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Abstract

Image degradation generally occurs due to transmission channel error, camera

mis-focus, atmospheric turbulence, relative object-camera motion, etc. Such

degradations are unavoidable while a scene is captured through a camera. As

degraded images are having less scientific values, restoration of such images is

extremely essential in many practical applications.

In this thesis, attempts have been made to recover images from their degraded

observations. Various degradations including, out-of-focus blur, motion blur,

atmospheric turbulence blur along with Gaussian noise are considered. Basically

image restoration schemes are based on classical, regularisation parameter

estimation and PSF estimation. In this thesis, five different contributions have

been made based on various aspects of restoration. Four of them deal with spatial

invariant degradation and in one of the approach we attempt for removal of spatial

variant degradation.

Two different schemes are proposed to estimate the motion blur parameters.

Two dimensional Gabor filter has been used to calculate the direction of the blur.

Radial basis function neural network (RBFNN) has been utilised to find the length

of the blur. Subsequently, Wiener filter has been used to restore the images. Noise

robustness of the proposed scheme is tested with different noise strengths.

The blur parameter estimation problem is modelled as a pattern classification

problem and is solved using support vector machine (SVM). The length parameter

of motion blur and sigma (σ) parameter of Gaussian blur are identified through

multi-class SVM.

Support vector regression (SVR) has been utilised to obtain a true mapping of

the images from the observed noisy blurred image. The parameters in SVR play

a key role in SVR performance and these are optimised through particle swarm

optimisation (PSO) technique. The optimised SVR model is used to restore the

noisy blurred images.

Blur in the presence of noise makes the restoration problem ill-conditioned.

The regularisation parameter required for restoration of noisy blurred image is

discussed and for the purpose, a global optimisation scheme namely PSO is utilised



to minimise the cost function of generalised cross validation (GCV) measure, which

is dependent on regularisation parameter. This eliminates the problem of falling

into a local minima. The scheme adapts to degradations due to motion and

out-of-focus blur, associated with noise of varying strengths.

In another contribution, an attempt has been made to restore images degraded

due to rotational motion. Such situation is considered as spatial variant blur and

handled by considering this as a combination of a number of spatial invariant

blurs. The proposed scheme divides the blurred image into a number of images

using elliptical path modelling. Each image is deblurred separately using Wiener

filter and finally integrated to construct the whole image.

Each model is studied separately, and experiments are conducted to evaluate

their performances. The visual as well as the peak signal to noise ratio (PSNR in

dB) of restored images are compared with competent recent schemes.

Keywords: Image restoration, out-of-focus blur, motion blur, SVM, SVR,

multi-class SVM, blind image deconvolution, regularisation, spatial variant blur,

point spread function.



Contents

Certificate iii

Acknowledgement iv

Abstract v

List of Figures vii

List of Tables viii

1 Introduction 2

1.1 Image Degradation Model . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Discrete Convolution Model for Image Degradation . . . . . 5

1.1.2 Blur Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Image Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Common Classical Image Restoration Techniques . . . . . . 13

1.3.2 Blind Image Restoration Techniques . . . . . . . . . . . . . 17

1.3.3 Regularisation Approaches . . . . . . . . . . . . . . . . . . . 28

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Motion Blur Parameters Estimation using Gabor filter and

RBFNN 34

2.1 Motion Blur Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Angle Estimation using Gabor Filter . . . . . . . . . . . . . . . . . 35

2.3 Length Estimation using RBFNN . . . . . . . . . . . . . . . . . . 38

2.3.1 Radial Basis Function Neural Network . . . . . . . . . . . . 38

2.4 Noise Robustness of the proposed method . . . . . . . . . . . . . . 40

2.5 Simulation Results and Discussions . . . . . . . . . . . . . . . . . . 41

vii



2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Blur Parameter Identification using SVM 52

3.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 An Overview of Multi-class SVM Approaches . . . . . . . . 54

3.2 SVM based blur identification . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Blur Classification . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . 59

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 PSO based SVR for Blind Image Restoration 67

4.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Influence of the parameters on the performance of SVR . . . . . . . 70

4.3 Proposed PSO based SVR for Blind Image Restoration . . . . . . . 71

4.3.1 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . 71

4.3.2 Parameter Optimisation of SVR . . . . . . . . . . . . . . . . 72

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 PSO Based Regularisation Parameter Estimation 80

5.1 Regularised Image Restoration . . . . . . . . . . . . . . . . . . . . . 80

5.2 Generalised Cross Validation . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Regularisation Parameter Estimation using PSO . . . . . . . . . . . 87

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Rotational Motion Deblurring using Elliptical Modelling 96

6.1 Elliptical Motion Blur Analysis . . . . . . . . . . . . . . . . . . . . 98

6.2 Proposed Deblurring Method . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Missing Pixel Interpolation . . . . . . . . . . . . . . . . . . . 101

6.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . 101

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusions and Future Work 110

Bibliography 113

Dissemination of Work 124

viii



List of Figures

1.1 Image degradation restoration model. . . . . . . . . . . . . . . . . . 4

1.2 (a) PSF of motion blur. (b) Its frequency response. . . . . . . . . . 8

1.3 (a) PSF of out-of-focus blur. (b) Its frequency response. . . . . . . 8

1.4 (a) PSF of Gaussian blur. (b) Its frequency response. . . . . . . . . 9

1.5 Blur identification method based on frequency domain nulls. . . . . 20

1.6 NASRIF algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 (a) Original Lena image. (b) Blurred Lena image with L = 20 and

θ = 30◦. (c) Spectrum of the blurred Lena image. (d) Frequency

plot of PSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 (a) Gabor filter mask with φ = 30◦. (b) Gabor filter mask with

φ = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Relation between blur length and Fourier feature for different images. 39

2.4 Radial basis function neural network (RBFNN) . . . . . . . . . . . 40

2.5 (a) Cameraman image degraded by motion blur with L = 10, θ =

45◦ and Gaussian noise with SNR = 25 dB. (b) Power spectrum

of the blurred Cameraman image in (a). (c) Cameraman image

degraded by motion blur with L = 10, θ = 45◦ and Gaussian noise

with SNR = 40 dB. (d) Power spectrum of the blurred Cameraman

image in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Relationship between blur length and Fourier feature for noisy images. 42

2.7 Convergence characteristics of RBFNN. . . . . . . . . . . . . . . . . 43

2.8 (a) Original Lena image. (b) Blurred image with blur length L = 15

and θ = 30◦. (c) Restored using ML method (PSNR = 17.711 dB).

(d) Restored after parameter estimation (PSNR = 24.4186 dB). . . 45

2.9 (a) Original Tree image. (b) Blurred image with blur length L = 20

and θ = 45◦. (c) Restored with ML method (PSNR = 17.047 dB).

(d) Restored after parameter estimation (PSNR = 24.7106 dB). . . 46

ix



2.10 (a) Original Checkerboard image. (b) Blurred image with blur

length L = 10 and θ = 40◦. (c) Restored with ML method (PSNR

= 17.33 dB). (d) Restored after parameter estimation (PSNR =

26.21 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 (a) Original Stik image, (b) Blurred image with blur length L = 12

and θ = 40◦, (c) Restored with ML method (PSNR = 19.53 dB),

(d)Restored after parameter estimation (PSNR = 28.41 dB). . . . . 48

2.12 (a) Noisy blurred Cameraman image with L = 30 and θ = 40◦

and Gaussian noise (SNR = 25 dB). (b) Noisy blurred Cameraman

image with L = 10 and θ = 45◦ and Gaussian noise (SNR = 30 dB).

(c) Restoration results of (a) after parameter estimation (PSNR =

23.18 dB). (d) Restoration results of (b) after parameter estimation

(PSNR = 25.21 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.13 (a) Noisy blurred Vase image with L = 40 and θ = 60◦ and

Gaussian noise (SNR = 25 dB). (b) Noisy blurred Vase image

with L = 40 and θ = 60◦ and Gaussian noise (SNR = 30 dB).

(c) Restoration results of (a) after parameter estimation (PSNR =

20.58 dB). (d) Restoration results of (b) after parameter estimation

(PSNR = 22.19 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 (a) Noisy blurred Car image. (b) Extracted Number plate image.

(c) Restored with ML method (d) Restoration result of Number

plate image after parameter estimation. . . . . . . . . . . . . . . . . 50

3.1 Optimal hyperplane classifying a two class problem . . . . . . . . . 54

3.2 Behaviour of a high frequency portion of Cameraman image under

horizontal motion blur of different length:(a) True image (b) L = 5

(c) L = 10. (d) L = 20 (e) True high frequency potion. (f) L = 5

(g) L = 10 (h) L = 20. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Variance curve for different blur length for different images. . . . . . 57

3.4 Variance plot of Cameraman image of size 128×128 degraded with

motion blur of L = 10. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Binary deceison tree SVM for blur classification. . . . . . . . . . . . 59

3.6 Standard images used for testing. . . . . . . . . . . . . . . . . . . . 60

3.7 Restoration results for Lena image: (a) True image. (b) Motion

blurred (L = 9). (c) Restored after parameter estimation using

RBFNN. (d) Restored after parameter estimation using multi-class

SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



4.1 The soft margin loss setting for a linear SVM. . . . . . . . . . . . . 69

4.2 Flow chart of the proposed scheme for SVR parameter optimisation. 73

4.3 Restoration of Lena Image: (a) Original Lena image. (b) Motion

Blurred Lena image (SNR = 40 dB). (c) Restored with PCA.

(d) Restored with Maximum Likelihood. (e) Restored with SVR

without parameter optimisation (C = 1). (f) Restored with PSO

based Lena SVR model . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Restoration of Pepper Image: (a) Original Pepper image. (b)

Out-of-focus blurred Pepper image (SNR = 40 dB). (c) Restored

with PCA. (d) Restored with Maximum Likelihood. (e) Restored

with SVR without parameter optimisation (C = 1). (f) Restored

with PSO based Lena SVR model. . . . . . . . . . . . . . . . . . . 76

4.5 Restoration of Canon Image: (a) Blurred and noisy Canon image.

(b) Restored with PCA. (c) Restored with Maximum Likelihood.

(d) Restored with SVR without parameter optimisation (C = 1).

(e) Restored with PSO based Lena SVR model. . . . . . . . . . . . 77

4.6 Restoration of key Image: (a) Blurred and noisy Key image. (b)

Restored with PCA. (c) Restored with maximum likelihood. (d)

Restored with SVR without parameter optimisation (C = 1). (e)

Restored with PSO based Lena SVR model. . . . . . . . . . . . . . 78

5.1 Variation of MSE for different α at different noise conditions for

Lena image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Effect of α in regularised restoration: (a) Original Cameraman

Image. (b) Noisy blurred Cameraman image with SNR = 40 dB.

(c) Restored with inverse filter α = 0. (d) (e) (f) Restored with

regularisation filter with (α = 0.01), (α = 0.004), (α = 0.2). . . . . . 83

5.3 Effect of α in regularised restoration: (a) Original Lena Image. (b)

Noisy Blurred Lena image with SNR = 30 dB. (c) Restored with

inverse filter α = 0, (d) (e) (f) Restored with regularisation filter

with (α = 0.01), (α = 0.004), (α = 0.2). . . . . . . . . . . . . . . . . 84

5.4 Effect of regularisation operator on restoration: (a) Noisy Blurred

Cameraman image with SNR = 40 dB. (b) Restored image without

any filtering i.e., Q = 1 α = 0.01. (c) Restored image with Q as

Laplacian operator and α = 0.01. . . . . . . . . . . . . . . . . . . . 85

5.5 GCV function for degraded Cameraman image. . . . . . . . . . . . 88

5.6 GCV function for degraded Lena image. . . . . . . . . . . . . . . . 89

xi



5.7 Restoration of Cameraman Image: (a) Original Cameraman Image.

(b) Motion blurred and noisy image (SNR = 30 dB). (c) Restored

with GCV (α = 0.004). (d) Restored after Arnoldi regularisation

(α = 0.01). (e) Restored after PSO Based GCV minimisation (α =

0.053). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Restoration of ABC Image: (a) Original ABC image. (b)

out-of-focus Blurred ABC image (SNR = 30 dB). (c) Restored

with GCV (α = 0.015). (d) Restored after Arnoldi regularisation

(α = 0.054). (e) Restored after PSO based GCV minimisation

(α = 0.093). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Restoration of Lena image: (a) Original Lena image. (b)

Out-of-focus blurred Lena image (SNR = 60 dB). (c) Restored

with GCV (α = 0.048). (d) Restored after Arnoldi regularisation

(α = 0.006). (e) Restored after PSO based GCV minimisation

(α = 0.004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Spatial variant blur model. . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Elliptical motion blur model. . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Missing pixel problem. . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Restored image corrupted my missing pixels: (a) Restored image

with out interpolation. (b) Restored image after interpolation. . . . 102

6.5 Restoration of Lena image: (a) True image. (b) Circularly blurred.

(c) Elliptically blurred. (d) Restored image of (b). (e) Restored

image of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Restoration of Stik image: (a) True image. (b) Circularly blurred.

(c) Elliptically blurred. (d) Restored image of (b). (e) Restored

image of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Restoration of Vase image: (a) True image. (b) Circularly blurred.

(c) Elliptically blurred. (d) Restored image of (b). (e) Restored

image of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.8 Restoration of Chekerboard image: (a) True image. (b) Circularly

blurred. (c) Elliptically blurred. (d) Restored image of (b). (e)

Restored image of (c). . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9 (a) Variation of PSNR (dB) with respect to exposure time. (b)

Variation of PSNR (dB) with respect to rotational speed. . . . . . . 108

xii



List of Tables

2.1 Estimated blur angle θ in noise free Situation. . . . . . . . . . . . . 44

2.2 Time (in sec) required to estimate blur angle (θ) using different

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Estimated blur length L in noise free situation. . . . . . . . . . . . 44

2.4 Estimated blur length L and blur angle θ in noisy situation. . . . . 46

3.1 Blur identification performance of Cameraman multi-class SVM

model for Cameraman test image. . . . . . . . . . . . . . . . . . . . 61

3.2 Blur identification performance ofCameraman multi-class SVM

model for Lena test image. . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Blur identification performance of Pepper multi-class SVM model

for Gaussian blurred Pepper test image. . . . . . . . . . . . . . . . 63

3.4 Blur identification performance of Pepper multi-class SVM model

for Gaussian blurred Cameraman test image. . . . . . . . . . . . . . 63

3.5 Estimated blur length L in noise free situations . . . . . . . . . . . 64

3.6 Blur length L estimation in noisy situation . . . . . . . . . . . . . . 64

4.1 PSNR (dB) comparison of restored Lena image using Lena SVR

model and other schemes for different degradations. . . . . . . . . . 75

4.2 PSNR (in dB) comparison of restored Pepper image using Lena

SVR model and other schemes for different degradations. . . . . . . 76

4.3 PSNR (in dB) comparison of restored Cameraman image using

Pepper SVR model and other schemes for different degradations. . . 77

5.1 PSNR of restored out-of-focus blurred and noisy images . . . . . . . 91

5.2 PSNR of restored out-of-focus blurred and noisy images . . . . . . . 91

6.1 PSNR (in dB) of restored images. . . . . . . . . . . . . . . . . . . . 103

+

xiii



Introduction



Chapter 1

Introduction

The human visual system along with neural system enable a person to classify

and recognise the objects. It processes the visual information and sends it to the

human brain for identification. It allows us to observe our environment and work

accordingly. The human visual system is highly complex and has drawn attention

of the researchers over the last few decades.

Like human visual system, digital image processing involves the process of

acquiring, manipulating, and analysing images through a computer [1, 2]. Images

are created by a large number of physical devices, which includes camera, x-ray,

electron microscope, ultrasound and are used in variety of applications. A

digital image is generally expressed as a function of two-dimensional variable and

mathematically represented as,

I = f(x, y) (1.1)

where x, y are called spatial coordinates of the pixel location and f represents

the amplitude of an image for a pixel at location (x, y). The amplitude is called

gray level or intensity [1, 3]. Digital image processing has many advantages in

terms of cost, speed, flexibility etc. It has become the dominant method in use

due to increasing performance of personal computers. Digital image processing

is used in almost every discipline of science & engineering including medical,

entertainment [4], and industry, military, civil etc. In each of the applications,

the objective is to extract information about the scene being imaged. Depending

on the nature of application, image processing can be classified into the following

subareas [3].
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Introduction

(i) Image Enhancement

(ii) Image Restoration

(iii) Image Compression

(iv) Image Segmentation

(v) Image Understanding.

Image enhancement techniques deal with improving the visual appearance

of the image so that it will be more pleasing to the human eye. Some of the

examples of image enhancement are histogram equalisation, unsharp masking,

contrast stretching, etc. On the other hand, image restoration accentuates on

retracing the original image as close as possible from the degraded observation.

The restoration techniques assume a degradation model and design a filter to

achieve an approximated version of the original image. The closeness of the

restored image towards the true image depends on the accuracy of the model

and the designed filter. Both enhancement and restoration techniques try to

improve the appearance of the image using a filter. However, enhancement is

more subjective in nature and depends on individuals perception [5, 6]. Image

compression techniques deal with representing an image with least possible bits

which can be reconstructed again without losing the intelligibility of the image.

In image understanding, the content of an image is represented symbolically by

using some attributes of the image [3]. The first three areas are lower level tasks.

They take images as their input and outputs an image. Image segmentation and

understanding are higher-level tasks in which it takes an image as its input and

produces attributes or symbolic representation of the contents of input image as

outputs [3]. In this thesis, investigation has been restricted to image restoration.

The rest of the chapter is organised as follows. The degradation model in its

integral as well as discrete formulation is defined in Section 1.1. Image restoration

applications and its importance are briefed in Section 1.2. Some of the existing

literatures are reviewed in Section 1.3. The research motivation and its objective

are formally stated in Section 1.4. Finally, Section 1.5 outlines the layout of the

thesis.

3



Chapter 1 Introduction

1.1 Image Degradation Model

The degraded image g(x, y) is obtained by applying the degradation operator H

onto the image f(x, y) along with the additive noise η(x, y). The degradation

phenomenon is mathematically expressed as,

g(x, y) = H [f(x, y)] + η(x, y) (1.2)

The objective of image restoration is to estimate f(x, y) from the observed image

g(x, y) using the known value of H [7,8]. The overall degradation and restoration

model is shown in the Figure 1.1. The operator H may be linear or nonlinear.

