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Abstract

Formal analysis is required to check the behavior of the system before

implementation of any safety critical system. As the complexity of software

increases, the need for reasoning about correct behavior becomes more promi-

nent. Algorithmic analysis of different programs is usually carried out in order

to prove their properties of execution. Application of formal method is being

considered necessary for modeling, verification, and development of any soft-

ware or hardware systems. In the formal verification of behavioral model, an

attempt has been made to formally describe a real-time system e.g., use of

Automated Teller Machine (ATM) in Banks. In this thesis, formal models of

ATM system are described using state-based languages such as, Z, B, and Alloy

as well as event-based language such as, Monterey Phoenix. Model checking

is being carried out by automated tools, viz. Z/EVES, Atelier B, and Alloy

Analyzer for Z, B, and Alloy specifications respectively. Furthermore, a com-

parative analysis of different characteristics shown by varied formal approaches

has been presented in this thesis.

Software architecture plays an important role in the high level design of

a system in terms of components, connectors, and configurations. The main

building block of software architecture is an architectural style that provides

domain specific design semantics. In the analysis of complex architectural

style, an attempt has been made in our work to formalize one complex style

e.g., C2 (component and connector) using formal specification language Alloy.

For consistency checking of modeling notations, the model checker tool e.g., Al-

loy Analyzer is used. Alloy Analyzer automatically checks properties such as,

compatibility between components and connectors, satisfiability of predicates

over the architectural structure, and consistency of an architectural style. For

modeling and verification of C2 architectural style, one case study on Cruise

Control System has been considered. At the end of this study, performance

evaluation of different SAT solvers associated with Alloy Analyzer has been

performed in order to assess the quality.

Keywords: Formal methods, formal verification, model checking, Z, B, Al-

loy, Z/EVES, Atelier B, Alloy Analyzer, SAT, Monterey Phoenix, software

architecture, and architectural style.
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Chapter 1

Introduction

1.1 Formal Methods

Embedded systems emphasize on reliable operation of a product having large

social importance. Hence, they need to be properly specified and verified before

development using certain formal methods. Formal methods are mathematical

approaches, supported by tools and techniques, for verifying essential proper-

ties of the desired software or hardware systems. Mathematical techniques and

formal logics enable users to specify and verify models of a system at any part of

the program life-cycle such as requirements specification, architectural design,

implementation, testing, maintenance, and evolution [1]. Formal methods are

useful for checking the quality parameters such as correctness, completeness,

consistency, traceability, and verifiability of system requirements. A formal

model of a system suppresses implementation details during the design phase.

These models are also helpful in fixing the configuration of architectural ele-

ments i.e., components and connectors for complex systems. Formal methods

are also useful for code verification. According to Hoare, [2] the use of formal

assertions in Microsoft are not for program proving, but for testing. An im-

1



Chapter 1 Introduction

portant role of formal methods is in the maintenance of legacy code. So, for

the software development, formal methods are used to specify the semantic

relationships of UML (Unified Modeling Language) diagrams.

Software requirements present precisely and unambiguously using a collec-

tion of tools and techniques that can capture the abstract features of a system.

The use of a formal modeling languages reduce the ambiguity and ensure the

completeness and correctness of the specifications. A Model checker does not

check programs, rather than it checks the properties of a model, which are high

level descriptions of a system. In order to check whether the modeled system

complies with the user requirements, it needs to verify and validate that par-

ticular model. Formal modeling is a task to convert a design document into a

formal document, which is checked by model checking tools.

Formal methods are mainly associated with three techniques such as formal

specification, refinement, and formal verification. Formal specification is used

to uncover problems and ambiguities from the system requirements. Many

formal specification languages are available in the literature. Some of them

are used for sequential systems such as Z [3], B [4], VDM [5], Alloy [6] etc. and

others are used for parallel systems such as CSP [7], CPN [8], LOTOS [9], RSL

(RAISE Specification Language) [10], Promela [11] etc. For these specification

languages, tools such as, Z/EVES [12], Atelier B [13], VDMTools [14] [15],

Alloy Analyzer [16] etc. are used for sequential systems and PAT [17], CPNTool

[18], LOTOS tool [19], RSL tool [20], SPIN tool [21] etc. are used for parallel

systems respectively. The list of formal methods and associated attributes

being used for verifying proposed software or hardware are shown in Table 1.1.

These attributes are paradigm, formality, object oriented, concurrency, and

tool support. The details about these attributes are mentioned in chapter 4. It

is also felt necessary to refine the specification until it can be implemented via a

readily verifiable steps. Refinement is an integral part of developing, checking,

and verifying the specification. Formal verification is a process to prove or

2



Chapter 1 Introduction

disprove the correctness of a system with respect to the formal specification or

property.

Table 1.1: Comparison of Formal Methods on the basis of associated Attributes

S. No. Methods Paradigm Formality Object Oriented Cuncurrency Tool Support

1 Z State Based Formal No No Yes

2 Object-Z State Based Formal Yes No Yes

3 Alloy State Based Formal Yes No Yes

4 B State Based Formal No No Yes

5 Event-B State Based Formal No No Yes

6 MP Event-Based Formal No Yes No

7 ASM State Based Formal Yes Yes Yes

8 SDL State Based Formal Yes Yes Yes

9 Action Systems State Based Formal No Yes No

10 CSP State Based Formal No Yes Yes

11 LOTOS Process Algebra Formal Yes Yes Yes

12 RAISE Process Algebra Formal Yes Yes Yes

13 Petri Nets State Based Formal No Yes Yes

14 VHDL State Based Semi-Formal No Yes Yes

1.1.1 Benefits of Formal Methods

Formal methods are mainly used in complex and critical systems in order to

improve functional and non-functional requirements of a system. There are

many advantages of formal methods.

3



Chapter 1 Introduction

• Formal methods force the System Analyst and Architect to think care-

fully about the specification of a system.

• Faults are uncovered that would be missed using informal specification.

• System properties and invariants are preserved by the use of formal

proofs.

• Formal methods are mainly used in early phases of the software devel-

opment life cycle; hence, they lead to reduce testing and maintenance

cost.

• Use of formal methods can improve non-functional requirements such as

efficiency, complexity, scalability, adaptability, dependability etc. of a

system.

1.1.2 Application of Formal methods

Informal specification of a system needs to be documented and maintained very

carefully in order to manage a practical formal verification process. Formal

methods are used in several practical Applications.

• Automatic generation of design documents, code generation, and test

case generation.

• The largest application area of formal methods was transport, followed

by the financial sector [1].

• Other major areas were defence, telecommunications, nuclear sector, con-

sumer electronics, embedded systems, and administration.

1.2 Model Checking

Model checking is a formal verification technique based on the exhaustive state

space exploration of a finite state machine (FSM). There are a large number of

model checkers available such as SPIN [21], PAT [17], SLAM [22], NuSMV [23],

TAPPAL [24] etc. for verification process. By model checking, important

4



Chapter 1 Introduction

system properties like functional behavior, performance characteristic, timing

behavior, and consistency of internal structure are verified. Model checking

traces its roots to logic and theorem proving. The goal of providing con-

ceptual framework is to formalize the fundamental requirements and provide

algorithmic procedures for the analysis of logical requirements [25].

1.2.1 Model Checking Process

For verification process model checker considers the formal model of a system

and system’s property in the form of logic as input. If property does not hold

good then the model checker generates counterexamples. The schematic view

of the model-checking process is shown in Figure 1.1.

Figure 1.1: Schematic view of the model-checking process

1.2.2 Application of Model Checking

Model checking is a well-known verification technique which is applied to sev-

eral practical applications :

5



Chapter 1 Introduction

• Verification of hardware systems such as, device drives, chip sets, high

end processor verification etc.

• Verification of software.

• Verification of communication and security protocols.

• Consistency checking of reactive systems.

• The main objectives of model checking are analysis, hunting and avoid-

ance of bug.

1.3 Motivation

During the development of software architecture, the number of defects grows

exponentially with the number of interacting system components. When for-

malizing the parameters such as, concurrency and non-determinism, it is ob-

served that they are very hard to model using standard designing techniques

available in the literature. System’s growing size and complexity, together

with the pressure of drastically reducing system development time make the

delivery of low-defect systems an enormously challenging and complex activ-

ity. Software is used to develop the process control of safety-critical systems

such as chemical plants, nuclear power plants, traffic control and alert systems.

Defects in such systems can have disastrous consequences. Apart from these

issues there are certain other issues, which have motivated me to carry out

research work in the areas of formalization and model checking of software

architectural style because of the complexities associated with-

• Functionality issues i.e., growing in size and complexity of a system.

• Non-functional requirement issues such as, efficiency, scalability, avail-

ability, reliability, safety, security etc.

• Functional requirement issues i.e., time-to-delivery and costs of project.

• Maintenance issues i.e., requirements changing rapidly over time.

6



Chapter 1 Introduction

1.4 Objective

Due to the complexity of the present day system, software development process

shifted from conventional design techniques to architectural elements such as

components and connectors. Hence, it is essential to check the compatibility

of an architectural style before the implementation of a system. The objective

of the research work as follows:

• To formally verify a behavioral model of any real-time system, different

formal modeling languages such as Z, B, Alloy, and Monterey Phoenix

have been considered.

• For verification of Z, B, and Alloy specifications, automated tools, viz.

Z/EVES, Atelier B, and Alloy Analyzer are used.

• The compatibility of an architectural style can be verified using proper

formal verification techniques such as reachability analysis, automated

theorem proving, and model checking etc.

• To formally verify a complex architectural style i.e., C2 (component and

connector) a case study has been considered.

• To evaluate the performance among different SAT solvers, a comparison

has been made.

1.5 Organization of Thesis

The research work carried out to meet the objective has been organized in the

following manner:

Chapter 2 : This chapter provides basic concepts about formal modeling

languages considered for formal specification of any real-time system. For

verification process different tools supported by these modeling languages have

been presented. In this chapter, a safety critical real-time system i.e., Cruise

Control System (CCS) is presented. In the last section of this chapter, an

7



Chapter 1 Introduction

architectural style C2 (Component and Connector) and architectural elements

such as component, connector, port, and role are discussed.

Chapter 3 : This chapter provides insight on the state-of-art of various

techniques applied for formalization and model checking of real-time systems

and different architectural styles. The review has been done in two broad parts

with respect to the objectives. The first part describes the formal specification

and formal verification of real-time system using different formal modeling

languages. The second part describes the modeling and verifying of different

architectural styles.

Chapter 4 : In this chapter, behavioral model of a real-time system is

formally specified using different formal modeling languages such as Z, B, Alloy,

and Monterey Phoenix. Subsequently, it presents the significant information

about the effectiveness and weakness of these formal modeling languages as

well as the tools supported by these formal languages.

