
Automatic Test Case Generation

Using Modified Condition/Decision Coverage Testing

Komal Anand

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatic Test Case generation

using Modified Condition/Decision Coverage Testing

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Komal Anand
(Roll No. 212cs3119)

under the supervision of

Prof. Banshidhar Majhi

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2013

dedicated to my parents and friends...

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Automatic Test Case gen-

eration using Modified Condition/Decision Coverage by Komal Anand

is a record of an original research work carried out by her under my supervision

and guidance in partial fulfillment of the requirements for the award of the degree

of Master of Technology with the specialization of Software Engineering in the de-

partment of Computer Science and Engineering, National Institute of Technology

Rourkela. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Place: NIT Rourkela Prof. Banshidhar Majhi
Date: May 30, 2014 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to everyone who supported me throughout my thesis work. I would

like to specially thank Prof. Banshihar Majhi, Professor and Prof. D.P. Mohap-

atra, my supervisor, for his consistent encouragement, incalculable guidance and

co-operation to carry out this project, and for giving me an opportunity to work

on this project and providing me with a great environment to carry my work with

ease.

I would like to thank all my friends Mayank Mittal, Jyoti Shivhare, Prerna Kano-

jia, Sumana Maity, Priyesh Munjpara for their moral and ethical support and

lab mates Basanti Minj, Santosh Behera, Sarojkant Mishra, Pankaj Gupta, Vijay

Sarthi, Vipul Makvana for their encouragement and understanding. They made

my life beautiful and helped me every time when I was in some problem.

Most importantly, none of this would have been possible without the love and pa-

tience of my Parents and my Sister. My family, to whom this thesis is dedicated

to, has been a constant source of love, concern, support and strength all these

years. I would like to express my heart-felt gratitude to them.

Komal Anand

Roll: 212cs3119

Abstract

An automated test generation technique is used to reduce the effort for

software test [1]. Modified Condition/decision Coverage (MC/DC) is a type of

white box testing technique which is used to show the coverage by proving all the

conditions are involved in the predicate can affect the predicate value. MC/DC is

a standard condition/decision coverage technique. For automated test input data

generation, we are using an advanced code transformer which is an improvement

on Boolean code transformer and Program code transformer by using Modified

Quine Mccluskey Method [2] for Sum of product Minimization technique over the

tabular method as well as the Quine Mccluskey method. By which the number of

comparisons reduces and helps to achieve the increased MC/DC Coverage.

In this research work, we represent the coverage analysis for evaluating Modified

Condition/Decision Coverage percentage. Basically, this research work is based on

three modules. First module shows the coverage percentage analysis for Advanced

Program Code Transformer (APCT). APCT is the modified version of Program

Code Transformers. APCT uses modified Quine McCluskey method which is an

optimization of Quine McCluskey method based on E-sum used for minimization of

sum of product by which number of comparisons reduces. Second module shows

the coverage analysis for the CONCOLIC Tester CREST Tool. Third module

shows the analysis for Coverage Analyzer. In this paper, we have experimented

6 complex C programs and achieved variation of 3.81% average MC/DC coverage

percentage after comparing with program code transformer(PCT) and Advanced

program code transformer(APCT).

Keywords: Software Testing; Coverage Analyser; Concolic Tester; Advanced

Program Code Transformer; MC/DC

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 2

1.1 Introduction . 2

1.2 Types of testing: . 3

1.3 Problem Definition . 4

1.3.1 Automated Testing . 4

1.3.2 Motivation . 5

1.3.3 Objective . 5

1.4 Organisation of thesis . 6

2 Basic Concepts 8

2.1 Basic Definitions: . 8

2.1.1 Modified Condition/Decision Coverage: 9

2.1.2 Boolean Derivative . 10

2.1.3 Symbolic testing . 11

2.1.4 Concolic Testing . 11

3 Related Work 15

3.1 Test Generation for Branch Coverage 15

3.1.1 Random Testing . 15

v

3.1.2 Symbolic Testing . 16

3.1.3 Concolic Testing . 16

3.2 Literature Review . 17

4 Proposed work 20

4.1 Formal Definitions . 20

4.2 Proposed Approach . 21

4.3 Advanced Program Code Transformer: 22

4.3.1 Identification of predicates: 24

4.3.2 Simplification of predicates: 24

4.3.3 Nested if else generation . 26

4.3.4 CONCOLIC Testing . 28

4.3.5 Coverage Analyzer . 29

5 Experimental Study 33

5.1 Experimental Study . 33

5.1.1 Advanced Program Code Transformer 33

5.1.2 Concolic Tester:CREST: . 35

5.1.3 Coverage Analyzer: . 37

5.2 Analysis of MC/DC Coverage percentage 37

6 Conclusion 43

Bibliography 45

List of Figures

1.1 A sample C program . 4

2.1 A program to show Concolic Testing. 12

4.1 Code Transforming Steps. 22

4.2 Sum of Product Minimization. 25

4.3 Process to generate test cases using tester. 29

4.4 Coverage Analyzer. 30

5.1 Triangle Program in C . 34

5.2 Program code transformation using Modified quine McCluskey . . . 34

5.3 Output after crest Compilation . 35

5.4 Output for number of iterations generated by CREST in DFS . . . 35

5.5 Input Test files . 36

5.6 Coverage Percentage Achieved . 37

5.7 Graph showing the average Mcov Original, Mcov PCT and Mcov APCT

Percentage. 39

5.8 Graph showing variation in Mcov Original, Mcov-PCT and Mcov-

APCT. 40

vii

List of Tables

2.1 Truth Table for A∨ B and minimum test fora decision with 2 con-

ditions . 9

5.1 Coverage Percentage using PCT and APCT. 39

5.2 Variation in the Coverage Percentage. 40

viii

Introduction

Chapter 1

Introduction

1.1 Introduction

Software pervades everywhere in our society like Education field, Medical field,

Business, Communication field and almost in every field. All the devices in every

filed needs software, it is an essential part. A software faces various challenges, as

its demand increases its complexity also increases. In order to raise the quality, the

testing of software is required. That is why software testing is a very important

stage in the software development cycle.

