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Abstract

Test effort prioritization is a powerful technique that enables the tester to effec-

tively utilize the test resources by streamlining the test effort. The distribution of

test effort is important to test organization. We address prioritization-based test-

ing strategies in order to do the best possible job with limited test resources. Our

proposed techniques give benefit to the tester, when applied in the case of loom-

ing deadlines and limited resources. Some parts of a system are more critical and

sensitive to bugs than others, and thus should be tested thoroughly. The rationale

behind this thesis is to estimate the criticality of various parts within a system and

prioritize the parts for testing according to their estimated criticality. We propose

several prioritization techniques at different phases of Software Development Life

Cycle (SDLC). Different chapters of the thesis aim at setting test priority based on

various factors of the system. The purpose is to identify and focus on the critical

and strategic areas and detect the important defects as early as possible, before the

product release. Focusing on the critical and strategic areas helps to improve the

reliability of the system within the available resources.

We present code-based and architecture-based techniques to prioritize the testing

tasks. In these techniques, we analyze the criticality of a component within a system

using a combination of its internal and external factors. We have conducted a set

of experiments on the case studies and observed that the proposed techniques are

efficient and address the challenge of prioritization.

We propose a novel idea of calculating the influence of a component, where in-

fluence refers to the contribution or usage of the component at every execution step.

This influence value serves as a metric in test effort prioritization. We first calculate

the influence through static analysis of the source code and then, refine our work

by calculating it through dynamic analysis. We have experimentally proved that

decreasing the reliability of an element with high influence value drastically increases

the failure rate of the system, which is not true in case of an element with low influ-

ence value. We estimate the criticality of a component within a system by considering

its both internal and external factors such as influence value, average execution time,

structural complexity, severity and business value. We prioritize the components

for testing according to their estimated criticality. We have compared our approach

with a related approach, in which the components were prioritized on the basis of



their structural complexity only. From the experimental results, we observed that

our approach helps to reduce the failure rate at the operational environment. The

consequence of the observed failures were also low compared to the related approach.

Priority should be established by order of importance or urgency. As the importance

of a component may vary at different points of the testing phase, we propose a multi

cycle-based test effort prioritization approach, in which we assign different priorities

to the same component at different test cycles.

Test effort prioritization at the initial phase of SDLC has a greater impact than

that made at a later phase. As the analysis and design stage is critical compared to

other stages, detecting and correcting errors at this stage is less costly compared to

later stages of SDLC. Designing metrics at this stage help the test manager in decision

making for allocating resources. We propose a technique to estimate the criticality of

a use case at the design level. The criticality is computed on the basis of complexity

and business value. We evaluated the complexity of a use case analytically through a

set of data collected at the design level. We experimentally observed that assigning

test effort to various use cases according to their estimated criticality improves the

reliability of a system under test.

Test effort prioritization based on risk is a powerful technique for streamlining

the test effort. The tester can exploit the relationship between risk and testing

effort. We proposed a technique to estimate the risk associated with various states

at the component level and risk associated with use case scenarios at the system

level. The estimated risks are used for enhancing the resource allocation decision.

An intermediate graph called Inter-Component State-Dependence graph (ISDG) is

introduced for getting the complexity for a state of a component, which is used for

risk estimation. We empirically evaluated the estimated risks. We assigned test

priority to the components / scenarios within a system according to their estimated

risks. We performed an experimental comparative analysis and observed that the

testing team guided by our technique achieved high test efficiency compared to a

related approach.
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Chapter 1

Introduction

Testing is the process of exercising a program with the intent of detecting bugs. The

basic aim is to increase the confidence in the developed software. Testing enhances

the software quality in terms of the total number of test runs, bugs revealed and the

percentage of code coverage. Verification, validation and defect finding are the major

tasks under software testing.

In software testing literature, four terms are commonly used. These are (i) failure

(ii) error (iii) fault (iv) defect. Though, they have related meaning, they differ at

some points. An error made by a programmer results in a defect (fault or bug) in

the program. The execution of a defect may cause one or more failures. As per

the IEEE standard, failure is the inability of a system or a component to perform

its required functions within the specified requirements. A failure in a system is

observed by the user externally. There are two main goals in software testing: (i)

to achieve the adequate quality in which the objective is to search the bugs within

a software (ii) to assess the existing quality of the system in which the objective

is to assess the reliability of a software system. Based on the testing strategy, the

software testing approaches are classified into two types such as code based testing

and usage based testing. The aim of code based testing is to execute each and every

statement in a program at least once, during the test [2, 3]. It attempts to cover

each reachable elements in the software, within the available test budget. In the

code based testing methodologies such as statement, branch and path coverage, each

aspect of a program is treated with equal importance [2]. The main aim is to find

as many bugs as possible. Usage based testing focuses on detecting bugs that are

responsible for frequent failures of the system. Unlike the code based testing, the

tester of usage based testing does not require any prior knowledge of the program.

In code based testing, the aim is to execute each statement and conditional branch

1



Introduction

of the program to detect bugs, whereas in usage based testing, the aim is to detect

the bugs in the frequently executed parts of the source code, at the early phase of

testing.

Testing is an action of sampling. As it is expensive and also some times impossible

to perform systematic testing with an adequate test suite due to an infinite state

space, the tester needs to take a decision about what to test and what not to test,

what to test more and what to test less and also in what order to test. The testing

team follows prioritization-based testing techniques to solve this problem.

Prioritization-based Testing

The tester prioritizes the testing process with the hope to get the best possible

chance to reveal the worst fault. At any instance of testing point, the tester feels

that the tests that have been conducted are important than the tests that have

not yet been conducted. Testing time is not certain. There is a chance of delay

in all other activities before test execution or there is a pressure from market to

release the product before scheduled time. The aim of prioritization-based testing

is to ensure that the testing resources have been spent cost-effectively, whenever

the testing process is terminated. Software industries conduct prioritization-based

testing with a number of goals. For example:

� Detecting more bugs at the early phase of testing, when a regression test is

conducted using the same test suite.

� Improving the code coverage within the available test resources.

� Improving the reliability of a system within the available test resources.

� Increasing the likelihood of detecting more bugs in the modified parts of the

source code.

� Increasing the rate of detecting critical bugs at the early phase of testing pro-

cess.

Test case prioritization and test case selection approaches have been discussed

in software testing literature. A number of researchers [4–8] have considered several

criteria for test case prioritization and test case selection. Some of the criteria are (i)

coverage of statements, (ii) coverage of statements not yet covered (iii) coverage of
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functions (iv) coverage of functions not yet covered (v) potential for fault exposing

(vi) probability of fault existence/exposure, adjusted to previous coverage etc.

All the existing techniques on test case prioritization and test case selection are

purely code-based and require the information on previous usage of the system.

Hence, these techniques are mainly used at the post-implementation phase and used

only for regression testing. Among the objectives of test case prioritization, the most

important one is to maximize the rate of fault detection. The aim is to detect the

faults from the important parts of the source code at the early phase of the test-

ing process. Other objectives include the ability to detect important faults and the

ability to reveal faults associated with specific code changes or to achieve the target

coverage or reliability level as early as possible.

The distribution of test efforts is important to test organization. In this thesis,

prioritizition refers to test effort prioritization in which components1/scenarios are

prioritized for testing according to their influence on the overall reliability of the

system or severity of failures. Test effort prioritization is a research area under pre-

testing effort i.e. before the generation of test cases. The software industry is really

interested to save money on testing. As test resources are limited, a proper analysis is

needed to decide how much test effort should be given to individual elements, within

a system. The test manager should estimate the criticality associated with individual

elements in order to decide which parts of the system should be tested thoroughly,

within the available test budget. For estimating criticality, the test manager should

consider various internal and external factors of a component such as complexity,

dependability, severity and the business importance within the system.

1.1 Motivation

An efficient prioritization method can drastically reduce the inefficient effort and help

to effectively utilize the test resources. Though, a great effort have been given on

prioritization-based testing [4,9–11], the proposed methods are not so much effective

in reducing the failure rate of a system and improving the user’s perception on the

reliability of a system. Limitations of some prioritization-based testing methods and

reason for their low productivity are described below.

The techniques used for code prioritization [11, 12] only find the percentage of

1A component refers either to a single item: an object, a class, or a procedure or to a complex
item: a package of classes or procedures.
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code coverage at the testing phase in a practical system. It cannot find the elements

which have high impact on the overall reliability of the system. Testing methods

based on operational profile [9, 13] alone did not consider the white-box approach

for test effort prioritization. Though some researchers [14, 15] have considered the

white-box approach along with operational profile, but they did not consider the data

dependencies among components within a system.

Test effort prioritization at the early stage of development cycle makes the testing

process effective. Several researchers [16–19] have proposed test effort estimation

methods at the early phase, but to the best of our knowledge, no one has proposed

a quantitative estimation of complexity for a use case. As, the complexity of a use

case is a major input for test effort estimation and prioritization, there is a need to

perform analytical complexity assessment at the architectural level, with little or no

involvement of subjective measures from domain experts. Keeping these in view, we

propose some approaches that attempt to overcome many of the limitations of the

existing approaches highlighted above. Now, we discuss the motivations behind our

research work.

� A bug in a critical element may cause frequent failures or severe failures of the

system. The criticality of an element can be identified through the analysis of

source code and the operational profile of the system.

� Some researchers [1, 20, 21] have observed that the return on investment on

testing is increased through a Value based software testing method, where the

business value that come from customer and market is considered as a testing

factor. Similarly, there are some components which are executed rarely but

a bug in that may cause catastrophic failures. To make the criticality com-

putation process accurate and effective, the external factors of a component

such as business value and severity associated with the failure modes should be

considered along with its internal factors.

� It is possible to achieve a high quality software product in affordable cost. For

this, software testing should be incorporated early into the software develop-

ment process. It is desirable to identify the critical elements at the architectural

level for an effective test resource distribution.

� Risk assessment at the early stage helps to achieve a high level of confidence

in a software system. A software system is generally state based. A system
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behaves differently to the same event, when it is in different states. The state of

a system at any time is the composition of the states of the various interacting

components (objects) within the system at that time. Hence, we are motivated

by the need to develop a methodology to estimate the risk for a state of a

component within a scenario and use it to estimate the risk for the scenario

and for the system.

With this motivation, we concentrate upon identifying critical elements both at

the implementation and architectural level. In the next section, we identify the major

objectives of the thesis.

1.2 Objective

Our aim is to estimate the criticality of an element at various phases of software

development life cycle by considering various internal and external factors of the

element. To address this broad objective, we identify the following goals based on

the motivations outlined in the previous section.

� To develop various metrics through static and dynamic analysis of source code

and identify the sensible elements within a system.

� To expose the critical elements within a system that have a high influence on

the overall reliability of the system or a bug in that component is responsible

for severe failures of the system.

� To set different test objectives at different instances of testing phase.

� To get the complexity of a high level function at the early phase of development

life cycle based on some quantitative metrics that are analytical in nature rather

than subjective measures from domain experts and distribute the test efforts

accordingly for an effective testing.

� To estimate the risk for a state of a component within a scenario and use it

to compute the risk for the scenario. To generate a list of components within

a scenario and a list of scenarios within the whole system ranked by their

estimated risks, so that test effort can be distributed accordingly for an effective

testing.
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1.3 Overview

In order to save time and cost in the Software Development Life Cycle (SDLC), there

is a requirement of an effective decision-making for allocating resources to various

parts of the software system. In this thesis, we explore some test effort prioritization

issues at various phases of software development life cycle. We propose a set of

techniques to prioritize the components/use case scenarios for testing at the code

level and also, at the design level. At the code level, the potential of a program

element to cause failures is measured with the metric Influence Metric. Based on

a graph-based representation, the effected part of classes are determined. Within

a system, we consider the internal and external factors such as the class influence,

average execution time, structural complexity, severity and business value for ranking

of the importance of a class for testing. We propose a novel approach for reliability

improvement that involves the analysis of the dynamic influence and severity of

various components within a software system.

A software product can be lunched in due time with sufficient testing, if a test plan

is prepared early. As the analysis and design stage is critical compared to other stages

of SDLC, detecting and correcting errors at this stage is less costly than later stages.

We aim to leverage the architectural complexity and business importance information

to assign test priority to use cases. We first analyze the factors that have an effect on

the complexity of a use case and then, give a framework to compute test priority. The

stakeholders and developers feel that the measurement of the quality of a software

system through risk is more significant than other factors such as expected number

of residual bugs or failure rate etc. Risk assessment framework takes into account

the arguments about the benefits as well as the hazards2 associated with a system.

It helps to take a valuable decision on investment at an early stage. We propose a

technique to estimate the reliability-based risk at the design level. Reliability-based

risk is estimated based on two factors (i) the probability of the failure of the software

product within the operational environment and (ii) the adversity of that failure.

We propose a technique to assess the risk of a component at various states within a

system, which is used as the basis for establishing the test priority.

A set of experiments are conducted to compare our test effort prioritization tech-

niques to different solutions. Through the experimental results, we observed that our

2A hazard is an accident waiting to happen. It is due to faults or failures which occur in a
particular context.
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proposed techniques guide the tester to expose the critical elements that are getting

less attention in terms of testing. In addition to that, our approaches also help to

improve the reliability of the system within the available test resources.

1.4 Focus and Contribution of the Thesis

Specifically, the thesis makes the following contributions:

� We propose a framework to compute the criticality of a component within a

system and prioritize the components for testing according to their estimated

criticality. For this, we introduce a new metric called Influence Metric using

forward slicing technique to compute the influence value of a component to-

wards system failures. It is based on static analysis of the program. We have

experimentally proved that decreasing the reliability of a component with high

criticality drastically increases the failure rate of the system, whereas it is not

true in case of a component with low criticality. In this work, we have not

considered the impact of external factors while doing prioritization.

� Though, the influence value of a component affects the reliability of a system,

this factor alone is not sufficient to estimate the criticality of the component.

The reliability calculation only counts the number of failures observed after the

testing phase. It does not consider the impact of those failures on the system.

The impacts of different failures are different. Some are minor whereas, some

are major. Similarly, each high level function does not provide equal benefit

to the customer. For criticality estimation, we extend our previous work by

adding some internal and external factors such as the average execution time,

structural complexity, and severity of failures in the component as well as the

component’s perceived business value. We have conducted a set of experiments

and observed that our approach is effective in guiding test effort as it is linked

to both external measure of defect severity and business value, and internal

measure of frequency and complexity. Through the experimental results, we

observed that our approach helps to improve the reliability of a system within

the available test resources. In addition to that, our approach also helps to

reduce the post-release failures that have a negative impact on the system.

In both the approaches, we have prioritized the program elements based on

static analysis of the source code. We have not considered the dynamic aspects.
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In our next work, we prioritize the program elements based on dynamic analysis

of source code.

� In our previous work, we have assigned different priority values to different

components, but the priority values remained constant throughout the testing

phase. As priority is established by order of importance, a component does

not get equal priority throughout the testing phase. We propose a multi cycle-

based test effort prioritization technique, in which the priority values of various

components change between two test cycles within a system under test. In

the first test cycle, we estimate the criticality of a component and assign test

priority to the component based on its criticality. Unlike the previous work,

we estimate the criticality based on dynamic Influence Metric. In a static

influence metric, only the information regarding how many other classes request

services from a given class is obtained, but in dynamic influence metric, the

information regarding how often these requests are executed within a scenario

is obtained. In the second test cycle, we assign test priority to a component

based on its failure rate in the previous test cycle. We include a Value-based

testing approach in the third test cycle. The effectiveness of our proposed

testing approach has been validated by applying it to three moderate sized

case studies.

The proposed techniques can be used by testers in software industry for priori-

tizing the test efforts, where the source codes are available. Since in many cases,

the source code may not be available, in our next work, we develop a technique

for prioritization of elements at the design level. The technique can be used

by tester in software industry, where source code are not available and/or test

planing is required much early in the SDLC.

� Planning at high level enhances the decision on resource allocation. Estimating

the criticality of an architectural element and performing test effort prioritiza-

tion based on criticality at high level helps both the system analyst and the test

manager in planing suitable provision for the critical elements. If the critical

elements will be detected at the early phase of SDLC then, it will be useful in

allotting resources in afterward development phase. Keeping this in mind, we

propose a technique to rank the use cases within a system for testing based on

their internal criteria- architectural complexity and external criteria- business
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value. We first, analyze the factors that have an effect on the complexity of a

use case and then, give a framework to compute test priority. The complexity

of a use case is computed analytically through a collection of data at the archi-

tectural level with little or no involvement of subjective measures from domain

experts. In our approach, a high-ranked use case may be more fault-prone or

it may add value to the organization. Hence, the failure of a high-ranked use

case may create a great loss to the organization.

In all the above work, we have not considered the risk associated with a system.

In real practice, risks are associated with every system. Resolving risks at the

analysis and design level will improve the quality of the system, within the

available resources. In our next work, we develop an approach at the design

level for prioritization of elements for testing, considering the risk associated

with a system.

� Test effort prioritization based on risk is a powerful technique for streamlining

the test effort and delivering the software product with right quality level in

limited resources. The tester feels that he is doing the best possible job with the

limited resources by exploiting the relationship between risk and testing effort.

Risk assessment at an early stage helps to achieve a high level of confidence

in the system. We propose an analytical approach for risk assessment of a

software system at the design stage. First, we propose a method to estimate

the risk for various states of a component within a scenario and then, estimate

the risk for the whole scenario. In our previous work, we have assessed the

severity at the code level, but in this work, we assess the severity at the design

level. We estimate the risk of the overall system based on two inputs: scenarios

risks and Interaction Overview Diagram (IOD) of the system. Our risk analysis

approach ranks the components/scenarios within a system for testing according

to their estimated risks. We performed an experimental comparative analysis

and observed that the testing team guided by our risk assessment approach

achieves high test efficiency compared to a related approach.

The relationships among the contribution is shown in Figure 1.1. As shown in the

figure, the contribution on test effort prioritization is broadly divided into two parts.

The first part deals with the analysis of the source code and the second part deals

with the analysis of the design model.
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Figure 1.1: Outline of the thesis

Our proposed prioritization techniques can be used in software industries for an-

alyzing and identifying the important components / scenarios of a software system.

Based on the results of the analysis, appropriate test effort can be allocated to differ-

ent components of the system and the quality of the software can be improved within

the available test resources. The proposed severity analysis used for prioritization,

will help detect the important errors at the early phase of testing, thus reducing

the total test effort. Our risk based testing approach can be used in safety critical

systems such as Pace Maker, Nuclear power plant, Air traffic control system etc., for

identifying the risks associated with various components / scenarios and the whole

system and allocating the test effort accordingly.

1.5 Organization of the Thesis

The rest of this thesis is organized into chapters as follows.

1. Chapter 2 discusses the background concepts used in the thesis.
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2. Chapter 3 provides a brief review of the related work relevant to our contribu-

tion.

3. Chapter 4 presents a novel approach to get the influence of a component to-

wards system failures. We propose a metric, called Influence Metric, through

static analysis of source code and use it as a factor for prioritizing program

elements at the code level.

4. Chapter 5 presents a novel approach to prioritize classes according to their

potential to cause failures and severity of those failures. This is a very important

and interesting problem for software testing. This chapter extends the work in

Chapter 4 by adding some contributing factors- structural complexity, severity

and business value- for test effort prioritization.

5. Chapter 6 presents a multi cycle-based test effort prioritization approach to

improve the reliability of a system within the available test resources, through

the dynamic analysis of source code.

6. Chapter 7 presents an approach to estimate the test effort based on the priori-

tization of use cases in the design level of software development life cycle. Our

approach quantifies a method for estimating the test effort of a software system

based on use cases. It provides experimental results that appear to substantiate

the method.

7. Chapter 8 presents a risk estimation approach of software system at the ar-

chitectural level. The main idea consists in using UML sequence and state

diagrams, in order to calculate an overall risk factor associated to a selected

architecture.

8. Chapter 9 concludes the thesis with a summary of our contributions. We also

briefly discuss the possible future extensions to our work.
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Chapter 2

Background

This chapter provides a general idea of the background used in the rest of the thesis.

For the sake of conciseness, we do not discuss a detailed description of the back-

ground theory. We just highlight the basic concepts and definitions by providing a

short introduction. The basic concepts and definitions are used in subsequent chap-

ters of this thesis. Section 2.1 gives an introduction to software testing. Section 2.2

presents the concept of McCabes cyclomatic complexity. Section 2.3 presents the

concept of Halstead complexity metrics. Section 2.4 contains the basic concept of

program slicing which will be used later in our Influence Metric computation algo-

rithms. Section 2.5 provides the intermediate program representation that is used

for extracting slices of a program. Section 2.6 gives an overview of Unified Modeling

Language (UML) and its advantages. Section 2.7 gives introduction of a metric called

Chidamber & Kemerer Suite of Metrics (CK metrics) to analyze the complexity of

an object-oriented program. Section 2.8 gives an introduction to Value based testing

technique. Section 2.9 presents the basic concepts on Operational Profile of a system

which is used in various testing approaches for achieving and assessing the reliability

of a system. Section 2.10 briefly discusses the concepts of risk-based testing. Section

2.11 summarizes this chapter.

2.1 Object-Oriented Technology and Software Test-

ing

It is widely accepted that the object-oriented (O-O) paradigm will significantly in-

crease the software reusability, extendibility, inter-operability, and reliability. This is

also true for high assurance systems engineering, provided that the systems are tested

adequately. Object-oriented software testing (OOST) [22] is an important software
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quality assurance activity to ensure that the benefits of object-oriented (O-O) pro-

gramming will be realized. Below, we discuss different levels of testing associated

with object-oriented programs.

1. Intra-method testing: Tests designed for individual methods. This is equivalent

to unit testing of conventional programs.

2. Inter-method testing: Tests are constructed for pairs of method within the same

class. In other words, tests are designed to test interactions of the methods.

3. Intra-class testing: Tests are constructed for a single entire class, usually as

sequences of calls to methods within the class.

4. Inter-class testing: It is meant to test a number of classes at the same time. It

is equivalent to integration testing.

The first three variations are of unit and module testing type, whereas inter-class test-

ing is a type of integration testing. The overall strategy for object-oriented software

testing is identical to the one applied for conventional software testing but differs

in the approach it uses. We begin testing in small and work towards testing in the

large. As classes are integrated into an object-oriented architecture, the system as a

whole is tested to ensure that errors in requirements are uncovered.

2.2 McCabes Cyclomatic Complexity

Cyclomatic Complexity (v(G)) [23] is a measure of the complexity of a module’s

decision structure. It is the number of linearly independent paths and therefore, the

(a) A program (b) CFG

Figure 2.1: A program with its CFG
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minimum number of paths that should be tested. If the structure of source code is

complex, it is hard to understand, to change and to reuse. The cyclometic complexity

measures the number of linearly independent paths through the Control Flow Graph

(CFG) of the program. v(F) = e - n + 2, where F is the CFG of the program, n

the number of vertices and e the number of edges. We present a program with its

CFG in Figure 2.1. In the program, n=7, e=8. So, the cyclomatic complexity for

the program is: 8-7+2=3.

2.3 Halstead Complexity Metric

Any programming language is defined by declarative instructions definitions, exe-

cutable instructions. The operators and operands are handled within expressions.

The programs are made up of instructions, written in sequences, without taking into

account the running order. Halstead [24] makes the observation that metrics of the

software should reflect the implementation or expression of algorithms in different

languages, but be independent of their execution on a specific platform. The metrics

proposed by Halstead are computed through the static analysis of the source code.

He estimated the programming effort. The measurable and countable properties are:

� n1 = number of unique or distinct operators appearing in the source code.

� n2 = number of unique or distinct operands appearing in that source code.

� N1 = total usage of all of the operators appearing in that source code.

� N2 = total usage of all of the operands appearing in that source code.

The number of unique operators and operands (n1 and n2) as well as the total number

of operators and operands (N1 and N2) are calculated by collecting the frequencies

of each operator and operand token of the source program. Halstead defines:

� The program length (N) is the sum of the total number of operators and

operands in the program, N = N1 +N2

� The vocabulary size (n) is the sum of the number of unique operators and

operands in the program, n = n1 + n2.

� The program volume (V) is the information contents of the program, V =

N ∗ log2(n)
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� The difficulty level or error proneness (D) of the program is proportional to the

number of unique operators in the program. D is also proportional to the ration

between the total number of operands and the number of unique operands in

the program, D = (n1/2) ∗ (N2/n2)

2.4 Program Slice

Program slicing is a program analysis technique. It is used to extract the statements

of a program that are relevant to a given computation. A program slice consists of

the parts or components of a program that (potentially) affect the values computed

at some point of interest. Program slices are computed with respect to a slicing

criterion. For a statement s and variable v, the slice of a program P with respect

to the slicing criterion < s, v > includes only those statements of P that are needed

to capture the behavior of v at s [25]. According to Weiser [25], a program slice is a

reduced and executable program obtained from a program by removing statements,

such that the slice replicates part of the behavior of the program.

Slicing object-oriented programs presents new challenges which are not encoun-

tered in traditional program slicing [26]. To slice an object-oriented program, features

such as classes, dynamic binding, encapsulation, inheritance, message passing and

polymorphism need to be considered carefully [27]. Larson and Harrold were the first

to consider these aspects in their work [28]. To address these object-oriented features,

they enhanced the system dependence graphs (SDG) [29] to represent object-oriented

software. After the SDG is constructed, the two phase algorithm of Horwitz et al. [29]

is used with minor medications for computing static slices. Larson and Harrold [28]

have reported only a static slicing technique for object-oriented programs, and did

not address dynamic slicing aspects. The dynamic slicing aspects have been reported

by Song et al. [30] and Xu et al. [31].

2.4.1 Categories of program slicing

Several categories of program slicing as well as methods to compute them are found

in literature. The main reason for the existence of so many categories of slicing is

the fact that different applications require different types of slices.

Static Slicing and Dynamic Slicing: Slicing can be static or dynamic. Static

slicing technique uses static analysis to derive slicing. That is, the source code of

the program is analyzed and the slices are computed for all possible input values.
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No assumptions are made about the input values. It is static in the sense that

the slice is independent of the input values to the program. Since, the predicates

may evaluate either to true or false for different values, conservative assumptions

have to be made, which may lead to relatively large slices. So, a static slice may

contain statements that might not be executed during an actual run of a program,

whereas dynamic slicing makes use of the information about a particular execution

of a program. The execution of a program is monitored and the dynamic slices are

computed with respect to execution history. A dynamic slice with respect to a slicing

criterion < s, v >, for a particular execution, contains only those statements that

actually affect the slicing criterion in the particular execution. Dynamic slices are

usually smaller than static slices and are more useful in interactive applications such

as program debugging and testing. A major goal of any dynamic slicing technique

is efficiency since results are normally used during interactive applications such as

program debugging [32]. Efficiency is an especially important concern in slicing

object-oriented programs, since the size of practical object-oriented programs is often

very large. The response time of an inefficient dynamic slicer may be unacceptably

large for such programs. In all slicing techniques, the source code is first analyzed

to produce a graph representation called an intermediate program representation.

Then the intermediate program representation is analyzed by using an algorithm to

compute the slice. So, the efficiency of a slicing technique depends on how suitably

the program is represented by an intermediate representation and how much efficient

the slicing algorithm is.

Consider the C++ example program given in Figure 2.2. The static slice with

respect to the slicing criterion < 11; sum > is the set of statements {4, 5, 6, 8, 9}.
Consider a particular execution of the program with the input value i = 15. The

dynamic slice with respect to the slicing criterion < 11; sum > for the particular

execution of the program is the statement {5}.
Backward and Forward slicing: Slices can be backward or forward. A back-

ward slice contains all parts of the program that might directly or indirectly affect

the slicing criterion but, a forward slice with respect to a slicing criterion < s, v >

contains all the parts of the program that might be affected by the variables in v

used or defined at the program points. A forward slice provides the answer to the

question: “which statements will be affected by the slicing criterion?” whereas, a

backward slice provides the answer to the question: “which statements affect the
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Figure 2.2: An example program

slicing criterion?” [33].

Intra-procedural Slicing and Inter-procedural Slicing: Intra-procedural slic-

ing computes slices within a single procedure. Calls to other procedures are either not

handled at all or handled conservatively. If the program consists of more than one

procedure, inter-procedural slicing can be used to derive slices that span multiple

procedures [29]. For object-oriented programs, intra-procedural slicing is meaning

less as practical object-oriented programs contain more than one method. So, for

object-oriented programs, inter-procedural slicing is more useful.

2.4.2 Applications of program slicing

Slicing is used by both developer and tester, before the execution of the code and

during execution. The developer uses slicing tool to understand the source code and

to reduce the size of a program. Sometimes a programmer has to read a lot of code

before finding what he is actually looking for. Programmer uses the slicing tool to

improve the productivity. The tool helps the programmer in reducing the amount

of code that need to read. The tool is used by the developer for debugging. Some

variables may show unexpected values at some point in the program. To know the

exact cause of these values is difficult and also time taking. The slicing tool helps a

lot in this case. The tester uses the slicing tool for analyzing the test coverage of the

test suite [7,34]. The dynamic slice is created for each test case of a test suite and the

union of these slices are computed to get an idea of code coverage by the test suite.

Recently, Qusef et al. [35] proposed a novel approach to maintain the traceability

links between unit tests and tested classes based on dynamic slicing.
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2.5 Program Representation

Various types of program representation schemes exist which include high level source

code, pseudo-code, a set of machine instructions in a computer’s memory, a flow chart

and others. The purpose of each of these representations depends upon the exact

context of use. In the context of program slicing, program representations are used

to support automation of slicing. Various representation schemes have resulted from

the search for ever more complete and efficient slicing techniques.

2.5.1 Program Dependence Graph (PDG)

The program dependence graph [36] G of a program P is the graph G = (N,E),

where each node n ∈ N represents a statement of the program P . The graph contains

two kinds of directed edges: control dependence edges and data dependence edges.

A control (or data) dependence edges (m,n) indicates that n is control (or data)

dependent on m. Note that the PDG of a program P is the union of a pair of graphs:

Data dependence graph and control flow graph of P .

2.5.2 System Dependence Graph (SDG)

The PDG cannot handle procedure calls. Horwitz et al. [29] introduced the System

Dependence Graph (SDG) representation which models the main program together

with all associated procedures. The SDG is very similar to the PDG. Indeed, a PDG

of the main program is a subgraph of the SDG. In other words, for a program without

procedure calls, the PDG and SDG are identical. The technique for constructing an

SDG consists of first constructing a PDG for every procedure, including the main

procedure, and then adding dependence edges which link the various subgraphs to-

gether.

An SDG includes several types of nodes to model procedure calls and parameter

passing:

� Call-site nodes represent the procedure call statements in the program.

� Actual-in and actual-out nodes represent the input and output parameters at

call site. They are control dependent on the call-site nodes.

� Formal-in and formal-out nodes represent the input and output parameters at

called procedure. They are control dependent on procedure’s entry node.
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Control dependence edges and data dependence edges are used to link an individual

PDG in an SDG. The additional edges that are used to link a PDG are as follows:

� Call edges link the call-site nodes with the procedure entry nodes.

� Parameter-in edges link the actual-in nodes with the formal-in nodes.

� Parameter-out edges link the formal-out nodes with the actual-out nodes.

� Summary edges connects an actual-in vertex and an actual-out vertex if the

value associated with the actual-in vertex may affect the value in actual-out

vertex. It represents the transitive dependencies that arise due to procedure

calls.

2.5.3 Extended System Dependence Graph (ESDG)

ESDG models the main program with all other methods. Each class in a given pro-

gram is represented by a class dependence graph. Each method in a class dependence

graph is represented by procedure dependence graph. Each method has method entry

vertex that represent the entry in the method. The class dependence graph contains

a class entry vertex that is connected with the method entry vertex of each method in

the class by a special edge known as class member edge. To model parameter passing,

the class dependence graph associates each method entry vertex with formal-in and

formal-out vertices.

The class dependence graph uses a call vertex to represent a method call. At each

call vertex, there are actual-in and actual-out vertices to match with the formal-in

and formal-out vertices present at the entry to the called method. If the actual-in

vertices affect the actual-out vertices then summary edges are added at the call-site,

from actual-in vertices to actual-out vertices to represent the transitive dependencies.

To represent inheritance, we construct representations for each new method defined

by the derived class, and reuse the representations of all other methods that are

inherited from the base class. To represent the polymorphic method call, the ESDG

uses a polymorphic vertex. A polymorphic vertex represents the dynamic choice

among the possible destinations. The detailed procedure for constructing an ESDG

is found in [28]. Each node can be a simple statement or a call statement or a class

entry or a method entry. An example of an object-oriented program with its ESDG

is shown in Figure 2.3. Several researchers [4,37,38] have proposed different types of
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(a) An Object-Oriented Program (b) Its ESDG

Figure 2.3: A program with its ESDG

intermediate representation for object-oriented software. Rothermel and Harrold [4]

extended Program Dependence Graph (PDG) and proposed Class Dependence Graph

(ClDG) for use in regression testing. Larsen and Harrold [28] extended the System

Dependence Graph (SDG) by representing a class with a ClDG, and proposed Ex-

tended System Dependence Graph (ESDG) for object-oriented software. The basic

aim of designing ESDG was to get a slice of an object-oriented program on the basis

of graph reachability. Liang and Harrold [38] proposed extensions to ESDG for the

purpose of object-slicing. Malloy et al. [37] also proposed a layered representation,

the Object-Oriented Program Dependency Graph (OPDG), by adapting the basic

concepts of PDG. Out of these, we consider the ESDG by Larsen and Harrold [28]

in our work because, our main aim is to get a forward slice of a method-entry vertex

through the process of graph reachability. Throughout the thesis, we use the terms

node and vertex interchangeably.

