes a

transition to a new state. It also describes the reaction of an object in response

to the event. An action is also defined as the activity of an entity which is started

by an event.

Transition and Guard Condition : The transition is an instant transformation

from state to another.

In other words, it is a relationship between two states that show an eventual

change of state from one to another. For example, when a telephone receiver is

picked up, the telephone transition changes from idle state to dial tone state. At

that time change of state is occurring, it implies a transition is fired by an event.

As a response to an event, transition occurs from a one state (current state) to

another state. The transition is represented by an arrow from the origin to the

destination state. Generally, the name of event, due to which the transition occurs

is written on the position of the pointer.

A guard transition is triggered when an event takes place. But only at that time

when the guard condition becomes true. It is different from a change event. It

is checked only once, when an event takes place The guard-constraint is in the

form of boolean expression, which should be true, then only the transition would

take place. The transition is activated only if the condition evaluates to true. The

35

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.2: State Chart Diagarm of Flight Object showing Transitions and Guard

Conditions

general syntax for the transition is given below:

trigger[guard-constraint] / activity-expression

5.2 Test Coverage Criterion for State Chart

5.2.1 State Coverage Criteria

Every state nodes in the state chart, graph should be visited at least once for the

efficient generation of test cases. It is a test adequacy criterion in which testing of

the program is required to be done so that output of the program is verified [27].

It is the ratio between the number of covered states to that of the total number

of states present in the state chart graph [28].

5.2.2 Transition Path Coverage

Let us suppose a Graph G and a test set T . T is said to obtain the transition

path coverage if every transition path in the graph G is visited at least once

[24]. It covers all the different path by means of transition for comprehensive test

generation .

36

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Transition coverage = (Number of Transitions Covered)/(Total number of

transitions in the state chart graph).

5.2.3 Transition Pair Coverage

There is a need of covering every pair of adjacent transition at least once in

any of the test cases. So it incorporates overall transition coverage. The test

cases generated by the transition-pair coverage is more as compared to transition

coverage criterion [25]. For every pair of adjacent transitions Ai: Aj and Aj: Ak,

TS must hold a test that navigates every pair of transition in the sequence [26].

5.2.4 Boundary-testing criterion

Testers have often inspected that mostly domain boundaries are affected by faults,

and then it is required to examine the boundaries carefully. This criterion is a

standard for ensuring that the boundaries are sufficiently tested. This testing

is required to apply whenever the input test data field is split into two fields

depending upon the decision. Rather than generating various test data value that

obtains transition path coverage, we particularly tested the boundary . Boundary

testing criterion assists in decrease the count of test cases. And subsequently very

high test coverage is achieved.

5.3 Intermediate Graph Reprsentation

For the generation of test cases, firstly we have to transform the state chart

diagram into intermediate graph. State chart diagram shows the behavioral view

of the design phase. Therefore, we suggest a methodology to build an intermediate

graph named as a UML state chart graph (UMLSG) and then generate the test

sequences using that graph. Now in this section, we introduce a few basic concepts,

notations and terminologies related to graph.

Definition 5.3.1. State Graph: A state chart graph G= (V, E) is a diagram

that could be perceived as a graph, where V denotes the set of nodes and E

37

Chapter 5 Unit Test Case Generation Using State Chart Diagram

denotes the set of Edges. And it is named as UMLSC(UML state chart graph).

In G, vertices indicate the states and edges indicates the transition. A state

chart graph G= (V, E) is a diagram that could be perceived as a graph, where

V denotes the set of vertices and E denotes the set of Edges. And it is named

as UMLSC(UML state chart graph). In G, vertices indicate the states and edges

indicates the transition. Beyond any scope of losing, we consider a unique vertex

which resembles as the initial state. And initial state is shown as the origin of the

tree.

Definition 5.3.2. Sub Path : A sub path from vertices vi to vk is a series of

vertices vi,vi+1,....vk, in which there is an edge between every pair of vertices

(vi+j,vi+j+1) in G.

Definition 5.3.3. Initial Path : Let us consider a path S of the graph. Initial

state from where the sub path S begins is considered as the initial path of S.

Definition 5.3.4. Transition path : Transition path in the graph is the

sequence of transition that begins from initial state and end at final state.