Software testing is a process of finding errors and a practical way to reduce

defects and improve the reliability, dependability and quality of a software system

[1]. If we discover more bugs in the early stage of the software development, then

the software will be more successful. It is being evolved in the form of a process

which is based on the strategies efforts. It is a process to evaluate software under

various conditions to compare its results with the expected results. A software

system is normally tested in these levels or strategies:

• Unit testing: It is a kind of root level testing. Programmers carry

out this testing immediately after completing the coding of a single module. It

consists of testing code modules.

• Integration testing: According the the integration plan, different mod-

ules are integrated, After different modules of a system have been coded and unit

tested, to determine if they interface properly with each other.

2

1.2 Types of testing:

• System testing: A system is fully developed and then tested on the basis

of its requirements. The test cases are designed solely based on Software Require-

ment Specification document.

• Acceptance Testing: The customer itself test the system in order to accpet

and reject the system.

1.2 Types of testing:

There are mainly two types of testing strategies:

(A) Black Box Testing: In order to design the test cases, Only functional spec-

ification is required. The internal structure of software is not considered. In this

approach, we give input and see the output and do not see the internal process

behind it.

(B) White Box testing: White box testing is also called as Structural testing

or Glass box testing. To design white box test cases, knowledge about the internal

structure of software is required. In this we take input and produce output and

consider the internal coding of the software. It is done by the developers

There are various coverage criteria for white box testing: Let us discuss

them using an example of simple c program code,

1. Statement coverage: In statement coverage every bug can be detected

when all the statements of a module are executed at least once. To cover

all the statement in the above program, two test cases are designed: (1)

m=n=a, where a is any number, and (2) m=a, n=b. In test case 1 the loop

will not get executed while in test case 2 the loop will be executed. Here

two more test cases are also designed (3) m>n and (4) m<n. Therefore

it is not a better coverage criteria because test case 3 and test case 4 are

sufficient to execute all the statements in the code, but if we consider them

3

1.3 Problem Definition

Figure 1.1: A sample C program

only the condition and path of test case 1 will never be tested and all the

errors cannot be found.

2. Branch Coverage: Each decision should take all possible outcomes at least

once either true or false. In this case the test cases are (1) m>n, (2) m<n,

(3) m=n, (4) m! =n,

3. MC/DC Coverage: It shows that all the conditions in a decision affect

the output of the decision independently, and enhances the condition and

decision coverage criterion.

4. Modified Condition Coverage: All possible outcomes of a decision are

taken in order to invoke all entry points at least once.

1.3 Problem Definition

1.3.1 Automated Testing

We gave so much effort in the testing process in the whole software develop-

ment process by repeating software tests, but manually repeating these steps is

time consuming as well as costly. Once automated tests are created, we can run it

over and over again without any extra cost and time as they are much faster than

4

1.3 Problem Definition

the manual tests. There are two approaches to automate the testing process.

The First approach is to write scripts with all the test cases. This can

be useful for the techniques where tests are performed repeatedly like regression

testing by making a small change to ensure that this change will not affect the

functionality of the system, but this can be costly to test all the tests again man-

ually.

The Second approach is to design an automatic test case generation tool

and run them on the system or program to be tested. Such a tool has long been

considered critical, but once developed we can run it over and over again without

any extra cost and time. Thousands of various complex test cases during every

test run can be easily executed by automated software tests and providing better

coverage that is impossible with manual.

1.3.2 Motivation

There are many approaches used for test case generation using branch coverage.

But large and complex software like safety critical systems are required to satisfy

the Modified Condition/ Decision coverage criteria so that a software can get a

DO-178B Level A Standardize certification [3]. Hence it is necessary to develop

test cases for MC/DC also by using various automated approaches to achieve

MC/DC coverage.

1.3.3 Objective

There is an existing approach of CONCOLIC Testing which is used to achieve

Branch Coverage [4] [5] [6]. In order to attain MC/DC Coverage we are trying to

extend the CONCOLIC Testing technique. Our main objective in the approach

is to attain MC/DC coverage and to generate test data to achieve the coverage.

Hence we are using concolic testing to achieve better coverage, which was first used

5

1.4 Organisation of thesis

to achieve the branch coverage. And we are using it to achieve MC/DC coverage

with our code transformer.

In our approach, we are using advanced program code transformer which is a

modified version of existing Boolean code transformer in which the Modified Quine

McCluskey method [2] is applied in place of QuineMcCluskey method. It reduces

the number of comparisons and helps in achieving better coverage percentage. And

this code transformer gives various new branches which helps in concolic testing

as it is made for branch coverage.

1.4 Organisation of thesis

The thesis is organized as follows: Chapter 2 discusses the basic concepts and

definitions related to the thesis work. Chapter 3 describes the literature review

done for this thesis. Chapter 4 discusses the main approach which is proposed,

it is based on the advanced program code transformer. Chapter 5 Shows the

implementation and experimental study of the Thesis work. Finally chapter 6

gives the summary of the whole thesis

6

Chapter 2

Basic Concepts

In this chapter we are discussing about various basic terms related to mod-

ified condition/decision coverage testing [7], the definition of general terms like

condition, decision, group of conditions etc, various criterion related to modified

condition/ decision coverage and Boolean derivatives and the approaches for sym-

bolic testing and concolic testing.

2.1 Basic Definitions:

Condition: A condition or a clause is a Boolean Expression without any Boolean

Operator. It can not be broken further into more Boolean expressions [8].

Decision: A decision is a Boolean Expression composed of one or more conditions

within a decision. Condition with Boolean operator is decision [8].