2.6 Unified Modeling Language (UML)

Models are the intermediate artifacts between requirement specification and source

code. Models preserve the essential information from requirement specification and

are base for the final implementation. UML has emerged as an industrial standard

for modeling software systems [39]. It is a visual modeling language that is used to
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specify, visualize, construct, and document the artifacts of a software system. UML

can be used to describe different aspects of a system including static, dynamic and

use case views of a system. UML supports object-oriented features at the core. It

accomplish the visualization of software at early stage of development cycle, which

helps in many ways like confidence of both developer and the end user on the system,

earlier error detection through proper analysis of design and etc. UML also helps in

making the proper documentation of the software and so maintains the consistency

in between the specification and design document. UML diagrams can be divided

into two broad categories: structural and behavioral diagrams. The UML structural

diagrams are used to model the static organization of the different elements in the

system, whereas behavioral diagrams focus on the dynamic aspects of the system.

Our approaches use information present in three behavioral diagrams, namely use

case, sequence and state chart diagrams.

Use case diagrams represent the high level functionalities (called use cases) of

a system from the perspective of the users. It is a black-box view of the system

where the internal structure, the dynamic behavior of different system components,

the implementation etc. are not visible. A use case comprises different possible

sequence of interactions between the user and the computer. Each specific sequence

of interactions in a use case is called a scenario. Use case diagrams are mainly used

for requirement based testing and high level test design [40]. Sequence diagram

describes how a set of objects interact with each other to achieve a behavioral goal.

It captures time dependent sequences of interactions down between objects. It shows

the chronological sequence of the messages, their names and responses and their

possible arguments. State chart diagrams capture the dynamic behavior of class

instances. It describes object state transition behavior. Typically, it is used for

describing the behavior of class instances.

2.7 CK Metrics

CK metrics [41] were designed to measure the complexity of the design of object-

oriented system. CK metrics measured from the source code have been related to:

fault-proneness, productivity, rework effort, design effort and maintenance. It helps

in taking managerial decisions, such as re-designing and/or assigning extra or higher

skilled resources to develop, to test and to maintain the software. The set of metrics

are:
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1. WMC (Weighted Methods per Class): It is the sum of the complexity of the

methods of a class.

WMC = Number of Methods (NOM), when all methods complexity are consid-

ered unity. It is a predictor of how much time and effort is required to develop

and to maintain the class.

2. DIT (Depth of Inheritance Tree): The maximum length from the node to the

root of the tree. DIT with high value makes complex to predict the behaviour

of the class.

3. NOC (Number of Children): Number of immediate subclasses subordinated to

a class in the class hierarchy. NOC with high value increases the requirements

of method’s testing in that class.

4. CBO (Coupling Between Objects): It is a count of the number of other classes

to which it is coupled. CBO with low value improves modularity and promote

encapsulation, indicates independence in the class and makes easier to maintain

and test a class.

5. RFC (Response for Class): It is the number of methods of the class plus the

number of methods called by any of those methods. RFC with high value makes

complex the testing and maintenance of the class.

6. LCOM (Lack of Cohesion of Methods): Measures the dissimilarity of methods

in a class via instanced variables. LCOM with high value does not promotes

encapsulation and implies classes should probably be split into two or more

subclasses.

2.8 Value-based Testing

In Value-neutral testing method, each use case is considered equally important and

hence, the test effort for a use case is linear to the factor complexity. Value-based

testing method focuses the test effort on the features (use cases) that provide a

high system value [1, 20, 21, 42]. The addition of Value (say, business value) helps

to maximize the returns on investment on the resources allocated to testing [43].

Boehm [42] had considered some case studies and found that 20% test cases cover

80% business value. He had pointed that the main reason for majority of software

crises is due to generating value-neutral test data. He pointed that Value-based
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testing provides more net value and hence, test data generator based on business

value cut the test costs in half.

For a developer, it is a difficult task to guess which high level functions are im-

portant to the customer. A customer also cannot estimate the cost and technical

difficulties in implementing a specific high level function. The requirements are clas-

sified into three categories: (i) must have (ii) important to have (iii) nice but unnec-

essary. The domain experts first collect a list of requirements, which are important

for the customer and the end-user and then, prioritize the requirements based on the

business value that come from market and customer. From a business point of view,

test effort distribution based on the return on investment will be more effective. It

is because, the failure of a scenario may cause a great loss to the stake holder and to

the organization.

The prioritizing requirements model proposed in [44] is used for getting Value

for different requirements. It consists of eight steps and it includes a number of

participants involved with the system such as project manager, key customer rep-

resentatives and development representatives. The Value for a use case is assessed

by considering both the benefit and penalty due to the presence and absence of the

use case. The following steps show a simple method adopted in various software

industries for estimating the business value associated with high level functions [43].

1. The relative benefit that each feature provides to the customer or business. It is

estimated on a scale from 1 to 9, where 1 and 9 indicates the minimum benefit

and the maximum possible benefit respectively. The best people to judge these

benefits are the domain experts and the customer representatives.

2. The relative penalty by not including a feature is also estimated. It represents

how much the customer or business would suffer, if the feature is not included

within the system. For this penalty, a scale from 1 to 9 is also used, where 1

stands for no penalty and 9 represents the highest penalty.

3. The sum of the relative benefit and penalty gives the total business value called

Value. By default, benefit and penalty are weighted equally. The weights for

these two factors can be changed. We have rated the benefit twice as heavily

as the penalty ratings as defined in [21,42].

For example, the business values for various use cases of Automatic Teller Machine

(ATM) system are shown in Table 2.1. We consider only the use cases that are used
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by the customer. start-up and shut-down use cases are not considered as they are

the basic use cases to run the system.

Table 2.1: Value assignment

Relative Weights 2 1 - -
Usecase Benefit Penality Total − V alue V alue%
withdraw 8 9 25 20
deposit 7 5 19 24

transfer money 9 5 23 27
inquiry balance 9 9 27 29

SUM - - 94 100

2.9 Operational Profile

According to Musa [9], a profile is a collection of disjoint (only one can occur at a

time) alternatives with some probability assigned for each occurrence. An operational

profile simply consists of a set of operations that a system is designed to perform

along with its probabilities of occurrence. It predicts the possible use of the system

in the operational environment in a quantitative manner. It is widely used in the

field of software reliability engineering.

An operational profile assigns probability values to various high level functions

(use cases) according to their probability of use by various users within a sys-

tem [45–47]. Suppose, we have drawn a use case diagram consisting of m types

of users and n number of use cases for a system. Each user type has been assigned

a probability of using the system. Let ui be the probability assigned to i-th user

type for accessing the system such that
∑m

i=1 ui = 1. Let qij be the probability of

requesting the functionality of j-th use case (j=1...n) by i-th type user (i=1..m) such

that
∑n

j=1 qij = 1. Then, the probability of a use case x denotes the likelihood of the

use case being executed by an average user is given by:

p(x) =
m∑
j=1

uj ∗ qjx (2.1)

We consider that the functionality of any system can be modeled through a set

of scenarios derived from use cases [40]. A use case consists of one main scenario

and a number of alternative scenarios. As per the domain knowledge, a scenario

of a use case is assigned some frequency based on its execution in the operational
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environment. Let fi(j) be the frequency of j-th scenario of i-th use case such that∑nosi
j=1 fi(j) = 1 where, nosi is the total number of scenarios of i-th use case. Then,

the probability of execution of k-th scenario of i-th use case, p(ki) is given by:

p(ki) = p(i) ∗ fi(k) (2.2)

2.10 Risk-based Testing

In order to save time and cost in the software development life cycle, there is a

requirement of an effective decision-making for allocating resources to various high

level requirements. For this, there is a need to assess quantitatively all possible types

of risks associated with high level requirements as early as possible. Risk is the

combination of damage that occur due to failure and probability of failure in the

operational environment, as shown in Figure 2.4. Risk analysis is important for a

critical real-time application and it is basically done to assess the damage during use,

frequency of use, and to decide the probability of failure by looking at defect [48].

There are several types of risks such as reliability-based risk, availability-based risk,

acceptance-based risk, performance-based risk, cost-based risk, and schedule-based

risk. We are mainly concerned with reliability-based risk. It is the probability that

the software product will fail in the operational environment and the adversity of that

failure. Risk assessment framework takes into account arguments about benefits as

Figure 2.4: Risk structure

well as hazards. It helps to take a valuable decision on investment at an early stage.

2.11 Summary

In this chapter, we have discussed the slicing concept and intermediate program rep-

resentation that will be used later in our thesis. We have discussed the estimation of
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business value with an example. We have also given an introduction of risk associated

with a system under test.
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Chapter 3

Related Work

In this chapter, we review the literature and present a brief summary of the work done

related to prioritization-based testing at both the implementation and architectural

level. The different approaches proposed in this direction by different researchers

can be broadly categorized into two types: pre-testing effort prioritization (before

the construction of test cases) and on-testing effort prioritization (at the time of

test case selection in a test suite). Pre-testing effort prioritization methods help to

prioritize the program elements for testing whereas, on-testing effort prioritization

methods prioritize the test cases within a test suite. We first discuss the reported

work on pre-testing effort prioritization methods in Section 3.1 followed by on-testing

effort prioritization methods in Section 3.2. As our aim is to improve the reliability

of a system under test through test effort prioritization, we discuss a number of

reliability models for assessing and achieving the reliability of a software system in

Section 3.3. We propose a test effort prioritization method at the architectural level

to rank the use cases within a system for testing. For this, we discuss some early

effort estimation and prioritization methods (development effort and testing effort)

based on use cases in Section 3.4. For achieving a better reliability through testing, it

is required to estimate the reliability-based risk for various elements within a system

at the early phase and prioritize the elements according to their estimated risk. We

present a brief summary of the work done on risk assessment in Section 3.5. Finally,

we present the summary of the chapter in Section 3.6.

3.1 Pre-testing Effort

The basic aim of a pre-testing effort prioritization method is to prioritize the test

effort of an application based on its test objectives. With a prioritized test effort and

focused test architecture, test cases are created and executed. The research areas
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coming under this category are: code prioritization for improving test coverage, test

effort prioritization based on fault-proneness and usage-based testing.

3.1.1 Code prioritization

Code prioritization is a testing technique which is used for improving the code cover-

age in a coverage-based testing. Code coverage is a metric that represents how much

of the source code for an application run when the unit tests for the application are

run. It is basically used for measuring the thoroughness of software testing.

Li. [11] proposed a priority calculation method that prioritizes and highlights

the important parts of the source code based on dominator analysis, that need to

be tested first to quickly improve the code coverage. His approach consists of two

major contributions: (i) considers the impact of calling relationship among meth-

ods/functions of complex software and takes a global view of the execution of a

program being tested (ii) relaxes the guaranteed condition of traditional dominator

analysis to be at least relationship among dominating nodes. Relaxing the guaran-

teed condition makes dominator calculation much simpler without losing its accuracy.

His approach expands this modified dominator analysis to include global impact of

code coverage, i.e. the coverage of the entire software other than just the current

function.

Before test construction, Li’s method decides which line of code will be tested

first to quickly improve code coverage. According to his approach, first the inter-

mediate representation of the source code, known as Control Flow Graph (CFG) is

constructed. Then, a node1 of the CFG is prioritized based on measuring quantita-

tively how much lines of code are covered by testing that node. A weight is calculated

for each node considering only the coverage information. It does not take into ac-

count, for instance, the complexity or the criticality of a given part of the program.

A test case covering the highest weight node will increase the coverage faster2. There

are two kinds of code coverage such as control flow based and data flow based. Li’s

work focuses on control flow coverage.

Li et al. [12] presented a methodology for code coverage-based path selection and

test data generation, based on Li’s previous work [11]. They [12] proposed a path

selection technique that considers the program priority and call relationships among

1A node is either a statement or a method or a basic block in the source code
2The tester, based on his/her experience may desire to cover first a node with a lower weight

but that has a higher complexity or criticality
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class methods to identify a set of paths through the code, which has high priority code

unit. Then, constraint analysis method is used to find object attributes and method

parameter values for generating tests to traverse through the selected sequence of

paths. It helps to automatically generate tests to cover high priority points and

minimize the cost of unit testing.

Code coverage is a sensible and practical measure of test effectiveness [49]. It

helps the developers and vendors to indicate the confidence level in the readiness of

their software but, the limitation is that it gives equal importance to the discovery

of each fault. So, no information is gained on how much it affects the reliability of

a system by detecting and eliminating a fault during the testing process, as different

faults have different contribution to the reliability of a system.

3.1.2 Fault-prone based testing

Fault-prone based testing approach identifies the faulty components in a system

and test effort prioritization is done accordingly. It estimates the probability of the

presence of faults within a component, which helps to take a valuable decision on

testing. There has been significant amount of research [50–54] in software industry

to identify the fault-prone components within a system and prioritizing the test

accordingly. Different authors have focused on different characteristics associated

with a component for counting faults.

Eaddy et al. [50] experimentally proved that concern-oriented metrics3 are more

appropriate predictors of software quality than structural complexity measures and

there is a strong relationship between scattering and defects.

Czerwonka et al. [54] discussed the application of CRANE tool set on a large scale

software product, Windows Vista, to expose the required information such as code

churn, code complexity, dependencies, pre-release bugs with the purpose to make a

decision for failure prediction, change analysis and test prioritization to minimize

risks of further problems in changed code.

Ostrand et.al. [51] proposed a novel approach to identify the faulty files at the

time of next release of an application. For prioritizing testing efforts, their approach

considers the factors that are obtained from the modification requests and the version

control system. These factors are (i) the file size (ii) file status (whether the file

was new to the system) (iii) fault status in previous release (iv) number of changes

3A concern is anything a stakeholder may want to consider as a conceptual unit, including
features, nonfunctional requirements, and design constraints.
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made. For some initial releases, the models were customized based on the above

observed factors. Based on the experimental results, the authors concluded that

their methodology can be implemented in the real world without extensive statistical

expertise or modeling effort.

Ostrand et. al [53] proposed a negative binomial regression model. The binomial

model is used to predict the expected number of faults in each file of the next release

of a system. The predictions are based on the code of the file in the current release,

and fault and modification history of the file from previous releases. Similarly, Emam

et al. [52] found that a class having high export coupling value is more fault-prone. A

complex program might contains more faults compared to a simple program [55]. As

the factor complexity is the most important defect generator, the complexity metric

is used as a parameter for testing [56,57].

We present some existing work on prediction of faulty components through design

metric. Researchers [56,58] related the structural complexity metric obtained through

CK metric suite [41] to the fault-proneness of a system. It is observed that the

estimated defect density that is computed through static analysis and the pre-release

defect density that is computed through testing are strongly correlated. Emam et

al. [52] experimentally proved that inheritance and external coupling metrics are

strongly associated with fault-proneness.

3.2 On-testing Effort

The basic job of on-testing effort is to identify the important test cases within an

existing test suite with the aim to reduce the test cost. In this section, we briefly

present the work done on two sub areas: test case prioritization and test case se-

lection, which are under the main research area, on-testing efforts. A meaningful

prioritization or selection of test cases from a test suite can enhance the effectiveness

of testing, without increasing the test effort [4]. Test case selection and test case pri-

oritization are both interlinked. The basic difference between these two techniques

is as follows.

In a test case selection technique, a subset of the test suite is selected in which, the

test coverage of the selected subset is same as the original test suite. However, in a

test case prioritization technique, the test cases of a test suite are ranked for testing

according to their estimated priority. Within a test suite, a test case with the highest

priority is executed first and a test case with the lowest priority is executed last. Test
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case prioritization and test case selection approaches have been discussed in software

testing literature. A number of researchers [4–8] have considered several criteria for

test case prioritization and test case selection. Some of the criteria are:

1. Coverage of statements.

2. Coverage of statements not yet covered.

3. Coverage of functions.

4. Coverage of functions not yet covered.

5. Fault exposing potential.

6. Probability of fault existence/exposure, adjusted to previous coverage.

7. Relevant slices of outputs.

An empirical research work [4–6] proposed on test case prioritization in which,

statement-level and function-level coverage techniques are used for test case prioriti-

zation. The basic aim of these approaches is to improve a test suite’s fault detection

rate and to reduce the cost of regression testing based on total requirement and

additional requirement coverage.

Elbaum et al. [5] proposed a metric named as Average of the Percentage of Faults

Detected (APFD). The metric is used to measure the ability of rate of fault detection

of a sequence of test cases according to a prioritization technique. They used greedy

strategy for selecting the test cases from a test suite in regression testing. In the

greedy strategy, a test case with the highest statement coverage was selected first.

Each time, after the selection of the best test case (test case with the highest state-

ment coverage) for execution, the remaining test cases were again ordered based on

the criteria; the coverage of un-covered statements (the statements that are not yet

covered by the already executed test cases). They did not consider the statements

which were already covered by the executed test cases. Test case selection and ex-

ecution, which is iterative in nature was continued in a test suite, till the coverage

of each statement by at least one test case. Though, this scheme helps the tester

in achieving full statement coverage within a program by using as few test cases

as possible, it does not ensure in the improvement of the reliability of a software

product using a fixed size test suite. The limitation with the test case prioritization

approaches is that the metric, APFD, used for prioritization, gives equal importance
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to each detected fault. In this technique, the assumption make that all detected

faults are of equal severity and all test cases have equal costs, which is not true for

a practical application.

To solve this problem, Elbaum et al. [6] extended their previous work [5] by

adding two major attributes: (i) test cost and (ii) fault severity. They adapted

their previously proposed APFD metric and proposed a new cost-cognizant metric,

APFDc. In their approach, the cost of a test case might be measured in terms of test

execution, setup and test validation. The cost of a test case might be also measured

in terms of hardware costs or the cost of hiring tester. They measured the severity of

a fault was measured in any one of the two ways: (i) the time required to locate the

fault and correct the fault (ii) the impact of failures that are caused by the faults.

Jeffrey and Gupta [10] also proposed a new approach for prioritization of test cases

for early detection of faults in the regression testing process. They considered the

statements of a program, which are influencing or may influence the output through

the consideration of relevant slicing on the output of a program.

Recently, Bryce et al. [8] proposed various criteria for prioritizing test cases.

These are (i) Parameter-value interaction coverage-based, (ii) Count-based and (iii)

Frequency-based. They applied these criteria to some stand-alone GUI and Web-

based applications and found that the fault detection rate is increasing over random

ordering of test cases.

All these discussed test case prioritization techniques are purely code-based and

require the information on previous usage of the system. These techniques are mainly

used at the post-implementation phase and used mainly for regression testing.

Test cases can also be prioritized based on the design model. Kundu et al. [59]

had proposed a technique called System Testing for Object-Oriented systems with test

case Prioritization, STOOP, to generate test cases from UML 2.0 Sequence Diagrams

for system testing. They had prioritized those test cases based on three prioritization

metrics: (i) sum of message weights (ii) average weighted path length and (iii) code

weight. Their prioritization technique is applied at the development phase and helps

to increase the confidence in reliability of the system at a faster rate.

A lot of research [7, 60–62] have been done on test case selection technique for

regression testing. Harrold et al. [61] had proposed data flow testing method for

reducing test suite whereas, program slicing technique is used for reducing test suite

in [7]. Similarly, Leon et al. [60] had used information flow through both data and
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control dependency for test case selection. They had proposed two approaches such

as coverage-based and profile-distribution-based technique for this. An improved

version of test case selection technique is proposed by Jeffery and Gupta [62], in

which additional coverage technique is used that adds some extra test cases which

are redundant with respect to test suite minimization criteria.

3.3 Empirical Work on Reliability Analysis

A number of reliability models [9,14,15,57,63] have been proposed for assessing and

improving the reliability of a software system over several decades. Some researchers

have considered system as a black box whereas, others have included the architecture

of the system in their analysis.

Musa [9] is recognized for his work in the field of test suite design using Opera-

tional Profile. Operational Profile is a quantitative characterization of how a system

will be used. An operational profile is used to guide testing. If testing is terminated

and the product is shipped due to crucial schedule constraints, the tester is ensured

that the most-used operations will have received the most testing effort. According

to Musa, the reliability of a software product depends on how the product will be

used by a customer. The testing should be conducted as if the product is in the field.

The chance of failure is high in a module with high execution probability. If a module

is executed more frequently, then the probability of activation of any residing error

in that module is high, which may cause frequent failures. Based on this idea, he

had proposed a technique to prioritize input-domains or fault-regions on the basis of

their impact on the overall reliability of the system. His proposed testing method is

for both assessing and enhancing the reliability of a system according to user’s point

of view.

Testing based on operational profile is efficient and effective in revealing bugs

(compared to coverage-based testing) that influence the reliability of a system at

the operational environment [13]. Cobb et. al [13] had experimentally proved that

in terms of Mean Time Between Failure (MTBF), operational profile based testing

improves the perceived reliability during operation 21 times greater than coverage-

based testing. They also proved that even if the operational profile is not accurate

during testing, there is a high probability that MTBF at the operation time will

be much higher than that obtained with coverage-based testing or other black box

testing approaches.
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Not only at the testing time, but also during software inspection, Usage-Based

Reading (UBR) [64] technique helps reviewers to find quickly the faults that have

the most negative impact on the user’s perception on system quality. The use cases

are prioritized based on their execution probability and handed over to the reviewers

for inspection. UBR guides the reviewers to focus the software parts that are most

important for a user. The limitation with these discussed methods is that failure

regions for a practical program was decided only considering a black-box approach.

It is a challenging job.

Reliability prediction will be more accurate, if internal structure (interaction

among components) of the system will be considered along with the operational

profile of the system. Goseva-Popstojanova et al. [65] proposed that, there are

broadly two categories of architecture-based analysis such as state-based [14, 15, 66]

and path-based [67–70]. In a state-based analysis, the probabilistic control flow graph

is mapped to a state space model and transition probability between components is

decided based on Markov property and operational profile [9]. Cheung [14] has

proposed a user-oriented software reliability model, which measures the quality of

service that a program provides to a user. His Markov reliability model uses a pro-

gram flow graph to represent the structure of the system. The flow graph structure

is obtained by analyzing the code. It uses the functional modules as the basic com-

ponents whose reliabilities can be independently measured. It uses branching and

function-calling characteristics among the modules, that are measured in the opera-

tional environment. Similar structural models have been proposed by Littlewood [15]

and Booth [71], to analyze the failure rates of a program. Lyu [66] proposed a struc-

tural model for estimating the reliability of component-based programs where the

software components are heterogeneous and the transfer of control between compo-

nents follows a discrete time Markov process. It is assumed that time spent in each

state is exponentially distributed.

In a path-based analysis, reliability of each path from singly entry node to single

exit node in a control flow graph is computed and average of path reliability is

computed for reliability estimation of whole system. Sometimes path-based analysis

gives incorrect result due to infinite paths caused by loop. This problem is solved to

some extent by Krishnamurty et al. [68]. They have proposed a two phase approach.

In the first phase, the reliability for each component was predicted based on code

coverage of that component. In the second phase the reliability for the whole system
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was obtained by integrating the reliability of components achieved in the first phase.

They have resolved the problem of intra component dependency due to loop. Multiple

executions of the same component in a loop were collapsed into k occurrences, where

k is defined as the degree of independence(DOI). The major problem in reliability

analysis is that it is not properly measured how the fault detection and removal at

the component level influence the reliability of whole system. They mentioned that

the reliability of a component is predicted based on code coverage of that component.

The development of a probabilistic technique for reliability analysis that is appli-

cable at the analysis and design-level is cost effective. It saves the effort at the actual

development and system integration phases. Cortellessa et.al. [69] have proposed an

early estimation of time distribution for components from UML model. Their ap-

proach on system reliability prediction is based on component and connector failure

rates. Three different types of UML diagrams: Use Case, Sequence and Deployment

diagrams are used for reliability analysis. For estimating the time spent in each com-

ponent, they have counted the number of times a class is busy in a scenario. Both

component failure and connector failure probabilities are considered.

Similar to this, Yacoub et al. [70] also proposed a path-based approach to get

the early reliability of a system at the analysis phase. They proposed an algorithm

named Scenario-Based Reliability Analysis (SBRA). SBRA is used to identify critical

components and critical component interfaces, and to investigate the sensitivity of

the application reliability to changes in the reliabilities of components and their

interfaces. The technique is suitable for systems whose analysis is based on valid

scenarios with timed sequence diagrams. The execution profiles of these scenarios

are assumed to be available. Component Dependency Graphs (CDG) are derived

to establish a probabilistic model upon which the reliability analysis technique is

based. Time spent in each component is based on execution probability of each

scenario and execution time of the component within that scenario. It is assumed

that the reliability of each component is already given. For estimating the reliability

of an individual component, Lyu et al. [57] stated that complexity metric should be

a parameter. It helps to estimate the failure rate for initial software fault density.

The advantage of these early reliability estimation techniques [69, 70] is that it can

extract valuable components at the analysis phase.

35



3.4 Early Test Effort Estimation Methods based on Use Cases Related Work

3.4 Early Test Effort Estimation Methods based

on Use Cases

The work on early effort estimation based on use cases was first proposed by Karner

[19]. He defined a metric called Use Case Point (UCP) based on use cases to estimate

the effort of an application. From that day onwards, a continuous research is going

on UML based effort estimation [19,72,73]. A number of technical complexity factors

such as distributed system, response, end-user efficiency, easy to install, easy to use

etc. are considered along with some environmental factors to adjust the Use Case

Point(UCP). There is a mapping from use case to test case generation. Currently,

the number of test cases for a use case is estimated based on UCP.

In the above discussed work [19, 72, 73], though the complexity of a use case is

considered as a major attribute for effort estimation both for development and test-

ing, the complexity is roughly categorized as simple, average or complex based on

the number of transactions or number of scenarios only. As the factor ”complex-

ity” plays a major role in estimating the fault proneness of a system, it is directly

related to testing and development effort. Hence, the architectural details of a use

case should be analyzed for getting the complexity in a quantitative form. Another

limitation with these existing work is that these estimation techniques contain a lot

of involvement of subjective measures from domain experts and hence, the accuracy

of these approaches are doubtful.

Kim et al. [74] could be able to solve these limitations to some extent by proposing

an effort estimation approach, in which the UML model is analyzed to get the com-

plexity of a system. It collects data at the analysis stage and considers the use-case

diagram, class diagram, interaction & state diagrams. The project effort is estimated

based on UML points, where UML points are calculated through UCPs and Class

Points (CP). Inheritance, uses, realize relationships of use-case diagrams and number

of parameters, number of classes of class diagrams (To estimate CPs) are used to get

the structural complexity of a system in whole. The accuracy level of their approach

is less as it is based on a lot of subjective matters.

Robiolo and Orocosco [75] proposed an effort estimation method through use-

case diagram. In their approach, the size of a project is estimated based on two

factors: total number of use-case transactions and total number of entity objects.

Finally the effort is estimated through mean productivity value. First a use-case is

converted to a textual description and then, basic elements such as function and data
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are identified. Size of the application is estimated based on the number of module

entity objects. They have not considered the architectural details of a use-case and

could not estimate the effort required for an individual function.

Similar to the discussed UCP-based testing effort estimation method, Zhu et

al. [76] proposed a method to predict the number of test cases for the system from use

cases. They considered number of transactions, number of entity objects and some

special requirements which are not covered by transactions to estimate the number

of test cases for a use case. These effort estimation methods only considered the

estimation of high level effort. Furthermore, these testing effort estimation methods

[16, 17, 77] estimate test cases for the whole system not for each individual task

unit(use case). These are too abstract for estimation.

3.5 Risk Analysis for Testing

Amland [78] has proposed a risk-based testing for large projects. The risk factor

of a function is calculated based on probability of failure and cost of failure in the

function. The probability of failure is decided based on four parameters such as new

functionality, design quality, size and complexity. The cost of failure is decided based

on both supplier cost and customer cost. For all indicators, only three values are

used: low (1), medium (2) and high (3). The limitation of this approach is that the

complexity assessment is error-prone as it is decided in an informal way based on

subjective judgment of domain experts.

Some risk assessment methods [79, 80] have been proposed at the requirement

stage based on multiple experts knowledge. These two methods first identify possible

mode of failures for a high-level requirement and then try to estimate the impact

of these failures on the requirement. Unlike our approach, these risk assessment

methodologies do not take any architectural level information and therefore are purely

subjective. Hence, these methods are more error-prone due to only human intensive.

Some techniques are available for reliability-based risk assessment based on for-

mal design model [81, 82]. Yacoub and Ammar [81] first proposed a risk assessment

method at the architectural level using UML models. They have proposed heuristic

risk factor associated with a component and with a connector based on dynamic met-

rics (dynamic complexity and dynamic coupling metrics to estimate the complexity

factor of a component and a connector). Then, the risk factor of the system is as-

sessed based on two inputs: abstract intermediate representation of the system called
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Component Dependence Graph (CDG) [70] and risk factor of individual components.

Goseva-Popstojanova et al. [82] have also proposed a similar approach for risk

assessment. They have estimated the risk factor for a scenario by the help of com-

ponent and connector risk factors and Discrete Time Markov Chain (DTMC) with

a transition probability matrix P x=|pij|x, where |pij|x is the conditional probability

that the program will next execute component j, given that it has just completed

the execution of component i. They also introduced multi-failure states that repre-

sent failure modes with different severities. These two approaches [81,82] are purely

analytical and do not take any input from domain experts.

Appukkuty et. al [83] have proposed a risk assessment method by considering

possible failure modes of a scenario and computing the complexity of the scenario in

each failure mode. Their proposed method is for risk assessment at the requirement

level. Similar to our approach, Cortessela et al. [84] have proposed a risk assessment

method based on UML models, but their method is assessing performance-based risk,

whereas our method is assessing reliability-based risk from UML models.

Smidts et al. [85] have added safety as a characteristic for reliability estimation

and define the software reliability is the probability that the software-based digital

system will successfully perform its intended safety function, for all conditions under

which it is expected to respond, upon demand, and with no unintended functions

that might affect system safety. They have collected various software engineering

measures at different stages of the software development life cycle and proposed a

number of methods to estimate the reliability for safety critical digital systems at

different phases of the life cycle.

3.6 Summary

We have discussed the work on code prioritization to improve the coverage-based

testing within the available test resources. We have also presented the recently

reported literature on identification of fault-prone components at the code level and

architectural level. We have discussed various reliability analysis techniques both

at the code level and architectural level. Finally, we have discussed some existing

risk analysis techniques in which the components, scenarios and use cases are ranked

relative to their estimated risks.
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Chapter 4

Prioritizing Source Code for
Testing

A moderate size application generally consists of a number of components. The

components interact among themselves through a number of operations. It is not

always feasible to test all components and operations thoroughly within the available

test budget. Prior work has shown that often, a small number of bugs within a

system account for the majority of the reported failures; and often, most of the

bugs are found in a small portion of the source code of a system. However, exactly

identifying those parts is a big challenge.

The user’s view on the reliability of a system is improved, when the occurrence

of bugs are reduced from the frequently executed parts of the software [9, 13,86,87].

According to Musa [9], removing faults from the frequently executed parts of the

source code helps the test manager to achieve high reliability with low cost. However,

the length of time a part of the source code is executed does not wholly determine

the importance of the part in the perceived reliability of the system. It is possible

that the result produced by an element1 which is executed only for a small duration is

saved and extensively used by many other elements. Sometimes, the produced result

of a rarely executed element is saved and widely used by a number of frequently

executed elements. Hence, an element on which many number of other elements are

dependent would have a high impact on the reliability of the system, even though it

is itself getting executed only for a small duration.

The degree of coupling is correlated with the criticality of a system [88]. An

element2 which provides a number of services is reusable as it is independent. An

1An element may be as small as a statement and as elaborate as a class or couple of related
classes.

2We have considered a class as an element throughout our thesis. Class and element are written
interchangeably.
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element importing services may be difficult to reuse in another context because it

depends on many other elements. Coupling is also related to change proneness [89].

An element which is providing services to many number of other elements is likely

to change, because it has to adjust to the evolving needs of the dependent elements

[88]. The same element is also reusable and changeable3. So, extra test resources

is required for the element, which is providing services to many number of elements

because, bugs in that may be infected highly.

Assuming that all elements are approximately of similar size and complexity,

the failure rate of a software product would be disproportionately influenced by the

presence or absence of bugs in some elements. These elements either get executed

frequently than others during the normal operation of the software or the results pro-

duced by these are used extensively by a large number of other elements. Hence, we

estimate the criticality of an element on the basis of its two important characteristics

such as execution probability and influence toward system failures. The first one is

determined through operational profile [9] of the system and the later one by the help

of coupling [90].

We introduce a new metric called Influence Metric for an element within a system.

It shows the number of elements in the system that are using the produced result

of the given element, directly or indirectly. Our proposed Influence Metric provides

the detailed information at the statement level by marking the statements within a

program that are influenced by a given element. The Influence Metric that generates

influence value for an element is used as the measure for criticality computation.

As the analysis is performed at code level, our proposed method marks the nodes

(statements) in the source code that are dependent on a given element, directly

or indirectly. First, we propose an algorithm to compute the influence value of a

method and then, we use it to compute the influence value of a class. We compute

the criticality of a class on the basis of its influence value, which shows how many

nodes are dependent on it and average execution time, which shows how often these

dependencies are executed at run time. We prioritize the elements within a system

according to their estimated criticality. First, prioritizing the elements within a

system and then conducting testing, will promote efficient testing of software by

revealing important bugs at the early phase of testing.

