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ABSTRACT

The simplest example of the application of the boundary layer equations is afforded by the
flow along a flat plate. Historically, this was the first example illustrating the application
of Prandtl’s boundary layer theory. The problem was discussed by Heinrich Blasius in
his doctoral thesis at Göttingen. That is why the flow is widely known as the Blasius
flow. Literature study reveals hardly any attention has been given to the effects of partial
slip on the boundary layer flow over a flat plate. The no-slip boundary condition (the
assumption that a liquid adheres to a solid boundary) is one of the central tenets of the
Navier-Stokes theory. Mathematically the no-slip condition is given by vn = 0 and vt = 0,
where vn and vt are the normal and the tangential component of the velocity on the wall.
In certain situations, however, the assumption of no-slip does no longer apply and should
be replaced by a partial slip boundary condition. Navier [7] proposed a slip boundary
condition wherein the amount of relative slip depends linearly on the local shear stress.
The motivation behind our study is to see the effects of slip on the boundary layer flow
of a viscous fluid past an infinite plate. The present investigation is not only important
because of its technological significance but also in view of the interesting mathematical
features presented by the equations governing the steady, laminar flow with slip boundary
conditions.

The partial slip is controlled by a dimensionless slip factor, which varies between zero
(total adhesion) and infinity (full slip). The resulting third order nonlinear similarity
equation has been numerically integrated using shooting method, along with fourth order
Runge-Kutta method. It is observed that the horizontal component of velocity increases
with an increase in slip. Thus, the boundary layer thickness decreases with an increase in
slip. It is interesting to observe that the skin friction coefficient decreases exponentially
with an increase in slip.
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1 Introduction

One of the most successful, fascinating and useful applications of Mathematics has been
in the study of motions of fluids. Newtonian fluid mechanics underwent a transformation.
Primary causes for the transformation were the concept of a boundary layer put forward
by Ludwig Prandtl in his seminal presentation [8] at Heidelberg, Germany during the week
of 8 August 1904. The companion paper, entitled “Über Flüssigkeitsbewegung bei sehr
kleiner Reibung” (“On the Motion of Fluids with Very Little Friction”) was only eight
pages long, but it would prove to be one of the most important fluid-dynamics papers
ever written. Prandtl’s paper gave the first description of the boundary layer concept and
revolutionized the understanding and analysis of fluid dynamics. He theorized that an
effect of friction was to cause the fluid immediately adjacent to the surface to stick to the
surface, in other words, he assumed the no-slip condition at the surface and that frictional
effects were experienced only in a boundary layer, a thin region near the surface. Outside
the boundary layer, the flow was essentially the inviscid flow that had been studied over the
previous two centuries. In fact, the velocity changes enormously over a very short distance
normal to the surface of the body immersed in a flow. In other words, the boundary layer is
a region of very large velocity gradient (∂u

∂y
). According to Newton’s shear-stress law, which

states that the shear stress is proportional to the velocity gradient, the local shear stress
(τ) can be very large within the boundary layer, since τ = µ∂u

∂y
can reach considerable

values, even for very small viscosity µ. As a result, the skin-friction drag force exerted
on the body is not negligible, contrary to what some earlier 19th century investigators
believed. Indeed, for slender aerodynamic shapes, most of the drag is due to skin friction.