Group of Conditions: A predicate or decision is composed of two or more con-

ditions with many Boolean Operators [8].

Let us take a statement S in a program

S= A OR (B AND C)

Here, A, B, C are conditions and S is a Decision statement

Condition Coverage: Each condition in a decision should take all possible out-

comes at least once [3].

Decision Coverage: Each decision should take all possible outcomes at least one

either true or false [3].

8

2.1 Basic Definitions:

Table 2.1: Truth Table for A∨ B and minimum test fora decision with 2 conditions
A B Output A B

1 T T T
2 T F T 4
3 F T T 4
4 F F F 2 3

2.1.1 Modified Condition/Decision Coverage:

It is a criterion for code coverage which was introduced by RTCA DO-178B

standard [3]. It is a critical (level A) software, an improvement on Modified Con-

dition Testing by overcoming its disadvantage like the linear growth of test cases

is maintained [9].

It shows that the output of the statement must be affected by all the conditions

in a decision statement. MC/DC must satisfy the following criteria:

1. All the points of entry and exit in the program must be invoked at least

once.

2. All possible outcomes of a decision must be affected by each condition.

3. All possible outcomes of every decision must be exercised.

4. All the conditions in a decision must be exercised.

Consider an expression A OR B

In order to understand MC/DC technique, let us take a Boolean predicate and

its schema.

Table 2.1, Consider the expression A∨B, for 2 variables we have 4 combinations

and outputs. MC/DC Considers only those pairs of test cases in which the output

is changing by changing only one condition.

For(A OR B)

9

2.1 Basic Definitions:

independence of A: Take 2 + 4

independence of B: Take 3 + 4

Resulting test cases are : 2+ 3 + 4

(T , F) + (F , T) + (F , F)

2.1.2 Boolean Derivative

Kuhn and Ammann et al. [9] proposes an approach to solve the problem of

solving the determination which all the predicates are evaluated independently for

each clause. Boolean derivative method is good when the same clause are occurred

many times explicitly. Let Pm=true for every occurrence of m is true and Pm=false

with occurrence of m is false, where p is a predicate with m as clause. therefore,

clause m occurs neither in Pm=true nor in Pm=false. Now, these two expression for

true and false values of predicate are combined with the Logical EXOR(Exclusive-

OR) operation.

Pm= Pm=true ⊕ Pm=false

so, we can say that Pm describes the exact conditions under which the value of m

determines value of P. If the values for the clauses in Pm are taken so that Pm is

true, then the truth value of P can be determined by the truth value of m. If the

clauses in Pm are taken so that Pm evaluates to false, then the truth value of m

does not affect the truth value of P.

Example: Consider the statement,

P = m ∧ (n ∨ r) (2.2)

If m is the major cause, then the Boolean derivative finds truth assignments for n

and r as follows:

Pm = Pm=true ⊕ Pm=false (2.3)

Pm = (true ∧ (n ∨ r))⊕ (false ∧ (n∨ r)) (2.4)

Pm = (n∨r)⊕ false (2.5)

Pm = n∨r; (2.7)

A deterministic answer can be obtained, three choices of values make n ∨ r = true,

10

2.1 Basic Definitions:

(n = r = true), (n = true; r = false), (n = false; r = true).

2.1.3 Symbolic testing

Symbolic Testing generates test data by using symbolic execution and this

execution do not take concrete values for assigning as the program variables but

it takes the symbolic expression. The main approach is to derive the constraints

which describes the necessary condition for execution of certain path. The input

variables comes as the solution of these constraints For system under test, we

collect the path constraints in symbolic testing and these path constraints are

solved using constraint solver. The solution represents the concrete test data that

executes these paths.

2.1.4 Concolic Testing

In a sequential Program,Concrete inputs are generated randomly then these

input tester executes the code as well as at each branch point along execution

path [10], tester collects constraints the symbolic values, then at the end when ex-

ecution stops, the sequence of symbolic constraints corresponding to each branch

point is collected by the tester. The conjunction of such constraints are path

constraints. Tester takes constraints value form path constraints and negate it in

order to find the next oath constraint and then tester finds some concrete value

for this new path constraints being constraint solver.

For Example, Let us take a function WEIGHT [11] and parameters for mass

and weight are set randomly as 22 and 5.0. Now the program is executed with

generated random inputs and performs concolic testing . Both the values concrete

and symbolic are collected for executed path while execution. The first if state-

ment is executed when first branch instruction is encountered.

The mass is taken as 22.0 the branch predicates evaluates to true.

11

2.1 Basic Definitions:

Figure 2.1: A program to show Concolic Testing.

Example, Then 2nd if statement is executed and next branch will be find.

Then This length is set to negative value then the branch predicate evaluates to

false. Then the branch constraints should be ¬(length >0.0) Then we find new

path by combining it with previous constraint (mass>0.0)∧(lenght>0.0).

The function will return after execution of else statement corresponding to second

if statement. For path, the one branch constraints will negate by which the path

constraints will changed. When the last branch constraints negated, the changed

path are (mass>0.0)∧(lengh>0.0).

In order to determine the input which makes constraint true, a test data

length= 1.0 and mass =50.0 is the solution which satisfies the constraints. Again

with this input, the function will executes but the path constraints are collected

again. The function will return overweight category with this input. Then the

execution path have the following constraints

12

2.1 Basic Definitions:

(mass>0.0)∧(lenght>0.0)∧ ¬(bmi<18.5)∧ ¬(bmi<25.0)

Then this whole process will continue till we meet the stopping criteria . And

stopping criteria can be when we obtain the proper code coverage or the number

of iteration exceeds the threshold. Suppose, when there are no inputs are existing

which satisfies the constraints and constraints are not feasible, the constraint solver

will not be able to compute test inputs for a path.