Definition 5.3.5. Path Domain : It is the set of overall input data values, for

which the path S is visited and satisfied the path condition (i.e.it must evaluate

to true).

5.4 Our Proposed approach to Generate Unit

Test Cases

In this section , we describe our approach to generate the test cases automatically

from UML state chart diagram. Our approach for generating the test cases from

UML state chart is shown in Figure 5.3 as a schematic representation.

The steps involved in our proposed methodology for generating the cases are as

follows:

Step1: Construct the state chart diagram of an application which is to be tested in

IBM rational software architecture.

38

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.3: Schematic Representation of Proposed Approach

Step2: Then, save and export the XML metadata interchange (XMI).

Step3: After that, parse the XML Metadata Interchange (XMI) by using the XMI

parser to generate the adjacency matrix of the graph.

Step4: Subsequently, transform the UML state chart diagram into a graph and

name it as UML State chart Graph (USG).

Step5: Then, traverse the graph using adjacency matrix to obtain all the valid test

paths.

Step6: Finally, test sequences are generated with the help of each traversed path.

Step7: Reduce test sequences by using the Node coverage criteria and generate the

test cases.

The steps involved in our proposed approach are discussed below :

5.4.1 Construct State chart diagram for the application

Firstly the state chart diagram for the application that we have to test is created.

State chart diagram is a model which is used to show the dynamic behavior of

the system. Statechart diagram generally gives the summarized information of

39

Chapter 5 Unit Test Case Generation Using State Chart Diagram

the system. It is one of the 14 UML diagrams and is used to represent dynamic

nature of the system. State chart diagram is similar to that of the graph where

state indicates the node and the transition that interconnect the states indicates

the edges. It is used to represent the different states of an object. It is also used

to depict the objects life cycle.

5.4.2 Save model in XMI Format

XMI file parsed by using Document Object Model (DOM) API. A UML state chart

diagram shown in XMI format is almost identical to XML file format. XML parser

reads the XMI file and the list of events, guard conditions, states and actions are

generated.

5.4.3 Construct USG and generate adjacency matrix

After parsing the XMI code of the state chart diagram, we extract all the

information such as states, transition, action and events. Then we use this

information, and generate the adjacency matrix from it. And subsequently

transform the state chart diagram into USG (UML state chart graph).

5.4.4 Traverse the graph and generate Test cases

Then we perform the traversal of the USG using adjacency matrix to generate the

valid test sequences. For traversing the graph, we use backtracking DFS technique

to ensure that every transition, state and path is covered. In our approach we have

used DFS for traversing, because as with DFS it becomes easy to visit each state

of the path. And this is useful to achieve transition path coverage. And after

traversing the graph test sequences of the graph are generated. Then we apply

the node coverage process to minimize the sequences and to generate the unit test

cases.

40

Chapter 5 Unit Test Case Generation Using State Chart Diagram

5.5 Case Study

In this section, we discuss about the working of our proposed approach by using

the application that we developed as an example. Here we are taking CreateIST

phase of CIM application as an example. The state chart diagram of createIST

phase is shown in Figure 5.4. The object enters into CIM Idea Home, when the

Figure 5.4: State Chart Diagram of CreateIST Phase

user provides the valid Log In credentials. Now the user is able to see in which

projects he is involved in My Idea and if he want to create a new idea, then he can

go for New Idea. If the idea is novel, then the user enters into New Idea Home state.

From there user has to fill all the mandatory fields in IST Home by giving their

41

Chapter 5 Unit Test Case Generation Using State Chart Diagram

idea title, details, keywords, etc. then only the idea can be saved. Once all the

mandatory fields are filled then only user can Save newly created IST by entering

into Save As Draft state. Now users can add new participants by entering into a

Participants Added state once the participants are added user has to ensure that

participants has added by entering in Participant Confirm state. After all the

mandatory fields are filled and participants are added specially moderator then

only user can go for IST Review state by entering into Submit state. And after

the IST is submitted then the user can logout.