Prandtl showed that for the boundary layer, the Navier-Stokes equations can be re-
duced to a simpler form, applicable only to the boundary layer. The results, called the
boundary layer equations, are similar to Navier-Stokes in that each system consists of
coupled, nonlinear partial differential equations. The major mathematical breakthrough,
however, is that the boundary layer equations exhibit a completely different mathematical
behavior than the Navier-Stokes equations. The Navier-Stokes equations have what math-
ematicians called elliptic behavior. That is to say, the complete flow field must be solved
simultaneously, in accord with the specific boundary conditions defined along the entire
boundary of the flow. In contrast, the boundary layer equations have parabolic behavior,
which affords tremendous analytical and computational simplification. They can be solved
step-by-step by marching downstream from where the flow encounters a body, subject to
specified inflow conditions at the encounter and specified boundary conditions at the outer
edge of the boundary layer. The systematic calculation yields the flow variables in the
boundary layer, including the velocity gradient at the wall surface. The shear stress at the
wall, hence the skin friction drag on the surface, is obtained directly from those velocity
gradients. Such step-by-step solutions for the boundary layer flows began within a few
years of Prandtl’s 1904 presentation, carried out mainly by his students at the University
of Göttingen. With those solutions, it became possible to predict with some accuracy,
the skin friction drag on a body, the locations of the flow separation on the surface and
given those locations, the form drag and the pressure drag due to the flow separation.
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In his 1905 paper, short as it was, Prandtl gave the boundary layer equations for steady
two-dimensional flow, suggested some solution approaches for those equations, made a
rough calculation of friction drag on a flat plate, and discussed aspects of boundary layer
separation under the influence of an adverse pressure gradient. Those were all pioneering
contributions. Despite the important work, Prandtl’s research group at Göttingen paid
little attention, especially outside of Germany. It surfaced again in 1908 when Prandtl’s
student Heinrich Blasius, published in the respected journal Zeitschrift für Mathematik
und Physik (ZAMP), his paper “Boundary Layers in Fluids with Little Friction”, which
discussed 2D boundary layer flows over a flat plate and a circular cylinder. Blasius study
was based on the conventional no-slip boundary conditions. The no-slip boundary condi-
tion (the assumption that a liquid adheres to a solid boundary) is one of the central tenets
of the Navier-Stokes theory. Mathematically the no-slip condition is given by vn = 0 and
vt = 0, where vn and vt are the normal and the tangential component of the velocity on
the wall. In certain situations, however, the assumption of no-slip does no longer apply
and should be replaced by a partial slip boundary condition. Navier [7] proposed a slip
boundary condition wherein the amount of relative slip depends linearly on the local shear
stress. The equations of motion are still valid for these flows, but the boundary conditions
have to be changed appropriately. This is a condition which was discovered empirically,
and which is satisfied well within the framework of continuum mechanics. Literature sur-
vey reveals that some rarefied gases and most of the non-Newtonian fluids exhibit the slip
boundary conditions. Although the Navier condition looks simple, analytically it is much
more difficult than the no-slip condition and only a few simple exact slip flow solutions
have been found. A precise discussion regarding different kinds of possible slip boundary
conditions is provided in the Ph.D. thesis submitted by Sahoo [9].

A numerical approximation to the Blasius flow problem was given by L.Howarth [5] in
1938. R.Fazio [3] reformulated the problem as a free boundary value problem and obtained
the solution numerically. S.J Liao [6] obtained an explicit, totally analytic approximation
solution for Blasius viscous flow problem by using Homotopy Analysis Method (HAM)
and this analytic solution converges to L.Howarth numerical result. Subsequently, analyt-
ical solution was represented by Jihuan HE [4] via the variational iteration method. Lei
Wang [10] obtained a new algorithm for solving classical Blasius equation by the Adomian
decomposition method. R. Cortell [2] obtained an effective numerical solution to the Bla-
sius flow problem. Abdul Aziz [1] numerically obtained the solution for boundary layer flow
over a flat plat with slip flow and constant heat flux surface condition. Xu and Guo [11]
solved the Blasius flow and its variation and obtain a semi-analytical solution. From the
literature survey it is clear that hardly any attention has been given to to study the effects
of slip on the viscous boundary layer flow near an infinite plate. The present study is an
attempt to fill this gap.
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2 Mathematical formulation

We consider the steady flow of an incompressible viscous fluid past an infinite plate. The
surface of the plate admits partial slip. The leading edge of the plate is at x = 0 and
the plate coincides with y = 0. The flow far away from the plate is uniform and is in the
direction parallel to the plate.

 

Figure 1: Schematic diagram of Blasius flow domain

2.1 Governing differential equations

The Navier-Stokes equation along x-axis is given be

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.1)

and along y-axis is given by

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.2)

The equation of continuity is given by

∂u

∂x
+
∂v

∂y
= 0 (2.3)