13

Chapter 3

Related Work

In this chapter, we are presenting a literature survey related to the research

work in the area of Modified Condition/Decision Coverage testing and automated

Testing.

3.1 Test Generation for Branch Coverage

Concolic testing technique is used to generate the test cases that is used for

branch coverage [4]. Similarly there are various testing techniques which are used

for branch coverage like search based , symbolic testing and random testing.

3.1.1 Random Testing

Random Testing is a simple and effective technique for Automated Testing.

We can generate a large number of independent inputs randomly and run the pro-

gram using these random inputs. The results are then compared with a system

specification. The test is a failure if any input leads to incorrect results. The Ran-

dom Test inputs can be generated in the negligible time using Random Testing.

But, it can not test all possible behavious of the program and it do not provide

better code coverage.

15

3.1 Test Generation for Branch Coverage

3.1.2 Symbolic Testing

Its a technique proposed by King [12]. In this technique concrete values are not

assigned to the program variable, in place of that a symbolic expression is assigned.

The technique is used to get some constraints that show some conditions used for

execution of certain path and gives some solutions. This solution is then given

as an input variable and in object oriented software. The path constraints are

collected for some application, and solved using a path constraint solver . The

concrete test data which executes these paths will be shown by the solutions solved

using constraint solver.

3.1.3 Concolic Testing

CONCOLIC [12] is a combination of CONCrete and symbOLIC techniques [13],

which performs symbolic and concrete execution simultaneously. CONCOLIC

(CONCrete + symbOLIC) testing [13] (also known as dynamic symbolic exe-

cution [Tillman et al. [14] And the white - box fuzzing [6]) combines concrete

dynamic analysis and static symbolic analysis to automatically generate test suite

to explore execution paths of a target program. Therefore, it is necessary to check

if CONCOLIC testing [13] can detect bugs in open source applications in a prac-

tical manner through case studies [15] [16]. In this technique, path constraints

are collected at the time of concrete execution of the system under test. As soon

as the execution finishes the path constraints are modified. The solution of this

modified constrained will be used again in order to find another path and the

process continue till we reach to a stopping criteria. The stopping criteria can be

number of iterations exceeding a threshold or when a sufficient code coverage is

obtained.

16

3.2 Literature Review

3.2 Literature Review

Bokil et al. [4] Have given a AutoGen tool which automatically generates test

data for C code which helps in reducing the cost and effort for test data prepa-

ration. There are various coverage criterion like statement coverage, decision cov-

erage, or Modified Condition/Decision Coverage (MC/DC) with these coverage

criterions Autogen takes the C code as input and generates test data that are

non-redundant and satisfies the specified criterion.

Das, A. et al. [17] has given an approach for augmentation of MC/DC test

case generation. The approach deals with automatic generation of MC/DC test

suite. The author proposed the concept by presenting Boolean Code Transformer

(BCT). BCT is based on Karnaugh map minimization technique.

Godboley, S. et al. [7] proposed another approach to enhance MC/DC using

exclusive- nor code transformer. The approach reduces the effort of minimizing

the sum of product by simple X-NOR operator. This approach overcomes the

disadvantages of old concepts.

Godboley, S. et al. [17] proposed an approach to increase MC/DC using a

program code transformer. Program Code Transformer was based on the Quine-

McCluskey minimization method. The objective of the paper was to automatically

generate MC/DC [18] test suite.

Vitthal et. al. [2] proposed an approach called Modified quine Mccluskey

(MQM)method. By using MQM method performance of digital circuits can be

increased by reducing the number of min-literals or minterms in Boolean Expres-

sion. Algebraic approach is used to reduce the number of comparisons between

17

3.2 Literature Review

minterms while E-sum is used to eliminate repitition. MQM is much simple and

faster than Quine McCluskey method due to less number of required comparisons.

Thus the method can be used to achieve speed in minimizing the Boolean function

manually and improve performance of conventional method [17].

18

Chapter 4

Proposed work

In this chapter, we are discussing our proposed work automated test generation

using advanced program code transformer for Modified Condition/Decision Cov-

erage (MC/DC). We are giving the formal definition and detailed description of

various modules used in the proposed approach like Program Code Transformer,

Concolic Tester and Coverage Analyser.

4.1 Formal Definitions

To achieve structural coverage is our primary purpose on a given program un-

der test (PUT) with respect to a given coverage criterion (C). An automatic tool

ω for test generation is used in order to achieve coverage in the context of other

coverage criterion C ′.

Therefore, we transform PUT to PUT ′ in a way that the problem to obtain

structural coverage in PUT with respect to C is converted into the problem to

attain structural coverage in PUT ′ with respect to C ′.

There are few terms defined below used in our approach:

COVERAGE (C, P U T, TS) [2] It shows the percentage that Test Suite(TS)

achieves the coverage over a given program under test (PUT) with respect to given

coverage criteria (C).

OUTPUT (P U T, I) It shows the output result of a program code under

20

4.2 Proposed Approach

test (P U T) subject to an input (I).

(P U T ` TS) It shows that the tester tool ω generates a test suite (TS)

for the program code under test (P U T). We have to transform P U T to PUT ′

where PUT ′ = P U T+R for a given PUT and R is the code added to PUT such

that the following requirements are met.

Req1: ∀: [Output(P U T, I)=Output(P U T ′,I)], where I is input set for P U

T. When the results of PUT and PUT ′ violates for same input I then, PUT ′ will

have side effects.

Req2: If the tester tool ω generates the test suite TS ′ from PUT ′, then ∃

TS ′[((PUT ′ TS ′) Coverage(C ′, PUT ′, TS ′) = 100%) (Coverage(C, PUT, TS ′)

= 100%)] The requirement states that if there exists a test suite TS ′ that achieves

100% coverage on PUT ′ with respect to C ′, then coverage of TS ′ on PUT with

respect to is 100%.