The rest of the chapter is organized as follows: Our proposed Influence Metric is

3The element which is depending on a number of elements is also changeable due to change in
determinate elements.

40



4.1 Our Approach Prioritizing Source Code for Testing

discussed in Section 4.1. In the section, we discuss the test priority assignment using

Influence Metric. The experimental results are given in Section 4.2 and the chapter

summary is given in Section 4.3.

4.1 Our Approach

An object-oriented program comprised of a set of classes. A class consists of num-

ber of methods. We have proposed an algorithm named MethodInfluence by using

forward slicing approach [25] to compute the influence value of a method within a

system. Influence value of an element shows the influence of the element towards sys-

tem failure. We have taken the intermediate representation of the program called Ex-

tended System Dependence Graph (ESDG) [28] as an input to our algorithm, Method-

Influence. Our algorithm is applied on each method-entry vertex v of a class. The

algorithm marks the vertices of ESDG that are dependent on v, directly or indirectly.

We get the influence set(m) for a method that contains the set of vertices that are

using the results produced by the method m. Combination of influence set of all rele-

vant methods of a class is the influence set for the class. From the influence set of the

class, we get its influence value. This approach statically computes the influence of

a class within a whole program. Execution of the program is not necessary. Though,

the influence set of a class shows all possible requests to the class for service, but it is

unable to show how often these requests are executed in the operational environment.

The reliability of a system is not related to the number of existing faults in the

system under test. It is only related to the probability that a fault leads to a failure

that occurs during software execution [14]. It is because, the data input supplied

by the user decides which parts of the source code will be executed. A bug existing

in the non-executed parts will not affect the output. So, it is not sufficient for a

class to know how many other classes are requesting services from that class. It

is also required to know how often these requests are executed at the run time.

For this, we are extracting the average execution time of a class within a system.

It is obtained through the operational profile of the system. Operational profile is

the probability with which different high-level functions (or use cases) are executed

during a typical use of a software. Once both the factors of a class within a system,

influence value and average execution time are obtained, we compute the criticality

for the class within the system. Test Priority (TP) is assigned to a class according to

its criticality. TP of an element shows its intensity of testing requirements. Higher is
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the TP value of an element, more is the test resource required to reduce the system

failure rate.

4.1.1 Influence of a method

First, we represent the input program by an intermediate representation called ESDG.

Then, we apply our proposed algorithm on the ESDG to compute the influence of

a method in the program. Our algorithm counts the number of nodes marked as

influenced by a method m in a program from the data dependent set of that method’s

formal parameter-out nodes.

The influence value of a method m is expressed as:

influence value(m) =
#nodes influenced in ESDG by m

Total # nodes in ESDG
(4.1)

In this section, we present our algorithm MethodInfluence in pseudo code form to

compute the influence value of a method. The notations used in our algorithm are

presented below.

visited[i]: It is a Boolean variable which is set to TRUE upon visiting node i.

influence[i]: It is a Boolean variable which is set to TRUE when node i is marked

as influenced.

queue1: It is a queue that contains the nodes which are to be processed next.

queue2: It is a queue that contains the nodes which are to be marked as influenced.

insertQueue: It is a function that adds nodes to a queue.

deleteQueue: It is a function that deletes nodes from a queue.

Type(n): It is a function that returns the type of node n out of all possible types in

ESDG. The algorithm maintains two queues, queue1 and queue2. queue1 maintains

the node that are to be traversed next. It contains the nodes that are in the end

of control dependence edges, data dependence edges or parameter-in edges of the

visiting node. queue2 maintains the nodes that are to be marked as influenced. It

contains the nodes that are in the end of parameter-out edges of the visiting node.

Working of the Algorithm

To illustrate how to compute the static influence of a method within a program, we

consider the program and its ESDG shown in Figure 2.3a and Figure 2.3b respectively.

Consider the method add of class Task in the program shown in Figure 2.3a. Now, our

proposed algorithm starts execution from the method-entry vertex 2. Our algorithm
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Algorithm 1 MethodInfluence(ESDG,Vme)

Require: ESDG: Intermediate representation of the program
N : Total number of nodes in ESDG
Vme: Method-entry vertex of method Mi

1: return Inf(Mi): Influence value of the method Mi.
2: for i ← 1 to N do
3: visited[i] ← FALSE
4: influence[i] ← FALSE
5: end for
6: Queue queue1 ← ∅
7: Queue queue2 ← ∅
8: insertQueue(queue1,Vme)
9: while queue1 ̸= ∅ do
10: n ← deleteQueue(queue1)
11: if Type(n)==method-entry vertex then
12: Traverse only its control-edges and parameter-edges
13: else
14: if Type(n)==call vertex then
15: Traverse its adjacent nodes
16: end if
17: else
18: if Type(n)==polymorphic vertex then
19: Traverse only its polymorphic-edges

{each adjacent node of a polymorphic-edge is a method-entry vertex}
20: end if
21: else
22: Traverse only its outgoing data dependence edges and control dependence

edges.
23: end if
24: for each adjacent not-visited node w do
25: visited[w] ← TRUE
26: if Type(w)==parameter-out vertex then
27: insertQueue(queue2, w)
28: else
29: insertQueue(queue1, w)
30: end if
31: end for
32: end while
33: while queue2 ̸= ∅ do
34: n ← deleteQueue(queue2).
35: influence[n] ← TRUE and add node n to influence set of the input method.
36: Traverse the adjacent nodes of n through its all types of edges except the

control dependence edges
37: for each not-visited node w do
38: visited[w] ← TRUE
39: insertQueue(queue2, w)
40: end for
41: end while
42: Calculate Inf(Mi) using expression (1)
43: return Inf(Mi) 43
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traverses each control dependence edge from the given method-entry vertex and adds

the nodes F1 in, F2 in, 3 in queue1 and F out in queue2. Now, the algorithm

will delete the first element F1 in from queue1 and checks all its outgoing edges

to find any depending node not traversed. Then, it will delete F2 in and 3 from

queue1. The process is continued till queue1 becomes empty. Once, queue1 becomes

empty, our algorithm will start deletion from queue2. It deletes the node F out from

queue2, marks it as influenced and traverse all the parameter-out edges of the node

only. Then, the algorithm adds all the not-visited nodes in queue2. Now, queue2

contains the node A out. Deleting A out and marking it as influenced next, queue2

will contain nodes 10, A1 in and 12. In the similar way, other relevant nodes are

inserted in queue2 and deleted from it. At the end, the nodes F out, A out, A1 in,

10 and 12 are marked as influenced. It shows the contribution of add method to the

rest of the source code.

Complexity Analysis

If N number of nodes are created in the intermediate graph ESDG for representing

the object-oriented program, at each node there can be maximum N − 1 number of

edges.

So, the worst case space complexity will be N × (N − 1) = O(N2).

Similarly, in the ESDG any edge is visited at most once. So, the time complexity=

O(E), where E is the total number of edges.

4.1.2 Influence of a class

The nodes in the set influence set(c) for the class c is the union of all the sets

influence set(mi), where mi is the i-th method of class c.

influence set(c) = ∪k
i=1influence set(mi)

where, k is the total number of methods in class c. From the influence set, we get

influence value by applying Equation 4.1.

4.1.3 Average execution time of a class within a system

A scenario within a system is implemented by the interaction among a set of classes.

The average execution time of a class ci, denoted as ET (ci), in the system is given

by:
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ET (ci) =
nos∑
j=1

p(j) ∗ (Time(ci)
j),

where nos is the total number of scenarios in a system under test, p(j) is the prob-

ability of the execution of j-th scenario within a system and Time(ci)
j is the total

activation time of class ci within j-th scenario.

4.1.4 Computation of criticality

Test effort is assigned to a class according to its criticality. We combine both influ-

ence value and average execution time of a class to get the criticality of that class.

Criticality for a class is computed by applying the following formula.

Criticality(ci) = Influence value(ci)× ET (ci) (4.2)

where, influence val(ci) is the estimated influence of class ci towards system failures

and ET (ci) is the average execution time for class ci within a system. Test Priority

(TP) is assigned to a class according to its criticality. A class with high TP is critical

and hence, requires extra test effort.

TP for various classes of a small program is computed using Equation 4.2 and is

shown in Table 4.1.

Table 4.1: Test Priority Calculation

ci Influence value ET (ci) Total
TP

TP%

1 22 55 1210 22
2 12 75 900 16
3 15 38 570 11
4 45 58 2610 49
5 06 15 90 02

Sum 100 - 5380 100

4.2 Experimental Studies

We have implemented MethodInfluence algorithm for the calculation of Influence

Metric for Java programs. The intermediate graph, ESDG, used in the algorithm

is obtained using ANTLR in the ECLIPSE framework. We have considered three
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case studies- Library Management System (LMS), Super Market Automation Sys-

tem (SMA) and Automatic Teller Machine (ATM) throughout our thesis. The case

study, LMS, basically provides the facilities such as login, register, add/remove ti-

tle, add/remove book, search/issue book, return book and collect fine etc. The case

study, SMA, is implemented in a large supermarket that provides a number of services

such as find product, specify the required quantity, specify fulfillment of the product,

record customer details, take payment, conform order and print invoice and picking.

These are well explained in [2]. Our third case study, ATM, is an electronic bank-

ing outlet, which allows customers to complete basic transactions without the aid

of a branch representative or teller. This is an example of a commercial application

system.

We present a brief summary of these case studies in Table 4.2, so that the size

of each can be well understood. In Table 4.2, Object-point shown in Column 6

is estimated based on a number of factors such as how many individual screens are

displayed, how many reports are produced and how many 3GL modules are developed

in the system etc. [91, 92]. Classes shown in Column 5 represent the number of user

classes. System classes are not considered here. These case studies are neither very

small nor very large, but of moderate size. For a better understanding of the above

case studies, use case diagrams of the case studies are shown in Figure 4.1.

Table 4.2: Brief summary of our case studies

System LOCs UseCases# Scenarios# Classes# Object− points#
LMS 2486 16 56 18 153
SMA 1137 09 23 10 31
ATM 4217 12 30 22 82

We have conducted a number of experiments to examine the sensitivity of various

classes toward system failures in Section 4.2.1. We have also conducted a number

of experiments to check the effectiveness of our approach compared to an existing

approach in Section 4.2.2.

4.2.1 Sensitivity analysis

Using our criticality estimation method, we have investigated the failure rate of an

application based on the failure of individual classes with different criticality. We

have done it in three phases. In the first phase, we selected the highest priority class
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(a) Use case diagram for LMS

(b) Use case diagram for SMA (c) Use case diagram for ATM

Figure 4.1: Use case diagrams of the case studies

from a case study and decreased its reliability4, while fixing the reliabilities of other

classes to 1.0. To observe the failure rate of the application, we selected randomly 100

numbers of test cases (randomly selected scenarios) based on operational profile. A

4Techniques for class reliability estimation is a step wise procedure that includes fault injection,
testing and retrospective analysis. We are assuming an estimate is available, this is used as a
parameter for observing the failure rate to analyze the sensitivity of the application.
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test case is responsible for the execution of one scenario5. We continued our process

by slowly decreasing the reliability of a selected class in a step wise manner and

observed the failure rate of the system under test at each reliability point of that

class for the same set of test cases. Same process and same test cases were also

applied to a class with medium priority and the class with the lowest priority. As the

observed failure rates6 were varied for the same set of test cases, at each reliability

point of selected classes (one at a time), we could analyze the sensitivity of a class

towards system failure rate. The graphs shown in Figure 4.2 show the failure rates

of LMS, SMA and ATM case studies. We obtained the graphs by decreasing the

reliability of the highest priority class, some medium priority classes and the lowest

priority class (one at a time) of each case study, in a step wise manner. We have

considered six classes of each case study including the highest and lowest priority

class.

In Figure 4.2, it is clearly shown that, when the reliability decreases for a class

with high TP value, the system failure rate increases at a higher rate, but this is not

true for a class with low TP value.

4.2.2 Comparison with Musa’s approach

We have argued that the classes with high tendency towards system failures are

not only identified by their execution time but also by their influence values. Like

average execution time, a class with high influence value is also responsible for a

high failure rate of the overall system. To validate our claim, we have conducted

two experiments on each case study (LMS, SMA and ATM). In the first experiment,

Experiment 1, we checked the impact of execution time on system failure rate and in

the second experiment, Experiment 2, we checked the impact of influence value on

system failure rate.

Experiment 1: (Extended Musa’s Approach)

We have extended the existing Musa’s approach [9] to class level, for sensitivity

analysis. For each case study, we have taken first five classes from a set of classes

arranged in descending order according to their average execution times. In this

experiment, we have ignored the influence value of a class. Then, we applied the

same technique and the same data set to the selected five classes as discussed in

Section 4.2.1.

5A scenario may be executed a number of times for different test values.
6Failure rate = number of test cases failed÷ number of test cases executed.
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(a) LMS

(b) SMA (c) ATM

Figure 4.2: Failure rate of an application based on class reliabilities (one at
a time)

Experiment 2: (Checking the impact of newly introduced factor: influence value)

In this experiment, our aim is to prove that a rarely executed class is also responsible

for increasing the system failure rate, if a number of classes are dependent on it,

directly or indirectly. Hence, we check the impact of influence value of a class on

system failure rate. For conducting sensitivity analysis, we have selected five classes

with low average execution time and high influence value from the case studies,

LMS, SMA and ATM. We have applied the same technique and same data set as in

Experiment 1. We checked the tendency of each selected class towards the overall

failure of the application. For simplicity, we have considered only five classes in both

the experiments.
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Result Analysis and Discussion

For LMS, SMA and ATM case studies, the failure rate of the overall system was

58% and 47% and 72% respectively in the first experiment, Experiment 1, when the

reliability of the first class, the class with the highest execution rate, was decreased

from 1 to 0.5. In the second experiment, we found that the system failure rate was

near about 54%, 51% and 69% for LMS, SMA and ATM case studies respectively,

when the reliability of some classes out of the selected five classes (one at a time) was

decreased from 1 to 0.5. We found that the overall failure rate of ATM case study

was the highest in both the experiments, Experiment 1 and Experiment 2. In the

case study ATM, we found that the class Withdrawal has the highest execution rate

and also has high influence value. So, the failure rate was increased in a high rate,

when the reliability of Withdrawal class was decreased.

From Experiment 1, we observed that the failure rate of a system was increased,

when the reliability decreased for a class with high average execution time. From

Experiment 2, we observed that a class with low average execution time but high

influence value was also responsible for increasing the failure rate of the system. From

both the experiments, we concluded that the newly introduced factor influence value

in our proposed method is also playing a major role in identifying the failure-prone

classes whereas, Musa [9] stated that only the frequently executed classes should

get extra test resources on the testing phase as they are more failure-prone. As our

approach considers both the factors: average execution time and influence value, it

exposes the failure-prone classes that are exposed by Musa’s approach [9]. Further,

our method identifies new failure-prone classes through the newly introduced factor

influence value that are neglected by Musa’s approach due to low execution time. It

is because, some wrongly produced output by a rarely executed class may be used

by some frequently executed classes, that makes the failure rate of the system high.

4.2.3 Threats to validity of results

In order to justify the validity of the results of our experimental studies, we identified

the following list of threats :

� Biased test set design and influencing results.

� Seeding biased errors in various classes of each case study.

� Testing only for selected failures and loosing generality of results.
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� Using testing methods which may only be suitable for some particular bugs

while may not reveal other common and frequent bugs.

Measures taken to overcome the threats

In order to overcome the above mentioned threats and validate the results for most

common and real life cases, we have taken the following corrective measures :

� We used same test set in each reliability point of a class for observing failures.

� We used same type of seeded bugs in the classes of each case study.

� We took care that the seeded bugs match with commonly occurring bugs.

� We inserted class mutation operators to seed bugs. Using mutation operators,

we can ensure that a wide variety of faults are systematically inserted in a

somewhat impartial and random fashion. While traditional mutation operators

are restricted to a unit level, class mutation operators [93] for object-oriented

programs have impact on cluster level.

� We considered the failures that provide a base to the user to decide how much

they can trust the software.

4.2.4 Limitation of our approach

It is not sufficient to assign test priority to an element on the basis of its influ-

ence value and its average execution time. A single bug in a class with low test

priority value may cause catastrophic failure. As, some classes usually provide ex-

ception handling of rare but critical conditions, it is necessary to consider the severity

associated with each class by checking the effect of its failure to the system operation.

For efficient testing, the test priority computation should also include the severity

associated with the failure of a class. The limitation of our approach is that we have

not considered the severity associated with each class.

Another limitation is that though ESDG is simple for representing small and

moderate programs, but for a large real life program, ESDG may become too large

and complex to manage [26]. Obviously, the storage requirement will also be very

high. For large programs, influence value of a method may be computed by using

traditional fan-in and fan-out metrics [94] in place of ESDG. However, the advantage

of using ESDG over the traditional fan-in and fan-out method is that our proposed
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influence metric will improve the accuracy. It is because, ESDG shows the details

regarding the statements that are really affected in the source code, when a method is

producing incorrect result. It is because, ESDG shows the dependencies at statement

level, whereas fan-in and fan-out show the higher level dependencies at function

level/module level.

4.3 Summary

We have proposed a new metric called Influence Metric to identify the criticality

of an element in the source code. It is based on static analysis of the source code.

The average execution time of a component within a system was estimated based on

the operational profile of the system. Criticality for a component within a system

is computed on the basis of its influence value and average execution time. Test

priority is assigned to the components according to their criticality.

We have experimentally proved that decreasing the reliability of a high priority

class drastically increases the failure rate of the application, whereas, it is not true

in case of a low priority class. So, the intensity with which each element should be

tested is proportionate to its test priority value. It helps the test manager to expose

the critical elements before test case generation that are getting less attention in

terms of testing. The limitation with our criticality estimation method is that it

does not consider any external factor. Our proposed test effort prioritization method

will be effective, if the severity associated with various failure modes of an element

could be considered. So, we aim at considering the severity in our next work.
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Chapter 5

Criticality Estimation

First, prioritizing the program elements within a system according to their criticality

and then, conducting the testing process will promote efficient testing of a software

product by revealing important bugs at the early phase of testing. In Chapter 4,

we have considered two factors of a component1 (i) influence value and (ii) average

execution time and computed the criticality of the component within a software

system. We have experimentally proved that when the reliability decreases for a

high critical component, system failure rate increases at a higher rate whereas, this

is not true for a low critical component. Though, the failure rate of a system is

heavily influenced by the influence value of a component, but it is not a sufficient

factor for criticality estimation. In a real life application, each failure does not carry

equal weight. Our aim is not only to improve the reliability of a system, but also to

minimize the post-release failures that have a negative impact on the user or on the

system. For this, we consider the impact of a failure within a scenario as another

factor for criticality computation. We consider two important external factors such

as the severity of failures and the business value associated with a component for

criticality computation. Severity checks the impact of failure of a component within

a system. The aim of consideration of business value is that a technical staff cannot

guess which high level functions are important to the customer and also a customer

cannot estimate the cost and technical difficulties in implementing a specific high

level function. The adoption of Value-based testing [21, 42] increases the return on

investment on testing.

1In an object-oriented program, a component may be a class which is the smallest executable
unit or it may be elaborated as a collection of classes in a package. However, a component may be a
collection of many other things. For example, a mixture of some source code templates with related
documents might be called as a component. After all, everything is a class in an object-oriented
program, every component is a class too. In our approach, we take a class as a component and
write class and component interchangeably throughout the chapter.

53



Criticality Estimation

We compute the criticality of a component on the basis of the following factors:

1. Average execution time of a component within a system.

2. Influence value of a component within a system.

3. Structural Complexity of a component: Response for a Class (RFC); Weighted

Methods in a Class (WMC).

4. All possible types of system failures for which the component is responsible and

the severity associated with each failure.

5. Business value associated with a component.

User’s perception is an indicator on the acceptance of a system. User’s view on

the reliability of a system is improved and almost cheaper, when faults which occur in

the most frequently used parts of the software are almost removed [9,13,86,87]. The

idea behind the consideration of average execution time for a class as a parameter is

that when, a class is executed for longer time, there is a high probability that any

existing errors in the class will be executed during the run. It will cause the frequent

failure of the system.

In Chapter 4, we have introduced a metric called Influence Metric for an element,

that shows the degree of influence of that element toward system failures.

The idea of including structural complexity is to estimate the probability of pres-

ence of faults within a component. The case studies discussed in [95] show that the

residual bugs location is strongly correlated with module size and complexity. For

evaluating the structural complexity, Chidamber and Kemerer [41] have proposed six

metrics. We found that considering all the six metrics at a time is complicated, time

consuming and also sometimes not useful for a particular purpose. At the same time,

a single metric is also not sufficient for complexity estimation. At least the use of

two or three CK metrics give a proper estimation of potential problems [58]. For our

purpose, we are using two CK metrics: RFC and WMC. RFC gives an idea about

the longest sequence call of methods and WMC provides the Cyclomatic complexity

of each method implemented in a class. Our approach shows the complexity of a

class within a program. In addition to that, it also shows the likelihood of the class

to fail in the operational environment due to the consideration of the factor, average

execution time.
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There are some components which exist within a system with low complexity, but

the failure of any one of those components may have a catastrophic impact on the

system. For example, a critical code may be called in case of an emergency, which

happens infrequently but can have catastrophic impact, if an error occurs in that part.

The impact of the failure may cause severe damage to the system or a huge financial

loss. So, for computing the criticality of a component, we consider the severity of the

damage caused by the failure of the component within a scenario. The severity factor

is dependent on the nature of the application. Hence, it is a subjective matter and

is basically assessed by domain analyst, who has the knowledge of the environment

in which the software will be used. The basic input for severity assessment is the

costs of various failure modes. Detailed procedure of severity estimation is addressed

in [96].

There is also a close relationship between testing and business value that comes

from market or from customers [43]. Each use case of a system should not be treated

with equal importance [97]. Once the business values for various use cases are decided

through the interaction with domain experts, our approach estimates the business

value for a component by checking its interaction within various use cases. Based on

the Values of use cases, a component’s Value is estimated.

Once the criticality of a component is estimated through our approach, exhaustive

testing has to be carried out to minimize bugs in high critical components. The total

test effort is distributed among various components within a system according to their

criticality. The component with high criticality will get high priority for testing. As

a result, not only the post-release failures will be minimized but also, the severed

types of post-release failures will also be minimized within the available test budget.

The rest of the chapter is organized as follows: Section 5.1 discusses the pro-

posed methodology for estimating the criticality of a component within a system.

The experimental studies are conducted to test the effectiveness of our approach.

The experimental results are shown in Section 5.2. The summary of the chapter is

discussed in Section 5.3.

5.1 Our Approach

Our proposed methodology on criticality computation of a component consists of the

following steps:

1. Computing the influence value of a component within a system as discussed in
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Chapter 4.

2. Estimating the average execution time of a component by executing the test

data based on operational profile (discussed in Chapter 4).

3. Analyzing the structural complexity for a component (Section 5.1.1).

4. Analyzing the severity associated with a component through simulation runs

(Section 5.1.2).

5. Estimating the business value associated with a component (Section 5.1.3).

6. Performing criticality estimation and prioritizing the components according to

their criticality (Section 5.1.4).

5.1.1 Analyzing the structural complexity

Our aim is to find the complexity associated with a component by analyzing the

complexity of various services provided by the component. We consider only two CK

metrics (RFC and WMC), out of six metrics proposed in [41]. It is experimentally

proved that a component with high RFC and high WMC is fault-prone [98]. Hence,

these two chosen metrics (RFC, WMC) are used as inputs to derive the complexity

of a component for our purpose. RFC contains a set of member functions directly or

indirectly called by the class, whereas WMC is checking the complexity associated

with all member functions of a class using Cyclomatic complexity.

RFC metric measures the cardinality of a set of methods that can potentially

be executed in response to a message received by an object of that class [41]. In

RFC, the basic unit is a method, which refers to the message passing concept in O-O

programming. The RFC value for a class is given by

|RS| =
M∑
i=1

Ri,

where RS, M and Ri represent the response set for the class, number of methods in

the class and the set of methods called by i-th method of the class, respectively. A

class with high value of RFC indicates that the complexity of services provided by

the class is high and hence, the understandability is less. When a larger number of

methods are invoked from a class through messages, it complicates the testing and

debugging process and also it is difficult to change a class due to the potential for

a ripple effect. As testing and maintenance is complicated, the chance of getting
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bug increases. We have derived Ri using the intermediate representation, ESDG, of

the source code. Our algorithm starts traversing from each method-entry vertex of a

class and traverses only the call-edges in a forward direction and generates a set of

nodes called by each method of a class. This process is repeated for each method of

a class and finally, the sets are merged to get the response set, RS, for the class.

Luke [99] argued that there is really no way to know a software failure rate at any

given point in time because the defects have not yet been discovered. According to

his statement, the design complexity is positively linearly correlated to defect rate.

Hence, the occurrence of software defects should be estimated based on McCabe’s

complexity value or Halstead’s complexity measure [99]. We consider WMC metric

that gives a rough estimation of total complexity associated with a class. WMC

metric is correlated with defect rates [58]. It counts local methods and calculate the

sum of the internal complexities of all local methods in a class [41]. The internal

complexity of each method is decided through Cyclomatic Complexity. WMC value

for a class c is given by

WMC =
M∑
i=1

Wi

where, M and Wi represents the number of methods in a class and Cyclometic com-

plexity of i-th method, respectively. It helps to evaluate the minimum number of test

cases needed for each method and hence, is used as a guideline by test manager to

estimate how much time and effort is required to develop and maintain a class.

We estimate the probability of faults in a class based on two parameters: RFC

and WMC. First, we assign a threshold value to each metric as defined by Rosenberg

et. al. [100]. For each parameter, we use only three weights: low (0.3), medium

(0.5) and high (1) [100]. The assignment of points to the three weights is a rough

guideline. The following threshold values are assigned to the two parameters as stated

in [100].

1. Weighted Methods per Class (WMC): / 25 preferred, / 40 acceptable .

2. Response for Class (RFC): / 40 preferred, / 50 acceptable. It has been ob-

served that very few classes with RFC over 50 exist within a system.

The complexity information for LMS and SMA case study are shown in Table

5.1 and 5.2, respectively. The classes that are within preferred (acceptable) limit are

low (medium) in complexity and the classes which exceed the acceptable limits are

high in complexity. Out of these two parameters, if one parameter is in low range

57



5.1 Our Approach Criticality Estimation

Table 5.1: Structural Complexity of various entity classes within LMS

Class WMC RFC Complexity
Borrower 29(medium) 42(medium) medium
Title 18(low) 39(low) low
Item 29(medium) 33(low) medium
Loan 32(medium) 52(high) high
Reserve 15(low) 30(low) low

Table 5.2: Structural complexity of various entity classes within SMA

Class WMC RFC Complexity
ProductInfo 25(low) 18(low) low
Category-
Mgr

28(medium) 37(Low) medium

OrderHandler 33(medium) 58(high) high
InventryMgr 27(medium) 46(medium) medium

and the other one is in medium range, we are accepting the whole complexity of the

class is medium, the higher one between the two factors. The intent of computing

the structural complexity of a component is to show the probability of existence of

faults within the component whereas, the intent of computing the influence value of

a component is to show that how many other components will be affected by the

faulty behavior of the component.

5.1.2 Severity analysis

Severity is a rating which is applied to the effect of a failure. It shows the serious-

ness/impact of the effects of a failure within a system. Severity of a failure within

a system decides how a bug within a component affects the whole system. We have

inserted some bugs in various components within a system and executed the system

for some duration in the operational environment. We observed that similar types of

bugs in different components cause failures with different severity. Hence, we use the

severity factor of a component as a measure to the overall quality of the product. We

consider that a component is critical, if the failure of the component causes severe

effect on the whole system. In our proposed criticality evaluation method, our aim

is to first reveal bugs from a high critical component and then, reveal bugs from

a low critical component. If there is an urgency to release the system before time

or the testing time is shortened due to some unavoidable circumstances then, the

test manger should ensure that the bugs responsible for severe type of failures are

revealed and fixed.
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Though, testing focus should be given to the parts of the code that are executed

frequently [9, 13, 63], however, there is also a need for severity analysis for better

quality of a system. Some parts of the source code are executed in case of an emer-

gency. Though these parts execute rarely, the existence of a bug with them may

cause a severe failure. For example, let us consider a component which is providing

exception handling of rare but critical conditions. In this case, the component is exe-

cuted rarely. The influence of the component toward failure is low and the structural

complexity of the component is also low but, a bug in that component could cause

catastrophic failure. Therefore, we have included the severity of a component as an

important factor for criticality computation.

We estimate the severity of a component within a system through Failure Mode

Effect Analysis (FMEA) [101], which is a bottom-up approach. FMEA is applied to a

component to get the deficiency and hidden design defects. It focuses on two points:

(i) analyze the potential failure modes of a component (how a component fails) and

(ii) determine the effect of the failure modes on the system as a whole (consequences

of failures). For a hardware component (electrical/mechanical), the failure modes are

well known, but this case is not true for a software component. Nowadays, a number

of system functions are implemented on software level and hence, there is a need to

apply FMEA methodology on software based systems for determining the severity

factor of a component. For a hardware component, the failure modes are wear and

tear of machinery, design flaws and unintentional environmental phenomena. Some-

times, the component manufacturing company discloses the possible failure modes

and also the estimated frequencies of failures for their products. This is not possible

in case of a software component. For a software component, the analyst decides the

failure modes based on the design and development process. Software is not a phys-

ical entity, it is a logical construct. The analyst identifies the system level hazards

both at the analysis, design and implementation phase and translates it into software

terms. Now, we discuss about FMEA for a software system.

Software Failure Mode and Effect Analysis (SFMEA)

The detailed SFMEA focuses on the classes or modules in which several error condi-

tions are checked. Table 5.3 shows various types of errors that may occur within a

software module/class at the design or coding stage.

Ozarin [102] has discussed the advantages of performing SFMEA at various levels:
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Table 5.3: Possible error conditions within a class/module

Error Condition Examples
Error in computation

Wrong Algorithm The module may carry out estimations wrongly due to faulty
requirements or wrong coding of requirements.

Calculation under-
flow or overflow

The algorithm may produce in a divide by zero state

Error in data
Unacceptable data The module may accept out of range or wrong input data,

no data, wrong data type or size, or premature data; produce
wrong or no output data; or both.

Input data trapped
at some value

A sensor may read zero, one, or some other value.

Bulky data rates The module may not be able to handle a vast amounts of data
or many input requests simultaneously.

Error in logic
Wrong or unpre-
dicted commands

The module may receive improper data but continue to ex-
ecute a process. It may be intended to do the proper thing
under improper situation/state.

Failed to issue a
command

The module may not call a routine under certain circum-
stance.

(i) Method-level analysis (ii) Class-level analysis (iii) Module level analysis and (iv)

Package-level analysis. According to him, SFMEA process is accurate and effective

at the Method-level, which is the lowest level analysis. The authors of [103] have

considered that a method within a software system is equivalent to a part of hardware

system in which, there is a chance of failure under certain conditions. It is because,

if a method within a class does not perform according to its pre-defined specification

then, there is a chance of failure of the whole system under some conditions.

At the time of testing, the debugger analyzes the root cause of a bug and extracts

the method within a class and specifically the instruction within a method, which

one is the source of bug. If any failure occurs at the testing phase then, significant

amount of searching is conducted to find the exact faulty parts in the source code and

specifically the search is conducted to find the exact faulty instructions of a method.

As the source code is available in this stage, we conduct the operation level or

method level SFMEA. During the execution of a scenario, a number of objects com-

municate through message passing. The message passing mechanism is implemented

through method calls. A method within a class may or may not has formal parame-

ters and may or may not has return value. To identify the severity of a class within

a system, we have to identify the various types of failure modes within a method of a
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class and also we have to estimate the severity of each failure mode by seeding some

bugs, observing the failures and estimating the impact of failures. To estimate the

severity level of a failure mode, we take the views of domain experts.

Method level failure modes and effect analysis

A method performing important tasks is generally viewed as an agent, which has

to fulfill a contract to perform its operation. There may or may not be any formal

parameter in a method and a method may or may not return any value. A method

maintains some pre-conditions and post-conditions that explicitly state the agreement

of a method for performing a task. A pre-condition is the entry condition to perform

a task and a post-condition is a condition that must be true after the completion of

the task. Similarly, a class invariant states some constraints that must be true for

its objects, at each instance of time during the life time of an object. A method’s job

is divided into two parts: (i) constraint checking part and (ii) actual logic to perform

a task. We assume that there is no time constraint when, a method is performing its

task. In this chapter, we consider four failure modes of a method as defined in [103].

These are:

1. Pre-condition Violation Failure Modes (F1): There are two sub-failure modes:

(i) pre-condition is not satisfied but its corresponding exception is not raised,

F1.1 and (ii) pre-condition is satisfied but its corresponding exception is raised,

F1.2.

2. Parametric Failure Modes (F2): Any failures regarding to formal parameter

declaration within a method comes under this category. The constraints on

parameter values are checked in this failure mode. The type of a parameter

is not considered. If any parameter constraint is already stated in the pre-

condition of the method then, that failure is not included under this failure

mode. For any other parameter constraint, the response of the method is

checked. If any alarm is raised by the method in the form of exception then,

two failure modes are considered for two individual cases. (i) the constraint is

false but its corresponding exception is not raised F2.1 and (ii) the constraint

is true but its corresponding exception is raised, F2.2.