If the idea exists then the user enters into My Idea home state. From this state

user can go for New Idea Home if he has any idea. Now if user wants to modify any

existing IST then firstly search the IST by entering valid search details, then only

user can enter into a Search IST state to search the existing IST. For viewing the

existing IST user have entered the View IST state by selecting IST but the IST

must exist after providing the search details. Once the IST is selected one can

view the IST and may logout after viewing it or user can edit the participants

by entering into Participants Modified state or he can go for adding any new

participant by entering into Participants Added state. Once the participants added

or modified user ensure depending upon addition or modification condition and

go for Participant Confirm state. After all the mandatory fields are filled and

participants are added or modified specially moderator then only user can go

IST Review state by entering into Submit state. And after the IST is submitted

then the user can logout.

After the building of the state chart , diagram, we get the XMI code from the

state chart diagram. And it is demonstrated in Figure 5.5. XMI code provides

the information about all the states and transitions. It provides Id and the name

of the object. Now consider the XMI code as an input to the parser, i.e. a Java

code. Then the parser gathers all information about the state chart diagram.

That is the information regarding object’s state, transition & actions. Later USG

is generated from the state chart diagram which represent the flow of control

between two states of an object. In that USG nodes indicates the states and edges

indicate the transitions. The screenshot of UML state chart graph is as shown in

42

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.5: Snapshot of XMI Code of State Chart Diagram

Figure 5.6.

Pseudocode For Test Sequence Generation

Input: State Chart Diagram, Adjacency Matrix Admat of size n, n no. of states

, Finalname

Ouptut: A Test Case TeS that fullfills transition Coverage.

[1] For i ǫ 1....n

[2] Begin

[3] Initialize arraylist AL;size =0;

[4] Initializie Ineteger 2D Array TeS;br=0;bc=0;

[5] Initialize Boolean 1D Array Visited;

43

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.6: UML State Chart Graph generated by code

[6] Call Function DFS(S,i)

[7] size ← size-1;

[8] Remove sizeth element from AL

[9] End

[10] End for Loop

Function DFS(src,dest)

[1] Create an integer variable DIM and set value dest

[2] Add element src to AL

[3] size← size+ 1;

[4] Visited[src]←true;

[5] If src equal to dst

[6] for k ǫ 0 to arraylist.length

[7] Print Finalname.Elementat(k)

44

Chapter 5 Unit Test Case Generation Using State Chart Diagram

[8] TeS[i][j] ← k;

[9] bc←bc+1;

[10] End For Loop

[11] br←br+1;

[12] bc←0;

[13] End if

[14] For jǫ 2 to DIM

[15] if(Admat[src][j]==1)

[16] if(Visited[j]==false)

[17] Call Function(j,dest)

[18] set Visited[j]←false

[19] size←size-1

[20] Remove sizeth element from AL

[21] End if

[22] End if

[23] End For loop

[24] End Function

After that we get all the possible sequences of the state chart diagram with the

help of the above algorithm. The test sequences generated by above algorithm is

shown in Figure 5.7.

Minimization of the test cases

In this section we discussed about the minimization of the test cases generated to

increase the test coverage. We have applied the technique name node coverage so

45

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.7: Test Sequence Generated For CreateIST Phase

that we can get the test cases effectively [28]. In our approach we choose one test

sequence at a time and then finding out in the remaining test sequences, whether

it is covered in any other test sequences. For example Let we have NCove (Tes1) =

Tes4, Tes5, Tes6........, here we have selected the first sequence and then checking

in the remaining to select those in which this sequence is covered. If for any of

the test sequences NCove(Tes) =0 then it would be seen as an effective test case.

After applying the above discussed approach the minimized sequences are

generated. Here we can see Test39,Tes40,Tes41,Tes42 and Tes43 are empty and

hence selected for test cases effectively as shown in Figure 5.8.