The boundary conditions are

u = λ∗τxy, v = 0, at y = 0

u→ U∞, as y →∞

2.2 Boundary layer approximation

We now see the familiar strategy in boundary layer theory, which is to scale the cross-
stream distance by a much smaller length scale, and adjust that length scale in order to
achieve a balance between convection and diffusion. The dimensionless x co-ordinate is
defined as x∗ = (x/L), while the dimensionless y co-ordinate is defined as y∗ = (y/δ), where
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the length δ is determined by a balance between convection and diffusion. In momentum
boundary layers, it is also necessary to scale the velocity components and the pressure. In
the stream wise direction, the natural scale for the velocity is the free-stream velocity U∞,
so we define a scaled velocity in the x direction as u∗x = (ux/U∞). The scaled velocity in the
y direction is determined from the mass conservation condition, when the above equation
is expressed in terms of scaled variables x∗ = (x/L), y∗ = (y/δ) and u∗x = (ux/U∞), and
multiplied throughout by (L/U∞), we obtain,

∂u∗x
∂x∗

+
L

δU∞

∂uy
∂y∗

= 0 (2.4)

The above equation (2.4) indicates that the approximate scaled velocity in the y
direction is u∗y = (uy/(U∞δ/L)). Note that the magnitude of the velocity uy in the cross-
stream y direction, (U∞δ/L) is small compared to that in the stream wise direction. This
is a feature common to all the boundary layers in incompressible flows.

Next we turn to the x momentum equation, (2.1). When it is expressed in terms of
scaled spatial and velocity coordinates, and divided throughout by (ρU2

∞/L), we obtain,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= − 1

ρU2
∞

∂p

∂x∗
+

µ

ρU∞L

(
L2

δ2

)(
∂2u∗x
∂y∗2

+
δ2

L2

∂2u∗x
∂x∗2

)
(2.5)

The above equation indicates that it is appropriate to define the scaled pressure as
p∗ = (p/ρU2

∞). Also note that the factor (µ/ρU∞L) on the right side of the equation (2.5)
is the inverse of the Reynolds number based on the free stream velocity and the length
of the plate. In the right side of the equation (2.5), we can also neglect the streamwise
gradient (∂2u∗x/∂x

2
∗), since this is multiplied by the factor (δ/L)2, which is small in the

limit (δ/L)� 1. With this simplifications, equation (2.5) reduces to,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= −∂p
∗

∂x∗
+Re−1

(
L2

δ2

)
∂2u∗x
∂y∗2

(2.6)

From the above equation, it is clear that a balance is achieved between convection and
diffusion only for (δ/L) ∼ Re−1/2 in the limit of the right Reynolds number. This indicates
that the boundary layer thickness is Re−1/2 smaller than the length of the plate. Without
loss of generality, we substitute δ = Re−1/2L in equation (2.6), to get the scaled momentum
equation in the streamwise direction,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= −∂p
∗

∂x∗
+
∂2u∗x
∂y∗2

(2.7)

Next we analyse the momentum equation in the cross-stream direction, (2.2). This
equation is expressed in terms of the scaled spatial co-ordinates, velocities and pressure,
to obtain,
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ρU2
∞δ

L2

(
u∗x
∂u∗y
∂x∗

+ u∗y
∂u∗y
∂y∗

)
= −ρU

2
∞

L2

∂p∗

∂y∗
+
µU∞
δL

(
∂2u∗y
∂y∗2

+

(
δ

L

)2 ∂2u∗y
∂x∗2

)
(2.8)

By examining all the terms in the above equation, it is easy to see that the largest
terms is the pressure gradient in the cross-stream direction. We divide throughout by the
pre-factor of this term, and substitute (δ/L) = Re−1/2, to obtain,

Re−1
(
u∗x
∂u∗y
∂x∗

+ u∗y
∂u∗y
∂y∗

)
= −∂p

∗

∂y∗
+Re−1

(
∂2u∗y
∂y∗2

+Re−1
∂2u∗y
∂x∗2

)
(2.9)

In the limit Re � 1, the above momentum conservation equation reduces to ,

∂p∗

∂y∗
= 0 (2.10)

Thus the pressure gradient in the cross-stream direction is zero in the leading approxi-
mation, and the pressure at any streamwise location in the boundary layer is same as that
in the free-stream at that same stream-wise location. This is a salient feature of the flow
in a boundary layers. Thus the above scaling analysis has provided us with the simplified
‘boundary layer equations’ (2.4), (2.7) and (2.10), in which we neglect all terms that are
O(1) in an expansion in the parameter Re−1/2. Expressed in dimensional form, the mass
conservation equation is (2.3), while the approximate momentum conservation equations
are,