3. Method Call or Invoke Failure Modes, F3: It consists of two sub-cases.

(a) A method m1 invokes method m2 of the same class or super class then,
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there is a possibility of the following failure modes in the list of failure

modes of m1, F3.1.

i. m1 invokes m2 in the wrong order (when the invocation of m2 is

condition based), F3.1.1.

ii. m1 invokes m2 by wrong parameters (when m2 contains parameters.

We consider only parameter’s value not the type), F3.1.2.

(b) A method m1 of class A invokes method m2 of class B then, there is a

possibility of the following failure modes in the list of failure modes of m1,

F3.2.

i. m1 fails to invoke m2 (because of lack of instance of object of class

B), F3.2.1.

ii. m1 invokesm2 in wrong order (when the invocation ofm2 is condition

based), F3.2.2

iii. m1 invokes m2 by wrong parameters (when m2 contains parameters.

We consider only parameter’s value not the type), F3.2.3.

4. Post-condition Violation Failure Modes, (F4). It consists of the failures when

a method is unable to satisfy the post-conditions. The failure mode checks the

conditions that a method must satisfy after its execution is completed. Any

violation in the postcondition indicates an error within the method whereas,

any violation of a precondition indicates an error with the client: the client is

using the method wrongly. In this case, the method is performing the task in

invalid manner.

We first obtain the FMEA of a component within a scenario and then, we assign

severity through FMEA and hazard analysis. Severity of a component within a

scenario shows how its failure affects the execution of the scenario. Domain experts

play a vital role in hazard analysis and estimate the severity level of a component

within a scenario. We rate the severity of a component within a scenario based on

the worst effect of the failure of providing services by the component within that

scenario.

According to [101], severity is classified as:

1. Catastrophic : A failure may cause death or total system loss.

2. Major : A failure may cause very serious effects. The system may loose func-

tionality, security concerns etc.

62



5.1 Our Approach Criticality Estimation

3. Marginal : A failure may cause minor injury, minor property damage, minor

system damage, or delay or minor loss of production, like loosing some data.

4. Minor : Defects that can cause small or negligible consequences for the system,

e.g. displaying results in some different format.

We assign severity weights of 0.25, 0.50, 0.75, and 0.95 to Minor, Marginal, Major,

and Catastrophic severity classes, respectively as defined in [81, 82]. The damage

may be classified to different classes as mentioned above or it may be quantified into

money value, whatever the analyst feels better. For example, if a large volume data

to be sent by mail are wrong, then the cost of re-mailing will be horrible.

Tables 5.4 shows a part of SFMEA at the method level for some components

within withdraw scenario of ATM system. The column Triggered Hazard shows

the occurrence of failure when an event is triggered and some action is performed.

The column Component shows the component in which there is an occurrence of

fault. In the table, failure mode is any one failure mode out of the four failure

modes (F1, F2, F3, F4) discussed above. The column Effect shows the effect of the

failure mode on the system. Severity is any one severity out of the four severities-

Catastrophic, Major, Marginal and Minor- discussed above.

Table 5.4: SFMEA at method level for some components within the Withdraw Sce-
nario

Triggered
Hazard

Component Failure mode Effect Severity

A fault in
dispensing
cash

CashDispenser CashDispenser
is empty but
not raising any
exception

Money will be deducted
from the account immedi-
ately though the customer
is not able to withdraw
the said amount. As ev-
ery transactions are main-
tained in the Log, the ac-
count will be updated by
the banker later on.

Major

A fault in
performing
transaction

Withdrawal The object of
Withdrawal com-
ponent fails to
check the suffi-
ciency of cash
in the customer
account

ATM gives out more
money than it is avail-
able in the corresponding
account.

Catastrophic

A fault in
completing
transaction

Withdrawal The object of
Withdrawal com-
ponent fails to
create a new
receipt

Receipt will not be printed Minor

A fault
in read-
ing menu
choice from
the screen

Withdrawal Failed to call the
readMenuChoice
method of an ob-
ject of component
CustomerConsole

Transaction can’t be per-
formed.

Marginal
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There can be a couple of severity level for a component within a scenario. For

example, the component Withdrawal has two severity levels (Minor, Marginal) as

shown in Table 5.4. We consider only the worst-case consequence of a failure as the

severity level for the component. For the component Withdrawal, we consider the

Marginal severity level within the withdraw scenario.

5.1.3 Business value estimation

For ATM, the main use cases are deposit, withdraw, inquiry balance and transfer

money. The business value (Value) for ATM is estimated in Table 2.1. We consider

only the use cases that are used by the customer. start-up and shut-down use cases

are not considered as they are the basic use cases to run the system. We use that

Values to estimate the Values of various components of ATM system. A component

often serves many different use cases. So, we calculate the importance of a component

on the basis of its involvement with various use cases. The proposed methodology

consists of the following steps:

1. Constructing the Component Dependence Diagram (CDD) from the source

code.

2. Extracting slices of various scenarios from the CDD and using the slices for

estimating the business value for a component.

Component Dependence Diagram

A Component Dependence Diagram (CDD) is a directed graph that is used as an

intermediate representation of a program. Each node of a CDD corresponds to a

component of the program. A component is a basic executable unit. In a procedure-

oriented program, a component can be a function whereas, it is as simple as a class

in an object-oriented program. The edges of the graph represent either control de-

pendency or data dependency among the nodes. These dependencies are represented

by directed arrows. We do not use different symbols to represent these two types

of dependencies since our method checks for any type of dependency. If both data

and control dependencies exist between two components, we draw only one arrow be-

tween the corresponding nodes. Figure 5.1 shows an example program and its CDD.

In the example program shown in Figure 5.1a, the statement store (d) in function f2

indicates saving of latest value of the variable d to a memory location. Similarly, the
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statement read (d) in function f3 indicates reading of the value of variable d that

was last saved by function f2.

We view a CDD as a simplified form of a System Dependence Graph (SDG) [29]

but, a CDD does not have as many types of edges as SDG [29]. Unlike SDG, a

CDD does not represent the individual statements of a program because, inclusion

of individual statements makes the graph unnecessarily complicated. In Extended

Control Flow Graph (ECFG) [104], a node refers to a method of an object-oriented

program whereas, in CDD, a node refers to a component. The aim of referring a

node of CDD to a component instead of a method in an object-oriented program is

to make the graph simple and easily understandable. We compare CDD with the

Component Dependence Graph (CDG) proposed by Yacoub et al. [70] where, nodes

refer to components. They have adapted control flow graph principle to represent

the dependency between two components and possible execution paths. Unlike our

approach, Yacoub et.al. [70] have considered only control dependency between com-

ponents. In their approach, the components are assumed to be independent. The

existence of bug in one component is not responsible for the failure of another com-

ponent. As we have considered the data dependency between two components, a bug

in one component may have an effect on other components.

main(){
int i;
i=readUserOption();
if(i== 1) f1();
else         f3();

}
f1(){
         .
         .

f2();
}

f2(){
.
.
.
store(d);
print(o1);
}
f3(){
read(d);
.
.
print(o2);
}

int d[10];

(a) An example program

main

O1

O2

f2

i

f3

f1

(b) Component Dependence Diagram of
program P

Figure 5.1: An example program with its CDD

The CDD, generated in our approach, satisfies all the following constraints:

� No node is isolated.
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� All use cases put together cover all nodes.

� No self loops.

� The node at which a use case starts execution is not control dependent on other

nodes of the graph.

� The nodes tested by any one test case are a subset of nodes belonging to slice

of a scenario.

Once the intermediate graph, CDD, is constructed, we use it to extract slices with

respect to various scenarios for prioritizing the components within a system.

Extracting slices of CDD with respect to various scenarios and estimating
the Value of a component

Each use case has one main scenario and a number of alternative scenarios. We only

consider the main scenario and do not consider the alternative scenarios. The Value

of a use case is same as the Value of its main scenario.

We compute the slice Si of the CDD with respect to scenario Si and represent it

as Slice(CDD,Si). The slice contains the set of components that are either executed

during the execution of the scenario Si or the results of the components which are

saved in different variables, used during the execution of Si.

Value estimation scheme

Once, the business values for all scenarios of a system are determined, we estimate

the business value, V alue(Ci), for a component Ci, as follows.

V alue(Ci) =
nos∑
j=1

qj, (5.1)

Where, qj = V aluej, if Ci ∈ slice(Sj) else, qj = 0. In Equation 5.1, nos is

the number of scenarios within a system, V aluej is the probability of j-th scenario

and slice(Sj) is the slice of the CDD with respect to j-th scenario. The priority

value of a component intuitively indicates the priority of its being used during an

actual operation of the program. We now algorithmically present our business value

estimation scheme for various components within a system.

Value estimation Algorithm

1. Construct the CDD of the program.
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2. Determine the business value V aluei for each scenario Si within a system.

3. For each component Cj of CDD do, V alue(Cj)=0.

4. For each scenario Si of the program do

(a) Compute the slice of scenario Si from the CDD.

(b) for each component Cj in slice(Si) do, V alue(Cj) = V alue(Cj) + V aluei.

5. Print the Value computed for each component.

We now explain our Value estimation method using a simple example. Let us assume

that the program shown in Figure 5.1a has two use cases: U1 and U2. Each use case

has only one scenario. Let, the business values associated with scenario S1 and S2 be

0.8 and 0.2, respectively. Figure 5.2a shows the Values obtained in various functions

after Slice1, the slice of CDD with respect to scenario S1. Each component that is

executed within the slice Slice1 is getting marked by 0.8, which is the Value of the

scenario S1. Next, the slice of CDD with respect to scenario S2, Slice2, is computed.

The business values of various components after slicing the CDD with respect to

both the scenarios (S1 and S2) are obtained, as shown in Figure 5.2b. In the said

figure, the functions main and f2, have Value 1, each. This means that both the

functions main and f2 are either getting executed or their results are used by both

the scenarios S1 and S2. It may be noted that the business value of 1 for a function

indicates that it is required for all scenarios of the system. Table 5.5 shows the

business values associated with various components of ATM system.

O1

O2

main
0.8i

 

0.0

0.8

0.8
f1

f3

f2

(a) Values after slicing scenario S1

O1

O2

main
1.0i

 

0.2

1.0

0.8
f1

f3

f2

(b) Values after slicing scenarios S1 and S2

Figure 5.2: Priority of each component after slicing S1 and S2
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Table 5.5: Business values associated with various components of ATM system

Component V laue
Session 0.93

Withdrawal 0.77
Deposit 0.69
Transfer 0.39
Inquary 0.58

Cardreader 1
EnvolopAccepter 0.69
CustomerConsole 1

Log 0.86

Table 5.6: Criticality computation for Transfer component of ATM system

Influence value EEC SC Severity Val Criticality
0.67 0.3 0.3 0.75 .39 2.41

5.1.4 Criticality computation

For assigning criticality, the commonly used method is to do a proper weight assign-

ment and then, calculate a weighted sum for a class [105]. We assign a relative weight

for each chosen factor of a class. For each factor, we assign equal weight. The weight

may vary depending on the nature of the system. An example of criticality computa-

tion for a component is shown in Table 5.6. The headings used for different columns

of the table are: EEC- Expected Execution Time, SC- Structural Complexity and

Val- Business value associated with a component within a system. The estimated

criticality of a component is normalized by dividing the criticality of the component

with the sum of the total criticality of all components within the system.

There are a lot of technical, productivity and environmental complexity factors

that exist within a system. For simplicity, we consider only five factors for complexity

estimation. Consideration of a number of factors improve the accuracy of criticality

estimation method but, it will make the process complicated and confusing. In Table

5.6, we assign weight of 1 to each complexity factor. It may vary from application

to application and it is purely a subjective matter.

5.2 Experimental Studies

We have applied our proposed complexity estimation method and prioritized the test

effort according to their estimated complexity on LMS, SMA and ATM case studies.

These are implemented in Java and are introduced in Chapter 4.
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First, we applied our proposed algorithm, MethodInfluence (discussed in Chapter

4) for each case study to get the influence of various classes within a system. Then,

the average execution time of a class within a system was decided by executing

the system 100 times and collecting the execution time of various classes in each

run. 100 test cases were selected randomly based on operational profile data. We

calculated WMC for a class manually through the source code. To get the RFC of

a class, we have developed an algorithm that traverses the ESDG of the system and

generates RFC for the class. The severity of a class within a system was decided

by seeding different types of faults in the class and observing the system failures by

executing the system a number of times in the operational environment. Finally, we

have computed the criticality for each class as shown in Table 5.6 and ranked the

classes according to their criticality. Once the criticality of various classes within a

system are estimated, our aim is to validate our result. For this, we have conducted

experiments to check how the faults in these classes are affecting the reliability of the

system. The experiment is described below.

We have used fault seeding for evaluating the effectiveness of our proposed ap-

proach. It has been shown that, fault seeding is an effective practice for measuring

the testing method efficiency [106]. We have carefully chosen some mutation oper-

ators to seed bugs randomly. The fault density is considered as a constant equal to

0.05 for each case study. This means that in a case study consisting of 1000 number

of lines, 50 number of bugs were inserted. The seeded faults are either class mutation

operators [93] or interface mutation operators [22, 107]. The class mutation oper-

ators are targeted at object-oriented specific features which Java provides such as

class declaration and references, single inheritance, interface, information hiding and

polymorphism. In this chapter, we have considered four class mutation operators to

simulate the faults. These are:

� CRT operator-Type replacement: This operator replaces a reference type with

all the compatible types (the name of other classes and interfaces) found from

a cluster. There is a chance of subtle type errors by this mutant.

� CON operator- Initial states and object replacement: A Java class usually

provides a number of constructors to capture the different ways of creating

objects (constructor overloading). This operator replaces a constructor with

other overloaded constructors. Some times, constructor of sub class may be

replaced by constructor of super class by this operator. Object initialization
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error is related to this operator which happens frequently.

� OVM operator- Method replacement: This operator generates a mutant by

deactivating the overriding method so that a reference to the overriding method

actually goes to the overridden method. Actually a overriding method in a sub

class has different functionality to the overridden method in a super class. So

there is a chance of some semantic errors by this operator.

� AMC operator- Access mode replacement: This operator replaces a certain

Java access mode with three other alternatives such as private, protected and

public. For example, a field declared with a protected access mode can be

mutated to private and public.

There is a number of interactions among components in an object-oriented applica-

tion. Therefore, there are opportunities for integration/interface faults. Delamaro

et. al. [107] have proposed Interface Mutation (IM) with the aim to test thoroughly

the interactions among various units. Suppose, there are three functions f1, f2 and

f3 within a system and to test the connection between f1 and f3, we insert mutants

inside the component f3. In this case, these mutants may be identified through the

test cases that execute calls to f3 from f2. As a result, the connection between f1-f3

cannot be tested. For this, there is a need to consider the proper place from where a

function is called. Keeping this in view, we have carefully considered some interface

mutation operators from the mutant set proposed in [107]. The IM are as follows.

1. Applying mutants within the called function: The mutants considered under

this category are: Direct Variable Replacement operator, Indirect Variable op-

erator and Return Statement operators.

2. Applying mutants inside the calling function: It is applied to the call arguments.

The mutants considered under this category are Unary Operator Insertion and

Function Call Deletion. The last operator is a missing transition. It is not

applied to the argument but to the whole function call. In a connection f1-f2,

it deletes the call to the function f2. At the time of implementing the mutant

inside an expression, special care is taken to replace it by an appropriate value,

if the deleted function is returning any value.

First, the testing time for each case study was decided based on the number of

classes, complexity of each class and number of object points [92] in the case studies.

70



5.2 Experimental Studies Criticality Estimation

Then, we made two copies of the source code of each case study and applied two

different testing methods. In the first testing method, the components are priori-

tized according to their structural complexity [41] only, whereas in the second testing

method, the components are prioritized according to their estimated complexity based

on our proposed complexity estimation approach. The first testing method was ap-

plied to the first copy and the second testing method was applied to the second copy

of each case study.

Same testing time was allocated for each copy of a case study. At this point, we

emphasize the fact that our aim is not to achieve complete fault-coverage with the

available test resources, but to check the efficiency of our proposed testing method.

The number of test cases designed for a component at the unit level was decided

according to their estimated criticality values. As a class with high influence value

provides services to others, a single bug in the class may cause interface bugs, which

we cannot detect at the unit level. Interface bugs are detected at the integration level

and interface testing assures that the classes have communicated correctly. So, at the

integration level, we applied coupling based testing techniques [108], which is based on

client-server concept. In the coupling based approach [108], when a client class calls

another server class, first some method sequences of the client class are considered.

These method sequences are subset of the set of method sequences decided at unit

testing. Then, for each method sequence, the method sequences of the called class

(server) are decided. At a time, one server class is considered for each client class.

For one client method sequence, there can be number of server method sequences. In

this level, the testing will be effective, if the method sequences of the client class will

be complete. As we have tested thoroughly the classes with high criticality at the

unit level in the second copy of a case study, we have considered the coupling-based

integration testing [108] to cover all the possible interface faults of critical classes.

We have taken the help of a coverage analysis testing tool JaBUTi [109] for getting

the coverage report of a test case. The example of the coverage report by two test

cases at the unit level through JaBUTi is shown in Figure 5.3.

At the unit and integration level, though testing time is same for the two copies of

a case study, the test sets are different as the priority level of a component is different

in different testing methods. After the completion of integration testing, we checked

the mutation score of the test sets generated for two copies of a case study by two

different testing methods.
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(a) Test cases executed for the component CashDispenser of ATM

(b) Coverage shown by JaBUTi test tool

Figure 5.3: Test execution details for the component CashDispenser

The mutation score S, for a test set T, is defined as follows.

MutationScore(S,T) =
#dead mutants

#mutants seeded−#equivalent mutants

Table 5.7 shows the mutation score of generated test sets by two different testing

methods. In Table 5.7, it is observed that MST and MSP are nearly equal. In

LMS case study, mutation score of the first testing method is high, whereas in

SMA and ATM case studies, the mutation score of the second testing method is

high, in which our method is applied. We observed that our method is also equally

competent with the first testing method in finding mutants. As we consider average

execution time, influence value and severity for test effort prioritization in addition to
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Table 5.7: Mutation Score by two testing methods

Test TC# Mu# EMu# MST MSP

LMS 112 22 2 0.89 0.82
SMA 73 17 0 0.74 0.77
ATM 211 31 7 0.8 0.89

TC#:Number of test cases, Mu#: Number of mutants, EMu#: Number of equivalent mutants, MST : Mutation
score by first testing method in which the components were prioritized based on their structural complexity, MSP :

Mutation score by second testing method in which the components were prioritized based on our proposed
approach.

structural complexity, we claim that our method exposes the important bugs, which

are responsible for frequent failures or severe failures. We conducted another set of

experiments to check the types of failures observed in the operational environment.

After resolving the detected bugs, we found that some residual bugs are existing

in both the copies of the case studies. A few bugs were detected toward the end of

testing, which could not be fixed due to the shortage of testing time. At this point, we

again emphasize the fact that our aim is not to achieve complete fault-coverage with a

minimal test suite size. We fixed a test budget for each case study before the testing

phase and our aim is to ensure the efficiency of both testing methods within the

available test budget. Therefore, after the completion of testing phase, we observed

the effect of those residual bugs in both copies of each case study by invoking random

services. For this, new system level test cases were randomly generated based on

operational profile [9] for observing the behavior of the system at post-release stage.

At this point, we did not fix any detected bug. Analytical comparison of the two

testing methods were done by running the same input set on the results obtained by

the discussed testing methods. The tested source code of each case study were again

executed to test their behavior at the operational environment.

5.2.1 Result analysis

The results of our simulation studies are summarized in Table 5.8. The headings

used for the different columns of the table are listed below.

Test# is number of test cases in the test set.

Failt# is the number of failures observed in the tested source code obtained through

first testing method in which the components were prioritized for testing according

to their structural complexity.

Failp# is the number of failures observed in the tested source code obtained through

second testing method in which the components were prioritized for testing according

to their estimated complexity obtained through our proposed method.
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CS is a Case Study

FCa, FCr, FMa and FM represent the number of catastrophic, Major, marginal and

minor failures.

From Table 5.8, it is observed that the post-release failures are less in the second copy

of a case study, Failp#, to which our method is applied. Not only the number of

failures are less, but also catastrophic and critical failures are rarely observed. Only

some minor failures are observed in the copy tested by our approach, Failp#, such as

displaying results in some different format. This type of failures have very less effect

on the system and also on customer. Some highly severed failures are observed in the

first copy of each case study. It is because, some critical bugs were detected toward

the end of test cycle, which were not fixed due to shortage of testing time, whereas

these critical bugs were detected at the early stage of test cycle in the second copy

of a case study to which our approach was applied.

Through a detailed analysis of the results of both testing methods, we conclude

that our proposed test effort prioritization method helps to minimize the post-release

failures of a system and also helps in minimizing the catastrophic and major types

of failures at the operational environment. As a result of this, user’s perception on

overall reliability of the system is improved. The efficiency of our proposed method

will be improved, if we run the software for long duration by taking a number of test

cases based on operational profile.

Table 5.8: Failure observation at the time of release

CS Test# Failt# Failp#
FCa FCr FMa FM FCa FCr FMa FM

LMS 50 0 2 3 0 0 0 2 1
100 0 5 3 4 0 0 3 3
150 1 6 3 5 0 2 3 4

SMA 50 0 1 1 4 0 0 1 3
100 1 1 1 4 0 0 2 4
150 1 2 1 4 0 1 2 4

ATM 50 0 2 3 6 0 0 2 2
100 0 2 4 6 0 0 4 2
150 0 2 4 4 0 0 4 4

We observed that the performance rate is drastically increased by our method,

when the system is executed for a long time, in all the three case studies.

5.3 Summary

We have proposed a criticality estimation method at the code level and prioritized

the test effort for various elements within a system according to their estimated crit-
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icality. We have considered five important factors of a component: influence value,

average execution time, structural complexity, severity and business value for criti-

cality computation. Our test effort prioritization method guides the tester to detect

the important bugs at the early phase of testing that are responsible for frequent or

severe failures. As a result, the user’s perception on the reliability of the system is

improved within the available test budget. Our approach helps to increase the test

efficiency as it is linked to the measure for both internal and external factors of a

program element.

The limitation with this approach is that once a priority value is assigned to a

component, it is not changed throughout the testing phase. We observed that the

importance of a component for testing varies at different instances of testing phase.

To solve this problem, we propose a multi-cycle based test effort prioritization method

in the next chapter, in which the priority of a component changes between two test

cycles.
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Chapter 6

Multi Cycle-based Test Effort
Prioritization Approach

A moderate size application generally consists of a number of components. The

components interact among themselves through a number of operations. Thorough

testing of all components is often not feasible due to limited testing budgets. For

achieving the desired level of reliability within the available test budget, a good test

plan is required. A good test plan helps to monitor and improve the efficiency of

testing. Sometimes, the testing team finds important bugs (important from the user’s

point of view) toward the end of the testing phase. As a result, the development team

may not fix it due to shortage of time. Even if the detected bugs are fixed, the testing

team may not be able to validate it within a short period.

Test effort prioritization technique helps the tester to do the best possible job

within the available test resources [105]. The tester gets the best possible chance

to reveal the important bugs. Important bugs are those that reside within critical

functions and modules of the system

Our aim is to identify the criticality of a component before the testing phase and

allocate test effort to the component according to its criticality. If bugs from the

critical components are detected and fixed during testing, the post-release failure

rate of the system will be reduced. The importance of a component may vary at

different points of the testing phase. If a component has failed in past, then there

is a possibility that it will fail in near future [54, 110]. Hence, we analyze the failure

history of a component within a system and use it as a factor for estimating the test

priority of the component in the next phase of testing.

We propose a multi cycle-based test effort prioritization approach to test the basic

functionalities of the system. We institute three different test cycles meant to focus

on different aspects of the quality of the system: (i) coverage of critical components,

76



Multi Cycle-based Test Effort Prioritization Approach

(ii) coverage of fault-prone components and (iii) coverage of components with high

business values.

In the existing prioritization-based testing methods [4–6], the priorities are as-

signed to the test cases and the priority assignment is done only once for the entire

duration of the test. Unlike the existing approaches, we assign priorities to the pro-

gram elements instead of assigning that to the test cases. We also assign different

priorities to the same program element at different test cycles. A stipulated time

period is set for a test cycle. The duration of a test cycle may vary under certain

circumstances, but the duration of the entire testing time is fixed.

In the first test cycle, we estimate the criticality of a component within a system

on the basis of its influence value, severity and execution probability. In our previous

work (Chapter 4), we presented a static metric to compute the influence value of a

class within a system. Dynamic metric captures the dynamic behavior of an appli-

cation and helps the analyst to make a good test plan. In this chapter, we propose

an algorithm to get the influence value through dynamic analysis of source code. We

assign test effort to the components according to their estimated criticality. Test pri-

ority of a component is set to its estimated criticality with the aim to reveal a number

of bugs from high critical components. Though, the influence value of a component

affects the reliability of a system, this factor alone is not sufficient to estimate the

criticality of a component. In addition to this, we consider another two factors: (i)

severity and (ii) execution probability. Severity estimates the impact of failure of the

component on the system. Our aim is not only to improve the reliability of a system,

but also to reduce the post-release failures that have a high consequence on the sys-

tem. The reliability calculation only counts the number of failures observed after the

testing phase and it does not consider the impact of a failure (severity of a failure)

on the system. We consider the execution probability of a component as a factor for

criticality computation because the chance of failure is high for a component, which

is executed for a number of times. Once the criticality of a component is computed

within a system, exhaustive testing has to be carried out to minimize bugs in high

critical components. This means, we cut down testing in less critical components to

save the testing time for a high critical component. In this cycle, we conduct unit,

integration and system testing.

In the second test cycle, the prioritization technique is different. At this stage,

we assume that the critical components were tested thoroughly during previous test
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cycle. The components in which a number of faults were detected in the past are likely

to be faulty in future [110]. Keeping this in mind, we set a goal in this cycle, which

is different from that of the first cycle. Our aim is to allocate extra test effort to the

components that have failed a number of times in the previous cycle. So, we assign

test priority to the components on the basis of their failure history. We allocate extra

testing effort to the components that have failed a number of times during previous

cycle. In this cycle, we again conduct unit, integration and system testing. We match

the coverage history of the components with their current estimated priority. There

may be some components with different priory in different test cycles. If the desired

code coverage level [11, 12] of a component in this cycle is already covered in the

previous test cycle, we leave this as it is; otherwise, new test cases are executed for

the component.

It is a difficult task for a developer to guess, which high level functions are impor-

tant to the customer. To get the customer satisfaction and make the testing process

effective within the available test budget, we consider the business value associated

with a use case scenario for testing at the third test cycle. In the previous test cycles,

the components were prioritized based on their criticality and failure history. In the

third test cycle, the goal is to rigorously test the use cases that are important to the

organization. Domain experts observe that the values of use cases follow a Pareto

distribution, i.e., 20% of the requirements cover 80% of business value [20]. Hence,

from a business point of view, test effort distribution based on the return on invest-

ment will be effective. In the third test cycle, we first prioritize the use case scenarios

within a system based on their business values and then conduct only system testing.

We apply our proposed multi cycle-based test effort prioritization approach on

LMS, SMA and ATM case studies. These are already introduced in Chapter 4. We

illustrate our proposed approach through the case study ATM. Figure 6.1 shows the

communication diagram of withdraw use case of ATM. We consider it as an running

example in next section.

The rest of the chapter is organized as follows. We discuss our proposed multi

cycle-based test effort prioritization approach in Section 6.1 and present the experi-

mental studies in Section 6.2. We give a summary of the chapter in Section 6.3.

6.1 Our Approach

It consists of the following steps:
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Figure 6.1: Communication diagram for withdraw use case

1. First test cycle: Computing the criticality of a component and prioritizing the

components for testing according to their estimated criticality (Section 6.1.1).

2. Second test cycle: Collecting the failure and fault detection history of the com-

ponents in the previous test cycle and prioritizing the components accordingly

(Section 6.1.2).

3. Third test cycle: Computing the business value associated with each high level

function (use case) and prioritizing the use case scenarios according to their

estimated business values (Section 6.1.3).

Below, we discuss each step in detail.

6.1.1 First test cycle

First, we compute the criticality of a component within a scenario and then, compute

the criticality of that component within the whole system. For criticality analysis,

we consider two major inputs: dynamic influence value and severity of a component.

How to estimate the severity of a component at the code level is already discussed in

Chapter 5. First, we discuss about the Dynamic Influence Metric and then present

the approach for criticality computation. Once the criticality of a component within

various scenarios of a system are estimated, we compute the criticality of the com-

ponent within the whole system. Finally, we assign test effort to various components

according to their estimated criticality.
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Dynamic Influence Metric

We have already proposed a code-based algorithm to compute the influence value of

a component at the class level in Chapter 4. Testing the behavior of an object is an

important task in testing the object-oriented program. The behavior of an object

at any execution point can be tested by analyzing the slice of that object at that

point during run time. If an object is executed for a long time then, there is a high

probability of execution of any existing faults in that object. The occurrence of state

transitions is also high in that object due to the invocation of various methods and

modification of its attributes. According to Briand et al. [90], the existence of a

bug within a class with high export coupling causes frequent failures as it is used by

many number of classes. Keeping this in mind, we propose an execution-trace based

metric called Dynamic Influence Metric and use it for computing the criticality of a

component within a scenario.

To get the Dynamic Influence Metric, first we propose a new slicing technique to

compute the slices of various interacting objects within a scenario. Then, we use the

slices to get the influence value of a given object within the scenario. In Chapter

4, we have already mentioned that the class level influence metric shows how many

other classes are requesting the services from a class within a system, but in object

level, using the influence metric, we can get how often these requests are executed

within a scenario. Suppose there are two possibilities within a scenario: (i) class c1 is

requesting services from another class c2 five times (ii) class c1 is requesting services

from five different classes. The first one shows the number of service invocations

whereas the later one shows the number of distinct services invoked within a scenario.

The first one is collected at run time and is used to compute the dynamic influence

of an object. In object level, our algorithm shows an object is providing services to

which objects and how many times to each object within a scenario. In this level, we

check how many objects are using the given object, directly or indirectly, within a

scenario. At statement level, our algorithm shows how many statements are affected

by the given object out of the total number of statements executed by the test case.

For simplicity, we assume that one use case consists of one scenario; Only the main

scenario is considered, the alternate scenarios are not considered. At run time, our

approach on Dynamic Influence Metric maintains all dynamic informations such as

the occurrence of object creations, deletions, invocation of various methods, attribute

references etc.
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The successful execution of a method is dependent on the corresponding state of

its object. For any unpredictable behavior of a method, it is required to check the

consistency of its corresponding object’s state. Our object slicing approach helps the

tester to check the state space before and after the execution of a method through

its data members. Our approach acts as an active monitor and reports the objects

which are responsible for changing the state of the corresponding object within a

scenario. Our dynamic slicing approach overcomes some limitations of the existing

graph reachability methods for slicing [28, 31, 38]. The main limitation in these

existing slicing methods is that when the slicing criteria changes, we have to again

start from the slicing point. The slices for different variables at different nodes

are obtained by traversing the graph several times starting from the slice point.

The advantage of our slicing approach is that, the previous results that are saved

in memory can be reused instead of starting from the beginning every time. The

dynamic slice of an object at any execution point is the combination of dynamic

slices of its data members. Mund and Mall [111] have proposed an inter procedural

dynamic slicing algorithm to compute the dynamic slice of procedural programs. The

advantage of their method is that, the previous results that are saved in memory are

reused instead of starting from the beginning every time. They have not considered

the object-orientation aspects. We have extended their work to get the dynamic slice

of object-oriented programs. With this new dynamic slicing approach, we compute

the Dynamic Influence Metric that gives the influence value of an object by checking

its contribution at every execution step.

We propose an algorithm called Influence Through Dynamic Slice (ITDS) to com-

pute the influence value of an object within a scenario. The rationale behind this

algorithm is to prioritize the regions of the source code for testing because, some

components of a program are more critical and sensitive to bugs than others, and

thus should be tested thoroughly. In this section, we first provide the definitions used

in our algorithm and then, present our proposed algorithm, ITDS. We also explain

the working of our proposed algorithm through an example.

Definitions used in the algorithm

Before presenting our proposed algorithm, we first introduce a few definitions that

are used in the algorithm. Def(var) and Use(var) represent the set of nodes in the

intermediate graph that are used for defining and using the variable var, respectively.

During the execution of a program, a statement always corresponds to a node n in
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CDG. In the rest of the thesis, we use the terms vertex and node interchangeably.

Def. 1. RecDefV ar(v) and RecDefControl(n): A node defining a variable v

maintains a data structure named RecDefV ar(v) that stores the set of nodes on

which the variable v is dependent. Similarly, a predicate node n, called control node,

maintains a data structure named RecDefControl(n) that store the set of nodes

on which node n is dependent. At the time of execution, a node which maintains

RecDefV ar(v) or RecDefControl(n) based on the node type (defining a variable,

a predicate) is updated as:

{n ∪ RecDefV ar(var1) ∪ RecDefV ar(var2)∪ . . . ∪ RecDefV ar(vark)

∪ RecDefControl(S) ∪ ActiveCallSlice} where, {var1, var2, . . . , vark} are the

variables used at node n and S is the most recently executed control node under

which node n is executing. ActiveCallSlice is described below. It stores the infor-

mation of calling function. If n is a loop control node, and the present execution of

node n corresponds to exit from the loop, then RecDefControl(n) = ∅.
Def. 2. ActiveCallSlice: At the time of execution of a program, the data structure

ActiveCallSlice is used to maintain the information of the most recent function call.