Minimized test sequences are as follows:

• Test Sequence for (TC ID1)

{Start,Log In,CIM Idea Home}

{CIM Idea Home,New IST,New Idea Home}

{New Idea Home,Create IST,IST Home}

{IST Home ,Save New IST,Saved As Draft }

{Saved As Draft,Add Participant,Participants Added}

46

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Figure 5.8: Calculated Node Coverage

{Participants Added,Ensure New Participants, Partcipant Confirm }

{Partcipant Confirm,IST Review,Submit }

{Submit ,Logout, End}

• Test Sequence for (TC ID2)

{ Start ,Log In ,CIM Idea Home }

{ CIM Idea Home ,Modify IST,My Idea Home }

{ My Idea Home,New IST ,New Idea Home }

{ New Idea Home , Create IST,IST Home }

{ IST Home , Save New IST,Saved As Draft }

47

Chapter 5 Unit Test Case Generation Using State Chart Diagram

{ Saved As Draft, Add Participant,Participants Added }

{ Participants Added, Ensure New Participants,Partcipant Confirm }

{ Partcipant Confirm ,IST Review,Submit }

{ Submit, Logout , End }

• Test Sequence for (TC ID3)

{Start , Log In , CIM Idea Home}

{CIM Idea Home, Modify IST , My Idea Home }

{My Idea Home , Enter Search Details, Search IST }

{Search IST, Select IST , View IST }

{View IST, Modify Idea , Edit IST }

{Edit IST, Save Modified Idea , Saved As Draft }

{Saved As Draft, Add Participant , Participants Added }

{Participants Added, Ensure New Participants , Partcipant Confirm }

{Partcipant Confirm, IST Review , Submit }

{Submit , Logout , End }

• Test Sequence for (TC ID4)

{Start, Log In , CIM Idea Home }

{CIM Idea Home, Modify IST , My Idea Home }

{My Idea Home, Enter Search Details , Search IST }

{Search IST , Select IST , View IST }

{View IST , Modify Idea , Edit IST }

{Edit IST , Edit Participant , Participant Modified }

{Participant Modified , Ensure Modified Participant , Partcipant Confirm

}

{Partcipant Confirm , IST Review , Submit }

{Submit , Logout , End }

• Test Sequence for (TC ID5)

{Start , Log In , CIM Idea Home }

{CIM Idea Home , Modify IST , My Idea Home }

48

Chapter 5 Unit Test Case Generation Using State Chart Diagram

{My Idea Home , Enter Search Details , Search IST }

{Search IST , Select IST , View IST }

{View IST , Logout , End }

5.6 Implementation of Our Approach

In this segment we discuss about the implementation of our approach. We have

used this approach in other phases of the application to analyze its effectiveness.

We have applied the Rational rose software to design the CreateIST phase

of Collaborative Invention Mining in UML2.0. Firstly, we design the UML

state chart diagram of CreateIST phase and then saved that diagram in XMI

format. And so the adjacency matrix for the state chart diagram is also

generated. And subsequently the state chart diagram is transformed into USG.

This implementation is done by using Java NetBeansIDE 7.2.The screenshot of

Java code is shown in Figure 5.9 and for USG it is shown in Figure 5.10.

Figure 5.9: Screenshot of JAVA source code

We have implemented this approach by developing our own source code. And

49

Chapter 5 Unit Test Case Generation Using State Chart Diagram

after traversing the graph test sequences are generated. Then we apply our

minimization algorithm to minimize the test sequences and generate the test cases.

We also generate a .Dot extension file for the verification of USG by creating it,

with the help of external tool. The graph generated by external is named as EFSM

model. It graphically represented the graphs, where states denotes as nodes and

transitions as directed edges between states. The screenshot of this graph is shown

in Figure 5.10.And the test cases generated by our approach is shown in Table 5.1.

Figure 5.10: UML State Chart Graph generated by External Tool

50

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Table 5.1: Generated Test Cases for CreateIST Phase

Test

Case

ID

Current State Pre Condition Input Output State

1 Start Valid Credentials Log In CIM Idea Home

2 CIM Idea Home Novel Idea New IST New Idea Home

3 CIM Idea Home Existing Idea Modify IST My Idea Home

4 My Idea Home Novel Idea New IST New Idea Home

5 New Idea Home Mandatory Fields Empty Create IST IST Home

6 My Idea Home Valid Search Details Enter Search Details Search IST

7 Search IST IST Exist Select IST View IST

5.7 Comparison of our Work with Unit Test

Cases Design in TCS

In this section, we compare the test cases designed by our approach with the test

cases designed in TCS. One of the major advantage of our approach is that our

methodology obtains the state coverage, transition coverage and action coverage.