Chapter 5 : In this chapter, an architectural style C2 is modeled using

Alloy. For consistency checking of the formal notations, model generator Alloy

Analyzer is being used.

Chapter 6 : In this chapter, the work done is summarized, the contri-

butions are highlighted and suggestion for the future work has been discussed.

8



Chapter 2

Basic Concepts

2.1 Introduction

A number of formal specification methods have been proposed for the anal-

ysis and design of application software. To choose a particular specification

method, it depends on the character of the desired software product. This

chapter highlights the basic concepts about different specification languages

such as, Z, B, Alloy, Monterey phoenix as well as the tools associated with

these languages using an example of ATM system. The behavioral model of

ATM system is mentioned in the fourth chapter. At the end of this chapter,

an example of Cruise control system and a complex architectural style i.e., C2

(Component and Connector) is also explained.

2.2 Formal Modeling Language Z

The Z notation (ISO/IEC 13568 2002) is a formal specification language that

offers mathematical notations for the specification process [3]. It provides

precise semantics that remove ambiguities from specifications and offers a po-

9



Chapter 2 Basic Concepts

tential for reasoning and automation. Z is an example of a state-based spec-

ification language. Z Language has been developed at Oxford University by

members of the Programming Research Group (PRG) within the Computing

Laboratory. Z is a typed language based on first order predicate logic and set

theory. Z is popular especially in developing critical systems where the reduc-

tion of errors and quality of software is extremely important. It has undergone

international standardization under ISO/IEC JTC1/SC22.

2.2.1 Z Notation

The main building blocks of Z notation are basic types definition, axiomatic

definition, and schema definition. Figure 2.1 shows the basic type definition for

an ATM system. A basic type definition introduces one or more types which

are used to declare different variables used in Z specification. An example of

basic type definition is the introduction of CARD with many types such as

cardNo, acctNo, valid etc. An axiomatic definition is being used to describe

one or more global variables, and it optionally specifies a constraint on their

values. Figure 2.2 shows the axiomatic definition for an ATM system having

both declaration part as well as predicate part. The condition in the predicate

part should be satisfied throughout the specification.

CARD ::= cardNo | acctNo | issuingBank | valid

NAME ::= custName | bankName

ATMResponse ::= opSuccess | opFailed

STATUS ::= available | busy | idle

RECEIPT ::= receipt

Figure 2.1: Basic type definition using Z notation

In order to model an operation of any system, schema is being used in

the Z notation. A Z schema consists of a declaration and an optional list of

10



Chapter 2 Basic Concepts

predicates. Figure 2.3 presents Bank schema and ATM schema having only

declaration part.

minAmount : N

maxAmount : N

withdrawAmount : N

accountBalance : N

withdrawAmount ≤ maxAmount

Figure 2.2: Axiomatic definition using Z notation

Bank

bankName : NAME

card : CARD

has : NAME → CARD

balance : N

todayDate : DATE

ATM

balance : N

maxAmount : N

todayDate : DATE

Figure 2.3: Schema definition using Z notation

2.2.2 Tools Support for Z Language

Various tools for formatting, type-checking and aiding proofs in Z are available.

CADiZ [26] is a UNIX-based suite of tools for checking and typesetting Z

specifications. Z Type Checker (ZTC) [27] and fuzz tool [28] also support Z

notation and type checking of Z specification. There is another tool named

Z/EVES [12]. Z/EVES is an interactive tool for checking and analyzing Z

specifications. Z/EVES is also able to read entire files of specifications that

have been previously prepared using LATEX markup. RoZ [29] (Pronounce

11
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as Rosette) automatically generates the Z schemas skeletons corresponding to

a UML class diagram.

2.3 Formal Modeling Language B

B was developed by Jean-Raymond Abrial, also took part in the creation of

the Z notation during the 1980s [4]. B notation is closely related to formal

methods Z and Vienna Development Method (VDM). B method has a strong

decomposition mechanism. The primary aim of decomposition in B is to obtain

a decomposition of proof. Formal verification of proof obligations ensures that

a specification is consistent throughout its refinements [30]. Like Z and Alloy,

B method is also based on first order predicate logic and set theory. The basic

building block of B language is the notion of an abstract machine. An abstract

machine is the specification of a B module, suitable for the construction of state

variables and values of which must always satisfy its invariant.

2.3.1 B Notation

An abstract machine is a component that defines different clauses such as,

data in the form of sets and constants, its properties, initializations and oper-

ations. Figure 2.4 shows the different clauses such as, SETS, CONSTANTS,

PROPERTIES, VARIABLES, INVARIANT, INITIALIZATION, and OPER-

ATIONS specified in an order of the example as Bank ATM. But the order of

these clauses is not fixed. The clause SETS represents the list of deferred sets

used in the machine (ATM). CONSTANTS describe the type and properties of

formal scalar parameters. PROPERTIES clause shows the type and properties

of machine constants. VARIABLES represent a list of abstract and concrete

variables used in machine. INVARIANT also describes the type and proper-

ties of variables. INITIALIZATION clause is used to initialize the variables.

OPERATIONS clause list and define some specific operations. In this clause

12
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entercard and enterpin operations are specified using mathematical logic.

MACHINE

ATM

SETS

ATMSTATE = {atmWaitCard , atmWaitPin, atmWaitOption};

CONSTANTS

minWithdrawal ,maxWithdrawal

PROPERTIES

minWithdrawal : INT&maxWithdrawal : INT

VARIABLES

atmstate, atmcard

INVARIANT

balance : INT& atmstate : ATMSTATE

INITIALIZATION

balance := minWithdrawal || atmstate := atmWaitCard

OPERATIONS

entercard = PRE atmstate = atmWaitCard

THEN IF atmcard = valid THEN atmstate := atmWaitPin

ELSE atmstate := atmErrorMSG END END;

enterpin = PRE atmstate = atmWaitPin

THEN atmstate := atmWaitOption END;

Figure 2.4: Abstract state machine representation using B notation

2.3.2 Tools Support for B Language

Two main commercial tools which support B language i.e., Atelier B [13] and

B-Toolkit [31] are used by researchers and developers. For method B, there

is a model checker tool, known as ProB [32], developed at the University
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of Southampton. The model checker ProB, includes an animator, which is

amenable to validate the simulated behavior of a specification. UML-B [30] is

a tool that translates UML class diagram and UML statechart diagram into

B notation. But this tool work under certain conditions. Atelier B proposes a

set of commands allowing [13]:

• Syntax and type checking of components.

• Automatic generation of proof obligation.

• Automatic demonstration of proof obligations.

• Translatable language checking.

• Translating into one of the following programming languages (C, C++,

ADA, HIA).

2.4 Formal Modeling Language Alloy

Alloy is a lightweight formal method for describing structural properties of a

system. Some researchers believe that the formal methods are emphasized on

full formalization of a specification or design [33]. According to them, com-

plete formalization of a complex system is a difficult and expensive task. But

nowadays, various lightweight formal methods, which emphasize partial spec-

ification and focused application, have been proposed. Alloy is an example

of this lightweight approach. Alloy offers declaration syntax compatible with

graphical object models, and a set-based formula syntax powerful enough to

express complex constraints. There are many other powerful formal methods

also available such as, Z, B, VDM, CSP, RSL, etc., but they are generally not

directly executable. Alloy is amenable to a fully automatic semantic analysis

that can provide checking of consequences, consistency, and simulated exe-

cution. Alloy specification is built from atoms and relations. An atom is a

primitive entity that is indivisible, immutable, and uninterpreted [34]. The

semantics of Alloy bridges the gap between Z and object models. Alloy is

14
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mainly designed to search for instances within finite scope. The main building

blocks of Alloy modeling language are: signature, field, predicate, function,

fact, assertion, command and scope. A signature is a collection of fields. A

field represents a relation between atoms. The signature can be represented

by a keyword sig.

2.4.1 Alloy Notation

Figure 2.5 shows the Alloy specification of ATM system having a module ATM

to split a model among several modules. A module in Alloy allows constraints

to be reused in different contexts. This specification has two abstract signa-

tures such as, ATM STATE and OPERATION. Abstract signature can not

generate instances. A signature ATM contains some fields for showing relations

with other signatures. These fields are associated with multiplicity keywords

such as, lone, one for representing different types of relationships.

module ATM

abstract sig ATM STATE{}

abstract sig OPERATION {}

sigATM { pin : lone Identifier ,

card : lone Identifier ,

state : oneATM STATE ,

balance : Identifier − > one Int,

operation : OPERATION }

pred enterCard [atm, atm ′ : ATM , cId : Identifier ] {

atm.state = ATMWaitCard && atm ′.card = cId &&

atm ′.balance = atm.balance && atm ′.state = ATMWaitPin }

Figure 2.5: Alloy notation for ATM system

In Alloy, operations are specified using predicates. A predicate is a logical
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formula with declaration parameters. In Figure 2.5, enterCard operation is

specified using pre-state and post-state of ATM. In this specification, atm and

atm’ are instances of ATM showing a state of ATM, before enterCard operation

and after enterCard operation respectively.

2.4.2 Tools Support for Alloy Language

Several research works have been carried out to the integration of semi-formal

specification languages (like UML) with formal specification Languages. UML-

2Alloy [35] is a tool for integrating UML and Alloy into a single tool. Using

UML2Alloy, the designer can take advantage of the positive aspects of each

modeling language. Alloy supports an automated tool called, Alloy Analyzer

[16] which analyzes the Alloy models.

Formal models written in Alloy language, are translated into satisfiabil-

ity problem using SAT solver [36]. After that SAT solvers are invoked to

exhaustively search for satisfying models or counterexamples. In Alloy, addi-

tional constraints can be added as assertion and they can be verified about its

satisfiability. If an assertion does not satisfy the Analyzer, it produces a coun-

terexample in the form of instances. In order to generate instances for given

specification, a predicate is used. If there is a requirement of any additional

constraints, those can be added using fact and assert keywords.

2.5 Modeling Language Monterey Phoenix

Monterey Phoenix (MP) helps to describe the structure of possible event traces

using event grammar rules and other logical constraints [37]. Schemas are in-

stances of behavior. Schema formalizes the software architecture on the basis of

behavioral models. The system is defined as a set of events also known as event

trace, with two basic relations such as precedence and inclusion [38]. Event

trace is formally specified using event grammars and other logical constraints
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organized into schemas. Phoenix Schema is based on the concept of event (ac-

tion) including time constraint and introduces an ordering relation for events.