4.2 Proposed Approach

We gave a name as Advanced MC/DC Tester to our approach and our work

is based on three modules. Advanced Program Code Transformer, Concolic tester

and Coverage Analyzer.

In the whole process we take program code as input and then insert it to the

code transformer. We are using an advanced program code transformer which pro-

duces the transformed program; the transformer modifies the program by adding

some condition statements.

We are using advanced program code transformer in which a program is iden-

tified with various conditions which shows the predicates and then it is simplified

into simpler predicates as it can be complex in several programs and generate

nested-if else condition.

Concolic tester takes the transformed program as input and determines the

feasible paths and test inputs by determining its feasible branches that can be

reached in a program.

21

4.3 Advanced Program Code Transformer:

Then the third module is coverage analyser which takes the original program that

is test input and test output of input files as input and calculates MC/DC cover-

age by using coverage calculator.

These three modules in our approach can be discussed further in this chapter:

4.3 Advanced Program Code Transformer:

The code transformer module in our approach is named as advanced program

code transformer. In this module, the process consists of various steps. APCT

takes input program i.e. C program and identifies the predicate, these predicates

are need to be simplified, so it generates sum of product and then simplify it, using

modified Quine mcCluskey method. Then these simplified conditions are used to

find the various branches of program and decompose it into simpler conditions

with empty true and false branches and these conditions are inserted into the

original predicate.

The reason why empty true and false branches are inserted is to avoid the

execution of duplicate statement which can be the original predicate and predicates

after the transformation. And it is helpful in order to retain functional equivalence

of a program after that, in generation of additional test cases for increased MC/DC

coverage.

The algorithms for various steps in APCT are given as:

Figure 4.1: Code Transforming Steps.

22

4.3 Advanced Program Code Transformer:

Algorithm1: To obtain advanced Code Transformation

Input: PUT // PUT is the program under test in C syntax

Output: PUT ′ // PUT ′ is the transformed program

Begin

/* Identification of predicates */

for each statement s ∈ PUT

do

{

if (&& or ‖) occurs in s

{

then

1 Predicate List ← add-to-List(s) // List of predicates

end if

}

end for

}

/* Simplification of predicates */

{

for each predicate p Predicate List do

2 P SOP ← gen sum of product(p)

// Generates in the form of SOP expression

3 P Minterm ← Convert to Minterm (P SOP)

// Converting in the minterm form

4 P Simplifeid ← Mini SOP MQM (P Minterm)

// Minimizes the SOP

end for

}

/*Nested if–else Generation */

5 List Statement ← generate Nested If–else APCT(P Simplified)

// Generating conditional statements

23

4.3 Advanced Program Code Transformer:

6 PUT ′ ← insert code (List Statement,PUT)

// Forming in the form of C syntax

end for

7 return PUT ′

4.3.1 Identification of predicates:

Line 1 Represents the identification of predicates which scans the input program

and identifies all the predicate and these predicates are added to a list. Predicates

are the conditional statements with Boolean operators, so the process scan for

Boolean operators like && (AND)and ‖ (OR) operators.

4.3.2 Simplification of predicates:

The predicates are identified can be complex, so they need to be simplified and

simplification of predicates involves two steps

(a) SOP Generation:

In algorithm 1 line 2, represents generation of SOP in which predicates are

passed which are identified in the first step. And these predicates are connected

into sum of Product (SOP). We are using SOP instead of POS because the whole

structure should be in AND operator condition which is not flexible to the standard

format and for the OR operator conditions, the structure of POS will be failed.

(b) SOP Minimization:

The predicates can be complex forms and can be redundant, so the are need

to simplified or minimized and for which various minimization technique is use.

Like k-map Quine Mccluckey method and Modified Quine McCluskey method.

Lines 3-4 in Algorithm1 calls another Algorithm 2 which minimizes the generated

SOP expression. For that we use modified Quine McCluskey method or Tbulation

24

4.3 Advanced Program Code Transformer:

method. There are some other techniques to minimize SOP like Quine McCluskey

or K-Map method, but we use MQM which has advantages to overcome the prob-

lems of other techniques. The proposed algorithm uses E-SUM and algebraic

approach to reduce number of comparisons between mintermlist. E-SUM is used

to keep track of all eliminated variable in mintermlist or Boolean term. E-SUM

based MQM algorithm is presented using following step-by-step approach:

Figure 4.2: Sum of Product Minimization.

Algorithm2: Minimization of SOP Modified Quine-McCluskey Method

Input: p Minterm

Output: p Simplified

1. Transform the given Boolean function into canonical SOP form and obtain

binary notation for each minterm.

2. All the minterms are arranged into groups according to number of 1’s in their

binary notation. All minterms in one group should contain same number of

1’s. Then initialize E-SUM of all minterms to 0.

3. Compare mintermlist in adjacent groups according to MQM matching prin-

cipal. Use algebraic approach to reduce number of comparison between

mintermslist in adjacent group. In algebraic approach mintermlist in nth

group having least minterm as x is compared with all minterms in (n+1)th

group having least minterm as x+2p where p=0,1,2,3..so on. Once there

are any two minterms of nth and (n+1)th group satisfying MQM matching

principal and having least minterm as x and y respectively. Then combine

the two minterm list by taking E-SUM of resulting minterm list as“E-sum

of combining minterm list + Current MPW (i.e. y-x)”. Checkmark (X)

25

4.3 Advanced Program Code Transformer:

minterm lists which can combined to form new minterm list. Now repeat

the same procedure for all other minterm list.

4. Eliminate repeated or identical mintermlist from combined mintermlist in

all group. Two mintermlist in same group become identical if their corre-

sponding E-SUM, least minterm and largest minterm are equal.

5. Repeat step described in 3 and 4 to minimize given Boolean function until

it is impossible to combine minterm list.