The unit test cases designed by our approach is less in count as compared to unit

test cases designed in TCS. But our approach achieves the maximum functionality

coverage as similar to unit test cases designed in TCS. And it is also helpful for the

developers reduce their effort and time in designing test cases. The comparison

between the unit test for different phases is shown in the Table 5.2.

5.8 Conclusion

We proposed a methodology to generate unit test cases from UML state chart

diagrams. Firstly, we have constructed the state chart diagram for the CreateIST

phase of CIM application. Then we traversed the state chart diagram construct

51

Chapter 5 Unit Test Case Generation Using State Chart Diagram

Table 5.2: Table Showing Comparison Between Designed Test Cases ; TCD=Test

Case Design ; FC=Functionality Coverage

SI

No.
TCD For Phase

Our

Approach

TCD

(TCS)
FC

1 Create IST 17 30 100%

2 Add Prior Art Parking Lot 16 25 100%

3 Add Participants Image 19 32 100%

4 Parking Lot Phase 21 37 100%

the adjacency matrix and generate valid test sequences. And then apply the

minimization technique to obtain the test cases with maximum coverage. Lastly

we have compared the test cases generated from our approach with test cases

designed in TCS.

52

Chapter 6

Conclusion and Future Work

In our approach, we mainly focus on test case generation of an application that

was developed in TCS by using a state chart diagram.Our thesis promotes the

technique of model based testing, which is used for complex software development

process. In Section 6.1 we conclude about our contribution in CIM development.

We conclude about our proposed approach as discussed in chapter 5 in section 6.2.

And in section 6.3 scope of future work is discussed.

6.1 Contribution to CIM

In this section, we discussed about our contribution to back end development of

collaborative invention mining using Eclipse IDE for Java technology. In CIM ,

around 25 graphical user interface is developed and 30 database table have been

created for CIM aaplication. We were also part of business requirement analysis &

design team. Then we have designed the unit test cases for different phases of the

application. The process of testing was done by using a tool named as Application

Life Cycle Management (ALM). ALM is a tool that was developed by TCS mainly

for testing related activities. We have contributed from initial phase to final phase

of the CIM application development.

53

Chapter 6 Conclusion and Future Work

6.2 Contribution to Proposed Approach

In chapter 5, we have developed a methodology in which the unit test cases are

generated for CreateIST phase of CIM application that was developed by us

in TCS. In our approach, firstly the state chart diagram is constructed for the

CreateIST phase.Then generation of test cases takes place by transforming the

state chart diagram into USG (UML state chart graph).Then we minimize the

test case by using a node coverage technique for each of the test cases.We have

considered only the path coverage as test coverage criteria for automatic unit test

case generation.Then finally we compare the number of unit test cases generated

by us with the test case designed in TCS.Our approach achieves the maximum

coverage of functionality, which is an added advantage.

6.3 Future Work

Our work can be expanded in various directions.We have worked on automatic

generation of unit test cases, but still several issues with respect to our approach

both theoretical and practical. Therefore, further development is essential in our

approach. In future we can apply this test case generation technique to other UML

diagrams such as interaction diagrams, activity diagrams, etc. and prioritization

will be done by using different approaches. Experimental studies show that this

kind of approach might be useful in the future for making software more reliable

by reducing the burden of testing effort.

54

Bibliography

[1] Myers, Glenford J., Corey Sandler, and Tom Badgett. The art of software testing. John

Wiley & Sons, 2011.

[2] Pan, Jiantao. Software testing.Retrieved January 5, 2006.

[3] L. Luo. Software testing techniques technology maturation and research strategy. Institute

for Software Research International, Carnegie Mellon University, Pittsburgh, PA15232,

USA, Tech. Rep. 17939, 2001.

[4] Miller, Edward. ”Introduction to software testing technology.” Tutorial: Software Testing

& Validation Techniques, Second Edition, IEEE Catalog No. EHO 180-0, 1981.

[5] Miller, Edward. ”Introduction to software testing technology.” Tutorial: Software Testing

& Validation Techniques, Second Edition, IEEE Catalog No. EHO 180-0, 1981.

[6] A. Bertolino, ”Chapter 5: Software Testing,” IEEE SWEBOK Trial Version 1.00, May

2001.