In a system execution, two events may not be necessarily ordered. They may

even execute simultaneously. For Phoenix Schema, both relations (inclusion

and precedence) satisfy non-reflexivity, transitivity, and non-communicative

properties. Ten number of axioms [37] may be used for ordering of events that

should hold for event traces.

1. P :: Q R ; denotes event traces.                                                         4. P :: [Q]; denotes an optional event Q.             

                 P                                                                                                P                      P          

                                                                                                                                                                                   or 

       Q                            R                                                                            Q 

2. P :: (Q | R) ; denotes an alternative events (Q or R). 

P                   P                                                                     5. P :: {Q, R}; denotes set of events Q  

            Or                                                                                            and R without an ordering. 

Q                   R                                                                                        P 

                                                                                                            

3. P :: (* Q *) ; denotes zero or more events (Q).                   Q                                R 

 

      P                                                                                6. P :: {* Q *} ; denotes zero or more                                

                                                                                                  events (Q) without an ordering.                     

                                                                                                                       P 

    Q             Q            Q                                                                

                                                                                                              Q               Q              Q 

 
Figure 2.6: Rules of ordering of events using IN and PRECEDES

Events are represented by small circles and arrows using two relations such

as inclusion (IN) and precedence (PRECEDES):

IN −→

PRECEDES =⇒

17
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2.5.1 Event Grammar Rules for Monterey Phoenix

For ordering of events, let us assume that there are three events i.e., P, Q,

and R. The rule P :: Q R; means that an event p of type P contains ordered

events q and r of types Q and R (q IN p, r IN p, and q PRECEDES r).

Figure 2.6 shows the rule of ordering of events using two relations (IN and

PRECEDES). For phoenix schema, tool is not ready by the developers for

industrial application. Auguston et al. [39] have proposed a model checker for

monetary phoenix based on PAT [17] verification framework.

2.6 Cruise Control System (CCS)

The CCS is an automatic electronic control system used in a car to assist the

driver for an automatic transmission [40]. Cruise controller is the main compo-

nent of CCS that provides automated control over the vehicle by maintaining

constant vehicle speed with the help of input from the driver and communica-

tion with other vehicles. UML class diagram of CCS is shown in Figure 2.7.

This diagram contains nine classes i.e., AxleSensor, EngineSensor, BrakeSen-

sor, GPS, WheelRevSensor, Clock, CruiseController, ThrottleActuator, and

GUI. In CCS, axle sensor is being connected to the axle that generates a fixed

number of pulses per rotation of the axle. Engine sensor is being connected

to the engine generates signals when the engine is in on state and off state

respectively. Brake sensor connected to the pedal sends a signal when the

pedal is pressed or released. Global positioning system (GPS) is a navigation

satellite system that can provide speed and location of the vehicle. Wheel

revolution sensor generates signals when speed of the vehicle gets changed. All

sensor classes have its states at any particular time. On receiving clock’s signal-

notification from the class Clock, the states of these sensor classes gets changed.

After changing their states, sensor classes send notification to CruiseController

class.
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Figure 2.7: Class diagram of Cruise Control System

Cruise controller is the main class of CCS that allows the driver of the vehi-

cle to maintain speed without pressing the accelerator pedal. Cruise controller

sets the desired speed to the currently measured speed and then attempts to

maintain the measured speed. When accelerator is pressed and the cruise con-

troller is on, the vehicle accelerates smoothly. Cruise controller can change the

position of the throttle. If the driver pushes the brake, the cruise controller

switches off immediately. There are two actuators, which are considered in

this class diagram such as, ThrottleActuator and GUI. Cruise controller pro-

vides the states of sensor classes to actuators on the basis of requirements.

GUI class is helpful for the driver to see navigation, fuel level, and speed of

the vehicle. For more detail about behavior of Cruise control system, C2 style

architecture is presented in chapter 5.
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2.7 Architectural Style C2

The goal of this thesis is formalization of architectural styles. Large number

of architectural styles are available in literature such as, client-server, virtual-

machine, object-oriented, pipe and filter etc. but these styles are not useful

for all types of application systems. In chapter 4, ATM system is designed

using object oriented style (class diagram), subsequently formalized using dif-

ferent formal methods. For complex heterogeneous system like Cruise control

system, simple architectural styles are not sufficient. Hence, some complex

architectural styles are felt to be more helpful to explain the behavior of any

complex application systems. Accordingly it is observed that Component and

Connector (C2) style is suitable for these types of complex systems.

C2 is a message-based architectural style for developing flexible and exten-

sible software system. It is based on layers of concurrent components linked

by connectors in accordance with a set of rules [41]. Communication among

components is done by implicit invocation. The principle of C2 style is to pro-

vide limited visibility among components. A component in a C2 style is only

aware of services provided by other components above it in the hierarchy. A

component is completely unaware of services provided by components beneath

it. In a C2 style, a component placed at the bottom layer utilizes the services

of components above it by sending a request message. Components at the

upper layer emits the notification messages, when they change their states. C2

connectors broadcast notification messages to every component and connector

placed at the bottom layer. Thus, notification messages are represented as

implicit invocation mechanisms, which enable several components to react to

a single component’s state change [42].

Figure 2.8 shows the example of C2 style developed in a tool known as,

AcmeStudio. An architectural interchange language models an architectural

style by using AcmeStudio. This tool does not support C2 style. An event-
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Figure 2.8: An example of C2 style

based style is shown in Figure 2.8; as C2-style is much similar to an event-based

style. In this figure, there are seven components, two C2 connectors, and nine

links. Component6 and component7 send only request messages to upper layer

components, whereas component1, component2, and component3 broadcast

only notification messages to the lower layer components. Component4 and

component5 send request messages and broadcast notifications to upper layer

components and lower layer components respectively. A software architecture

has four main elements such as component, connector, port, and role. These

elements are described below:

Component : A software component is an architectural element that

encapsulates processing and data in a system’s architecture. It restricts access

to a subset of the system’s functionality and/or data via an explicitly defined

interface. It can be deployed independently [43]. A software component has

a set of runtime interfaces, known as a port. The port allows the points of

interactions between the component and connector.
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Connector : In a complex and distributed heterogeneous environment,

interaction may become more important and challenging than the functionality

of the individual components. A software connector has the task of effecting

and regulating interactions among components. It also provides application-

independent interaction facilities. A connector has a set of roles that identifies

the components and connectors in the interaction.

Port : It is not possible in current component models to deal separately

with an element of an interaction point when such an element is needed alone

for specifying a specific logic [44]. A port defines the points of interaction of

a component with its environment. Components with complex interfaces are

overloaded with many different ports.

Role : In software architecture, components cannot directly connect to

connectors. They require a suitable role in connector that are compatible with

a port in the component. A role helps to facilitate the interaction between

a connector and a component. A connector is composed of roles that are

connected to specific ports. The roles are used to specify interfaces of the

port, being used.

2.8 Conclusion

In this chapter, important notations associated with different formal modeling

languages, a safety critical system, and a particular software architectural style

have been presented. For automatic verification process, a number of tools are

available in literature. The goal of this chapter is to provide fundamental

information about techniques and tools for the research work carried out.
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Chapter 3

Literature Survey

3.1 Introduction

Effort given for software testing can be reduced by applying formal verifica-

tion techniques from starting phase of software development process. There

are many formal specification languages available for the formalization of soft-

ware. The state-of-art of various techniques applied for formalization and

model checking of real-time systems and different architectural styles are men-

tioned in the following sections.

3.2 Formalization of Behavioral Models

The first proposed work is a formalization of a behavioral model using state-

based and event-based approaches using a case study i.e., ATM system. It is a

comparative study, in order to assess the strength and weakness of different for-

mal methods. A number of literatures available in the area of formalization of

behavioral model and comparison among different formal modeling techniques.

Nami and Hassani [45] described properties and types of formal specifica-
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tion languages such as, Z language, VDM, RSL and CSP in software engineer-

ing. They categorized modeling languages into model-oriented, constructive,

algebraic, process-model, hybrid, and logical. They addressed the benefits and

barriers of these modeling languages. They did not describe about tool sup-

port for these specification languages. They categorized these specification

languages on the basis of associated properties.

Yusuf and Yusuf [46] have compared the properties of five formal methods

i.e., Z language, UML, The B method, Petri Nets, and Action Systems. They

addressed their differences by designing a particular part of the Automated

Banking Machine (ABM) using each method, and further compared these

methods by analyzing their strengths and weaknesses. For syntax checking

and theorem proving, generally tools are used but they did present verification

process.

Daniel Jackson [47] introduced a comparison of notations among Z, UML,

and Alloy. He compared the notations used in three modeling languages using

an example of family. According to his conclusion, Z and Alloy are formal

approaches whereas, UML is a semi-formal technique. UML is a graphical

approach whereas, Z and Alloy are textual languages. The notations of Alloy

are inspired from Z and UML. They did not address the tools associated with

these modeling languages.

Zhang et al. [39] developed an approach for modeling and verifying software

architectures using an event-based approach i.e., Monterey Phoenix (MP).

Firstly, they formalized the syntax and operational semantics using MP. Sec-

ondly, a dedicated model checker for MP is developed based on the PAT

verification framework. They modeled software architecture using Monterey

Phoenix but automatic verification process did not show. They have proposed

a tool for Monterey Phoenix but this tool is not ready for industrial application.

Habrias and Frappier [48] compare various techniques such as UML, Z,

TLA+, SAZ, B, OMT, VHDL, Estelle, SDL and LOTOS etc. They compared
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these formal methods related to a set of attributes, which described several

properties of specification methods. In their study evaluation parameter is not

properly defined.

Kumar and Goel [49] modeled some aspects of ATM system using Z no-

tation. Firstly, they described the conceptual and formal models of the ATM

system. For writing the Z schemas and other notations, they have used the Z

Word tool. There are many theorem provers such as Z/EVES, HOL-Z, Proof-

Power etc. available for specification language Z. But authors have used Z

Word tool that provides only syntax checking of the Z specification written in

Microsoft Word.

3.3 Model Checking of Software Architectural

Styles

Software architecture is helpful for the high level design of a system in terms of

components and connectors. The main building block of software architecture

is an architectural style that provides domain specific design semantics for a

particular system. Although many architectural description languages (ADLs)

are available in the literature for modeling notations to support architecture

based development. These ADLs lack proper tool support in terms of formal

modeling and visualization. Hence, formal methods are used for modeling and

verification of architectural styles. Lots of work has been done in formalization

and model checking of simple architectural styles using different architectural

description languages (ADLs) as well as formal modeling languages. Some of

them are discussed in this section.