ρ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
= −∂p

∂x
+ µ

∂2ux
∂y2

(2.11)

∂p

∂y
= 0 (2.12)

From the equation (2.12), the pressure is only a function of the leading edge of the plate
x, and not a function of cross-stream distance y. Therefore, the pressure at a displacement
x from the leading edge is independent of the normal distance form the plate y. However,
in the limit y → ∞, we know that the free stream velocity U∞ is a constant, and the
pressure is a constant independent of x. This implies that the pressure is also independent
of x. as well, and the term (∂p/∂x) in equation (2.11) is equal to zero. With this, equation
(2.11) simplifies to,

ρ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
= µ

∂2ux
∂y2

(2.13)

This has to be observed, together with the mass conservation condition equation (2.3),
to obtain the velocity profile.
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2.3 Similarity transformation

We look for a similarity solution for the above equation, under the assumption that
the stream function of a location (x, y) depends only on the distance x from the leading
edge of the plate and the cross-stream distance y and not on the total length of the plate.
The justification for that momentum is being conserved downstream by the flow, and so
condition at a trailing edge of the plate at x = L should not affect the velocity profile
upstream of this location. While scaling the spatial coordinate and velocities in equations
(2.4), (2.7), and (2.10), we have used the dimensionless coordinate

y∗ =
y

Re−1/2L
=

y

(νL/U∞)1/2
(2.14)

Since we have made the assumption that the only length scale in the problem is the
distance from the leading edge x, it is appropriate to define the similarity variable using x
instead of L in equation (2.14),

η =
y

(νx/U∞)1/2
(2.15)

This scaling implies that the thickness of the boundary layer at a distance x from the
upstream edge of the plate is proportional to (νx/U∞) = xRe

−1/2
x , where Rex = (U∞x/ν)

is the Reynolds number on the distance from the upstream edge. It is appropriate to scale
the velocity in the x direction by the free stream velocity U∞, while the scaling in the y
direction is obtained by replacing L by x in equation (2.4),

u∗x =
ux
U∞

(2.16)

u∗y =
uy

(νU∞/x)1/2
(2.17)

where u∗x and u∗y are only functions of the similarity variable. It is convenient to express
the velocity components in terms of stream function ψ(x, y) for an incompressible flow,
since the mass conservation condition is identically satisfied when the velocity is expressed
in terms of the stream function. The components of the velocity are related to the stream
function by,

u∗x =
1

U∞

∂ψ

∂y

=
1

(νxU∞)1/2
∂ψ

∂η
(2.18)

The above equation indicates that it is appropriate to define the scaled stream function
ψ∗, often expressed in literature as F (η).

ψ∗(η) = F (η) =
ψ

(νxU∞)1/2
(2.19)
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where F (η) is a dimensionless function of the similarity variable η. The streamwise
velocity can then be expressed in terms of the scaled stream function as,

ux =
∂ψ

∂y

= U∞
∂F

∂η
(2.20)

The cross-stream velocity is given by,

uy = −∂ψ
∂x

=
1

2

(
νU∞
x

)1/2(
η
dF

dη
− F

)
(2.21)

Equation (2.11) also contains derivatives of the streamwise velocity, which can be
expressed in terms of the similarity variable η as,

∂ux
∂x

= −U∞η
2x

d2F

dη2
(2.22)

∂ux
∂y

=
U∞

(νx/U∞)1/2
d2F

dη2
(2.23)

∂2ux
∂y2

=
U2
∞
νx

d3F

dη3
(2.24)

Equations (2.21) to (2.24) are inserted into the equation (2.11) to obtain, after some
simplification,

d3F

dη3
+

1

2
F
d2F

dη2
= 0 (2.25)

This is the Blasius boundary layer equation for the stream function for the flow past a
flat plate. This equation has to be solved, subject to the appropriate boundary conditions,
which are as follows. At the surface of the plate, the no-slip condition requires that the
velocity components ux and uy are zero. Since ux is given by equation (2.20), the condition
ux = λ∗τxy at y = 0 reduces to

dF

dη
= λ

d2F

dη2
at y = 0 (η = 0) (2.26)

Using equation (2.21) for the cross-stream velocity uy, along with condition (2.26) at
the surface, the condition uy = 0 at y = 0 reduces to,

F = 0 at y = 0 (η = 0) (2.27)
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Finally, we require that the velocity ux is equal to the free stream velocity U∞ in the
limit y →∞. Using equation (2.20) for ux, we obtain,

dF

dη
= 1 at y →∞ (η →∞) (2.28)

2.4 Skin friction coefficient

The boundary layer normally generates a drag on the plate as a result of the viscous stresses
which are developed at the wall. This drag is normally referred to as skin friction. Skin
friction occurs from the interaction amid the fluid and the skin of the body, and is directly
associated to the wetted surface, the area of the facade of the body that is in contact with
the fluid.