Figure 1.1: Image degradation restoration model.

Mostly, it is assumed to be linear which satisfies the principles of superposition

and homogeneity [6]. The operator H is also considered to be space invariant or

position invariant. An operator is said to be space invariant if the response at any

point depends on the value at that point but not on the position of the point and

is defined mathematically as,

H [f(x− α, y − β)] = g(x− α, y − β) (1.3)

for all f(x, y) and any α and β. In terms of impulse function f(x, y) is expressed

as,

f(x, y) =

∞∫
−∞

∞∫
−∞

f(α, β)δ(x− α, y − β)dαdβ (1.4)

Substituting (1.4) in (1.2) we get the observed image g(x, y) and is expressed as,

g(x, y) = H

⎡
⎣ ∞∫
−∞

∞∫
−∞

f(α, β)δ(x− α, y − β)dαdβ

⎤
⎦+ η(x, y) (1.5)
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As f(α, β) is independent of x and y, using the linearity property, the g(x, y) can

be expressed as,

g(x, y) =

⎡
⎣ ∞∫
−∞

∞∫
−∞

f(α, β)h(x, α, y, β)dαdβ

⎤
⎦+ η(x, y) (1.6)

where h(x, α, y, β) = H [δ(x − α, y − β)] is called point spread function (PSF) in

the optics. The expression given in (1.6) is called the Fredholm integral of the

first kind. Since operator H is spatial invariant we have,

H [δ(x− α, y − β)] = h(x− α, y − β) (1.7)

and the degraded image is given as,

g(x, y) =

⎡
⎣ ∞∫
−∞

∞∫
−∞

f(α, β)h(x− α, y − β)dαdβ

⎤
⎦+ η(x, y) (1.8)

This expression is called the convolution integral in the continuous variable.

1.1.1 Discrete Convolution Model for Image Degradation

Images are generally constructed in two different ways; continuous and discrete.

The process of converting a continuous image into a discrete format involves

sampling, quantisation, and coding. Sampling should be done according to

Nyquist criterion for an accurate reconstruction. The discrete model for a linear

degradation caused due to blur and additive noise can be expressed as,

g (x, y) =

m∑
α=1

n∑
β=1

f (α, β)h (x, y, α, β) + η (x, y) (1.9)

where f(x, y) represent the original image of size m × n and h(x, y) represents

the PSF of size p× q. In the above formulation, η(x, y) is taken as additive noise

introduced by the system and is assumed to be zero mean white Gaussian noise.

Using spatial invariant property of PSF, the g(x, y) can be described as,

g (x, y) =

m∑
α=1

n∑
β=1

f (α, β)h (x− α, y − β) + η (x, y) (1.10)

= f (x, y) ∗ h (x, y) + η (x, y)

5
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where � denotes the two dimensional linear convolution. Using linear convolution

rule, the size of g becomes M × N , where M = m + p − 1 and N = n + q −
1. If g, h, f, η are ordered lexicographically by stacking the rows of each matrix

into a column vector, then the degraded image can be obtained through matrix

multiplication as,

g = Hf + η (1.11)

where f ∈ R
mn×1, g ∈ R

MN×1 and H ∈ R
MN×mn. In the above formulation, H

becomes a block toeplitz with toeplitz block (BTTB) matrix. For an image of size

1024 × 1024, the size of H would be 10242 × 10242 which uses a large memory.

This will also require to solve a system of 1,048,576 simultaneous linear equations

to obtain f directly. The complexity can be significantly reduced by exploiting the

periodic nature of H. The linear convolution is converted to circular convolution

using the periodicity.

After zero padding to g and f , the result of linear convolution is equal to

circular convolution. In that process, the matrix H becomes a block circulant

matrix with circulant blocks (BCCB) given as,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H (0) H (N − 1) . . . H (1)

H (1) H (0) . . . H (2)

H (2) H (1) . . . H (3)

. . .
. . .

. . . . . .

H (N − 1) H (N − 2) . . . H (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.12)

where each sub matrix H(i) is a circulant matrix. Computational requirements for

the blur operator H can be significantly reduced by through these BBCB matrices.

1.1.2 Blur Model

Blurs are treated as low pass filters which smoothes out the abrupt changes in

the gray level of an image. There are different analytical models used in nature

to represent the shift invariant degradation model. The blur also decreases the

image contrast by averaging the pixels. An image may be blurred in various ways

including motion blur, out-of-focus blur, atmospheric turbulence blur etc. The

spatially continuous PSF h(x, y) of any blur must satisfy the following constraints–

6
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� h(x, y) accepts only non negative values due to physics of underlying image

formation process.

� The values in the PSF are real valued because images are real valued.

� The capturing process is modelled as a passive operation on the image data.

No energy is absorbed or generated during the image formation process. For

spatially continuous blur, it satisfies the following condition,

∞∫
∞

∞∫
∞

h (x, y)dxdy = 1 (1.13)

In the discrete domain, it is expressed as,

M−1∑
x=0

N−1∑
y=0

h (x, y) = 1 (1.14)

The characteristics of some common blurs are described below–

Linear Motion Blur

This blur results either due to object or camera motion during exposure. It is

governed by two parameters, namely the length of motion (L) and the angle of

motion (θ). When a scene to be imaged translates with a relative velocity V in

respect to the camera, the blur length L in pixels is L = V Texposure where, Texposure

is the time duration of the exposure. The expression for PSF of the motion blur

is given as,

h(x, y) =

⎧⎨
⎩

1

L
if 0 ≤ |x| ≤ L cos θ; y = L sin θ,

0 otherwise.
(1.15)

When the blur angle is zero i.e. θ = 0, it is called as horizontal motion blur. The

discrete version of PSF is given by,

h (m,n;L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
L

if m = 0, |n| ≤ ∣∣L−1
2

∣∣ ,
1
2L

{
(L− 1)− 2

∣∣L−1
2

∣∣} if m = 0, |n| ≤ ⌈
L−1
2

⌉
,

0 elsewhere.

(1.16)

The Figure. 1.2 shows the PSF of motion blur and its spectrum.
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Figure 1.2: (a) PSF of motion blur. (b) Its frequency response.

Out-of-Focus Blur

When a three dimensional scene is projected onto a two dimensional plane, some

part of the scene may not be focused properly. For a circular aperture camera,

the image of a point source is a small disk known as circle of confusion. The

strength of defocus depends on the focal length and distance between the object

and camera. The PSF of the out-of-focus blur is given as,

h (x, y) =

⎧⎨
⎩

1
πR2 if

√
x2 + y2 ≤ R,

0 otherwise.
(1.17)

where R is the radius. The PSF for out-of-focus and its frequency domain plot
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Figure 1.3: (a) PSF of out-of-focus blur. (b) Its frequency response.

are depicted in the Figure. 1.3.
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Atmospheric Turbulence Blur

This blur occurs due to turbulent atmosphere of the earth. It is mainly

encountered in remote sensing applications because of variations in the wind

velocity. This leads to change in the refractive index of a layer which distorts the

image to be observed. It is effectively modelled as a Gaussian PSF with standard

deviation σ. The spatial domain and frequency domain plot of the turbulence blur

are shown in the Figure. 1.4. The PSF of the turbulence blur is given as,

h (x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(1.18)

Here σ decides the severity of the blur. In this thesis, the above blurs are
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Figure 1.4: (a) PSF of Gaussian blur. (b) Its frequency response.

considered independently and attempts have been made to restore the images

from the corresponding degraded images.

1.1.3 Noise Model

Images are contaminated by different types of noise. Most common types of noise

are impulsive and Gaussian noise, which affect the image at the time of acquisition

due to noisy sensors. Noise also contaminates the image during transmission due

to channel errors. Although there are different noise models, our investigation

confines to dealing with blur in the presence of Gaussian noise which is the

most common scenario in practical applications [9]. The Gaussian noise model

is described in detail below.
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Gaussian Noise

The Gaussian noise is a random variable and is expressed as,

ηG(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (1.19)

It is characterised by its variance σ2. The noisy image fG(x, y) is stated as addition

of original f(x, y) with the noise term. It is given as,

fG(x, y) = f(x, y) + ηG(x, y) (1.20)

1.2 Image Restoration

Due to imperfections in the image formation process and the imaging device,

the observed image often represents the degraded version of the original image.

The corrections of these imperfections are mandatory in many of the subsequent

image processing and vision tasks. Different types of degradations exist in the

nature which includes noise, blur, geometrical degradations, illuminations etc.

In this thesis, an effort has been made on removing the blur and noise from

degraded images. Due to enormous applications of image restoration, researchers

have gained interest to work in this area. The research on image restoration

started in 1950s with astronomical imaging when scientists of United States of

America and Soviet Union were involved in producing images of the Earth and

the solar system. The images were degraded versions of the original images due

to substandard imaging environment, spinning and the tumbling of the space

craft. To retrieve the meaningful information from the degraded images, image

restoration techniques were used. It is not a surprise to see that digital image

restoration is used in astronomical imaging even today. Ground based imaging

systems were also subject to blurring due to change in refractive index of the

atmosphere [10].

Image restoration also plays an important role in medical imaging. It has been

used to remove film-grain noise in X-ray images, angiography images and additive

noise in magnetic resonance images [11–15]. It has applications to quantitative

auto radiography (QAR) in which image is obtained by exposing X-ray film to a

10
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radio active specimen. Though image restoration has been successfully applied,

but still has a scope for improvement in quality and resolution.

Image restoration has also received attention in media where old movies and

picture are corrected in order to obtain a good quality picture which includes

removal of scratches from the deteriorated films. Another important application

of image restoration is in the field of image and video coding. The techniques

used to increase the coding efficiency and to reduce the bit rates of the coded

images create blocking artifacts. Image restoration has been successfully used as a

post processing step after decompression to eliminate the blocking artifact resulted

due to coarse quantisation of transformed coefficients [16–20]. In addition, digital

image restoration is used in many other applications. Printing applications use

restoration techniques to ensure high-quality halftone reproductions of continuous

image [21]. Defense applications may also require restoration such as a guided

missile which takes distorted images due to the pressure difference around a camera

mounted on the missile. Looking at its wide-spread application areas in almost

every field, it finds an important place in this technological world. Thus, even

though several suggestions have been made, the field of image restoration still

remains an active field of research.

The problem of restoring the original image f(x, y) requires deconvolution of

the PSF h(x, y) with the observed image g(x, y). In most of the situations, PSF

is assumed to be known prior to restoration. This is known as classical image

restoration. Variety of well known techniques such as inverse filtering, Wiener

filtering, least square filtering, recursive Kalman filtering are available [22–26].

Some of the well known classical image restoration techniques are discussed in

Section 1.3.1.

In practical situations, PSF is unknown and very little information is available

about the original image. Thus, it is required to obtain the original image directly

from the observed image using partial information or no information about the

blurring process. The process of recovering the true image from the degraded

observation without having information about the blurring phenomenon is known

as blind deconvolution. But in practice, some partial information should be known

for successful image restoration. There are many factors which motivates the use

11
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of blind deconvolution. In many cases, it is costly and dangerous to have prior

information about the imaged scene. In some applications like remote sensing and

astronomical imaging, it is difficult to model the image because the scenes have

never been imaged before. In such cases blur characteristics is also not accurately

predicted. The other motivation behind the use of blind deconvolution is that the

physical requirements for image quality improvement is unrealisable. For example

in space applications, the physical weight of a high resolution camera exceeds

practical constraint. In X-ray imaging, the intensity of beam cannot be increased

in order to get good image quality because it is hazardous to health. In such

situations, it is difficult to measure the PSF of the imaging system and classical

image restoration cannot be used. In such situations, blind deconvolution is used

for image restoration.

The blind restoration algorithms may broadly be classified into two categories.

In one category, PSF is identified first (Apriori Estimation) and then utilised

to restore the image using any of the classical restoration technique [27–32].

The second category of algorithms estimate the PSF and restore the image

simultaneously (Simultaneous Estimation) [33–37]. In this thesis two apriori

methods have been proposed to estimate the blur parameters for subsequent image

restoration. Another attempt has been made for simultaneous restoration with

parameter estimation. A brief review of different blind restoration techniques

have been discussed in Section 1.3.

In image restoration, the performance of the filter depends on the signal to

noise ratio of the output. For the purpose of measuring the performance of the

algorithms, an objective parameter, the peak signal to noise ratio (PSNR in dB)

is often used which is defined as,

PSNR (dB) = 10 log10

(
2552

MSE

)
(1.21)

where MSE is defined as,

MSE =
1

MN

M∑
x=1

N∑
y=1

(
f(x, y)− f̂(x, y)

)2

(1.22)

Another similar measure known as, improved signal to noise ratio (ISNR) is often
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used that determines how much SNR is improved with respect to the degraded

image by the restoration filter.

1.3 Literature Review

This section describes a brief review on different classical and blind image

restoration techniques. Some techniques assume blur along with Gaussian noise

present in the image whereas others assume the presence of blur in the image.

1.3.1 Common Classical Image Restoration Techniques

This section assumes that PSF is known prior to restoration. A number of methods

exist to remove the blur from the observed image g(m,n) using a linear filter. The

restored image f̂ from a given blurred image is given by

f̂ (m,n) = g (m,n) ∗ h (m,n)

=

M−1∑
k=0

N−1∑
l=0

g (k, l)h (m− k, n− l) (1.23)

where ∗ denotes the deconvolution which represents the inverse of the convolution.

In the frequency domain, this can be expressed as

F̂ (u, v) = G (u, v)H (u, v) (1.24)

where F̂ denotes the estimated image in spectral domain. G(u, v) and H(u, v) are

the blurred image and PSF in frequency domain respectively.

Inverse Filtering

Inverse filter [1] uses the inverse of the PSF as an impulse response. It is difficult

to implement the filter in the image domain. An estimate of the transform of the

original image is obtained by dividing the transform of the degraded image G(u, v)

by the degradation function. The division is performed on individual elements.

Using the value of G(u, v)

F̂ (u, v) = F (u, v) +
N(u, v)

H(u, v)
(1.25)
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The inverse filter requires PSF prior to restoration. It gives good results if

there is no noise. When there is no noise, second term of the above equation

vanishes and the restored image is identical to the original image. The values of

H(u, v) is zero at some selected frequencies. When the noise is associated with

the image, noise is amplified at those frequencies and the result is dominated by

the amplified noise.

Least Square Restoration

To alleviate the problem of noise sensitivity of inverse filter, numbers of least

square filters have been developed. Two commonly used least squares filters are

Wiener filter and constrained least square filter.

Wiener filter: [1] It is a spatial invariant filter which uses the minimum mean

square error criterion. The PSF is chosen such that mean square error between

the restored image and true image is minimised i.e. MSE defined in (1.22) is

minimised. The solution to the minimisation problem is called Wiener filter in

which restored image in frequency domain is defined as,

F̂ (u, v) =

[
H∗ (u, v)

|H (u, v)|2 + Sη (u, v) /Sf (u, v)

]
G (u, v) (1.26)

where Sη (u, v) and Sf (u, v) are the power spectrum of the noise and the original

image respectively. The restored image in spatial domain is obtained by inverse

Fourier transform of F̂ (u, v). If there is no noise added to the degraded image,

then the noise power spectrum vanishes and the Wiener filter reduces to an inverse

filter. When power spectrum of the original image Sf (u, v) is unknown, the

Equation (1.26) is approximated as,

F̂ (u, v) =

[
1

H (u, v)

|H (u, v)|2
|H (u, v)|2 +K

]
G (u, v) (1.27)

where K is a constant and is chosen interactively.

Constrained Least Square Filtering: The difficulties of the Wiener filter

(computation of power spectrum of original image) and inverse filter (noise

amplification) are overcome by constrained least square filter. Noise sensitivity

problem is removed by using a smoothness measure for optimal restoration. The
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restoration is constrained by the parameters of the problem. The criterion function

C is minimised and is defined as,

C =
M−1∑
x=0

N−1∑
y=0

[∇2f (x, y)
]2

(1.28)

subject to the constraint ∥∥∥g −Hf̂
∥∥∥2 = ‖η‖2 (1.29)

where ‖x‖ is the Euclidean norm and f̂ is the estimate of the true image. The

solution of the above optimisation problem is given as,

F̂ (u, v) =

[
H∗ (u, v)

|H (u, v)|2 + α |Q (u, v)|

]
G (u, v) (1.30)

where parameter α is adjusted to satisfy the constraint defined in (1.29) and

Q(u, v) is the Fourier transform of the Laplacian operator which is typically chosen

as,

q(x, y) =

⎡
⎢⎢⎢⎣

0 −1 0

−1 4 −1

0 −1 0

⎤
⎥⎥⎥⎦ (1.31)

In this filtering, the value of α is selected manually to yield good results for high

and medium noise conditions. Both filters produce almost equal results for low

noise conditions. The constrained least square filter outperforms Wiener filter

when α is optimum. The parameter α is a scalar quantity whereas the value of

K in Wiener filter is the ratio of two unknown quantities whose value is seldom

constant.

Lucy-Richardson Deconvolution (L-R)

This algorithm has been independently proposed by Lucy [38] and Richardson [39].

The L-R algorithm is an iterative technique that maximises a Poisson statistics

image model likelihood function. The L-R algorithm performs the following steps.

1. An initial approximation of the restored image f̂0 is made. Typically, the

observed image g is taken as f̂0

2. The approximation is convolved with the PSF as,

ϕn = h ∗ f̂n (1.32)

15



Chapter 1 Introduction

3. A correction factor is calculated depending on the ratio of the blurred image

and output of the last step as,

φn =
←
h ∗ g

ϕn
(1.33)

where
←
h is the PSF in reverse order.

4. The new restored image is given by

f̂n+1 = f̂n · φn (1.34)

where · denotes the pixel by pixel multiplication in spatial domain

steps 2-4 are iteratively performed till an acceptable image quality is obtained.