Kim and Garlan [50] have mentioned about mapping of an architectural

style into a relational model. They expressed an architectural style using

formal modeling language Alloy which can be used for checking properties
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such as:

• Whether a style is consistent

• Whether a style satisfies some logical constraints over the architectural

structure

• Whether two styles are compatible for composition

• Whether one style refines another or not

They have proposed formal modeling techniques for simple architectural styles

such as client-server, pipe and filter, virtual machine etc.

Wong et al. [51] presented a technique to support the design and verification

of software architectural models using the model checker Alloy Analyzer. They

presented the use of the architecture style library in modeling and verifying

a complex system that utilizes multi-style structures. They have developed

formal notations for simple architectural style i.e., client-server style using

modeling language Alloy.

Heyman et al. [52] illustrated the need of formal modeling techniques for

the software architect who need to precisely ascertain the security properties

of their design models. They have proposed a technique that motivates an

architect to easily develop, secured architecture designs by assembling already

verified security pattern models. They have developed a formal model for

simple security design pattern.

Keznikl et al. [53] presented an approach for Automated Resolution of

Connector Architectures based on constraint Solving techniques (ARCAS).

They used a formal modeling language Alloy for describing a connector theory.

They employed a constraint solver to find a suitable connector architecture as

a model of the theory. They exploited a propositional logic with relational

calculus for defining a connector theory.

Bertolino et al. [54] illustrated software architecture-based analysis, eval-

uation, and testing. In this paper authors reported those parameters that

consider the most relevant advances in the field of architecture based test-
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ing and analysis over the years. This study is a state of art described about

analysis, evaluation, and testing processes.

Zhang et al. [55] described the formal syntax of the Wright architectural

description language together with its operational semantics in the Labeled

Transition System (LTS). They presented an architectural style library that

embodied commonly used architectural patterns to facilitate the modeling pro-

cess. They had considered the Teleservices and Remote Medical Care System

(TRMCS), as a case study. They have modeled only simple architectural styles

such as client-server, pipe-filter, publish-subscriber, and peer2peer by consid-

ering TRMCS as a case study.

Pahl et al. [56] presented an ontological approach for architectural style

modeling based on description logic as an abstract, meta-level modeling in-

strument. They introduced ontologies as a mechanism described and formally

defined architectural styles. They proposed a framework for style definition

and style combination. They used ontologies as a mechanism for describing

and formally defining architectural styles.

Hansen and Ingstrup [57] have presented an application of the Alloy mod-

eling language to model architectural change. They demonstrated that it is

possible to model architectural change in a relational, first-order language us-

ing both a static and dynamic model of the architectural runtime structure

and architectural runtime change respectively.

Bagheri et al. [58] described the feasibility of automated computation of

architectural descriptions with an executable prototype developed in Alloy.

Firstly, they identified the behavior of architecture as an independent variable.

Subsequently a conceptual architecture considered to make this idea precise,

including a graphical notation showing how the key concepts relate to each

other has been explained. For modeling KWIC (key word in context), they

have considered many simple architectural styles such as, pipe-filter, object-

oriented, and implicit-invocation style.
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3.4 Conclusion

This chapter makes a thorough survey of formalization and model checking

of behavioral model and architectural styles. The emphasis is given mostly

on the formalization of different architectural styles such as pipe-filter, client-

server, publish-subscriber, peer2peer. Apart from these, many comparative

approaches also mentioned in this chapter. However, it could be seen that for-

malization of critical and complex systems is a challenging task. This provides

a motivation for selecting an appropriate style for the available application and

subsequently formalizing using suitable formal methods.
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Formal Verification of

Behavioral Model

4.1 Introduction

To specify requirements, formal methods are mathematical based techniques

for the specification, verification and development of a system. It plays an

important role for software developers in the analysis and design phase of

the software development life cycle. In this chapter, formal model of Bank

ATM [59] system using well known formal specification languages such as Z

[3], B [4], Alloy [6], and Monterey Phoenix [37] have been developed. For

verification of these models, tools such as, ”Z/EVES” [12], ”Atelier B” [13], and

”Alloy Analyzer” [16] [60] are used to verify the specifications of ATM system

being developed using languages Z, B, and Alloy. Currently, for Monterey

Phoenix, literature does not provide any tool. Alloy Analyzer helps to make a

Phoenix Schema executable. Z, B, and Alloy are state based methods whereas,

Monterey Phoenix is an event based approach. Z, B, and Alloy are used for

sequential systems whereas, Monterey Phoenix is helpful for parallel systems.
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Alloy and B are inspired by Z which is more expressive than both Alloy and B

but it is intractable in nature. The stylized typography of Z makes it harder

to work. ATM system is an example of real-time system and its incorrect

functioning may lead to large scale economic imbalance.

To specify requirements using formal methods, an example of Automated

Teller Machine (ATM) [59] is being considered, whose primary function is to

withdraw cash, make an enquiry of balance, and transfer fund.

Figure 4.1: Statechart diagram of ATM system

The statechart diagram of the ATM system has been shown in Figure

4.1. Statechart diagram is used to model the dynamic behavior of a system.

It defines different states of an object during its lifetime. These states are

changed by events. Statechart diagrams are useful to model reactive systems

that respond to external or internal events. In Figure 4.1, the statechart
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diagram has many states such as wait for PIN, wait for an operation, processing

withdraw etc. as well as many events such as insert card, enter PIN, select

withdrawal etc. When any event occurs in any state then that state will change

to some other state.

4.2 Formal Specification using Z

Z specification of ATM system is based on the finite state machine (FSM)

representation. In Z specification, the main building blocks are basic type

definition, axiomatic definition, and schema notation. To formalize an ATM

system, it first declares the main variables that are used in Z schema, such as

debit card related information, type of ATM response, date, and messages in

the form of output generated by ATM system. Basic type definition for the

ATM system is described in Figure 4.2.

[ATM ,CUSTOMER,Bank ]

CARD ::= cardNo | acctNo | issuingBank | valid

ATMResponse ::= opSuccess | opFailed

STATUS ::= available | busy

DATE ::= issueDate | expiryDate | todayDate

ERRORMessage ::= invalidePinNo | invalideCard | insufficientBalance

Figure 4.2: Basic type definition of ATM using Z

For withdraw cash operation, the customer should be aware in advance

about different restrictions for withdrawal. Different banks provide certain

restrictions on minimum amount or maximum amount of withdrawal. Hence, it

needs to be specified. The axiomatic definitions of some important constraints

are given in Figure 4.3.
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minAmount : N; maxAmount : N

withdrawAmount : N; moneyInMachine : N

accountBalance : N; pinNo : N; maxTran : N

withdrawAmount ≤ maxAmount

Figure 4.3: Axiomatic definition of ATM using Z

CardReader

card? : CARD ; date : DATE

status : STATUS ; message! : ERRORMessage

status = busy

date = expiryDate ⇒ message! = invalideCard

Figure 4.4: CardReader schema using Z

Z schema has two parts i.e., declaration part and predicate part. The

Z schema CardReader has both declaration as well as predicate part that is

shown in Figure 4.4. The first variable in the declaration part of the schema

CardReader is a card?, which represents input variable and the second variable

is message! which represents an output variable. In Z, the input variables are

represented by using “ ? ” symbol and the output variable is represented by

using “ ’ ” symbol.

BalanceEnquiry and CashWithdraw schemas are represented in Figure 4.5

and Figure 4.6 respectively. In BalanceEnqury schema, ΞATM and ΞBank

denote that the state of schemas of ATM and Bank will not change after

completing BalanceEnqury operation. The variable moneyInMachine’ and

accountBalance’ represent the next state of variables moneyInMachine and

accountBalance by using “ ’ ” operator. In schema CashWithdraw, ∆ATM

and ∆Bank represent that after the withdrawal operation the state of ATM

32



Chapter 4 Formal Verification of Behavioral Model

and the state of Bank both will change. Z schemas can be specified using

other schemas with the Ξ and ∆ symbols when specifying operations that

respectively change the state or leave the state unchanged. The operator ⊕

is used for override operation. Override operator is used in CashWithdraw

schema in order to override the remaining balance in previous balance after

withdrawal operation.

BalanceEnquiry

ΞATM

ΞBank

response! : ATMResponse

accountBalance : N

receipt ! : RECEIPT

status : STATUS

status = busy

moneyInMachine ′ = moneyInMachine

accountBalance ′ = accountBalance

response! = opSuccess

receipt !.amount = accountBalance

status ′ = idle

Figure 4.5: BalanceEnquiry schema using Z

For syntax checking and theorem proving of Z specification, Z/EVES tool

has been considered. The whole declaration part checked by Z/EVES tool with

the help of type definition of specification. The whole predicate part proved

by using Z/EVES tool with the help of specified constraints. The output

generated by the Z/EVES tool is presented in Figure 4.7.
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CashWithdraw

∆ATM

∆Bank

acct? : ACCOUNT ; m? : N

balance : N

response! : ATMResponse

receipt ! : RECEIPT

status : STATUS

status = busy

balance ′ = balance ⊕ {(acct? 7→ balance(acct)−m?}

response! = opSuccess

receipt !.amount = m?

satus ′ = Idle

Figure 4.6: CashWithdraw schema using Z

Figure 4.7: Syntax and type checking using Z/EVES tool
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4.3 Formal Specification using B

B method is a complete formal method, which supports a large segment of

the software development life cycle such as specification, refinement, and im-

plementation. B ensures refinement steps and proofs, that the code satisfies

its specification. The main building block of B specification is an abstract

machine which is used to encapsulate state variables, initialization of these

variables, and values of which always satisfy its invariant (predicate). The be-

havioral aspect of this specification is specified in terms of initializations and

operations that may be used to access or modify this abstract state. In this

study, important states and operations of Bank ATM system using B notation

are specified and further refined.

ATM has been considered as a state machine having two sets namely ATM-

STATE and CARDSTATUS, and four constants that are represented in B spec-

ification of ATM. Also two types of variables, namely, ABSTRACT VARI-

ABLES and CONCRETE VARIABLES are considered to store the values.

It is required to specify invariants and initialize ABSTRACT VARIABLES

and CONCRETE VARIABLES. The first operation is considered as enter-

card. The initial state of this operation is atmWaitCARD. If the card is valid

then ATM system requests for PIN (Personal Identification Number), other-

wise it displays an error message as atmErrorMSG. After verification of PIN,

ATM system displays set of options for different operations. In Figure 4.8,

the operations such as balanceEnquiry, withdrawCash, and transferFund are

specified in an abstract way. Further in the refinement process, other states

may be specified.