6. Collect all non-checked (i.e. not Xmarked) mintermlist as prime implicant.

7. Now the redundant prime implicants are removed with the help of prime

implicant chart in Quine Mccluskey method.

4.3.3 Nested if else generation

This is the last step in algorithm 1, in which some statements are generated

which are additional conditional statement and thus statements are combined with

original program statement. Nested if else algorithm scans all the if-else state-

ments in C-syntax and identified the conditions in a group of conditions which are

connected with && and ‖ conditions. If first condition is satisfied then make an

statement with that conditional and then next as else statement, similarly for each

condition in a group, a if statement and corresponding else statement is created.

This ensures that each condition is evaluated for both true and false values and

this process is repeated for the simple conditions if they are the part of statement

in the program.

Algorithm3: generateNestedIfElse.

Input: p // minimized SOP predicate p

Output: List Statement //list of statements in C syntax

Begin

{

26

4.3 Advanced Program Code Transformer:

for every && and ‖ operator connected group of condition ∈ p

do

{

for all the condition s1 ∈ group of condition

do

{

if s1 is the first condition then {

1 make an if statement k with s1 as the condition

2 List Statement ← add-to-list(k)

else

{

3 make a nested if statement k with s1 as the condition

4 make an empty Truebranch Tb and an empty False branch Fb in order,

5 List Statement ← add list(strcat(k,Tb,Fb))

end if

}

end for

}

6 make an empty False branch Fb for the first condition

7 List Statement ← add list(Fb)

end for

}

for each condition ∈ p any group of condition

do

{

8 repeat lines 1, 4 and 5

end for

}

if p is an else if predicate then

9 make an if(false) statement s

27

4.3 Advanced Program Code Transformer:

10 make an empty Truebranch Tb

11 List Statement ← add list(strcat(k,Tb))

end if }

12 return List Statement

}

The above algorithm takes minimal predicates as input and produce the

list of statements in the if- else in C syntax as the output. This algorithm finds

the group of conditions which are connected with boolean operators like && or ‖

operators, and identifies the condition. As soon as the first condition is identified,

the algorithm makes an if statement with its condition and add this to the state-

ment list. Similarly, whole program gets scanned for all the conditions connected

with && or ‖ operators. For each true and false values for each evaluated condi-

tion creates if and its corresponding else conditions.

4.3.4 CONCOLIC Testing

The program code under test are transformed from advanced program code

transformer and these transformed program are then passed to the concolic tester

tool that is CREST tool. Through the random test generation , the tester achieves

the branch coverage. This tester is called as Concolic Tester. A concolic tester

is that which performs concrete as well as symbolic testing. The extra generated

expressions lead to generation of extra test cases for the transformed program.

The identical test suites may not be generated because of random strategy in

which different runs of concolic testing is done. The generated test cases depend

on the path on each run. The test cases are stored in input text files which form

a test suite.

28

4.3 Advanced Program Code Transformer:

Figure 4.3: Process to generate test cases using tester.

4.3.5 Coverage Analyzer

Coverage analyzer determines the coverage percentage attained by generated

test cases. It determines the coverage percentage achieved by test cases. We need

to calculate the extent to which a program feature has been performed by the

test suite. It also finds inadequacy of test cases and provides an insight on those

aspects of an implementation that have not been tested. In our approach, it is

essentially used to calculate if there are any changes in coverage performed by

the test suite generated by the CREST TOOL using our approach. The entered

program to test and the test data generated are passed to the coverage Analyzer.

Coverage Analyser (CA) evaluates the extent to which the independent effect of

the component conditions on the calculation of each predicate of the test data

takes place. The MC/DC coverage achieved by the test cases T for program input

P denoted by MC/DC coverage is calculated by the following formula:

MC/DCCoverage =

∑n
i=1 I i∑n
i=1C i

∗ 100% (4.1)

Algorithm4:MC/DC COVERAGE ANALYSER

Input: P,Test Suite // Program P and Test Suite obtained

Output: MC/DCcoverage // % MC/DC achieved for P

Begin

29

4.3 Advanced Program Code Transformer:

Figure 4.4: Coverage Analyzer.

/*Identification of predicates*/

for each statement s∈P do

if && or ‖occurs in s then

1. Predicate List ← add-to-List(s)

end if

end for

/* Determine the outcomes */

for each predicate p∈ Predicate List do

for each condition c∈p do

for each test case tc ∈ Test Suite do

if c evaluates to TRUE and calculate the outcome of p with tc

then

2. True Flag←TRUE

end if

if c evaluates to FALSE and calculate the outcome of p without td then

3. False Flag←TRUE

end if

end for

if both True Flag and False Flag are TRUE then

4. ListI←add-to-List(c)

End if

5. Listc ←add-to-List(c)

end for

30

4.3 Advanced Program Code Transformer:

end for

/* Calculate the MC/DC coverage percentage */

6. MC DC COVERAGE ← (SIZEOF(ListI) SIZEOF (Listc))X 100%.

In algorithm 4, There is a predicate identifier, which identifies the predi-

cates which are read with the test data td and check whether the test data makes

all the conditions in a predicate both true and false, as well as check whether con-

ditions independently determine the predicate outcome. finally, when the number

of conditions are identified which are independently affecting the outcome together

with the total number of conditions in each predicate then, it is passed to the cov-

erage calculator to calculate the MC/DC coverage percentage.

31

Chapter 5

Experimental Study

5.1 Experimental Study

We are using an open source Concolic tester tool i.e. CREST for our exper-

iments. The main objective of our experiments is to determine better MC/DC

coverage. We have used several programs to test the coverage. Here we are show-

ing the implementation using an example for triangle C program as in figure 5.1.