Cf = τxy|y=0 (2.29)

τxy = µ

(
∂ux
∂y

+
∂uy
∂x

)
(2.30)

Where,

∂ux
∂y
|η=0 =

U√
ν
U

F
′′
(0) (2.31)

∂uy
∂x
|η=0 = 0 (2.32)

Using equations (2.31) and (2.32) in (2.30), we have

Cf = τxy|η=0 = µ

(
U√
ν
U

F
′′
(0)

)

=
U2ρ√
Re

F ′′(0). (2.33)

3 Numerical tools

Solving a non-linear differential equation analytically is very complicated and there are very
limited number of methods available to solve it. But there are huge number of problems
do not have a analytical solution. So, here we adopt some numerical techniques to solve
our problem.

3.1 Shooting method

This is an initial value problem method. Here we add sufficient number of conditions at
one point and adjust these conditions until the required conditions are satisfied at other

8



end. The convergence of this method is depends open the initial guess.

In order to solve the boundary value problem by shooting method, the system of dif-
ferential equations are written as the corresponding system of first ordered equations and
are solved by any of the method used for solving the initial value problems. Here we
have adopt the 4th ordered Runge-Kutta method to solve the system of corresponding 1st
ordered initial value problem.

3.2 Formulation

Blasius Equation

F
′′′

+
1

2
FF

′′
= 0

subject to,

F (0) = 0, F
′
(0) = λF ′′(0), F∞ = 1

Let, u1 = F , u2 = F
′

and u3 = F
′′

du1
dx

= F
′
= u2

= f1(t, u1, u2, u3)

du2
dx

= F
′′

= u3

= f2(t, u1, u2, u3)

du3
dx

= F
′′′

= −1

2
FF

′′

= f3(t, u1, u2, u3)

Subject to

u1(0) = F (0)

u2(0) = F
′
(0)

u3(0) = F
′′
(0)

3.3 Runge-Kutta method

The formula for the 4th Runge-Kutta method to solve the single initial value problem.

dy

dx
= f(x, y); f(x0) = y0

9



is given by

yj+1 = yj + h
1

6
(k1 + 2k2 + 2k3 + k4)

Where,

K1 = f (xj, yj) ,

K2 = f

(
xj +

h

2
, yj +

k1
2

)
,

K3 = f

(
xj +

h

2
, yj +

k2
2

)
,

K4 = f (xj + h, yj + k3)

where,h is the step length.

Similarly, the 4th ordered classical Runge-Kutta method for the system of equations

dY

dX
= f (x, y1, y2, ...yn) ; Y (X0) = Y0

may be written as

Yj+1 = Yj + h
1

6
(K1 + 2K2 + 2K3 + K4)

where,

K1 =


k11
k21
...
kn1

 ,K2 =


k12
k22
...
kn2

 ,K3 =


k13
k23
...
kn3

 ,K4 =


k14
k24
...
kn4


and,

ki1 = fi (xj, y1j, y2j, . . . , ynj)

ki2 = fi

(
xj +

h

2
, y1j +

k11
2
, y2j +

k21
2
, . . . , ynj +

kn1
2

)
ki3 = fi

(
xj +

h

2
, y1j +

k12
2
, y2j +

k22
2
, . . . , ynj +

kn2
2

)
ki4 = fi (xj + h, y1j + k13, y2j + k23, . . . , ynj + kn3)

i = 1(1)n
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4 Results and discussion

The above algorithm was translated to C + + program and was run on a core i5 personal
computer. The step length was taken to be h = 0.01. Throughout the run of the program
η∞ was taken to be 10. Fig. 2 depicts the variation of horizontal component of velocity
with slip. Clearly F ′ increases with an increase in λ and assumes its asymptotic value 1
nearer to the surface of the sheet. Thus the boundary layer thickness decrease with an
increase in λ. Fig. 3 shows the variation of the stream function F with λ. It increases
with an increase in λ and the profiles get flattened. Finally, Fig. 4 presents the variation of
F ′′(0) with λ. F ′′(0) is the measure of skin friction coefficient. Slip has a significant effect
on skin friction. It decreases exponentially with an increase in λ, as was expected. Tables
1, 2 and 3 tabulate the values of F ′, F and F ′′(0) for different values of the slip parameter
λ.