In Figure 4.8, the important properties of ATM system are represented in

an abstract view. Now it has been refined as withdrawCash operation and

transferFund operation. In the refinement process, some more variables and

invariants are considered those are shown in Figure 4.9. Two abstract variables
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have been proposed such as mapCard and mapBal.

MACHINE

ATM

SETS

ATMSTATE = {atmWaitCard , atmWaitPin, remCard , remCash, atmWaitAmount ,

atmWaitCardNo, atmErrorMSG, atmSuccessMSG, atmWaitOption};

CARDSTATUS = {valid , invalid}

CONSTANTS

minWithdrawal ,maxWithdrawal ,maxTransaction, constNo

PROPERTIES

constNo : INT&minWithdrawal : INT&maxWithdrawal : INT

&maxTransaction : INT&minWithdrawal < maxWithdrawal

CONCRETE VARIABLES

cr cardNo, r cardNo, balance, r balance

ABSTRACT VARIABLES

atmstate, atm card

INVARIANT

balance : INT & r balance : INT & cr cardNo : INT

& r cardNo : INT & atmstate : ATMSTATE & atm card : CARDSTATUS

INITIALIZATION

balance := minWithdrawal || cr cardNo := constNo || r balance := minWithdrawal

|| atm card := invalid || atmstate := atmWaitCard || r cardNo := constNo

OPERATIONS

entercard = PRE atmstate = atmWaitCard

THEN IF atmcard = valid THEN atmstate := atmWaitPin

ELSE atmstate := atmErrorMSG END END;

enterpin = PRE atmstate = atmWaitPin

THEN atmstate := atmWaitOption END;

balanceEnquiry = PRE atmstate = atmWaitOption

THEN atmstate := remCard END;

withdrawCash(amount) = PRE atmstate = atmWaitAmount & amount : INT

THEN IF amount ≤ balance THEN atmstate := remCash

ELSE atmstate := atmErrorMSG END END;

transferFund(rCardNo, amount) =

PRE rCardNo = r cardNo & amount : INT & atmstate = atmWaitAmount

THEN IF amount ≤ balance THEN atmstate := atmSuccessMSG

ELSE atmstate := atmErrorMSG END END END

Figure 4.8: Modeling of ATM system using B

For withdrawCash operation, the condition is that amount must be greater

than minimum withdrawal and amount must be less than maximum with-
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drawal. Also for fundtransfer operation the above pre-condition should be

satisfied. Figure 4.9 shows the refinement of withdrawCash, and transferFund

operation.

REFINEMENT

ATM r1

REFINES

ATM

CONSTANTS

accNo

PROPERTIES

accNo : INT−− > INT

CONCRETE VARIABLES

temp cr , temp r

ABSTRACT VARIABLES

atmstate, atm card ,mapCard ,mapBal , temp

INVARIANT

temp r : INT & temp cr : INT & mapCard : {cr cardNo} > + > accNo

& temp = ran(mapCard) & mapBal : temp > + > {balance}

INITIALIZATION

mapCard := {} || mapBal := {} || temp := {}

OPERATIONS

withdrawCash(amount) = PRE atmstate = atmWaitAmount & amount : INT &

dom(mapBal) = ran(mapCard) & amount ≥ minWithdrawal

& amount ≤ maxWithdrawal

THEN IF amount ≤ balance

THEN atmstate := remCash || temp cr := balance ||

balance := temp cr − amount

ELSE atmstate := atmErrorMSG END END;

transferFund(rCardNo, amount) = PRE atmstate = atmWaitAmount & amount : INT

& dom(mapBal) = ran(mapCard) & amount ≥ minWithdrawal

& amount ≤ maxWithdrawal

THEN IF amount ≤ balance

THEN atmstate := atmSuccessMSG || temp cr := balance

|| balance := temp cr − amount || temp r := r balance

|| r balance := temp r + amount

ELSE atmstate := atmErrorMSG END END END

Figure 4.9: Refinement of withdraw cash and transfer fund operations

The verification and code generation process of B specification have done
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using the tool Atelier B. Atelier B tool provides graphical user interface math-

ematical toolkit for writing B specification. Atelier B allows Syntax and type

checking of components, automatic generation of proof obligation, automatic

demonstration of proof obligations, translatable language checking, and trans-

lating specification in B into one of the programming languages such as C,

C++, ADA, HIA etc. Figure 4.10 shows the snapshot of activities such as

syntax checking and code generation of ATM system using the tool Atelier B.

Figure 4.10: Formal Verification of ATM system using Atelier B

4.4 Formal Specification using Alloy

Behavioral properties of the example under consideration i.e., Bank ATM Sys-

tem can also be expressed in terms of logical predicates which can be checked

by a tool named as, Alloy Analyzer. In this formal specification, consistency of

different states of ATM System can be checked. The Alloy specification of ATM

system is shown in Figure 4.11. In this specification two abstract signatures

i.e., ATM STATE and OPERATION have been considered. ATM STATE
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has some concrete states such as, ATMWaitCard, ATMWaitPin, ATMWait-

Inst, RemCard, and RemCash. Similarly, abstract signature OPERATION has

also few concrete operations such as, EnterCard, EnterPin, OutCard etc. In

this specification, the main signature is ATM having five fields such as pin,

card, state, balance, and operation. A field shows the relation of one atom (sig-

nature) with another. Alloy supports a multiplicity concept in relation. For

example one is a multiplicity key word which indicates that the ATM system

has exactly one state at any particular time.

module ATM

open util/integer as INT

sig Identifier{}

abstract sig ATM STATE{}

one sig ATMWaitCard , ATMWaitPin, ATMWaitInst ,

RemCard , RemCash extends ATM STATE{}

abstract sig OPERATION {}

one sig EnterCard , EnterPin, OutCard , Cash extends OPERATION {}

sigATM {pin : lone Identifier ,

card : lone Identifier , state : oneATM STATE ,

balance : Identifier − > one Int, operation : OPERATION }

pred insertPin[atm, atm ′ : ATM , pinId : Identifier ] {

atm.state = ATMWaitPin && atm ′.pin = pinId

&& atm ′.balance = atm.balance &&

((atm.card = pinId && atm ′.state = ATMWaitInst) or

(atm.card ! = pinId && atm ′.state = RemCard)) }

pred show InsertPin[atm, atm ′ : ATM , pinId : Identifier ] {

insertPin[atm, atm ′, pinId ] }

Figure 4.11: Alloy model of ATM system
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There are certain constraints that a developer does not want to record them

as facts. If a developer wants to analyze the model with other constraints, and

also to check whether these constraints are related to some other constraints

or not. Predicate expressions are used to achieve all these. Predicate describes

a set of states and transitions, by using constraints among signatures and their

fields. Without using a predicate, instances cannot be generated for operation

except from counterexample. A predicate insertPin shown in Figure 4.11,

specifies the pre-state and post-state of an ATM system using instances atm

and atm’ of ATM signature. Operation insertPin indicates that the pre-state

of ATM is ATMWaitPin and the post-state of ATM is ATMWaitInst, which

means ATM is waiting for other options. The specification for insert PIN

ensures that there will be no change in the balance after this operation.

pred balanceEnquiry [atm, atm ′ : ATM , bal : Int] {

atm.state = ATMWaitInst && bal = (atm.pin).(atm.balance)

&& atm ′.balance = atm.balance && atm ′.state = RemCard }

pred showbe[atm, atm ′ : ATM , bal : Int] {

balanceEnquiry [atm, atm ′, bal ] }

pred cashWithdraw [atm, atm ′ : ATM , amount : Int] {

atm.state = ATMWaitInst && INT/gte[int(amount), 0]

&& (INT/gte[int((atm.pin).(atm.balance)), int(amount)] = >

(atm ′.balance = atm.balance ++atm.pin –> INT/sub[int(

(atm.pin).(atm.balance)), int(amount)]&&atm ′.state = RemCash)

else(atm ′.balance = atm.balance && atm ′.state = RemCard)) }

pred showWithdrawal [atm, atm ′ : ATM , amount : Int] {

cashWithdraw [atm, atm ′, amount ] }

run showWithdrawal for 3

Figure 4.12: Alloy model of balance enquiry and withdrawal operations
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For the operations such as, make an enquiry of balance, withdraw cash, Al-

loy specification is present in Figure 4.12. In balanceEnquiry and cashWithdraw

operations, the pre-state is same as ATMWaitInst. But the post-state of both

operations is different i.e., RemCard and RemCash. In case of balanceEnquiry

operation, the amount of balance will not change after the operation. But in

case of cashWithdraw operation, the state of ATM in terms of balance will be

changeed after this operation. In the process of formal specification all the

states of a system are checked in terms of pre-state and post-state conditions.

Figure 4.13: Instances generated by Alloy Analyzer

In order to generate and visualize instances, the run command of the tool

i.e., of Alloy Analyzer is being executed. After clicking the show button in the

tool i.e., Alloy Analyzer, it generates instances according to the given scope

which is shown in Figure 4.13. In Alloy specification, only one predicate can

be executed at any particular time. In this Alloy model, many operations have

been specified but instances are generated only for withdrawal operation. An
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important fact about Alloy is that it is designed to search for instances within

a finite scope. The value of the scope in the Alloy specification represents

the maximum limit of number of instances for given signatures. When Alloy

searches for instances it will discard any relation that violates the constraint

of the specification.

4.5 Formal Modeling using Monterey Phoenix

Monterey Phoenix (MP) helps to describe the structure of possible event traces

using event grammar rules and other logical constraints. In this specification,

the behavior of ATM system is formalized using event grammar rules of Mon-

terey Phoenix. The main function of ATM system is to validate the card,

validate the pin number, makes an enquiry of balance, withdraw cash, and

transfer fund.

SCHEMA ATM Machine

ROOT USER :: (∗enterCard(cardVerfSucceed(enterPin

(pinVerfSucceed (enquiryBal | withdrawCash |

transferFund) | pinVerfFail)) | cardVerfFail)∗);

ROOT ATM :: (∗readCard(validateCard(validCard(validatePin

(validPin(waitForOperation performOperation) |

inValidPin)) | InvalidCard))∗);

ROOT ATMDATABASE :: (∗ValidateCard | ValidatePin | checkBal∗);

enquiryBal :: displayBal ;

withdrawCash :: (checkBal(sufficientBal(dispenseCash) | InsufficientBal));

transferFund :: (checkBal(sufficientBal(transferFund) | InsufficientBal));

ATM, ATMDATABASE share all validateCard and validatePin;

Figure 4.14: Phoenix schema of ATM system
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These functions are specified in terms of ordering of events which shown in

Figure 4.14. The schema ATM Machine, formally describes a set of possible

interactions among USER, ATM, ATMDATABASE etc. Some events appear-

ing in the schema at left side marked as ROOT events. These types of events

never appear on the right hand side of the schema. In the formalization of

software architecture, ROOT events are used to describe the components and

connectors. In the schema ATM Machine, USER, ATM and ATMDATABASE

have been considered as ROOT event. Besides these ROOT events, some other

events are also available such as enterCard, cardVerf, enterPin, pinVerf, en-

quiryBal, witdrawCash, and transferFund etc.