At a particular instance of execution time, it represents node n corresponding to the

most recent execution of calling a function.

Def. 3. CallSliceStack: It is a stack of function calls. At the execution time, it

stores a relevant sequence of nested function calls.

Def. 4. ActiveReturnSlice: It maintains the data structure of a return statement.

At the execution of a return node n,

ActiveReturnSlice = { n ∪ActiveCallSlice ∪RecDefV ar(var1) ∪RecDefV ar(var2)

∪ · · · ∪ RecDefV ar(vark) ∪ RecDefControl(S)},
where var1, var2, · · · , vark are the variables used at node n and S is the most re-

cently executed control node under which node n is executing.

Def. 5. Formal(n, f), Actual(n, a): When a function is called at node n, some pa-

rameters may be passed by value or by reference. If at the calling node n, the actual

parameter is a and its corresponding formal parameter is f then, Actual(n, a) = f ⇔
Formal(n, f) = a.

The examples for each of the above definition are given later in this section through

an example program (working of ITDS algorithm).
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Algorithm ITDS

The input data are provided to run the program and the name of the desired object

is provided to calculate its influence. ITDS provides two outputs: (i) the dynamic

slice of an object at any execution point and (ii) the influence value of the given

object after the execution is completed. The dynamic slice of an object is required to

compute influence value and also used at the time of debugging. influence value of an

object is used as an input at the time of criticality computation. The influence value

of an object is computed by checking how many statements of the source code are

dependent on the given object out of the total number of statements executed by

the supplied input. First, an intermediate representation of the source code called

Control Dependence Graph (CDG) [112] is constructed. We store the frequency of use

of a node by a given object at run time, as there is a difference between a node used

by ten different objects and a node used by an object ten times. At the execution of

a scenario, our algorithm maintains the set of objects that are dependent on a given

object and computes the influence value of the given object within the scenario.

During the execution of a program, we maintain a set of dependent nodes for

each variable that are used during program execution. Our algorithm, ITDS, checks

whether the currently executed node is using the desired object, for which the in-

fluence value is computed. The currently executed node will be added to the influ-

ence set of the desired object, if it uses any node from the dependence set of the

desired object. We use the data structure named Active object set to get the list of

currently executed objects at any instance of execution. When a method is invoked,

all the data members of the corresponding object are passed as call by reference.

Now, we present our algorithm, ITDS, in pseudo code form.

Algorithm: ITDS(CDG, Object O) {
Input : CDG of an object-oriented program and the desired object for which the

influence value will be calculated.

Output 1: Dynamic slice of an object at any execution point.

Output 2: influence value of the desired object.

1. Do the initialization before the execution of the program starts.

Set CallSliceStack = ∅, ActiveCallSlice=∅, influence(O) = ∅,
total executed nodes = 0, temp = ∅ and Active object set = ∅.
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2. Run the program with the given set of inputs and repeat the following steps

until the program ends.

Let node n in CDG corresponds to the statement s of the program.

2.1 Carry out the following before each statement s of the program is executed.

a) If node n represents a method invocation, do the followings:

a.1) If node n is a call to a constructor class then, store the object in

Active object set and for each data member d of O do:

RecDefV ar(O.d)= ∅.
If node n is a call to a destructor class then, delete the object

from Active object set.

a.2) Update ActiveCallSlice and CallSliceStack as in Def. 2 and Def.

3, respectively.

a.3) For each actual parameter a explicitly defined in the calling node

n do:

RecDefV ar(Formal(n, a)) = RecDefV ar(a)

// If the actual parameter is an object then, each data member of

that object is an actual parameter for that function call.

b) If n is a RETURN node then, update ActiveReturnSlice as in Def.

4.

2.2 Carry out the following after each statement s of the program P is exe-

cuted.

// update the data structure of node n

a) If node n is only defining a variable var and not a call node then

Update RecDefV ar(var) as in Def. 1.

b) Else if node n is a control node then update RecDefControl(n) as in

Def. 1.

c) Else if n is a node which represents a method invocation statement

then

c.1) If the corresponding invoked method returns a value which is

defining a variable var in node n then

RecDefV ar(var) = ActiveReturnSlice.

c.2) First, update CallSliceStack and ActiveCallSlice as in Def. 3

and Def. 2 respectively and then, set ActiveReturnSlice = ∅.
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c.3) For each local variable l var of the called function do

RecDefV ar(l var) = ∅

d) Store the updated data structure of node n in set temp.

e) total executed nodes++

2.3 Carry out the following to include the current node n in the influence list

of object O

//Check Influence of the Object

a) If node n is a call to a member function by the input object O or

object O is an actual parameter in the function call then, mark node

n.

b) Else, check the set temp to find whether any node of

RecDefV ar(O.di) is used in current node n. If the node is used then,

mark node n.

// RecDefV ar(O.di) contains the set of nodes used in defining the

data members of object O

c) If n is marked then add n and RecDefControl(S) to influence(O),

where S is the most recently executed control node under which node

n is executing, i.e. influence(O) = influence(O) ∪ n ∪RecDefControl(S).

2.4 temp = ∅

// Object Slicing

2.5 If a slicing command < n, obj > is given, where n is the currently executed

node and obj is any object in the Active object set, then

DynamicSlice (n, obj) = RecDefVar(obj.d1) ∪ RecDefVar(obj.d2)∪ · · · ∪
RecDefVar(obj.dn), where di is the i-th data member of obj and RecDefVar(obj.di)

is the updated data structure of di after execution of current node.

2.6 Exit if the execution of the program is completed or aborted.

3. After the end of execution, calculate % of influence of the object O as follows:

influence value(O) =
Number of elements in the set influence (O)

total executed nodes
× 100

}
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Explanation of ITDS Algorithm: Algorithm ITDS calculates the influence of

a single object in an object-oriented program, where influence refers to the contri-

bution or usage of the object at every execution step. The influence is calculated as

the total number of execution points (statements) involving the given object divided

by the total number of execution points in the program. This influence value serves

as a metric in test effort prioritization. The algorithm also produces the dynamic

slice of an object, identifying the nodes of the program source that would need to be

reviewed with a high priority in order to detect bugs in the given object.

ITDS checks the type of each node in a CDG and performs different operations

on different nodes. A statement of a program is represented as a node in CDG. A

node may be a call node or a definition node or a control node or a return node.

Call node calls a function. A definition node defines a variable. A control node

defines a loop, on which the execution of other nodes are dependent. A return node

returns the output of a called function. The algorithm performs some computation

after the execution of a node. When a node defining a variable is executed, the

algorithm maintains the set of nodes on which the variable is dependent. Similarly,

when a control node is executed, the algorithm maintains the set of nodes on which

the control node is dependent. If a node is a call node or return node, it performs

some operation before the execution of the node and also performs some operation

after the execution of the node. When a new object is created due to the execution

of a call node, which calls to a constructor class, the algorithm maintains dependent

list for each data member of the object from that execution point. The algorithm

maintains a list of objects that are interacting at any execution point. The algorithm

maintains a stack to store the nesting of calls, which is updated before and after the

execution of a call node. The algorithm updates the data structure of the formal

parameters with that of the actual parameter.

Once the data structures are updated after the execution of a node, the algorithm

performs a set of operations to check whether the currently executed node will be

included in the influence list of the given object. When a slicing command is given

to get the dynamic slice of an object, the algorithm computes the dynamic slice of

the object by taking a union of the dynamic slices of its data members. After the

execution of the program is completed, the algorithm checks how many nodes are

executed and out of that how many nodes have used the given object.

Complexity Analysis: Each statement of our considered program is either a
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control statement or defining a variable or calling a function or an output statement.

The data structures used in the program are Active object set, RecDefV ar(var),

RecDefCon(n), ActiveDataSlice, ActiveReturnSlice and

CallSliceStack. Excepting CallSliceStack, each one has the maximum size of N ,

whereN is the total number of statements in the program. The size of CallSliceStack

is c ∗ N , where c is the maximum level of call nesting in a program. So, the worst

case space complexity is O(N). The time complexity is linear to the execution time

of a program.

Working of ITDS Algorithm

Consider the example program shown in Figure 6.2a. The Control Dependence Graph

(CDG) of the example program is shown in Figure 6.2b. During the initialization

step, the algorithm sets CallSliceStack=∅ and ActiveCallSlice =∅. We have run the

program with input 12 for n and computed the influence value of object bx after the

execution is completed. Now, we have the followings for some executed nodes of the

program.

(a) An example program (b) Its Control Dependence Graph

Figure 6.2: Program with its Control Dependence Graph

� After execution of node 10:RecDefV ar(bx.a) = {2, 10}, RecDefV ar(bx.b) =

{3, 10}
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� After execution of node 11: RecDefV ar(cx.a) = {2, 11}, RecDefV ar(cx.b) =

{3, 11}

� After execution of node 12: RecDefV ar(dx.a) = {2, 12}, RecDefV ar(dx.b) =

{3, 12}

� Before execution of node 13: CallSliceStack = {13}, ActiveCallSlice = {13}

� After execution of node 5: RecDefControl(5) = {5 ∪ RecDefV ar(bx.b) ∪
ActiveCallSlice}={5, 3, 10, 13}

� After execution of node 7: RecDefV ar(bx.b) = {7 ∪ RecDefV ar(bx.b) ∪
ActiveCallSlice}={7, 3, 10, 13}

� After execution of node 13: CallSliceStack = {∅}, ActiveCallSlice = {∅}

� After execution of node 14: RecDefV ar(n) = {14}

� Before execution of node 15: CallSliceStack = {15}, ActiveCallSlice={15},
RecDefV ar(Formal(n)) = {RecDefV ar(i)} = {14} .

� After execution of node 4: RecDefV ar(bx.b) = {4 ∪RecDefV ar(bx.b)∪
RecDefV ar(i) ∪ ActiveCallSlice}={4, 7, 3, 10, 13, 14, 15}

� After execution of node 15: CallSliceStack = {∅}, ActiveCallSlice = {∅}

� Before execution of node 16: CallSliceStack = {16}, ActiveCallSlice = {16}

� After execution of node 5: RecDefCon(5) = {5 ∪RecDefV ar(bx.b)∪
ActiveCallSlice} = {5, 4, 7, 3, 10, 13, 14, 15, 16}

� Before execution of node 6: CallSliceStack = {{16}, {6 ∪ RecDefCon(5) ∪
ActiveCallSlice}} = {16, 6, 5, 4, 7, 3, 10, 13, 14, 15, 16},
ActiveCallSlice = {6, 5, 4, 7, 3, 10, 13, 14, 15, 16}

� After execution of node 1: RecDefV ar(bx.a) = {1 ∪RecDefV ar(bx.a)

∪ RecDefV ar(bx.b) ∪ ActiveCallSlice} = {1, 2, 10, 4, 7, 3, 13, 14, 15, 5, 6, 16}

� After execution of node 6: CallSliceStack = {16}, ActiveCallSlice = {16}

� After execution of node 7: RecDefV ar(bx.b) = {7 ∪ RecDefV ar(bx.b) ∪
ActiveCallSlice} = {7, 4, 3, 10, 13, 14, 15, 16}
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� After execution of node 16: CallSliceStack = {∅}, ActiveCallSlice = {∅}

The dynamic slice of an object is the union of the dynamic slices of its data mem-

bers. The data structure RecDefVar(v) stores the dynamic slice of a variable v. For

example, the dynamic slice of bx after the execution of node 16 is given by

DynamicSlice(16, bx) = {RecDefV ar(bx.a) ∪ RecDefV ar(bx.b)}
={ 1, 2, 10, 4, 7, 3, 13, 14, 15, 5, 6, 16 } ∪ { 7, 4, 3, 10, 13, 14, 15, 16 }= { 1, 2, 10,
4, 7, 3, 13, 14, 15, 5, 6, 16 }. Proper inspection or review is required only for these

statements instead of the whole program in order to find the bugs in object bx.

A node will be added to the influence set of an object, if the node is using a node

that belongs to the dynamic slice of that object. We have checked this in Statement

2.3 of ITDS algorithm. After the execution of the program is completed, the in-

fluence set for object bx is computed as influence set(bx)= { 10,13,15,16,1,4,5,6,7 }.
So, influence value(bx)=(9/19)*100=47%.

Severity Analysis

For each failure mode of a component within a scenario, we identify the worst con-

sequences on the system, service or customer and determine the seriousness of the

worst effect. It is called the severity of the failure mode. The severity weights of

0.25, 0.50, 0.75, and 0.95 are assigned to Minor, Marginal, Major, and Catastrophic

severity classes respectively as suggested in [82]. We consider only the highest sever-

ity among the severities of all failure modes of a component within a scenario. For

example, the severity of the failure of function dispenseCash(amount) of component

CashDispenser within withdraw scenario is decided from Table 6.1. As we consider

Table 6.1: Failure mode of dispenseCash() of component CashDispenser

Potential Failure Mode Effect of failure Severity Cause of Failure
Does not dispense cash Customer is dissatisfied Major Insufficient cash but no

message to the customer
Dispense too much cash Bank looses money Catastrophic Loading procedure is

wrong or Bills stuck
together

Takes too long time to dis-
pense cash

Customer becomes irri-
tated

Minor Heavy computer network
traffic

only the software failures and not the hardware failures, only the first failure mode,

Does not dispense cash is considered. The failure might be due to a fault in showing

an insufficient cash alert message by CashDispenser component.
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Criticality computation for a component

We compute the criticality of a component by combining two factors of the component

within a scenario: (i) influence value and (ii) severity.

Actually in the run time environment, we deal with objects instead of components.

We get the influence value and severity for an object within a scenario. If multiple

objects of a component exist within a scenario then, influence of the component refers

to the highest influence value among the influence values of all objects of the same

component. Similarly, the severity of the component refers to the highest severity

value among all severity values assigned to various services of different objects of the

component within the scenario.

The criticality of a component ci within a scenario Sj is computed as follows.

criticality(ci
j) = influence(ci

j)× severity(ci
j) (6.1)

where, influence(ci
j) and severity(ci

j) represent the influence value and severity of

component ci within scenario Sj. The normalized criticality of component ci within

scenario Sj, crit(ci
j), is obtained by normalizing the criticality of component ci with

respect to the sum of criticality for all active components within the scenario Sj i.e.

crit(ci
j) =

criticality(ci
j)∑n

k=1 criticality(ck
j)

(6.2)

Once, the criticality of a component within a scenario is decided, we add the

criticality of the component within various scenarios and obtain the criticality of

the component within the entire system. For this, the extra input we require is

the execution probability of various scenarios within the system. The execution

probability of a scenario is estimated through operational profile of the system. The

criticality of a component within a system is computed as follows.

criticality(ci) =
nos∑
j=1

(crit(ci
j)× p(j)) (6.3)

where, crit(ci
j) is the normalized criticality of component ci within j-th scenario,

p(j) is the execution probability of j-th scenario and nos is the number of scenarios

within a system. crit(ci
j)=0, if the component ci is not used within j-th scenario.

We obtain the normalized criticality of a component within a system using Equation

6.2.

Now, we apply our proposed approach on ATM case study. For simplicity, we

consider only the main scenario of a use case. As, we consider only one scenario of a
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Table 6.2: Execution Probability of various use cases of ATM

Use Case withdraw inquiry deposit transfer
Probability 0.7 0.2 0.05 0.05

use case, the execution probability of a use case is assigned to its main scenario. We

assume the execution probabilities of various use cases of ATM as given in Table 6.2.

Table 6.3 shows the normalized criticality of various components within the scenario

of withdraw use case. It shows that Withdrawal component is the most critical. Sim-

Table 6.3: Normalized criticality of various components within withdraw scenario

Comp Withdrawal Session CD CC CR NB Receipt Message
Crit 0.24 0.21 0.12 0.08 0.13 0.17 0.02 0.03

CD: CashDispenser; CC: CustomerConsole; CR: CardReader; NB: NetworkToBank

ilarly, the components Session and NetworkToBank have also high influence values

within the scenario.

We have computed the criticality of various components within the whole sys-

tem using Equation 6.3 and observed that the components Session, NetworkToBank,

CardReader, Withdrawal and CustomerConsole are critical than others, within the

ATM system.

Priority assignment and testing

In this cycle, we prioritize the components within a system according to their criti-

cality. At the unit level, the percentage of code coverage for various components are

decided based on their priority values. For example, 100% statement coverage and

90% decision coverage may be conducted for the highest critical component whereas,

it may be less for a component having low criticality. Similarly, at the time of inte-

gration testing, 90% parameter and 80% interface coverage may be conducted for a

high critical object whereas it may be low for others.

At the time of system testing, the test cases are selected keeping in mind that the

high priority components will be executed a number of times compared to others.

Hence, the cost of a test case1 is considered as the sum of the criticality of various

components that are covered by the test case. The cost of a test case Ti, denoted as

Cost(Ti), is expressed as follows.

Cost(Ti) =
∑

Ck∈exe set(Ti)

priority(Ck) (6.4)

1A test case at the system level is designed to execute one scenario.
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where, exe set(Ti) is the set of components that are covered by Ti and priority(Ck)

is the criticality of k-th component, Ck, in the set exe set(Ti). Suppose the testing

team developed a test suite TS0 and tested an initial build BD0 for the system under

test. Some defects were detected and fixed. This created a new build BD1. When

a new build is developed, two possibilities may arise; either the testing team cannot

fix all the detected defects or generate new defects at the time of fixing the detected

defects. So, in each test cycle, a sequence of test suites TS0, TS1,..TSk are generated

for testing a sequence of builds BD0, BD1,...,BDk. It is expected that the quality of

k-th build is higher than (k-1)th build. The test manager decides how many builds

to generate based on the test budget and test time. Once a test cycle is complete,

the latest build (BDk) is submitted to the second cycle for testing.

6.1.2 Second test cycle

There is a chance of occurrence of new defects at the time of correcting an existing

defect. In this cycle, we consider the failure rate of use case scenarios in the previous

cycle. For each failed scenario, we detect the failure point by identifying the faulty

component, which is responsible for the failure. The detected bug might be fixed in

the previous test cycle. Some detected bugs might not be fixed in the same cycle

or new bugs might be introduced at the time of fixing the detected bugs. So, in

this cycle, we prioritize the components according to their frequency of failures in

the previous test cycle. For this, we also consider the number of defects found in

each component in the previous cycle. First, we extract the objects that have failed

more than once in the previous test cycle. We put them in a set called Failed-Set.

Each element of the set consists of two attributes: (i) Name of the object (ii) Failure

frequency. Then, we extract the dynamic slice of each object of the Failed-Set based

on our proposed ITDS algorithm. It helps us to extract the dependent objects of the

said object for testing.

We first extract the objects one by one according to their priority and compute

the dynamic slice of the object based on our proposed ITDS algorithm, discussed

in Section 6.1.1. It gives us the dependent objects of the said object. During the

testing phase, we give importance not only to the failed objects but also to the set of

objects that are dependent on the failed objects. It is because, these objects might

be infected through the failed objects.

As the priority criteria is changed in this cycle, the priority values of some com-
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ponents may be changed. We check the component’s coverage report of the previous

cycle. If the required level of coverage of a component in this cycle is already covered

in the previous test cycle, then there is nothing to do. Otherwise new test cases are

executed in this cycle for the component to cover it upto the desired level. In this

cycle, we again conduct unit, integration and system testing. We explain it through

ATM case study. We check the failure history of each component of ATM in this cycle

and observe that the components Transfer and Session get higher priority and also

equal priority. We check their code coverage history and find that the percentage of

code coverage conducted for component Transfer is not covered as per its priority in

this cycle. New test cases are required for the code coverage of component Transfer

in this cycle. There is no need of test case generation for component Session because

the required percentage of code coverage for the component in this cycle is already

conducted upto the desired level in previous cycle due to its high criticality. Table

6.3 shows the estimated criticality of various components. We design new test cases

only for component Transfer and cover it upto the desired level in this cycle. We

again conduct integration and system testing as in the previous cycle.

6.1.3 Third test cycle

In this cycle, we conduct a value-based testing [20] with an aim to get a high return

on investment and to improve the customer satisfaction on testing. To conduct a

value-based testing, it is required to know the business value associated with a high

level requirement/feature. A feature is a characteristic or attribute of a product for

which work must be done to develop it and deliver it. A feature within a software

provides some business value. A feature of a product is delivered to the customer with

a hope to get some benefit for a reasonable cost. For a feature, the value is roughly

defined as the amount the stake holder is willing to pay for the implementation of

the feature.

Business value is estimated based on the relationship among satisfying needs, ex-

pectations and the resources required to achieve them [20]. The stake holder decides

what is his/her requirement and what he gets for what he pays. From various sources,

the domain expert first collects the list of requirements, which are important for the

customer and the end-user. The tester and the domain expert sit together and prior-

itize the requirements for testing based on the business value that come from market

and from customer. From a business point of view, test effort distribution should be
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conducted based on the return on investment. The failure of a high level requirement

may cause a great loss to the stake holder and to the organization. Hence, a feature

with high business value is assigned high priority in this cycle. During the testing

phase, the contribution of business helps to increase the return on investment.

According to Wiegers [44], Business Importance shows the business value of a fea-

ture. It is the weighted sum of two factors: the benefit of including a feature within

a system and the penalty of not including the feature within the system. Benefit

is associated with the requirements of the product’s business. Penalty is associated

with the consequence that the customer or business would suffer if the feature is not

included. Both the benefit and penalty are judged by the customer representatives

of the software. For example, failing to comply with a government regulation could

acquire a high penalty even if the customer benefit is low. The set of requirements

with a low benefit and a low penalty add cost but little value. As benefit and penalty

are two factors associated with Business Importance, we define the weights of the

features as a vector [1].

Weights of Business Importance =

Wb

Wp

,
where Wb and Wp specify the weights associated with benefit and penalty, respec-

tively. The Total Business Importance is defined as follow:

Total Business Importance = Wb ×Benefit+Wp × Penalty (6.5)

We get the Total Business Importance on the basis of individual ranking of the

benefit and penalty of a working feature. We get the normalized Business Importance

for a feature by normalizing the Total Business Importance. Figure 6.3 [1] shows the

process for estimating the business importance for various features within a product.

In the figure, Business Importance index shows the variations in business values of a

product over a period of time.

The business values for various use cases of ATM are shown in Table 2.1. We con-

sider only the use cases that are used by the customer. ATMStartup and ATMShut-

down use cases are not considered as they are the basic use cases to run the system.

In this cycle, our aim is to assign priorities to the use case scenarios according

to their business values. Unlike the previous test cycles, we do not prioritize the

components in this cycle. We assign priorities to use case scenarios and conduct

only system testing. For each use case, we consider only one scenario; the successful

scenario. The cost of a test case at the system level is decided based on the priority
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Figure 6.3: Business Importance estimation

of a scenario.

6.2 Experimental Studies

We have implemented our proposed multi cycle-based test effort prioritization ap-

proach on three case studies and checked the effectiveness of our approach by com-

paring it with a related approach. We empirically evaluate our approach through

ATM, LMS and SMA case studies, explained in Chapter 4.

In order to verify the effectiveness of our approach, we have carried out a series

of experiments on the case studies. It has been shown that mutation testing is an

effective practice for measuring the efficiency of a testing method [106]. A mutant

is said to be killed when it is executed by a test case and the test case fails. We

have selected seven number of class mutation operators in our experiment from the

mutant model [93]. These operators are mainly designed to modify object-oriented

features such as inheritance, polymorphism, dynamic binding and encapsulation.

The mutants are selected after a very careful consideration of various types of unit

level and integration level faults that may occur during source code implementation.

The considered mutation operators are (i) Compatible Reference Type (CRT) (ii)

Instance Creation Expression (ICE) (iii) method Parameter Order Change (POC)

(iv) Overriding Method Removal (OMR) (v) Access Modifier Changes (AMC) (vi)

Exception Handler Removal (EHR) (vii) Exception Handling Change (EHC). These

operators are already explained in Chapter 5. Table 6.4 shows the various types of

mutants considered for each case study.
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Table 6.4: Various types of mutants applied to our case studies

Mutant Operators LIS ATM SMA
CRT 5 8 4
ICE 8 6 2
POC 7 12 9
OMR 6 7 3
AMC 5 2 1
EHR 9 13 0
EHC 13 8 2
Total 53 56 21

We compare our approach with Musa’s approach [9] as our aim is to improve

the reliability of a system under test which is similar to Musa’s approach. We made

two copies of the source code of each case study. Musa’s approach is applied to

a copy of the source code of a case study, called Copy1 and our proposed multi

cycle-based testing approach is applied to the other copy of the source code, called

Copy2. Musa’s approach is basically a black box approach, which assigns test effort

to various high level functions based on operational profile. We have extended it from

function level to component level and assigned priority values to various components

based on their execution probabilities. This helps us to test rigorously the highly

executed components during unit testing.

Same testing time was allocated to both the copies. For both the copies, we have

used two well known testing criteria based on control-flow: all-nodes (all-primary-

nodes2 and all-secondary-nodes3) and all-edges (all-primary-edges4 and all-secondary-

edges5) at the unit and integration level. At the time of unit testing, our aim is 100%

statement coverage and 70%-99% decision coverage depending on the priority of com-

ponents. Similarly, at the time of integration testing, our aim is 70%-95% parameter

coverage and 60%-80% interface coverage. We use the testing tool JaBUTi [109] to

show the percentage of code coverage by a test case. The tool also works as a guide

line at the time of generating test cases. It helps to get the various types of com-

plexity through static analysis of the source code, which are required for estimating

the number of test cases required for a component. Figure 6.4 shows the complexity

metrics obtained by JaBUTi for various components of ATM case study. Figure 6.5

shows (a) the source code of test cases executed to test component Transaction at

unit level, (b) the execution result of test cases for component Transaction and (iii)

2Statements that are not related with exception-handling mechanism.
3Statements that are related with exception handling.
4The evaluation of each conditional expressions as true and false.
5For each possibility of raise of an exception, the execution of exception-handler.
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Figure 6.4: Complexity metrics of ATM obtained through JaBUTi

the coverage report by an individual test case through JaBUTi test tool. Table 6.5

shows the fault detection capabilities of the two different prioritization methodap-

proaches, our approach and Musa’s approach.

Table 6.5: Mutants killed by the two different testing approaches

Mutant Operators Our approach Musa’s approach [9]
LIS ATM SMA LIS ATM SMA

CRT 4 7 3 4 5 2
ICE 6 5 2 5 3 1
POC 6 11 7 5 9 6
OMR 5 5 2 5 4 2
AMC 4 1 1 4 2 1
EHR 7 11 0 5 10 0
EHC 11 6 1 9 5 1
Total 43 46 16 37 38 13

From Table 6.5, it is observed that more mutants were killed in our approach

than Musa’s approach. As our approach considers the influence value of an object

and also gives importance to the faulty objects from the test history, more number

of faults were detected in our approach than Musa’s approach. However, it is not
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(a) Source code of a test case to test
Transaction class

(b) Execution Result of test cases

(c) Coverage Report by individual test case

Figure 6.5: Test Case execution result and coverage report of component
Transaction in ATM

true that a testing approach which is effective in detecting faults is also effective in

improving the reliability of a system. The reliability of a system is not related to

the number of existing faults in a system under test, but related to the probability

that a fault leads to a failure which occurs during software execution [9, 13, 14]. It

is because, the data input supplied by the user decides which parts of the source

code will be executed. An error existing in the non-executed parts will not affect the

output.

We conducted a series of experiments for assessing the reliability of the outcome of

the two discussed approaches after completion of the testing processes. The software
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reliability of a system, R, is calculated as given below.

R =
m∑
i=1

pi ×Θi (6.6)

where, pi and Θi represent the execution probability and failure rate of ith sub-domain

respectively.

Θi is computed as follows:

Θi =
1

ni

ni∑
j=1

zij (6.7)

where, zij represents the execution result of a test case which is selected from ith

sub-domain for jth time. The value of zij is 1, if a failure is observed else the value is

0. ni is the total number of test cases selected from ith sub-domain and
∑m

i=1 ni = n,

where n is the total number of test cases executed in the system and m is the total

number of sub-domains of the input domain.

Table 6.6 is a subset of test cases that are designed for ATM case study. Table

6.7 shows the reliability computed for the tested source codes that are obtained by

using our approach and Musa’s approach, respectively. In this table, Copy1 is the

source code that is tested by Musa’s approach [9] and Copy2 is the source code that

is tested by our multi cycle-based approach.

6.2.1 Result analysis and discussion

From Table 6.7, we observed that high reliability is observed in Copy2 compared to

Copy1, in each case study. We discuss some situations in which the testing based

on Operational Profile implemented in Musa’s approach is not giving good result.

For example, consider a situation. Suppose, there is a fault in a method m which

is executed for a short duration. The return value of m is saved and used by some

frequently executed methods of other components. If methodm returns a wrong value

then, the failure of the system will be high. In this situation, the fault in method m

may not be detected as the method is getting less attention in Musa’s approach due to

low execution probability. It is better explained through the graphical representation

of a simple example instead of going to the details of the case studies. Consider the

sequence diagrams shown in Figure 6.6. Suppose the execution probabilities of SD1

and SD2 are 80% and 20% respectively. The average execution time of class D is

the lowest as it is used only in SD1, but the influence value is high as it is providing

services to a number of classes. As shown in Figure 6.6a, the returned value of class D
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Table 6.6: Test cases designed to test various use cases of ATM case study

Use case Function to be
tested

Initial condi-
tion

Test data Expected Output

Session Read ATM card of
a customer

System is on
and no card is
inserted to the
system

A card is inserted System accepts the
card and asks for PIN
number

Read an invalid
card

same An invalid card is inserted System ejects the card
and display a message
in a new screen

Accepts the en-
tered PIN

System is ask-
ing to enter the
pin

PIN is entered System displays a
transaction menu.

Perform a transac-
tion

A transaction
menu is dis-
played

a transaction is performed System displays a new
screen asking whether
to continue another
transaction.

withdraw Choose an account
for withdraw

Transaction
menu is dis-
played

Withdraw transaction is cho-
sen

System displays a
menu of account types.

Enter Dollar
amount to with-
draw

Menu of ac-
count type is
displayed

Checking account is chosen System displays a new
screen to enter amount
for withdraw.

Perform a with-
draw transaction
properly

A screen is dis-
played to en-
ter amount for
withdraw

An amount is entered which is
not exceeding the total balance
of the account and the required
amount is currently available
in the cash dispenser.

CashDispenser dis-
penses the entered
amount of cash. Sys-
tem prints a receipt
showing amount and
correct updated bal-
ance. Transaction is
recorded in the Log.

Table 6.7: Reliability assessment based on two different testing strategies

Case Study n TestedCode Reliability
R1 R2 R3 R4 R5 R-

ATM 100 Copy1 0.801357 0.800048 0.788101 0.810551 0.811930 0.8023974
Copy2 0.839137 0.851994 0.8428719 0.8379159 0.851109 0.84460556

150 Copy1 0.819388 0.816765 0.819539 0.82117456 0.818901 0.819153312
Copy2 0.840019 0.849270 0.851140 0.842059 0.849718 0.8464412

200 Copy1 0.829901 0.821617 0.820007 0.823166 0.832949 0.825528
Copy2 0.847823 0.839691 0.848823 0.850018 0.848388 0.8469486

LMS 100 Copy1 0.890012 0.9019256 0.890081 0.899901 0.902135 0.89681092
Copy2 0.930936 0.940019 0.943211 0.930089 0.929908 0.9348326

150 Copy1 0.891107 0.902517 0.900168 0.900151 0.899079 0.8986044
Copy2 0.941132 0.951108 0.927940 0.949029 0.941187 0.9420792

200 Copy1 0.899567 0.902311 0.899855 0.899129 0.896635 0.8994994
Copy2 0.948783 0.921908 0.942879 0.950125 0.940057 0.9447504

SMA 100 Copy1 0.901571 0.915189 0.907651 0.910089 0.901213 0.9071426
Copy2 0.963219 0.958199 0.960001 0.951081 0.948613 0.9562226

150 Copy1 0.902335 0.912877 0.912048 0.908901 0.913687 0.9099696
Copy2 0.957186 0.951928 0.952887 0.959931 0.960896 0.9565656

200 Copy1 0.910093 0.918119 0.908931 0.913913 0.913719 0.912955
Copy2 0.959629 0.959138 0.960019 0.958913 0.951584 0.9578566

Copy1:Code tested by Musa’s approach; Copy2: Code tested by our multi cycle-based approach; Ri:The reliability

obtained at i-th run; R-:=
∑5

i=1(Ri)

5

is used in class B, C and A, directly or indirectly. If class D will return incorrect value,

the highly executed classes A, B and C will be affected. It will increase the failure

rate of the overall system. Class D is getting less attention in Musa’s approach due

to its low execution time. As we are considering the influence value of an object as
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one factor for test effort prioritization, class D is not neglected in our test approach.