The different modules are:

5.1.1 Advanced Program Code Transformer

Nested if-else generator and code inserter, he predicate identifier scans the

program to identify the predicates, SOP generator module takes a predicate and

convert it to sum-of-product(SOP) form using Boolean algebraic laws and SOP

minimizer module then simplify the predicate using modified Quine Mccluskey

method and then nested if else generator breaks the simplify predicates into simple

conditions and passes these conditions to code inserter modules which inserts

these conditions into the program before the location of predicate. This process

is repeated for all the predicates.

33

5.1 Experimental Study

Figure 5.1: Triangle Program in C

Figure 5.2: Program code transformation using Modified quine McCluskey

34

5.1 Experimental Study

Figure 5.3: Output after crest Compilation

Figure 5.4: Output for number of iterations generated by CREST in DFS

5.1.2 Concolic Tester:CREST:

Crest is concolic tester; it performs symbolic execution and concrete execution

together. The symbolic constraints which are generated are solved to generate

input. There are two main strategies are used in CREST are Depth flow search

and control flow directed search. The Figure 5.4 represents the DFS search for

triangle program. Figure 5: shows the compilation for the test program which

number of nodes(vertices) in the program, number of branches in the program,

and the number of branch edges remaining in the graph (CFG)as shown in figure

5.4.

35

5.1 Experimental Study

Figure 5.5: Input Test files

There are various number of input test cases are generated and the test cases

may vary depending on the path along which the CONCOLIC execution starts in

each run. The generated cases are stored in text files which form a test suite as

in figure 5.5

36

5.2 Analysis of MC/DC Coverage percentage

Figure 5.6: Coverage Percentage Achieved

5.1.3 Coverage Analyzer:

Further these test data with the program under test are passed to the coverage

analyzer then these test datas examine the extent to which the independent effect

of component conditions on the evaluation of each predicate by the test data takes

place. And tries to achieve the more coverage percentage.

There are four modules in coverage Analyzer: Predicate identifier which is same

as the Advanced Program Code Transformer, Test Suite reader module that reads

each test data and passes it to the effect analyzer module, The effect analyzer

which then reads each identified predicate and test data and then checks whether

the test data makes each condition in a predicate both true and false and identifies

conditions which have independent effect on predicate outcome and passes to the

Coverage calculator module, and the last is Coverage calculator which computes

the percentage of MC/DC achieved by the test suite, as shown in figure 5.6.

5.2 Analysis of MC/DC Coverage percentage

In previous research papers [17] [7], work for an increase in MC/DC coverage

percentage has been done. In this paper, we are analyzing coverage percentage.

To calculate coverage percentage, the C program is fed to the Advanced Program

Code Transformer based on sum of product. The transformer has four steps,

37

5.2 Analysis of MC/DC Coverage percentage

including the minimization of SOP in which modified Quine McCluskey(MQM)

method is applied by using which we can reduce the number of comparisons be-

tween mintermlist while E-sum is used to eliminate repetition. Modified Quine

McCluskey is simple and faster than Quine-McCluskey method due to less number

of required comparisons.

After transforming the C program, we pass it to CREST tool to automati-

cally generate MC/DC test cases. With the use of the original C program and test

cases we are evaluating coverage percentage. In our experimental study, we have

taken 6 complex programs. Table 5.1 shows the name of 6 programs with their lines

of code (LOC), MC/DC Coverage for original programs(Mcov Original), MC/DC

coverage analyser using a program code transformer(Mcov PCT), MC/DC cov-

erage analyser for Advanced program code transformer(MCov APCT). Table 5.2

shows the Variation in MC/DC percentage using Program code transformer i.e

Mcov PCT −Mcov Original, Variation in MC/DCcov using Advanced program

code transformer i.e Mcov APCT −Mcov Original and Variation in Mcov using

Program Code Transformer and Advanced Program Code Trnsformer i.e Mcov PCT−

Mcov APCT . Some programs are student assignment and some are open source

programs. Dairy Management program is very complex in nature. Since it is more

than 1000 lines of code. Triangle, Timer, Contact manager, Student record, Snake

Game have Good MC/DC coverage percentage.

From the observation of Table 5.2 we can observe that variation in average

MC/DC coverage percentage is 3.81% for 6 programs. We achieve an increase in

APCT MC/DC.

The Modified Quine McCluskey method is used in a way that when the

number of minterms is high, the number of comparisons increases between two

adjacent groups, and the condition becomes worst when there are all possible

combinations in the minterm list are taken. (For n number of variables, number

38

5.2 Analysis of MC/DC Coverage percentage

of comparisons is 2n). Therefore, in the first pass, the number of comparisons

between adjacent minterms in Quine McCluskey (QM) method is
∑n−1

i=0
nCi *

nCi+1, where i is a group number. But in Modified Quine McCluskey (MQM)

method the number of comparisons reduces to
∑n−1

i=0
nCi * (n-i) or n∗2n−1, which

is much lesser than the Quine McCluskey Method. The number of comparisons

reduces because of E-sum is used to eliminate the repetitions.

Table 5.1: Coverage Percentage using PCT and APCT.

S.No. Program LOC Mcov
Original

Mcov PCT Mcov
APCT

1 Triangle 75 75% 100% 100%

2 Contact
Manager

224 50% 84% 87%

3 Student
Record

390 58.7% 74.9% 81.2%

4 Calender 430 63.4% 81.5% 86.4%

5 Snake
Game

533 62.7% 82.4% 85.9%

6 Dairy
manager

1250 59.1% 79.6% 84.8%

Figure 5.7: Graph showing the average Mcov Original, Mcov PCT and
Mcov APCT Percentage.

39

5.2 Analysis of MC/DC Coverage percentage

Table 5.2: Variation in the Coverage Percentage.