USER 

enterPin 
cardVerfSucceed 

enterCard 

ATM 

pinVerfSucceed 

readPin validateCard 

withdrawCash 

ATMDATABASE 

readCard 

enquiryBal 

transferFund 

validatePin 

displayBal 

checkBal 

performOperation waitForOperation 

sufficientBal 

fundTransfer 

dispenseCash 

Figure 4.15: Event traces of ATM for ATM Machine schema

Phoenix schema also supports a predicate share all, which is defined as:

P ,Q share all R ≡ {a : R | a IN P} = {b : R | b IN Q}
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where P, Q are ROOT events and R is an event type. On the basis of

event rules presented in Figure 2.7, visualization of ATM Machine schema is

generated. An event traces generated from ATM Machine schema shows the

ordering of ROOT events as well as other events. The ordering of these events

presented in Figure 4.15.

For automatic visualization of these event traces, Alloy Analyzer can also

be used because a model transformation from Phoenix to Alloy is feasible. Vi-

sualizations can also be done using UML activity diagram and UML sequence

diagram. Phoenix models can be integrated into standard frameworks such

as SysML, DoDAF, UML etc. for providing the level of abstraction that are

useful for other models. Visualization of schema using event trace is helpful

for test driven development.

4.6 Comparison of Different Formal Methods

The objective of this work is to provide a qualitative comparison of the few for-

mal methods those are considered important for model based as well as event

based specification methods. Formal methods are different from programming

languages, because the syntax and semantics of specification languages are

more abstract than the syntax and semantics of programming languages. For-

mal models provide constructs to write specifications of programming systems,

while programming languages provide constructs to write programs. As the

literature says, no single method can be truly applicable for all types of prob-

lems. Some methods such as Z, B, VDM etc. are used for sequential systems

whereas other methods such as Action Systems, CSP, LOTOS, Petri Nets etc.

are used for parallel systems.

Z language is a very powerful approach that provides a precise specifica-

tion but it is intractable. Object-Z is a conservative extension of Z language.

Object-Z introduces the notions of class as well as modularity, a precise notion
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of interface. B and Alloy are based on Z, but they are having some extended

features. The primary aim of a decomposition in B is to obtain decomposition

of proof. B method is very useful for executable code generation that can also

be used as an abstract specification language similar to Z. It ensures refinement

steps and proofs, that the code satisfies its specification.

Table 4.1: Comparison among Z, B, Alloy, and Monterey Phoenix

S. No. Attributes Z B Alloy Phoenix Schema

1. Paradigm state based state based state based event based

2. Formality formal formal formal formal

3. Tool Support yes yes yes no

4. Design to Spec. yes yes yes no

5. GUI Editor yes yes yes no

6. GUI Result no no yes no

7. Object Oriented no no yes no

8. Concurrency no no no yes

9. Executability no no yes no

10. Code Generation no yes no no

11. Test Driven no no yes yes

Alloy is a light weight, executable language that provides graphical results.

Inconsistency among different components can be easily detected by those

graphical results. The basic functions of Alloy are loading, compiling, and

analyzing the Alloy specification. Phoenix Schema is mainly used for formal

visualization of software architecture that shows the behavior of the system.

Components and connectors are considered as ROOT events in event grammar.

It is an event based method using two basic relations inclusion and precedes.
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To compare Z, B, Alloy, and Monterey Phoenix, a set of attributes have

been identified for performance analysis which compares the properties of the

different formal methods. These attributes are presented in Table 4.1. The

attributes are: paradigm, formality, tool support, GUI editor, GUI result,

object-oriented, concurrency, executability, code generation, design to formal

specification, and test driven frame work. For the attributes paradigm and tool

support, Z, B, and Alloy are state-based and support tool for syntax checking

and theorem proving whereas, Monterey Phoenix is event-based and it is not

supported by any tool. All these specification languages are formal. Z, B,

and Alloy supported by the GUI editor for editing and type checking, but

only Alloy is supported by a tool for simulation and GUI result generation.

Alloy is an object-oriented language that is helpful for test-driven development.

Monterey Phoenix can also be used for parallel systems. Formal method B is

also helpful for generating code from specifications.

4.7 Conclusion

Behavioral models of any system are precise and abstract in nature which can

be useful to support rigorous analysis and verification of properties. These

models are also helpful to answer the questions of stakeholders which can lead

to provide more comprehensive descriptions of the system behavior. But these

behavioral models need to be formally verified using mathematical approaches.

This study presents significant information about the effectiveness and weak-

ness of these formal modeling languages as well as tools supported by these

formal languages. Formal methods are cost effective techniques which are used

to reduce the defect rate of software. These formal methods for specification

and verification purposes have been considered to understand the merits of

each one.
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Chapter 5

Model Checking of a Complex

Architectural Style C2

5.1 Introduction

The present day emphasis on fixing software architecture from the very initial

phase of system analysis gives rise to formal verification of the particular ar-

chitectural style. Software architecture comprises of a set of principal design

decisions that deals with high-level structure of a system [61]. In the architec-

tural development process, design decisions are usually being represented in

terms of structure, behavior, interaction, and non-functional properties of the

system. An architectural style is an architectural design decisions to capture

knowledge of effective designs for achieving specified goals in a given develop-

ment context [56]. Styles provide a common semantics for a software architect

in order to make the design more easily understandable. Different architectural

styles are being used by software developers, such as client-server, virtual ma-

chine, pipe-and-filter, blackboard, rule-based, publish-subscriber, event-based,

peer-to-peer etc. for the development of different application systems. As
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the complexity of the system increases, large number of complex styles have

been introduced such as C2 (components and connectors), CORBA, REST

architecture etc.

To endorse architecture based development, formal modeling notations and

model checking tools are needed for verification of the particular style. A num-

ber of architectural description languages (ADLs) are also applied for mod-

eling and development of software architecture such as Aesop, C2SADEL,

ArTek, Darwin, Rapide, SADL, UniCon, Weaves, Wright etc. [62]. These

ADLs support mathematical notations and tools for modeling different archi-

tectural styles and architectural patterns. For example Rapide [63] is being

used to model component interface and external behavior of a system, whereas

Wright [64] is used to model the architectural element i.e., connector. The

tools supported by the ADLs have certain limitations in terms of modeling,

visualization, platform support, and formal verification. A number of complex

styles have also been introduced for modeling and visualization of complex and

heterogeneous systems. The ADLs are not sufficient for modeling and analyz-

ing complex styles. These complex styles provide a semi-formal notation for

modeling of complex systems. Hence, formal methods are being considered for

modeling, refinement, and formal verification of software architecture. In the

process of formal modeling, analysis confirms the consistency of the requested

configuration with respect to a particular style. A number of analysis tech-

niques are available for testing, model checking, and evaluating non-functional

properties based on the architectural styles. Among them, model checking is a

verification technique, which is used to verify whether an architectural model

conforms to the expected requirements.

The goal of this study is to analyze one of the complex architectural style

i.e., C2 [61] using formal modeling language Alloy [6]. A case study on safety

critical system i.e., Cruise Control System (CCS) [40] has been considered

for designing the architecture in a particular style i.e., C2. Subsequently,
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Alloy notations of C2 style are analyzed using the model generator Alloy An-

alyzer [16]. A number of formal models have been proposed for simple styles

such as, client-server, publish-subscriber, pipe and filter, event-based etc. It

is observed that more rigorous study needs to be carried out for formalization

of complex styles such as, C2. ACME [65] is an architectural interchange lan-

guage used to model a system using different simple architectural styles such as

call-return, data-flow, event-based, and repository. It supports mapping of ar-

chitectural specifications from one ADL to another, but ACME cannot model

systems in C2 style. Generally C2SADEL (Software Architecture Description

and Evolution Language for C2-style) is used to model C2-style. The tool

known as DRADEL (Development of Robust Architectures using a Descrip-

tion and Evolution Language) [66] supported by C2SADEL provides textual

and graphical modeling as well as skeleton generation; but this tool is not

sufficient for simulation and formal verification. Presently, systems are run-

ning in a distributed, heterogeneous environment and software components of

a system are written in different languages. Hence, the software components

should follow the principle of substrate independence. The C2-style provides

a large number of benefits such as, substrate independence, accommodating

heterogeneity, support for product lines [67], ability to design in MVC (Model

View Controller) pattern, and support for distributed applications [68,69].

5.2 Application of C2 Style on a Case Study

To explain the application of C2 style, a case study i.e., Cruise Control System

(CCS) has been taken. CCS is a safety critical real-time system typically aims

to increase the passenger safety during automatic transmission of the vehicle.

An architectural style C2 is considered to be suitable for structuring embedded

control applications. The architecture of Cruise control system in C2-style has

been developed and shown in Figure 5.1. The components in this style are
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organized in a layered structure. In this example, there are five sensors at

the top layer of the CCS. The Global positioning system (GPS) senses the

location and time information. The axle sensor senses the number of pulses

per rotation of the axle. The engine sensor senses signals when the engine

switches on and off. The brake sensor senses signals when the brake is pressed

and when it is released. The wheel revolution sensor senses the number of

revolutions of the wheel. The component clock generates a pulse when sensors

change their states. There is a facility of implicit feedback in such applications

via the external environment.

Figure 5.1: Cruise Control System in C2 architectural style

At the next top layer, there are four components available such as GPS

artist, axle artist, engine artist, and brake artist for receiving notifications

broadcast from sensors. These components are used to handle information

broadcast from different sensors present at the top layer. The artist compo-
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nents receive notifications of different sensor’s states change, causing them to

update their depictions. Artist components maintain the state of a set of ab-

stract graphical objects that, when modified, send state change notifications

in the hope that a lower level graphics component will render them on GUI.

The cruise controller is the main component that takes data from upper layer

components to perform computations. The function of this component is to

maintain the speed of a car without interference of user. There is a connection

between sensor and controller for receiving notification directly from wheel

revolution sensor to cruise controller in order to calculate speed and compare

it with the desired speed. Cruise controller requests for data from sensors to

perform computations. By notification messages, sensors broadcast data to

it. After performing computation, cruise controller broadcasts the calculated

values to different actuators i.e., throttle actuator and GUI. The throttle ac-

tuator sends request message for the required data and listens to the cruise

controller for notifications. In C2-style, components are independent, concur-

rent message generators and/or consumers. Whereas connectors are message

routers that may filter, translate, and broadcast messages such as requests and

notifications [70].