Recursive Approaches [10]

Recursive approaches are advantageous because they allow spatial adaptivity to

incorporate in the filter model. These approaches also require less memory storage

than direct or iterative approach. Discrete Kalman filter is recursive equivalent of

the Wiener filter. Kalman filter is based on autoregressive (AR) modelling of the

prior statistical knowledge of f . Using state space representation, the global state

vector for an image model at any pixel position is represented as,

f(m,n) = [f(m,n), f(m,n− 1), ...,

f (m− 1, N) , f (m− 1, N − 1) ,

..., f(m−M + 1, n−M + 1)]T

(1.35)

where M ×M is the image size. Image model is then defined as

f(m,n) = Af(m,n− 1) + w(m,n) (1.36)

where w(m,n) = [1, 0, 0.., 0]Tw(m,n), w(m,n) is the zero mean Gaussian

distributed with standard deviation σ and A is an M × M prediction matrix.

The Kalman filter prediction and update equations are given by

Prediction:

f̂
+
(m,n) = Af̂(m,n− 1) (1.37)

16



Chapter 1 Introduction

P+(m,n) = AP (m,n− 1)AT +Rww (1.38)

update:

f̂(m,n) = f̂
+
(m,n) +K(m,n)[y(m,n)−Hf̂

+
(m,n)] (1.39)

P (m,n) = [I −K(m,n)H]P+(m,n) (1.40)

K(m,n) = P+(m,n)HT [HP+(m,n)HT +Rnn]
−1 (1.41)

where

P+(m,n) = E
{
(f(m,n)− f̂

+
(m,n))(f(m,n)− f̂

+
(m,n))T

}
(1.42)

and

P (m,n) = E
{
(f(m,n)− f̂(m,n))(f(m,n)− f̂(m,n))T

}
(1.43)

In this model observed noise and model noise is assumed to be zeros mean Gaussian

process with Rnn = EnnT and Rww = EwT .

1.3.2 Blind Image Restoration Techniques

Blind image deconvolution problem has some important characteristics [35] which

are given as,

1. The true image and PSF must be irreducible. An irreducible signal is

one which cannot be exactly expressed as the convolution of two or more

component signals.

2. The restored image is not the exact true image, rather it is a scaled, shifted

version of the original image. That is,

f̂(x, y) = Kf(x−Dx, y −Dy) (1.44)

where f̂(x, y) is the estimated image and K,Dx, Dy are the real constants.

3. The solution of the problem is not unique.
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4. There is always a poor compromise between the complexity, convergence and

portability of the algorithms used for blind deconvolution.

Few of the long list of blind deconvolution techniques for images are described

below.

Motion Blur Identification using Statistical Measures

Moghaddam and Jamzad [27] proposed a method which uses two dimensional

cepstrum of the blurred image g(x, y) to identify the blur length and angle of

motion blur. The cepstrum is defined as,

C(g(x, y)) = F−1(log|F (g(x, y))|) (1.45)

The blur angle is estimated from the inverse tangent of the slope of the straight

line connecting origin to the first negative peak in the cepstrum. The length of

that line gives the motion blur length. When the signal to noise ratio of the image

is low, it is difficult to estimate the blur parameters. For noisy situations, they

suggested the use of bispectrum. The discrete bispectrum of the ith segment of

the blurred image Bi(k, l) for one dimension case (l = 0) can be defined as

Bi(k, 0) = |Fi(k)H(k) +Wi(k)
2| [Fi(0) +Wi(0)]

= |Fi(k)H(k)|2 Fi(0)H(0) + ... |Wi(k)|2Wi(0)
(1.46)

where Fi(k) and Wi(k) are the Fourier transforms of ith segment of the original

image and noise respectively. H(k) denotes the Fourier transform of the PSF.

Steerable Filter

Steerable filters [40] are oriented filters that can be given any orientation through

a linear combination of set of basis filters. This is used to detect the edges in an

image. Steerable filter is applied to the power spectrum of the blurred image to

detect the direction of motion. The second derivative of the Gaussian function

is used as the basis function. The circular symmetric Gaussian function in two

dimensions is given as

G(x, y) = e−(x2+y2) (1.47)

The L2 norm of response of the filter for different values of blur angle is calculated.

θ with the largest L2 norm gives the estimate of the blur angle.
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Radon Transform

The radon transform for a given function f(x, y) is defined as,

Rf (x, θ) =

∫ ∞

−∞
f(x cos θ − y sin θ, x sin θ − y cos θ)dy (1.48)

This can be elucidated as integration of f over a line in �2 of distance x to the

origin and at an angle θ to the y-axis. Radon transform of blurred image is found

by varying θ from 00 to 3600. The angle corresponding to the maximum value of

R gives the blurring angle.

However, this method requires the image to be square size with black

background. For rectangular images, this method leads to wrong estimation of

θ. When the background is not black, or when there are objects close to the

boundary of the image, the sharp edges will cause additional lines in the spectral

domain at 00.

Hough Transform

The anisotropy in the spectrum of the blurred image can be used to determine

the angle, which is perpendicular to the motion direction. Hough transform [28] is

used to detect the orientation of the lines in the spectrum treating it as an image.

The Hough transform divides the parameter space into accumulator cells. The

curve r for a given point (x, y) in Hough transform can be expressed as,

r = x cosφ+ y sinφ (1.49)

For each point in the image, the corresponding curve is entered in the

accumulator by incrementing the count in each cell along the curve. Hough

transform returns the accumulator array in which the maximum value corresponds

to blur direction. This transform produces best result when there is a single line

in the spectrum which is highly unlike situation.

Blur Identification based on Frequency Domain Zeros

The observed image in frequency domain is expressed as,

G(u, v) = F (u, v)H(u, v) (1.50)
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Zeros of G(u, v) are collectively the zeros of F (u, v) and H(u, v). If we assume

a parametric form of PSF and given the zeros of H(u, v), the parametric values

can be uniquely determined. The commonly encountered PSF like motion blur

and out-of-focus blur are completely characterised by their frequency domain

zeros [30]. Figure 1.5 shows the block diagram of frequency domain zero method

for PSF identification. Due to its low computational complexity and reliability

Preprocessing 

(Partitioning in different 
blocks)

Image estimation using 
classical restoration 

technique

PSF parameter 
estimation and PSF 

construction

Frequency domain zeros 
identification 

Blurred 
 Image               

g(x,y)

PSF
h(x,y)

Restored
 Image         

fest(x,y) 

Figure 1.5: Blur identification method based on frequency domain nulls.

it has become popular and successful. But this method fails to identify the

frequency domain zeros if SNR is low. Another limitation of this method is that

the parametric form of the PSF must be known. For real time applications like

astronomical imaging and medical imaging, where PSF may be Gaussian in nature.

The frequency domain zero technique for blur parameter identification cannot be

used for Gaussian blur.

ARMA Parameters Estimation based Blur Identification

Blur identification based on ARMA parameter estimation involves modelling the

true image as a two dimensional auto regressive (AR) process and PSF as a two

dimensional moving average (MA) process. Using this technique, the blurred

image is represented as auto regressive moving average process (ARMA). ARMA

parameters are estimated to identify the true image and PSF. Several authors

have proposed techniques like maximum likelihood (ML) [41–43], generalised cross

validation (GCV) [44], neural networks [45], to estimate the ARMA parameters.

ML and GCV methods are widely used in image processing applications. AR
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model of the true image is represented as,

f (x, y) =
∑

(l,m)∈Ra

(l,m)/∈(0,0)

a(l, m)f(x− l, y −m) + v(x, y) (1.51)

where a(0, 0) = 1 and v(x, y) is the modelling error and is zero mean homogeneous

noise process. The AR model parameters are estimated to minimise the variance

of v(x, y). The image can also be represented by lexicographical ordering of the

two dimensional matrices as,

f = Af + v (1.52)

Assuming linear degradation model, the degraded image g(x, y) is expressed as,

g(x, y) =
∑

(l,m)∈Rh

h(l, m)f(x− l, y −m) + n(x, y) (1.53)

where Rh is the finite support of PSF h(x, y) and n(x, y) is the additive noise of

the imaging system. Using matrix vector notation, the observed image can be

written as,

g = Hf + η (1.54)

Rearranging the above equations it can be written as,

g = H(I − A)−1v + η (1.55)

where I is the identity matrix. Blind image deconvolution technique using ARMA

process is used to estimate the parameters a(l, m) and h(l, m) from the observed

image.

Iterative Blind Deconvolution

Ayers and Dainty [34] proposed a method called iterative blind deconvolution

(IBD) which doesn’t assume parametric form for either image or blur. Their

method estimates the image and blur simultaneously in an iterative manner

by adding different constraints on each. This method comes under the class

of nonparametric deterministic image constraint image restoration. It assumes

some deterministic constraints such as non-negativity, known finite support, blur

invariant edges. The PSF constraints are non-negativity and known finite support.
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At the start of iteration, a random initial guess is taken for the true image.

Subsequently, the algorithm alternates between the spatial and Fourier domain

after adding known constraints on image and PSF. The negative valued pixels

within region of support are replaced with zero and nonzero pixels outside the

region of support with the background pixel value. In Fourier domain, the PSF

(Image) is estimated by using the FFT of the degraded image and PSF estimate.

In ith iteration, the frequency domain estimate of the PSF and image is given by,

Hi(u, v) =
G(u, v)F̂ ∗

i−1(u, v)∣∣∣F̂i−1(u, v)
∣∣∣2 + α

/
|Hi−1(u, v)|2

(1.56)

Fi(u, v) =
G(u, v)Ĥ∗

i−1(u, v)∣∣∣Ĥi−1(u, v)
∣∣∣2 + α

/|Fi−1(u, v)|2
(1.57)

where ∗ denotes the complex conjugate and α determines the energy of the additive

noise. The IBD method is popular due to its low computational complexity. The

major limitation of this method is that uniqueness and convergence property is

uncertain and the algorithm is unreliable. The performance of the algorithm also

depends on the initial estimate of the true image and it exhibits instability.

Simulated Annealing

Macullum has proposed simulated annealing (SA) for blind deconvolution [46]. In

this technique, he made the same assumption on PSF as given in IBD method. It

minimises the following multimodal cost function defined as,

J
(
f̂(x, y), ĥ(x, y)

)
=
∑
∀(x,y)

[
f̂(x, y) ∗ ĥ(x, y)− g(x, y)

]2
(1.58)

The PSF and image both are assumed to be positive and have known finite

support. Global minimisation of J is achieved by varying the parameters. For

some parameter values if J decreases then it is accepted. Otherwise if it increases,

it is accepted with a probability p = exp(−ΔJ
Tk

) where ΔJ is the change in the

cost function and Tk is the temperature parameter. Temperature parameter Tk

is reduced with the iteration in order to reach the global minimum of J . This

algorithm provides sensible results and is reliable unlike IBD algorithm. The

limitation of the algorithm is slow convergence to the global minimum. The
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convergence of the algorithm depends on how Tk is reduced. The algorithm is

computationally complex for large sized images.

NAS-RIF

The nonnegativity and support constraints recursive inverse filtering (NAS-RIF)

was developed by Kundur [36] to overcome the poor convergence problem of IBD

and computational complexity problem of SA. NAS-RIF algorithm models the

image restoration problem as an optimisation problem. In addition to assumptions

made in IBD and SA, it also assumes that the PSF is absolutely summable

i.e.
∑

∀(x,y)
|h(x, y)| < ∞ and its inverse (h−1(x, y)) is also absolutely summable. It

consists of a variable finite impulse response (FIR) filter u(x, y) to which blurred

image g(x, y) is given as an input. The output of this filter gives the estimate of

the true image. The block diagram of the algorithm is shown in the Figure 1.6.

Optimization 
Algorithm 
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NL

Blurred
Image 

Estimated 
Image 

),(ˆ yxf

),(ˆ yxf NL

),( yxg

),( yxe

+

Figure 1.6: NASRIF algorithm.

The nonlinear filter does a non expansive mapping to project the estimated

image into the space which represents the known characteristics of the true image.

The difference between the projected image and estimated image is used as the

error measure. This error is used to update the coefficients of the FIR filter. The

advantage of this algorithm is that it doesn’t require PSF to be of known finite

extent.
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Defocus Parameter Estimation using Wavelet Transform

Lin et al. [29] have proposed an method to estimate the out-of-focus bur parameter

estimation using wavelet transform. The ratio of wavelet coefficients of first

and second level of an image has a nonlinear relationship with the defocus blur

parameter. This relationship is used to train a neural network in the training

phase. During testing phase, wavelet coefficients of the blurred image for the

two levels are provided to the trained neural network which gives the defocus

parameter as its output. The ratio decreases as the amount of defocus increases.

Blind Deconvolution using SVR

Li et al. [47] have used support vector regression (SVR) to restore images directly

from degraded images without having information about the degradation function.

They obtained an optimised mapping from a neighbourhood in a degraded image

to the central pixel in the original image. A training set (Xi, yi) is constructed

from the blurred image and true image. A 7× 7 window is chosen in the vicinity

of the pixel in the blurred image g(x, y) and converted to a vector of 49 × 1.

The corresponding pixel f(x, y) of the true image is taken as the target pixel.

The window is moved from top to bottom and samples are created. During

restoration, same window is used to create the attribute. The trained SVR model

predicts the pixel value. Thus the image is restored on a pixel by pixel basis. An

apriori information about the blur and noise can enhance the performance of this

algorithm. Another advantage of their algorithm is that it can generalise to new

images degraded with different types of blur and is robust to parameter selection.

PCA based Blind Image Restoration

In another work, Li et al. [37] have proposed a blind restoration technique for

atmospheric turbulence degraded images based on principal component analysis

(PCA). They suggested multichannel image restoration using PCA. It is also

shown that single channel blind image deconvolution is also possible through

creating an ensemble of blurred images from a single blurred image using shifting

technique. Variance of an image decreases with the blurring. So variance

maximisation of the blurred image is equivalent to restore the high frequency
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component. PCA is an orthogonal transformation technique used to reduce the

dimensionality of the dataset to 1. PCA transforms the data into a new orthogonal

coordinate system where the first coordinate is the first principal component i.e.

the eigen vector associated with the maximum eigen value. The eigen value points

the importance of eigen vector to the variance of the data. PCA based blind image

deconvolution is fast and robust to noise. However, improper PSF support can

introduce artifacts in the restoration result.

Kullback-Leibler Divergence Approach

Recently Seghouane [48] has proposed new algorithm for maximum likelihood blind

image restoration. In their work, he modelled the original image and additive

noise as multivariate Gaussian processes with unknown covariance matrices. In

this algorithm blur, noise and image parameters are estimated by alternating

minimisation of the Kullback-Leibler divergence between a model family of

probability distributions defined using the linear image degradation model and

a desired family of probability distributions. The algorithm has the advantage of

providing closed form expressions for the parameters to be updated.

Dependent Component Analysis for Blind Image Restoration

Du and Kopriva [49] suggested dependent component analysis (DCA) to restore

images without having the information about the noise statistics or blur parameter.

They have applied DCA technique to restore atmospheric turbulence blurred

images. The use of DCA doesn’t require the sources to be independent. DCA

basically finds a transform T that can improve the statistical independence

between the sources but leave the basis matrix unchanged and is defined as,

T (G) = T (AS) ∼= AT (S) (1.59)

Probabilistic Modelling for Motion Deblurring

Shan et al. [50] have proposed an unified probabilistic model for both blur kernel

estimation and unblurred image restoration. They solve a maximum aposteriori

(MAP) problem by advanced iterative optimisation technique which alternates

between the blur kernel refinement and image restoration until convergence. Their
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work uses a model of the spatially random distribution of the image noise. This

model helps to suppress the artifacts commonly encountered in image restoration.

A smoothness constraint is enforced in the image in the areas of low contrast. An

advanced optimisation scheme is employed which allows computationally intensive

steps in the frequency domain.

Multilayer Neural Network for Blur Identification

Multilyer multivalued neural network (MLMVN) consists of multivalued neurons,

have complex valued weights and activation function as a function of the argument

of a weighted sum. MLMVN have been used by [32] to identify blur type and

its parameters. A derivative free learning algorithm is used for training the feed

forward neural network. Each of the neuron in the output layer represents one blur

type and they are considered as one class. The output neurons classify the blur

and its parameters and rejects other blurs. The MLMVN based blur identification

is computationally fast and cheap.

Image Restoration using Cp and MSE

The choice of regularisation parameter is crucial for the quality of the restored

image [7]. Two estimators such as closed form approximation to the minimum of

Cp selection criterion and minimum of mean square error criterion (MSE) have

been proposed in their work. Using Cp criterion, regularisation parameter is chosen

by minimising an unbiased estimate of a total squared error risk which is defined

as,

Cp(λ) =
∥∥∥g −Hf̂λ

∥∥∥2 + 2σ2
ωtr (Hλ)

= ‖(I −Hλ) g‖2 + 2σ2
ωtr (Hλ)

(1.60)

where Hλ = H(HTH + λQTQ)−1HT , f̂λ is the regularised estimated image and

σ2
ω is the variance of i.i.d noise added to the image. H is the blurring matrix.

Using MSE criterion, f̂λ is made as close as possible to original image f . The risk

criterion for estimation is given as,

MSE(λ) = E{(fλ − f)2} (1.61)
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where expectation is taken with respect to the probability of distribution of

additive noise. The optimum value of λ is that value which minimises the above

equation. Both the estimators depends on the unknown image f and variance of

the noise σω.

Local Neural Approach to Semi-blind Image Restoration

I.Gallo et al. [51] proposed an iterative strategy based on neural learning. This

work uses a local error function derived from the conventional global constrained

error measure. It also assigns a separate regularisation parameter to each pixel

based on local gray level variance. In their work, they treated the pixels of the

restored image as synaptic weights. The weights are updated in each iteration

during learning to reduce the output error measurement.

Image Restoration using Kurtosis Minimisation

Image restoration using kurtosis minimisation (KM) has been suggested by Li

and Simske [52] for atmospheric turbulence blurred images. They have used

the concept that kurotsis of an image increases with extent of blurring. Phase

structure has been utilised to analyse the impact of blurring on kurtosis. Blur

parameter is estimated after setting the search space on a trial and error basis. For

each of the estimated parameter, the image is deblurred using a classical image

restoration technique. The restored image with minimum kurtosis is selected

and blur parameter corresponding to that image is considered as the identified

parameter. This is summarised as,

λk = arg

{
min
λ∈Ω

k
(
f̂ (λ)

)}
(1.62)

KM method is based on statistics of a given image and may not give good results

for any image.