S.No. Program Variation in
Mcov% us-
ing PCT

Variation in
Mcov% us-
ing APCT

Variation
in PCT
and APCT
Mcov%

1 Triangle 25% 25% 0%

2 Contact
Manager

34% 37% 3%

3 Student
Record

16.2% 22.5% 6.3%

4 Calender 18.1% 23% 4.9%

5 Snake
Game

19.7% 23.2% 3.5%

6 Dairy man-
ager

20.5% 25.7% 5.2%

Figure 5.8: Graph showing variation in Mcov Original, Mcov-PCT and Mcov-
APCT.

As we can observe in our APCT architecture we achieved 3.81 % improved

coverage percentage as compared to the PCT architecture. We know that MC/DC

Coverage depends on entered empty nested if-else statements for each condition

in each predicate of program under execution. It shows that number of coverage

is dependent on number of conditions covered. Now, In K-map minimization

technique, the simplification of sum of product is very difficult beyond 6 variables.

Similarly in QM, according to more number of min terms for n variables, it is very

40

5.2 Analysis of MC/DC Coverage percentage

difficult to cover more number of variables. Since, min term comparisons for QM

technique is: ∑n−1
i=0

nCi * nCi+1.

In MQM minimization technique, we can cover more number of conditions as

compared to the K map and QM technique because MQM reduces the number of

comparisons of min term to ∑n−1
i=0

nCi * (n-i) or n ∗ 2n−1

and covering the more number of conditions by reducing the time complexity.

41

Chapter 6

Conclusion

In this research work we have discussed an approach to automatically increase

the MC/DC Coverage. We have used a concolic tester tool i.e CREST tool and

a code transformer which is based on sum of product(SOP) Boolean logic con-

cept to generate test data for MC/DC. The Transformer has four steps including

minimization of SOP in which the Modified Quine McCluskey method is applied

by using which we can reduce number of comparison between minterm list while

E-sum is used to eliminate repetition. MQM is simple and faster than Quine-

McCluskey method due to less number of required comparisons. Thus method

can be used to achieve speed in minimizing the Boolean function manually and to

improve performance of conventional method and by which we can get the better

coverage.

In this work, we have proposed the Advanced Program Code Transformer,

CREST Tool, and Coverage Analyzer with their working and descriptions. We

have done experiments for 6 complex programs. In that we have calculated

MC/DC coverage percentage of the original C program, for program code trans-

former and advanced program code transformer by our proposed architecture.

Hence, We conclude that the variation or enhancement of MC/DC coverage per-

centage is 3.81%. The effort for calculations reduces the overall effort by using the

Modified Quine Mccluskey methods. The Figure 3 shows a Graph of the average

Coverage Percentage for 6 Programs taking Original programs and Transformed

Programs(using PCT and APCT) and Figure 4 shows a graph for overall variation

43

in MC/DC coverage percentage using Program Code Transformer and Advanced

program Code Transformer in average for all the 6 programs and from the graph,

we can clearly see that the Coverage % using APCT is more than PCT by 3.81%.

44

Bibliography

[1] N. Chauhan, Software Testing: Principles and Practices. Oxford University

Press, 2010.

[2] V. Jadhav and A. Buchade, “Modified quine-mccluskey method,” arXiv

preprint arXiv:1203.2289, 2012.

[3] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A

practical tutorial on modified condition,” Decision Coverage, 2001.

[4] P. Bokil, P. Darke, U. Shrotri, and R. Venkatesh, “Automatic test data

generation for c programs,” in Secure Software Integration and Reliability

Improvement, 2009. SSIRI 2009. Third IEEE International Conference on,

pp. 359–368, IEEE, 2009.

[5] W. Miller and D. L. Spooner, “Automatic generation of floating-point test

data,” IEEE Transactions on Software Engineering, vol. 2, no. 3, pp. 223–226,

1976.

[6] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random

testing,” in ACM Sigplan Notices, vol. 40, pp. 213–223, ACM, 2005.

[7] S. Godboley, G. Prashanth, D. Mohapatra, and B. Majhi, “Enhanced modi-

fied condition/decision coverage using exclusive-nor code transformer,” 2013.

[8] M. M. Mano, Digital Design: For Anna University, 4/e. Pearson Education

India.

45

Bibliography

[9] P. CREST, J. Offutt, and H. Huang, “Coverage criteria for logical expres-

sions,” in Software Reliability Engineering, 2003. ISSRE 2003. 14th Interna-

tional Symposium on, pp. 99–107, IEEE, 2003.

[10] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in

Proceedings of the 2008 23rd IEEE/ACM international conference on auto-

mated software engineering, pp. 443–446, IEEE Computer Society, 2008.

[11] M. D. Hollander, Automatic unit test generation. PhD thesis, Masters thesis,

Delft University of Technology, 2010.

[12] J. C. King, “Symbolic execution and program testing,” Communications of

the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[13] K. Sen, D. Marinov, and G. Agha, CUTE: a concolic unit testing engine for

C, vol. 30. ACM, 2005.

[14] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test gener-

ation for coverage criteria,” in Software Maintenance (ICSM), 2010 IEEE

International Conference on, pp. 1–10, IEEE, 2010.

[15] M. Kim, Y. Kim, and Y. Choi, “Concolic testing of the multi-sector read

operation for flash storage platform software,” Formal Aspects of Computing,

vol. 24, no. 3, pp. 355–374, 2012.

[16] D. R. Kuhn, “Fault classes and error detection capability of specification-

based testing,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 8, no. 4, pp. 411–424, 1999.

[17] S. Godboley, G. Prashanth, D. P. Mohapatro, and B. Majhi, “Increase

in modified condition/decision coverage using program code transformer,”

in Advance Computing Conference (IACC), 2013 IEEE 3rd International,

pp. 1400–1407, IEEE, 2013.

46

Bibliography

[18] Z. Awedikian, K. Ayari, and G. Antoniol, “Mc/dc automatic test input data

generation,” in Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pp. 1657–1664, ACM, 2009.

47