It gets appropriate test effort. Another thing is that we have not explicitly shown the

(a) SD1 (b) SD2

Figure 6.6: Two sample sequence diagrams

severity of a failure in the experimental result. Reliability estimation only considers

the number of failures, the severity of a failure is not considered. The reliability

calculated in Table 6.7 gives equal weight to each failure. In a real life application, it

is observed that the effect is critical for some failures. As we consider the severity of a

failure within a scenario in the first test cycle and business value in the third cycle, a

number of important faults were detected and fixed in due time in our approach. All

the inserted faults could not be covered in both the copies of the source code, within

the allocated testing time. We checked the impact of the observed failures during

reliability assessment. Some marginal and minor failures were observed in Copy 2

which was tested by our approach whereas, some major failures were observed in

Copy 1 which was tested by Musa’s approach. One such major failure found in

the tested copy through Musa’s approach is just explained below using LMS case

study. Instance Creation Expression (ICE) mutant creates an object of same type or

different type with different initial states. We observed a failure in Copy 1 at the time

of creating a new user (Borrower). In LMS, the borrowers are students (graduates,

post-graduates) and staff. The sub-classes of staff are: (i) teaching staffs (professors,

assistant professors, lecturers) and (ii) non-teaching staffs. They are classified to

various groups according to the access privileges to various system resources. As per

the business rule of our case study, LMS, post-graduate students and teaching staffs

are only allowed to access journals and transactions. Due to an ICE mutant, the

system allowed a non-teaching staff to issue a journal.

As we included severity analysis as one attribute for testing and considered the

business value of a scenario, such types of major failures were not observed in the
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tested source code obtained using our approach. Now, we discuss one minor failure

that was observed in Copy 2 of ATM case study. Copy 2 was tested through our

approach. We have inserted an invalid card. The system has opened the transac-

tion screen and allowed for a transaction instead of ejecting the card, though any

transaction was not performed with the invalid card. This is shown in Figure 6.7.

From the log file shown in Figure 6.7b, it is observed that neither the deposit nor the

(a) ATM screen (b) ATM log

Figure 6.7: A minor failure in ATM

withdraw transaction is performed in Card# 4, but the system is not ejecting the

card after recognizing an invalid card. As shown in Figure 6.7a, only the card was

ejected when, the user did not want to continue any transaction further.

6.3 Summary

In this chapter, we have proposed a multi cycle-based test effort prioritization ap-

proach for improving the reliability of a system. Our aim is to minimize the critical

faults in a system which are responsible for frequent or severe failures in the opera-

tional environment. We have computed the criticality of a component and prioritized

the components according to their criticality in the first test cycle. In the second

test cycle, the components are prioritized based on their failure history and fault

detection history. In the third test cycle, the scenarios are prioritized based on their

business values. Based on our analytical comparison, we found that the objects with

higher criticality indeed determine the probability of failure to a large extent. We

have validated our claim through a series of experiments. From our experimental
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results, it is concluded that by spending extra time and effort in key objects of a

system compared to others at the time of testing, the reliability of the system can be

improved within the available test budget. The tester gets the best possible chance to

reveal the important bugs at the early phase of testing that are occurring frequently

or have a negative impact on the user. Since, we have considered the impact of a

failure within a scenario, our approach not only helps to increase the reliability of a

system, but also minimizes the occurrences of severe types of post-release failures.

Planing at the high level enhances the decision on resource allocation. Estimating

the criticality of an architectural element helps both the system analyst and the test

manager in planing suitable provision for the crucial elements. If the critical elements

are detected at the early phase of software development life cycle then, it will be useful

in allotting resources in afterward development phase.
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Chapter 7

Ranking Use Cases for Testing

A use case is related to a set of requirements. Cockburn [113] states that, ”people

seem to consider use cases to be the central element of the requirements or even

the central element of the project’s development process”. For both developer and

customer, use case is treated as a semantically meaningful function that provides

some value from the user’s point of view. As the use cases are available in early

iterations, test plan can begin early. An empirical research [19, 77] on early effort

estimation have proposed various methods for estimating development effort, but the

estimation of test effort is overlooked. A software product can be lunched in due time

with sufficient testing, if a test plan is prepared early.

Musa [9] suggested that a tester should select test cases according to the frequency

or probability of operational use, for achieving a better reliability. We give an example

of test effort distribution among various use cases of an application based on their

execution probabilities only. First, the test manager decides how many test cases are

required to design based on different test variables such as expected time taken to

design and run a single test case, time taken to find a bug, time taken to correct a

bug and the estimated test budget. Suppose, the following data are given for the

estimation of test efforts for LMS case study.

1. To design and run one test takes 2 hours.

2. 10 percent of tests find bugs.

3. Each fault takes 8 hours to correct.

4. Test budget = 1000 hours.

Then, the total number of test cases, T, is decided as: 2 ∗ T + (0.1 ∗ T ∗ 8) = 1000,

i.e. T=358.
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Suppose, the execution probability of IssueItem use case is 0.1. The total number

of test cases assigned to it is 0.1 ∗ 358 = 36. In this case, test effort distribution is

purely a black box approach and the architectural information of use cases are not

used for distributing test cases.

Test effort allocation based on only operational profile does not give accurate

results always. We present a simple example to explain it. Suppose, for a program

under test, the input domain is divided into two sub-domains with equal size. The

execution probability of the first one is 49% and the second one is 51%. Further, we

assume that the first one contains 50 and the second one contains 200 failure-causing

test cases. Suppose, each failure has equal effect on the system. In this case, the test

effort distribution based on operational profile will not help to achieve high reliability.

As the execution probabilities of both the sub-domains are nearly equal, each will get

almost equal test effort though, the second input sub-domain is more failure-prone

than the first input sub-domain.

A complex program might contain more number of faults compared to a simple

program [55]. As the factor complexity is the most important bug generator, the

complexity metric is used as a parameter for testing [56, 57]. The complexity can

vary from one use case to another. In a moderate size application, a simple use case

generally takes at most 5 number of steps for its success scenario and its implemen-

tation also involves less number of classes. A complex use case takes at least 10

number of steps and its implementation also involves a number of classes. The job of

a test manager is to estimate the complexities associated with various use cases and

consider the complexity as an important factor at the time of test planing. Though,

the estimation of complexity for high level functions at the analysis stage is a tough

task, it is better to estimate it as early as possible and refine it in the low level rather

than delaying the test estimation and proceeding it in an unplanned fashion. To

estimate the complexity of a use case in a quantitative manner at the architectural

level, it is required to understand both the structural and functional details of a use

case. Complexity estimation at the architectural level helps to estimate the test effort

required for a use case, before its implementation and hence, an effective testing can

be conducted within the available test resources.

At the time of realization of a use case, many interacting objects change their

states and different values of an operational variable force the system to behave

differently. Many conditions are checked to execute various scenarios within a use
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case. Different types of messages such as synchronous and asynchronous pass at the

realization of a use case, within a system. Out of these messages, some are critical

to the sender and failure of these massages may cause severe damage to the whole

system. In a distributed system, different components reside in different nodes and

communicate through networks, that increase the probability of connector failures.

Due to the architectural dependencies among use cases within a system, some use

cases execute in parallel whereas, some execute serially. We analyze the structural

and behavioral aspects of a use case and estimate its complexity in a quantitative

manner. For this, we collect information from sequence diagrams that are realized

for the use cases, state chart diagrams of various components that are activated at

the execution of the use case, class diagrams and deployment diagrams of the system

under test. Deployment diagrams are required in case of distributed systems. The

ability to quantify the complexity of a use case at the analysis stage helps in refining

the resource estimation and creates an acceptable quality standard.

Though, the complexity of a use case is related to its fault density, the observed

failures within a system are also related to the execution probabilities of various

use cases that lead a fault to a failure. The main objective of software testing is to

improve the reliability rather than to detect defects. For this, the test cases should be

selected based on both the criteria: (i) defect distribution and (ii) how the software is

used. Defect distribution is estimated based on the complexity of the system and the

expected use of a software is decided based on the operational profile of the system.

To identify the failure-prone use cases, we consider the execution probability of a use

case along with its estimated complexity and call it Occurrence Complexity (OC).

There is a close relationship between testing and business value of a high level

function that comes from market or from customers [43]. Each use case of a system

should not be treated with equal importance [97]. Keeping this in view, we propose

a test effort prioritization method to estimate the test priority for a use case within

a system on the basis of its factors- (i) complexity, (ii) execution probability and (iii)

business value (Value). The use cases of a system are ranked according to their

priority values. Our proposed prioritization method provides a path to discover

the truly critical use cases. This ranking method helps the developer and the test

manager to take a decision on test effort distribution in a critical environment, where

the customer’s expectation is high on the overall quality of the system, timelines

are short and resources are limited. It is observed that some use cases with high
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complexity are less valuable to the organization. The balancing strategy is to assign

less effort to low ranked use cases. It can save the resources which can be used for

high ranked use cases. As the important use cases are getting a chance to be tested

rigorously through our proposed approach, the reliability of the system under test is

improved.

The rest of the chapter is organized as follows: We have proposed some factors

affecting the complexity of a use case in Section 7.1. We compute the complexity of

a use case on the basis of the proposed factors and compute the priority for the use

case in Section 7.2. We have conducted a lot of experiments and validated our claim

in Section 7.3. The summary of the chapter is discussed in Section 7.4.

7.1 Complexity Factors

When the test plan is made before coding, at the design level, the test manager

considers the architecturally relevant aspects. The difficulty lies in analyzing all the

architecturally relevant aspects of a use case and ranking it appropriately.

We propose the following eight factors that affect the complexity of a use case.

These factors are described with examples in subsequent sections.

1. Sum of complexities of linearly independent paths within a SD.

2. Number of test paths generated within a SD.

3. Number of critical messages transmitted within a SD.

4. Number of operational variables used within a SD.

5. Length of the longest Maximum Message Sequence (MMS) within a SD.

6. Number of external links used within a SD.

7. Number of polymorphic calls within a SD.

8. Architectural dependencies among use cases.

These above proposed complexity factors are explained with examples in the following

sections.
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7.1.1 Sum of complexities of Linearly Independent Paths
within a SD

Cyclomatic-complexity is defined as the number of linearly independent paths1 in a

graph. There is a strong correlation between the cyclomatic-complexity measure and

the number of bugs in a program [99]. In this section, we generate the Control Flow

Graph (CFG) of a SD and count the number of linearly independent paths within the

SD and then, estimate the complexity of each path in terms of test effort required.

The sum of complexity of all linearly independent paths is the complexity of the SD

of the use case. The test manager allocates test effort to the use cases based on their

estimated complexity. Higher the complexity of a SD, more test effort is required to

test it.

First, the Control Flow Analysis (CFA) of the SD is performed to get the CFG.

CFG is used to extract the basic individual paths within a SD. It is the source

of estimation for testing. It is named as Concurrent Control Flow Graph (CCFG)

instead of CFG, due to the presence of asynchronous and parallel messages within

a SD [114]. At the time of execution of a synchronous message, the caller waits

for the reply message from the callee. The caller could not initiate any message in

between, but in an asynchronous message, the caller does not wait for reply message.

It proceeds immediately and cause a concurrent control flow in the SD. Another event

for a concurrent control flow is the interaction operator par. It is used to support

parallel execution of a set of interacting components by causing a number of threads

of control. Figure 7.1a shows an example of a SD with par interaction operator

and Figure 7.1b shows an example of a SD with asynchronous message. Figure 7.1a

is a part of the SD that implements Issue Item use case of LMS case study. The

object IssueController controls the issue of a book. States of the objects Book and

LogRegister, need to be updated when a book is issued. The controller sends two

messages in parallel, one to Book and one to LogRegister object. Now, these two

messages run concurrently. So, the CCFG of a SD is affected by the interaction

operator par, which causes at least two concurrent threads of control.

In CCFG, each message of SD represents a node. Once the CCFG of a SD is

generated as shown in Figure 7.2, we extract all linearly independent Concurrent

Control Flow Paths (CCFPs) of the CCFG for testing. CCFP is a control flow path

with extra feature: sub-paths are added in CCFG due to concurrent control flow.

1A path is linearly independent within a graph if it introduces a node of the graph that is not
included in any other linearly independent paths.
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Parallel and asynchronous messages cause concurrent control flow at the execution

of a scenario within a SD. The concurrency within a CCFG is identified through fork

and join nodes. In a CCFP, an open and close parenthesis represent fork and join

nodes respectively. A CCFP within a CCFG is a path which includes all sub-paths

going out from a fork node. It includes a path from the start node to the end node

containing all residing nodes in the path. There can be a number of CCFPs in a

CCFG. In our example, as there is no condition in the SD (see Figure 7.1b), we get

only one linearly independent path in the CCFG shown in Figure 7.2 and call it ρ1.

It is given below.

ρ1 = m1r1m2m3


m4r4

m5

 m6

r5


 r2

(a) SD with parallel message (b) SD with asynchronous message

Figure 7.1: SDs with asynchronous and parallel messages

To estimate the complexity associated with a CCFG, we require two inputs: (i)

the number of linearly independent paths and (ii) the complexity of each path. The

complexity of a path is determined by checking the number of simple nodes and fork

nodes (concurrent sub-paths) in a path. If there is a couple of concurrent sub-paths

in a path then, extra effort is required to test the path. It is because, testing of

a concurrent path is not straight forward. Concurrent bugs are difficult to detect

due to the nondeterministic behavior exhibited by parallel applications. Even if

these bugs are detected, it is also a difficult process to reproduce them consistently.
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Figure 7.2: CCFG of Figure 7.1b

Further, after a bug is fixed, it is also a difficult job to ensure that the bug is corrected

truly and not simply masked. The concurrent bugs are categorized as race conditions,

incorrect mutual exclusions, and memory reordering. We cannot immediately observe

the consequences of a race condition. It might be visible after some time or in a totally

different part of the program. There is also a need to synchronize the operations

between threads. For this, extra overhead is required. As extra test effort is required

for a concurrent node, we assign high weight to a concurrent node compared to a

simple node, at the time of calculating complexity for a path. We assign weight of

5 to a concurrent node (node under a fork) and weight of 1 to a simple node. The

complexity of path ρ1 of Figure 7.2 is calculated as 1 ∗ 5 + (3 + 2 ∗ 5) ∗ 5 = 70. The

complexity of a CCFG is the sum of complexities of its paths. It is given by

Complexity(CCFG) =
n∑

i=1

(Complexity(CCFPi))

where, Complexity(CCFP i) is the complexity of CCFP i of the CCFG and n is the

number of paths in CCFG.

Now, we consider some use cases of LMS case study. Figure 7.3 shows the SD of

the use case Remove Title of LMS. The actor for this use case is the Librarian and

the input is the ISBN of the book. The pre-conditions for the use case are: (i) the

title is not in reserved condition and (ii) no item of the title is issued by any borrower.

The post-condition is: (i) the title will be removed from the library database along

with its all items, after the successful execution of the use case. Now, we get the

number of linearly independent paths within the use case. The CCFG of the SD

of the Remove Title use case is shown in Figure 7.4. In the figure, Dn stands for
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Decision node. There is no asynchronous message or parallel message sent by any

object. Hence, there is no concurrent sub-path in a path. All possible paths in the

CCFG are:

ρ1=1, 1.1, 1.2, 1.2.1A, 1.2.1A.1, 3, 3.1

ρ2=1, 1.1, 1.2, 1.2.1, 1.2.1.1, 1.2.1.1, 1.2.1.1.1, (1.2.1.1.2)∗, 2, 2.1, 2.1.1A, 2.1.1A.1,

3, 3.1

ρ3=1, 1.1, 1.2, 1.2.1, 1.2.1.1, 1.2.1.1, 1.2.1.1.1, (1.2.1.1.2)∗, 2, 2.1, 2.1.1, (2.1.1.1)∗, 3,

3.1

The nodes (1.2.1.1.2)∗ and (2.1.1.1)∗ are repeated nodes in path ρ2 and ρ3. The

symbol (∗) represents the value ≥ 1. The node 1.2.1.1.2 shows that once the given

ISBN matches with the existing Title ID in the database, all the items of that title

are displayed to the user. When a user deletes the Title ID, all items of that title are

destroyed. So, the node 2.1.1.1 is executed for each item of the title. For simplicity,

we consider the repeated nodes only once in a path at the time of computing the

complexity of the path. As there is no concurrent node in any path of the CCFG,

the weight of each node is 1. The complexities of ρ1, ρ2 and ρ3 are 7, 14 and 14,

respectively. The total complexity of the use case Remove Title is 7 + 14 + 14= 35.

Next, we discuss the concurrent path in a CCFG through an example. For this,

we discuss another use case Issue Item of LMS. Figure 7.5 shows the SD of the use

case Issue Item. The actor for this use case is the Librarian and the inputs are UserID

and BookID (Title ID). The pre-conditions for this use case are: (i) the borrower is

eligible to issue a book and (ii) at least a single item of the given Book Title is in

available state. The CCFG of the use case Issue Item is shown in Figure 7.6. The

possible paths are:

ρ1 = Start,
(

m0,m1,m2,m3
m5,m6,m7,m8

)
, Stop

ρ2 = Start,
(

m0,m1,m2,m3
m5,m6,m7,m8

)
,m10,

(
m11

m13,m14,m15
m17,m18,m19,m20

)
, Stop

ρ3 = Start,
(

m0,m1,m2,m3
m5,m6,m7,m8

)
,m10,

(
m11

m13,m14,m15
m17,m18,m19,m20

)
,
(

m22,m23,m24
m25,m26,m27
m28,m29,m30

)
,m31, Stop

In ρ1, there are eight concurrent nodes and two simple nodes. The complexity of ρ1

is 8∗5+2∗1 = 42. Similarly, the complexities of ρ2 and ρ3 of use case Issue Item are

83 and 128, respectively. The total complexity of use case Issue Item is 253. Extra

test effort is required to test use case Issue Item compared to use case Remove Title,

as the complexity of the CCFG of Issue Item is high.
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Figure 7.3: SD for use case Remove Title

Figure 7.4: CCFG of Figure 7.3

7.1.2 Number of Test Paths generated within a SD

We consider all possible test paths within a SD as an influencing factor for complexity

computation. Each test path is covered by an individual test case. The amount of

test effort required for a use case is decided on the basis of the number of test paths

generated within the SD of the use case. We consider the total number of possible
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Figure 7.5: SD for use case Issue Item

transitions covered by each modal class within a SD as an input for getting the

possible test paths within the SD. An object of a modal class can receive a message

in various states within a scenario and the object may change its state after receiving

the message.

Total number of possible transitions covered by a modal class within a scenario

is derived on the basis of message sequences generated within the SD and the state

chart diagrams of the interacting classes within the scenario. The aim is to give extra

test effort on a use case, in which a number of objects are changing their states by

modifying their attributes repeatedly. Total Number of Test Paths (NTP) generated

within a scenario is calculated by taking the product of transitions covered by each

interacting modal class [115]. It is given by the following equation.

NTP =
n∏

i=1

NTi
x, (7.1)
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Figure 7.6: CCFG of the SD of Issue Item use case

In this equation, n represents the total number of modal classes and NTi
x represents

the total number of transitions covered by i-th modal class within scenario Sx. The

total number of possible test paths generated by a use case is obtained by taking the

summation of total number of test paths of the SD that implement the use case.

Now, we have to show the total number of test paths generated within the SD

of use case Issue Item. For this, we should get the total number of state transitions

occurred within the SD. To get this, we need the state chart diagrams of the objects

that are interacting within the SD of the use case. All the required state chart

diagrams are shown in Figure 7.7. For the successful execution of the use case Issue

Item, the Book object may be in the available (B1) state or in the committed (B3)

state at the initial stage. When the issue() function is executed on the object Book

(Refer the SD shown in Figure 7.5 and the state chart diagram of Book shown in

Figure 7.7a), its new state will be Issued.

All possible state transitions of various objects in the use case Issue Item are

shown in Figure 7.8. Let us consider an object of Borrower. At the initial state of
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(a) BOOK (b) RESERVE

(c) BORROWER

Figure 7.7: State chart diagrams of various objects of LMS

Table 7.1: Possible transitions of various objects in Issue Item use case

ObjectName MessageReceived Transitions#
Book issue() 2

Reserve issue() 1
Borrower issue() 4
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Figure 7.8: Possible state transitions of objects in Issue Item use case

Issue Item use case, the object of Borrower will be either in U1 or U3 state as shown

in Figure 7.8. The possible four transitions in the object are: (i) U1→ U1, (ii) U1→
U4, (iii) U3 → U3 and (iv) U3 → U4. These transitions are extracted by analyzing

the SD of the use case and the state chart diagrams of various interacting objects

within the use case. Table 8.3 shows the total possible transitions of various objects

within the SD of use case Issue Item. From the table, we infer that extra test effort

is required to Borrower object than others. The total number of possible test paths

generated by the successful execution of Issue Item use case is 4∗2∗1 = 8. Only three

messages (m24, m27 and m30) change the states of the interacting objects within

the SD of the use case. There is no state transition by other messages in the SD.

7.1.3 Number of Critical Messages transmitted within a SD

There are certain messages within a SD that are critical to the sender [116]. The

failure of services for those messages may lead to catastrophic consequences. There-

fore, we should check the severity associated with a message within a SD for test

effort prioritization. We check how the failure of receiver affects the sender, within

a SD. The value returned by the receiver may be used by the sender for taking any

important decision. The returned value may be used in some computations in which

the inaccuracy may lead to catastrophic consequences. There are some messages

within a scenario that are providing exception handling of rare but critical condi-

tions. Though, the execution probability of that messages are low, the failure of any

one of them may cause a sever loss to the system. Therefore, we consider the severity

associated with a SD through the criticality of messages. We assign severity to a mes-

sage within a SD on the basis of how the system operation is affected by the failure

or incorrect services provided by the receiving object of the message. At the analysis
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stage, the critical behavior can be identified from domain experts or customers. It is

traced to use cases and then to SDs to identify elements of the system that need to

be analyzed in depth and need to be tested thoroughly.

For example, Figure 7.9 shows the criticality of messages sent from FireDetector

and FireController with tagged value in an automatic Fire Controller System. When

the system detects the unwanted fire, it switches off the Oven and inform to the fire

department and owner. All three events happen in parallel. The business logic of

this system sets the criticality of the message fireAlert() from FireDetector to Fire-

Controller to Very High, since the failure of this message has a catastrophic impact

on the system. FireController sends three messages in parallel. Out of these three,

the message switchOff() is Very High, then the message MakeCall() to FireDeptt is

High and MakeCall to Owner is Low. The assignment of criticality to a message is

subjective. It is decided by checking the impact of the failure of the message on the

system. We consider only messages with critical value Very High and High. The

complexity of a SD on the basis of critical messages handled is given below.

#critical messages transmitted

#messages transmitted
∗ 100 (7.2)

Figure 7.9: An example of a SD showing message criticality in a Fire Con-
troller system
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7.1.4 Number of Operational Variables used

An operational variable determines the response of a use case by providing system-

atically the information required for test design. An operational variable can be an

explicit input/output, environmental condition and/or abstraction of state of a sys-

tem under test. For example, the different states of an ATM can be ready, out of

cash, out of service etc. These variables play a great role at the time of testing a use

case. Test cases are designed based on operational variables. For example, consider

the establish session use case of ATM system. To establish a new session, a customer

has to insert an ATM card into the card reader slot of the machine. The card reader

reads the inserted card (If the card reader cannot read the card, it ejects it. An

error message is displayed, and the system aborts the session). The system asks the

customer to enter the pin. If the pin is valid then, a connection is established with

the bank and the customer is allowed to perform transactions by selecting from a

menu of possible types of transaction. In the use case (establish session), there are

four operational variables used. These variables are encoded pin in the card, entered

pin by the customer, response of customer bank and state of customer account. At

the time of testing, a tester first considers each possible operational variable at every

step of use case and determines the domain for each variable. Then, the relationship

among different variables are set by the help of a decision table to model the response

of a system. Each row in a decision table is called a variant. Table 7.2 shows the

decision table for use case establish session of ATM. In the table, DC stands for Don’t

Care condition. At testing phase, every variant for a use case should be exercised at

least once. For a test suite, the minimal coverage metric is given by:

MinimalCoverage =
#variants tested

#variants
∗ 100. (7.3)

So, a use case with a number of operational variables require a number of test cases

to test the boundary condition of each operational variable. The size of a use case is

proportional to the size of its decision box. For the use case Issue Item of LMS case

study, the decision table is shown in Table 7.3. The number of variants in the said

use case is 7.

7.1.5 Length of the longest Maximum Message Sequence
(MMS)

For the successful execution of a scenario, it is required to know (i) What other classes

might be affected when, one class is not behaving properly or returning wrong value?
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Table 7.2: Decision table for use case establish session

Variants Operational Variables Expected Result
Card Pin Entered

Pin
Customer
Bank Re-
sponse

State of Account Messages

1 InValid NA NA DC Invalid Card
2 Valid Matches

with Card
Pin

Ack. from
Bank

Closed Contact your bank
manager

3 Valid Matches
with Card
Pin

Ack. from
Bank

Open Select a Transac-
tion

4 Valid Matches
with Card
Pin

No Ack.
from Bank

DC Please try later

5 Valid Does nit
match with
Card Pin

DC DC Re-enter Pin

Table 7.3: Decision table for use case Issue Item

Variants Operational Variables Expected Result
Book ID Borrower ID Borrower Sta-

tus
Book Status

1 Not
Valid

NA NA NA Book does not Exist

2 Valid Not Exist NA NA Borrower does not
Exist

3 Valid Exist Suspended NA Membership is ex-
pired

4 Valid Exist Non-Issuable NA Cannot issue further
book

5 Valid Exist Active Privilege
=False

This book cannot be
issued

6 Valid Exist Active Reserved by
others

Another person has
reserved the book

7 Valid Exist Active Available or
Reserved by
self

The book is issued
successfully

(ii) What is the minimal set of classes within a SD that are responsible for a frequent

failure of the use case?

Suppose, there are two events e1 and e2 generated by two different objects within

a scenario. The object generating event e2 is dependent on the object generating

event e1, if and only if there exists an execution path, in which triggering event e1

makes the event e2 to trigger, either directly or indirectly. At the time of testing an

event, we have to test the events which are in the dependence set of that event. We

identify the interaction faults through the dependence set of an event. For this, it is

required to know the transitive dependencies among objects within a SD. It is easy

to detect a fault in a direct method call, but difficult in indirect case. This indirect

dependency can be extracted from the flow of messages within a SD. The flow is well

understood from message sequences.

First, we define a Message Sequence (MS) within a SD. Then, we defineMaximum

Message Sequence (MMS). A MS is a concurrent sequence of messages (call message
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or reply message) within a SD having the first message is a synchronous call and

the last one is the reply message corresponding to the first one [116]. A MMS is a

message sequence that is not a subsequence of any other message sequence within

the SD [116]. All possible MSs for the SD shown in Figure 7.1b are {m1, r1}, {m4,

r4}, {m2, m3, m4, r4, m5, m6, r5, r2} and MMSs are {m1, r1}, {m2, m3, m4, r4, m5,

m6, r5, r2}. The MS {m4, r4} is not a MMS because it is included within another

MS. In the given SD (see Figure 7.1b), the length of the longest MMS is 8 ({m2, m3,

m4, r4, m5, m6, r5, r2}). There exist context-sensitive dependencies among objects

within a MMS which show both direct and indirect interactions.

The longest MMS within the SD of use case Issue Item (see Figure 7.5) is as

follow.

mms = m10,


m11

m13,m14,m15

m17,m18,m19,m20

 ,


m22,m23,m24

m25,m26,m27

m28,m29,m30

 ,m31

In this MMS, there are two fork nodes. The longest sub-path in the first fork

node is 4 (m17, m18, m19, m20) and in the second fork node, each concurrent sub-

path has equal length of 3. Hence, the longest MMS is 9 for the said use case.

A MMS with high value indicates that the dependency among objects is high. A

fault in one can be easily infected to other dependent objects, which increases the

probability of system failure.

7.1.6 Number of External Links used in a SD

In a distributed system, the communication reliability is critical in unsafe environ-

ments. It is required to estimate the probabilities of failures for connectors at the

analysis stage for an effective testing. Consider the SD shown in Figure 7.1b. Sup-

pose objects o1, o2 are residing in node1 and object o3, o4 are residing in node2.

node1 and node2 are linked by a network. This is shown through a deployment di-

agram in Figure 7.10. It is assumed that the probability of connector failure is zero

for the objects in same node. The probability of connector failure between o1 and

o2 is zero, whereas there is a probability of connector failure between o2 and o3 also

o2 and o4. So, the probability of failure is high, when a number of messages are

transmitted through connectors in a use case. For the SD shown in Figure 7.1b, out

of 10 messages, 3 messages (m3, m5, r5) are transmitted through networks. When

the data is transmitted through network, extra test effort is required to check any
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network problem. So, the complexity of a SD based on number of connectors used

within a SD is expressed as Connector Complexity is given by:

ConnectorComplexity =
#messages transmitted through networks

#messages transmitted
∗ 100 (7.4)

The complexity of SD shown in Figure 7.1b is 3/10 based on the consideration of

connectors only. (For simplicity, we have considered equal probability to the failure

of each connector.)

Figure 7.10: An example of a deployment diagram

A use case with a number of external links requires extra test effort to test the

links.

7.1.7 Number of Polymorphic Calls within a SD

A polymorphic call can be identified within a SD through Class Diagram (CD). A

polymorphic behavior occurs at runtime, when the sub-classes override at least one

of the method of the base class. Testing the polymorphic behavior within a scenario

requires extra test effort. The complexity of a use case depends on the number of

polymorphic messages that are transmitted through the SD of the use case. The gen-

eration of test cases to test a SD which contains polymorphic calls, require manual

efforts [117]. In a polymorphic interaction, new test sets are generated for both

inherited and overriding methods. The behavior of the program is not predictable

due to run time binding, which makes the testing process difficult [117]. Polymorphic

interactions are of different types, such as simple polymorphic interaction, parameter-

influenced polymorphic interaction and configuration-influenced polymorphic inter-

action etc.

Simple polymorphic interaction

In this case, the instance of a derived class is directly passed as a parameter. The

parameter directly controls the polymorphic behavior. It is easy to test this. The

test must consider at least one instance of each class (base and derived classes) as a

parameter in the call. An example of a class diagram is shown in Figure 7.11. For
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Figure 7.11: An example of a Class Diagram

example, consider the SD shown in Figure 7.12a. (Figure 7.12 is taken from [117]).

It is simple to determine the test cases for this SD. The possible test cases are an

instance of a Book, instance of a ComputerCD, instance of a MusicCD and instance

of a DVD.

Parameter-influenced polymorphic interaction

It is explained through an example. Consider the SD shown in Figure 7.12b. The

possible test cases are identification number of a Book, a ComputerCD, a MusicCD

and a DVD. Comparing to the test cases of Figure 7.12a, these are abstract. For

generating the test cases for the SD, extra information is needed to get the identifi-

cation number for an instance of each sub-class. Manual effort such as the data from

domain expert is required to identify the exact appropriate test input values. Due to

this, testing this type of polymorphic interaction is less likely to be automated and

hence, requires extra test effort.

Configuration-influenced Polymorphic Interaction

For testing this type of polymorphic call, it is necessary to change the configuration

of the system to various states. The initial system state and environment are changed

again and again for setting different configurations. Consider the SD shown in Figure

7.12c. The method getTopselling() returns an instance of the best selling product,

which could be a concrete sub-class of class Product. This polymorphic call is based

on the external set up of the system. Parameters of the interaction has no effect

on it. The possible test cases for this are obtained by setting the configuration of

the system four times. These are setting the top selling product to be a Book,

ComputerCD, MusicCD and DVD. Before the execution of each test case, the state

of the system needs to be changed to the required configuration state. Testing this

polymorphic interaction requires extra testing time and automation of this testing
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(a) Simple Polymorphic Call (b) Parameter-influenced Polymorphic Call

(c) Configuration-influenced polymorphic call

Figure 7.12: An example of polymorphic calls

is difficult. Manual effort is required to set the configuration again and again for

testing this type of polymorphic interaction.

7.1.8 Architectural Dependencies among use cases

The use cases of a system can be ordered as per the business logic of the system.

In a set of ordered use cases, one use case starts execution after the completion of

its preceded use cases. There is a requirement of logical progression for tackling the

use case that makes sense to the sequence. If the pre-condition of a use case is same

as the post-condition of another use case then, use cases can be ordered to execute

sequentially. For example, in LMS case study, a book cannot be deleted if, it is

issued. So, for deletion of that book, first Return Item use case is called and then,

Remove Title use case is called. UML-stereotyped association precedes is used for

this relation. A use case may be followed or preceded by a number of use cases.

Order Flow Graph shows the dependencies among use cases within a system.

Sometimes, a preceded use case has to execute a number of times to satisfy the

pre-condition of a particular use case. For example, consider the LMS case study.
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Figure 7.13: Preceded use cases of use case Issue Item

Suppose, the business rule states that a student cannot issue less than five books at

a time and the books should belong to different titles. To satisfy this constraint, we

have to call Add Title and Add Item use cases at least five times for testing the use

case Issue Item (The use cases of LMS are listed in Table 7.4). Similarly, to test a

Return Item use case, we have to execute Issue Item first.

For testing a use case, the tester has to check various pre-conditions of the use

case and bring the system to that initial state accordingly. Complication arises when

the initial state of a use case requires execution of other use cases in serial/parallel.

We draw the architectural dependencies associated with the use case Issue Item.

Figure 7.13 shows all preceded use cases of use case Issue Item. It shows that the

tester has to execute the use cases: (Add User), (Add Title, Add Item) at least once,

before the execution of use case Issue Item. As shown in Figure 7.13, (Add User)

and (Add Title, Add Item) can be executed in parallel. A test case which is designed

to test the use case Issue Item also tests indirectly all the three use cases (Add User)

and (Add Title, Add Item) preceded with it, as shown in Figure 7.13. Due to this

precedence relationship, Add Item requires more test effort than Add User and Add

Title and Issue Item use case requires the maximum test effort among the other use

cases shown in Figure 7.13.