Dispersion Minimisation for Blind Image Deconvolution

Vural and Sethares [53] have presented an non linear adaptive filtering based

iterative technique for simultaneous blur identification and image restoration

from a noisy blurred image. The restoration problem has been modelled as an
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optimisation problem and tries to minimise the dispersion by using a cost function

called constant modulus (CM). The noisy blurred image is passed through an

adaptive FIR filter whose coefficients are updated to minimise the cost function.

Their method is applicable to minimum as well as mixed phase blurs and is applied

to six or less-bit gray scale images.

Fast Identification of Motion Blur Parameters

Recently Dobes et al. [54] have proposed a fast method of finding motion blur

length and direction of blur. Their scheme constructs the PSF after parameter

identification. It computes the power spectrum of the image gradient in the

frequency domain. The power spectrum of the image gradient is applied to a

band pass Butterworth filter to smooth the spectrum and remove the unwanted

noise. The resulting pattern consists of parallel stripes and the directions stripes

correspond to the blur angle. Thus the orientation of stripes is found using

Radon transform. The distance between the neighbouring stripes corresponds

to the blur length. Finally, the image is deblurred using the computed kernel and

Lucy-Richardson algorithm.

1.3.3 Regularisation Approaches

Addition of noise during the blurring process makes the deconvolution problem

ill-posed. One of the most popular approach which is used to handle such a

problem is regularisation [55–58]. The important issue in regularisation approach

is proper selection of regularisation parameter which still remains as an active filed

of research. Variety of algorithms have been proposed in the literature to find the

regularisation parameter to solve the restoration problem. Some of the important

schemes are discussed below.

Adaptive Selection of Regularisation Parameter and Operator

Wu et al. [59] have suggested a scheme to select regularisation parameter and

operator based on the local noise variance. They have used the fact that local noise

variance reflects the degree of noise contamination of local image. An uniform blur
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operator d was used to blur the degraded image (g) and is denoted as,

z = d ∗ g (1.63)

The noise variance in the degraded image (g) is approximated as,

σ2
n = rσ2

g − σ2
z (1.64)

where σ2
n, σ

2
g , σ

2
z are the variances of noise (n), g and z respectively and r

is a correlation factor. The local noise variance are proportionally mapped

into some region [vmax, vmin]. The mapped local noise variance is used as the

local regularisation coefficient. They also compute the regularisation operator

adaptively.

GCV based Regularisation

Reeves and Mereseru [56] have proposed the idea of GCV for regularisation

parameter estimation. GCV is applied by considering each pixel of the blurred

image as one set of data. For a fixed value of regularisation parameter, the restored

image is obtained using all the pixels leaving one pixel. Then the restored image

is reblurred again to predict the noisy blurred image pixel that has been left

out in the restoration process. Each observation gives a different restored image.

The regularisation parameter which minimises the mean square error over all the

observations gives the optimum regularisation parameter.

Regularisation Parameter Estimation in Total Variation Image
Restoration

Liao et al. [57] developed a fast image restoration method which selects the

regularisation parameter automatically to restore noisy blurred images. The

method exploits the generalised cross validation technique to determine the

amount regularisation used in each restoration step. The regularisation parameter

is updated in each iteration, which increases the closeness of the restored image

towards the true image. The algorithm minimises an objective function in an

alternative minimisation framework.
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Arnoldi Process based Regularisation Parameter estimation

Kai et al. [60] have exploited the GCV method for estimating the regularisation

parameter. The large computational complexity involved in GCV technique is

reduced using arnoldi process. The Arnoldi process factors the system matrix

into Hessenberg matrix and orthogonal one. Arnoldi process has been used to

efficiently compute the numerator and denominator of the GCV function. Their

algorithm is basically suggested for super resolution image restoration.

1.4 Motivation

Keeping the research directions in view, it has been realised that there exists

enough scope to improve the restoration performance. In this thesis, an effort has

been made to remove blur from images. In particular, the objectives are narrowed

to —

(i) devise algorithms to find motion blur parameter for effective image

restoration.

(ii) restore blurred images with minimal apriori knowledge.

(iii) utilise soft computing techniques for deblurring.

(iv) estimate an optimum regularisation parameter for images degraded due to

blur and noise.

(v) restore images degraded with spatial variant blur .

1.5 Thesis Layout

Rest of the thesis is organised as follows —

Chapter 2: Motion Blur Parameters Estimation using Gabor filter and

RBFNN In this chapter, two different schemes are proposed to estimate the

motion blur parameters. Two dimensional gabor filter has been used to calculate

the direction of the blur. Radial basis function neural networks (RBFNN) has
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been utilised to find the length of the blur. Subsequently, classical restoration has

been used to restore the image. Noise robustness of the proposed scheme is tested

with different noise strengths.

Chapter 3: Blur Parameter Identification using SVM A blur

identification technique through support vector classification is presented in this

chapter. Support Vector machine (SVM) was originally developed for binary

decision problems and has been extended to multi-class problems with the help

of binary decision tree (BDT). The length of motion blur and the parameter of

Gaussian blur is identified using Multiclass SVM. The PSF, thus identified, is used

to determine the true image by deconvolving with the observed blurred image.

Chapter 4: PSO based SVR for Blind Image Restoration This chapter

presents a swarm intelligence based parameter optimisation scheme for blind image

restoration. Support vector regression (SVR) has been utilised to obtain a true

mapping of the images from the observed noisy blurred image. The parameters of

SVR are optimised through particle swarm optimisation (PSO) technique. Finally,

restoration performance is compared with other competent schemes.

Chapter 5: PSO Based Regularisation Parameter Estimation Blur

in the presence of noise makes the inversion problem ill-conditioned. The

regularisation parameter required for restoration of noisy blurred image is

discussed in this chapter. Generalised cross validation (GCV) criterion is used

to estimate the regularisation Parameter. Trapping into the local minimum has

been the major limitation of GCV error function. For the purpose an global

optimisation scheme namely particle swarm optimisation (PSO) is utilised to

minimise the cost function of GCV measure. The scheme adapts to various

degradation phenomenon like motion and out-of-focus blur along with noise of

various strengths.

Chapter 6: Rotational Motion Deblurring using Elliptical Modelling

The degradation caused due to rotational motion of object or camera no longer

remains as spatial invariant. Such situation arises in satellite imaging. In case of
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spatial variant blur, more than one PSF act on the image and they are difficult to

estimate. This chapter devotes restoration of images in such a phenomenon. The

spatial variant blur is considered to be combination of spatial invariant blurs and

each one is estimated using elliptical modelling. Finally Wiener filter has been

used to estimate the true image.

Chapter 7: Conclusions and Future Work This chapter provides the

concluding remarks with more emphasis on achievements and limitations of the

proposed schemes. The scopes for further research are outlined at the end.

The contributions made in each chapter are discussed in sequel, which include

proposed schemes, their simulation results, and the comparative analysis.
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Chapter 2

Motion Blur Parameters
Estimation using Gabor filter and
RBFNN

The goal of image restoration is to reconstruct an approximated version of the

original image from a degraded observation. Image degradation occurs due to

various reasons like camera mis-focus, atmospheric turbulence, camera or object

motion, etc. The blurring in images due to motion is commonly encountered when

there is a relative motion between the camera and the object. Motion deblurring

has many applications such as satellite imaging, medical imaging, traffic control,

etc. The motion may be linear or non-linear. The degradation due to motion can

be modelled as a two dimensional linear shift invariant process.

In the present chapter, an attempt has been made to estimate the motion blur

parameters using Gabor filter and radial basis function neural network (RBFNN).

Exhaustive simulation has been carried out to evaluate the proposed scheme.

The robustness of our scheme is tested by introducing additive Gaussian noise of

varying strength to the blurred image. After motion blur parameter estimation,

image is restored using classical restoration technique, namely Wiener filter [1].

The rest of the chapter is organised as follows. The blur model is described

in Section 2.1. Proposed blur angle estimation using Gabor filter is presented in

Section 2.2. Section 2.3 describes the proposed RBFNN method to determine the

blur length. Noise robustness of the proposed scheme is outlined in Section 2.4.

Section 2.5 deals with simulation and comparative analysis of the suggested

scheme. Finally, Section 2.6 gives the concluding remarks.
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2.1 Motion Blur Model

The PSF for motion blur can be described as,

h(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/L if
√

x2 + y2 ≤ L/2,

tan θ = y/x

0 otherwise

(2.1)

where L is the blur length and θ is the angle of motion blur. The restoration

performance depends on the estimation of point spread function (PSF), which in

turn is dependent on L and θ. So accurate estimation of these parameters from

a given motion blurred image is a challenging issue. The proposed algorithm

estimates the parameters θ and L separately. The PSF is constructed from the

estimated parameters, and the conventional Wiener filter is used for restoration

of the blurred image. The overall algorithm is described in Algorithm 1. Details

of the parameter estimation are described in sequel in the following sections.

Algorithm 1

Input: Motion Blurred Image

Output: Restored Image

Step 1. The blur angle (θ) is determined using Gabor filter.

Step 2. The blurred image is rotated in the direction opposite to the blur angle to

obtain the equivalent horizontal blurred image.

Step 3. The blur length (L) is estimated using RBFNN.

Step 4. PSF is constructed using the estimated blur parameters.

Step 5. The image is restored using the Wiener filter.

2.2 Angle Estimation using Gabor Filter

One of the important observations in motion blurred images is that its frequency

spectrum shows dominant parallel lines which corresponds to the angle of blur.
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Figure 2.1: (a) Original Lena image. (b) Blurred Lena image with L = 20 and
θ = 30◦. (c) Spectrum of the blurred Lena image. (d) Frequency plot of PSF.

This can be observed from Lena image blurred with an angle θ = 30◦ and L = 20

as shown in Figure 2.1. So, any of the line detection algorithms can be used to

determine the orientation of the parallel lines.

Gabor filters are Gaussian filters modulated by a sinusoidal wave. A good

number of researchers has used Gabor filter bank to extract image features

in applications like pattern recognition, image segmentation etc [61]. The

two-dimensional Gabor filter is defined as,

G(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
× exp [−jω (x cosφ+ y sinφ)] (2.2)

where σx and σy is the standard deviation in x and y direction respectively. φ and

ω represents the orientation and frequency of the Gabor filter.

Modulated Gaussian filters can be used to find the orientation in the patterns.

The two-dimensional Gabor filter masks for different orientation are shown in

Figure 2.2. The response of the Gabor filter varies with orientation parameter

and has been used here to calculate the blur angle. The two-dimensional Gabor
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(a) (b)

Figure 2.2: (a) Gabor filter mask with φ = 30◦. (b) Gabor filter mask with φ = 45◦.

filter is convolved with the spectrum of the blurred image to get the response at

different orientations by keeping other parameters fixed. The detail of the angle

estimation strategy is described below.

Pattern of the frequency response of the blurred image has been used to find

the motion direction. As it can be clearly seen from the Figure 2.1(c), for a

blur angle θ the patterns are oriented at α = θ + 90. So, the orientation of the

lines in the spectrum of the blurred image is directly related to the blur angle.

Various line detection algorithms such as Hough transform, Radon transform can

be used to detect the orientation of the line. However, Hough transform requires

a threshold to identify points on the line [28]. This threshold is different for

different images. Any small error in threshold could result in a large variation

in estimation of the blur angle. To alleviate this problem, Gabor filter has been

used to determine the blur angle. The response of the Gabor filter depends upon

the frequency and orientation of the input image. Gabor filter with different

orientation are convolved with the spectrum of the blurred image and L2 norm of

the result is computed. Detail of the motion direction estimation is described in

Algorithm 2.
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Algorithm 2

Input: Motion Blurred Image

Output: Blur Angle (θ)

Step 1. The spectrum of the blurred image is computed.

Step 2. Logarithm of the spectrum of the blurred image i.e. I = log(G(u, v))

is used as input to the Gabor filter.

Step 3. Gabor filter with different orientation (θ) are convolved with I to get

different responses R(θ).

Step 4. For every θ, the L2 norm of the result of the convolution is calculated.

The blurring angle is then calculated as,

θ̂blur = arg

{
max

θ
R (θ)

}
.

2.3 Length Estimation using RBFNN

The second parameter of motion blur is the length of the blur (L). This describes

how much distance the object or camera has moved during the exposure time. To

predict the blur length of a particular blurred image, we employ a RBFNN with

sum of the Fourier coefficients (SUMFC) of the corresponding blurred image as

the input. Following observations with respect to SUMFC versus the blur length

of various blurred images motivated us to utilise a nonlinear predictor RBFNN.

Fourier feature of an image is one of the simplest features in frequency

domain and easy to determine using FFT algorithm. Standard images, including

Lena, Cameraman have been blurred horizontally using different blur lengths.

The SUMFCs of different blurred images have been computed and normalised

between 0 and 1. Figure 2.3 depicts the relationship between SUMFCs and their

corresponding blur lengths. It has been observed that there exists a nonlinear

relation between these two parameters and it is true for all images. This non-linear

behaviour is exploited to predict the blur length from SUMFC as an input in the

RBFNN.

2.3.1 Radial Basis Function Neural Network

Neural networks have been used for many image processing applications [62].

Radial basis function neural network (RBFNN) has gained considerable attention
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Figure 2.3: Relation between blur length and Fourier feature for different images.

as an alternate to multilayer perceptrons trained by the back propagation

algorithm. The basis functions are embedded in a two-layer neural network,

where each hidden unit implements a radial basis activation function. There

are no weights connected between the input layer and the hidden layer. The

output layer of the network computes the weighted sum of the outputs from the

hidden layer. The input to a RBFNN is nonlinear while the output is linear.

RBFNN is characterised by its localisation (centre) and activation hyperspace

(activation function). The activation function used in a RBFNN is usually a

localised Gaussian basis function. The structure of the network is shown in

Figure 2.4.

In this work, the standard Gaussian nonlinear basis function is used and is

defined as,

φi(x) = exp

(
−(x− ci)

2

2σ2

)
(2.3)

where, ci is the centre of ith neuron and σ2 defines the variance. Euclidean

distance is used as the distance metric to calculate the distance of the inputs from
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Figure 2.4: Radial basis function neural network (RBFNN)

the basis centre. The spread σ of all the Gaussian basis function are fixed, and

a standard value of 0.1 is used. Levenberg Marquardt (LM) learning algorithm is

applied to train the network . Using a set of input–output pair (SUMFC-L), the

network parameters are optimised using LM. In order to determine the error, the

actual output on the output layer is compared with the desired output. Depending

on this error value, the weight matrix between the input-output layers is updated.

2.4 Noise Robustness of the proposed method

The proposed method for motion blur parameter estimation is also robust to noise.

When there is noise associated with an image along with blur, parallel dark lines

in the spectrum are not prominent. More lines further disappear as the amount

of noise increases. The noisy blurred images and their spectrum for different SNR

are shown in Figure 2.5. Authors in [63] have shown that denoising the image

before deblurring can further degrade the result and also affects the precision

of the algorithm. So the approach of denoising before deblurring is not used in

practice. So in this proposed scheme, restoration is performed in the presence of

noise.

It has been observed from the Figure 2.5 that for a low value of SNR i.e. 25

dB, the white lines are still present in the power spectrum. As reported in [27],

direction of white bound in the spectrum of the noisy image matches with the

direction of the motion blur as with noise free image. So, same strategy has

been used for angle estimation as for noise free images. Gabor filter has been
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(a) (b)

(c) (d)

Figure 2.5: (a) Cameraman image degraded by motion blur with L = 10, θ =
45◦ and Gaussian noise with SNR = 25 dB. (b) Power spectrum of the blurred
Cameraman image in (a). (c) Cameraman image degraded by motion blur with
L = 10, θ = 45◦ and Gaussian noise with SNR = 40 dB. (d) Power spectrum of
the blurred Cameraman image in (b).

used to find the direction of this white thick lines in the spectrum as described

in Section 2.2. Identification of length of motion blur in noisy images is difficult

due to absence of parallel lines in the spectrum [6]. The nonlinear relationship

between Fourier feature and blur length increases when noise is added to the image

as shown in Figure 2.6. This is due to the fact that noise introduces more frequency

components. However, when the RBFNN is trained with known noisy samples,

estimation accuracy is not greatly affected. The details description of training the

RBFNN based blur length estimator is presented in the following section.

2.5 Simulation Results and Discussions

The proposed scheme works in two phases namely estimation of blur angle

(θ) using Gabor transform and estimation of blur length (L) using RBFNN.
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Figure 2.6: Relationship between blur length and Fourier feature for noisy images.

To validate the scheme, simulation has been carried out on standard images

with various combinations of L and θ. For comparative analysis, the degraded

images are subjected to some of the existing schemes for restoration. The overall

simulation work is described in four different experiments and detailed below.

Experiment 1: Training of RBFNN length estimator.

Fifteen Standard images including Cameraman, Lena, Tree, Barbara, Baboon of

size (256× 256) etc. are motion blurred with blur length varying from 2 to 10 in

a step of 1 pixel. Then standard Gaussian noise of different signal to noise ratio

(SNR) is added to 8 images. The SUMFC for each blurred image is computed.

So exhaustive 135 training samples (SUMFC vs. L) are collected from noisy as

well as noise free images. Out of the total samples, 108 samples have been used to

train the proposed RBFNN length estimator using back propagation algorithm.

Rest 27 samples have been used for testing purpose. The training process is

continued till the error is less than 0.01. The training convergence characteristics

in MSE (measured in dB) is shown in Figure 2.7. It has been observed that
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training convergence is achieved after about 36 epochs. The trained RBFNN is

used subsequently to estimate the blur length from degraded images.

Experiment 2: Performance analysis in noise free images
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Figure 2.7: Convergence characteristics of RBFNN.