5.3 Representing C2 Style of Cruise Control

System using Alloy

Specifying a model of software or hardware system using Alloy has several

advantages. Firstly, presenting these formal model in an executable form en-

sures that model has unambiguous and testable semantics. Secondly, Alloy

visualizes a model of unbounded size and later specifies a size in a bounded

form when verifying properties. Automated tool Alloy Analyzer translates

high-level, declarative, relational expression of the formal model into a SAT
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instance that can be solved by SAT solver. Alloy is a declarative language

based on first order predicate logic. To make the explanation more precise,

formal modeling language Alloy is used for specifying essential properties of

the cruise control system represented in C2-style. Behavioral properties of this

system can be expressed as a form of logical predicates which can be checked

by using Alloy Analyzer.

module Cruise Control System

enum FuelLevel {LOW , HIGH }

enum Speed {LowSpeed , ConstSpeed , HighSpeed}

enum Brake {ON , OFF}

enum Accelerator {Pushed , UnPushed}

sig Notification extends Port {}

sig Notifier extends Role {}

sig Request extends Port {}

sig Requester extends Role {}

abstract sig CruiseControlSystem { comps : set Component ,

conns : set Connector , c2cons : set C2Connector }

sig Component { ports : set Port }

sig Connector { roles : set Role, attach : Role one− > one Port }

sig C2Connector { c2port : set Port }

sig Port { component : one Component ,

owner : one (Component + C2Connector) }

sig Role { connector : one Connector ,

owner : one Connector , attachTo : lone Port }

Figure 5.2: Alloy specification of architectural elements
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Figure 5.2 shows, Alloy specification of cruise control system having a mod-

ule Cruise Control System to split a model among several modules. A module

in Alloy, allows constraints to be reused in different contexts. There are four

enumerations such as, FuelLevel, Speed, Brake, and Accelerator which have

been considered in this case study. Like a signature, enumeration can also

contain a set of atoms. In the process of analysis, Alloy Analyzer selects all

instances for the given scope. Therefore the number of atoms become very

large that an explicit enumeration would be infeasible. Alloy Analyzer uses

pruning techniques in order to rule out whole sets of atoms at once.

In Figure 5.2, first enumeration FuelLevel is used to specify fuel level of

engine. Enumerations Speed, Brake, and Accelerator are used to indicate the

status of speed (LowSpeed or ConstSpeed or HighSpeed), state of brake (ON

or OFF), and state of accelerator (Pushed or UnPushed) respectively. In this

model, the first four signatures such as Notification, Notifier, Request, and Re-

quester are being considered for communication among the components using

message passing. In C2-style architecture, message passing is only done by

request and notification messages. The next signature is CruiseControlSystem

which represents the whole system in terms of components, connectors, and

c2-connectors. There may be a large number of components and connectors

in a system. Each component has a set of ports to connect with different con-

nectors. Similarly each connector has a set of roles to connect with the ports

of a component. A port and a role is owned by a single component and a

single connector respectively. The field owner in the port and role signatures

indicates that each role and each port have single owner.

In C2 style architecture, for the cruise control system five sensors such

as GPS, BrakeSensor, AxleSensor, EngineSensor, and WheelRevolutionSen-

sor have been considered as components which are shown in Figure 5.3. These

components are placed at the top layer in hierarchy. Hence, they generate only

notification messages and receive request messages. Signature GPS has two
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fields such as specifygpsN and sendG. First field indicates that GPS compo-

nent specifies a number of notifications for other components which are placed

into bottom layers. Second field indicates that notifications are received by

GPSArtist component.

abstract sig Sensor extends Component {}

one sig GPS extends Sensor {

specifygpsN : set Notification,

sendG : Notification− > GPSArtist }

one sig AxleSensor extends Sensor {

specifyaxleN : set Notification,

sendA : Notification− > AxleArtist , senseA : Accelerator }

one sig EngineSensor extends Sensor {

specifyengineN : set Notification,

sendE : Notification− > EngineArtist , senseE : FuelLevel }

one sig BrakeSensor extends Sensor {

specifybrakeN : set Notification,

sendB : Notification− > BrakeArtist , senseB : Brake }

one sig WheelRevolutionSensor extends Sensor {

specifyWRSN : set Notification,

sendW : Notification− > EngineArtist , senseW : Speed }

Figure 5.3: Alloy specification of sensor components

AxleSensor component has three fields such as specifyengineN, sendE, and

senseE. First two fields work same as in GPS component whereas, third field

senseE indicates the fuel level. BrakeSensor component also has three fields

such as specifybrakeN, sendB, and senseB. Third field senseB is used to indicate
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the status of brake. WheelRevolutionSensor component has three fields such

as specifyWRSN, sendW, and senseW. The field senseW indicates the speed

of a vehicle.

abstract sig Depiction {}

sig Artist extends Component {}

abstract sig Controller extends Component {}

abstract sig Actuator extends Component {}

sig GPSArtist { specifyGAR : set Request ,

specifyGAN : set Notification,

update : Depiction, sendRequest : GPS ,

broadcastNotifi : CruiseController + GUI }

sig AxleArtist { specifyAAR : set Request ,

specifyAAN : set Notification,

update : Depiction, sendRequest : AxleSensor ,

broadcastNotifi : CruiseController + GUI }

sig EngineArtist { specifyEAR : set Request ,

specifyEAN : set Notification,

update : Depiction, sendRequest : EngineSensor ,

broadcastNotifi : CruiseController + GUI }

sig BrakeArtist { specifyBAR : set Request ,

specifyBAN : set Notification,

update : Depiction, sendRequest : EngineArtist ,

broadcastNotifi : CruiseController + GUI }

Figure 5.4: Alloy specification of artist components

In Figure 5.4, there are four artist components such asGPSArtis, AxleArtist,
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EngineArtist, and BrakeArtist for maintaining the state of abstract graphical

objects. These artist components receive notification messages of sensor-state

changes, causing them to update their depiction. GPSArtist component has

five fields such as specifyGAR, specifyGAN, update, sendRequest, broadcastNo-

tifi. The first field specifyGAR represents set of request messages for top layer

components. Second field specifyGAN represents set of notification messages

for bottom layer components. Third field update indicates the state changed of

sensor component in the form of depiction. In architectural style C2, a compo-

nent has all essential information about upper layer component, whereas it has

no information about bottom layer components. Hence, in this example artist

components send request messages to a specific upper layer component and

broadcast notifications to all components placed at the layer below it, from

that component’s layer. Fourth field sendRequest indicates request messages

sent from this artist component to only GPS component. Whereas broad-

castNotifi field represents notification messages sent from this component to

controller and actuator components. Similarly other artist components also

have five fields for showing relationship with other components.

one sig GUI , ThrottleActuator extends Actuator

{ specifyAReq : set Request }

one sig CruiseController extends Controller

{ specifyCN : set Notification specifyCR : set Request }

{ Sensor = GPS + BrakeSensor + AxleSensor + EngineSensor +

WheelRevolutionSensor

Actuator = GUI + ThrottleActuator }

Figure 5.5: Alloy specification of actuators and controller components
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The cruise controller is the main component in this architecture placed at

the middle layer. Hence, it sends and broadcasts both requests and notifica-

tions to the upper layer components and lower layer components respectively.

This component has two fields such as specifyCN and specifyCR used for rep-

resenting a set of notifications and requests respectively, which are shown in

Figure 5.5. C2-style of CCS has two actuators such as GUI and ThrottleActua-

tor for receiving data, sent from upper layer components. These actuators are

only responsible for specifying request messages, because in C2 style, bottom

layer components send only request messages to upper layer components. In

Alloy notation, ’ + ’ operator is used for the union operation. Hence, sensor

shows the union of all sensors and actuator shows the union of all actuators

those are used in this style.

5.4 Analysis of Dynamic Behavior of C2 Style

In modeling language Alloy analysis is a form of constraint solving. Analysis

encourages the architect, by giving concrete examples that reinforce intuition

and suggest new scenarios. By adding fact statements, checking assertions,

and executing a predicate, the analysis problem can be reduced. A fact is a

logical constraint that should always hold good. In this model many facts have

been specified. An Alloy model can have any number of facts. In Figure 5.6,

PortRoleOwner fact has a constraint which indicates that if a port is present

in the component, it means that this port is owned by the component and

the component is the owner of this port. Similarly, if a role is present in the

connector, it means this role is owned by the connector and the connector is

the owner of this role. In the first fact, name is given but in second fact name

is not defined. In Alloy, fact name is optional. The second fact indicates that

if some roles are related to some ports then these roles should be specified by

some connectors.
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fact PortRoleOwner

{ ∼ports = component && ∼roles = connector }

fact

{ all con1, con2 : Connector | some role1, role2 : Role |

some port1, port2 : Port | role1− > port1 in con1.attach

&& role2− > port2 in con2.attach }

Figure 5.6: Analysis for port and role

assert No comp comp connection{ all role1, role2 : Role |

all port1, port2 : Port | some comp1, comp2 : Component

| connectRolePort [role1, port1] && connectRolePort [role2, port2]

&& owner [port1] = comp1 => owner [port2] ! = comp2 }

Figure 5.7: Analysis of architectural elements attachment

In C2 style architecture two components cannot directly be connected.

If one component wants to communicate with other components, it should

be connected through a C2-connector. C2-connector is not a simple con-

nector it is a combination of more than one simple connectors. Hence it

can be viewed that C2-connector acts as a component having set of ports

to connect with simple connector having set of roles. In Figure 5.7, asser-

tion No comp comp connection, checks that, if some roles are attached with

other some ports and the first port owned by any component and also the

second port is owned by any another component, Alloy Analyzer generates

counterexamples.
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There are certain constraints that a developer does not want to record

them as facts. If a developer wants to analyze the model with other con-

straints, and also to check whether these constraints are related to some other

constraints or not, predicate expressions are used for this purpose. A pred-

icate is a logical formula with declaration parameters. Predicate describes a

set of states and transitions, by using constraints among signatures and their

fields. Without using predicate, instances cannot be generated for operation

except from counterexample. Figure 5.8 represents two predicates such as con-

nectRolePort and connectCompC2Conn to specify port-role connection and

component-c2connector attachment operations. Predicate, connectRolePort is

used for a port and role, returning true if they are directly connected. In sec-

ond predicate, constraints are added to connect component and c2-connector.