Table 1: Table of F
′
(η)

η λ= 0 λ= 0.5 λ= 1 λ= 1.5 λ= 2 λ= 5 λ= 10

0 0 0.159892 0.293897 0.398517 0.479324 0.71869 0.842548
0.2 0.0664079 0.223811 0.352616 0.45158 0.527178 0.747368 0.859352
0.4 0.132764 0.287479 0.410951 0.504189 0.574549 0.775628 0.875871
0.6 0.198938 0.350573 0.468464 0.555853 0.62093 0.803056 0.891833
0.8 0.26471 0.412701 0.524671 0.606054 0.665801 0.829259 0.906987
1 0.329781 0.473414 0.579059 0.654271 0.708658 0.853888 0.921116
2 0.629767 0.738457 0.80684 0.850173 0.878928 0.945879 0.972347
3 0.846045 0.905757 0.937225 0.954732 0.965296 0.98653 0.993558
4 0.955519 0.977022 0.986406 0.990971 0.993472 0.997832 0.999036
5 0.991542 0.996367 0.998107 0.998847 0.999217 0.999782 0.999911
6 0.998973 0.999636 0.999834 0.999907 0.999941 0.99999 0.999998
7 0.999923 0.999977 0.999992 0.999995 0.999998 1 1
8 0.999997 0.999999 1 1 1 1 1
9 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1
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Table 2: Values of F (η) for different λ

η λ= 0 λ= 0.5 λ= 1 λ= 1.5 λ= 2 λ= 5 λ= 10

0 0 0 0 0 0 0 0
0.2 0.0066412 0.0383724 0.0646545 0.0850134 0.100654 0.146609 0.170192
0.4 0.0265602 0.0895082 0.141021 0.180602 0.210839 0.298919 0.343722
0.6 0.0597352 0.153326 0.22898 0.286626 0.330408 0.456805 0.520504
0.8 0.106109 0.229674 0.32832 0.402846 0.459111 0.62006 0.700401
1 0.165573 0.318313 0.438728 0.528916 0.596594 0.788404 0.88323
2 0.650027 0.930774 1.13885 1.28828 1.39722 1.69291 1.83278
3 1.39681 1.76196 2.01918 2.19808 2.32581 2.66267 2.81771
4 2.30575 2.70973 2.98591 3.17481 3.30834 3.65626 3.81472
5 3.28328 3.69887 3.97976 4.17084 4.30554 4.65538 4.81434
6 4.27963 4.6974 4.97903 5.17041 5.30525 5.6553 5.81431
7 5.27925 5.69727 5.97897 6.17038 6.30523 6.6553 6.81431
8 6.27922 6.69726 6.97897 7.17037 7.30523 7.65531 7.81432
9 7.27922 7.69726 7.97897 8.17037 8.30523 8.65531 8.81432
10 8.27923 8.69726 8.97897 9.17037 9.30523 9.65531 9.81433

Table 3: Values of F
′′
(0) for different λ

λ F
′′
(0)

0 0.332058
0.2 0.329819
0.4 0.32383
0.6 0.315217
0.8 0.30498
1 0.293897
2 0.239662
4 0.166719
6 0.126125
8 0.101095
10 0.0842548
15 0.0593911
20 0.0458262
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Figure 2: Variation of F ′(η) with λ.
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Figure 3: Variation of F (η) with λ.
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5 Conclusion

In this report we obtained the numerical solution of the Blasius flow of a viscous fluid with
partial slip boundary condition. It is observed that with increase in slip parameter λ the
boundary layer thickness decreases and hence, the viscous drag of the fluid also decreases.
For very large value of slip, the fluid behaves as if inviscid.
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