Images like Tree, Lena, Cameraman with different blur length and angle are taken

as the input to the proposed estimation scheme. The Blur angle for each of these

images is calculated using Gabor filter. The blur angle has also been computed

with other methods [27, 64]. Table 2.1 shows the blur angle estimation with the

proposed scheme along with other schemes. It has been observed that Radon

transform is well suited for calculating the blur angle. However, it fails to estimate

the accurate result when the blur angle is equal to 45◦. The proposed Gabor

filter angle estimator works satisfactorily for all the mentioned blur angles. The

computation cost involved for estimating the blur angle is comparable with that

of Rekleitis and Radon Transform and shown in Table 2.2. However, even the

proposed scheme lacks in exact estimation of blur angle.

Once the blur angle is estimated, the same blurred image is rotated in the

direction opposite to the blur angle to obtain the equivalent horizontal blurred

image. This image is subjected to estimate the blur length using the trained

RBFNN. SUMFCs for the equivalent blur images belonging to training set as
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Table 2.1: Estimated blur angle θ in noise free Situation.

Image Original θ Radon [27] Rekleitis [64] Proposed
Transform method

Lena (256x256) θ = 30◦ θest = 29◦ θest = 28◦ θest = 29◦

Tree (256x256) θ = 45◦ θest = 40◦ θest = 48◦ θest = 46◦

Cameraman (256x256) θ = 40◦ θest = 41◦ θest = 43◦ θest = 39◦

Chekerboard (128x128) θ = 40◦ θest = 37◦ θest = 38◦ θest = 39◦

Stik (64x64) θ = 35◦ θest = 32◦ θest = 33◦ θest = 36◦

Table 2.2: Time (in sec) required to estimate blur angle (θ) using different
methods.

Image Original θ Radon [27] Rekleitis [64] Proposed
Transform method

Lena (256x256) θ = 30◦ 62 68 65
Tree (256x256) θ = 45◦ 68 73 75
Cameraman (256x256) θ = 40◦ 68 69 71
Chekerboard (128x128) θ = 40◦ 57 55 53
Stik (64x64) θ = 40◦ 50 48 50

well as for images outside the training set are computed and used as an input

to RBFNN to estimate the corresponding blur length. The estimation accuracy

is compared with the existing schemes and is shown in Table 2.3. It has been

observed that estimated blur lengths are approximately close to the original values.

The proposed scheme gives an estimation error of about 1 − 1.7 pixel in length

and 1◦ in angle.

The PSF is constructed using the estimated parameters (θ, L). Subsequently,

the blurred images have been restored using Wiener filter. The restored results

Table 2.3: Estimated blur length L in noise free situation.

Image Original L Steerable [65] Rekleitis [64] Proposed
filter approach

Lena (256x256) L = 15 Lest = 18 Lest = 19 Lest = 14
Tree (256x256) L = 20 Lest = 17 Lest = 18 Lest = 19
Cameraman (256x256) L = 30 Lest = 27 Lest = 32 Lest = 29
Chekerboard (128x128) L = 30 Lest = 27 Lest = 32 Lest = 29
Stik (64x64) L = 30 Lest = 27 Lest = 32 Lest = 29
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(a) (b)

(c) (d)

Figure 2.8: (a) Original Lena image. (b) Blurred image with blur length L = 15
and θ = 30◦. (c) Restored using ML method (PSNR = 17.711 dB). (d) Restored
after parameter estimation (PSNR = 24.4186 dB).

have been compared with the maximum likelihood (ML) method available in

MATLAB toolbox. The restoration results for Lena, Tree, Checkerboard and Stik

images are shown in Figures 2.8, 2.9, 2.10 and 2.11 respectively. Peak signal to

noise ratio (PSNR in dB) is used as the quantitative parameter to evaluate the

proposed scheme. It has been observed that the proposed scheme performs better

than the ML scheme in terms of both subjective and objective evaluation.

Experiment 3: Performance study in noisy situations

The objective of this experiment is to test the robustness of the proposed

parameter estimation method. Standard images are blurred with different length

and angle. Then additive Gaussian noise of different SNR (25dB and 30dB) is

added to create noisy blurred images. Gabor filter and RBFNN have been utilised

to estimate the blur parameters. The restoration results for two different noisy

blurred images are shown in the Figures 2.12 and 2.13 respectively. It has been
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(a) (b)

(c) (d)

Figure 2.9: (a) Original Tree image. (b) Blurred image with blur length L = 20
and θ = 45◦. (c) Restored with ML method (PSNR = 17.047 dB). (d) Restored
after parameter estimation (PSNR = 24.7106 dB).

observed that the restored results in noisy situations are also comparable to that

of noise-free situations. The proposed method gives acceptable result upto 25dB

SNR. Table 2.4 shows the estimated values of the blur parameters with different

noisy situations.

Table 2.4: Estimated blur length L and blur angle θ in noisy situation.

Image Original L and θ Estimated L and Estimated L and
θ (SNR = 25 dB) θ (SNR = 30 dB)

Lena L = 15, θ = 30◦ L = 13.3, θ = 31◦ L = 13.6, θ = 31◦

Tree L = 20, θ = 45◦ L = 18.42, θ = 46◦ L = 18.68, θ = 46◦

Cameraman L = 30, θ = 40◦ L = 28.5, θ = 39◦ L = 28.3, θ = 39◦

Vase L = 40, θ = 60◦ L = 39, θ = 59◦ L = 38.4, θ = 59◦

Experiment 4: Performance analysis with natural images

To test the effectiveness of the proposed parameter estimation method on natural

blurred images, an experiment has been conducted on photographic motion

blurred image of the number plate of a car. A camera, which is mounted on
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(a) (b)

(c) (d)

Figure 2.10: (a) Original Checkerboard image. (b) Blurred image with blur length
L = 10 and θ = 40◦. (c) Restored with ML method (PSNR = 17.33 dB). (d)
Restored after parameter estimation (PSNR = 26.21 dB).

a tripod, is positioned in front of car facing the number plate. When the shutter

is released the arm of the tripod is moved with an arbitrary velocity, thereby

capturing a motion blurred image whose PSF is unknown. The number plate image

is subjected to the proposed and existing schemes. The blur length and angle of the

number plate are estimated and found to be L = 20.2 and θ = 24◦ respectively.

It has been observed from the Figure 2.14 that the restoration performance of

the proposed scheme is superior as compared to the existing scheme. PSNR

comparison is not possible in this case as it requires the original image.

2.6 Summary

In this chapter, a deblurring scheme based on apriori blur parameter estimation

from motion blurred images has been proposed. Subsequently, the estimated

PSF from the parameters obtained are utilised for conventional restoration. To

estimate the angle of blur, Gabor filter has been used whereas for length of blur,
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(a) (b)

(c) (d)

Figure 2.11: (a) Original Stik image, (b) Blurred image with blur length L = 12
and θ = 40◦, (c) Restored with ML method (PSNR = 19.53 dB), (d)Restored
after parameter estimation (PSNR = 28.41 dB).

a RBFNN is utilised. Both the estimation schemes perform accurately even at

the noisy conditions. This implicates the robustness of the proposed scheme.

The simulation experiments have been conducted in MATLAB along with other

competent schemes, and the results have been compared to show the efficacy of the

scheme. Both standard and real time images have been included in simulation. It

has been observed in all cases the proposed scheme has an upper hand in parameter

estimation as well as restoration performance.
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(a) (b)

(c) (d)

Figure 2.12: (a) Noisy blurred Cameraman image with L = 30 and θ = 40◦ and
Gaussian noise (SNR = 25 dB). (b) Noisy blurred Cameraman image with L = 10
and θ = 45◦ and Gaussian noise (SNR = 30 dB). (c) Restoration results of (a)
after parameter estimation (PSNR = 23.18 dB). (d) Restoration results of (b)
after parameter estimation (PSNR = 25.21 dB).
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(a) (b)

(c) (d)

Figure 2.13: (a) Noisy blurred Vase image with L = 40 and θ = 60◦ and Gaussian
noise (SNR = 25 dB). (b) Noisy blurred Vase image with L = 40 and θ = 60◦

and Gaussian noise (SNR = 30 dB). (c) Restoration results of (a) after parameter
estimation (PSNR = 20.58 dB). (d) Restoration results of (b) after parameter
estimation (PSNR = 22.19 dB).

(a)

(b)

(c)

(d)

Figure 2.14: (a) Noisy blurred Car image. (b) Extracted Number plate image.
(c) Restored with ML method (d) Restoration result of Number plate image after
parameter estimation.
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Chapter 3

Blur Parameter Identification
using SVM

Images may be blurred by the imaging devices, or the medium through which

the light propagates. The relative motion between the imaging device and/or the

object also leads to image blurring. As discussed in the introductory chapter, the

blurring process is assumed to be linear, and it is mathematically represented as

the 2-D convolution between the original image and the degradation function also

known as point spread function (PSF). The PSF parameters need to be identified

prior to restoration. In this chapter, the length parameter of motion blur and sigma

parameter of atmospheric turbulence blur have been identified using a multi-class

support vector machine (SVM). Subsequently, the estimated blur parameter is

employed to construct the PSF for restoration. SVM has been used to solve the

estimation problem as a pattern classification problem.

The rest of the chapter is organised as follows. Support vector machine and

different multi-class SVM approaches are described in Section 3.1. The proposed

SVM based blur identification has been provided in Section 3.2. Experimental

results and their discussion are detailed in Section 3.3. Finally Section 3.4

summarises the chapter.

3.1 Support Vector Machine

Support vector machine is a theoretically well motivated algorithm and originally

developed at Bell laboratories by Vapnik [66]. SVM has been further modified

by researchers [67] addressing the problem of large tasks, which consumes more
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time and memory. SVMs have been successfully applied in many applications

ranging from object detection and digit recognition [68,69], handwritten character

recognition [70] information and image retrieval [71, 72] and prediction [73–75].

Pattern Classification, automatic recognition are critical issues in decision making

process [76]

For a binary classification problem having the training data points (xi, yi), i =

1, 2, ...m, xi ∈ Rp and yi ∈ {−1, 1}, the SVM constructs a hyperplane which

separates the data into two classes. The point x which lies on the hyper plane

satisfies (3.1). W is normal to the hyperplane. The SVM tries to reduce the

shortest distance between the separating hyperplane and the closest points to the

hyperplane. There are many possible classifiers, which can classify the data into

two classes. However, SVM constructs an optimal hyperplane which maximises its

distance from the nearest data point of each class. This is shown in the Figure 3.1.

Points on the dotted line are called support vectors.

W.x+ b = 0 (3.1)

The above equation helps to find a decision boundary for a linearly separable

data. For a nonlinear separable data, SVM creates a hyperplane by mapping the

data set into a higher dimensional plane to convert it as a linear problem. This

mapping to a high dimensional plane is achieved using a kernel function. SVM

solves a convex optimisation problem through quadratic programming with linear

constraints.

The SVM classifies the data into two classes by separating them into two

categories. SVM models are equivalent to the classical multilayer perceptron

(MLP) neural network where weights are optimised in order to classify the test

data accurately. Traditional neural network solves a non-convex unconstrained

minimisation problem. SVM models also use a training data set (xi, yi) like MLP

and update the weights. However, it utilises a kernel function and weights of

the networks are found by solving a quadratic programming problem with linear
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Optimal
Hyperplane

Support Vectors

Margin is
maximized

Figure 3.1: Optimal hyperplane classifying a two class problem

constraints. SVM solves the following optimisation problem

min
W,b,ξ,ξ∗

1

2
W TW + C

N∑
i=1

(ξi + ξ∗i ) (3.2)

Subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi −
(
W Tφ (xi) + b

) ≤ ε+ ξi(
W Tφ (xi) + b

)− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0; i = 1, 2, ....N

where ε is the error tolerance and ξ, ξ∗i are the slack variables.

3.1.1 An Overview of Multi-class SVM Approaches

Initially, SVM has been developed for two-class classification problem. It is

also called dichotomies decision problem. Later, SVM was also used to perform
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multi-class classification. However, more study on multi-class SVM is required

for its efficient utilisation in important applications. Some authors solve k-class

classification problem with k number of SVMs. Authors in [77] solve the

multi-class problem as a single optimisation problem. However, this approach

is computationally expensive. Number of schemes has been proposed to solve the

same problem as several binary problems which decompose the multi-class problem

into a number of two-class problems [78]. Several widely used decomposition

techniques are available, which are briefly discussed below.

One-against one

In this technique, k(k− 1)/2 number of two-class classifiers are constructed using

all combinations of the k classes for a k-class problem. All the classifiers are trained

by taking the samples of the first class as positive and second class as negative.

Then all these classifiers are combined using a winner take algorithm which uses

a majority voting scheme. When a new sample is tested, it is tested with each of

the hyperplanes and vote count of the class for that sample is noted. The sample

is assigned to the class whose vote count is highest. For training, samples from

only two classes out of k classes are used. So the number of samples required for

training is less as compared with other decomposition schemes. The disadvantage

of this method is that when k is large, a testing sample has to be tested with all

the classes. This increases the testing time of the sample.

One-against rest

One-against-all SVMs were first introduced by Vapnik [66]. For a k-class (k > 2)

problem, k numbers of hyperplanes are constructed. The jth SVM is trained

by taking the samples of jth class as positive example and all others as negative

examples. In the testing phase, the sample is presented to all the k-classifiers.

The sample is assigned a class using the winner take all principle which assigns

the class according to the maximum output among all k-classes. The limitation of

this technique is that every classifier has to be trained with all available samples,

which increase the training complexity. The performance of one-against-all SVMs

was improved by the same author in 1998 [79].
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Directed Acyclic Graph SVM (DAGSVM)

This technique also uses k(k − 1)/2 number of classes and the training procedure

is same as one-against one. It is introduced by authors in [80]. During the testing

phase, the algorithm takes a decision based on a rooted binary directed acyclic

graph [80]. This method creates a model for each pair of the classes. When this

model classifies two classes k1 and k2, it doesn’t vote for class k1 rather it gives

vote against k2. After this point it rejects all the models, which involves class k2.

After each classification by one of the models, one more class can be discarded.

Therefore, after k−1 steps, one class is left out, which becomes the prediction for

the current testing sample. It gives a faster testing than one-against-one scheme

having the same accuracy.

SVM using Binary Decision Tree

This method has been developed by Madzarov et al. [81] which uses multiple SVMs

arranged in a binary tree like structure. Each node in the tree represents a SVM

which is used to train two classes. The algorithm measures the similarity between

the remaining samples, and the two classes used for training. Using this similarity

measure, all samples in the node are allotted to two sub nodes. This process is

repeated till each node consists of samples from only one class. This technique

has been utilised for motion blur and Gaussian blur parameter classification.

3.2 SVM based blur identification

The blurring process is same as low pass filtering where the filter output lacks high

frequency components. Edges in an image are high frequency components and

play a major role in image analysis. The high frequency regions in a Cameraman

image for different motion blur length are shown in Figure 3.2. It is evident from

Figure 3.2 as the blur length increases, edges become smoother. The variance

parameter also decreases with the blurring strength in a blurred image. Changes

of variance with blur length for different images are shown in Figure 3.3. Variance

parameter has been used as one of the criteria to select the samples from the

blurred image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Behaviour of a high frequency portion of Cameraman image under
horizontal motion blur of different length:(a) True image (b) L = 5 (c) L = 10.
(d) L = 20 (e) True high frequency potion. (f) L = 5 (g) L = 10 (h) L = 20.
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Figure 3.3: Variance curve for different blur length for different images.

The local variance of the blurred Cameraman image is computed by taking

a window of size 7 × 7 and the plot of centre pixel versus variance is shown in
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Figure 3.4: Variance plot of Cameraman image of size 128 × 128 degraded with
motion blur of L = 10.

Figure 3.4. The boundary pixels are ignored in the plot. It may be observed that

maximum number of pixels are having smaller variance. These pixels corresponds

to smooth region in the image and contain redundant information, whereas larger

variance corresponds to edge regions. Higher variance regions are searched in a

blurred image to construct the feature vector. If g represents the blurred image

with blur length L, then the gray values of the window gw is selected whose local

variance is larger than a threshold. The feature vector is constructed as [gw(:);L]
T

where gw(:) represents lexicographic ordering of the gray values of the window

having larger local variance and L is the corresponding blur length.

3.2.1 Blur Classification

Blur classification is done by constructing a binary decision tree suggested in [81].

The SVM using the binary tree takes the advantage of efficient computation of

binary tree architecture and good accuracy of SVM. The binary tree structure for

5-class classification problem is shown in Figure 3.5. A SVM is used in each node
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Figure 3.5: Binary deceison tree SVM for blur classification.

and takes a decision about the assignment of an input pattern into one of the two

possible classes. This is achieved by transferring the input pattern into either left

or right sub-tree. This process is continued until each pattern is classified with a

unique class.

At first, a training set is constructed using the feature vectors and trains the

feature samples with a multi-class SVM. In the testing phase, features of the

blurred image with different blur length are collected and fed to the trained SVM

model. The output of the SVM is the identified blur length. The sigma parameter

of the atmospheric turbulence blur has been identified in the similar manner

by constructing a separate multi-class SVM model. Details of the experiments

conducted are described in Section 3.3.

3.3 Simulation Results and Discussion

To validate the estimation performance of suggested multi-class SVM model,

simulation has been performed using standard images including Cameraman, Lena

and Pepper etc. The SVM is named after the image which is used to train it e.g.

if Cameraman is used to train the SVM, the corresponding SVM is called as
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(a) (b) (c)

(d)

Figure 3.6: Standard images used for testing.

Cameraman SVM model. All the images used for training and testing are scaled

in the range [0, 1] in the spatial domain. A window of size 7 × 7 has been used

for variance computation. So the size of one sample vector used in the SVM is

[49×1]. The SVM model trained with Cameraman image is tested with a different

image. Four standard images as shown in Figure 3.6 are taken for simulation to

create a test bed. For better understanding the overall simulation is divided in

four experiments and described in sequel.

Experiment 1: Cameraman SVM model for motion blurred image

The Cameraman image is horizontally motion blurred with L = 2 to 30 with a step

of 2. The samples from the blurred image are taken by considering the window

whose variance is larger than 0.02. The SVM is trained with the collected samples

and a Cameraman SVM model is created. The SVM model is validated by testing

the samples of Cameraman image as well as Lena image. The vote counts for each

of the estimated class for Cameraman image and Lena image are noted and has

been shown in Tables 3.1 & 3.2 respectively.

Values in each column show the number of votes won by different blur lengths.