The keyword disj is used to restrict the bindings and include ones in which

the bound variables are disjoint from one another. In this code, disj indicates

that between two roles only one is used. In this Alloy model, connectRolePort

predicate is used, because predicates in Alloy act as built-in functions and it

can be easily used by other predicates.

pred connectRolePort [role : Role, port : Port ]

{ role − > port in Connector .attach }

pred connectCompC2Conn [comp : Component , c2con : C2Connector ]

{ some role1, role2 : Role | some port1, port2 : Port |

disj[role1, role2] && connectRolePort [role1, port1]

&& owner [port1] = comp && connectRolePort [role2, port2]

&& owner [port2] = c2con && owner [role1] = owner [role2] }

Figure 5.8: Alloy specification of port-role attachment
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For cruise control system some constraints are usually added in the form of

facts. In Figure 5.9, the fact axle sensor Notification ensures that if speed of

vehicle is high and accelerator is not pushed then axle sensor component sends

notification message to artist component. Similarly, engine sensor Notification

fact ensures that if the value of speed is low-speed and fuel-level is also low, then

engine sensor component broadcast notification messages to artist component.

fact axle sensor Notification

{ all wrs : WheelRevolutionSensor , axle : AxleSensor |

some n : Notification, a : AxleArtist |

wsr .senseW = HighSpeed && axle.senseA = UnPushed

implies axle.sendA in n − > a }

fact engine sensor Notification

{ all wsr : WheelRevolutionSensor , engine : EngineSensor

| some n : Notification, e : EngineArtist |

wsr .senseW = LowSpeed && engine.senseE = LOW

implies engine.sendE in n − > e }

Figure 5.9: Consistency checking of Cruise Control System

In Figure 5.10, Alloy model uses Contain signature to restrict the model

to generate only one system instance. The predicate type-definition specifies

the definition of architectural elements and their types. Keyword univ is an

unary operator represented as universal set. C2 Style Consistency Checking

predicate specifies the type definition of Notification and Request signatures.

In this model, Notification and Request are considered as port and Notifier

and Requester are considered as role. First constraint considers Contain as

a Notification attached by a Notifier (it is a type of role). Similarly, in next
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constraint Contain is considered as Request attached by a Requester. Other

two constraints are inversely related to first two constraints. Third constraint

considered Contain as a role (Notifier) to attach with the port Notification. In

this constraint, it is specified that the number of link between a role (Notifier)

and a port (Notification) should be one. Fourth constraint is similar to third

constraint for port Request and role Requester.

one sig Contain extendsCruiseControlSystem {}

pred TypeDefinition [archElement : univ,

elementType : set univ]

{ archElement in elementType }

pred C2Style Consistency Checking []

{ allContain : Notification |

(all role : Contain.∼attachTo | TypeDefinition[role,Notifier ])

allContain : Request | (all role : self .∼attachTo |

TypeDefinition[role, Requester ]) allContain : Notifier |

(#(Contain.attachTo) = 1) &&

(all port : Contain.attachTo | TypeDefinition[port , Notification])

allContain : Requester | (#(Contain.attachTo) = 1) &&

(all port : Contain.attachTo | TypeDefinition[port , Request ])

}

run C2Style Consistency Checking for 3

Figure 5.10: Consistency checking of C2 style

In order to generate and visualize instances, execution of the run command

is done by clicking the execute button. After finishing execution, Alloy analyzer

indicates that it has found instances, which can be visualized by clicking on
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Figure 5.11: Instances generated by Alloy Analyzer
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the show button. On clicking show button in Alloy Analyzer, it generates

instances according to given scope. Operation C2 Style Consistency Checking

is visualized for scope value three, which means that Alloy Analyzer generates

at most three instances of each atoms.

The pictorial representation of this predicate is shown in Figure 5.11. This

figure shows different objects as enumerations, signatures, and connections

between these signatures representing a relation. It is possible to increase the

number of instances by using a scope in the run command. If scope is not

defined in the run command, by default, Alloy Analyzer assumes the value of

scope as three. As literature says, if the value of scope is more than seven, then

Alloy Analyzer generates all possible types of relations among given objects.

There is a button next in Alloy Analyzer which shows all possible types of

relations among the objects. Figure 5.12 shows some of the types used in our

expression together with the relations between these types. This meta model

provides conceptual map of our model.

5.5 Performance Evaluation among Different

SAT Solvers

To investigate the scalability of the analysis, the consistency on Alloy specifi-

cation of cruise control system considering problem size (scope) from 2 to 12

has been checked. For the performance evaluation, system configuration is In-

tel(R) Core(TM) i5-2400 CPU @ 3.10 GHz, 2.00 GB (1.88 GB usable), 32-bit

Windows 7 operating system. Execution is carried out using Alloy Analyzer

4.2, build date: 2012-04-20 10:05 EDT. During execution process SAT solver is

SAT4J where maximum stack to use was 8192k and maximum memory to use

was 768M. For problem size 2 to 10 above details are used; when the execution

performed for problem size 12, Alloy Analyzer generates error message related
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Figure 5.12: Meta model of Alloy specification generated by Alloy Analyzer
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to memory used. Hence, for problem size 12, maximum memory 1024M is used.

The performance result for different bound range (from 2 to 12) is shown in

Figure 5.13. As shown in Figure 5.13, for problem size 12, time reaches its

limit of tractability for C2-style.
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Figure 5.13: Performance evaluation of SAT4J Solver

Table 5.1: Comparative analysis among different SAT Solvers

S. No. SAT Solver Time (ms) No. of vars.

1. MiniSat 954 134304

2. MinisatProver 1386 134303

3. ZChaff 895 134304

4. SAT4J 1050 134304

The Alloy Analyzer supports many SAT solvers such as MiniSat, MiniSat

with Unsat Core, ZChaff, and SAT4J to exhaustively search for satisfying

models or counterexamples. The comparative analysis among these solvers

for problem size (scope) 7, maximum memory used 768M, maximum stack

used 8192k is presented in Table 5.1. Finally, the comparison of performance
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evaluation among these solvers is also presented in Figure 5.14 for problem size

2 to 10 with same system configuration.

 

154 224 

530 

2090 

8036 

134 207 

504 

1935 

7092 

107 152 

432 

1815 

6756 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8 10

T
im

e
 (

m
s
) 

No. of Instances (Scope) 

Time (ms) for SAT4J

Time (ms) for MiniSAT

Time (ms) for Zchaff

Figure 5.14: Performance evaluation among different SAT Solvers

There are many advantages of analyzing different levels of abstractions of

an architectural style such as internal functioning of component and connec-

tor, topology of architectural elements, and principle of the architectural style.

The first advantage is to provide more understandability for developer to im-

plement different components and connectors. Second advantage is to provide

a framework that is helpful for deployment process. Third advantage provides

an appropriate level of granularity for accessing non-functional properties of a

software system. The use of formal modeling techniques ensures the correct-

ness of any architectural changes performed by an architect. In this study, it

is inferred that analysis of dynamic aspects of any style needs to be carried

out to assess the correctness.
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5.6 Conclusion

An architectural style has been characterized by their control-flow and data-

flow patterns, allocation of functionality across components, and connectors.

To select an architectural style for a software, it is a multi-criteria decision-

making problem in which different goals and objectives must be taken into

consideration. In this study, an architectural style C2 is considered for safety

critical system called as cruise control system. After designing CCS using C2,

it is modeled using formal modeling language Alloy. For consistency checking

among architectural elements such as, components, connectors, C2-connectors,

port and role Alloy Analyzer has been considered. Alloy Analyzer supports

many SAT solvers such as SAT4J, MiniSAT, MiniSATProver, and Zchaff.

Hence it is necessary to evaluate the performance of each one. From the above

study, it is concluded that, formalizing an architectural style provides style

consistency and validity of configuration. It also helps in refinement of critical

processes and checking compatibility among different style.

67



Chapter 6

Conclusions

In order to prove the correctness of the system requirements, there are large

number of verification techniques available such as reachability analysis, static

code analysis, formal equivalence checking, property specification language, au-

tomated theorem proving, and model checking etc. In this thesis, automated

theorem proving and model checking techniques have been considered for veri-

fication of behavioral model and an architectural style i.e., C2. In reachability

analysis technique, intended functions are proved during a specified time under

given conditions. Model checking analyzes all possible states of a system in a

brute-force manner. Since exhaustive testing of any software is not practically

possible, formal verification techniques are used because these techniques are

based on the exhaustive state space explosion of finite state machine. The use

of formal methods in the area of the verification and validation helps to build

a platform for development of software and hardware systems by proving the

completeness and correctness of models.
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6.1 Formalization of Behavioral Model

The use of formal methods in the area of verification and validation gives a

platform for analysis of software and hardware development and checking the

completeness as well as correctness of modeling. In the first proposed work,

behavioral model of ATM system is modeled using four formal specification

languages such as Z, B, Alloy, and Monterey Phoenix. Subsequently this re-

search focuses on extracting significant information about the effectiveness and

weakness in the analysis phase by the use of these formal modeling languages

as well as the tools supported by these formal languages. Formal methods are

cost effective techniques which are used to reduce the fault rate of the desired

software.

6.2 Model Checking of a Complex Architec-

tural Style C2

In the second proposed work, a case study on analysis of safety critical system

called as, cruise control system using a complex architectural style C2 is pre-

sented. Subsequently a library of styles is presented using formal modeling lan-

guage Alloy to assist the reuse and extensible modeling of complex and highly

distributed components, developed in different programming languages. Com-

patibility among components, connectors, and C2-connectors has been checked

using model generator Alloy Analyzer. Finally, performance evaluation among

different SAT solvers have been performed in order to assess the efficiency of

Alloy Analyzer. In this study, Alloy is chosen because it provides a compact

model that allows the verification of structural and behavioral properties of a

system. Modeling the structural properties of an architectural style has gen-

erally been associated with the component-connector abstractions. Styles are

generally considered to promote design reuse, code reuse, and support interop-
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erability between two different styles. Hence, it is concluded that, formalizing

an architectural style provides the proof for style consistency and validity of

configuration. It also helps in the refinement of critical processes and checking

compatibility among different styles.

6.3 Scope for Further Research

Future work of this research may be proposed to extend the application of dif-

ferent models in complex styles on software architecture such as CORBA (Com-

mon Object Request Broker Architecture), and REST (REpresentational State

Transfer) architecture. The formal models can be verified using model check-

ers such as Alloy Analyzer, CPN Tools, and PAT (Process Analysis Toolkit).

The verification process will be carried out by considering different architec-

tural patterns such as state-logic-display, Model-View-Controller (well known

as MVC pattern), and Sense-Compute-Control etc.
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