7.2 Computing Complexity and Test Priority

In Section 7.1, we have discussed a list of eight factors that influence the complexity

of a use case. Normally, a weight is associated with each factor, reflecting how much

it affects the complexity. In this section, we compute the complexity of a use case

and then, assign priority according to its estimated complexity, execution probability

and business value.
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7.2.1 Computing the complexity of a use case

The factors that affect the complexity of a use case are already discussed in Section

7.1. In this section, we first compute the complexity of a use case based on the above

discussed factors. The complexity of a use case Ui is computed as follow.

Complexity(Ui) =
8∑

i=1

Wi ∗ ci (7.5)

In this equation, Wi represents the relative weight and ci is the estimated value of i-th

complexity factor of a use case. The assignment of weights is a subjective matter. It

may vary from analyst to analyst. The weight is not static, it may be adjusted and

re-calibrated to suit a project’s specific needs. The test manager accompanied with

key people associated with development is responsible to decide the weight for each

complexity factor. Our approach helps to estimate the value for each complexity

factor. A value of ’0’ indicates no influence of the complexity factor on the use case.

Once the weight and value for each complexity factor of a use case is decided, the

test manager estimates the complexity for the use case by applying Equation 7.5.

Complexity is related to the fault-proneness of a system. To estimate the failure-

proneness of a use case, we include its execution probability along with its complexity.

We define the Operational Complexity (OC) for a use case Ui based on its execution

probability pi and estimated complexity. The OC of use case Ui is:

OC(Ui) = Complexity(Ui) ∗ pi

7.2.2 Computing test priority

We consider the Operational Complexity and the Value (business value that comes

from customer and market) of a use case along with its estimated complexity for

assigning test priority within a system. We compute the Test Priority (TP) for a use

case within a system by applying the following formula.

TP (Ui) = V alue(Ui) ∗OC(Ui) (7.6)

In this equation, TP (Ui) is the test priority and OC(Ui) is the Operational Com-

plexity associated with use case Ui. V alue(Ui) is the estimated business value of use

case Ui. Business value estimation process is discussed in Chapter 2 (Background).

The normalized test priority, NTP (Ui), of use case Ui is given by:

NTP (Ui) =
TP (Ui)∑n

j=1(TP (Ui))
(7.7)
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Table 7.4: Execution probabilities of use cases with their business values in LMS

Use Case EP V alue
Relative Weights

2 1
Benefits Penalty Total Value Value%

Add User 0.05 5 3 13 5.2
Remove User 0.05 2 1 5 1.9
Add Title 0.08 3 2 8 3.2

Remove Title 0.01 1 1 3 1.2
Find Title 0.1 6 8 20 7.9
Add Item 0.01 4 3 11 4.4

Remove Item 0.01 2 3 7 2.8
Make Reservation 0.12 8 9 25 10
Check Reservation 0.1 8 9 25 10
Remove Reservation 0.12 9 9 27 10.8

Search User 0.07 5 8 18 7.2
Issue Item 0.1 9 9 27 10.8
Renew Item 0.03 2 1 5 2
Return Item 0.1 7 9 23 9.1
Find Loan 0.02 5 4 14 5.6
Collect Fine 0.03 6 8 20 7.9

SUM 1 82 87 251 100
EP: Execution Probability.

In equation 7.7, n represents the total number of use cases within the system.

Once the total test cases T for a system under test is decided by the testing team,

the number of test cases will be allocated to a use case Ui is NTP (Ui) ∗ T .
We have implemented our approach on LMS. The use case diagram of LMS is

already shown in Figure 4.1c. Various use cases of LMS with their execution probabil-

ities are shown in Table 7.4. For each high-level function (use case), we collected the

information from the users such as the librarian, the library-incharge and students

regarding the benefit of implementing the function and the penalty associated with

not implementing that function. We have identified sixteen use cases in the LMS

case study. We have developed a prototype tool called Complexity Factor Estimator

(CFE) for automating three influencing factors (factor 1, factor 2 and factor 5 ) out

of the discussed eight factors in Section 7.1. Other factors are estimated manually.

CFE is implemented using Java. The input to our tool, CFE, are the SD of a use case

and the state chart diagrams of all interacting components within the SD. The design

artifacts are produced in MagicDraw [118]. First, the UML diagrams are exported

in XMI format through an existing XMI parser and then, the XMI format is taken

as an input to our tool, CFE. The high level design of our tool, CFE, is shown in

Figure 7.14. As shown in the figure, the main modules of our implemented tool are

XMI parser, CCFG generator, Concurrent path identifier, Test path generators and

Message dependency identifier. The module CCFG generator generates the CCFG

of a given SD and the module Concurrent path identifier identifies all the possible
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Table 7.5: Complexity estimation for use case Issue Item

Factors : CCFG NP #CM #NV LMMS #ELs #POLY #AD TC OC
Weight 1 1 1 0.5 0.5 0.25 0.25 0.5 - -
Value 253 10 0 7 9 0 0 3 272.5 27.25

CCFG:

The complexity of the CCFG, NP: Number of Transition Paths, CM: Critical Messages, NV: Number of Variants,
LMMS: Length of longest MMS, EL: External Links, POLY: Polymorphic Messages, AD: Architectural dependency,

TC: Total Complexity and OC: Occurrence Complexity.

paths within the CCFG. Another module, Test path generator extracts all the pos-

sible transitions covered by a component within a path of the SD. A path within

the SD of a use case represents a scenario of the use case. The module Message de-

pendency identifier extracts the direct and indirect dependencies among interacting

objects within a SD.

Figure 7.14: High level design of CFE Tool

We illustrate our complexity computation method on use case Issue Item. We

compute the complexity for the use case Issue Item by applying Equation 7.5. Table

7.5 shows the estimated complexity for the said use case. In the table, we have

assigned different weights to different complexity factors. The weights assigned to

complexity factors is a subjective matter and vary from application to application.

We have broadly categorized the influences of the factors on the complexity of a use

case as high influence, average influence and low influence with weights 1, 0.5 and

0.25, respectively. For any application, the discussed first three factors in Section

7.1 have high influence. The values of various complexity factors shown in second

row of Table 7.5 are already estimated in Section 7.1. The estimated complexity for
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Table 7.6: Priority calculation

Sl. No usecase NTP
1 Add User 0.002731872
2 Remove User 0.001996368
3 Add Title 0.002689843
4 Remove Title 0.002689843
5 Find Title 0.044270336
6 Add Item 0.00439201
7 Remove Item 0.004952394
8 Make Reservation 0.172318081
9 Check Reservation 0.0420288
10 Remove Reservation 0.097590874
11 Search User 0.007060838
12 Issue Item 0.363128834
13 Renew Item 0.014079648
14 Return Loan 0.227883657
15 Find Loan 0.000980672
16 Collect Fine 0.011205929

Sum 1
NP: Normalized Priority;

use case Issue Item is 272.5. It is obtained by applying Equation 7.5. We consider

the execution probability of the use case and estimate the Occurrence Complexity

(OC) in the last column of Table 7.5 as 272.5 ∗ 0.1 = 27.25. We apply Equation

7.6 and calculate the priority for a use case based on its two important factors: (i)

Operational Complexity and (ii) Value. Finally, we compute the normalized priority

for various use cases of LMS using Equation 7.7, which are shown in Table 7.6. Figure

7.15 shows the contents of Table 7.6 in graphical form. The figure is an input to the

test manager for distributing test effort to various use cases at the architectural level,

so that testing and coding can be conducted simultaneously. From Table 7.6, it is

observed that the use case Issue Item has the highest priority. A use case with high

priority requires more test effort than a use case with low priority. So, the use case

Issue Item requires the maximum test effort. Once the total test effort for the system

is decided, test manager distributes the test effort among various use case according

to their priority values as shown in Figure 7.15. Our approach helps the test manager

in distributing the test resources.

7.3 Experimental Studies

In order to verify the effectiveness of our approach, we have carried out a series of

experiments on the source code of the LMS. We have seeded 36 number of faults

randomly in the source code of LMS. It has been shown that fault seeding is an

effective practice for measuring the efficiency of a test method [106]. There is a num-

ber of interactions among components in an object-oriented software. So, there are

opportunities for integration or interface faults. The seeded faults are of integration
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Figure 7.15: Priority distribution among use cases of LMS case study

level faults. We assume that a rigorous unit testing has been done by the developers.

These seeded faults could not be detected through a rigorous testing at the unit level.

The various types of faults that we have considered in our experiment are discussed

below.

1. Three types of interface mutation operators [107] such as Direct variable re-

placement operator, Indirect variable replacement operator and Return state-

ment operator are seeded.

2. Six types of state-based integration faults [22] were inserted such as Miss-

ing transitions, Incorrect transitions, Unspecified event, Incorrect state of the

sender object, Incorrect state of the receiver object, Message passing with in-

correct/invalid value of arguments. The last one is just explained here. Suppose

a message is passed with an incorrect argument or an invalid argument. An

object Oi is sending a message mi(a1, a2, a3). Instead of passing the correct

value of a1=x1, it is passed with the value a1=x2, where the value x2 is an

incorrect or invalid data. Four number of faults from each discussed type were

inserted randomly.

We made three copies of the source code and applied three different types of

testing methods. Foe each testing method, the test time was fixed to 36 hours based

on the test budget, size of the source code, total number of use cases, total number

of classes, total number of scenarios and total number of object-points. The first row

of Table 4.2 shows a brief summary of LMS.
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We conducted prioritization-based testing based on our proposed use case ranking

approach on the first copy of the source code and called it Ranked testing. We

applied coverage-based testing without any ranking information to the second copy of

the source code and called itUnranked testing, in which equal importance was given

to each use case. We conducted testing based on the operational profile designed for

the system to the third copy of the source code and called it Semi-ranked testing.

The aim of Unranked testing is to cover high percentage of source code and fix

as many bugs as possible based on the assumption that fewer bugs are consistent

with higher reliability. The aim of Ranked testing is to rigorously test the parts

of the source code that implement high priority use cases based on the assumption

that the reliability will be improved in a higher rate, if high priority use cases will

be tested thoroughly. So, in Ranked testing, we give effort to a use case based on

its priority value as estimated in our proposed approach whereas, in Semi-ranked

testing, we give test effort to a use case based on its execution probability. It has

been shown by many researchers [9, 13, 87] that the user’s view on the reliability of

a system is improved when, faults which occur in the most frequently used parts of

the software are almost removed. Keeping this in view, in Semi-ranked testing,

we focus test effort on the parts of the source code that are executed frequently.

Both in Ranked and Semi-ranked testing, operational profile is used for testing

and the operational profile is accurate as the system is an existing system. Hence, it

is assumed that both the testing methods (Ranked and Semi-ranked) could be able

to detect the important bugs at the early phase of testing, that are responsible for

frequent failures. After the allocated test time was over, we felt that some bugs could

not be fixed due to shortage of time, in each copy of the source code. It is because,

some bugs were detected during the last stage of testing, that could not be fixed in

stipulated time period. Table 7.7 shows the number of mutant bugs detected in three

testing methods.

Table 7.7: Testing results of three testing methods

TestingMethod Mutants Killed Mutants F ixed
Ranked 32 28
Unranked 34 30

Semi-ranked 28 27

Figure 7.16 shows the comparison among three different testing methods about

the time to detect the defects. We observed that different testing strategies lead
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Figure 7.16: Defect detection rate by various testing methods

to different testing results. Faults that were detected through Unranked testing

method was higher than the faults that were detected through the Semi-ranked test-

ing method. It is because, we iterated a lot in the frequently executed parts of

the code and gave less attention to others in this method. Though, Ranked testing

method could not detect the maximum number of defects as in Unranked testing

method, it detected the maximum number of critical defects as the severity of a

message was considered as a factor for complexity computation. It was also found

that the fault detection rate in Unranked testing method is nearly linear whereas,

in Ranked case, the fault detection rate is high during the early stage of testing.

The seeded faults detected in the Ranked testing method was higher than that of

the Semi-ranked testing method. The complexity is linearly proportional to defect

rates [99] and our approach emphasizes the complexity feature of a use case as one

input for ranking. In fact, our aim is to improve the reliability of a system. A soft-

ware testing method that is efficient in finding faults may not improve the reliability

of a system [9,13,119]. Our next job is to go for reliability assessment.

The tested source code that were obtained by three testing methods- Ranked,

Semi-ranked, Unranked- again tested for reliability assessment. Here, the assumption

is that the effect of all types of failures are same, which is practically not true. Some

failures have very negative impact on the customer and on the system. A failure

could be catastrophic or critical or major or minor [101]. Reliability of a system is

assessed by checking how many test cases are executed and out of that, how many test

cases failed. In each experiment, we run the three different testing results (tested

source code obtained from the three different testing methods) n times according

to the operational profile. The value of n varies from experiment to experiment.

The defects that caused failures were not fixed and the reliability was estimated.
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We have applied two existing reliability assessment methods: (i) random testing

(ii) adoptive testing [120]. It is experimentally proved that adoptive testing for

reliability assessment is trustable than others [120]. In random testing, test cases are

selected randomly from the input domain based on operational profile whereas, in

the adoptive testing, the selection of next test case is based on the testing profile2.

For the reliability assessment, we have made the following assumptions:

1. The code is frozen.

2. A test case either passes or fails.

3. The failure of the software at the current time t is only dependent on the

supplied input at that time and is independent of previously executed inputs.

4. The operational profile for the software is {Ii; pi; i=1; 2;.;m; }, where pi repre-
sents the execution probability of the input sub-domain Ii, and

m∑
i=1

pi = 1.

5. Total n number of test cases are allowed to run. The activities that are per-

formed in testing a software for reliability consists of test case selection, test

case execution, test result collection and updating the estimated reliability if

required. Test case selection is guided by operational profile in random testing

and guided by testing history in adoptive testing.

Software reliability R is calculated as follows:

R =
m∑
i=1

pi ×Θi (7.8)

In this equation, pi and Θi represent the execution probability and failure rate of ith

sub-domain. Θi is computed as follows:

Θi =
1

ni

ni∑
j=1

zij (7.9)

zij represents the execution result of a test case which is selected from ith sub-domain

for jth time. The value of zij is 1, if a failure is observed else, the value is 0. ni is the

total number of test cases selected from ith sub-domain and
∑m

i=1 ni = n. Table 7.8

2Testing profile says how to test the software while operational profile says how to use the
software [120].
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shows the reliability obtained on LMS by applying two testing methods for assessing

reliability. In the table, Rrt and Radpt represents the reliability assessed by random

testing and the reliability assessed by adoptive testing. The tested source code by

the three discussed methods: Ranked, Unranked and Semi-ranked are executed for

reliability assessment.

Result Analysis

Table 7.8 tabulates the experimental results of software reliability assessed for three

discussed methods- Ranked, Unranked and Semi-ranked- based on random testing

and adoptive testing. From Table 7.8, we observed that in adoptive testing, the vari-

ance is very less compared to random testing. From the reliability values assessed in

various experiments, we found that the code tested through Ranked method observed

the highest reliability and the code tested through Unranked method observed the

lowest reliability in both the testing methods- adoptive and random testing- for test

suites of different sizes.

The observed reliability is the lowest in the code tested through Unranked method.

It is because, some residual bugs were found in the frequently executed parts of the

tested code. Though, some of these failure causing bugs were detected at the time

of testing but, some of these detected bugs were not fixed due to detection at the

later phase of testing. This problem though was not observed in the code tested

through Semi-Ranked method but, the reliability is not high compared to the code

tested through Ranked method. It is because, the testing was done based on only

operational profile. The complexity factor was not considered for testing. Hence,

some seeded state-based integration faults could not be detected in the semi-ranked

testing method.

Though, we have not analyzed the impact of failures on the system at the time of

reliability estimation, but it is observed that some serious-failures3 were observed in

the tested source codes through Unranked and Semi-ranked methods. It is because,

we have neither considered the Value associated with a use case nor the criticality

of messages within the SD of a use case for testing in Unranked and Semi-ranked

methods. As these two major external factors- Value and criticality of a message-

are considered for prioritizing use cases in the Ranked testing method, the faults

which may cause failures with high negative impact on the user were almost detected

3A failure is serious if it causes a heavy financial loss to the organization or it causes a serious
damage to the system.
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and corrected at the early phase of testing through the Ranked method.

7.4 Summary

We have proposed a test effort prioritization technique at the architectural level. Our

approach is ranking the use cases of an application according to their complexity and

business value. For this, we first developed a technique to compute the complexity of a

use case quantitatively. Our approach for complexity calculation is purely analytical.

For achieving high reliability, the degree of thoroughness with which a use case to

be tested is made proportional to its priority value. We have conducted experiments

to check the effectiveness of our approach and experimentally proved that assigning

test efforts to a use case based on its execution probability only, is not sufficient for

ensuring the quality of a system. Consideration of both structural and behavioral

dependencies within a use case along with its execution probability for computing

test priority is a powerful way to improve the quality of the system.

In this chapter, we have not considered the risk associated with a use case. The

stakeholder of a software system feels that the measurement of quality of the software

system through risk is significant than other factors such as expected number of

residual bugs or failure rate etc. Keeping this in mind, we propose a novel risk

analysis technique in the next chapter, that works at the software architecture level.
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Chapter 8

Analyzing Risk at Architectural
Level for Testing

The approach proposed in this chapter is two fold. In the first phase, the risk is

estimated for components, use case scenarios and the overall system. In the second

phase, risk-based testing is conducted, in which the test priority is assigned to various

elements according to their estimated risk.

The existing work on software reliability estimation [9, 14, 15, 57, 63] do not con-

sider the impact of failures observed at the execution of a software system. Due to

the availability of design models, stake holders are now getting the opportunity to

estimate the reliability quantitatively at the analysis and design stage and hence, the

risk associated with the software before its implementation.

Risk analysis is conducted in a software application to assess the damage during

use, frequency of use and to decide the probability of failure by looking at defects.

There are several types of risks such as reliability-based risk, availability-based risk,

acceptance-based risk, performance-based risk, cost-based risk, and schedule-based

risk. In the thesis, we are mainly concerned with the reliability-based risk, as our

aim is to improve the reliability of a system, within the available test resources. It

is the probability that the software product will fail in the operational environment

and the adversity of that failure.

In order to save the time and cost in the software development life cycle, there

is a requirement of an effective decision-making for allocating resources to various

high level requirements. For this, there is a need to assess quantitatively the risk

associated with high level requirements as early as possible. Researchers [81, 82, 84]

have proposed risk estimation models by gathering data at the requirement stage

and analysis stage. As the analysis and design stage is critical compared to other

stages, assessing risk at this stage is beneficial to the stake holder. Detecting and
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correcting errors at this stage is less costly compared to later stages of SDLC. For

estimation of risk at an early stage, the important feature is to design a model

to predict the dynamic aspects of a system. Un-reliability at different states of a

component within a scenario may affect the failure rate of the scenario differently.

If the failure probabilities of an interacting component in various states within a

scenario are well known, it is easy to analyze their effect on the system behavior.

The risk for two different states of a component may vary within a scenario. A fault

within a state of a component may be the reason for component failure and the failure

of a component/connector may be responsible for a system level hazard [101]. We

predict the dynamic aspects of a system and assess risk through the data collected

at the detailed design stage. We consider the risk associated with active resources.

As connectors are passive1 in nature, we have not considered any connector faults.

It is assumed that connectors are 100% reliable. Unlike the existing work [81, 82]

on risk estimation at the architectural level, we introduce the risk associated with

different states of a component within a scenario rather than estimating the risk for

the component as a whole. Quantifying the risk at different states of a component

within a scenario is an input for an effective risk estimation of the scenario.

We propose an intermediate graph called Inter-Component State Dependence

Graph (ISDG) for getting the complexity for a state of a component. ISDG shows

intra-component state transitions and inter-component state transitions within a sin-

gle graph. Once the complexity is calculated, the next step is to analyze the severity

associated with various states of a component for risk estimation.

We use the risk associated with various states of an interacting component within

a scenario to compute the risk for the whole scenario. The risk for a scenario is

estimated based on the estimated risks of the interacting components at various

states within the scenario and an existing test model called State COllaboration

TEst Model (SCOTEM) [115]. We are primarily motivated by the need to generate

a list of scenarios ranked according to their estimated risks. This ranking technique

provides a path to find truly critical system functionalities. Assigning test effort to

various scenarios based on their estimated risks helps the tester to detect important

faults at the early phase of testing. Once the risk for various scenarios within a system

are estimated, the risk for the overall system is calculated based on two parameters:

(i) estimated risks of various scenarios within a system (ii) list of scenario transition

1Passive resources cannot generate their own behavior, but only react to the occurrence of a
stimulus, while active resources are those capable of spontaneous unprompted behavior.
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probabilities within a system.

The rest of the chapter is organized as follows: Our proposed risk estimation

method is described in Section 8.1. The efficacy of our approach is evaluated in

Section 8.2 and the summary of the chapter is given in Section 8.3.

8.1 Risk Estimation Method

Our proposed risk analysis method first estimates the complexity associated with

individual state of a component. Then, it iterates on a scenario and estimates the

severity associated with various states of an interacting component within the sce-

nario. Based on the complexity and severity, it estimates the risk. Our approach

estimates the risk for the scenario through the help of an existing state-based in-

tegration model called SCOTEM [115] and the estimated risks of various states of

the components within the scenario. Our approach helps to carry out a sensitivity

analysis for a scenario and generates a list of critical components that are responsible

for increasing the risk of the scenario. Finally, we estimate the overall system risk

on the basis of risks associated with scenarios and scenario transition probabilities.

For calculating the overall system risk, we use Interaction Overview Diagram (IOD)

that represents scenario specifications. The procedure of our proposed methodology

is shown in Algorithm 2 and a detailed description of the procedure is explained in

subsequent sections.

Algorithm 2 Risk Analysis Procedure

1: for each component do
2: for each state do
3: estimate complexity through ISDG.
4: end for
5: end for
6: for each scenario do
7: for each active state of an interacting component do
8: assign severity.
9: compute risk.
10: end for
11: estimate scenario risk
12: identify a list of critical components within the scenario through sensitivity

analysis.
13: end for
14: rank scenarios based on their estimated risks.
15: estimate overall system risk using IOD and scenario risks.
16: identify a list of critical scenarios within the system through sensitivity analysis.
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8.1.1 Quantifying the complexity for a state of a component

In this section, we propose a method to compute the complexity associated with a

state of a component at the architectural level. In a sequence diagram, the interac-

tions among components are represented through event/action pairs. An interaction

within a sequence diagram is mapped to an event in a state chart diagram. When, an

event is invoked by a component within a scenario, it may trigger an action, which in

turn may trigger another event in another component. The event/action interaction

describes how invocation of a function in a component affects other components. For

example, in the well known case study, LMS, consider a situation when a borrower

reserves a book. First, a new object of Reservation component (New state) will be

created. The newly created Reservation object triggers a message to Borrower object

and to Book object, simultaneously. By getting the message, the Borrower object

will change its state to NonResearvable state from Active state (The business rule of

our case study says that a borrower can reserve only one book) and the Book object

will change its state to Reserved state from Issued state (Please refer Figure 7.7).

Similarly, consider another situation, when a book is returned while it is in Reserved

state. First, there will be a transition in the Book object from Reserved state to

Committed state. This transition in the Book object triggers the Reservation object

for a transition from New state to Issuable state. Hence, in this situation, a transition

in the object Reservation is now dependent on the transition of object Book, but in

the previous case, the transition in Book object (transition from Issued state to Re-

served state) was dependent on the transition in Reservation object. The individual

behavioral view of various components of LMS are already shown in Figure 7.7. The

figure shows the intra-component state transition dependencies but, it is unable to

show the inter-component state transition dependencies among components.

Yacoub et al. [70] stated that the dynamic complexity of a component is decided

based on the number of transitions of the component within a scenario. They have

considered only transitions within a component and computed complexity at the

component level. In our approach, we consider both intra-component and inter-

component state transition dependencies in a system and compute the complexity at

a lower level, for various states of a component rather than for the whole component.

For this, we propose a graph at the architectural level called Inter-Component State-

Dependence graph (ISDG), through a collection of state chart diagrams of various

components within a system. The graph shows both intra-component and inter-
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component state transitions within a single graph. ISDG shows how a state transition

in one component triggers transitions in other components. In the following section,

we draw ISDG for our case study LMS and discuss it in detail.

Inter-component State Dependence Graph (ISDG)

We use the concept of Bayesian-model [121] for generating ISDG. It consists of a

set of concurrent state machines, SM=sm1, . . . , smn where, n is the number of

components in the system. Each state machine (smi) consists of a set of states,

S= s1,...,sm and a set of transitions T=t1,. . .,tp where, m represents the number of

states in the state machine smi and p is the number of transitions in the component

corresponding to smi. Each transition has its origin and destination. There is either

a single event or an event/action pair associated with each transition. Each event

and action corresponds to an interface of a component. When an event is generated

in one component, it may cause a change of state in another component. There is

a transition dependency between state machines smi and smj, if an action of smi

is matched with an event of smj. The ISDG of LMS is shown in Figure 8.1. There

Figure 8.1: ISDG of LMS

are two types of edges in ISDG, as shown in Figure 8.1. The solid one shows the

intra-component state transition and the dashed one shows the inter-component state

transition. Intra-component state transition can be easily understood from the state
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chart diagrams of LMS that are shown in Figure 7.7. Now, we discuss one inter-

component transition dependency of the ISDG, shown in Figure 8.1. Let us take the

state R3 of Reservation object. From R3, there are two outgoing transitions. One

is to Book object and the other one is to Borrower object. These transitions say

that, when there is a transition in the Reservation object to the state R3 from either

the state R1 or R2, it initiates two inter-component state transitions. It sends an

event to the component Borrower to change its state to U1 and sends an event to the

component Book to change its state to either B1 or B2 depending on the condition.

The arc in the two transitions to Book component states that any one transition

will occur at a time. Suppose a book is in Reserved (B4) state. A transition in the

Reservation object to Destroyed (R3) state will send an event to the Book object to

change its state to Issued (B2) state. Figure 7.7 shows various states of a component.

The transition of an object of Reservation component to Destroyed (R3) state will

cause one transition in an object of Book component to Available (B1) state if the

book is in Committed (B3) state. It will be changed to Issued (B2) state if the book

is in Reserved (B4) state. The transition in Reservation object is also responsible for

a transition in Borrower object. Borrower.U1, Book.B1 and Book.B2 are dependent

on the state Reservation.R3. This type of dependency is called cause and effect

dependency because, the behavior of Reservation component in state R3 implies the

behavior of Borrower and Book component. This type of dependency analysis helps

to understand the behavior of the system clearly. Hence, ISDG can be used by the

developers and testers during development cycle.

Let us explain through ISDG, the behavior of a system to an external event in a

given state. For example, let the initial state of LMS be {{B1.4, B2.1}{R1.1}{U1.4,
U2.3}} at time T1. An object Oi.j represents that i-th object is in j-th state. At

time T1, it is assumed that the book B1 is already issued to the borrower U1 and

it is already reserved by another borrower U2. At this point, there is a chance of

occurrence of several scenarios. Let us consider one possible scenario. Suppose the

borrower U1 returns the book. The scenario Return Item is executed. During the

execution, first there will be a transition in object B1 from B1.4 (Reserved) to B1.3

(Committed). Due to the concurrency nature of the three state machines, Book,

Reservation and Borrower, this transition of Book causes two inter-component state

transitions simultaneously: one transition in the Reservation object R1 and the other

one in the Borrower object U1. The state of the Reservation object will be changed
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from R1.1 (New) to R1.2 (Issuable) and the state of the Borrower object will be

changed from U1.4 (NonIssuable) to U1.1 (Active). Hence, after the execution of

the scenario Return Item, the new state of LMS will be {{B1.3, B2.1}{R1.2}{U1.1,
U2.3}}. Our proposed ISDG helps to show the cause and effect dependencies among

various components of a system in a single graph. ISDG shows all possible transitions

from one state to others. For a particular message, the appropriate one can be

detected at the execution of a scenario.

Complexity computation

From the architectural analysis of a software system, we found that a transition in one

component may cause a transition in other components. Hence, the reliability of the

transition in the second component is dependent on the reliability of the transition

in the first component. If a transition to a state Si in a component is dependent

on a number of states then, the probability of failure is high in the state Si. We

find that the chance of getting failure is high in a state of a component, if it is

transition dependent on a number of components. Keeping this in view, we estimate

the complexity for a state of a component based on the size of its Dependent-by-

Group. Dependent-by-Group of a state Si of a component contains all possible states

of the same component (intra-component state transitions) and different components

(inter-component state transitions), on which Si is transition dependent. When

a failure occurs in a component at state Si, we must check each element of its

Dependent-by-Group.

The commonly occurring failures in case of inter-component state transitions are

Missing-transitions2, Incorrect-transitions3, Unspecified-event4, Unspecified-state5,

Incorrect-state of sender object6 etc [22]. As these types of inter-component state

transition faults cannot be identified in a rigorous unit testing, there is a chance

of increase in failure rate during this transition compared to intra-component state

transition. Faults occurring in intra-component state transitions such as Incorrect-

2Message mi is invoked on object Oj , which in turn should trigger changes to object Ok, instead
it does not trigger any change to object Ok.

3Message mi is invoked on object Oj , which in turn should trigger changes to object Ok from
Sx to Sy, instead it changes the state from Sx to Sz, Sy ̸= Sz.

4Message mi is invoked on object Oj , which in turn triggers changes to object Ok from state Sx

to Sy, which is not specified.
5Message mi is invoked on object Oj , which in turn should trigger changes to object Ok from

state Sx to Sy, instead it changes the state to Sz, where Sz is not specified in the design.
6A message mi is to be sent from an object Oj in state Sx to another object Ok, instead the

message mi is sent from object Oj while in state Sy, where Sx ̸= Sy.
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action7 and Missing-action 8 can be easily identified in a rigorous unit testing. Due

to this, we categorize an intra-component state transition as simple with weight 1

and an inter-component state transition as complex with weight 3.

First, we extract the Dependent-by-Group for each state of a component through

ISDG (in ISDG, a state is represented as a node). In ISDG, the Dependent-by-Group

for a node n contains all the adjacent nodes of n that are connected to node n by

its incoming edges. For example, the elements of the Dependent-by-Group of Bor-

rower.U1 are {Borrower.U2, Borrower.U3, Borrower.U4, Reservation.R3, Book.B1}.
So, the complexity associated with Borrower.U1 is 1+1+1+3+3=9. Table 8.1 shows

the Dependent-by-Group and the complexities associated with various states of Book

component in LMS case study. The complexity for state j of component i within a

Table 8.1: Complexity for each state of Book component

State Dependent-by-Group Complexity
B1 {B2,B3,R3} 1+1+3=5
B2 {B1,B3,B4,R3} 1+1+1+3=6
B3 {B4} 1
B4 {B2,R1} 1+3=4

system is represented as complexity(i.j). The normalized complexity is obtained by

normalizing the complexity of the state of the component with respect to the sum

of complexities of the states for all components within a system. comp(i.j) is the

normalized complexity for state j of component i. It is computed as follow:

comp(i.j) =
complexity(i.j)∑n

i=1

∑nos
j=1 complexity(i.j)

(8.1)

In Equation 8.1, n represents the total number of modal components and nos repre-

sents the total number of states in i-th component.

8.1.2 Severity analysis

In this section, we use a method based on three hazard techniques [96] to determine

the severity associated with various states of a component within a scenario. We are

using three hazard techniques: Functional Failure Analysis (FFA), Software Failure

Mode and Effect Analysis (SFMEA) and Software Fault Tree Analysis (SFTA) for

7A message mi is sent to object Ok, which in turn should change the state of Ok to Sx, instead
the state changes to Sy, where Sx ̸= Sy.

8A message mi is sent to object Ok, which in turn should change the state of Ok to Sx, instead
it does not produce any action.
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estimating the severity associated with a state of a component within a scenario.

Hazard analysis is done at functional level (top level) through FFA [122]. It shows the

possible ways of system failures. First, we identify all possible system level hazards9.

SFMEA identifies the component level failures and their effect on the system. While

FFA needs abstract functional description, detailed architectural design is required

for SFMEA. There is a requirement of cause and effect dependency for predicting

the likelihood of system failure from the likelihood of component failure [123]. SFTA

is conducted to find how the failure of a lower level element is responsible for the

failure of an upper level element and finally, the failure of a scenario.

FFA is the first step of severity analysis. The input to a FFA is the list of external

events that occur between external actor and the system. For this, we use System

Sequence Diagram which consists only the messages of a sequence diagram that occur

between an external actor and the system [83]. In this case, the system is treated

as a black-box. So, the internal events of a sequence diagram that occur among

interacting components are not considered. The next step of severity analysis is

SFMEA to identify component level failures. It is already discussed in our previous

chapters (Chapter 5 and 6). In this chapter, we consider SFMEA at the architectural

level instead of code level. SFMEA is done through a detailed analysis of message

types in a sequence diagram. Within a sequence diagram, we identify the data

transferred between components and the events that are interacting within a use

case.

Our severity analysis method at the architectural level consists of the following

steps:

1. Performing FFA for a use case.

2. Performing SFMEA: identifying failure modes for various interacting compo-

nents of the use case through the analysis of sequence diagram and state chart

diagrams.

3. Constructing software fault tree using FFA and SFMEA.

4. Converting the results obtained from SFTA and SFMEA into XML files and

making a comparison analysis of the resulting XML files for two reasons: (i)

to check the consistency between the software fault tree and failure modes of

9A system level hazard is associated with all possible hazards at the execution of a scenario. A
list of these possible hazards are the outcome of FFA.