The maximum vote obtained by any row in a particular column is the estimated

class which is equal to the blur length. It should be noted that the samples from
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Table 3.1: Blur identification performance of Cameraman multi-class SVM model
for Cameraman test image.

Actual Blur Length
Samples→ 913 480 276 175

Blur Length (L)↓→ 5 9 13 17

Estimated
Blur
Length

5 861 128 29 16
9 44 321 64 28
13 3 22 154 41
17 5 9 30 88

Table 3.2: Blur identification performance ofCameraman multi-class SVM model
for Lena test image.

Actual Blur Length
Samples→ 756 515 326 190

Blur Length (L)↓→ 5 9 13 17

Estimated
Blur
Length

5 689 117 47 24
9 38 334 65 27
13 18 52 197 43
17 11 12 17 96

Lena image are different from the sample used in the training. The proposed

multi-class SVM identifies the blur length accurately for the image used during

training as well as for any test image. To create the SVM model LIBSVM

package [82] is used with the default radial basis kernel function. The value of C

is chosen through experimentation and for the Cameraman image SVM model it

is taken as 1. Through experimentation, error tolerance and gamma values are

chosen to be 0.0001 and 5 respectively. These parameters can also be optimised for

different images with different degradations. After the blur parameter is identified,

the PSF is constructed and the degraded images are restored. The restoration

results for the Lena image are shown in Figure 3.7.

Experiment 2: Pepper SVM model for atmospheric blurred image

In this experiment, the Pepper image is degraded with atmospheric turbulence

with different σ values in the range [0.5− 5]. The training samples of the blurred

Pepper image are collected using the same procedure as explained in Experiment
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(a) (b) (c)

(d)

Figure 3.7: Restoration results for Lena image: (a) True image. (b) Motion
blurred (L = 9). (c) Restored after parameter estimation using RBFNN. (d)
Restored after parameter estimation using multi-class SVM.

1. Total 1392 samples have been used for training the SVM. To validate the

effectiveness of the proposed scheme, testing samples from Cameraman image

also have been used. The performance of the Pepper multi-class SVM model

for different images are shown in Tables 3.3 and 3.4 respectively. It is inferred

from the tabular results that the proposed Pepper multi class SVM model also

works well for images degraded with atmospheric turbulence blur and it achieves

generalisation in terms of different images. Same voting strategy has been followed

in this experiment to identify the actual sigma value. The value of C is taken as 1

and radial basis kernel has been used in the LIBSVM package. Gamma value and

error tolerance are chosen to be 4 and 0.0001 respectively through experimentation.

The restored image is obtained after constructing the PSF from the identified

sigma parameter.

Experiment 3: Comparison with other schemes

The proposed scheme is compared with the existing blur parameter estimation

schemes, like RBFNN blur length estimator described in Chapter 1 and

Rekleitis’s [64] scheme. To compare the proposed scheme with the RBFNN length
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Table 3.3: Blur identification performance of Pepper multi-class SVM model for
Gaussian blurred Pepper test image.

Actual Sigma
Samples→ 449 245 224 234 241

Gaussian Blur (σ)↓→ 0.5 1 2 3 4

Estimated
Sigma

0.5 444 6 0 0 1
1 3 222 1 0 0
2 1 11 128 48 14
3 0 14 52 103 97
4 1 2 43 83 129

Table 3.4: Blur identification performance of Pepper multi-class SVM model for
Gaussian blurred Cameraman test image.

Actual Sigma
Samples→ 348 328 208 165 178

Gaussian Blur (σ)↓→ 0.5 1 2 3 4

Estimated
Sigma

0.5 312 8 0 0 0
1 23 252 1 0 2
2 12 51 138 38 24
3 0 14 46 93 67
4 1 2 23 34 85

estimator, blur angle is estimated with the Gabor filter. Then the images are

converted to horizontal blurred image. The estimated values of blur length using

different schemes are shown in Table 3.5. It may be observed that SVM method

estimates the blur length exactly whereas other methods fail to do so in a noise

free environment.

Experiment 4:Testing with noisy situations

To test the efficacy of the proposed scheme in presence of noise, another SVM

model is created using Lena image. It is degraded with horizontal motion blur

of different blur lengths similar to Experiment 1. Subsequently, Gaussian noise

of different strengths SNR (25 dB, 30dB, 40dB) is added to the blurred Lena

images to create a pool of blurred noisy samples for training. Training patterns are

collected using a 7×7 window of blurred noisy image having its target value as the

blur length (L). The trained Lena SVM model is tested with some samples from
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Table 3.5: Estimated blur length L in noise free situations

Image Original L RBFNN Rekleitis Estimated L (SVM)
Lena (128x128) L = 9 Lest = 8 Lest = 6 Lest = 9
Cameraman (128x128) L = 13 Lest = 12 Lest = 11 Lest = 13
Pepper (128x128) L = 17 Lest = 18 Lest = 20 Lest = 17
Stik (128x128) L = 20 Lest = 19 Lest = 17 Lest = 20

Table 3.6: Blur length L estimation in noisy situation

Image Original L SNR = 30 dB SNR = 40 dB
RBFNN SVM RBFNN SVM

Lena (128x128) L = 9 Lest = 11 Lest = 14 Lest = 10 Lest = 12

Cameraman (128x128) L = 13 Lest = 12 Lest = 17 Lest = 11 Lest = 16

Pepper (128x128) L = 17 Lest = 18 Lest = 20 Lest = 17 Lest = 20

Stik (128x128) L = 20 Lest = 19 Lest = 17 Lest = 21 Lest = 16

Lena image not considered during training and as well as with other blurred noisy

images. For comparison, the blur length L of the same images is also estimated

using some well known techniques. The results are summarised in Table 3.6. It is

observed that estimated parameters are deviated from the actual blur parameters.

The deviation increases with decrease in SNR. The RBFNN has the superior

performance as compared to multi-class SVM in presence of noise.

3.4 Summary

A novel method has been proposed to identify the blur parameters from the blurred

images. The blur identification problem is modelled as a multi-class classification

problem and has been solved through multi-class SVM. For a k class problem

k−1 numbers of hyper planes are constructed. These hyperplanes are used as the

decision boundaries which are used to assign a class to an unknown sample. The

suggested scheme achieves generalisation in terms of different images and estimates

the blur parameters accurately. However, for a different blur type, the SVM needs

to be retrained adding that class into the training set. The proposed scheme

gives better result than RBFNN in noise free environment but fails to estimate

accurately in noisy situation. The proposed scheme is applicable to images
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degraded with horizontal motion blur and images degraded with atmospheric

turbulence blur. However, this proposed method can be applied to estimate blur

parameters only in noise free situation.
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Chapter 4

PSO based SVR for Blind Image
Restoration

The blurring in an image can be visualised as lowpass filtering of the image where

the edges are lost. It occurs in several situations like camera mis-focus, relative

motion between object and camera, atmospheric turbulence and other similar

conditions. Images degraded with different blurs look significantly different from

each other. However, they look much similar if a block is taken from one image is

compared with the same block in the other image. Based on this observation, in

this chapter a generalised solution has been proposed to restore an image affected

with blur and noise. The suggested method solves a blind deconvolution problem

by direct restoration of the true image pixels without estimating the PSF. It

utilises the support vector regression (SVR) approach [47] towards blind image

restoration with its parameters optimised by particle swarm optimisation (PSO).

A direct mapping of the true image from the degraded observation is obtained after

SVR parameter optimisation. Different SVR models are created using some known

training samples by optimising the parameters. Subsequently, the model is used

to restore different blurred images not used during training. The proposed scheme

adapts to different blurs with Gaussian noise of various strengths. Exhaustive

simulation results support the performance of the proposed scheme.

The rest of the chapter is organised as follows. Section 4.1 gives a brief

introduction to the SVR. The role of parameters on the performance of the SVR is

discussed in Section 4.2. Section 4.3 presents the proposed parameter optimisation

scheme using PSO. Experimental results with discussions are given in Section 4.4.
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Finally, a summary of the chapter is presented in Section 4.5.

4.1 Support Vector Regression

An introduction to support vector machine has been already provided in the

previous chapter. In this chapter, SVM has been utilised to solve a regression

problem. Let us consider a training set (x1, y1), (x2, y2).....(xN , yN) from a vector,

xi ∈ R
n with corresponding targets yi, i = 1, 2, . . . , N . ε-SVR determines a linear

function defined on xi as,

f(x) = 〈w, x〉+ b (4.1)

where w is a high-dimensional weight vector and b ∈ R as the bias such that there

is at most ε distance from the actual data and f(X) should be flat. 〈 〉 denotes the
dot product. No care is taken as long as errors are less than ε. But, any deviation

more than ε is not accepted. Flatness means the value of w should be as small as

possible. This can be written as convex optimisation problem:

Minimise
1

2
||w||2 (4.2)

Subject to

⎧⎨
⎩ yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

In this case it is assumed that a function f exists which approximates the data

set (xi, yi) with ε precision. Introducing slack variables ξi, ξ
∗
i , the problem can be

stated as [66],

Minimise
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i ) (4.3)

Subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0

The parameter C controls the trade-off between the flatness of f and tolerance

level of error ε. This deals with a ε-insensitive loss function expressed as,

|ξ|ε =
⎧⎨
⎩ 0, if |ξ| ≤ ε

|ξ| − ε, otherwise
(4.4)
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The graphical representation of the ε-insensitive loss function is shown in the

Figure 4.1. The optimisation problem defined in (4.3) is easily solved in its dual

Figure 4.1: The soft margin loss setting for a linear SVM.

formulation. The dual optimisation problem can be written as [83],

maximise

⎧⎪⎪⎨
⎪⎪⎩

−1
2

N∑
i,j=1

(αi − α∗
i )
(
αj − α∗

j

) 〈xi, xj〉

−ε
N∑
i=1

(αi + α∗
i ) +

N∑
i=1

yi (αi − α∗
i )

(4.5)

subject to
N∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

where αi, α
∗
i are Lagrange multipliers.

To address non linear regression problems, the linear SVR is extended to

nonlinear SVR by mapping the input space into a high dimensional feature space

through a kernel function φ(x). In such case, (x, x′) is replaced by k(x, x′). Typical

kernel functions used in the SVR are RBF, polynomial, linear and defined as,

RBF kernel:

k (xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
(4.6)

Polynomial kernel:
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k (xi, xj) = (1 + xi · xj)
d (4.7)

Linear Kernel:

k (xi, xj) = xT
i xj (4.8)

In the above equations xi and xj are input vector spaces. The parameter σ in

(4.6) represents the spread of Gaussian kernel and the parameter d in (4.7) is the

degree of the polynomial. The operator (·) between xi and xj represents the inner

product.

4.2 Influence of the parameters on the

performance of SVR

SVR is characterised by number of parameters and Vapnik [66] addressed that

the two most relevant are the kernel parameter σ and the penalty parameter C.

The parameter C determines the trade-off between the complexity of the model

and approximated error. The parameter C is normally optimised using cross

validation. However, for a large volume of data, the cross validation technique

increases the complexity of the problem. The kernel parameter σ in SVR plays a

major role. If it is overestimated, the exponential will behave almost linearly and

it would loose the power of transforming to a higher dimensional plane. On the

other hand, if it is underestimated, regularisation will be affected and the decision

boundary will be sensitive towards noise in training data.

If SVR is applied for image restoration without parameter optimisation, the

parameters are adjusted heuristically for good result. Such parameters donot

provide satisfactory results across different images and blur conditions. So an

adaptive parameter estimation for given degradation is necessary. In the proposed

scheme, different types of blurs have been considered along with Gaussian noise

of different strengths which is used in practice.
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4.3 Proposed PSO based SVR for Blind Image

Restoration

In the present work, the SVR approach towards blind image deconvolution is

improved by optimising the parameters of SVR. A Genetic algorithm (GA) based

approach has been proposed [84] to optimise the SVR parameters. Authors in [85]

have also suggested a GA based approach for optimising the SVM parameters.

The PSO is utilised in this work for faster convergence and easier implementation.

PSO also has fewer adjusting parameters than GA. PSO is discussed in a nutshell

followed by detailed procedure of our proposed method in sequel.

4.3.1 Particle Swarm Optimisation

PSO is a stochastic optimisation technique initially developed by Eberhart and

Kennedy [86] and subsequently modified to a more generalised form [87, 88].

It is an evolutionary computation technique based on intelligent behaviour of

swarm. A swarm consists of particles, which represent the solution. They fly in

a multidimensional search space. Each particle changes its position according to

its own experience, and experience collected from the neighbouring particles. In

this way, the particles move towards the best solution. The performance of each

particle is measured using a fitness function which is application dependent. In

the present work, root mean square error function (RMSE) is used as the fitness

function and is defined as,

RMSE =

{
1

MN

MN∑
i=1

(
f̂ − f

)2
}1/2

(4.9)

where f, f̂ are true and restored images respectively each of size M ×N .

The present particle position (presentx) and velocity (V ) of each particle are

updated using the following two update equations defined as,

V = V + c1 ∗ rand() ∗ (pbest− presentx)

+c2 ∗ rand() ∗ (gbest− presentx) (4.10)
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and

presentx = presentx+ V ; (4.11)

where, rand is a random number between 0 and 1 and c1, c2 are two weighting

constants or accelerating constants. The local best solution of the particle is

defined as the pbest and gbest is the global best solution of all the particles achieved

so far.

4.3.2 Parameter Optimisation of SVR

The proposed scheme is similar to the SVR approach [47] in which a pair of blurred

and true images are used for training purpose. A mapping from the blurred image

to the true image is done. To create a training pattern of pixels, a 7× 7 window

from the blurred image is taken and stacked in a column format results to a pattern

of size [49 × 1]. The corresponding centre pixel from the true image is used as

target value. The window is shifted from top to bottom and the gray values of

the true image are recorded. The SVR is trained with a random initial set of

parameters. The parameters of the SVR i.e. C, σ are updated till the RMSE

between the restored image and true image is below a threshold level (T). In this

work, a threshold value of 0.01 is used in the experiments.

The trained SVR with the optimised set of parameters is used to restore images

pixel by pixel. The flow chart of the proposed optimisation scheme is shown in

Figure 4.2.

4.4 Experimental Results

Experiments are carried out in the MATLAB environment to validate the efficacy

of the proposed scheme in different blur and noise conditions. The proposed

approach is tested on several standard images, including Lena, Cameraman,

Pepper with the SVR model. The SVR model trained with particular image is

used to restore a different blurred image, e.g., the SVR model created with Lena

image is used to restore Pepper image. The SVR model trained with Lena image

is denoted as Lena SVR and so on. The peak signal to noise ratio (PSNR) is used
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Figure 4.2: Flow chart of the proposed scheme for SVR parameter optimisation.

73



Chapter 4 PSO based SVR for Blind Image Restoration

as the performance measure to compare the results of the proposed scheme with

other standard schemes.

The images used in training and testing are normalised in the range [0-1]. In all

experiments, images of size 128×128 are considered. The PSO parameters are kept

fixed for each experiment. Population size of 30 has been used in the simulation.

The value of c1 and c2 were chosen to be 1.4 through experimentation.

Blurred images are created using the standard blur functions including motion

blur, out-of-focus blur and Gaussian blur. Then Gaussian noise is added to

the blurred images. To compare the results, the images are also restored with

PCA [37], SVR [47] and with maximum likelihood estimation technique for blind

image deconvolution.

The overall simulation study is divided into three experiments and are

discussed in sequel.

Experiment 1: Restoration of Lena image with motion blur

Standard Lena image is degraded with motion blur parameters L = 10 & θ = 450.

Subsequently, Gaussian noise of strength (SNR = 40 dB) is added to the

resultant image. Training patterns are accumulated from the 7 × 7 window of

blurred noisy image having its target pixel as the corresponding centre pixel in

the original image. In Lena SVR model, the optimised parameters are found

to be C = 2.3, σ = 0.8. The Lena SVR model is subjected to restoration of

degraded Lena image, with different motion blur parameters and Gaussian noise

(L = 8 & θ = 300, SNR = 40 dB). Restoration results are shown in Figure 4.3.

Further, Lena images degraded with defocus aberration and noise (R = 3 & SNR

= 30 dB) and Gaussian blur and noise (sigma = 0.9, SNR = 40 dB) respectively

are also subjected to restoration using the aforesaid Lena SVR model. The

objective parameter PSNR (dB) is computed and compared with other schemes

as shown in Table 4.1.

It may be observed that the proposed optimised SVR shows superior

performance. It may also be noted that, optimised SVR on one degradation

phenomenon works well for restoring images degraded with similar type of blur as

well as for other types of blurs in the same image.
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(a) (b)

(c) (d) (e) (f)

Figure 4.3: Restoration of Lena Image: (a) Original Lena image. (b) Motion
Blurred Lena image (SNR = 40 dB). (c) Restored with PCA. (d) Restored with
Maximum Likelihood. (e) Restored with SVR without parameter optimisation
(C = 1). (f) Restored with PSO based Lena SVR model

.

Table 4.1: PSNR (dB) comparison of restored Lena image using Lena SVR model
and other schemes for different degradations.
Blur & Noise PCA Maximum SVR PSO

likelihood based SVR
Motion blur 18.45 19.21 25.81 30.23
(L = 8, θ = 300, SNR = 40 dB)
Out-of-focus 20.34 22.31 30.41 33.08
(R = 3, SNR = 30 dB)
Gaussian 19.32 20.37 27.11 29.21
(sigma = 0.9, 5× 5, SNR = 40 dB)

Experiment 2: Restoration of images not considered during training

To validate the efficacy of the trained Lena SVR model (Experiment 1), Pepper

images with various degradations are used for testing. The restored images for

out-of-focus blur (R = 3, SNR = 30 dB) are shown in Figure 4.4 and comparative

analysis of PSNR (dB) is shown in Table 4.2. Further, an optimised Pepper

SVR model is generated in the similar direction and Cameraman image is used

for testing with different degradations. The performance analysis is shown in

75



Chapter 4 PSO based SVR for Blind Image Restoration

Table 4.3.