[7] Samaroo, Angelina, Geoff Thompson, and Peter Williams. Software Testing: An

ISTQB-ISEB Foundation Guide. BCS, The Chartered Institute, 2010.

[8] R.Mall .Fundamentals of Software Engineering , Prentice Hall, 2nd edition , 2003.

[9] R. V. Binder. Testing Object-Oriented System Models, Patterns, and Tools. NY:

Addison-Wesley, 1999.

[10] Rutherford, Matthew J., Antonio Carzaniga, and Alexander L. Wolf. ”Simulation-based

test adequacy criteria for distributed systems.” Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM, 2006.

[11] M.Blackburn,R.Busser & A.Nauma, Why Model-Based Test Automation is Different and

What You Should Know to Get Started. International Conference on Practical Software

Quality and Testing, (Survey on automation of model-based testing),Washington, USA,

2004.

55

Bibliography

[12] Gross, Hans-Gerhard. Component-based software testing with UML. Vol. 44. Heidelberg:

Springer, 2005.

[13] Leiserson Cormen. Software testing technique. Vol. 15, Prentice hall, 2nd Edition, 1990.

[14] Supaporn Kansomkeat and Sanchai Rivepiboon. ”Automated Generating Test Case Using

UML Statechart Diagrams ”SAICSIT, 2003.

[15] Y. G.Kim, H. S.Hong, D. H.Bae, and S. D.Cha.Software Testing Verification and

Reliability,chapter Test cases generation from UML state diagram.ACM,pp.187 - 192, 1999.

[16] N.Kosmatov,, B.Legeard, F.Peureux, & M.Utting. ”Boundary coverage criteria for test

generation from formal models.” Software Reliability Engineering, 15th International

Symposium on. IEEE, 2004.

[17] Gnesi Stefania, Latella, Diego, and Massink Mieke. Formal test-case generation for UML

statecharts, Proceedings of the Ninth IEEE International Conference on Engineering

Complex Computer Systems Navigating Complexity, 2004.

[18] T.Systa , K.Koskimiesa and E. Makine. Automated compression of state machines using

UML statechart diagram. Information and Software Technology,Vol.4 pp.565-578, 2002.

[19] S. K.Swain,D.P. Mohapatra and R.Mall .Test case generation based on state and activity

models. Journal of Object Technology,pp.1-27, 2010.

[20] P.Samuel, R. Mall and A. K. Bothra. Auto-matic Test Case Generation Using Unified

Modeling Language (UML) State Diagrams. IET Software, Vol.2, Issue 2, pp. 79-93, 2008.

[21] R. Swain, V. Panthi, P. K. Behera, D. P. Mohapatra. Automatic Test case Generation From

UML State Chart Diagram, International Journal of Computer Applications (0975-8887)

Vol. 42, No.7, pp.26-36, doi: 10.5120/5706-7756, March 2012.

[22] Mohanty, S.K. and Sarkar, S. and Viswanathan, J., Collaborative system and method

to mine inventions, url=http://www.google.com/patents/EP2637130A1?cl=en,Google

Patents,EP Patent App. EP20,120,171,102, 2013.

[23] P. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of the all-uses

and all-edges adequacy criteria. In Proceedings of the symposium on Testing, analysis, and

verification, 1991.

[24] J.Offutt and A.Abdurazik. Generating tests from UML specifications. In Proceedings of 2nd

International Conference. UML, Lecture Notes in Computer Science, pp. 416-429, 1999.

[25] R.Blanco,, J. G. Fanjul and J.Tuya.Test case generation for transition-pair coverage using

Scatter Search.International Journal of Software Engineering and Its Applications Vol. 4,

No. 4, October 2010.

56

Bibliography

[26] J.Offutt, S. Liu, A. Abdurazik and P. Ammann.Generating test data from state-based

specifications.Software Testing,Verification and Reliability,chapter 13:25-53, 2003.

[27] K.Koster and D. C.Kao. State coverage: A structural test adequacy criterion for behavior

checking. In ESEC/FSE, 2007.

[28] Ranjita Kumari Swain, Prafulla Kumar Behera, and Durga Prasad Mohapatra. ”Minimal

TestCase Generation for Object-Oriented Software with State Charts.” International

Journal of Software Engineering & Applications 3.4, 2012.

57