144



8.1 Risk Estimation Method Analyzing Risk at Architectural Level for Testing

Figure 8.2: An overview of the severity analysis method

interacting components within a scenario and (ii) to identify any missing failure

that is not analyzed.

An overview of our severity analysis process is shown in Figure 8.2. To get all

possible failure modes associated with a component within a scenario, we apply bi-

directional analysis. A forward search within a scenario is applied through SFMEA

and a backward search is applied through SFTA. As SFTA and SFMEA are both

complimentary in nature, the combination of both the approaches help us to identify

any missing failures in a use case.

We have created an entire fault tree for each use case of the LMS through the

FaultCAT tool [124]. The advantage of this tool is that it allows user to draw and

edit the fault tree and calculate the probability of failure of intermediate nodes auto-

matically. It also converts the fault tree into an XML form which helps us to check

the consistency with SFTA through Java programs. Let us discuss the use case Issue

Item. The system level hazards associated with Issue Item use case are as follows:

1. Do not allow any borrower to issue book.

2. Allow the non illegible borrower to issue book.

3. Allow the non-issuable book to issue.

4. Allow a person to issue more than maximum number of books.
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The root node is “Failure to issue book” and the nodes in first level are the four

hazards described above. The second level contains the nodes which contribute to

the hazards, etc. We have not presented the entire fault tree due to space reasons.

A piece of it with its XML form is represented in Figure 8.3. This is a subtree

showing the hazard number 4; the system is allowing a borrower to issue more than

maximum number of books. The leaf node of a software fault tree corresponds to a

method which is involved in the interaction of the scenario. Hence, the leaf nodes

are analyzed using the failure modes from SFMEA. We check whether the failures

of events that are associated with a component within a scenario contribute to the

errors of the component that lies on the bottom of the fault tree of that scenario.

Figure 8.3 shows that either an error in component SessionMgr or in component

Borrower will contribute a system level hazard in the use case Borrow Item.

(a) Fault Tree (b) Fault Tree in XML form

Figure 8.3: Fault tree with its XML form for a hazard of Issue Item use
case

Next, our job is to convert the table obtained through SFMEA into XML format

and then, go for a bidirectional analysis to check the consistency between the results

obtained through SFTA and SFMEA. Table obtained from SFMEA is converted into
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a XML file through the help of Java Excel API. The effects of SFMEA are matched

with the nodes of the fault tree obtained through SFTA. There are some failures found

in the table obtained through SFMEA, that are not exist in the fault tree obtained

through SFTA. Let us consider one case. In the table obtained through SFMEA, we

have shown a post condition failure (F1) at the time of execution of issue() command

in Reservation component. This says that after the execution of issue() command

in Reservation component, the state of the Reservation object will be deleted and

the state of the Borrower component will be transited from “NonReservable” to

“Active” state. In case of a failure F1 (post condition is not satisfied) of issue()

method of Reservation component, the object of Reservation component is deleted

without making any change in Borrower component. As a result, the borrower will

successfully issue a book (there is no problem in current scenario) but could not

reserve any book further. As there is no hazard associated with the execution of

Issue Item use case, the fault is missing in the fault tree obtained through SFTA.

Our methodology considers the message criticality [116] within a sequence dia-

gram, as a parameter for estimating the severity. The weight of each message is not

equal. However: (i) there might be certain messages which are critical to the sender

objects (ii) some messages (call or reply) might carry larger amounts of data or more

parameters (return values) than other messages (iii) the return values of some mes-

sages might be used frequently (or for critical decisions/computations) in the caller

object than other messages, or (4) some messages might be triggered often than other

messages [116]. The job of the designer/analyst is to estimate the weights for various

messages of a sequence diagram in an application based on the above four criteria.

The severity weight of 0.25, 0.50, 0.75, and 0.95 are assigned to Minor, Marginal,

Major, and Catastrophic severity classes respectively, as defined in [81,82].

8.1.3 Risk computation

In the section, we first estimate the risk for a state of a component within a scenario

and then, compute the risk for the whole scenario. We combine the complexity

and severity associated with a state to compute the risk for the state. Heuristic

risk for a scenario is computed by considering two parameters (i) estimated risk of

various states of interacting components within the scenario (ii) SCOTEM [115] of

the scenario.

147



8.1 Risk Estimation Method Analyzing Risk at Architectural Level for Testing

Table 8.2: Estimated risk for various states of Borrower component within Issue
Item use case

Possible state Risk
NonReservable 0.053
Active 0.089
NonIssuable 0.005

Risk estimation for a state of a component

The heuristic risk, hrf i.j
x, for j-th state of i-th component within scenario Sx is

estimated as follow:

hrf i.j
x = p(i.j)x × comp(i.j)× svrty(i.j)x (8.2)

In Equation 8.2, p(i.j)x and svrty(i.j)x represent the probability and the severity

associated with j-th state of i-th component within scenario Sx, respectively. The

estimated risk for various states of Borrower component within the main scenario of

Issue Item use case are shown in Table 8.2. In the table, Risk is the normalized risk.

Risk estimation for a scenario

Ali et al. [115] have proposed a state-based integration testing approach for deriv-

ing test cases for a scenario. They have proposed an intermediate test model called

SCOTEM based on state chart diagrams and collaboration diagram. Our risk esti-

mation method uses SCOTEM to estimate the risk within a scenario. An example

of SCOTEM for a scenario Sx, SCOTEMx is shown in Figure 8.4. The Null vertex

in Figure 8.4 is a dummy vertex that models an external message (e.g., message

from a user). As shown in Figure 8.4, there are four interacting components {C1,
C2, C3, C4} in scenario Sx. Each rectangular box represents a component and it

contains multiple vertices, where the rectangular vertex corresponds to an instance

of the component in a distinct abstract state, corresponding to states defined in state

charts and the vertex in ellipse shape represents the starting point, called init state.

For execution of scenario Sx, all the interacting objects those are modal will be in

some specified states. The probability of occurrence of a state in a component box

is the sum of probabilities of the paths from init node to that state.

For example in our LMS case study, for the successful execution of scenario Issue

Item(U,B), the initial state of the requested Book object B will be either in Available

state or in Reserved state and the initial state of the Borrower object U will be

either in Active state or in NonReservable state. We have drawn a SCOTEM for use
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Figure 8.4: SCOTEM for scenario Sx

case Issue Item(U,B). The sequence diagram of use case Issue Item(U, B) is already

shown in Figure 7.5.

In the sequence diagram, only three components Book, Borrower and Reservation

are modal. For the execution of messages m1-m21, there will be no change of state

of any component. So, in the sequence diagram of use case Issue Item, only the

execution of three messages m24, m27 and m30 change the state of the system.

The behavior of the modal components in the SCOTEM designed for the sequence

diagram of Issue Item use case is shown in Figure 7.8. Suppose, we consider the

message m24. When the message is received, the Borrower object is either in state

U1 or U3. We assign uniform probability to each possible state at the initial stage.

If it is in U1, then the next state will be either U1 or U4. The probability of a state

of a component within a scenario is the sum of probabilities of incoming paths from

init state to that state. During the execution of message m24, the probability of U1

is 0.5+0.25=0.75. (init→U1=0.5, U1→U1=0.5, So, init→U1→U1=0.5*0.5=0.25).

Similarly, the probability values for various states of other components are calculated.

In a scenario, the risks associated with various states of interacting components

are used as input for computing the risk for the scenario. The total number of

state paths in SCOTEMx developed for scenario Sx is determined by taking the

product of the number of transitions in each modal component [115]. The possible

transitions in various modal components of Issue Item(U1, B1) scenario are shown

149



8.1 Risk Estimation Method Analyzing Risk at Architectural Level for Testing

in Figure 7.8. As shown in the said figure, total number of possible transitions by

each modal component within the scenario are given in Table 8.3. Hence, the total

Table 8.3: Possible transitions by various objects within Issue Item use case

ObjectName MessageReceived Transitions#
Book issue() 2

Reserve issue() 1
Borrower issue() 4

number of state paths in the SCOTEM of Issue Item(U,B) scenario is 8. A state path

starts with the initial (Null) vertex and contains a complete message sequence of the

collaboration. Each state path in SCOTEMx shows some interactions between the

components in appropriate states. We first estimate the risk associated with each

state path of SCOTEMx. Risk for k-th state path of SCOTEMx, (SCOTEMx)k,

is estimated as follows:

Risk(SCOTEMx
k) =

n∑
i=1

ns∑
j=1

(hrf i.j
x) (8.3)

In Equation 8.3, n represents the number of interacting components in scenario Sx

and ns represents the number of active states of i-th component in k-th path of

SCOTEMx. For a large application, number of state paths will be very large. Hence,

it will take extra resources to calculate the risk for a scenario. To solve this problem,

we have considered n-Path Coverage criteria [115]. This coverage criterion selects a

specified number n of state paths from the SCOTEM. The value of n ranges from the

number of state paths required to achieve All-Transition Coverage10 to the maximum

number of possible test paths within an application. The n-Path Coverage subsumes

All-Transition Coverage. It first generates test paths such that each state transition

in a modal object is followed at least once. The remaining state paths are then

selected randomly until n number of state paths are taken [115]. Then, the risk for

the whole scenario is estimated as the sum of the estimated risks of at least n number

of paths in the SCOTEM of the scenario, where n is the number of paths considered

according to n-Path Coverage criteria.

In the sequence diagram of the ongoing example Issue Item(U, B) use case, the

normalized risk of the main scenario, the successful issue of book, is estimated as

0.3972 using Equation 8.3 and Table 8.2. We have estimated the risk for the successful

scenario of each use case. The alternative scenarios of a use case are not considered.

10This criteria ensures that each state transition in a modal object is followed at least once.
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Table 8.4 shows the estimated risks for various use cases within LMS. From Table

Table 8.4: Risk estimated for various use cases of LMS

Use case Normalized risk
Add Borrower 0.003

Remove Borrower 0.037
Add Title 0.013

Remove Title 0.009
Find Title 0.005
Add Item 0.009

Remove Item 0.101
Make Reservation 0.069
Check Reservation 0.002
Remove Reservation 0.002

Search User 0.005
Issue Item 0.397
Renew Item 0.071
Return Item 0.179
Find Loan 0.005
Collect Fine 0.093

SUM 1

8.4, it is found that Issue Item use case has the highest risk. It is because, a number

of state transitions occurred within the scenario.

Estimation of risk for the overall system

We use scenario-based specifications as an input for estimating the risk for the overall

system. Scenario specification is the composition of a set of scenarios possibly from

an user. For details, the reader can refer to [125, 126]. The software industry is

widely accepting the scenario specifications as these are well suited for describing the

intended behavior of the application in abstract form. Rodrigues et al. [125] have

modeled scenario specifications through Interaction Overview Diagram (IOD). IOD

shows the flow of control among scenarios and the starting state and the end state

of the flow which is executed by an average user. In UML 2.0, each activity node of

an IOD is a sequence diagram. IOD shows the probability of transfer of control from

a scenario to all adjacent scenarios. The transition probability PTSij between two

scenarios represents that the system will execute scenario Sj after executing scenario

Si. Rodrigues et al. [125] have done a sensitivity analysis and made it clear that the

system reliability is sensitive to (1) the component reliabilities, and (2) the scenario

transition probabilities. Based on this, we use scenario risk and scenario transition
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probabilities to estimate the risk for the overall system. We have already discussed

our proposed method above for estimating scenario risk. The information about sce-

nario transition probabilities are derived from operational profile [9] of the system.

Each path from starting point to end point in an IOD shows the probability of invo-

Figure 8.5: Interaction Overview Diagram of LMS

cation of a sequence of scenarios by an average user in the operational environment.

The risk of the overall system, Risk(Sys), is estimated as follows:

Risk(Sys) =

nop∑
i=1

(Risk(pathi)) (8.4)

In Equation 8.4, nop represents number of paths in IOD of the system. We have

drawn an IOD for LMS in Figure 8.5. In LMS, there are two different types of users:

(i) Borrower and (ii) Librarian. According to our assumption, the use of the system

by Borrower is nine times more than Librarian. Some use cases are included in other

use cases. For example the use case Collect Fine is called at the time of execution

of the use case Return Item, if the copy is returned after the due date. Hence, the

included use cases are not explicitly shown in the IOD. We calculate the risk for
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the overall LMS using Equation 8.4, in which Table 8.4 is used as an input. The

estimated system risk for LMS is 0.632.

Our risk estimation procedure is not amenable to full automation. Construction

of ISDG is semi-automatic in our approach. Automatic construction of ISDG is a

complex activity in terms of data collection. It is hard to extract all possible state

transitions for a non-trivial system. Unfortunately, the severity analysis techniques

discussed in the paper are not fully automatic as they involve the user in analyzing the

various ways of failures of components / system and determining their effects. The

limitation of severity analysis is that SFTA may produce hundreds of combinations of

events causing system level failures in a complex system. The analyst / programmer is

concerned with what the software is used to perform, whereas SFTA forces the analyst

/ programmer to estimate the possibility of undesired events within a system and

their contribution to system failures. The effort to estimate these may be expensive

and time consuming. The skill of the analyst plays an important role for the severity

analysis process. Finally, we say that a huge investment is required in order to run

our analysis as we require data from a number of UML diagrams and conduct more

than one hazard techniques for severity analysis.

8.1.4 Complexity analysis of risk estimation approach

The complexity of our risk assessment procedure shown in Algorithm 2 is dependent

on a number of factors such as the number of scenarios, number of modal components,

number of states in a component, patterns of component interactions as modeled in

the scenario, number of possible hazards associated with the system at various levels.

All these factors are not uniform as it varies from application to application. For risk

estimation, an intermediate graph called ISDG is introduced in this paper. Now, we

analyze the time and space complexity of constructing ISDG.

To determine the space complexity, we consider the space requirement to store

the intermediate graph, ISDG. ISDG consists of n number of state machines where, n

is the number of modal components in the system. Let state machine smi consists of

mi number of states. The value of mi is usually a small finite number in a moderate

size application. Let N be the total number of states in all the state machines of

the system. So, N =
∑n

i=1(mi). Each state is represented as a node in ISDG.

The transitions in ISDG contain transition to the states of the same component and

transition to the states of other components. At the worst case, each node can have
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n-1 transitions. It is easily realized that the space requirement for ISDG with N

number of nodes (states) is O(N2).

Now, we analyze the time complexity associated with the construction of ISDG.

The procedure to construct ISDG takes as input a set of state-chart diagrams and

a legal sequence of scenarios. The possible behavior of an interacting component is

analyzed at the execution of a scenario. At the time of interaction, we check the

initial state of a component. The components should be in some specific states for

the occurrence of an interaction. We consider legal sequences of scenarios and analyze

the complexity of enumerating all inter-component state transitions of a system. The

time complexity of enumerating all possible inter-component state transitions of a

system at the design stage is NP-complete.

8.2 Experimental Validation

In this section, we have conducted two experiments to evaluate the efficacy of our

approach. The aim of the first experiment is to cross check the estimated risk with

the actual failures observed in the system. The aim of the second experiment is to

prove that (i) our risk analysis method drives the tester to increase the fault detection

rate, (ii) our approach helps in detecting the important faults that are responsible

for severe failures. The experiments are conducted on the source code of LMS.

8.2.1 Experiment 1

We performed the following steps in this experiment to cross check the estimated risk

with the actual failures observed in the system.

1. Step-1: We applied random testing to test the software. The detected defects

were fixed. We recorded the defects found in various scenarios to cross check

with the estimated risk.

2. Step-2: We generated a set of test sequences based on the operational profile

of the system and executed the tested software for each test sequence. We

assumed that the failure rate would be high for a scenario with high risk. As

our aim was to check the failure rate of a scenario, in this step, we did not

remove any detected defects that were responsible for failures. The failure rate

of each scenario was estimated within a test sequence.

3. Step-3: We calculated the average failure rate of a scenario within a system.
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The failure rate of a scenario Sj in a test sequence, Seqi, is Θji. Θji is computed as

follows:

Θji =
1

nji

nji∑
j=1

zji, (8.5)

zji represents the execution result of scenario Sj in the test sequence Seqi. The value

of zji is 1, if a failure is observed else the value is 0. nji is the total number of times

scenario Sj is executed in the i-th test sequence. The following assumptions were

taken for the experiment.

1. After the execution of a scenario, the system state may be changed. So, the

same scenario may be executed a number of times, but in different system states

within a given sequence.

2. A test case that is designed for a scenario either pass or fail. If a test case is

blocked, we first, correct the code and then, consider it in our experiment.

3. The output of a selected test case at the current time is not affected by the test

results of previously executed test cases.

We executed the system 10 times for 10 test sequences of different length. Table

8.5 shows the estimated risk, detected defects and failure rate of various scenarios

in LMS. In this table, We have put the estimated risks of various scenarios for cross

checking the detected defects with the estimated risk. In the table, the second column

Risk is the normalized risk and fourth column FR is the normalized failure rate of

a scenario, within the system.

Discussion

In Table 8.5, we observed that a number of faults were found in majority of high

risk use cases and the failure rate was also high for those use cases. It is because,

the number of faults detected within a scenario is related to the complexity of the

scenario and complexity is an input for risk estimation. The scenarios within which

a number of inter-component state transitions have been occurred were more fault-

prone than others. From the table, we observed that the fault detection rate was high

in use cases Issue Item, Renew Item and Return Item. We also observed that the

failure rate is not linearly proportional to the estimated risk of the system, always.

We found that the failure rate is also high for some use cases with low risk. It is

because, the third assumption, the output of a selected test case at the current time
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Table 8.5: Experimental result for various use cases of LMS

Use case Risk DDC FR
Add Borrower 0.003 0 0

Remove Borrower 0.037 2 0.0001
Add Title 0.013 0 0

Remove Title 0.009 2 0.0004
Find Title 0.005 0 0
Add Item 0.009 1 0

Remove Item 0.101 3 0.0092
Make Reservation 0.069 0 0.0036
Check Reservation 0.002 0 0
Remove Reservation 0.002 0 0.0017

Search User 0.005 0 0
Issue Item 0.397 3 0.0049
Renew Item 0.071 4 0.0019
Return Item 0.179 5 0.0002
Find Loan 0.005 0 0
Collect Fine 0.093 1 0.0038

SUM 1 1
DDC:Defects Detected and Corrected; FR: Normalized Failure Rate of a scenario.

is not affected by the test results of previously executed test cases, may be a threat

to the validity of our approach. It is also observed from the experimental result that

the failure rate is low for some high risk use cases such as Return Item use case. It

is because, only failure rate is considered in this experiment, but the risk is actually

estimated as a combination of failure rate and severity of failures.

8.2.2 Experiment 2 (Comparison with related work)

We compare our objectives with the existing work on model-based risk analysis tech-

niques according to the six criteria as defined in Table 8.6. In our approach, the

smallest individual element for which the risk is assessed is the state of a class

whereas, it is a class itself in other two approaches. The other advantage of our

approach is that we have done a bi-directional analysis to check the consistency of

failure modes in various levels and also extracted any missing failure mode which

was not analyzed. We also consider the risk for the whole system on the basis of

scenario transition probabilities and risk of scenarios, whereas it is assessed by CDG

in [81] and average of risk of use cases in [82]. In Table 8.6, the approach proposed by

Goseva-Popstojanova et al. [82] is just an extended version of the approach proposed

in [81].
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Table 8.6: Comparison of our work with the existing work

CC Yacoub et al. [81] Popstojanova et al. [82] This Work
Source UML Models UML Models UML Models
Approach Bottom up Bottom up Bottom up
Smallest
individ-
ual item
for risk
analysis

Component and Con-
nector

Component and Connector State of a Component

Severity
analysis

SFMEA SFMEA SFFA, SFMEA and SFTA.

Graph
used for
assessing
scenario
risk

(Scenario risk is not
calculated)

Discrete Time Markov
Chain

SCOTEM

Graph used
for analyz-
ing system
risk

Component Depen-
dence Graph (CDG)

(Averaging use case risks) Interaction Overview Dia-
gram.

CC:Comparison Criteria

We have conducted another experiment with the aim to show that our estimated

risk and the intermediate results guide the tester in increasing the fault detection rate

and detecting important faults. In order to verify the effectiveness of our approach,

we have seeded 43 number of faults in the source code of LMS after the completion

of unit testing. The seeded faults are of integration level faults. We assume that a

rigorous unit testing has been conducted before error seeding. The various types of

faults that we were selected in our experiment are discussed below.

1. Three types of interface mutation operators [107] are seeded. These are IMO1:

Direct variable replacement operator, IMO2: Indirect variable replacement op-

erator and IMO3: Return statement operator .

2. Six types of state-based integration faults [22] were inserted such as SF1: Miss-

ing transitions, SF2: Incorrect transitions, SF3: Unspecified event, SF4: In-

correct state of the sender object, SF5: Incorrect state of the receiver object,

SF6: Message passing with incorrect/invalid value of arguments. These faults

are already discussed in above section.

Details of bugs seeded to LMS are shown in Table 8.7. We made three copies of the

source code and allocated three different testing approaches for testing and debugging

at the higher level. Our aim is to check which testing method is efficient in minimizing

the post-release failures and also the types of failures which have a negative impact

on both the system and the user. The test time was fixed to 36 hours for each method

on the basis of the test budget, size of the source code, total number of use cases,

total number of classes, total number of scenarios and total number of object-points.
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Table 8.7: Bugs seeded to LMS

IMO1 4
IMO2 4
IMO3 5
SF1 7
SF2 8
SF3 3
SF4 4
SF5 5
SF6 3
Total 43

The first copy was tested by our proposed approach called State-based Approach

in which the supplied use cases are sorted in a prioritized order according to our

calculated risk. The second copy was tested by an approach called component-based

Approach in which the use cases are sorted according to the risk calculated by the

approach of Goseva-Popstojanova et al. [82]. Both the approaches allocated test effort

to a use case based on its estimated risk. The third copy was tested by Randomized

Approach, in which a tester gives equal importance to each use case. For simplicity,

we have considered only the main scenario of a use case which shows the successful

execution of the use case. Our experiment was aimed at investigating the following

queries:

1. Q1: Does our approach guide the tester in improving the test efficiency by

detecting more number of important faults than the related approaches?

2. Q2: Does our approach help in improving the test efficiency by increasing the

fault detection capability?

3. Q3: Does our approach guide the tester in detecting certain types of faults

compared to other two approaches?

Experimental Result and Discussion

The experimental results are shown in Table 8.8. From the table, we observed that

the generated test scenarios in our approach uncovered several state-based integration

faults which could not be detected in other approaches. It is because, we have tested

the components which are responsible to change the states of other components

during run time whereas, the method proposed in [82] tested the components in

which a number of intra-component state transitions occurred during run time. The
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test priority was assigned to the components based on the number of intra-component

state transitions in [82]. Any bug related to that can be easily detected in rigorous

unit testing but, it requires extra test effort to identify the bugs related to inter-

component state transitions. As state transition concept was not used in Random

based Approach, it detected the lowest number of state-based integration faults. From

Table 8.8: Mutants killed

MO SA CA RA
IMO1 4 4 4
IMO2 4 3 3
IMO3 5 4 5
SF1 7 5 4
SF2 6 5 4
SF3 3 2 2
SF4 2 2 1
SF5 4 4 4
SF6 3 2 1
Total 38 31 28

MO:Mutation Operator; SA:State-based Approach; CA:Component based
Approach; RA: Random based Approach

the experimental result shown in Table 8.8, we answer to the above stated queries

Q2 and Q3.

1. Ans2: Yes, our proposed state-based risk analysis approach guides the tester

to improve the test efficiency by increasing the fault detection capability.

2. Ans3: Yes, our proposed approach guides the tester in detecting certain types of

seeded faults compared to other two approaches. State-based integration faults

were detected through our approach as the state complexity was taken as one

input for risk estimation of a scenario, in which both intra and inter-component

state transition dependencies were considered.

To answer the first question, we had gone for another level of testing. After the

detected faults were debugged, we run the three tested copies to test their behavior in

the operational environment. We used the same test cases for each tested copy. This

time the test cases are designed based on only operational profile. We assume that

a test case either fail or pass. This time a failed test case is not corrected, only the

action is taken to execute a blocked test case. We counted the total number of post-

release failures and the impact of those failures on the system and the user. Table 8.9
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Table 8.9: Failure observation at the time of release

TC Failstate−based Failcomp−based FailRandom

FCaFCrFMaFM FCaFCrFMaFM FCaFCrFMaFM

100 0 0 2 1 0 1 2 0 0 3 1 1
200 0 0 2 1 0 1 4 1 0 4 2 3
300 0 0 2 3 0 2 1 1 0 4 1 1

TC:Test Cases; FCa: Catastrophic failure; FCr: Major failure; FMa: Marginal
failure; FM : Minor failure;

shows the result of our risk-based prioritization approach. The failures shown in the

table were obtained after the completion of testing phase; at the operational environ-

ment. From Table 8.9, we observed that there is no Major type failure observed in the

copy of the source code of LMS that is tested by our proposed state-based approach,

whereas 2 and 4 numbers of Major type failures were observed in the source code of

the LMS that were tested by component-based and randomized approach, when the

number of test cases were 300. As shown in the table, Major type failures were also

found in the tested copy of component-based approach, though risk analysis was con-

ducted before testing. It is because the dynamic complexity of a component proposed

in [82] did not help the tester to detect the state-based integration faults. The exam-

ple of one such Major type failure observed in the case study LMS is described below.

Though the scenario Issue Item was executed successfully when, a borrower re-

quested to issue a book which was already reserved by him however, we observed

that the same borrower could not reserve any book further. It is because, due to a

seeded bug, the system could not change the state of the borrower to Active state

from NonReservable state, after the execution of Issue Item scenario. The severity

of this failure is assumed to be Major, as the same borrower cannot reserve any book

further.

Now we answer to query Q1. Ans1: Yes, our approach helps to improve the test effi-

ciency by finding bugs that are responsible for severed failures such as Catastrophic

and Major types.

8.2.3 Applicability

Risk analysis is a part of safety engineering. Errors related to the temporal behavior

of a safety-critical system is hard to detect during testing. These errors may lead

to severe failures such as causing severe harm to the life of people or equipments or
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environment. Our risk analysis approach is mainly applicable for pre-testing analysis

of safety-critical systems such as software systems embedded in medical devices,

nuclear power station, telecoms systems and industrial robots etc. These embedded

softwares are of different sizes and different complexity. The basic principle of a

safety-critical system is to keep the system as simple as possible.

Constructing ISDG is complicated and the severity analysis process is time con-

suming for a large and complex system, but it helps to detect the important errors

at the early phase of testing and deliver the product with right quality within the

limited budget and time. Our risk analysis approach ranks the components/scenarios

within a system for testing according to their estimated risks. There are some compo-

nents/scenarios with high risk and low execution time. Though their contribution to

the overall system risk is less, more testing is needed for that items as they check the

exception handling of critical conditions. Our approach also identifies the contribu-

tion of a component/scenario risk for increasing the risk of the whole scenario/system

through the sensitivity analysis.

8.3 Summary

In this chapter, we have proposed an analytical method for risk estimation of a soft-

ware system at the architectural level for testing. The approach proposed in the

chapter is two fold. In the first phase, the risk is estmated for components, use

case scenarios and the overal system. In the second phase, risk-based testing is con-

ducted, in which the test priority is assigned to various elements according to their

estimated risk.The data collected from UML diagrams: sequence diagrams and state

chart diagrams are used for risk estimation. We have also considered the operational

profile of the system to know the transition probability between any two scenarios.

Compared to the existing work on software risk estimation, our proposed method

is a new one that considers (i) risk associated with various states of a component

rather than the whole component within a scenario (ii) additional valuable infor-

mation required for severity analysis of a component such as message criticality and

bidirectional analysis to extract possible types of failure modes within a scenario. We

have experimentally proved that, testing process is efficient when the testing team is

guided by our approach compared to the approach proposed in [82].

161



Chapter 9

Conclusions and Future Direction

We have explored some test effort prioritization issues at various levels of software

development life cycle. Our proposed approaches identified the program’s critical

paths in which the impact of failure is high. At the implementation level, we have

exposed the critical components that are responsible for increasing the system failure

rate. At the architectural level, we have proposed novel methods to compute the

complexity and risk associated with various high level functions within a system. As

our approaches expose the critical elements at the architectural level, the testers and

the developers are guided to produce a high quality software, within the available

test resources.

9.1 Contribution

In this section, we summarize the important contributions of our work. There are

five important contributions: (i) Computing the influence of a component toward

system failures (ii) Computing the criticality of a component using both internal and

external factors (iii) Improving the software quality using a multi cycle-based testing

approach (iv) Estimating the criticality of a use case at the architectural level (v)

Estimating the risk associated with various states of a component within a scenario,

the risk of a scenario and the risk of the overall system.

9.1.1 Computing the influence of a component

We have proposed a framework to prioritize the components within a system accord-

ing to their influence toward the system failures. For this, we introduced a metric

called Influence Metric using forward slicing technique to compute the influence value

of a component within a system. It shows the influence of the component toward
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system failures. We first constructed Extended System Dependence Graph (ESDG),

an intermediate representation of an object-oriented program. Then, we presented

an efficient algorithm called MethodInfluence Algorithm to get the influence value of

a method within a system. Our MethodInfluence Algorithm marks a node of ESDG

as influenced, when the associated dependency exists. We have shown that the space

complexity of our algorithm is O(n2), where n is the total number of nodes in the

ESDG and the time complexity is O(E), where E is the number of edges in ESDG.

Influence Metric of a class is obtained by applying MethodInfluence Algorithm to all

its methods. At the statement level, MethodInfluence Algorithm shows how many

other statements are depending directly or indirectly on the output produced by a

method within a program. Test Priority (TP) is assigned to a component within the

system based on its influence value and average execution time. We have conducted

our experiments on three case studies, LMS, SMA and ATM. We have experimen-

tally proved that decreasing the reliability of a high priority component drastically

increases the failure rate of the application, whereas it is not true in case of a low

priority component. We have shown that our approach is efficient than the existing

approach [9] on test effort prioritization.

9.1.2 Computing the criticality of a component

Prioritizing the program elements within a system based on only influence value and

average execution time may not help to expose all the important bugs during testing.

So, we have included some important factors for exposing the critical components

within a system. We have computed the criticality of a component by adding two ex-

ternal factors: severity associated with each failure and the business value associated

with various high level functions within a system and one internal factor: structural

complexity, to our previous work. From the experimental results, we observed that

by allocating test effort to various components according to their estimated criticality

helps in decreasing the failure rate of the application as well as the chance of getting

severe failures in the operational environment.

9.1.3 Conducting multi cycle-based testing

We have proposed a multi cycle-based test effort prioritization approach, in which the

priority values of various components/scenarios change between test cycles within a

system under test. In this work, we introduced the concept of Influence Metric
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through the dynamic slicing approach and used it as one input for prioritizing com-

ponents within a test cycle in a sequence of many test cycles. From the experimental

results, we obtained that the test cases generated through our multi cycle-based

testing approach could uncover some important bugs that could not be detected in

Musa’a approach [9]. As our approach considered the influence value of a component

within a scenario during run time, the components providing a number of services

got high test priority. We also assigned priority to the components based on their

failure history. These factors helped to improve the reliability of the system under

test, within the available test resources. We considered the business value associated

with use case scenarios as a factor for prioritization in the third test cycle, which

helps to increase the customer certification on the tested system.

9.1.4 Estimating the criticality of a use case

Identification of critical components during the early stage of software development

enhances the decisions on test resource allocation. Test efficiency and the quality

of software product can be improved, if the test priority of a component is decided

at the architectural level rather than at the implementation level. Keeping this in

view, we have proposed a novel approach to prioritize the use cases within a system

at the architectural level to guide both the tester and developer during software

development life cycle. The use cases are prioritized based on their internal criteria-

complexity and external criteria- business value. Unlike the existing approaches on

complexity estimation at the early stage, we evaluated the complexity of a use case

analytically through a collection of data at the architectural level with little or no

involvement of subjective measures from domain experts.

9.1.5 Estimating risk at the architectural level for testing

Risk assessment at the early stage of software development helps achieving high level

of confidence in a system and saves the cost and time during software development life

cycle. We have proposed a novel risk analysis technique that works at the software

architecture level. The main idea is to rank the components within a scenario and

to rank the scenarios within a system according to their estimated risk. Unlike the

existing work on risk assessment at the architectural level [81,82], our work assesses

risks at a finer granularity level. The efficacy of our approach is evaluated on the

Library Management System case study.
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9.2 Future Work

We briefly outline the following possible extensions to our work.

1. Prioritization-based testing covers two aspects: (i) prioritizing the program

elements for testing and (ii) prioritizing the test cases. In the present work, we

concentrated on the first one, i.e. prioritizing the program elements for testing.

Automatic selection of test cases from a pool of test cases according to the

estimated priority of components can be taken up as a future work.

2. We have considered complexity and failure history as defect generators. The

software industry is considering a number of other factors such as change fre-

quency, impact of new technology and impact of the number of people involved,

optimization etc. Our proposed method will be effective, if these factors will

be considered with it. In future, this scope may be explored.

3. We have proposed eight factors that affect the complexity of a use case at the

architectural level. We have automated only three factors. We are planning to

automate the rest factors in our future work.

4. We have proposed risk estimation method at the architectural level. One of

the future work would be estimating the risk at the requirement phase using

requirement models in UML and semi-formal languages.

5. Our approach can be applied to industry standard projects to analyze its ef-

fectiveness.
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