(a) (b)

(c) (d) (e) (f)

Figure 4.4: Restoration of Pepper Image: (a) Original Pepper image. (b)
Out-of-focus blurred Pepper image (SNR = 40 dB). (c) Restored with PCA. (d)
Restored with Maximum Likelihood. (e) Restored with SVR without parameter
optimisation (C = 1). (f) Restored with PSO based Lena SVR model.

Table 4.2: PSNR (in dB) comparison of restored Pepper image using Lena SVR
model and other schemes for different degradations.

Blur & Noise PCA Maximum SVR PSO
likelihood based SVR

Motion blur 16.51 18.14 24.65 29.12
(L = 8, θ = 300, SNR = 40 dB)
Out-of-focus 19.08 21.36 29.04 31.48
(R = 3, SNR = 40 dB)
Gaussian 20.28 21.75 29.61 31.54
(sigma = 1, 3× 3, SNR = 40 dB)

It is inferred that the optimised SVR trained with one image on a particular

degradation is capable of restoring different images with various degradations.

Experiment 3: Restoration of photographic blurred image

The proposed scheme is subjected to two naturally blurred images captured on a

camera (Canon EOS 400D). The Canon image has the out-of-focus blur and the

Key image has the motion blur. The noise on both the images are assumed to be
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Table 4.3: PSNR (in dB) comparison of restored Cameraman image using Pepper
SVR model and other schemes for different degradations.
Blur & Noise PCA Maximum SVR PSO

likelihood based SVR
Motion blur 19.15 20.34 27.98 30.24
(L = 12, θ = 250, SNR = 40 dB)
Out-of-focus 19.14 21.31 30.43 32.16
(R = 3, SNR = 30 dB)
Gaussian 19.87 21.37 28.41 31.42
(sigma = 1.5, 3× 3, SNR = 40 dB)

Gaussian. The restoration performances on the images using the Lena SVR model

along with other schemes are shown in Figures 4.5 & 4.6 respectively. It may be

observed that the proposed PSO based SVR scheme has superior performance as

compared to the existing schemes.

(a) (b)

(c) (d) (e)

Figure 4.5: Restoration of Canon Image: (a) Blurred and noisy Canon image. (b)
Restored with PCA. (c) Restored with Maximum Likelihood. (d) Restored with
SVR without parameter optimisation (C = 1). (e) Restored with PSO based Lena
SVR model.

4.5 Summary

In this chapter, a PSO based parameter optimisation scheme for SVR has been

proposed which in turn is utilised for blind image restoration. The parameters of
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(a) (b)

(c) (d) (e)

Figure 4.6: Restoration of key Image: (a) Blurred and noisy Key image. (b)
Restored with PCA. (c) Restored with maximum likelihood. (d) Restored with
SVR without parameter optimisation (C = 1). (e) Restored with PSO based Lena
SVR model.

SVR play a vital role in restoration performance which in turn becomes the basis

of the proposition. SVR parameters are optimised on known training patterns

from standard images. The optimised SVR is then subjected to same as well as

different images those which are not used for training. Both subjective as well as

objective (PSNR in dB) restoration performances are studied and compared with

the competent schemes. It is observed that, the proposed scheme outperforms

others.
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Chapter 5

PSO Based Regularisation
Parameter Estimation

Because of imperfections in imaging systems and other non-ideal conditions, the

observed image often appears to be the degraded versions of the original image [1,

6]. The image degradation during acquisition makes it difficult for further analysis.

So, the need of image restoration is mandatory for improving accuracy in different

applications. The important issue in image restoration is to remove the blur in

presence of noise. This chapter solves this problem by using regularisation by

proper estimation of a regularisation parameter. A generalised cross validation

(GCV) criterion has been utilised to estimate the optimised value of regularisation

parameter. The particle swarm optimisation (PSO) has been used to optimise the

GCV criterion.

The rest of the chapter is organised as follows. Image restoration using

regularisation technique has been described in Section 5.1. Brief description of

GCV is provided in Section 5.2. Section 5.3 describes the proposed regularisation

parameter estimation based on PSO. Experimental results have been provided in

Section 5.4. Finally Section 5.5 gives the summarisation of the chapter.

5.1 Regularised Image Restoration

In most of the applications, it is assumed that the image degradation model is

linear and can be modelled as a two-dimensional convolution between the original

image f(x, y) with the point spread function (PSF) h(x, y). In matrix form, the
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observed image can be written as,

g = Hf + η (5.1)

where g and f are lexicographically ordered vectors. Blurring operator H is a

block circulant with circulant block (BCCB) matrix obtained from the PSF h(x, y).

The problem of deblurring has been addressed in the literature [22,33,35]. It has

been widely known that image restoration is an ill posed problem, and it can be

effectively handled using regularisation method [9, 55]. Very often, the blurring

matrices are ill conditioned, which occurs due to the wide magnitude range of the

eigen values [89]. Noise amplification occurs at small eigen values.

Regularisation theory assumes that the original image is smooth and therefore,

yields satisfactory results by adding a smoothness constraint to the original

minimisation function. Image restoration model using regularisation is derived

as [6],

O
(
f̂ , α

)
=
∥∥∥g −H ∗ f̂

∥∥∥2 + α
∥∥∥Q(f̂)

∥∥∥2 (5.2)

where, f̂ represents the estimated image. α and
∥∥∥(Q(f̂))

∥∥∥2 are the regularisation

parameter and regularisation operator respectively. The solution to the image

restoration problem can be obtained by minimising equation ( 5.2) and is derived

as [6],

f̂(α) = (HTH + αQTQ)HTg. (5.3)

The parameter α controls the trade-off between the fidelity to the image

data and smoothness to the solution and plays an important role during image

restoration. An adaptive value of α is necessary for degraded images with varied

noise strength and PSF. For better understanding, Lena image is restored from 30

dB noise with PSF (out-of-focus with radius = 5) with different values of α. The

mean square error (MSE) plot for various α values and different noise strengths

are shown in Figure 5.1.

It is clearly observed from the Figure 5.1 that for low SNR condition, the

value of α significantly affects the mean square error. The degree of smoothness is

controlled by the parameter α and is generally dependent on the SNR of the noisy

blurred image. If the SNR of the noisy blurred image is high, then a small value
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Figure 5.1: Variation of MSE for different α at different noise conditions for Lena
image.

of α gives the desired smoothness, whereas, a high value of α serves the purpose

for degraded images with low SNR.

The effects of α on restored Cameraman and Lena images are shown in the

Figures 5.2 and 5.3 respectively. If the value of α is increased, the restored image

becomes smooth and noise is removed whereas, if α is decreased, restored images

become sharp but some noise component still appears in the restored image.

So the difficulty lies with the choice of regularisation parameter for change in

noise situation. The proposed method concentrates on the proper estimation of a

regularisation parameter α.

The second term
∥∥∥(Q(f̂))

∥∥∥2 in (5.2) is the quadratic norm of the estimated

image which is expected to be small. In general it is assumed that images are

smooth and there is a high level of correlation among the pixels. The filter Q

is chosen as a high pass filter which emphasises the high frequency content i.e.

roughness in the image. Typical choice of Q is a discrete Laplacian operator
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Effect of α in regularised restoration: (a) Original Cameraman Image.
(b) Noisy blurred Cameraman image with SNR = 40 dB. (c) Restored with inverse
filter α = 0. (d) (e) (f) Restored with regularisation filter with (α = 0.01),
(α = 0.004), (α = 0.2).

which is given as [1],

Q =

⎡
⎢⎢⎢⎣

0 −0.25 0

−0.25 −1 −0.25

0 −0.25 0

⎤
⎥⎥⎥⎦ (5.4)

The restored image is obtained by minimising the regularisation model (5.2).

This solution is called Tikhonov solution [55]. The image stabilisation is controlled

by the function Q(f̂). Though the selection of regularisation operator affects the

restored result, even a Laplacian operator can produce good results. A good result

can also be obtained using an impulse as regularisation operator. This is observed

from the Figure 5.4.

The minimisation function in discrete Fourier transform (DFT) can be written
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Effect of α in regularised restoration: (a) Original Lena Image. (b)
Noisy Blurred Lena image with SNR = 30 dB. (c) Restored with inverse filter
α = 0, (d) (e) (f) Restored with regularisation filter with (α = 0.01), (α = 0.004),
(α = 0.2).

as,

∑
u,v

{|G(u, v)−H(u, v)F (u, v)|2 + α|Q(u, v)F (u, v)|2} (5.5)

where G(u, v), H(u, v), F (u, v) are corresponding Discrete Fourier transforms of

function g(x, y), h(x, y) and f(x, y) respectively. Q(u, v) is the Fourier transform

of the the Laplacian operator after padding zeros. The regularised restored result

in DFT domain is obtained by differentiating above equation with respect to

the image DFT coefficients and setting the result to zero. The solution to the

minimisation of (5.5) is given by

F̂ (u, v) =
H(u, v)

|H(u, v)|2 + α|Q(u, v)|2G(u, v) (5.6)

The performance of the filter depends on the regularisation term α|Q(u, v)|2 used
in the denominator of (5.6). If this term is zero, the filter reduces to an inverse
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(a)

(b) (c)

Figure 5.4: Effect of regularisation operator on restoration: (a) Noisy Blurred
Cameraman image with SNR = 40 dB. (b) Restored image without any filtering
i.e., Q = 1 α = 0.01. (c) Restored image with Q as Laplacian operator and
α = 0.01.

filter. For a nonzero regularisation term, the noise amplification is significantly

reduced by preventing the division by very small numbers especially at higher

frequencies.

To find the optimum value of α is one of the challenging issues and number of

methods have been proposed [59, 60, 90–92]. The discrepancy principle has been

applied for choosing the regularisation parameter [89, 93]. Using this principle,

regularisation parameter is chosen as a function of error level. L-curve method

has been used to select the regularisation parameter which is based upon the plot

of the norm of regularised solution and data fitting residual [94, 95]. Reeves [96]

proposed a spatial adaptive regularisation technique which uses a multistage

estimation procedure to estimate the optimal choice of local regularisation weights.

Reeves also suggested a method of generalised cross validation (GCV) [56]

which gives a reliable estimate of the regularisation parameter. However, the
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minimisation of GCV function plays an important role in the correct estimation

of the regularisation parameter. It has been observed that traditional minimisation

algorithms fail to achieve the global minimum because GCV function is multimodal

in nature. Therefore even the GCV criterion is capable of optimising α but doesn’t

produce good results. In order to remove this bottleneck, a PSO based global

optimisation scheme has been proposed to minimise the GCV error function.

The global minimisation of GCV function gives proper estimate of regularisation

parameter. The improved simulation results justify the efficacy of the proposed

scheme.

5.2 Generalised Cross Validation

Cross validation criterion is used to test the correctness of assumptions about a set

of data by dividing the data into two sets. Instead of using the whole set of data

in estimation, one portion of data is left out during estimation. The set that have

been left out during estimation is used for validation. The sample mean square

error is defined as,

e(α) =
1

N
||g −Hf̂(α)||2 (5.7)

where N × N is the total number of pixels in the blurred image. The above

equation minimises at α = 0. So this equation cannot be used to find the

optimum value of α. GCV criterion has been used efficiently for estimating

the regularisation parameter [56, 57] for image restoration. To apply GCV, each

pixel of the blurred image is considered as one set of data. For a fixed value

of regularisation parameter, the restored image is obtained using all the pixels

leaving a single pixel. Then the restored image is reblurred again to predict the

noisy blurred image pixel that has been left out in the restoration process. Each

observation gives a different restored image. The regularisation parameter which

minimises the mean square error over all the observations gives the correct value

of α. The cross validation error is written as,

E(α) =
1

N

N∑
k=1

[
gk −Hfk (α)

]2
(5.8)
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The optimised value of α is obtained when E(α) is minimum. GCV error is little

variation of the cross validation error. GCV error is given as [56],

E (α) =
1

N

N∑
k=1

[
gk −Hfk (α)

]2
wkk (α) (5.9)

where wkk(α) are the weights and given by,

wkk (α) =

⎡
⎢⎢⎢⎣ 1− akk (α)

1− 1
N

N∑
j=1

ajj (α)

⎤
⎥⎥⎥⎦

2

(5.10)

ajj(α) is (j, j)th element of the matrix A(α) and is given as,

A (α) = H
(
HTH + αQTQ

)−1
HT (5.11)

The matrix A(α) is called influence matrix. The GCV error measure using

influence matrix is given as [56]

GCV (α) =
1
N
||(I − A)g||2

[ 1
N
tr(I − A)]2

(5.12)

where I is the identity matrix. The plot of the GCV function for various values of α

for the Cameraman and Lena image are shown in Figures 5.5 and 5.6 respectively.

It is observed that GCV functional has multiple numbers of minimums and the

traditional minimisation algorithms are prone to get stuck in the local minima.

Though GCV criterion is capable of determining the regularisation parameter, it

may not give the optimum value of α for an unknown noise strength. The global

minimisation of GCV function is required to optimise the regularisation parameter.

PSO being a global optimisation technique it has been utilised it for optimising α.

The PSO is discussed in a nutshell followed by the proposed algorithm in sequel.

5.3 Regularisation Parameter Estimation using

PSO

As discussed earlier in Chapter 4, PSO is a stochastic optimisation technique

developed in 1995 by Eberhart and Kennedy [86] and works in the principle of

bird flocking. PSO has also been successfully applied in blind image deconvolution
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Figure 5.5: GCV function for degraded Cameraman image.

in [97]. In the proposed scheme, regularisation parameter (α) is used as the

position of the particle and initialised as a random number between 0 to 1. Velocity

of the particles are also chosen randomly between 0 and 1. The position (α) and

velocity are updated in the successive iterations. The updating equations for

position and velocity are defined in equations (5.13) and (5.14) respectively as,

V = V + c1 ∗ rand() ∗ (pbest− presentx) (5.13)

+c2 ∗ rand() ∗ (gbest− presentx)

presentx = presentx+ V ; (5.14)

where, V is the particle velocity and presentx is the current particle position (α)

and rand is the random number between 0 and 1. c1 and c2 are two weighting

constants or accelerating constants. GCV error function has been utilised as the

objective function. The details formulation of the proposed algorithm is described

in Algorithm 1. Finally the restored image is obtained using the optimum value

of regularisation parameter (α) using equation (5.3).
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Figure 5.6: GCV function for degraded Lena image.

5.4 Results and Discussion

To validate the efficacy of the proposed algorithm, simulation has been carried

out in MATLAB environment. For comparison, some benchmark approaches

have also been simulated under similar environment. PSNR (dB) is used as a

performance measure to evaluate the restoration quality. The overall simulation

work is described in two different experiments in detail.

Experiment 1: Estimation of α for motion blurred and noisy images

Standard images including Cameraman, Lena, Tree are degraded with motion

blur of different strengths and Gaussian noise is added to each of the images. The

GCV function is formulated for each of the blurred images and minimised using

PSO to determine the value of α. Population size of 30 has been used to run the

PSO. Experimentally the values of c1 and c2 are chosen to be 1.4 each. The values

of c1 and c2 can also be calculated using cross validation. The images are restored

using regularised deconvolution method after obtaining α. For comparison, same

images have also been restored using other methods [56] and [60]. Restoration

results for Cameraman image is shown in Figure 5.7. PSNR (dB) of restored

images have been provided in Table 5.1. The α value for Cameraman is found to

be 0.053. It is inferred from the results that the proposed scheme for α estimation

gives better restored results compared to other schemes.
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Algorithm 1 PSO for α optimisation

Input: Random Values between 0 to 1
Objective Function: GCV Error function defined in equation (5.12)
Output: Optimum α

1: The observed blurred image is received and converted into lexicographic
ordered vector.

2: The regularisation parameter (α) values are initialised as random numbers
between 0 and 1. These values denote the solutions and are called the particles
of the PSO algorithm.

3: For each value of α, the GCV error or the objective function is evaluated by
taking

Q =

⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦

4: The pbest and gbest are updated in each iteration as

pbest(i + 1) =

{
pbest(i) ifGCV (αi) < GCV (αi+1)
pbest(i+ 1) otherwise

(5.15)

and
gbest(i+ 1) = argmin

pbest
GCV (pbestn) 1 < n ≤ N (5.16)

where i denotes the iteration number and N denotes the number of population.
5: Then the velocity and position of each particle are updated as per the update

equations (5.13) and (5.14) respectively. The position of the particles is the
regularisation parameter.

6: If number of iterations is less than the maximum, repeat the steps from 3 to
5. Otherwise the algorithm is terminated.

7: The α value is obtained from the final gbest after the maximum iteration is
reached.

Experiment 2: Estimation of α for out-of-focus blurred and noisy

images

Same set of images used in Experiment 1 are out-of-focus blurred and Gaussian

noise is added to the blurred image. The α value is determined for each of the

blurred images similar to experiment 1. The PSO parameters are kept same as in

experiment 1. The Restoration results for a synthetic image ABC and the Lena

image are shown in Figures 5.8 and 5.9 respectively. PSNR (dB) comparison

for restored images using different methods is given in Table 5.2. Simulation

results for out-of-focus blurred images validate the effectiveness of the proposed

regularisation scheme.
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Table 5.1: PSNR (dB) comparison of various regularised deblurring algorithms for
images degraded with Motion blur and Gaussian noise.

Image Blur SNR (dB)
PSNR (dB) of Restored image by

Extent GCV Arnoldi process Proposed

Cameraman L = 10, θ = 45 20 24.321 26.134 28.1106
Cameraman L = 15, θ = 30 30 25.6309 27.396 29.7838

Lena L = 8, θ = 20 20 27.701 28.11 30.8462
Lena L = 15, θ = 30 30 28.316 31.79 32.01

ABC L = 8, θ = 20 20 28.18 29.74 29.916
ABC L = 15, θ = 30 30 32.38 36.47 38.292

Table 5.2: PSNR (dB) comparison of various regularised deblurring algorithms for
images degraded with out-of-focus blur and Gaussian noise.

Image Blur SNR (dB)
PSNR (dB) of Restored image by

Extent GCV Arnoldi Process Proposed

Cameraman R = 5 20 23.3209 24.6410 25.4781
Cameraman R = 7 30 29.4165 31.1221 32.3731

Lena R = 5 20 24.3150 26.2130 26.6270
Lena R = 7 30 30.1302 32.1756 33.5737

ABC R = 5 30 24.0164 30.7054 32.4097
ABC R = 7 20 31.6835 36.5424 38.5323

5.5 Summary

A PSO based GCV error minimisation technique has been proposed for

regularisation parameter estimation. The proposed scheme exploits GCV function

to determine the regularisation parameter. The global minimisation of GCV

function plays an important role in determining the regularisation parameter. The
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(a) (b)

(c) (d) (e)

Figure 5.7: Restoration of Cameraman Image: (a) Original Cameraman Image.
(b) Motion blurred and noisy image (SNR = 30 dB). (c) Restored with GCV
(α = 0.004). (d) Restored after Arnoldi regularisation (α = 0.01). (e) Restored
after PSO Based GCV minimisation (α = 0.053).

suggested scheme works well in moderate noise conditions for the images degraded

with motion and out-of-focus blur. The visual quality and PSNR values of the

restored images obtained in the proposed scheme are superior to that of competent

schemes. The performance is satisfactory both for motion as well out-of-focus

blurred images.
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(a) (b)

(c) (d) (e)

Figure 5.8: Restoration of ABC Image: (a) Original ABC image. (b) out-of-focus
Blurred ABC image (SNR = 30 dB). (c) Restored with GCV (α = 0.015). (d)
Restored after Arnoldi regularisation (α = 0.054). (e) Restored after PSO based
GCV minimisation (α = 0.093).
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(a) (b)

(c) (d) (e)

Figure 5.9: Restoration of Lena image: (a) Original Lena image. (b) Out-of-focus
blurred Lena image (SNR = 60 dB). (c) Restored with GCV (α = 0.048). (d)
Restored after Arnoldi regularisation (α = 0.006). (e) Restored after PSO based
GCV minimisation (α = 0.004).
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Chapter 6

Rotational Motion Deblurring
using Elliptical Modelling

Restoration of images that has been degraded due to relative motion between

the object and camera is an important aspect of digital image processing [1].

Removing linear motion blurs from images are not of great deal today and can

be handled using a variety of approaches. But the task becomes tedious when

relative rotary motion occurs between camera and object which causes substantial

degradation of image quality. This type of situation appears when the imaging

system is mounted in a rotating satellite or a missile. Images are also affected

by rotational motion blur when the foreground objects rotate. The high speed

rotational motion during the exposure time makes the identification of the object

extremely difficult. Rotational motion blur in images also causes undesired effects

in important applications, which require high-quality images.

The image degradations can be classified depending on the PSF. If the PSF

does not vary with space and time, the resulting blur is called spatially invariant

blur, otherwise it is known as spatial variant blur. In spatial invariant degradations

if the point spread function is known, the deblurring can be a deconvolution

problem with the known convolution kernel. There always exists a difficulty in

the deconvolution process because the convolution kernels are most often severely

ill posed. Accordingly several known algorithms like Wiener filtering, regularised

least squares filtering, Lucy-Richardson deconvolution can be employed to obtain

the true image [10]. When PSF is not available, blind deconvolution schemes are

employed to reconstruct the original image. Spatial variant deblurring problems
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are more difficult because more than one PSF acts on the image and PSF for

each pixel in the image are different. For spatial variant degradations, the linear

convolution model can’t be used because of multiple degradation functions. It is

very difficult to get an accurate model for spatial variant blur. However, it can be

modelled as a spatial invariant for different portions of the degraded image.

In the present chapter, a motion deblurring scheme has been proposed based

on the assumption that images have been blurred due to relative rotational motion

between the object and the imaging device. The motion may be either circular

or elliptical. The rotational motion between the object and the camera causes

a spatial variant blur in an image. Very few algorithms have been proposed in

the literature to restore the images corrupted with spatial variant degradation.

Hansen [98] modelled the spatial variant problems into several spatial invariant

problems. Sawchuk [99] proposed a coordinate transform restoration (CTR)

method to restore rotationally blurred images. The geometric transformation

requires accurate interpolation of large number of pixels which leads to estimation

errors. The CTR method requires transformation from rectangular coordinate to

polar coordinate and vice-versa, which increases the computational complexity.

In CTR method, some parts of the image still remain blurred. Sawchuk and

Peyrovian [99] expressed the blur model equivalent to a radiation model in

which the degradation of the pixels increases when they are away from the

rotational centre. Hong [100] utilised block circular property of the blur kernel for

deconvolution. They used Bresenham’s circle drawing algorithm to fetch the pixels

along a particular circular path. They use regularised least squares solution for

deconvolution to make their algorithm robust to noise. However, these methods

can be applied only when the motion is purely circular. A more generalised

approach is proposed in this chapter by taking the motion path as elliptical. The

elliptical motion model can be used for deblurring of circularly blurred images as

well as elliptically blurred images. Hong [100] suggested a cross-correlation method

to identify the rotational motion parameters. Rotational motion parameters has

been found directly from the blurred images. The rotational motion problem

has more than one degradation functions which is categorised as spatial variant

problem. A spatial variant degradation model is shown in Figure 6.1. The number
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Figure 6.1: Spatial variant blur model.

of PSFs (n) vary from image to image and depends on the blurring environment.

This chapter is organised as follows. An analysis of elliptical motion blur

has been described in Section 6.1. The proposed deblurring method is presented

in Section 6.2. Finally, the simulation results and summary are provided in

Sections 6.3 and 6.4 respectively.

6.1 Elliptical Motion Blur Analysis

The motion blur problem is considered as an elliptical rotation with constant

velocity. For elliptical motion, the blurring paths are taken as elliptical. For each

pixel in a elliptical blurring path, PSF is assumed to be same. If f(x, y) and

g(x, y) are true and blurred images, then g(x, y) can be expressed as,

g(x, y) =
1

T

T∫
0

f [x− rx cos(ωt), y − ry sin(ωt)]dt (6.1)

where ω is the angular velocity of the camera and the ellipse equation is given as,(
x

rx

)2

+

(
y

ry

)2

= 1

rx and ry represents major and minor axis respectively.

Therefore the problem reduces to number of one dimensional problems. Each

of the elliptical path is deblurred separately using the conventional methods used
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for spatial invariant problem. In terms of convolution, blurred image g for each

elliptical path can be written as,

g(n) =
1

L

L∑
i=0

f(n− i) + ξ(n) (6.2)

Figure 6.2: Elliptical motion blur model.

where g(n) represents the nth degraded pixel along an elliptical path. ξ(n)

represents noise associated with it. Length L represents the length of the blur in

each ellipse i.e. number of pixels that has been passed through the scenery points

in the exposure time T .

In the Figure 6.2, it has been clearly shown that how pixels along a particular
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elliptical path is obtained and it is taken as an intensity image. If pixels are

on different paths, they donot maintain any regularity in the spectrum. In the

spectrum, the pattern is that a series of minima distributed uniformly on the

frequency axis with constant intervals. The constant interval is same for all the

circles in the blurred image spectrum. So the rotary centre identification is based

on the constant zero interval in the frequency axis.

6.2 Proposed Deblurring Method

The proposed method deconvolves the blurred image after dividing it into number

of concentric ellipses. There are two parameters required for constructing the

PSF for a particular elliptical path i.e. one is angle of the blur and other is the

rotary centre. Angle of the blur is calculated according to (6.3). Rotary centre is

determined using the method used in [100].

θ =
rpm

60
× π (6.3)

Bresenham’s ellipse drawing algorithm has been used to fetch the pixels along

a particular elliptical path. For a particular ellipse, blur length L is given by (6.4).

The following steps describes the algorithm for deconvolution.

Step 1: Divide the blurred image into number of concentric ellipses.

Step 2: Fetch the pixels from each elliptical path and consider them as a

rectangular image. The rectangular image is equivalent to a horizontal

motion blurred image. (Bresenham’s ellipse drawing algorithm is used to

fetch the pixels along a elliptical path.)

Step 3: Calculate the blur length L according to (6.4).

Step 4: Deblur it by using Lucy–Richardson algorithm or Wiener filter.

Step 5: Integrate all the pixels in the same manner it has been fetched.

L = int(N.θ)/360, θ = ωT (6.4)
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To divide the image into concentric ellipses, and to fetch the pixels along

a particular elliptical path Bresenham’s ellipse drawing has been used [101].

Bresenham’s algorithm accurately calculates the pixels aligning orthogonal into an

ellipse. However, when the image is integrated by number of concentric ellipses,

some points are not covered by any of the ellipses. The missing pixel problem is

shown in the Figure. 6.3.

Figure 6.3: Missing pixel problem.

6.2.1 Missing Pixel Interpolation

As discussed, pixels along a elliptical path are fetched without any overlap or loss.

But during integration of different concentric ellipses into an image some of the

missing pixels are not covered by any of the multiple ellipses. The distribution

of missing pixels depends on the algorithm rather than image content. A missing

pixel is interpolated based on strategy which preserves the texture information

of the neighbourhood of missing pixels. A shape recognition method is used

to interpolate the pixels which are missed. This method recognises the shape

of the neighbourhood and interpolates the missing pixels based on the shape.

This method preserves the object edge from the background because shape is the

expression of texture information of a neighbourhood. It is observed from the

Figure 6.4 that black dots appear in the restored image without interpolation.

6.3 Simulation Results and Discussion

To validate the efficacy of the proposed elliptical modelling, an experiment has

been carried out on standard images and their results are listed in this section.

Subjective as well as objective measurements of the results are made. Peak signal

to noise ratio (PSNR) is the performance metric considered for the restoration
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(a) (b)

Figure 6.4: Restored image corrupted my missing pixels: (a) Restored image with
out interpolation. (b) Restored image after interpolation.

quality measurement.

PSNR (dB) = 10 log10

(
2552

MSE

)
(6.5)

MSE =
1

MN

M∑
x=1

N∑
y=1

(
f(x, y)− f̂(x, y)

)2

(6.6)

where, M ×N is the size of the image, and f(x, y) and f̂(x, y) represent the pixel

values at (x, y)th location of original and restored image respectively.

The rotational motion has been simulated using Bresenham’s midpoint ellipse

drawing algorithm. Pixels corresponding to concentric ellipses are extracted by

varying the radii of the ellipse. Each ellipse is then stretched to form an one

dimensional array of pixels. These arrays are then motion blurred by computing

the blur length from the exposure time (T) and rotational speed (ω). In the

experiment, exposure time and rotational speed in rpm have been kept as 0.01

sec and 120 rpm respectively. The blurred array are then replaced back in their

respective positions in the image from where they were extracted. The resultant

image thus formed is an elliptically blurred image. Some of the standard images

including Stik, Vase, Lena, Chekerboard are elliptically blurred in this manner.

These images are also blurred circularly in the similar fashion by keeping both the

radii of ellipse same.

For restoration, initially, the blurred Lena image is divided into a number of

ellipses. The pixels in each elliptical path is taken as an horizontal blurred image

and restored using Wiener filter. Restoration results for the Lena image are shown
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in Figure 6.5. Similar steps have been followed for restoring other elliptical as well

as circular blurred images. In the experiments, the proposed elliptical model

has been used for both circular motion as well as elliptical motion deblurring.

The restoration results of the Stik, Vase and Chekerboard images blurred due to

circular as well as elliptical motion are depicted in the Figures 6.6, 6.7 and 6.8

respectively. It may be observed that the restored images are free from blur and

edges are retrieved. However, there appears a black line at the centre of the

restored results. This is due to inaccurate formation of the smallest ellipse at the

centre. The minor axis of the smallest ellipse is not long enough to construct

a proper ellipse. The PSNR measure for different restored images is shown in

Table 6.1. It is also inferred that the proposed method provides acceptable PSNR

of the restored image. Nevertheless, there exists a scope for further reduction in

computational complexity and improvement in restoration performance.

Table 6.1: PSNR (in dB) of restored images.
Image Circular rotation Elliptical rotation

Lena 24.42 23.80
Stik 19.51 19.01
Vase 21.13 20.28
Chekerboard 24.32 22.45

In the later part of the experiment, The exposure time of the camera and

rotational speed are varied. The PSNR plot of the restored results were obtained

for each exposure time and rotational speed and given in Figure 6.9. It is observed

that PSNR decreases with increase in exposure time and rotational speed.

6.4 Summary

The problem of rotational motion blur in images has been addressed in this

chapter. The performance depends upon the modelling of PSF for spatial variant

blur. The approach deals with an elliptical blur model where circular blur is

treated as a special case. The spatial variant blur has been divided into number of

spatial invariant problems and Wiener filter has been used to restore the images.

The effectiveness of the proposed scheme has been verified for various rotational
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(a)

(b) (c)

(d) (e)

Figure 6.5: Restoration of Lena image: (a) True image. (b) Circularly blurred.
(c) Elliptically blurred. (d) Restored image of (b). (e) Restored image of (c).
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(a)

(b) (c)

(d) (e)

Figure 6.6: Restoration of Stik image: (a) True image. (b) Circularly blurred. (c)
Elliptically blurred. (d) Restored image of (b). (e) Restored image of (c).
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(a)

(b) (c)

(d) (e)

Figure 6.7: Restoration of Vase image: (a) True image. (b) Circularly blurred.
(c) Elliptically blurred. (d) Restored image of (b). (e) Restored image of (c).
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(a)

(b) (c)

(d) (e)

Figure 6.8: Restoration of Chekerboard image: (a) True image. (b) Circularly
blurred. (c) Elliptically blurred. (d) Restored image of (b). (e) Restored image
of (c).

107



Chapter 6 Rotational Motion Deblurring using Elliptical Modelling

0 0.02 0.04 0.06 0.08 0.1
16

18

20

22

24

26

Exposure Time (in sec)

P
S

N
R

 (
dB

)

(a)

20 40 60 80 100 120
23

24

25

26

27

28

29

Revolution per minute (RPM) 

P
S

N
R

 (
dB

)

(b)

Figure 6.9: (a) Variation of PSNR (dB) with respect to exposure time. (b)
Variation of PSNR (dB) with respect to rotational speed.

motion blurred images. However, the method is susceptible to noise.
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Chapter 7

Conclusions and Future Work

Image blurring is a common phenomenon that exists in various applications

like photography, remote sensing, medical imaging, etc. The degradation may

occur due to camera mis-focusing, atmospheric turbulence, relative object-camera

motion and various other reasons. For the last few decades, researchers are working

in the field of image restoration. The problem is still open due to its ill-posed

nature and requires significant research.

In this thesis, attempts have been made to restore images from their degraded

observations and evaluations are performed both visually and quantitatively.

Chapter 2 deals with the motion blur parameter estimation for subsequent

restoration using Wiener filter. In this regard, Gabor filter and radial basis

function network have been used to estimate blur angle and blur length

respectively. Performance analysis have been made on only blurred images as

well as noisy blurred images. The proposed scheme estimates the blur parameters

close to the true value. Comparative analysis demonstrates the efficacy of the

proposed scheme. However, the suggested scheme produces good restored images

when the Gaussian noise of strength more than 25 dB SNR.

Multi-class SVM is used in Chapter 3 to determine the length parameter of

motion blur (L) and sigma (σ) parameter of atmospheric turbulence blur. The

local variance feature has been used as the criteria to collect the samples from

the blurred image for training the multi-class SVM. The output of SVM gives the

blur length. Similar strategy has been followed for determining the σ parameter of

turbulence blur by creating another SVM model. The experimental results verify
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that the proposed multi-class SVM based blur parameter estimation provides

accurate results. However, the trained SVM fails to estimate the blur parameters

accurately for noisy blurred images. In addition, a SVM trained on a particular

blur condition suitable to predict the similar blur parameters only.

In Chapter 4, support vector regression (SVR) is utilised for blind image

restoration. The parameters of the SVR, including C, σ are optimised using

particle swarm optimisation (PSO) before it is applied to restore images. A

mapping of the true image is directly obtained from the noisy blurred image

without estimating the PSF. SVR models are created with known training samples

after optimising the parameters using PSO. The advantage of this method is that

it can restore images affected with different blur with Gaussian noise of unknown

strength. The proposed scheme is used in more generalised applications. However,

if the blur (or image) characteristic is significantly different from the trained blur

(or image) or if SNR is very low, the algorithm fails to approximate.

An approach towards estimating the regularisation parameter is proposed

in the Chapter 5. Generalised cross validation (GCV) criterion is employed

to obtain an optimum regularisation parameter. The optimised regularisation

parameter is achieved by minimising the GCV error criterion using PSO technique.

The proposed scheme helps to provide an optimum regularisation parameter

depending on varying strengths of Gaussian noise. Subsequently, the optimised

regularisation parameter is used to restore the degraded image using regularised

restoration technique. The experimental results are shown to validate the efficacy

of the proposed scheme. The limitation of this method lies in its computational

complexity.

The deblurring of images affected with rotational blur is discussed in Chapter

6. Rotational blurs are considered as spatial variant blur and attempts have

been made to model this as a combination of spatial invariant problems. This is

done through elliptical modelling. Number of concentric ellipses are drawn on the

blurred image and pixels in each elliptical path are considered to be affected with

a unique spatial invariant PSF. Pixels are fetched along each elliptical path and

deblurred using Wiener filter. Finally, they are integrated in the similar manner

in which they have been fetched. The proposed approach effectively restores the
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images affected with circular rotational blur as well as elliptical rotational blur.

The suggested method is well suited for satellite imaging applications where object

and camera motion is elliptical. However, the proposed scheme is susceptible to

noise and computationally complex.

The proposed schemes along with a number of reported schemes are simulated

on standard and naturally blurred images under different parametric PSFs. The

restoration performances like PSNR, visual quality are evaluated for each proposed

approach. By and large, the proposed schemes have an upper hand to their

respective counterparts.

Scope for Further Research

The research findings made out of this thesis has opened several research

directions, which have a scope for further investigations. The proposed schemes

mostly deal grayscale images, which can be extended to colour images. The

computational complexity of each algorithms can be studied and schemes need

to be devised to implement them in parallel for better response time. It is

also observed that most of the image restoration problems can be modelled as

multi-objective optimisation problem for better approximation of blur parameters.

Restoration of spatially variant blurred images is in its infancy. One of

the suggested scheme deals with rotational blur which is variant in nature.

Eventhough the scheme generates a comparable result, the scheme takes awesome

computation. Hence, direction for reduction of computation will be an interesting

direction of research.
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